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ABSTRACT 

Assessment and management of aging concrete structures in nuclear power 
plants require a more systematic approach than simple reliance on existing code 
margins of safety. Health monitoring of concrete structures is performed in order 
to understand the current condition of a structure based on heterogeneous 
measurements and then produce high-confidence actionable information 
regarding structural integrity; this information can then be used to support 
operational and maintenance decisions. The proposed diagnosis and prognosis 
framework consists of four elements: health monitoring, data analytics, 
uncertainty quantification, and prognosis. 

The objective of this ongoing research project is to evaluate several 
nondestructive examination (NDE) techniques for suitability in obtaining 
concrete-structure degradation data that can be used in the monitoring 
framework. This report focuses on degradation of concrete structures affected by 
the alkali-silica reaction (ASR). Controlled concrete bricks were cast and cured at 
various conditions to develop accelerated ASR degradation in a laboratory 
setting. Different NDE techniques (i.e., thermography, digital image correlation, 
mechanical deformation measurements, nonlinear impact resonance-acoustic 
spectroscopy, and vibro-acoustic modulation) were used to detect the damage 
caused by ASR. Heterogeneous data from multiple techniques were used for 
assessing damage of concrete samples that underwent different curing conditions. 
The NDE techniques were evaluated to determine if the data acquired were 
suitable for use in the online condition-monitoring framework for realistic 
concrete structures. 
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EXECUTIVE SUMMARY 
One challenge facing the current fleet of light water reactors in the United 

States is age-related degradation of their passive assets, including concrete, 
cables, piping, and the reactor pressure vessel. As the current fleet of nuclear 
power plants (NPPs) continues to operate for 60 years or more, it is important to 
understand the current and the future condition of passive assets under different 
operating conditions that would support operational and maintenance decisions. 
To ensure safe and reliable long-term operation of the current fleet, the U.S. 
Department of Energy’s Office of Nuclear Energy funds the Light Water Reactor 
Sustainability Program to develop the scientific basis for extending operation of 
commercial light water reactors beyond the current license extension period. 

Among the different passive assets of interest in NPPs, concrete structures 
are investigated in this research project. Reinforced-concrete structures found in 
NPPs can be grouped into four categories: (1) primary containment, 
(2) containment internal structures, (3) secondary containments/reactor buildings, 
and (4) spent fuel pool and cooling towers. These concrete structures are affected 
by a variety of degradation mechanisms that are related to chemical, physical, 
and mechanical causes and to irradiation. Age-related degradation of concrete 
results in gradual microstructural changes (e.g., slow hydration, crystallization of 
amorphous constituents, and reactions between cement paste and aggregates). 
The purpose of structural health monitoring of concrete is to assess the current 
condition of a structure and to provide high-confidence actionable information 
regarding structural integrity and reliability. Vanderbilt University, in 
collaboration with Idaho National Laboratory and Oak Ridge National 
Laboratory, is developing a probabilistic framework for structural health 
monitoring and managing the condition of aging concrete structures in NPPs. 
This integrated framework includes four elements: (1) monitoring, (2) data 
analytics, (3) uncertainty quantification, and (4) prognosis. 

The objective of this continuing research project is to obtain degradation data 
for concrete structures from a series of experiments conducted in controlled 
laboratory conditions. The ability of nondestructive examination methods to 
characterize concrete deterioration and correlate it with structural performance is 
also being assessed. This report focuses on concrete degradation caused by 
alkali-silica reaction (ASR). Concrete specimens were prepared to develop 
accelerated ASR degradation in a laboratory setting. Different nondestructive 
examination techniques (i.e., thermography, digital image correlation, 
mechanical deformation measurements, nonlinear impact resonance-acoustic 
spectroscopy, and vibro-acoustic modulation) were used to detect the damage 
caused by ASR. Heterogeneous data from multiple techniques were used for 
assessing the damage to concrete samples that underwent different curing 
conditions. The measured data can be linked to a probabilistic framework; the 
monitoring data were input to a Bayesian network for information fusion, 
uncertainty quantification of a diagnosis result, and prognosis in order to 
facilitate implementation of continuous online monitoring of realistic NPP 
structures. 

Some of the outcomes of these experiments are as follows: 

1. Three 9- × 5- × 2-in. concrete bricks were prepared and cured under various 
conditions to produce accelerated ASR degradation 
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2. The impacts of ASR development on specimen structures were examined using 
a number of interrogation techniques: thermography, nonlinear impact 
resonance-acoustic spectroscopy, and vibro-acoustic modulation 

3. Experimental data from interrogation techniques found that these techniques 
can be used to generate data related to the assessment of degradation of 
concrete structures due to the impacts of ASR. 

The experiments described in this milestone report are focused on concrete 
structural monitoring measurements and data analytics. This will support 
continuous assessment of concrete performance. 

During the next phase of research, monitoring techniques will be refined for 
detection and localization of ASR in a reinforced-concrete specimen. The 
uncertainty quantification approaches and integration framework will be 
advanced further to handle large amounts of observation data. The resulting 
comprehensive approach will facilitate development of a quantitative, 
risk-informed framework that would be generalizable for a variety of concrete 
structures. 
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Data Analysis of Different Nondestructive Testing 
Techniques to Monitor Concrete Structure Degradation 

due to Alkali-Silica Reaction 
1. INTRODUCTION 

Because many existing nuclear power plants (NPPs) continue to operate beyond their licensed life, 
their passive structures, systems, and components suffer deterioration that affects structural integrity and 
performance. Monitoring the condition of these elements of an NPP is essential for ensuring that its 
current and future conditions meet performance and safety requirements. This project focuses on concrete 
structures in NPPs. The concrete structures are grouped into the following four categories: (1) primary 
containment, (2) containment internal structures, (3) secondary containment/reactor buildings, and (4) 
other structures such as used fuel pools, dry storage casks, and cooling towers. These concrete structures 
are affected by a variety of chemical, physical, and mechanical degradation mechanisms, such as 
alkali-silica reaction (ASR), chloride penetration, sulfate attack, carbonation, freeze-thaw cycles, 
shrinkage, and mechanical loading (Naus 2007). The age-related deterioration of concrete results in 
continuing microstructural changes (e.g., slow hydration, crystallization of amorphous constituents, and 
reactions between cement paste and aggregates). Therefore, it is important that changes over long periods 
of time are measured and monitored, and that their impacts on the integrity of the components are 
analyzed to best support long-term operations and maintenance decisions. 

