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EXECUTIVE SUMMARY 

An essential aspect of online monitoring, subtle anomaly detection increases the detection lead time 

for equipment failure and enables a nuclear power plant (NPP) to mitigate unexpected partial or full 

outages, resulting in significant cost saving to the plant. Once an anomaly is detected by plant staff, its 

cause and severity are investigated. Because the vast majority of anomalies require some level of 

investigation, including some that require time-consuming examination, before they are passed over to the 

engineering organization for further analysis, plants are often equipped with tools to assist the staff in 

performing anomaly detection. Those tools operate as a black box and are often based on statistical 

methods that establish sensor correlations using preconfigured mathematical models and flag correlation 

deviations as anomalies. 

Due to the number of anomalies detected at a given NPP on a daily basis, a significant number of 

flagged anomalies usually await examination for days or weeks. A primary cause of this backlog is that 

the methods used by the tools generate many false positives. Though this is usually attributed to 

oversensitive model settings due to very narrow normal operation bands, it can also be associated with the 

model development being inadequate for the process being monitored, or with missing model inputs that 

could have explained misclassified positives. 

The performance of anomaly detection tools impacts their plant acceptance and utilization, especially 

when the effort to address false positives generated by the tool depletes the value or cost saved by using 

that tool. Thus, means to advance anomaly detection performance have been investigated by the 

Department of Energyôs Light Water Reactor Sustainability program. Previous and ongoing efforts have 

targeted unsupervised machine-learning (ML) methods, which do not require the labeling of any data fed 

into the ML model. By contrast, in supervised anomaly detection methods, every data point is labeled as 

either a normal or abnormal process condition, and the model is trained to replicate the classification 

process. Supervised methods usually outperform unsupervised methods, due to the added value in 

differentiating normal from anomalous states of the monitored process. 

An NPPôs corrective action program requires it to track and document, via a dedicated report, the 

resolution of any issues that occur within the plant. Once created, each report is reviewed by a plant 

screening committee, and several classifications and decisions are made. Recently, a collaborating NPP 

developed an artificial intelligence and ML-based classifier to categorize a condition report (CR) into 

classes that can serve to label the data as normal or anomalous. Applying CRs as labels represents a semi-

supervised use case. Semi-supervised ML assumes that labels exist for some data points (i.e., labeled 

anomalies, in this case) but not for the rest. 

In this effort, semi-supervised ML methods were used to fuse data from CRs with anomaly detection 

methods in order to test the hypothesis that partially labeled anomalies would improve the accuracy of the 

anomaly detection methods. Specifically, two methods were used. The first is the deep Semi-supervised 

Anomaly Detection (deep SAD) method, which can handle labels ranging from fully unsupervised to 

fully supervised cases. The second is a newly designed ML method developed specifically for this effort 

and referred to as the high-order feature (HOF)-based method. 

To evaluate these two methods in controlled environments, synthetic data generators were developed 

and used. The first datasets used a spring-mass-damper (SMD) system simulator commonly found in 

mechanical engineering references. This was used to create two use cases: a one- and a three-mass 

system. Anomalies were introduced by changing the spring and damper coefficients while the system was 

actuated by random forces. The second datasets used the commercial Dymola-Modelica software to build 

a simplified nuclear reactor model. Anomalies were added in the form of corrupted sensor readings and/or 

control commands. The deep SAD method was tested using the SMD system, while the HOF method was 

tested using both datasets. 
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Application of the deep SAD semi-supervised ML method demonstrated that labels can generate 

increased confidence in detecting true anomalies. This helped increase the number of true positives and 

decrease the number of false negativesðsomething that would aid in addressing the backlog of possible 

anomalies. Application of the HOF method demonstrated that labels can aid in down selecting from a 

candidate set of features to a more optimal subset in order to better differentiate between normal and 

anomalous conditions. 
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PROCESS ANOMALY DETECTION FOR SPARSELY 
LABELED EVENTS  IN NUCLEAR POWER PLANTS  

