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EXECUTIVE SUMMARY

An essential aspect of online monitoring, subtte@maly detection increases the detection lead time
for equipment failure and enablasuclear poweplant(NPP)to mitigate unexpected partial or full
outages, resulting in significant cost saving to the plant. Once an anomaly is detected by plast staff,
cause and severity are investigated. Because the vast majority of anomalies require some level of
investigation, including some that require the@suming examination, before they are passed over to the
engineering organization for further analygints are often equipped with tools to assist the staff in
performing anomaly detection. Those tools operate as a black box and are often based on statistical
methods that establish sensor correlatissingpreconfigured mathematical models and flag elation
deviations as anomalies.

Due to the number of anomalies detected at a given NPP on a daily basis, a significant number of
flagged anomalies usually await examination for days or weeks. A primary cause of this backlog is that
the methods used by thaols generate many false positives. Though this is usually attributed to
oversensitive model settings due to very narrow normal operation bands, it can also be associated with the
model development being inadequate for the process being monitoredh anigstng model inputs that
could have explained misclassified positives.

The performance of anomaly detection tools impacts their plant acceptance and utilization, especially
when the effort to address false positives generated by the tool depletdsi¢her\est saved by using
that tool. Thus, means to advance anomaly detection performance have been investigated by the
Depart ment of Energyds Light Water Reactor Sustail
targeted unsupervised machieaming (ML) methods, which do not require the labeling of any data fed
into the ML model. By contrast, in supervised anomaly detection methods, every data point is labeled as
either a normal or abnormal process condition, and the model is trained to ecpicalassification
process. Supervised methods usually outperform unsupervised methods, due to the added value in
differentiating normal from anomalous states of the monitored process.

An NPPOG6s corrective action prviagdedicatedrepgryther es it t
resolution of any issues that occur within the plant. Once created, each report is reviewed by a plant
screening committee, and several classifications and dex&iemade. Recently, a collaborating NPP
developed an artificial intelligence and Milased classifier to categorize a condition report (CR) into
classes that can serve to label the data as normal or anormglplysng CRs as labels represents a semi
supevised use case. Semlpervised ML assumes that labels exist for some data points (i.e., labeled
anomalies, in this case) but not for the rest.

In this effort, semisupervised ML methods were used to fuse data from CRs with anomaly detection
methods in ordr to test the hypothesis that partially labeled anomalies would improve the accuracy of the
anomaly detection methods. Specifically, two methods were used. The first is the deapi@arised
Anomaly Detection (deep SAD) method, which can handle labelging from fully unsupervised to
fully supervised cases. The second iewaly designed ML method developed specifically for this effort
and referred to as the higihder feature (HOFpased method.

To evaluate these two methods in controlled environspeghthetic data generators were developed
and used. The first datasets used a spriagsdamper (SMD) system simulator commonly found in
mechanical engineering references. This was used to create two use caseand arikreanass
system. Anomaliewere introduced by changing the spring and damper coefficients while the system was
actuated by random forces. The second datasets used the commercial-Blgaeliaa software to build
a simplified nuclear reactor model. Anomalies were added in the focormfpted sensor readings and/or
control commands. The deep SAD method was tested using the SMD system, while the HOF method was
tested using both datasets.



Application of the deep SAD seraupervised ML method demonstrated that labels can generate
increased confidence in detecting true anomalies. This helped increase the number of true positives and
decrease the number of false negativeemething that would aid in addressing the backlog of possible
anomalies. Application of the HOF method demonstratati#iibels can aid in down selecting from a
candidate set of features to a more optimal subset in order to better differentiate between normal and

anomalous conditions.