Structural health monitoring (SHM) is required in order to produce actionable information regarding 
structural integrity that, when conveyed to the decision-maker, enables risk management with respect to 
structural integrity and performance. The methods and technologies employed include assessment of 
critical measurements, monitoring, and analysis of aging concrete structures under different operating 
conditions. In addition to the specific system being monitored, information may also be available for 
similar or nominally identical systems in an NPP fleet, as well as legacy systems. Therefore, Christensen 
(1990) suggested that assessment and management of aging concrete structures in NPPs requires a more 
systematic and dynamic approach than simple reliance on existing code margins of safety. 

Through the Light Water Reactor Sustainability Program, several national laboratories and Vanderbilt 
University have begun research on concrete SHM in accordance with the proposed framework discussed 
in Mahadevan et al. (2014). The goal of this research is to enable plant operators to make risk-informed 
decisions on structural integrity, remaining useful life, and performance of concrete structures across the 
NPP fleet. The long-term research objective of this project is to produce actionable information regarding 
structural integrity to support operational and maintenance decision-making that is individualized for a 
given structure and its performance goals. In addition, the project supports the research objectives of three 
pathways under the Light Water Reactor Sustainability Program (i.e., the Advanced Information, 
Instrumentation, and Control Systems Technologies Pathway; the Materials Aging and Degradation 
Pathway; and the Risk-Informed Safety Margin Characterization Pathway). 

Vanderbilt University, in collaboration with Idaho National Laboratory and Oak Ridge National 
Laboratory, is developing a framework for evaluating and forecasting the health of aging NPP concrete 
structures that are subject to physical, chemical, and mechanical degradation (Mahadevan et al. 2014; 
Agarwal and Mahadevan 2014). The framework will investigate concrete structure degradation by 
integrating the following four technical elements: (1) monitoring, (2) data analytics, (3) uncertainty 
quantification, and (4) prognosis. For details on each element of the proposed framework, refer to 
Mahadevan et al. (2014). The framework will enable plant operators to make risk-informed decisions on 
structural integrity, remaining useful life, and concrete structure performance. The demonstration 
performed at Vanderbilt University using various techniques to assess ASR degradation in controlled 
concrete specimens was reported in Mahadevan et al. (2016). 
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1.1 Objective and Layout of this Report 
The objective of this report is to examine the use of vibro-acoustic techniques, nonlinear impact 

resonance-acoustic spectroscopy, and thermal infrared in assessing the effects of ASR on the integrity of 
concrete structures that are exposed to accelerated aging conditions in a laboratory. A series of experiments 
were conducted at the Vanderbilt University to provide sufficient degradation data in support of the framework 
(Mahadevan et al. 2014; Mahadevan et al. 2016) to examine and forecast the condition of aging concrete 
structures in NPPs. The remainder of the report is organized as follows: 

• Section 2 discusses the technical basics of the ASR development and nondestructive examination (NDE) 
techniques to assess the effects of ASR on the integrity of concrete structures. The use of vibro-acoustic 
data for monitoring the development of ASR that occurred during accelerated aging of concrete structures 
is also discussed. 

• Section 3 describes the preparation of specimens with ASR degradation and the laboratory experimental 
setup for the various NDE techniques. 

• Data analysis of the collected monitoring data is presented in Section 4. 

• A research summary and future activity are discussed in Section 5. 

2. TECHNICAL BACKGROUND 
2.1 Development and Impact of Alkali-Silica Reaction 

The ASR is a reaction in concrete between the alkali hydroxides (K+ and Na+) in the pore solution and the 
reactive non-crystalline (amorphous) silica (S2+) found in many common aggregates, given sufficient moisture. 
This reaction occurs over time and causes the expansion of the altered aggregate by the formation of a swelling 
gel of calcium silicate hydrate (C-S-H). Reactive silica is mainly provided by reactive aggregates and the 
alkalis by the cement clinker. ASR swelling results from the relative volume increase between the product and 
reactant phases involved in the chemical reaction. First, the products expand in pores and micro-cracks of the 
cementitious matrix. Once this free expansion space is filled, the swelling is restrained, and the product phases 
exert local a pressure on the surrounding concrete skeleton (Ulm 2000). Figure 1 depicts the mechanism of 
ASR (Kreitman 2011). 

With water presence, the ASR gel increases in volume and exerts an expansive pressure inside the material, 
causing spalling micro- to macro-cracks (due to nonhomogeneous swelling related to non-uniform moisture 
distribution). As a result, ASR reduces the stiffness and tensile strength of concrete, because these properties 
are particularly sensitive to micro-cracking. ASR also can cause serious cracking in concrete, resulting in 
critical structural problems that can even force the demolition of a particular structure. The serviceability of 
concrete structures includes the resistance to excessive deflections, as well as a host of other durability concerns 
that can shorten the service life of a structure. Large surface crack widths and deep penetration of open surface 
cracks promote ingress moisture and any dissolved aggressive agents, such as chlorides. Additionally, the loss 
of concrete stiffness and potential for reinforcement yield are concerns for concrete deflection capabilities. 