1. INTRODUCTION 

One of the numerous responsibilities of nuclear power plant (NPP) operators in ensuring safe, reliable 

plant operations is to monitor and respond to plant alarms. Alarms are generated when plant process 

anomalies occur and are significant enough to exceed the particular threshold specified in the plant 

designs. Operators do not search for and detect subtle anomalies in the plant data. However, anomaly 

detection could help plants prevent such anomalies from escalating into unexpected equipment failure, 

especially since alarms may not provide sufficient lead time for the plant to act (Figure 1). This introduces 

a significant avoided cost saving to the plant. Often, the role of subtle anomaly detectionðas well as that 

of investigating the cause and severity of such anomaliesðis shared with dedicated monitoring and 

diagnosis (M&D) centers. An M&D center monitors multiple plants simultaneously and has dedicated 

staff whose primary task is to perform monitoring. Because the vast majority of anomalies require some 

level of investigation, including some that require time-consuming examination before they are passed 

over to the engineering organization for further analysis and actions, M&D centers are often equipped 

with anomaly detection tools that assist the staff in performing this function. 

 

 

 

Figure 1. The M&D centerôs role is to detect subtle anomalies in order to increase the detection lead time 

for equipment failures. 
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Anomaly detection tools operate as black boxes and are often based on statistical methods that 

establish sensor correlations using preconfigured mathematical models and flag any deviation from the 

pattern as being anomalous. Due to the number of anomalies flagged at a given NPP on a daily basis, the 

M&D center typically has a backlog of tens to hundreds of anomalies pending examination. A primary 

cause of this backlog is that the methods used by the tools tend to generate a large number of false 

positives. This is usually attributed to oversensitive model settings due to very narrow normal bands, but 

can also be associated with the model development being inadequate for the process being monitored, or 

with missing model inputs that could have explained misclassified positives.  

The performance of anomaly detection tools impacts their utilization, especially when the effort of 

addressing false positives exceeds the value or cost saved by using those tools. Therefore, the Light Water 

Reactor Sustainability (LWRS) program launched efforts to explore means of advancing anomaly 

detection tools by leveraging state-of-the-art machine learning (ML) methods. Since the early 90s, ML 

techniques have been applied for condition monitoring in regard to fault detection,1,2 system state 

identification,3,4 and remaining life prediction.5,6 Previous and ongoing LWRS program efforts have 

targeted unsupervised ML methods,7,8 which do not require that the data fed into the ML model be 

labeled. The basic concept of such methods is based on grouping the monitored process state into multi-

dimensional ranges. Any value falling outside those ranges is labeled anomalous. In supervised anomaly 

detection methods, every data point is labeled as either normal or anomalous, and the model is trained to 

replicate the classification process. Supervised methods are known to outperform unsupervised ones, due 

to the added value in training the model to distinguish normal states of the monitored process from 

anomalous ones. Figure 2 shows a simple example of unsupervised and supervised ML cases, the key 

distinction being that, in the unsupervised case, methods must rely on the data having natural splits in 

order to separate them. By contrast, in the supervised case, the labels make it much easier to distinguish 

between the known classes. These sample data show a relatively clear split, which may be hard to find in 

real dataðparticularly higher-dimensional data. This represents a key challenge for unsupervised 

learning, and helps explain why supervised learning outperforms unsupervised approaches. 

 

Figure 2. Simple example of unsupervised and supervised ML.  
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Given the great amount of sensor information now available, and the fact that supervised learning 

requires that all the data be labeled, the cost of human labor in applying supervised learning techniques 

becomes considerable, and the expert knowledge required in distinguishing fault signals is not always 

available. In an NPP, events are labeled using various data formats. Additionally, the labels can be 

generated using physics-based models8 for failures never before observed. An NPPôs corrective action 

program (CAP)9 requires the plant to track and document the resolution of issues that occur in the plant10 

and is thus considered a valuable source for labels. Issue tracking/resolution is conducted through the 

issuance of a dedicated report, often referred to as a condition report (CR), action report, or issue report. 

Once created, such reports are reviewed by a plant screening committee, and several classifications and 

decisions are made regarding how the issue or condition should be addressed. However, the reports do not 

explicitly classify the condition into an equipment or process anomaly indicator. Recently, a collaborating 

NPP developed an artificial intelligence and ML-based classifier for categorizing a CR into classes that 

can serve to label the data as normal or anomalous.  

