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EXECUTIVE SUMMARY 

Historically, nuclear power plants have operated predominantly at or near 

full power, meaning that most of the data collected are in this operating regime. 

Therefore, data-driven anomaly detection methods that are developed using this 

data can perform well at full power operations. This presents a challenge when 

the power drops (referred to as a transient) and may result in false alarms due to 

the lack of historical data at those new power levels. The current approach to 

handling this challenge is to turn the anomaly detection algorithms off during 

transients, causing missed detections. 

The objective of this effort is to develop data-driven anomaly detection 

methods that can extend to transient conditions. Specifically, the research 

hypothesis tested is that anomaly detection methods can be modified and used 

during the data-poor transient conditions compared with baseline methods used 

in normal operation conditions. In the context of data-driven approaches, this 

means that the methods are trained on a mix of predominantly full power data 

and some sparse transient power data (collectively called the training data), and 

tested on exclusively transient power data (called the testing data). While the 

objective here focuses on full power and transient power conditions, the problem 

can be viewed more broadly as any situation where there are ample data for some 

condition but limited data for another similar condition. 

Within anomaly detection, this study focuses on two common types of 

approaches: prediction based and feature based. Prediction-based methods often 

rely on self-supervised learning, where a subset of the data are used to predict 

another part, enabling learning to fill in the gaps. In this effort, this is performed 

by either withholding some data from the complete dataset and predicting that 

withheld data or compressing the complete data to some smaller dimension and 

using the compressed data to predict the full data. Detection is then based on 

prediction error between the real measurement and prediction, which for well-

trained models is small during normal operations and larger during anomalies.  

This effort implemented three prediction-based approaches to solve the 

transient problem. First, the covariate shift approach is used, which assumes there 

is a shift in the data distribution from the training data to the testing data, and the 

method tries to compensate for that shift. Second, this effort developed a new 

approach called the multiple models approach that calculates two isolated 

prediction models—one for all correlations except power and one for correlations 

just from power—and combines them. This is an example of a transfer learning 

approach, which separates the training data into an abundant source dataset (full 

power data) and a sparse target dataset (transient power data). Assuming the 

source and target datasets share some features or properties, the concept is to 

transfer knowledge learned from the source dataset to the target dataset. Third, 

another transfer learning approach based on autoencoder models is tested, called 

the frozen layers approach. In this approach, some of the model weights trained 

using the source dataset are fixed (frozen), and the target dataset is then used to 

fine-tune the rest of the weights. In addition to these three approaches that 

address the transient problem, this effort also implemented baseline approaches 

that use prediction-based models without accounting for the limited amount of 

transient data. These baseline approaches were used for comparing against other 

methods. 



 

 iv 

In contrast to prediction-based methods, feature-based methods try to directly 

extract features that are small during normal operations and larger during 

anomalies. This effort developed one feature-based approach that uses principal 

component analysis (PCA) to calculate the dominant features (i.e., those that are 

constantly varying and consequently would not make good anomaly detection 

features) for both full power and transient data separately, combines them to 

extract the dominant system features, and then finds the null space features (i.e., 

those that should be small during normal operations) to be used for anomaly 

detection. This method is called the combined null space approach. Like the 

prediction-based methods, similar baseline approaches were implemented for 

comparison. 

To evaluate methods in a controlled environment, synthetic data generators 

were created and used. These data generators were based on spring mass damper 

(SMD) systems commonly found in mechanical engineering references. The full 

and transient power conditions were translated to the SMD simulator by having 

ample data for an SMD system with one mass held fixed, but the rest of the 

masses can move freely (called the base operating mode), and limited data for the 

same system but with all masses allowed to move freely (called the transient 

operating mode), respectively. The initial methods exploration showed that the 

methods were extremely sensitive to nonlinearity. To make this assessment 

broader, the nonlinearity of the data was quantified, and both linear and nonlinear 

versions of the methods were tested on data of varying nonlinearity. 

Starting with linear datasets and linear anomaly detection methods, the 

methods were implemented on the SMD datasets, and the results showed a 

significant difference in anomaly detection performance between the developed 

methods and baseline methods. For particularly data-sparse applications, any of 

the covariate shift, multiple models, or PCA based methods (baseline or 

combined null space) provided a strong and comparable performance with very 

limited transient data. 

By contrast, nonlinear methods were not well suited to the nonlinear transient 

problem without significant amounts of data; however, the linear methods 

applied to the nonlinear datasets showed some success. This implies that, even 

though the overall dynamics of the SMD datasets are nonlinear, there must be 

some linear patterns within the data that the methods are recognizing and 

learning. These patterns still hold when transferring from base to transient 

operating data. In addition, it appears the feature-based methods performed better 

than the prediction-based methods on these datasets when given very small 

amounts of transient data, although this advantage was not observed as more data 

were added. One possible explanation for this is that the methods are finding just 

the features that are linear and ignoring the other effects, while the prediction-

based methods may not be able to extract just the linear features as accurately. 

Combining all of this, it appears that, for linear datasets, the transient 

problem is solvable and multiple methods can achieve good results. For nonlinear 

datasets, the transient problem is much more difficult and, for very limited 

transient datasets, may only be solvable when some linear patterns exist that can 

be extracted.  
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EXTENDING DATA-DRIVEN ANOMALY DETECTION 
METHODS TO TRANSIENT POWER CONDITIONS IN 

NUCLEAR POWER PLANTS 

1. INTRODUCTION 

The current approach for detecting and responding to process anomalies in nuclear power plants 

(NPPs) is primarily reactive in nature. This means plant operators do not search within time-series process 

data for subtle signs of anomalies but wait until alarms are generated by the anomalies once they become 

significant enough to exceed some predefined threshold. However, a proactive approach using automated 

anomaly detection tools could detect subtle signs of anomalies before they escalate into unexpected 

equipment failures, thereby affording the plant additional lead time in which to act (Figure 1). This would 

introduce significant cost savings to the plant. 

 

Figure 1. Equipment condition stages and strategies to prevent equipment failure. 

To aid the nuclear power industry, the U.S. Department of Energy Light Water Reactor Sustainability 

program has been investigating machine learning (ML) methods for automated anomaly detection based 

on time-series data. This has included studies conducted on NPP test cases [1]; studies comparing and 

outlining when to use empirical, data-driven, and hybrid models [2]; studies investigating the 

incorporation of sparsely labeled known anomalous events into the anomaly detection methods [3]; and 

studies on methods to identify the root causes of anomalies [4]. Many of these studies have focused on 

using data-driven and ML methods due to their analytical power, scalability, and lack of required 

modeling investment. Those studies resulted in methods that are part of a multistage approach to detect 

anomalies with minimal false positives (Figure 2). 

Historically, NPPs have operated predominantly at or near full power. As a result, existing archived 

data that could be used for training ML models will contain predominantly full power data, meaning that 

data-driven anomaly detection methods can likely perform well at full power operations. This presents a 

challenge when the power drops (referred to as a transient) and may result in false alarms due to the lack 

of historical data at those new power levels. The current approach to handling this challenge is to turn the 

anomaly detection algorithms off during transients when the power falls below some threshold. This 

would prevent false alarms during transients, but this also makes it impossible to use the algorithms to 

detect anomalies during these periods. 
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Figure 2. Methods developed to enhance anomaly detection while minimizing false alarms. 

Because power plants could operate at reduced power levels for extended periods of time, the 

objective of this effort is to develop data-driven anomaly detection methods that can extend to transient 

conditions. Specifically, the research hypothesis tested here is that anomaly detection methods can be 

modified and used during the data-poor transient conditions compared with baseline methods used in 

normal operation conditions. In the context of data-driven approaches, this means that the methods are 

trained on a mix of predominantly full power data and some sparse transient power data (collectively 

called the training data), and tested on exclusively transient power data (called the testing data). While the 

objective here focuses on full and transient power conditions, the problem can be viewed more broadly as 

any situation where there are ample data for some condition but limited data for another similar condition. 

Within anomaly detection, this study focuses on two common types of approaches: prediction based 

and feature based. 