ASR is a complex chemical phenomenon, the rate and extent of which depend on a number of material and 
environmental parameters, and the interactions among parameters is not fully understood. This critical nature of 
ASR on premature concrete deterioration requires the quantitative assessment of ASR structural effects during 
service life (both in time and space). In particular, a combined experimental modeling investigation method is 
required to evaluate the impact of ASR on the dimensional stability of concrete structures. Although ASR has 
been identified as a cause of deterioration of numerous concrete structures and research has yielded some 
understanding of the mechanism of the reaction, the structural effects of ASR and how to best assess the extent 
of damage to existing structures remain major topics of ongoing research. This is because the expansion and 
cracking patterns (the most obvious sign of distress) caused by ASR affect both the concrete and the reinforcing 
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steel, but similar crack patterns can also be produced by other distress mechanisms (i.e., drying shrinkage and 
sulfate attack). 

 
Figure 1. Mechanism of ASR (Kreitman 2011). 

In the nuclear industry, a scoping study of ASR in concrete is performed to support future activities 
that include evaluating the effects of ASR on the structural capacity. From a safety perspective, the 
remaining capacity of a structure exhibiting distress due to ASR is an important factor in operational and 
maintenance management decisions. This is a challenging task for various reasons. First, the extent of the 
degradation will vary throughout the element as a function of the moisture content and as a function of the 
degree of restraint provided by the steel reinforcement. Also, it may be difficult to predict the properties of 
the concrete using certain testing results taken from the structure, because the size of the defects caused by 
the ASR may be large compared to a small structure, such as the cylinder (resulting in anomalously low 
tested strength), but small compared to the larger structure (suggesting there may be sufficient capacity). 
In addition, there is no reliable means of estimating the degree of the reaction in an existing concrete 
structure. 

ASR can potentially affect concrete properties and performance characteristics, such as compressive 
strength, the modulus of elasticity, flexural stiffness, shear strength, and tensile strength. ASR can also 
impact material properties, but the structural performance of concrete elements depends on whether or not 
the concrete is unconfined or confined within reinforcing bars. The concrete core testing was conducted at 
the Seabrook nuclear power plant in February 2011 as part of the license renewal submission (NextEra 
Energy Seabrook 2012). These tests confirmed the presence of ASR-induced cracks in various structures 
within the plant and reduced modulus to some extent. The impact of reduced modulus on ASR-affected 
structures was evaluated. This evaluation found that the overall structure integrity was still within the 
strength requirements. 
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2.2 Diagnosis and Prognosis of Alkali-Silica Reaction Progress  
in Concrete 

In NPPs, the concrete structures must have the strength required to resist dead weight, live loads, and 
seismic and other external events. For safety-related concrete structures that require extended periods of 
safe operations, a monitoring strategy is needed that can predict the future evolution of ASR to ensure that 
there is sufficient time to execute a safe cessation of operations. In this case, the evolution of mechanical 
properties as a function of the degree of ASR is required. For existing structures, an evaluation of the 
current state of the structure and an estimate of its future performance are critical. The diagnosis and 
prognosis in the structure monitoring procedure are based on an estimation of strength, modulus of 
rupture, and modulus of elasticity from the compressive strength of distressed concrete, which are critical 
parameters in a structural evaluation. Usually, the assumption is that these material properties decrease as 
a function of the degree of degradation, which is either the equivalent degree of free expansion or the 
extent of the chemical reaction. 

The diagnosis and prognosis for the condition of a concrete structure leverage modeling of chemical, 
physical, and mechanical degradation mechanisms (such as alkali-aggregate reaction, chloride penetration, 
sulfate attack, carbonation, freeze-thaw cycles, shrinkage, and radiation damage) in order to inform 
monitoring and risk-management decisions. The alkali-aggregate reaction is currently receiving prominent 
attention among other applicable damage mechanisms for NPP concrete structures; these mechanisms are 
also included in the diagnosis and prognosis framework. The modeling and computational advances 
together with coupled-physics experiments and integrated multiple models through an appropriate 
simulation framework are leveraged to increase capacity and accuracy of monitoring technique. The 
combined model can be used for a prognosis of damage based on the current damage ascertained from the 
examination. The uncertainty quantification in the diagnosis can be propagated through the prognosis 
model to quantify uncertainty in the prognosis. 

Details on the proposed health monitoring framework used for concrete structures are documented in 
Mahadevan et al. (2014). The framework will enable plant operators to make risk-informed decisions on 
structural integrity, remaining useful life, and performance of the concrete structure. The demonstration 
performed at Vanderbilt University using various techniques to assess ASR degradation in controlled 
concrete specimens was reported in Mahadevan et al. (2016). The success of this monitoring framework 
requires extensive experimental data in order to validate the modeling functional forms for predicting the 
condition of concrete structures exposed to specific operational conditions in an NPP. This validation 
process helps increase the prediction accuracy and reduce prediction uncertainty to a manageable level. By 
using the monitoring data taken from a number of different concrete designs that are representative of NPP 
concrete structures, a relationship will be developed between the degree of the ASR and the estimated 
mechanical properties. This correlation can be used to evaluate structural capacity in NPPs. 

2.3 Nondestructive Evaluation Techniques for Monitoring 
Alkali-Silica Reaction 

NDE techniques are essential for assessing ASR development in in-service concrete structures such as 
those in NPPs. For monitoring the ASR progression, the optical, thermal, acoustic, and radiation-based 
techniques are used for full-field imaging. Examples of these techniques include digital image correlation 
(DIC), infrared imaging, velocimetry, and ultrasonic and x-ray tomography. A particular consideration is 
the correlation between chemical degradation mechanisms and the observed degradation, which can be 
used to synergy between monitoring and prognosis. The standard test methods for determining the 
potential alkali-silica reactivity and for determination of the amount of time needed for concrete to change 
due to ASR are documented in ASTM C1567-13 and ASTM C1293-08b, respectively. 
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2.3.1 Infrared Thermography 
Infrared thermography maps the thermal load path in a material. Cracking, spalling, and delamination 