Applying CRs as labels presents several challenges. First, any misclassified normal/anomaly 

conditions fed into the training process of the anomaly-detection ML model would impact the 

performance of the end-result model. This necessitates omitting from the training data any CR 

normal/anomaly classifications that carry low confidence. Second, a CR for a specific piece of equipment 

can impact several other, indirectly related pieces of equipment. This implies that anomaly patterns might 

exist for equipment, despite the missing anomaly labels. Third, some anomalies might be logged late in 

the anomalyôs progression, resulting in parts of the anomaly pattern being mislabeled as normal. These 

three scenarios imply that, if CRs are used as a basis for labeling anomalies in an NPP, some anomaly 

labels will be missing, resulting in some anomaly data being mislabeled as normal. In ML terminology, 

this represents a partially labeled dataset, which would then be a candidate for semi-supervised ML. 

Semi-supervised ML methods assume that labels exist for some data points (i.e., labeled anomalies, in 

this case) but not for the rest (Figure 3). The unlabeled data do not negate the labeled data, but could 

correspond to either a normal or anomalous state.  

 

Figure 3. CRs present labels for parts of the sensorsô time series data and can be used as input for 

anomaly-detection methods. 

 

CR CR
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In this effort, semi-supervised ML methods were used to fuse CR data with anomaly-detection 

methods in order to test the hypothesis that partially labeled anomalies would improve the accuracy of the 

anomaly-detection methods and reduce false positives. This hypothesis was tested in other applications. 

For example, Dimla11 reviews neural network (NN) solutions for tool condition monitoring in metal 

cutting, revealing that both the supervised and unsupervised architectures applied in that area achieved 

fairly similar results.12  

In this effort, two semi-supervised methods were used to detect anomalies. These methods used some 

prior knowledge of a few sparsely labeled anomalous events, though no prior knowledge of whether the 

rest of the data were normal or anomalous. To evaluate the hypothesis in a controlled environment, 

synthetic data generators were created and used (see Section 2). The first ML method to be applied was 

the deep Semi-supervised Anomaly Detection (deep SAD) method, discussed in Section 3.1. The second 

method used to test the hypothesis was a high-order feature (HOF)-based ML method discussed in 

Section 3.2. The conclusions are summarized in Section 4. 

1.1 Semi-supervis ed ML L iterature Review  

Various semi-supervised ML methods have been developed for a wide variety of application areas 

and are often heuristically customized for the respective problems. Nevertheless, semi-supervised ML 

algorithms can generally be divided into generative-model-based, density-based, graph-based, and 

heuristic approaches. Zhu13 provides a comprehensive survey on semi-supervised ML algorithms. In this 

section, several illustrative sketches are provided to help explain each concept. 

Generative models assume that the distribution of a given class takes some form of identifiable 

mixture distribution and use Bayesô rule to determine the prediction rule of the classifier, in the form of 

probabilistic distribution.14 The generative-model-based semi-supervised ML algorithms use the more 

plentiful unlabeled data to identify the mixture distributions, and then label the distributions with the 

classes from the labeled data. See Figure 4 for a sketch of generative-model-based semi-supervised ML. 

The figure shows two clusters that are identified using Gaussian mixture models. Then, a few labeled 

instances of the two classes are used to correlate the clusters to specific classes. Many fault/anomaly 

detection practices employ generative-model-based semi-supervised ML algorithms. For example, the 

Skip Deep Generative Model is employed for fault detection in photovoltaic systems by training a model 

using the joint probability of labeled and unlabeled data with feature variables and state variables 

(classes), with anomalies being registered if the specific data point has an entropy far below that of the 

unlabeled data15; a deep generative model is used to predict remaining useful life16; and a variational-

autoencoder-based deep generative model is used for bearing anomaly detection using a small subset of 

labeled vibration signals.17 Typically, the generative approach is effective when the unlabeled data are 

clearly separable, but less effective for detecting subtle anomalies. 

Density-based semi-supervised ML attempts to find a decision boundary at the low-density region 

that best separates one class of data from the other under the assumption that the unlabeled data from 

different classes are separated with large margin. Transductive support vector machine (TSVM), also 

called semi-supervised support vector machine (S3VM), is the most commonly used low-density separator 

in semi-supervised ML. It learns a large margin hyperplane classifier by using the labeled data while 

forcing the hyperplane away from the unlabeled data.18 See Figure 5 for a sketch of density-based semi-

supervised ML. In the left half of the figure, the line represents the best-fit discriminator when using only 

a few labeled points. In the right half, the line represents the best-fit discriminator when using both the 

few labeled points and all the unlabeled ones. TSVM is a natural extension of SVM, which is applied to 

labeled data only; however TSVM is limited by the non-convex objective function. Approaches have 

been developed to solve this optimization difficulty19. Since TSVM is applicable wherever SVM is 

applicable, it is popularly employed to predict the boundaries between different fault/health classes in 

condition monitoring activities involving both labeled and unlabeled data. Reference 20 extends the semi-

supervised Support Vector Data Description method by using negative samples and is applied for 
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detection faults in rotating. Reference 21 introduces a safe semi-supervised S4VM approach for updating 

the hyperplane using successive online unlabeled data for detecting anomalies in vibration signals. 