ACKNOWLEDGEMENTS

The authorsvishto thank theLight WaterReactorSustainability (IWRS)
program for funding this efforChey alsowishto thank Florida Power and Light
company part of NextErd&nergy,for collaborating on this effort



Vi



CONTENTS

ar

EXECUTIVE SUMMARY ..ottt ittt et e e e e sttt e s seesee e e e e e e e s asnnsseseeeeessenmeaeaeeeesesnnnnennes iii
ACKNOWLEDGEMENTS.....cettiiiiiiiiiitit ettt s st e seee e e e e e e e e s e bbb e e e e e e s senmteaeaeeeeennnneeeees v
ACRONYMS . ..ottt e ettt s s seea s s s e e e e e e e ettt e e e e e eeenaaeeeeeeseban s aeeeeeeets s e renn s Xi
1. LN 15 1O T N 1 N 1
1.1 Semisupervised ML LItErature REVIEM...........c.uuiiiiiiiiiiieere et 4
2. SYNTHETIC DATA GENERATION......utitiiiiiieeeiiieiiiimeniiieeeeee e e e e e s ssneeesnnnsssseeeeeeaeeeeennnnnnend 8
2.1 SpringMassDamper SIMUIALOL..............ooiiiiiiii e e e e e eeeees 8
2.2  Dymola PWR SIMUIALOL ... ..uuuiiiiiiiiiiiiiiieeee et e e e e e e e e e benenaaees 12
3. IMETHODS. ...ttt ettt et e e e e e e rmnae e e st eeeeaeeee e e e s s mnns s s ssssssaaaaaaeeeeeennssnnnnnns 20
3.1 Deep Sembupervised ANOMaly DeteCHiON...........ccoiviiiiiiiiieeeiiiiee e 20
3.1.1 Method DeSCHIPLON.......cccieiiiiiie e eeeeee e e e e e e e e e e e e e e 20
3.1.2  SIMD RESUILS......uiiiiiiiiiie e ee et e e e e e e e s e e e e 23
3.2 HOF-Based Anomaly DeteCtiQI............couiiiiiiiiiiieeee e 28
3.2.1 Method DESCHIPLION.......cccci i e e e e e e e e e e e e e e e e e e e e e e 28
3.2.2 DYMOIA RESUIS ....ciiiiiiiiiieee et 32
3.2.3  SMD RESUILS......euiiiiiiiiie e eeeeee ettt e e e e e e e e e e e e e e e e nnnns e nnnnneeees 39
A, CONCLUSIONS . ..o it ittt ettt e e e seat e e e e e e e e s b bbbttt ee e e e ammmt e e e e e s e annnnnneeeeaeesd 41
5. REFERENGCES. ..ottt ittt sttt e e tae et e e e e e e ettt e s s e e e e ee e et ammeeeseban e e eeeeeeeesnnnnsan 42
FIGURES
Figurel. The M&D centerds role is to detect subtl e

lead time for egipment failUres.............oooiiiiiii e 1
Figure2. Simple example of unsupervised and supervised. ML.............ccoeiiiimcceiiiiiiiiiiiieeeee e 2

Figure3 . CRs present | abels for parts of the sensor s¢
anomalydetection MENOUS.........uuiiii e e 3
Figure4. Sketch of generativeodetbased semsupervised ML............ccccoviiiiiiiieemnnniiiiieieeeeee e 5
Figure5. Sketch of densitpased SermsupPerviSed ML...........coooiiiiiiiiiiiieereeee e 5
Figure6. Sketch of graplhased semsSupervise ML..............oooiiiiiiiiiiiiieee e 6
Figure7. Sketch of semsupervised ML using Setfaining.............uuuviiiiieiiiiiieer e 7
Figure8. Sketch of semsupervised ML USING GOAINING........cuutiiiiiiiiiiiiiiiieeeiiee e e eeereeees 7
Figure9. Sketch of a ORENASS SIMD SYSIEML.....cuuuuii i ieiiiiir e e e e sreer e e e s e e e et e e e e 8.
Figurel0. Sketch of a thremass SMD system connected iN SELES.......ccccceveeiiiiiiiccrieeeeeeeeeeeeeeeee, 8
Figurell. Simulation results for the threeass systerfor the full five years............ccccvvvveiiiiiieeenn. 10
Figure12. Simulation results for the thregass system for two months..............ccccveeiiieees 11

Vii



Figurel3.