in concrete would create a discontinuity in the thermal load path. Additionally, rebar and tensioning cables 
can be easily differentiating due to the difference in thermal conductivity coefficients between steel and 
concrete. Thermography has even been shown to detect debonding between the reinforcing steel and 
concrete. Infrared thermography can be either an active or passive monitoring technique. When heat is 
locally added to the structure to create a temperature gradient, the thermography is referred to as active. 
When only solar heat is used to provide heat to produce the temperature gradient, the thermography is 
considered passive. Passive infrared thermography is preferred, because it is less energy intensive. The 
Electric Power Research Institute showed the feasibility of infrared thermography by mapping a 
450,000-ft2 dam. During the 2 days that the Electric Power Research Institute spent mapping the dam, 
numerous potential delamination sites were identified (Renshaw et al. 2014). Kobayashi and Banthia 
(2011) combined induction heating with infrared thermography to detect corrosion in reinforced concrete. 
Induction heating uses electromagnetic induction to produce an increase in temperature in the rebar. When 
corrosion is present, it inhibits the diffusion of heat from the rebar to the surrounding concrete. Infrared 
thermography is then used to capture the temperature gradient. It was concluded that the temperature rise 
in corroded rebar is higher than in non-corroded rebar. A more-corroded rebar yields a smaller temperature 
rise on the surface, and the technique is more effective with larger bar diameters and smaller cover depths 
(Kobayashi and Banthia 2011). The current study is investigating the performance of infrared 
thermography as a means of identifying ASR. 

2.3.2 Digital Image Correlation 
Digital image correlation is an optical NDE technique that is capable of measuring the deformation, 

displacement, and strain of a structure (Bruck et al. 2012). During NPP routine pressure tests on 
containment vessels, when the internal pressure reaches 60 psi, it might be possible to use DIC to 
determine deformation of the concrete containment. DIC is capable of detecting surface defects, such as 
cracks, micro-cracks, and spalling, but is unable to detect any subsurface defects. The primary benefit of 
DIC is in measuring deformation; therefore, the ability of DIC to detect changes in the dimensions of the 
slab due to ASR gel expansion is of interest in this study. DIC requires a speckled pattern on the specimen 
to anchor observations at different points in time. This also presents a problem for the small brick 
specimens that are immersed in sodium hydroxide (NaOH) solution or water; the pattern is disturbed and 
partly dissolved in the NaOH solution. However, if the brick specimen is cured above water, DIC might be 
applicable. 

2.3.3 Mechanical Deformation Measurement 
The mechanical deformation measurement is a contact measurement technique. Calipers or an 

extensometer can be used to measure deformation along a linear distance. It is often convenient to glue on 
targets or cast nails into the concrete to provide more repeatable measurement points. In order to capture 
the ASR-induced concrete deformation, the measurement device needs to be accurate to within a few 
hundred microns. Most high-resolution mechanical measurement devices have a relatively short 
measuring span (i.e., 1 ft or less). This makes them ideal for laboratory experiments but limits their 
applicability in real-world structures without using a significant number of targets glued to the structure. 

2.3.4 Nonlinear Impact Resonance-Acoustic Spectroscopy 
All solids have natural periods of vibration, also known as resonant frequencies, at which solids tend 

to vibrate when excited. This is a function of the dimensions, stiffness, density, and boundary conditions 
(external restraint) of the solid. If two objects that have different stiffness, but are otherwise identical, are 
compared, the stiffer object will have a higher resonant frequency (shorter natural period). ASR and 
delayed ettringite formation reduce concrete’s stiffness, which can be detected by measuring the resonant 
frequency. Linear test methods have proven reasonably effective for locating larger defects, but test 
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methods based on nonlinear behavior may be many times more sensitive to micro-cracks and distributed 
damage characteristics of ASR. 

Nonlinear impact resonance-acoustic spectroscopy (NIRAS) is an NDE technique that uses the 
vibrational response of a structure to classify damage. NIRAS was developed at Georgia Tech to detect 
ASR-induced damage in concrete (Lesnicki et al. 2014). NIRAS operates based on the following idea: a 
linear system has the same natural frequency regardless of the amplitude of the excitation force. In 
contrast, for nonlinear systems, the resonant frequency experiences a downward shift as the force of the 
impacts increases, and this shift is increasingly prominent in specimens with micro-cracking. Figure 2 
shows the resonant frequency shift for a nonlinear system as the amplitude of the excitation force 
increases (Mahadevan et al. 2016). 

The nonlinearity parameter is commonly used to quantify the severity of damage. The nonlinearity 
parameter is calculated as a scaled slope of the input force amplitude versus the frequency shift. It is well 
known that concrete samples with more severe damage generally have a larger value for the nonlinearity 
parameter (steeper slope). On the other hand, a sample in pristine condition (or linear structure) should 
have no frequency shift with increasing input force amplitude, and then its nonlinearity parameter would 
be 0. Figure 3 shows an example of the frequency shift plot as a function of the input force amplitude for a 
brick specimen. The frequency shifts corresponding to the input force amplitudes are taken from NIRAS 
results presented in Figure 2. The nonlinearity parameter was calculated as a slope of the fitted line (black 
line) to measured data points (cross symbols); this parameter equals 0.1219 (Figure 3). This positive (or 
non-zero) slope indicates that the specimen structure is nonlinear or damaged to some extent. 

Because ASR causes micro-cracking within the concrete, which creates nonlinearity, it is believed that 
NIRAS can be used to detect damage in concrete before the cracking is visible on the surface. Because 
NIRAS is a global vibrational response technique (i.e., it measures shifts in resonant frequency), it is 
better suited for small laboratory concrete specimens than large concrete structures. For example, if a large 
concrete structure had a small patch of ASR growth, it is unlikely that NIRAS would be able to detect the 
growth, because it will have a minimal effect on the natural frequency of the structure. 

 
Figure 2. Results from a concrete brick, showing frequency shift with increasing input force amplitude. 
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Figure 3. Calculation of nonlinearity parameter for the brick specimen. 