Reference 22 investigates the performance of several density-based semi-supervised ML approaches (e.g., 

one-class SVM and Support Vector Data Description) for the condition monitoring of marine machinery 

systems for which large volumes of unlabeled operation data are available, though labeled fault samples 

usually are not. 

 

 

Figure 4. Sketch of generative-model-based semi-supervised ML. 

 

Figure 5. Sketch of density-based semi-supervised ML. 

The graph-based semi-supervised ML algorithms construct a graph with labeled and unlabeled data 

represented as nodes, as well as weighted edges connecting the nodes to reflect the similarity between 

them.23 The unlabeled data help with label propagation while minimizing the propagation energy. The 

graph-based semi-supervised ML guarantees good performance if the constructed graph fits the task with 

graphic interpretation of the results.24, 13 See Figure 6 for a sketch of graph-based semi-supervised ML. In 

the figure, the lines represent connections between different data points. This can be an iterative algorithm 

depending on how the graph is created. The figure on the left shows the connections and 

labeled/unlabeled data points, the figure in the middle shows an early iteration as the algorithm tries to 
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determine which points to cluster into which group, and the figure on the right shows a late iteration that 

correctly identifies all points to their respective classes. In condition monitoring, graph-based semi-

supervised ML applications attempt to construct a problem-specific graph. For example, Reference 25 

constructs an undirected weighted graph to guarantee the intrinsic structure of the data and accomplish the 

complex task of detecting and diagnosing faults with nonlinear traits, while Reference 26 employs 

manifold regularization, using the graph Laplacian of a graph-based representation to exploit the 

geometric structure of the marginal distribution of the condition monitoring data in the feature space, 

thereby outperforming the supervised classifications using information from the unlabeled data. 

Reference 2 provides another algorithm, using manifold regularization to extend SVM into Laplacian 

SVM in order to conduct multi-class fault detection vibration signals.  

 

Figure 6. Sketch of graph-based semi-supervised ML. 

Some semi-supervised ML methods (e.g., self-training and co-training) are heuristic, using unlabeled 

data within a supervised learning framework. For both these methods, the first step is to train the 

supervised classifier using only the available labeled data. In self-training, the classifier is then applied to 

the unlabeled data to generate more labeled samples and update the classifier with more labeled data. See 

Figure 7 for a sketch of semi-supervised ML using self-training. As with the graph-based example above, 

this is an iterative algorithm. The figure on the left shows the labeled and unlabeled points, the figure in 

the middle shows an early iteration as the algorithm begins labeling the unlabeled data points nearest the 

labeled data points, and the figure on the right shows the final iteration, with all the points now classified. 

Self-training can be applied in a preliminary investigation because it is so simple to implement. However, 

as self-training uses its own predictions (classifiers) to teach itself (i.e., classify the unlabeled data), early 

misclassifications may thus reinforce themselves. Different self-training techniques for semi-supervised 

ML classification are introduced and evaluated in a survey paper.27 Reference 28 proposes a self-

organizing feature map to soft label and update unlabeled data in order to detect changes/damages in 

image data.  
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Figure 7. Sketch of semi-supervised ML using self-training. 

Co-training is an extension of self-training that requires that features can be split into two views as 

two independent sources of information.29 First, two classifiers are trained using labeled data from the two 

feature views. Then, each classifier classifies the unlabeled data and updates the other classifier using its 

most confident estimated labels. See Figure 8 for a block diagram of how co-training works. In this 

figure, ὢ is the input data; ὢ  is the 1st view of the data; the ὒ and Ὗ subscripts are labeled and 

unlabeled, respectively; ὣ is the output data; and Ὢ is some classifier function. Efficiency and accuracy 

are improved as the classifiers from the two views teach each other. However, one limitation to the 

approach is that a natural feature split might not exist,30  resulting in only a few applications of co-training 

in condition monitoring. Reference 31 provides an example of equipment remaining life prediction using 

co-training regression with a few failure units (labeled) and many suspension units (unlabeled). 