1.1 Prediction-Based Methods 

Prediction-based methods often rely on self-supervised learning, where a subset of the data are used 

to predict another part, enabling learning to fill in the gaps. In this effort, this is performed by either 

withholding some data from the complete dataset and predicting that withheld data or compressing the 

complete data to some smaller dimension and using the compressed data to predict the full data. Detection 

is then based on the prediction error between the real measurement and prediction, which should be small 

during normal operations and larger during anomalies. A common example of a prediction-based anomaly 

detection algorithm involves using an autoencoder, in which the original data is compressed to some 

reduced dimension (often called a latent space) and then reconstructed. During training, the compression 

and reconstruction models learn the underlying patterns that correlate the sensor measurements during 

normal conditions. When those underlying patterns break, the reconstruction error will be large, and an 

anomaly is declared. 

This effort implemented three prediction-based approaches to extend prediction-based anomaly 

detection methods to account for the limited transient data. The first approach is to treat it as a covariate 

shift problem (or sometimes referred to as imbalanced regression), described in Section 4.2.2. In the 

covariate shift problem, there is a shift in the data distribution from the training data to the testing data 

distributions (Figure 3). Approaches to address the covariate shift problem focus on synthetically altering 

the training data distribution. These approaches include tools to weight the samples when training models 

[5, 6] and tools to resample the available data [7, 8], both of which aim to approximate a distribution 

closer to the desired distribution. In the context of this effort, this would result in weighting transient 

training data higher than full power training data, or resampling to add additional transient training data 

instances. One advantage to these approaches is that they can be combined with previously developed 

anomaly detection algorithms, because they focus on data sampling, taking advantage of past work. 
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Figure 3. Illustration of the covariate shift problem, where there is a difference between the training and 

testing data distributions. 

Second, a new approach called the multiple models approach was developed that calculates two 

isolated prediction models—one for all correlations except power and one for correlations just from 

power—and combines them (Section 4.2.3). This is an example of a transfer learning approach, which 

separates the training data into an abundant source dataset (full power data) and a sparse target dataset 

(transient power data). Assuming the source and target datasets share some features or properties, the idea 

is to transfer knowledge learned from the source dataset to be used with the target dataset. The covariate 

shift and multiple models approaches are agnostic to what type of prediction model is used, so this effort 

used the leave-one-variable-out (LOVO) model (Section 2.2 for the linear version and Section 2.3 for the 

nonlinear version) [4]. 

The third approach was the frozen layers approach using autoencoders, which is another example of 

transfer learning (Section 4.2.4). In this approach, some of the model weights trained using the source 

dataset are fixed (frozen), and the target dataset is then used to fine-tune the rest of the weights [9]. In this 

way, the autoencoder can learn features from the source data and then fine-tune them to the dynamics of 

the target data. This approach used the autoencoder prediction model (Section 2.4). 

In addition to the extension methods, this effort implemented baseline approaches to compare the 

extension methods to (Section 4.2.1). The baseline approaches use prediction-based models without 

implementing extensions for the transient problem.  

This review also considered another approach that treated the problem as a time-varying regression 

problem. In other words, the transients are simply the system dynamics naturally changing over time, and 

this process can be captured using time-varying anomaly detection models. This problem has been 

addressed using a windowed approach that trains models online. This means a past window of data is 

used to train a model to predict the next window of data, and these windows slide through time as more 

data is collected (Figure 4) [10, 11]. Like the covariate shift problem, an advantage to this approach is that 

it can build on or even directly use previously developed anomaly detection methods. However, it also 

has some potential limitations. First, it does not consider the entire set of available data, which could 

result in additional spurious false alarms from a lack of training data. Second, it is constantly updating the 

training data, so it would likely only detect anomalies that result in abrupt changes in process variables. 
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For slowly changing anomalies, the anomalous signal may be learned as normal before it becomes large 

enough to flag as an anomaly. Due to these limitations, the time-varying approach was not implemented.   

 

Figure 4. Illustration of treating the problem as a time-varying problem, where there are windows used to 

train a model and test new data that slide forward through time (the blue arrows).  

1.2 Feature-Based Methods 

In contrast to prediction-based methods, feature-based methods try to directly extract features that are 

small during normal operations and larger during anomalies. An example is using principal component 

analysis (PCA) (Section 2.1), which breaks data into orthogonal directions ordered by how much variance 

in the data each direction explains. The components that explain the least variance are often described 

primarily by noise and will be small during normal operations and large during anomalous operations 

[12]. 

Feature-based methods in the literature for extending to the transient problem often take a transfer 

learning approach. One method has used the more abundant source data to train an encoder that maps the 

sensor measurements into a feature space [9]. Then to transfer the knowledge, that same encoder is 

transferred to the target data, where the resulting source data features are used to detect anomalies. One 

challenge to using this approach for sensor data is that it assumes that the features will carry over from the 

source dataset to the target dataset. Prior work using this idea has often focused on image data, where 

features can represent general patterns present in many kinds of images.  

This effort implemented one feature-based approach to extend feature-based anomaly detection 

methods to solve the transient problem. Due to the drawbacks of directly transferring features from source 

to target data, this effort has instead developed and implemented a new feature-based approach. This new 

approach, called the combined null space approach, calculates the dominant features (i.e., those that are 

constantly varying and consequently would not make good anomaly detection features ) for both full 

power and transient data separately, combines them to extract the dominant system features, and then 

finds the null space features (i.e., those that should be small during normal operations, but can be used to 

detect anomalies) for anomaly detection (Section 4.3.2). These approaches make use of the PCA 

algorithm as detailed in Section 2.1. 
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Like the prediction-based methods, this effort also implemented baseline feature-based methods, 

which are similar in concept to the prediction-based baseline approach (Section 4.3.1). 

To evaluate methods in a controlled environment, this effort created and used synthetic data 

generators (Section 3). These data generators were based on spring mass damper (SMD) systems 

commonly found in mechanical engineering references. The full and transient power conditions were 

translated to the SMD simulator by having ample data for an SMD system with one mass held fixed, but 

the rest of the masses can move freely (the “full power” condition, here called the base operating mode), 

and limited data for the same system but with all masses allowed to move freely (the “transient” 

condition, here called the transient operating mode). The results from the methods applied to these 

datasets can be found in the respective section for each method covered in this report. During the initial 

methods exploration, the methods were extremely sensitive to nonlinearity. To make this assessment 

broader, the nonlinearity of the data was quantified (Section 3.1), and the methods were tested on data of 

varying nonlinearity (Section 4). 
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2. ANOMALY DETECTION METHODS 

This effort makes a distinction between general anomaly detection methods and those that focus on 

the transient problem. This section discusses the general methods and how they are used for anomaly 

detection. They are separated to emphasize the changes made to address the transient problem. In 

addition, several of the transient-specific methods are agnostic to the anomaly detection method used. 

2.1 Principal Component Analysis 

PCA is a popular algorithm that can separate data into orthogonal directions [13]. One of its most 

common uses is for dimensionality reduction, where it attempts to compress high-dimensional data while 

incurring minimal information loss. Traditional PCA, however, is only efficient when process variables 

are nearly time independent. To capture the autocorrelations that occur through time, the traditional PCA 

algorithm was modified to create dynamic PCA (DPCA) [14]. In anomaly detection methods, PCA and 

DPCA models are used to extract anomaly detection features. 

This effort uses a DPCA model to capture the correlations between variables. To create this model, 

time-series data (vectors) are stacked to form a data matrix. Next, singular value decomposition is used to 

decompose the data matrix into features [13]. Note that this decomposition is a linear process, so it can 

only extract linear patterns from data. While the decomposition process does not necessarily imply the 

linear patterns are statistically independent, they can be treated as independent for many practical 

applications. Therefore, the decomposition permits one to view each pattern individually, ranked by their 

significance in the data. 

Time-series data can be modeled as a sequence of measurement vectors 𝑥𝑡 ∈ 𝑅𝑚, each consisting of 

𝑚 sensor measurements at sample times 𝑡 ∈ {1,2, … , 𝑛}, where 𝑛 is the number of time steps in the data. 

In traditional PCA, the data samples would be stacked to create a large data matrix: 

𝑋 =  [
𝑥1

𝑇

⋮
𝑥𝑛

𝑇
],  

where 𝑋 ∈ 𝑅𝑛×𝑚 (i.e., 𝑋 is an 𝑛 × 𝑚 matrix of real numbers), and  𝑇 denotes the transpose operator. 