Simulation results for the thregass system transitioning from normal to anomalous

(o] 0=T =1 (o] 1 1 11
Figurel4. Plot showing the varying magnitudes and durations of each anamaly......................... 12
Figure15. Layout of the Dymoksimulated PWRE...............covooiiii et e 13
Figure16. Control SYStEM 1AYOTE............c.oiiieiee ettt sees et te e enneeane e 14
Figurel7. Control system layout of the anomalous primary l100p............eeevvviiiiiccce i 15
Figure18. Standardized total power with two wide anomalies.............cc.uvvviiiieeeiieieeie e 15
Figure19. Standardized core outlet temperature with two wide anomalies..............cccccvemeveennnn. 16
Figure20. Standardized steageneration with two wide anomalies.............cccocviviiiecce e, 16
Figure21. Abnormal scenario with two Narrow anomali€S.............oovuuviiiieemiiiiiee e 17
Figure22. Abnormal scenario with three narrow anomalies and one persistent anomaly............ 17
Figure23. Control system layout of the anomalous secondary l00p...........cccccvviiviccneeieeeeieeeeeeen., 18
Figure24. Anomalies in feed Water flOW Fale............oooiiiiiiiiimeeie e 19
Figure25. Anomalies propagated to the steam germEramount..............oovvvvviiiiisiccciee e, 19
Figure26. Conceptual drawing of the deep SAD appraach................coo i 21
Figure27. Visualization of the window approach to analyzing time series.data.....................ccu.... 22
Figure28. Architecture of the CNN used with deep SAD.........cccouiiiiiiiiiiee s 22
Figure29. Candidate decision thresholds i@ onemass SYSteM...........ccvvvvvviiiiiiiicceeeee e e, 24
Figure30. Anomaly scores for the OMBASS SYSEM...........uuuiiiiiiiiiiiiiee e eeee e 25
Figure31. Candidate decision thresholds for the thmaess SyStem............ooociiviiiiiiceeeeee e 26
Figure32. Anomaly scores for the thFHeBASS SYSIEM........cccvviiiiiiii e e 27
Figure33. Mass displacements highlighted for the se@ramaly in the thremass dataset............. 28
Figure34. HOF WItNOUL SENSITIVITY.. .. ciiiiiiiiiiiiiiiiiet ettt e e emme e e e s 31
Figure35. HOF with Moderate SENSIIIVITY..........coiiiiiiiiiiii e s 31
Figure36. HOF with Nigh SENSITIVILY......cccceii i rree e e e e e e e e e e e e e e e e e e e e s eeeneaanen 32
FIGQUIE37. FUSEO HOF.....c ettt ettt e e e s s e e e e e e e e e e s 32
Figure38. HOF with low sensitivity for wide anomali€s.............cooooiiiiiiimmmiiiiiiieeee e 33
Figure39. HOF with moderate sensitivity for wide anomalies.........c.ccccoevv e 33
Figure40. HOF with high sensitivity for wide anomali@s................uuviiiiiiie e 34
Figure4l. A second HOF with high sensitiyifor wide anomalies.............ccccooiiiiiiieesiiiieeeeeee s 34
Figure42. HOF with low sensitivity for subtle narrow anomalies...........cccccceeeiircceeeii e 35
Figure43. HOF with moderate sensitivity for subtle narrow anomalies....................cccceeiiinniinnnns 35
Figure44. First HOF with high sensitivity for subtle narrow anomalies..............occvvvieeeiiiiieeneenn 36
Figure45. Second HOF with high sensitivity for subtle narrow anomalies..............ccccooiveeniiinens 36
Figure46. First HOF for the narrow and persistent anomalieS...............ovuveiiiicc e 37

viii



Figure47. Second HOF for the narrow and persistent anomalies..............ooovviieeeeirireciiii e 37