 

Figure 8. Sketch of semi-supervised ML using co-training. 
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2. SYNTHETIC DATA GENERATION  

As discussed in Section 1, the anomaly detection methods developed and/or evaluated as part of this 

research required labeled time series data that contained both normal and anomalous behavior. For this 

pilot study on semi-supervised anomaly detection, using simulated data provided several advantages over 

using real data. First, it reduced the burden of cleaning the data, increasing the focus on the anomaly 

detection approaches. Second, since all anomalies were known, this provided good benchmark datasets 

for comparing the different approaches.  

Two different approaches were used to generate simulated data: a spring-mass-damper (SMD) 

simulator, and a simplified pressurized-water reactor (PWR) simulation created using the Dymola-

Modelica software package. 

2.1 Spring -Mass-Damper Simulator  

The first simulator that was developed used the idea of the SMD system, commonly found in 

mechanical engineering references. The basic building blocks of this system are springs, masses, 

dampers, sensors, and actuators: masses respond to forces according to Newtonôs Second Law, expressed 

as force equals mass times acceleration; springs apply restorative forces to the mass, and these forces are 

a function of the displacement of the spring; dampers apply damping forces to the mass, and these forces 

are a function of the damper velocity; actuators apply forces directly to masses; and sensors measure 

some property of the mass, here, the position of the mass. Example one- and three-mass systems are 

sketched in Figure 9 and Figure 10, respectively; the sketch for the three-mass system shows how the 

simulator can be scaled up to generate more complicated system by combining the basic building blocks 

into larger configurations. 

 

Figure 9. Sketch of a one-mass SMD system. 

 

Figure 10. Sketch of a three-mass SMD system connected in series.  
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There are several reasons why the SMD system was selected for this research. First, it is conceptually 

simple, with just a few basic components; however, those components can be combined to generate high-

order (HO) systems with coupled variables. Second, the system is easily scalable to include many sensors 

and actuators. These two characteristics are important in emulating the large-scale HO systems in NPPs. 

Third, the system allows the straightforward incorporation of process anomalies by modifying system 

parameters (here, the spring stiffness and damping coefficients). These modifications result in slowly 

changing anomalies that are difficult to see during manual inspection but are detectable using advanced 

analytical approaches. 

For the one-mass system of Figure 9, the dynamics are described by a differential equation, as per 

Newtonôs Second Law. In this case, the sum of the forces on the mass is the sum of the spring force, 

damper force, and actuator force. The basic differential equation assuming a linear spring and damper can 

be written as follows: 

άὼ ὧὼ Ὧὼ Ὂ (1) 

where ά is the mass, ὧ is the damping coefficient, Ὧ is the spring stiffness, Ὂ is the actuator force, ὼ is the 

displacement of the mass, ὼ  is the velocity of the mass, and ὼ  is the acceleration of the mass. 

The above differential equation is for a system with just one mass and one actuator. But, as 

mentioned, one benefit of using these basic building blocks is that they can be combined into larger 

system sizes (e.g., the three-mass system). When including multiple masses, each mass can either be 

attached to a fixed ñgroundò or to another mass. When masses are connected, the displacement and 

velocity of the spring and damper forces (see above) become the relative displacement and relative 

velocities between the two connected masses. This results in a differential equation for each mass present 

in the system, and the resulting set of equations represents a highly coupled and interacting dynamic 

system. 

The above differential equation is for a system with a linear spring and damper, but this system is 

easily extendable to include nonlinear components. One method is to make the spring nonlinear, and this 

is often modeled by using a cubic polynomial with spring force equal to Ὧὼ Ὧὼ. This nonlinearity is 

important because real systems are, to various extents, nonlinear, so the additional term makes the 

simulation more representative of NPP systems. 

To further emulate real systems, this simulation also accounts for both process and measurement 

noise. Process noise introduces uncertainty in the model dynamics, because the true underlying dynamics 

can never be perfectly known. Measurement noise introduces uncertainty in the sensor readings, since 

sensors cannot perfectly capture the true parameter of interest they are estimating. 

Finally, this simulation platform can easily insert anomalies by changing the system parameters (here, 

the spring stiffness Ὧ and damper coefficient ὧ). These changes occur as a function of time, so during 

normal operation, the parameters are set to their nominal values. During anomalous operation, they are 

slowly varied, causing changes to the overall system behavior that affect the correlations between the 

variables, though these changes are subtle enough to go unnoticed by human operators. 