Using this matrix, each data point can only capture correlations between variables in the same sample 

time. However, in dynamic processes, measurement samples may have an autocorrelation (i.e., 

dependence on information contained in previous sample times). Mathematically, this could mean an 

autoregressive system with 𝑥𝑡+1 = 𝐴0𝑥𝑡 + 𝐴1𝑥𝑡−1 + ⋯ + 𝐴𝑝𝑥𝑡−𝑝 for a 𝑝-order dynamic system, where 

the 𝐴 terms are coefficient matrices. 

To capture this autocorrelation, DPCA uses augmented data sample zt = [𝑥𝑡−𝑠+1
𝑇 … 𝑥𝑡

𝑇]𝑇, each 

representing a window of data that includes both the measurement vector for that sample time and the 

measurement vectors for a fixed number of previous sample times. These samples are then stacked to 

form an augmented data matrix: 

𝑍 =  [
𝑥1

𝑇 ⋯ 𝑥s
𝑇

⋮ ⋱ ⋮
𝑥𝑛−𝑠+1

𝑇 ⋯ 𝑥𝑛
𝑇

] = [
𝑧𝑠

𝑇

⋮
𝑧𝑛

𝑇
],  

where 𝑍 ∈ 𝑅𝑛−𝑠+1×𝑚𝑠 is the augmented data matrix, 𝑠 is the window size of the augmented data sample, 

the rows contain the augmented data samples each containing data for a given window, and the columns 

contain the data for each variable at 𝑠 different time steps. By incorporating multiple time steps within a 

window, the augmented data matrix can seek patterns both within the same time step and across 

neighboring time steps. 
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Once the augmented data matrix is created, it can be used with the standard PCA algorithm. This 

means it can be decomposed as a product of three matrices, namely the orthonormal matrix 𝑈 =
[𝑢1 𝑢2 … 𝑢𝑚𝑠], a positive semidefinite diagonal matrix 𝑆 with elements {𝜎1, 𝜎2, … , 𝜎𝑚𝑠} along the main 

diagonal, and an orthonormal right singular matrix 𝑉𝑇 = [𝑣1 𝑣2 … 𝑣𝑚𝑠]𝑇: 

𝑍 = 𝑈𝑆𝑉𝑇 = ∑ 𝑢𝑖𝜎𝑖𝑣𝑖
𝑇

𝑚𝑠

𝑖=1

, 

where the left singular vectors are denoted by 𝑢𝑖 ∈ 𝑅𝑚𝑠, the right singular vectors by 𝑣𝑖 ∈ 𝑅𝑛−𝑠+1, and 

the singular values by 𝜎𝑖 ∈ 𝑅. 

This decomposition can be used to generate a compressed approximation of the input data that 

captures most of the information (in the Frobenius norm-sense || ⋅ ||𝐹). Since the vectors are ordered by 

magnitude of the singular values (which represent their respective explained variances), a rank 𝑘 < 𝑚𝑠 

approximation of the input data 𝑍 ∈ 𝑅𝑛−𝑠+1×𝑘 can be calculated. This approximation is obtained by 

projecting the data matrix on the first 𝑘 left singular vectors (where 𝑘 is often called the latent size): 

𝑍 = ∑ 𝑢𝑖𝜎𝑖𝑣𝑖
𝑇

𝑘

𝑖=1

. 

Building a rank 𝑘 < 𝑚𝑠 DPCA model that captures most of the feature variance at a given time step is 

given by the first 𝑘 left singular vectors {𝑢𝑖}𝑖=1
𝑘 . Intuitively, this yields the top 𝑘 patterns in the data that 

explain most of the trends and correlations observed between the measurement samples across time. The 

discarded left singular vectors {𝑢𝑖}𝑖=𝑘+1
𝑚𝑠  are considered uninformative and are typically assumed to be 

statistical noise in the time series. 

A key observation in the present work is that, while the discarded left singular vectors {𝑢𝑖}𝑖=𝑘+1
𝑚𝑠  are 

uninformative when the samples are closely approximated by the DPCA model, this may not necessarily 

be the case when a sample is out of distribution (i.e., it cannot be approximated by the model). In other 

words, an error-like term can be calculated using the discarded feature(s) and consolidated into a single 

metric using their Euclidian norm (or another appropriate norm): 

𝑒𝑡 = ∑ |𝑢𝑖
𝑇𝑧𝑡|

2
𝑚𝑠

𝑖=𝑘+1

. 

Nonlinear problems may require kernel PCA where the data are projected to a higher-dimensional 

space using nonlinear functions (also called kernels). In this space, the nonlinearly projected patterns are 

assumed to be linearly separable to enable the above analysis. 

2.2 Linear Leave-One-Variable-Out Model 

One challenge in implementing the DPCA method is the selection of the latent size. An alternative to 

the DPCA model is the LOVO model (developed as part of a prior effort [4]), which predicts each 

variable using regression, with all other variables serving as model inputs. This method does not 

compress the data, rendering the question of latent size moot. 

As in the previous method, the augmented data samples 𝑧𝑡 are used. However, rather than 

concatenating all the data into a single matrix, they are separated into input and output matrices. This is 

done for each variable, in rotation. Then a traditional regression approach can be taken, using the input 

matrices to predict the output matrices. As the method’s name suggests, a model is created that leaves out 

one variable from the input data, then uses regression to predict that left-out variable. The input data 

include all the 𝑧𝑡-captured time steps in the window. For the output data, only the center sample time is 

used (meaning the window size for this method should be odd). This approach of only using the center 
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point was selected because some variables cause future changes in other variables. For example, in an 

NPP, turning on a heater will eventually affect the temperature but will spark almost no immediate 

change. As such, if the model is trying to predict the heater power, it would likely be more accurate if it 

had access to both past and future temperature values within the window. 

The input and output matrices are defined for each variable 𝑖 in the vector 𝑥𝑡. The matrix definitions 

are simplified using the notations 𝑥𝑖,𝑡 and 𝑥−𝑖,𝑡, which represent variable 𝑖 of 𝑥𝑡 and all variables in 𝑥𝑡 

except for variable 𝑖, respectively. Note that when used with 𝑧−𝑖,𝑡, this means that all instances (in the 

window) of variable 𝑖 are removed. Then the input and output matrices for variable 𝑖 are defined as: 

𝑋𝑖 = [

𝑥−𝑖,1
𝑇 ⋯ 𝑥−𝑖,s

𝑇

⋮ ⋱ ⋮
𝑥−𝑖,𝑛−𝑠+1

𝑇 ⋯ 𝑥−𝑖,𝑛
𝑇

] = [

𝑧−𝑖,𝑠
𝑇

⋮
𝑧−𝑖,𝑛

𝑇
] ,  

𝑌𝑖 = [

𝑧𝑖,𝑠
𝑇

⋮
𝑧𝑖,𝑛

𝑇
] = [

𝑧𝑠
𝑇

⋮
𝑧𝑛

𝑇
] 𝐽𝑖

𝑇 ,  

where 𝑋𝑖 is the input matrix, 𝑌𝑖 is the output matrix, 𝐽 = [0 𝐼 0], where the 0 terms in 𝐽 are zero 

matrices with a number of columns equal to 
𝑠−1

2
, and 𝐽𝑖 is row 𝑖 of 𝐽. In the matrix 𝐽𝑖, the 𝐼 in the center is 

used to select just the center sample time in the window, and row 𝑖 is used to select only variable 𝑖 of that 

center sample time. Using these matrices, each row of 𝑋𝑖 is the input information used to predict each row 

of 𝑌𝑖. 

Once the input and output matrices are created, they can be used to train a linear regression model for 

each variable 𝑖. The regression model is of the following form: 

𝐽𝑖 �̂�𝑡 = 𝐴𝑖𝑧−𝑖,𝑡 + 𝐵𝑖 ,  

where 𝐴𝑖 ∈ 𝑅1×(𝑚−1)𝑠 and 𝐵𝑖 ∈ 𝑅. The unknown coefficients were solved for by minimizing an objective 

function that included both the mean squared prediction error and elastic net regularization. Elastic net 

regularization places a penalty on large coefficients to prevent overfitting the model to the data [15]. 