Figure48. First Fused HOF for the narrow and persistent anomalies....................cceecinivinnnnnnne 38
Figure49. Second fused HOF for the narrow and persistent anomalies.................cooeeeeieiiicccnnns 38
Figure50. HOF with high sensitivity for the steam generator feedwater pump anomaly.............. 39
Figure51. Three masspring anomaly detection using the HOF methad.............ccccvvvieeeeeeeen. 40






CAP
CNN
CR
FNN
GAP
HOF
LWRS
M&D
ML
NPP
PWR
RWD
SAD
SvD
SVM
TSVM

ACRONYMS

correctiveaction program
convolutional neural networks
conditionreports

feedforward neural networks

global average pooling

high-order feature

Light WaterReactorSustainability
monitoring and diagnosis

machine learning

nuclear power plant

pressurized water reactor
Randomized Window Decomposition
SemiSupervised Anomaly Detection
Singular Value Decomposition
Support Vector Machine
Transductive Support Vector Machine

Xi



PROCESS ANOMALY DETECTION FOR SPARSELY
LABELED EVENTS IN NUCLEAR POWER PLANTS

1. INTRODUCTION

One of thenumerougesponsibilities of nuclear power plant (NRerators in ensing safe reliable
plantoperatiors is to monitor and respond to plant alarms. Alarms are generated when plant process
anomalies occur and are significant enough to exceed the particular threshold specified in the plant
designs. Operators dwt searclior and detect subtle anomalies in tharpbata However,anomaly
detection could help plangevent such anomalies from escalating into unexpected equifailerd,
especially since alarms may not provide sufficient lead time for the plant@gutel). This introduces
a significant avoided cost saving to the pl&@ften, the role of subtle anomaly detectioas well as that
of investigating the cause and severity of such anondaleeshared with dedated monitoring and
diagnosis (M&D) centers. An M&D center monitors multiple plants simultaneously and has dedicated
staff whose primary task is to perform monitoring. Because the vast majority of anomalies require some
level of investigation, including see that require timeonsuming examination before they are passed
over to the engineering organization for further analysis and actions, M&D centers are often equipped
with anomaly detection tools that assist the staff in performing this function.
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FigurelThe M&D centero6s role is to detect subtl e
for equipment failures.
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Anomaly detectiortools operate as black besand are often based on statistical methods that
establish sensor correlationsingpreconfigured mathematical models and) ftay deviation from the
pattern adeinganomabus Due to the number of anomalies flaggec given NPP on a daily badise
M&D center typicallyhas a backlog of tens to hundreds of anomalies pending examidapomary
cause of this backlog is that the methods used by the tools tend to generate a large number of false
positives. This is usually attributed to oversensitiveleigettings due to very narrow normal barolg
can also be associated with the model development beidgquate for the process being monitored, or
with missing model inputs thabuld have explainechisclassified positives.

The performance of anonyatietection tools impacts their utilization, especially when the effort of
addressing false positives exceeds the value or cost saved by using those tools. Therefore, the Light Water
Reactor Sustainabilit. WRS) program launched efforts to explore meahadvancing anomaly
detection tooldy leveragng stateof-the-art machine learning (ML) methodsn8etheearly 90s ML
techniques have been applied condition monitoringn regard tcfault detectior? system state
identification®* andremaining life predictiofi® Previous and ongoing LWRS program efforts have
targeted unsupervised ML methgdavhich do not require that the data fed into the ML model be
labeled. The basic concept of such methods is based on grouping the monitored prodets rsiate
dimensional ranges. Any value falling outside those ranges is labeled anomalous. In supervised anomaly
detection methods, every data point is labeled as either normal or anomalous, and the model is trained to
replicate the classification proce&upervised methods are known to outperform unsupervised ones, due
to the added value in training the model to distinguish normal states of the monitored process from
anomalous onegigure2 shows a simple example of unsupervised and supervised ML cases, the key
distinction being that, in the unsupervised case, methods must rely on the datanbawialgsplitsn
order to separate them. By contrast, in the supervised case, the labels make it much easier to distinguish
between the known classes. These sample data show a relatively clear split, which may be hard to find in
real datéd particularly higherdimensionablata. This represents a key challenge for unsupervised
learning, and helps explain why supervised learning outperforms unsupervised approaches.