2.3.5 Vibro-Acoustic Modulation 
Vibro-acoustic modulation (VAM) is a nonlinear vibration technique in which the structure of interest 

is excited using a combination of specific frequencies and the response is recorded. VAM is also known 
by other names, such as nonlinear wave modulation spectroscopy. The VAM technique assumes that an 
undamaged structure can be represented by a linear system while the representation of a damaged structure 
must include nonlinearity, which is the result of the generation of sideband responses. VAM is a 
nondestructive testing technique that has been successful in detecting nonlinearities in various materials, 
including detecting ASR-induced damage in concrete (Chen 2008; Chen 2009). 

VAM works by exciting a structure with two frequencies of vibration simultaneously. The low-
frequency input is termed the “pump,” and the high-frequency input is termed the “probe” (Kim et al. 
2014). Interaction of the pumping and probing signals can help identify the presence of nonlinearities in 
the system. As the pumping signal causes the crack to open and close (shown in Figure 4), the effective 
cross-sectional area that the probing signal can travel through also changes. Thus, the amplitude of the 
probing signal transmitted through the beam changes with the phase of the pumping signal. In the 
equations below, the time domain representation for three scenarios is given. Equation (1) shows the 
response of a system to just the pumping signal, Equation (2) shows the response of a linear system to a 
pumping and probing signal (i.e., principle of superposition is maintained), and Equation (3) shows the 
response of a nonlinear system to pumping and probing signals. The third term in Equation (3) represents 
the modulation, which manifests itself in the frequency domain as a convolution of spectra. 

cos (𝜔!𝑡) (1) 

cos 𝜔!𝑡 + cos (𝜔!𝑡) (2) 

cos 𝜔!𝑡 + cos 𝜔!𝑡 + cos 𝜔!𝑡 ∗ cos (𝜔!𝑡) (3) 
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Figure 4. VAM representation of system response to pumping signal. 

The modulation described in Equation (3) will produce sidebands (product of two distinct frequency 
signals) around the probing frequency, which is illustrated in Figure 5, when no noise signal is present. 
Similar to NIRAS, the resonant frequency is determined in this technique as well. However, in VAM, the 
data are inspected for modulation about the probing frequency. This modulation indicates the nonlinearity 
within the system. Realistic VAM results for the three brick samples (i.e., A, B, and C) are shown in 
Figure 6 (Mahadevan et al. 2016). Several potential damage indices based on the response spectrum 
properties were considered, as follows: 

• Ratio of sideband amplitude to probe or pump amplitude 

• Ratio of sideband bandwidth power to probe or pumping power (integral under power spectral 
density) 

• Percent of total power present in sideband power. 

It is worth noting that the fundamental understanding of the physics behind the nonlinear vibration 
phenomenon in solids is not well understood. Also, various nonlinear mechanisms exist in solids and 
typically are characterized as either elastic or dissipative. Compounding contributions from each of the 
different mechanisms may be difficult to separate. For example, compounding nonlinear effects from 
surface-to-surface bonding and other tangible interfaces could mask sidebands indicative of ASR-induced 
damage. Sideband amplitude response has been known to be heavily dependent on the system excitation 
and boundary conditions. In addition, sideband amplitude was observed decreasing as fatigue cracks grew 
well past initiation. This observation could potentially be explained by the increasing dominance of global 
stiffness reductions as cracks grow to large lengths as compared to the significance of breathing cracks at 
smaller crack lengths. 

In general, the influence of structural configuration, excitation voltage, boundary conditions, and crack 
geometry should be thoroughly addressed before fielding SHM applications using nonlinear acoustics. 
Thus, the VAM technique is more suitable for damage detection than for assessing the extent of the 
damage (Vehorn 2013). 
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Figure 5. Sidebands generated in the presence of damage, indicating the structure nonlinearity. 

 
Figure 6. VAM results: power spectrum density in the frequency domain for three sample bricks 
(Mahadevan et al. 2016). 
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3. EXPERIMENTAL SETTING 
This research investigates the monitoring of degradation in concrete due to ASR via VAM full-field 

imaging techniques. Effective combinations of full-field techniques need to be identified for different 
types of concrete structures under different loading and operating conditions. The monitoring techniques 
are studied with concrete samples constructed and cured in the laboratory. The concrete samples are 
described in the next subsection. 

3.1 Sample Preparation and Curing 
The ASR is a slow-developing process that can take several decades to become visible and result in 

failure. In the laboratory, aggressive conditions are applied to accelerate this process so the degradation 
progression and corresponding data can be observable. In this study, the NaOH in the mix water or placing 
the cured concrete in a NaOH solution is used to create a concrete pore solution with increased pH capable 
of inducing ASR. At the same time, highly reactive siliceous aggregates or glass are used to provide an 
enriched source of silica. In addition, the relative humidity in concrete is essential for ASR, affecting both 
kinetics and magnitude. Water plays the role of the solvent for the silica dissolution and intervenes as 
transport media for the diffusion of ions through the pore solution. Water is also a necessary compound for 
the formation of the various reaction products (gels, precipitates, crystals, etc.). Finally, the concrete 
specimens are cured at higher temperatures (i.e., 60 to 80°C) to accelerate ASR, because ASR mechanisms 
are thermo-activated. The high concentration of alkali hydroxides and silica at high temperature promotes 
the occurrence of ASRs. The high curing temperature (>70°C) also promotes the formation of the internal 
sulfate attack (Giannini et al. 2012). Therefore, using these three accelerating features, the ASR gel can be 
produced in the laboratory environment, leading to cracks in concrete within several months. 