Once all the individual variable models are solved for, they can be combined into a single LOVO 

model. Using matrix algebra, all these models for individual variables can be combined into a single 

model: 

𝐽�̂�𝑡 = 𝐴𝑧𝑡 + 𝐵,  

where 𝐴 = [
0 ⋯ 𝐴1

⋮ ⋱ ⋮
𝐴𝑚 ⋯ 0

] ∈ 𝑅𝑚×𝑚𝑠 is formed by stacking the 𝐴𝑖 terms, with 𝑠 zeros padded per row to 

ensure that variable 𝑖 is not included in that row, and 𝐵 = [
𝐵1

⋮
𝐵𝑚

] ∈ 𝑅𝑚×1 is formed by stacking the 𝐵𝑖 

terms. 

For anomaly detection, the system models can be used to generate an anomaly score, which is a scalar 

value that quantifies the degree to which the augmented data are abnormal. When the score exceeds a 

certain threshold, the sample is considered anomalous. 

To calculate the anomaly score, the prediction error 𝑒𝑡 (often called residual) is first calculated as the 

difference between the measured and estimated values: 

𝑒𝑡 = 𝑧𝑡 − �̂�𝑡 . 

Then the score 𝜙𝑡 is calculated as the weighted sum of the squared error: 
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𝜙(𝑧𝑡) = 𝑒𝑡
𝑇Σ̂−1𝑒𝑡 ,  

where Σ̂ is a diagonal matrix containing the estimated variances of the error vector that normalizes the 

error statistics. 

2.3 Nonlinear Leave-One-Variable-Out Model 

In the linear LOVO approach, the data were split into an input and output dataset for each variable 𝑖 
to train 𝑚 linear regression models. The individual models were then combined into a single model. This 

idea of training multiple models and combining them worked for linear models because they have low 

computational overhead and are fast to train. However, this would be much more computationally 

intensive using 𝑚 artificial neural networks (ANNs). 

By utilizing the flexibility of ANN models, this step can be simplified to use a single model that 

accomplishes the same goal. As such, an ANN was created following the input/output structure: 

𝐽�̂�𝑡 = 𝑓(𝑧𝑡),  

where 𝑓(⋅) is the ANN function. The general architecture used in this effort is shown in Figure 5. In this 

figure, the input data are shown as a three-dimensional array, with the first dimension (labeled “None” as 

a placeholder for the number of windows) being a derivative of the Python programming language used 

here to imply that one or more windows can be transformed by the function in a single function call. The 

second dimension (equal to the window size) and third dimension (equal to the number of variables) are 

used for implementation purposes but could have been flattened and combined. In going through the 

ANN, the data are first split into 𝑚 branches and flattened, with each branch omitting information from 

variable 𝑖. Conceptually, each of these branches can be considered its own ANN with a nonlinear 

transformation 𝑓𝑖(⋅). Each branch contains a nonlinear layer (in this effort, a densely connected layer with 

a rectified linear unit [commonly called ReLU] activation, though other ANN components and types 

could have been used) and a linear densely connected layer to reduce the dimensionality. All the 𝑓𝑖(⋅) 

functions are concatenated together to create the full 𝐽�̂�𝑡. In practice, this strategy of treating it as one 

model makes it more efficient. Then, anomaly scores are calculated in an identical manner to the linear 

LOVO model. 

2.4 Autoencoder Model 

Autoencoders [16] are a generalized nonlinear version of PCA deployed using a neural network 

architecture consisting of two networks—an encoder 𝐸(⋅) and a decoder 𝐷(⋅). Given samples 𝑧𝑡, the 

encoder network encodes the data into a low-dimensional space through a linear “bottleneck” layer, 

yielding �̃�𝑡 = 𝐸(𝑧𝑡). Effectively, while PCA finds a low-dimensional linear transformation of the input 

data, autoencoders find a low-dimensional linear transformation of nonlinear projections of the data. The 

differentiating feature of autoencoders from kernel PCA is that the autoencoder kernel, characterizing the 

high-dimensional projection, is not specified by the user, but is rather learned using a neural network that 

is continually trained on examples input by the user. 

The decoder network performs the reverse operations, by finding a nonlinear projection of the 

embedding and finding a linear transformation of the data given by �̂�𝑡 = 𝐷(�̃�𝑡). When combined, the 

objective of the neural network is to tune its weights and find encoder and decoder transformations that 

minimize the squared error loss. For time-series data, the kernel and bottleneck dimension may be treated 

as hyperparameters to be tuned on a validation set not part of the neural network training until the 

validation loss is minimized. Similar to the LOVO prediction models, the error can then be used to detect 

anomalies. 

The decoder can also be deployed as a generative model with an understanding of the statistical 

variations of the low-dimensional representation. This is exploited in variational autoencoders where 

additional constraints are imposed on the bottleneck layer, such as having a multivariate Gaussian 
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distribution, which allows the end-user to generate Gaussian random numbers to generate a variety of 

samples using the trained decoder as a generative model. No such architectures are explored in this work. 

The overall autoencoder architecture, inclusive of the encoder and decoder, is depicted in Figure 6. 

 

 

 

Figure 5. General ANN structure of the nonlinear LOVO model. 
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Figure 6. General ANN structure of the autoencoder model. 
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3. SYNTHETIC DATA 

As previously mentioned, this work used synthetic data generators based on SMD systems. Due to the 

used method’s sensitivity to nonlinearity, this was quantified. 

3.1 Nonlinearity Quantification 

This research anticipated that extending anomaly detection methods to transient conditions is more 

difficult for nonlinear systems than for linear systems. Therefore, this effort researched a nonlinearity 

measure for use with anomaly detection applications [17]. For the measure described in this section, the 

relative scales of the variables matter. Without loss of generality, it is assumed that all variables have 

been normalized to have zero mean and unit variance. 

This effort started with a nonlinearity measure found in the literature that quantified nonlinearity in 

functions 𝑔 of the form 𝑦 = 𝑔(𝑥), where 𝑦 and 𝑥 can both be vector-valued functions. The general idea is 

that the nonlinearity measure should quantify the distance between 𝑔(𝑥) and its closest linear 

approximation 𝐿 in the set of all linear functions ℒ [17]. This amounts to finding the linear function 𝐿 that 

reduces this measure: 

𝑀 = inf
𝐿∈ℒ

√𝐸[‖𝐿(𝑥) − 𝑔(𝑥)‖2
2], 

where inf is the infimum operator (similar to a minimization operator), 𝐸 is the expected value, and || ⋅ ||2
2 

is the 2-norm squared. This measure can be normalized so that functions on different scales can be 

compared evenly. Their normalized nonlinearity measure is defined as: 

ℳ =
𝑀

√𝐸[‖𝑔(𝑥)‖2
2]

. 

Intuitively, when 𝐿(𝑥) explains none of the data (i.e., when 𝐿(𝑥) = 0), this normalized measure goes to 

one. When it fully explains the data (i.e., 𝐿(𝑥) = 𝑔(𝑥)), it goes to zero. As such, this measure falls 

between zero and one. Without the inf function, this could exceed one, as there are linear functions that 

would increase the numerator; however, the inf function prevents this from occurring. 

Considering this measure further, it can identify two different phenomena as nonlinearities: actual 

nonlinear patterns between the data; and noise, which cannot be explained by a linear model. As such, 

there could be a true linear function 𝑔(𝑥) with sufficient noise that it provides a nonlinearity measure 

close to one. This is a reasonable result, as with so much noise, it is impossible to determine whether 

there could be small nonlinear functions superimposed within the noise. 

To demonstrate the original method, the nonlinearity measure for some simple examples were 

calculated. The examples include the equations 𝑦 = 𝑥 + 𝛼𝑥2 + 𝑁 (Figure 7), 𝑦 = 𝑥 + 𝛼𝑥3 + 𝑁 

(Figure 8), and 𝑦 = 𝑥 + 𝛼𝑁 (Figure 9), where 𝑥 is a uniform random variable, 𝑁 is Gaussian noise, and 𝛼 

is a multiplier that increases throughout the subplots. 