Once the differential equations for the system have been determined, they must be solved for the mass 

positions. For some closed form forcing functions, the differential equations may be solved analytically; 

however, the forcing functions used here do not have a closed form. Thus, the best way to solve them is to 

use numerical integration approaches to provide an approximate solution. One of the most popular 

numerical integration methods is the Runge-Kutta solver. Most major programming languages have 

extensive functionality for numerical integration using robust, accurate integration routines. The 

simulation results are the mass positions and actuator forces. From a dynamic system theoretic point of 

view, these represent both input and output variables, and both are important for detecting anomalies in 
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dynamic systems. In an NPP, examples of input variables include heater power, motor power, and valve 

position, while examples of output variables include temperature, pressure, and fluid level. 

This report considers two different system configurations: a one-mass system and a three-mass 

system connected in series. In the one-mass system (Figure 9), the data are comprised of the mass 

position and actuator force for a total of two variables. Similarly, in the three-mass system (Figure 10), 

the types of data are the same, but correspond to three masses and three actuators for a total of six 

variables. The simulations covered a span of five years, with two anomalies per year, for a total of ten 

anomalies. 

These one- and three-mass systems were simulated, but because they share such similar patterns, 

simulation plots are only shown for the three-mass system. For each of these plots, both the mass 

positions and actuator forces are shown. Figure 11 shows the simulation results for the full five years in 

order to reveal any long-term trends in the system behaviora. This plot shows the general scale of the 

variables and the noise, and gives a high-level overview of the interactions between the variables. 

Figure 12 shows the results for a two-month period, affording a closer view of the individual transients 

and the variable correlations. This figure shows the interactions between the variables and the time-

constants of the transients, which were selected to be slow in order to emulate the slower transients seen 

in NPPs. Figure 13 shows the results for a three-month period in which operation transitioned from 

normal to anomalous after the black dotted line. This figure shows how subtle the anomalies are, which 

makes them difficult to detect without the use of advanced analytics. 

 

Figure 11. Simulation results for the three-mass system for the full five years. The top plot shows the 

mass positions, and the bottom plot shows the actuator forces. 

 
a These years are shown because the Python packageôs default dates spanned the early 1970s. 
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Figure 12. Simulation results for the three-mass system for two months.  

 

Figure 13. Simulation results for the three-mass system transitioning from normal to anomalous 

operations.  

In addition to the position and force results, it is helpful to plot the magnitudes of the anomalies. 

These are the percent changes in the spring stiffnesses and damper coefficients that modify the underlying 

differential equations. Each anomaly is inserted as a ramp anomaly, meaning it starts from zero and 
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increases to some maximum value (see Figure 14 for a plot of the magnitudes over time). Note that each 

anomaly has a different maximum magnitude and a different duration. 

 

Figure 14. Plot showing the varying magnitudes and durations of each anomaly. 

One important point regarding this system is that the ñdetectabilityò of anomalies is a function of two 

variables: the anomaly magnitude (mentioned above) and the spring displacement magnitudes. To 

understand this second variable, the differential equation for the one-mass system can be simplified by 

assuming the mass is as rest, then incorporate some anomaly-induced change to the stiffness. This results 

in: 

Ὧ Ὧ ὼ Ὂ (2) 

In this equation, the detection algorithms have access to noisy measurements of ὼ and Ὂ in order to infer 

whether the spring stiffness is nominal or anomalous. However, when the value of ὼ is close to zero (i.e., 

the magnitude of the mass displacement is close to zero), the effect of the anomaly on the system 

approaches zero. In other words, as the mass displacements shrink, the anomalous effect becomes smaller 

and therefore harder to detect. This means two important variables must be considered in order to 

determine the difficultly of detecting a given anomaly. Consideration of both of these variables plays an 

important role in explaining some of the results in later sections, and is also representative of NPP 

systems. For example, consider a case in which vibration data are used to detect anomalies in a pump 

motor. Even if the anomalous vibrations are apparent at normal running speeds, they may shrink or 

change patterns at slower pump speeds, potentially confounding an anomaly detection algorithm. 

2.2 Dymola  PWR Simulator  

The second simulator generated virtual NPP data using the commercial Dymola-Modelica software. 