3.1.1 Concrete Bricks 
Three 9- × 5- × 2-in. concrete bricks, designated U1, U2, and U3, were cast, and the development of 

ASR was monitored over time using several NDE techniques. Powdered silica was used for aggregate in 
the three concrete bricks in the ratio of four parts cement to one part silica by weight. Brick U1 was not 
subjected to NaOH, which causes increased alkalinity and promotes ASR, and thus represents a baseline 
specimen. Bricks U2 and U3 were exposed to NaOH but by different means. Brick U2 was submerged in a 
1N NaOH bath, per ASTM C1567-13 specifications, during accelerated curing. Brick U3 was cast using a 
NaOH solution for the mix water to increase the alkali content to 1.25% by mass of cement according to 
ASTM C1293-08b and was cured suspended over a tub of water to create 100% relative humidity. One 
goal of this study was to see which method of applying NaOH was more effective in promoting the 
development of ASR. A summary of the composition and curing conditions for Bricks U1, U2, and U3 is 
presented in Table 1. 

Table 1. Summary of composition and curing conditions for Bricks U1, U2, and U3. 
Brick Aggregate Sodium Hydroxide Accelerated Curing 

U1 Powdered silica None None (baseline) 
U2 Powdered silica In curing bath 60°C, submerged in NaOH solution 
U3 Powdered silica Mix water 60°C, 100% relative humidity 

 

3.1.2 Vibration-Based Nondestructive Examination Setup 
In addition to length measurements, the three concrete bricks were tested over time using two 

vibration-based NDE techniques: (1) NIRAS and (2) VAM. Both techniques detect nonlinearities within a 
concrete structure. In the concrete bricks, nonlinearity of the spectroscopy images could occur due to 
micro-cracking, cracking, or even the presence of ASR gel. NIRAS of a nonlinear structure is observable 
because of the shifts in the natural frequency (Chen et al. 2010; Lesnicki et al. 2012). A linear structure 
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will have a constant resonant frequency regardless of the amplitude of the excitation, but a highly 
nonlinear structure will display a decreasing resonant frequency with increased excitation amplitude. The 
nonlinear parameter can be calculated as the slope of resonant frequency shift versus amplitude of the 
impact force. 

Figure 7 shows the VAM test setup. The concrete brick was placed in a simply supported condition for 
this test. The modal hammer struck the bricks to create an impulsive load that was used as the low-
frequency “pump.” A piezo-stack actuator acted as the high-frequency “probe.” A tri-axial accelerometer 
measured the sample’s response. A sampling frequency of 51.2 kHz facilitated the high-frequency probe, 
and a sampling period of 0.1 second resolved modulated sidebands. Variance impact forces and probing 
frequency were recorded for evaluation. Optimal pumping and probing frequencies are system dependent; 
however, in general, a higher probing-to-pumping ratio is preferred. 

 

 
Figure 7. VAM test setup for ASR detection in brick samples. 

4. ALKALI-SILICA REACTION DETECTION RESULTS 
4.1 Mechanical Deformation Measurement 

The characteristic signature of ASR in damaging a concrete structure is expansion. Steel pegs were 
cast in the concrete bricks to provide points for repeatable measurements to be taken while the concrete 
was curing, as shown in Figure 8. Measurements of the bricks’ lengths were taken multiple times as the 
bricks were curing. Table 2 tracks the length between the two steel pegs on each of the concrete bricks as a 
function of curing time. The baseline brick, U1, decreased in length, especially during the first month, and 
length measurements of the ASR-aggressive curing bricks (U2 and U3) show slight expansion. The 
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reduction in length of the baseline U1 is associated with normal shrinkage of concrete over time, whereas 
the increase in length of accelerated ASR bricks, U2 and U3, indicates expansion of concrete due to the 
forming of ASR gel. 

 
Figure 8. U bricks during curing with wood holding steel pegs in place. 

Table 2. Length of U bricks across time measured between steel pegs. 

Brick 
Length (inches) 

11-Feb 1-Mar 17-Mar 7-Apr 7-Jun 11-Jul 
U1 8.265 8.250 8.245 8.243 8.242 8.241 
U2 8.180 8.185 8.184 8.184 8.185 8.186 
U3 8.195 8.197 8.198 8.199 8.200 8.200 

 
Figure 9 depicts the length change ratio of the three bricks as a function of curing time. The change 

ratio in percent is calculated as follows: 

∆𝑙 = 100 !!!!!
!!

  (4) 

where 𝑙! and 𝑙! are the lengths between the steel pages measured during the first day of the test 
(February 11, 2016) and on Day i, respectively. These plots show that length change ratios for the 
accelerated ASR bricks, U2 and U3, are similar (red and green lines, respectively, in Figure 9), and they 
have a much smaller length change ratio than Brick U1 (blue line in Figure 9). 
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Figure 9. Change in length of bricks as function of time. 

4.2 Nonlinear Impact Resonance-Acoustic Spectroscopy 
Raw acceleration data are converted from the time domain to the frequency domain using the fast 

Fourier transform in MATLAB. In the frequency domain, the first resonant frequency is identified. The 
shift in resonance frequency of a concrete sample occurred when an increase in input force amplitudes 
indicated the concrete system was nonlinear (i.e., there was micro-cracking due to ASR). The severity of 
concrete damage was characterized by nonlinearity in the parameter, which was calculated by simply 
finding the scaled slope between the input force amplitude versus the frequency shift. It is well known that 
concrete samples with more severe damage generally have a larger nonlinearity parameter (or steeper 
slope). If a sample is in pristine condition, it should have no frequency shift with increasing input force 
amplitude; then the nonlinearity parameter equals 0. 

4.2.1 Baseline Brick U1 Results 
Brick U1 served as a baseline sample, which was not exposed to NaOH. However, Figure 10 shows 

hairline cracks visible on the surface of baseline Brick U1 after 5 months of curing, which results in an 
increasing shift in resonance frequency with increasing input force amplitude, as shown in Figure 11. Even 
though the ASR is unlikely (or insignificantly) to occur in Brick U1, the observed cracks are due to other 
damage mechanisms in concrete. This example demonstrates that vibration-based examination techniques 
have difficulty in distinguishing the cause of concrete damage; either it is from ASR or from other damage 
mechanisms in concrete. 
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Figure 10. Hairline cracks are visible on the surface of Brick U1. 