For anomaly detection, there were two limitations with this nonlinearity measure as proposed. First, 

in anomaly detection, there is no inherent input/output data but rather simply a set of data that can be used 

to detect anomalies. To overcome this limitation, the LOVO framework is employed to calculate the 

linear model 𝐿, with 𝑔(𝑥) replaced with 𝑥: 

ℳ = √
𝐸[‖(𝐴 − 𝐼)𝑥 + 𝐵‖2

2]

𝐸[‖𝑥‖2
2]

, 

where 𝐴 and 𝐵 are calculated using the LOVO approach. 
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Figure 7. Nonlinearity measure for a second-order polynomial with increasing nonlinearity. 

 

Figure 8. Nonlinearity measure for a third-order polynomial with increasing nonlinearity. 
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Figure 9. Nonlinearity measure for a first-order polynomial (line) with increasing noise. 

The second limitation is that, in general, the generative function (i.e., 𝑔(⋅)) is unknown and only 

sample data are known. In the original method [17], it was proposed that, for complicated nonlinearities, 

the measure could be calculated numerically. In this effort, this is the natural choice because there are 

data and not functions, such that the expected values can be replaced by sums: 

ℳ = √
∑ ((𝐴 − 𝐼)𝑥𝑖 + 𝐵)

𝑇𝑛
𝑖=1 ((𝐴 − 𝐼)𝑥𝑖 + 𝐵)

∑ 𝑥𝑖
𝑇𝑥𝑖

𝑛
𝑖=1

. 

In summary, this metric can empirically measure nonlinearity for multivariate anomaly detection data 

with a result that ranges from zero to one. It is also worth noting that this can be done for each variable in 

𝑥 (or 𝑦 if using the original formula), which can add insight.  

An example is shown in Figure 10, where 𝑥0 and 𝑥1 are uniform random variables and 𝑥2 = 𝑥0
2 +

10𝑥1 and no noise is added. From these plots, 𝑥1 and 𝑥2 have some linearity (although are still not linear), 

and 𝑥0 is highly nonlinear. As a result, the combined nonlinearity measure shows that this system of 

equations is highly nonlinear. 
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Figure 10. Nonlinearity measure in the LOVO framework. 

3.2 Spring-Mass-Damper Data 

The simulator used the idea of the SMD system, commonly seen in mechanical engineering 

references. The basic building blocks of this system are springs, masses, dampers, sensors, and actuators: 

the masses respond to forces, the springs apply restorative forces to the mass, the dampers apply damping 

forces to the mass, the sensors measure the position of the mass, and the actuators apply forces directly to 

the mass. This simulator was used in previous efforts, and additional details on equations of motion and 

differential equations are provided by Farber et al. [3]. Among its key features are its abilities to: 

• Emulate both linear and nonlinear differential equations 

• Simulate SMD components in different configurations, quantities, and layouts 

• Incorporate process and measurement noise to make more realistic data 

• Inject multiple types of anomalies. 

The SMD system was selected for this research for several reasons. First, though it is conceptually 

simple and features just a few basic components, those components can be combined to generate 

high-order systems with coupled variables. Second, the system is easily scalable to include many sensors 

and actuators. These two characteristics are important for emulating the large-scale, high-order systems in 

NPPs. Third, the system allows for a straightforward incorporation of sensor anomalies (by directly 

modifying sensor measurements) and process anomalies (by modifying system parameters—here, the 

spring stiffness and damping coefficients). 

The objective of this effort is to extend anomaly detection methods to transient conditions. This 

problem was translated to the SMD simulator as having ample data for an SMD system with one mass 

held fixed, but the rest of the masses can move freely (the “full power” condition, here called the base 

operating mode), and limited data for the same system but with all masses allowed to move freely (the 

“transient” condition, here called the transient operating mode). 

The SMD configuration used in this effort (see Figure 11) had four masses (labeled with m) 

connected in series, with the two end masses also connected to fixed reference points (commonly called 

grounds). Position sensors (labeled with s) were placed on each mass, and actuators that applied forces 

(labeled with f) were placed on each mass except the last one. This last actuator was omitted to emulate 

only having one variable change when going from base to transient modes. However, while only one 

variable changes, the dynamics change, which consequently affects the entire system. 
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Figure 11. Sketch of the three-mass SMD system (without m1 grounded). 

Within this configuration, both linear and nonlinear simulations were run. Here, linearity refers to the 

spring and damper components: the linear simulations used linear spring and damper components, 

meaning that their forces were linearly proportional to their relative displacements and velocities, 

respectively, and the nonlinear simulations used nonlinear spring components, meaning that their 

respective forces were a nonlinear function (third-order polynomial) of their relative displacements. For 

the nonlinear simulations, multiple values of the nonlinearity were assessed to study whether the 

“amount” of nonlinearity affected the results. The values of the nonlinearity measure used are shown in 

Table 1. 

Table 1. Summary of the SMD datasets. 

Number Name Nonlinearity ℳ 

1 Linear 0.02 

2 0.05 nonlinear 0.05 

3 0.1 nonlinear 0.1 

For each nonlinearity measure, five datasets were generated to capture the natural stochasticity of the 

SMD simulator. Each dataset represented 10 years’ worth of the data, where the first year was base mode 

training data, the second year was transient mode training data, and the last 8 years were transient mode 

testing data. The methods were only tested on transient mode data as this was the focus of the effort. 

Examples of the base and transient mode data are shown in Figure 12. These two examples are both of 

normal (i.e., non-anomalous) operations, so their differences are not indicative of an anomaly. 

When assessing the studied methods applied to these datasets, a natural question is how much 

transient data should be used in conjunction with the base mode data to train the anomaly detector. Rather 

than attempt to select a ratio or quantity, this effort turned this question into part of the experiment. As 

such, the detection algorithms were allowed to use all the base mode training data and an incremental 

amount of transient training data until the last detector trained was allowed to use all the transient training 

data. Results are shown as a function of this parameter. 
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Figure 12. Example data from the base (left) and transient (right) operating conditions, where the primary 

difference is in whether the mass m3 is allowed to vary. 
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4. EXTENDING DETECTION METHODS TO TRANSIENTS 

This section describes the developed prediction-based (Section 4.2) and feature-based (Section 4.3) 

methods. For each of these two categories, there are baseline and transient-specific methods. In addition, 

to report the results for the methods in a consistent and succinct way, this work used a common set of 

assessment metrics (Section 4.1). 

4.1 Assessment Metrics 

Assessment metrics are a number or set of numbers that describe the performance of some algorithm 

and can be used to compare methods. In this effort, the assessment metric should measure anomaly 

detection performance. Because there were multiple datasets, methods, and amounts of transient data used 

in the training data, it was beneficial to come up with a single number that summarized the detection 

performance for each of these experiments. 

Many anomaly detection methods consist of two parts, a scoring algorithm that assigns an anomalous 

score to a data sample and a classifier that classifies the data as either normal or anomalous based on the 

score (e.g., scores above some threshold are classified as anomalous, whereas scores below are classified 

as normal). Because the scoring algorithm is inherent in the classifier, the classifier performance can be 

used to assess the detection methods. As such, this section uses the following conventions from the 

classification algorithms: positive (P), predicted positive (PP), true positive (TP), false positive (FP), 

negative (N), predicted negative (PN), true negative (TN), and false negative (FN). Here, a time-series 

sample is classified as positive if it is anomalous and negative if it is normal. 

In selecting an assessment metric, it needed to be independent of two factors: the ratio of normal to 

anomalous data, and the threshold used to classify whether data are normal or anomalous. Starting with 

the first factor, a common classification assessment metric is accuracy, defined as (TP+TN)/(P+N). The 

challenge with this metric is that for example, if the data consist of 990 negative samples and 10 positive 

sample (i.e., 99% normal), a classifier that predicts all data as normal would give an accuracy of 99%. 

However, this classifier is obviously not useful when it is important to detect the anomalies within the 

data. 