This software is used to build representative nuclear reactor models that employ control loops to regulate 

operation (e.g., a Proportional Integral Derivative controller is used to determine the optimal control 

actions, based on collected sensor data). The PWR model for simulating the systemôs transient behaviors 

is shown in Figure 15. The PWR consists of primary and secondary loops, the components of which are 

connected by blue solid lines. The reactor core, shown as the orange block on the lower left, has its inlet 

and outlet temperatures measured and then sent to the control systems, as represented by the red dashed 

line. The pressurizer, which is connected to the hot leg, features safety valves and a system-controlled 

pressurizer heater. The coolant in the hot leg flows into the steam generator and is pumped back to the 

core by the primary pump. For the secondary loop, the feedwater is pumped, heated, and consequently 

converted into steam in the boiler drum, then released into the atmosphere. The steam generation amount 

and feedwater flow rate were measured, and the results delivered to the control system for making 

actuation command calculations. The layout of the control system for a normal operation state is shown in 

Figure 16. The model used standard controllers (e.g., Proportional Integral Derivative and Tave) to set the 
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mass flow rate of the primary pump, the steam generator feedwater pump, the core reactivity, and the 

pressurizerôs heater. Six different sensors were used as input parameters to the controller: total core 

power, coolant temperature of the core inlet and outlet, pressurizer pressure, steam generation amount, 

and feedwater mass flow rate. The results of the simulation were used to test the anomaly detection 

algorithm. 

As with the SMD simulator discussed above, both the noise and anomalies were incorporated into the 

simulations. Noise was dynamically added to the control commands and sensor signals to simulate real 

behavior that included process and sensor noise. Anomalies were added in the form of corrupted sensor 

readings (e.g., level indicators and thermocouple readings) and/or control commands (e.g., valve 

alignment), with the resulting changes being subtle in comparison with the noise level. 

Given the wide range of anomalies expected in an NPP, three different types of anomalies were used 

for this initial study: wide anomalies, which gradually develop over longer time periods and are then 

gradually removed; narrow anomalies, which are similar to wide anomalies but develop over shorter time 

periods; and persistent anomalies, which gradually develop but are not removed. The first two anomaly 

types represent situations in which the anomalies are discovered and removed by the regular maintenance 

work orders, whereas the third represents undiscovered anomalies.  

 

 

Figure 15. Layout of the Dymola-simulated PWR.32 
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Figure 16. Control system layout.32 

The selected wide anomalies were introduced in the primary loop core flow rate. To simulate noise, 

Gaussian noise of a magnitude representative of flowrate measurements in a typical NPP was added in a 

dynamic manner. This was achieved by adding the noise to the sensor readings before sending them to the 

controller. This ensured that the noise propagated dynamically throughout the actuated commands to the 

rest of the reactor, as shown in Figure 17. The temporal evolutions of different sensors are shown in 

Figure 18ïFigure 20. Two simulations were completed, both with process noise, though one had no 

anomalies and the other had two wide anomalies. The simulation with no anomalies is shown for 

illustration purposes only and is not used by the anomaly detection algorithm. For the simulation with 

anomalies, one is introduced between 1000ï2000b seconds and the other is introduced between 3000ï

4000 seconds. These graphs show that, when noise is present, the anomalies have little impact on the 

system behavior after they are removed, as would be expected during operation. For example, the first 

wide anomaly was gradually introduced at 1000 seconds and then completely removed by 2000 seconds. 

The normal behavior (blue) and anomalous behavior (orange) are indistinguishable over the ranges in 

which no anomalies were introduced. Similarly, the temporal evolutions of the total power for the narrow 

and persistent anomalies are shown in Figure 21 and Figure 22, respectively. For the persistent anomaly 

scenario, an additional narrow anomaly was added at 6000 seconds, and a persistent (i.e., not removed) 

anomaly was introduced at 8000 seconds.  

 
b The time scale of the simulation is shorter than the typical time needed for anomalies to grow. This was not considered an 

issue, since the short time scale of simulation was proportional to the anomaly development rate, regardless of time scale. 
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Figure 17. Control system layout of the anomalous primary loop. 

 

Figure 18. Standardized total power with two wide anomalies. 
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Figure 19. Standardized core outlet temperature with two wide anomalies. 

 

Figure 20. Standardized steam generation with two wide anomalies. 
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Figure 21. Abnormal scenario with two narrow anomalies. 

 

Figure 22. Abnormal scenario with three narrow anomalies and one persistent anomaly. 
























