X,  unsupervised X3 supervised
A '
° [
[ L] ] ]
° [
[} L n |
° LIIP A " g
[ ] o ) A ]
L4 ° A [ ]
° g A
® o0 A,
° . A,
> X1 X1
® = unlabeled A =label 1
m = |abel 2

Figure2. Simple example ofinsupervise@ndsupervisedL .



Given the great amounf sensor informationow availableand the fact thagupervised learning
requiresthat all the data blabeledthe cost of human labdn applyingsupervised learninggchniques
becoms considerableand theexpert knowledgeequired indistinguishing &ult signals is not always
availablen an NPP, events are labeled using various data formats. Additionally, the labels can be
generated using physitmsed modefld or f ai l ures never before observec
program (CAP)requires the plant to track and document the resolution of issues that occur in tHe plant
and is thus considered a valuable source for labels. Issue tracking/resolution is conducted through the
issuance of a dedicated report, often referred to as a condition report (CR), action report, or issue report.
Once created, such reports are rexé by a plant screening committee, and several classifications and
decisions are made regarding how the issue or condition should be addressed. However, the reports do not
explicitly classify the condition into an equipment or process anomaly indicatoenRy, a collaborating
NPP developed an artificial intelligence and Mased classifier for categorizing a CR into classes that
can serve to label the data as normal or anomalous.

Applying CRs as labels presents several challenges. First, any migsathgsiimal/anomaly
conditions fed into the training process of the anordalection ML model would impact the
performance of the eaesult model. This necessitates omittfrgm the training data any CR
normal/anomaly classifications that carry low cdefice. Second, a CR for a specific piece of equipment
can impact several other, indirectly related pieces of equipment. This implies that anomaly patterns might
exist for equipment, despite the missing anomaly labels. Third, some anomalies might béakegged
the anomalydéds progression, resulting in parts of I
three scenarios imply that, if CRs are used as a basis for labeling anomalies in an NPP, some anomaly
labels will be missing, resulting in somecenaly data being mislabeled as normal. In ML terminology,
this represents a partially labeled dataset, which would then be a candidate feupermised ML.
Semisupervised ML methods assume that labels exist for some data points (i.e., labeled snomalie
this case) but not for the rd$tigure 3). The unlabeled data do not negate the labeled data, but could
correspond to either a normal or anomalous state.

unlabeled anomaly labeled anomaly

Sensor Reading
(=]
1

R R

Figure 3. CRs present labefsrpartso f t h e s e n sdataasidrtanthauseckas smpfiori e s
anomalydetection methods.



In this effort, semsupervised ML methods were used to fuse CR data with anatatdgtion
methods in order to test the hypothesis that partially labeled anomalies would improve the accuracy of the
anomalydetection methods and reduce false positivess fiyppothesis was tested in otla@plications
For exampleDimla*! reviews neural networ?NN) solutionsfor tool conditionmonitoring in metal
cutting, revealing that botthe supervised and unsupervised architectures applied in that area dchieve
fairly similar results'?

In this effort, wo semisupervised methodsere used taletectanomaliesThese methods usedme
prior knowledge of a few sparsely labeled anomalous evioisghno prior knowledge of whether the
rest of the dataerenormal or anomaloud.o evaluate the hyplesis in a controlled environment,
synthetic data generators were created and used (see 2clibe first ML method to be applied was
the deep Sensupervised Aomaly Detection (deep SAD) method, discussed in Se8tibiihe second
method used to test the hypothesis was a-bigkr feature (HOFpased ML method discussid
Section3.2. The conclusions are summarized in Section

1.1 Semi-supervis ed ML L iterature Review

Varioussemisupervised MLmethods have been develogeda widevariety ofapplication areas
and areoften heuristically customized for the respective problems. Neverthelesssigaenvised ML
algorithms camenerally balivided into generativenodelbased, densitpased, graphased, and
heuristic approaches. ZHprovides a comprehensive surveysamisupervised M algorithms. In this
section, several illustrative sketches are provided to help explain each concept.