To overcome this first factor, this effort used precision and recall rather than accuracy. Precision and 

recall are defined as TP/(TP+FP) and TP/(TP+FN), respectively, and are commonly used to report metrics 

for imbalanced classification. Returning to the example above, the precision would be undefined, and the 

recall would be 0%, clearly showing that the classifier is not working well. The above example (Example 

1) along with a second classifier (Example 2) that labels everything as positive are shown in Table 2. 

Table 2. Accuracy, precision, and recall of two classifiers for an imbalanced dataset. 

Example PP PN TP TN FP FN Accuracy Precision Recall 

1 0 1,000 0 990 0 10 0.99 Undefined 0 

2 1,000 0 10 0 990 0 0.01 0.01 1 

Moving to the second factor, using the examples from Table 2, Example 1 is equivalent to selecting a 

threshold above the maximum score (i.e., naively classifying everything as normal), and Example 2 is 

equivalent to selecting a threshold below the minimum score (i.e., naively classifying everything as 

anomalous). In both examples, the scoring algorithm is completely ignored by the classifiers. This shows 

that precision and recall are very sensitive to the method used to select the threshold. During actual 

detection problems, a threshold needs to be selected, but this is less important when comparing methods 

against each other. 

To overcome this second factor, a metric called the area under the curve (AUC) was used. 

Parameterized by varying threshold values, precision and recall can be plotted against each other to show 

the tradeoff between them. Then, the AUC metric calculates the area under this curve, thereby removing 
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the threshold from the calculation entirely. The ideal performance is precision and recall both equal to 

one. An example precision-recall curve is shown in Figure 13 with an AUC of 0.83. Based on these 

factors, the precision-recall AUC (PR-AUC) metric was used to compare different detection approaches. 

 

Figure 13. Example precision-recall curve with AUC calculated. 

In this effort, the anomalies are inserted as ramp functions, meaning the effects of the anomalies 

(called anomaly magnitude) start at zero, and slowly increase to their maximum effect. As such, in the 

beginning of every anomaly, the magnitude is so small that the anomaly is impossible to detect. In other 

words, it is not expected that any detection algorithm will achieve both a precision and recall close to one. 

This approach was taken because it emulates anomalies of many different magnitudes, providing more 

opportunities to distinguish between the better and worse algorithms (assuming better algorithms will 

detect anomalies earlier in the ramp function). 

4.2 Prediction-Based Methods 

The prediction-based methods include the baseline methods (Section 4.2.1), the covariate shift 

method (Section 4.2.2), the multiple models method (Section 4.2.3), and the frozen layers method 

(Section 4.2.4). The baseline, covariate shift, and multiple models methods each used the LOVO 

prediction model (Section 2.2 and 2.3), and the frozen layers method used the autoencoder model (Section 

2.4). The results of each of these methods applied to the SMD datasets are presented and compared in 

Section 4.2.5. 

4.2.1 Baseline Methods 

This effort implemented two baseline approaches, where baseline here implies that the prediction 

models were used without regard to the transient problem. In other words, these methods have access to 

the full power training data and part of the transient power data and simply train prediction models to be 

applied to the transient power testing data, using the reconstruction error to calculate anomaly scores and 

then AUC values. The first baseline approach used both the available full power and transient power data. 

This approach enabled an evaluation of how much the methods below impact detection performance. The 
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second baseline approach used only the available transient power data and enabled an evaluation of 

whether the methods were able to transfer knowledge from the full power data to the transient problem. 

4.2.2 Covariate Shift 

As mentioned previously, the covariate shift problem assumes there is a shift in the data distribution 

from the training data to the testing data distribution. This assumption is valid, as the training data is 

predominantly full power data, but the testing data is exclusively transient power data.  

The solution taken here is to synthetically alter the training distribution to get it closer to the desired 

distribution. This effort achieves this solution through weighting the data samples, often called 

importance weighting [5]. Changing the weights from the default uniform distribution effectively changes 

the training distribution. 

Calculating importance weights needs two pieces of information. First, the training distribution is 

needed. When this distribution is unavailable, it can be estimated from the data using kernel density 

estimation (KDE) [18], which is a nonparametric technique for estimating probability density functions 

over a set of variables: 

𝑝(𝑥) =
1

𝑛
∑ 𝐾(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

, 

where 𝐾(⋅) is a kernel smoothing function that smooths the data distribution as a function of a user-

selected bandwidth. An example of KDE applied to a data distribution with the Gaussian kernel and three 

different bandwidths is shown in Figure 14. In this example, the bandwidth of 0.01 is noisy, suggesting it 

is too small, the bandwidths of 1 and 3 reduce the peaks, suggesting they may be too large, and the 

bandwidth of 0.1 seems to capture the distribution but with less noise than the bandwidth of 0.01, 

suggesting it may be the most appropriate here. This process becomes more challenging in higher 

dimensions. In this effort, the Gaussian kernel smoothing function was used, and the bandwidth was 

selected using Scott’s rule of thumb, which is a suggested bandwidth based on the size of the data, the 

number of variables, and the scale of the data [19]. 

 

Figure 14. Illustration of KDE with three different bandwidths. 
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The second piece of information needed is the testing data distribution. In general, this distribution is 

unknown, and there are very limited data with which to produce this estimate. As such, this effort 

assumed that all power levels and variables are equally likely; in other words, the testing distribution is 

uniform. This ensures that the model does not bias any power level over another. 

Given these two distributions, the importance weights can be calculated as [5]: 

𝑤(𝑥𝑖) =
𝑝𝑡𝑒𝑠𝑡(𝑥𝑖)

𝑝𝑡𝑟𝑎𝑖𝑛(𝑥𝑖)
, 

where 𝑝𝑡𝑟𝑎𝑖𝑛 and 𝑝𝑡𝑒𝑠𝑡 are the training and testing distributions. This can be simplified further because 

𝑝𝑡𝑒𝑠𝑡 is a uniform distribution, which has constant likelihood, and because the weights are normalized 

within regression algorithms, so only relative values matter: 

𝑤(𝑥𝑖) =
1

𝑝𝑡𝑟𝑎𝑖𝑛(𝑥𝑖)
. 

The result of this procedure is a set of importance weights for the data that are applied to each sample 

error during training. An example from one of the SMD datasets is shown in Figure 15, where the top plot 

shows the sensor data, and the bottom plot shows the importance weights. In this example, the transient 

operating data make up just the last 1% of the time-series data but account for 5.4% of the total weight of 

the data, and each data sample in the transient data is weighted on average 5.8 times more than each data 

sample in the base operating data. Here, the weights are calculated for and applied to the entire 

measurement vector at each time stamp (as opposed to individual sensors). 

 

Figure 15. Example SMD data with corresponding sample importance weights. 

4.2.3 Multiple Models 

In this approach, the idea is to calculate separate contributions to an overall model from the full and 

transient power conditions. This is accomplished by using the full power data to train a corresponding 

model that extracts the full power contributions (i.e., the correlations of variables excluding the power) 

and using the transient power data to train a corresponding model that extracts the transient power 
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contributions (i.e., the correlations just from power after removing the full power part). The final anomaly 

detection model is the combination of the two models. This approach will be described in the context of 

the LOVO framework; although it can be generalized to other prediction models. In the LOVO 

framework, models take the form �̂� = 𝑓(𝑥). 

The data are separated into full power and transient power data 𝑋𝐹 and 𝑋𝑇, respectively. Because the 

full power data contain no transients, they are equivalent to the full power contribution data 𝑋𝐹
∗ = 𝑋𝐹 

(where ∗ indicates contribution data) and are used to train the corresponding contribution model: 

�̂�𝐹 = 𝑀𝐹(𝑥), 

where 𝑀𝐹 is the full power contribution model, and �̂�𝐹 is the full power contribution estimate. 

The full power contribution model is then used to calculate the transient power contribution by 

subtracting the full power contribution estimate from the transient power data: 

𝑥𝑇 = 𝑥 − 𝑀𝐹(𝑥), 

where 𝑥𝑇 is the transient power contribution. This transformation is only applied to transient power data. 