 
Figure 11. Frequency shift as a function of input force amplitude for the baseline Brick U1. 
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4.2.2 ASR-Accelerated Brick U3 Results 
Brick U3 was exposed to water with NaOH solution to increase the alkali content to 1.25% by mass of 

cement and was cured over a tub of water to provide 100% relative humidity. Figure 12 shows the 
responses of Brick U3 in the frequency domain for various input force amplitudes ranging between 20 and 
320 lb, which were taken on the first day of testing. The resonant frequency (at the peak of response) 
remained at the same level of 2,480 Hz as the impact force amplitude increased, which indicated that the 
concrete structure was linear, as expected. After 5 months of aggressive curing, Brick U3 exhibited a 
slight resonant frequency shift as the impact force amplitude increased, as shown in Figure 13 (the peaks 
moved to the left when input force increased). Additionally, the resonant frequency at the lowest input 
force then increased to 2,800 Hz, which represents a large shift from resonance frequency at the beginning 
of the test (an increase of 320 Hz). This increase in resonant frequency might have been caused by the 
increase in stiffness of the concrete as it cured. 

From the results, it is clear that damage was detected in Brick U3 after 5 months of ASR accelerated 
curing. At that point, Brick U3 had expanded in length (green line in Figure 9), which indicates the 
formation of ASR gel leading to concrete expansion instead of concrete shrinkage during normal curing as 
in Brick U1 (blue line in Figure 9). 

 
Figure 12. No resonant frequency shift observed on February 11 (Day 1 of the test) for Brick U3. 
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Figure 13. Resonant frequency shift observed on February 11 (5 months later) for Brick U3. 

4.2.3 Nonlinearity Parameter for Bricks U1, U2, and U3 
For this report, the damage index was calculated as the ratio between the sideband amplitude and the 

pump amplitude, as shown similarly to plots in Figure 6. 

Table 3 and Figure 14 present nonlinearity parameters of the three bricks calculated at different 
measurement dates. Initially, all three bricks (U1, U2, and U3) had linear structure, as indicated by 0 
nonlinearity parameters. As the cure progressed, their nonlinearity parameters increased over time, 
indicating that the structures became nonlinear. The following observations can be made: 

• For Brick U1: The nonlinearity parameter increased soon after 1 month of curing and had the highest 
value over time among the three bricks (blue line in Figure 14). This is explained by the formation of 
multiple hairline cracks as it cured (Figure 10). The dry curing condition for Brick U1 led to quick 
concrete shrinkage and form hairline cracks. 

• For Bricks U2 and U3: Because of the presence of moisture in wet (U2) or humid (U3) curing 
conditions, the concrete structures expanded over time instead of shrinking, as was the case for 
Brick U1 due to accelerated formation of ASR. However, during the first 2 months of curing, the 
formation of hairline cracks was unlikely, and the ASR gel was negligible, so the concrete structures 
of these two bricks remained linear, as indicated by 0 linearity parameters. 

• For Brick U2: After submerging it in the 1N NaOH bath, Brick U2 expanded the most during the first 
month of curing, and it then maintained more or less the same length after that first month, as shown 
by the red line in Figure 9. The nonlinearity of Brick U2 increased during the third month and then 
decreased during the last 2 months. One possible explanation of this behavior could be that, at first, an 
abundance of water led to a higher expansion rate of the forming ASR gel, and later, the shrinkage 
inherent in concrete curing reduced the expansion of the ASR gel. 
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• For Brick U3: Curing in a 100% humid condition, Brick U3 expanded gradually over time, which can 
explain the increase of its nonlinearity parameter after months of curing. Brick U2 had the least 
nonlinearity coefficient among the three tested bricks, which could indicate the least damage due to 
ASR gel. 

• In summary, NIRAS data show that curing concrete in a dry condition leads to more damage (or 
nonlinear structure) due to cracks in concrete as it cures, and that the presence of moisture during 
curing can prevent this effect, even though it increased development of ASR. 

Table 3. Nonlinearity parameter of U1, U2, and U3 over time. 

Brick Curing Condition 
NIRAS Nonlinearity Parameter 

11-Feb 1-Mar 17-Mar 7-Apr 7-Jun 11-Jul 
U1 Baseline 0 0.0026 0.0325 0.0257 0.0472 0.0937 

U2 Submerged in 1N NaOH 
bath 0 0 0 0.014 0.0104 0.0043 

U3 1.25% of NaOH and 100% 
humidity 0 0 0.0009 0.0034 0.0027 0.0044 

 

 
Figure 14. Nonlinearity parameters of Bricks U1, U2, and U3 as function of time. 

4.3 Vibro-Acoustic Modulation 
During the VAM test, the modal hammer struck the bricks to create an impulsive load that was used as 

the low-frequency pump, and the piezo-stack actuator acted as the high-frequency probe. Then, the triaxial 
accelerometer measured the sample’s response. A sampling frequency of 51.2 kHz facilitated the 
high-frequency probe, and a sampling period of 0.1 second resolved modulated sidebands. A probing 
frequency of 14 kHz was used, and the response from eight hammer impacts was averaged together. 
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Figure 15 depicts the power spectral density of Brick U3 taken after 5 months of accelerated curing. 
From the VAM results, as shown in Figure 15, a damage index was calculated as the ratio of the sideband 
amplitude to the pump amplitude. The VAM damage indices of the three tested bricks at each 
measurement date are given in Table 4 and Figure 16. The data show increasing damage indices for each 
of the bricks over time. 

For comparison, both NIRAS (Figure 13) and VAM (Figure 16) results identified the increased 
damage over time that was caused by the ASR gel expansion, as seen in Bricks U2 and U3 (blue and green 
lines, respectively). On the other hand, the damage in Brick U1 is likely due to concrete shrinkage. The 
amount of damage and deformation is fairly similar for Bricks U2 and U3, which indicates that the NaOH 
water bath curing and the 100% humidity curing with a higher concentration of NaOH produced 
comparable results. Also, strong correlation between the VAM damage index and the NIRAS nonlinearity 
parameter increases the confidence in potential use of VAM for ASR detection in concrete. 