Generative models assume that the distribution of a given class takes some form of identifiable
mixture distributiorma nd use Bayes 6 epredcton ruloof theectassifigmthenfam daf h
probabilistic distributiort* The generativenodetbased semsupervised Mlalgorithmsuse the ma
plentiful unlabeled datto identify the mixture distributions, and then label disributionswith the
classes from the labeled da&eeFigure4 for a sketch ofjenerativemodetbased sersupervised ML.
The figure shows two clustetisat are identified using Gaussian mixture med€&hen, a few labeled
instances of the two classes are used to correlate the clusters to specificiasgdault/anomaly
detectian practices employ generatineodetbasedsemisupervised Mlalgorithms. Foexample the
Skip DeepGenerativeModel isemployed for fault detection in photovoltaic systehy traininga model
usingthejoint probability of labeled and unlabelddtawith feature variableand state variabée
(classes), with anomaliéeing registered the specific data point hasentropy far belovthatof the
unlabeled datd; a deep generative modslused tgredictremaining useful lif¢; and a variatioal-
autoencodebased deep generative modelisedor bearing anomaly detection using a small subset of
labeled vibration signaf< Typically, the generative approach is effective when the unlabeled data are
clearlyseparablebut less effective for detecting subtle anomalies.

Densitybasedsemisupervised Mlattempts toihd a decision boundary at the lalensity region
that best separatea@class of data from the other unther assumption that the unlabeled data from
different classes are separated with large margin. Transdsafipertvectormachine (TSVM), also
called semi-supervisedsupportvectormachine (8YM), is the most commonly used legensity separator
in semisupervised MLIt learrs a large margin hyperplane classifigr using the labeled data while
forcing the hyperplanawayfrom the unlabeled daté SeeFigure5 for a sketch of densitpased semi
supervised ML. In the left half of the figure, the line represents thdibdgcriminator when using only
a few labeled points. In the right half, thedirepresents the bd#tdiscriminator when using both the
few labeled points and all the unlabeled offi&V/M is a natural extensiorf &M, which is applied to
labeled data only; however TSVMlimited by the norconvex objective function. Approachleave
been developed to solve this optimization diffictityBince TSVM is applicable wherever SVM is
applicablejt is popularly employetb predictthe boundaries between different fault/health classes in
condition monitoringactivitiesinvolving both labeled and unlabeled d&&ferenc&0 extends the semi
supervised Support Vector Data Descriptimethod byusing negative samples aischppliedfor



detection faults in rotatindgReferencel introduces aafe emisupervsed S4VM approactor updatng
the hyperplane using successive online unlabeled datlefecting anomalies in vibration signals
Reference?2 investigates the performance of several dedsiyedsemisupervised Mlapproachege.g.,
oneclass SVM and Support Vector Data Descripyifm the condition monitoring of marine machinery
systens for whichlarge volumes ofinlabeled operation data are availatih@ugh labeled fault samples
usuallyarenot.
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Figure4. Sketch of generativemodelbased semsupervised ML.
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Figureb. Sketch & densitybased sersupervised ML.

The grapkhbasedsemisupervised Mlalgorithms construct a graph with labeled and unlabeled data
representeds nodesas well asveighted edges connecting the notteseflect the similarity between
them?® The unlabeled data help with label propagation while minimizing the propagation energy. The
graphbasedsemisupervised MLlguarantees good perfoamce if the constructed graph fits the task with
graphic interpetation of the resulfé ** SeeFigure6 for a sketch of grapbased semsupervised ML. In
the figure, the lines represent connections betweéerelift data points. Thisan bean iterative algorithm
depending on how the graph is created. The figure on the left shows the connections and
labeled/unlabeled data points, the figure in the middle shows an early iteration as the algorithm tries to



deternmine which points to clustento which group, and the figure on the right shows a late iteration that
correctly identifies all points to their respective classesohdition monitoringgraphbasedsemi
supervised Mlapplications attempt toonstructa problemspecific graph. For examplBeference5
constructs an undirected weighted graph to guardhégetrinsic structue of thedata andaccomplishthe
complextaskof detecthg and diagnosig faultswith nonlinea traits, whileReference6 employs

manifold regularization, usinghegraph Laplacian of a grapbased representation to exploit the
geometric structure of the marginal distribution of the condition monitoring data in the feature space,
therebyoutperforming the supervised classificatiasing informatiorfrom the unlabeled da.