Applying this transformation to the transient power data results in the transient power contribution data 

𝑋𝑇
∗ = 𝑋𝑇 − 𝑀𝐹(𝑋𝐹). When this transformation is applied to full power data, the result is a zero-mean 

residual sequence (because full power data only contains full power contributions). Finally, the transient 

power contribution data are used (along with a modification, described below) to train the corresponding 

contribution model: 

�̂�𝑇 = 𝑀𝑇(𝑥𝑇), 

where 𝑀𝑇 is the transient power full model. The required modification is that, because the full power 

contribution data has been mapped to a zero-mean process, the transient power contribution model must 

also map full power to zero. For linear models, this is done by setting the y-intercept equal to zero. 

Nonlinear models (including the nonlinear LOVO model) in general do not have an equivalent constraint. 

To get around this problem for nonlinear models, the origin can be added to transient power contribution 

data with a high sample weight to ensure it passes through (or close to) the origin. 

With these two contribution models defined, the full model can be defined as the sum of the two 

estimates: 

�̂� = �̂�𝑇 + �̂�𝐹 = 𝑀𝑇(𝑥 − 𝑀𝐹(𝑥)) + 𝑀𝐹(𝑥). 

This entire process is applied to SMD data and is shown in Figure 16. In Figure 16 (a)–(d), the first 

year (1970) is base operating data, and the second year (1971) is transient operating data. In this Figure, 

the base operating contribution estimates (b) are roughly equal to the raw data (a) for the base operating 

data (i.e., left half), but very inaccurate for transient operating data (i.e., right half); and the transient 

operating contribution estimates are zero mean for the base operating data and nonzero for the transient 

operating data. The error plot (d) is the difference between the raw data (a) and the combination of base 

and transient contribution estimates (b and c).  



 

 23 

 

Figure 16. Example showing the data during the different steps of the multiple models approach. 

4.2.4 Frozen Layers 

Transfer learning with neural network architectures (including the autoencoder) is performed by 

training the network on the more abundant source dataset (here, full power data), freezing the weights of 

the initial layers of the neural network, and fine-tuning subsequent layers to the sparser target dataset 

(here, transient power data). This avoids having to train a neural network from scratch on the sparse target 

data only, while also providing it the flexibility to fine-tune the weights in the final few layers to the 

target dataset. 

Expanding on this, the autoencoder is initially trained on the 𝑋𝐹 data, after which the learning rates of 

the initial layer(s) consisting of the kernel projection and potentially subsequent layers are set to zero 

(“freezing”). The remaining weights are then fine-tuned to the 𝑋𝑇 data. Since the initial high-dimensional 

projection is identical, identifying the features that “transfer” over may be observed using the weights of 

the neural network after the frozen layer(s). In this effort, just the encoder was frozen, as shown in 

Figure 17. This limited section was frozen because this represents the projection from the nonlinear input 

data to a higher-dimensional space on which the features become linear (i.e., the next transformation to 

the latent space is linear). As such, this seemed an appropriate place to freeze the network. 
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Figure 17. Diagram showing which layers are frozen and which are fine-tuned. 

4.2.5 Results 

This section shows results for the prediction-based methods applied to the different datasets shown in 

Table 1. Throughout this effort, there are different detection methods and extension methods; for clarity, 

the full set of methods and datasets analyzed is summarized in Table 3. In plotting results, the nonlinear 

LOVO methods are grouped with the autoencoder method because they are all nonlinear methods. 

 Table 3. Summary of datasets, detection methods, and extension methods analyzed for prediction 

methods. 

Datasets General Detection Method Transient Extension Method 

Linear datasets 

0.05 nonlinear datasets 

0.1 nonlinear datasets 

Linear LOVO 

Baseline: transient only 

Baseline: base and transient 

Covariate shift 

Multiple models 

0.05 nonlinear datasets 

0.1 nonlinear datasets 

Nonlinear LOVO 

Baseline: transient only 

Baseline: base and transient 

Covariate shift 

Multiple models 

Autoencoder Frozen layers 

For each dataset, the PR-AUC metric was calculated over a range of transient power training data 

added until the last detector trained was allowed to use all the transient power training data. Then, the 

median, first quartile, and third quartile (over the five datasets) are calculated to report the range of PR-

AUC values. 

For the linear dataset, the results for the two baseline, covariate shift, and multiple models methods 

are shown in Figure 18. Starting with the baseline: transient only case, the PR-AUC starts near 0.2 when 

adding the 0.1% of the transient data (which is the value that would be calculated by a naïve detector that 
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assigns scores randomly). This metric stays there until adding roughly 1–2% of the transient data, at 

which point it jumps sharply to just over 0.8. As a reminder, it was not expected to achieve PR-AUC 

values very close to 1.0 because the anomalies are inserted as ramp functions, meaning the anomalies 

with near-zero magnitude are still considered anomalies (but are nearly undetectable). Moving to the 

baseline: base and transient case, the PR-AUC starts in the range of 0.4–0.55, which immediately shows 

that the base operating data is adding information to the detector. By around 1% of the transient data, this 

method has also achieved PR-AUC values of 0.8. Finally looking at the two methods focused on transient 

operating anomaly detection, both methods’ performance start around 0.8 even with just 0.1% of the 

transient data added and remain relatively constant throughout. Based on these results, the two methods 

show clear benefit for the linear datasets.  

 

Figure 18. PR-AUC results for the linear dataset and linear prediction methods. 

Looking at the 0.05 nonlinear datasets, the results for the nonlinear methods are shown in Figure 19. 

These results look very different from the results for the linear dataset. Up until roughly 10% added 

transient data, all the methods perform comparably to a naïve detector. This is very different from the 

results for the linear datasets, where just a small amount of transient data resulted in a significant 

performance increase. Starting at the 10% mark, all the methods except the multiple models approach 

follow a steep upward trajectory, before reaching a maximum value of roughly 0.8. Along this path, the 

baseline: base and transient, covariate shift, and frozen layers approaches appear to perform slightly better 

than the baseline: transient only case. This still suggests that having the base operating data provides 

some additional information but not as much as for the linear datasets and methods. 

Originally, it was assumed that the linear methods would be applied to the linear datasets and that the 

nonlinear methods applied to the nonlinear datasets. However, given that the nonlinear methods did not 

extend to transients as well as the linear methods, this effort also tested the linear methods on the 

nonlinear datasets. The results for the linear methods are shown in Figure 20. These results look markedly 

different from the nonlinear methods; up until that same 10% added mark, the covariate shift and multiple 

models approaches perform significantly better than the baseline: transient only approach and slightly 
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better than the baseline: base and transient approach. At and beyond that 10% mark, the covariate shift, 

multiple models, and baseline: base and transient approaches see slight improvements, but generally 

remain constant, while the baseline: transient only approach rises past the other three methods and reaches 

relatively high performance levels. 

Finally, looking at the 0.1 nonlinear datasets, the results for the nonlinear and linear methods are 

shown in Figure 21 and Figure 22, respectively. Starting with the nonlinear methods, these results are 

similar to the results for the 0.05 nonlinear datasets, except that these results show more clearly that the 

baseline: base and transient, covariate shift, and frozen layers methods outperform the baseline: transient 

only method for small amounts of transient data added. In other words, they show that the base operating 

data does add value. However, the three methods mentioned that do contain base operating data all 

perform fairly similarly to each other. Moving to the linear methods, again the trends are similar, with the 

covariate shift approach performing better with less transient data added but the baseline: transient only 

method performing best past a certain amount of data. 

 

Figure 19. PR-AUC results for the 0.05 nonlinearity dataset and nonlinear prediction methods. 
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Figure 20. PR-AUC results for the 0.05 nonlinearity dataset and linear prediction methods. 

 

Figure 21. PR-AUC results for the 0.1 nonlinearity dataset and nonlinear prediction methods. 
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Figure 22. PR-AUC results for the 0.1 nonlinearity dataset and linear prediction methods. 

4.3 Feature-Based Methods 

The feature-based methods include the baseline methods (Section 4.3.1) and the combined null space 

method (Section 4.3.2). The results of these methods are presented and compared in Section 4.3.3. These 

methods all make use of the PCA model (Section 2.1). 

4.3.1 Baseline Methods 

The feature-based methods implemented the same two baseline approaches as the prediction-based 

methods. The first baseline method used both the available full power and transient power data, and the 

second used only the available transient power data. However, these baseline approaches used the PCA 

model for anomaly detection instead of the LOVO models. 