 
Figure 15. VAM results for Brick U3 after 5 months of curing. 

Table 4. Damage indices from VAM for all three bricks over time. 

Brick 
VAM Damage Index 

11-Feb 1-Mar 17-Mar 7-Apr 7-Jun 11-Jul 
U1 1.96E-02 5.28E-03 4.67E-02 2.18E-01 1.71E+01 1.93E+01 
U2 7.51E-03 4.76E-01 2.47E-01 4.84E-03 1.67E+00 9.48E+00 
U3 2.77E-04 3.73E-03 3.76E-03 1.82E-04 8.36E-04 1.75E+00 
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Figure 16. VAM damage indices for Bricks U1, U2, and U3 as function of time. 

4.4 Infrared Thermography 
The infrared thermography study of Bricks U1, U2, and U3 is reported here (see Table 1 for a 

summary of the composition and curing conditions for these bricks). 

The hypothesis is that formation of ASR should change the heat conductivity within the brick. 
Therefore, there would be a temperature difference between the dry-cured and NaOH-water-cured bricks 
at each time stamp. The temperature difference between the dry-cured data and NaOH-water-cured data at 
each time stamp is selected to be the baseline temperature difference. The corresponding temperature 
differences for Bricks U2 and U3 are expected to be different from the baseline brick, U1. Based on the 
baseline brick, upper bound and lower bound values (at each point in time) were selected for the 
temperature difference between dry-cured data and NaOH-water-cured data. If the temperature difference 
was outside the bounds, then a change in heat conductivity was indicated, implying the formation of ASR. 
To set boundaries, maximum and minimum values of the temperature difference were selected among all 
pixels between the dry-cured data and NaOH-water-cured data at each time stamp.  

The temperature measurements from an infrared camera were verified by readings from multiple 
thermocouples. Five thermocouples were installed on concrete samples at different locations (as shown in 
Figure 7 for Brick B2), and the temperature data were collected along with data from infrared imaging 
measurements for verification purpose. Post processing of infrared images did not impact the verification 
process. Figures 18–22 show temporal temperature profiles, which are measured by thermocouple (circle 
symbols) and infrared-camera (solid line) at five thermocouple locations for comparison. The decent 
match between thermocouple and infrared-camera temperature measurements at all five locations indicates 
that infrared camera can be used to nondestructively measure temperature of a concrete structure, when 
installation of thermocouples is not possible or desirable. 
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Figure 17. Thermal image of Brick U2 showing five thermocouple locations. 

 
Figure 18. Comparison of infrared-camera and thermocouple measurement s over a 30-second interval at 
Position 1. 
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Figure 19. Comparison between infrared-camera and thermocouple measurements over a 30-second 
interval at Position 2. 

 
Figure 20. Comparison of infrared-camera and thermocouple measurements over a 30-second interval at 
Position 3. 
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Figure 21. Comparison of infrared-camera and thermocouple measurements over a 30-second interval at 
Position 4. 

 

 
Figure 22. Comparison of infrared-camera and thermocouple measurements over a 30-second interval at 
Position 5. 
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5. SUMMARY AND FUTURE WORK 
The objective of this report is to examine the use of vibro-acoustic techniques in assessing the effect 

of ASR on the integrity of concrete structures that are exposed to the accelerated aging conditions in a 
laboratory setting. A series of experiments were conducted at Vanderbilt University to provide sufficient 
degradation data in support of the framework for diagnosis of structure condition, and providing a 
prognosis, of aging concrete structures in NPPs. The main activities were: 

1. Experimental setting: 

a. Three 9- × 5- × 2-in. concrete bricks were cast 

b. Various curing conditions were used to accelerate the formation of ASR gel in the three concrete 
bricks: (1) baseline condition – dry and normal temperature; (2) submerged in a bath of 1N NaOH 
solution at a temperature of 60°C; and (3) exposed to NaOH solution to increase the alkali content 
to 1.25%, 100% humidity (over a tube of water), and a temperature of 60°C 

c. Mechanical deformation technique using steel pegs were used to measure changes in the 
dimensions of the specimens 

d. NDE techniques were used for the damage detection: mechanical deformation measurements, 
NIRAS, VAM, and infrared thermography. 

2. Data analysis results: 

a. The baseline curing condition led to the most cracking in the concrete sample (from Brick U1) 
followed by the brick with submerged curing (U2). During the first 5 months of curing, the brick 
with 100% humidity, U3, had the least structure damage (or the least nonlinearity), which 
indicates only a small amount of ASR gel was formed up to that point. 

b. Consistent experimental data from all three NDE techniques indicates that these techniques can be 
used to generate data related to an assessment of the degradation of concrete structures damaged 
by ASR. 

Future work will focus on the following tasks during the next year: 

1. Localizing and quantifying the damage and exploring embedded sensors (e.g., strain and pH) 

2. Collaborating with the University of Alabama on the development of concrete specimens with 
distributed ASR aggregates and with localized ASR aggregates 

3. Enhancing the monitoring techniques to collect high-quality data to quantify the onset of ASR and 
trend its progress within a concrete sample over a period of time 

4. Coordinating with ongoing research activities at the University of Tennessee, Knoxville, and Oak 
Ridge National Laboratory to construct and monitor a large mockup and, in particular, explore the 
application of DIC. 

Overall, this research focuses on data analysis and development of uncertainty-quantified diagnostic 
and prognostics models that will support continuous assessment of concrete performance. The resulting 
comprehensive approach will facilitate development of a quantitative, risk-informed framework that could 
be generalized for a variety of concrete structures and could be adapted for other passive structures. Future 
work will investigate how to apply the methods described in this report to realistic structures and damage 
scenarios. 
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