4.3.2 Combined Null Space 

As mentioned previously, this effort developed and implemented a new feature-based transfer 

learning approach to anomaly detection when there are sparse transient data. The general idea is to 

identify features that transfer from the source data to the target data, with the objective of finding those 

feature that are uninformative under normal operations yet show larger values during anomalous 

conditions. Intuitively, the developed approach searches for common patterns between the two datasets, 

measured using cosine similarity.  

Similar to the multiple models approach, the data are separated into full power and transient power 

data 𝑋𝐹 and 𝑋𝑇, respectively. Then, the PCA procedure of Section 2.1 is applied to each dataset, resulting 

in compressed approximations and sets of 𝑘1 and 𝑘2 left singular vectors, {𝑢𝐹,𝑖}
𝑖=1

𝑘1
 and {𝑢𝑇,𝑖}

𝑖=1

𝑘2
, for the 

two datasets, respectively. In essence, each set of left singular vectors describes most of the variance in its 

respective dataset. The intersection of the two sets {𝑢𝐹,𝑖}
𝑖=1

𝑘1
∩  {𝑢𝑇,𝑖}

𝑖=1

𝑘2
 forms the orthonormal basis (i.e., 
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feature set) that transfers from the source to target datasets, whereas the union {𝑢𝐹,𝑖}
𝑖=1

𝑘1
∪ {𝑢𝑇,𝑖}

𝑖=1

𝑘2
 forms 

the basis that captures relevant variations in the data in both datasets. Here, the union is the relevant set 

and is calculated from the perspective of vector spaces by finding the cosine similarity 𝑐𝑖 between each 

vector in the target domain {𝑢𝑇,𝑖}
𝑖=1

𝑘2
and the subspace spanned by the source domain {𝑢𝐹,𝑖}

𝑖=1

𝑘1
 using the 

projection operator 𝑈𝐹𝑈𝐹
𝑇: 

𝑐𝑖 =
𝑈𝐹𝑈𝐹

𝑇𝑢𝑇,𝑖

‖𝑈𝐹𝑈𝐹
𝑇𝑢𝑇,𝑖‖

2

. 

Then starting with all vectors in the source domain, vectors are added from the target domain if they are 

below a user-defined similarity threshold (i.e., they are not similar enough to be a duplicate and thus 

should be in the union). 

Once the union is calculated, it can be used in a similar manner to the standard PCA detection 

described in Section 2.1 where uninformative left singular vectors can be used to look for anomalous 

patterns. If the union is defined as {𝑢𝑖}𝑖=1
𝑘 : = {𝑢𝐹,𝑖}

𝑖=1

𝑘1
 ∪  {𝑢𝑇,𝑖}

𝑖=1

𝑘2
, the uninformative left singular 

vectors may be constructed using the null space [20] of the union set, 𝒩({𝑢𝑖}𝑖=1
𝑘 ), spanned by a basis of 

𝑚𝑠 − 𝑘 orthonormal vectors, {𝑢𝑖}𝑖=𝑘+1
𝑚𝑠 . This null space operation is equivalent to finding a discarded set 

of features that is uninformative with respect to trends in both datasets but highly informative for 

detecting anomalies.  This is because the union operator combines patterns that explain trends in both 

sets, and the corresponding null space therefore contains patterns that do not explain trends but the error 

instead. As discussed in Section 2.1, this error-like term can then be used to flag anomalous data. 

4.3.3 Results 

This section shows results for the feature-based methods applied to the different datasets. The full set 

of analyzed methods and datasets is summarized in Table 4. 

 Table 4. Summary of datasets, detection methods, and extension methods analyzed for feature methods. 

Datasets General Detection Method Transient Extension Method 

Linear datasets 

0.05 nonlinear datasets 

0.1 nonlinear datasets 

PCA 

Baseline: transient only 

Baseline: base and transient 

Combined null space 

For the linear datasets, the results for the two baseline and combined null space methods are shown in 

Figure 23. Like the prediction methods, the baseline: transient only case starts low and increases rapidly 

after obtaining more training data. However, unlike the prediction methods, the baseline: base and 

transient case shows strong performance across the full range of transient data added. This is also true for 

the combined null space approach. 

Looking at the results for the 0.05 and 0.1 nonlinear datasets (Figure 24 and Figure 25), the plots 

show similar trends to the prediction methods. The methods that include base operating data show better 

results with very limited transient data compared with the nonlinear prediction method results (Figure 19 

and Figure 21), but that performance does not increase with more transient data. In addition, the baseline: 

transient only method starts out with very poor performance, but increases past the other methods with 

additional transient data. 
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Figure 23. PR-AUC results for the linear dataset and linear feature methods. 

 

Figure 24. PR-AUC results for the 0.05 nonlinear dataset and linear feature methods. 
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Figure 25. PR-AUC results for the 0.1 nonlinear dataset and linear feature methods. 
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5. CONCLUSIONS 

This effort tested the hypothesis that anomaly detection methods can be extended to improve 

performance during the data-poor transient conditions compared with baseline methods that are trained 

without regard to the limited transient data. To accomplish this, it compared three prediction-based 

methods (covariate shift, multiple models, and frozen layers) and one feature-based method (combined 

null space) to the baseline approaches. These methods were all tested on SMD datasets over a range of 

nonlinearity measures and amounts of transient data included in the training data. 

Starting with the linear datasets and prediction-based methods, the methods that included the base 

operating data performed significantly better than the baseline approach that did not include base 

operating data (i.e., they required significantly less transient data to reach comparable performance). This 

showed that there was noticeable benefit in including the base operating data. Comparing the extension 

methods with the baseline approach that did include base operating data, the covariate shift and multiple 

models approaches both showed significant improvement over the baseline. These two methods that 

accounted for the transient were able to reach peak performance (AUC over 0.8) with just 0.1% of the 

transient data added, whereas the baseline with transient and base required nearly 10× more data to 

achieve comparable performance. Moving to the feature-based methods, the extension method performed 

similarly better than the baseline approach without base operating data. However, here the baseline with 

base data and combined null space methods achieved very similar performance (AUC over 0.8) to each 

other with just 0.1% of the data. 

Based on these results, including base operating data made a significant difference in anomaly 

detection methods for linear datasets. For particularly data-sparse applications, any of the covariate shift, 

multiple models, or PCA-based methods (baseline or combined null space) provided strong and 

comparable performance with very limited transient data. 

Moving to the nonlinear datasets and nonlinear prediction-based methods, the nonlinear methods did 

not benefit as much from including the base operating data compared with the linear datasets and linear 

methods. Here, all the methods achieved results equivalent to a naïve detector up until 10% of the 

transient data was added. After this there appeared to be some benefit from including base operating data; 

although, it is less noticeable compared with the linear datasets. Moving to the linear prediction and 

feature based methods, these methods showed a significant performance improvement over the nonlinear 

methods at the lower end of the transient data added. Compared with the baseline with transient only 

method, all the methods that included base operating data achieved better performance (AUC of 0.4–0.5 

compared with an AUC of 0.2). The covariate shift and multiple models approaches both performed 

better than the baseline with the base operating data method. The two feature-based methods performed 

even better (AUC of 0.45–0.56) than the prediction-based methods. 

Based on these results, nonlinear methods were not well suited to the nonlinear transient problem 

without significant amounts of data; however, the linear methods applied to the nonlinear datasets showed 

some success. This implies that, even though the overall dynamics of the SMD datasets are nonlinear, 

there must be some linear patterns within that the methods are recognizing and learning. And these 

patterns still hold when transferring from base operating data to transient operating data. In addition, it 

appears the feature-based methods performed better than the prediction-based methods on these datasets 

when given very small amounts of transient data, although this advantage was not observed as more data 

were added. One possible explanation for this is that the methods are finding just the features that are 

linear and ignoring the other effects, while the prediction-based methods may not be able to extract just 

the linear features as accurately. 

Combining all of this, it appears that, for linear datasets, the transient problem is solvable and 

multiple methods can achieve good results. For nonlinear datasets, the transient problem is much more 

difficult and, for very limited transient datasets, may only be solvable when some linear patterns exist that 

can be extracted.  
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