Reference provides another algorithmasingmanifold regularization to extend SVM into Laplacian
SVM in order toconduct multiclass fault detectiowibration sgnals.

X2 X2 X2
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Figure6. Sketch of graptbased semsupervised ML.

Somesemisupervised MLmethodgqe.g.,self-training and ceraining) are heuristic, using unlabeled
data within a supervised learning framewdrkr boththesemethods, the first step is tain the
supervised classifiarsing onlythe available labeled data. In s&Hining, the classifier is then applied to
the unlabetd data to generate more labeled samples and update the classifier with more labedeg data.
Figure7 for a sketch of sewgupervised ML using setfaining. As withthe grapkbased example above,
this is an iterative algorithm. The figure on the left shows the labeled and unlabeled points, the figure in
the middle shows an early iteration as the algorithm begins labeling the unlabeled data points nearest the
labeled @ta points, and the figure on the right shows the final iteration, with all the points now classified.
Selftraining can be applied @mpreliminary investigatiotbecause it is so simple to implemerdbwever,
as selftraining uses itewn predictions (clasifiers) to teach itselfi(e., classify the unlabeled data), early
misclassificatios may thus reinforce themselv&ifferent selftraining techniques fagemisupervised
ML classification are introduced and evaluated surveypaper’’ Reference28 proposes a self
organizing feature map to soft label and update unlabeledndatderto detect changes/damages in
image data.
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Figure7. Sketch of semsupervisedML using selftraining.

Cotraining is an extension of sdffainingthat requires that features can be gptib two views as
two independent sources of informatfdiirst, wo classifiers are trainassinglabeled data frorthetwo
feature views. Thereach classifier classifies the unlabeled data and upithet®ther classifiensingits
most confident estimated labe®eeFigure8 for a block diagram of how ewaining works. In this
figure, & is the input datad is the F'view of the data; thé and"Ysubscripts are labeled and
unlabeled, respectivelyis the output data; ariflis some classifier function fiiciency and accuracy
are improved as the classifiers fronetwo views teach each othétowever, me limitation to the
approachs that anatural feature split might not exiSt resulting in only dew applicationf co-training
in condition monitorig. Reference31 provides an example of equipment remaining life prediction using
co-training regression with a few failure units (labeled) and many suspension units (unlabeled)
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Figure8. Sketch of semsupervised ML using etraining.



2. SYNTHETIC DATA GENERATION

As discussed in Sectidh the anomaly detection methods developed and/or evdlaatpart of this
research requireldbeled time series data that contained both normal and anomalous behavior. For this
pilot study on semsupervised anomaly detection, using simulated data provided several advantages over
using real data. First, it reded the burden of cleaning the data, increasing the focus on the anomaly
detection approaches. Second, since all anomalies were known, this provided good benchmark datasets
for comparing the different approaches.

Two different approaches were used to geteesimulated data: a springassdamper (SMD)
simulator, and a simplified pressurizegter reactor (PWR) simulation created usingDigenola
Modelica software package

2.1 Spring -Mass-Damper Simulator

The first simulator that was developed used the idélasoEMD system, commonly found in
mechanical engineering references. The basic building blocks of this system are springs, masses,
dampers, sensors, and actuators: masses respond
as force equals masswes acceleration; springs apply restorative forces to the mass, and these forces are
a function of the displacement of the spring; dampers apply damping forces to the mass, and these forces
are a function of the damper velocity; actuators apply forcestljite masses; and sensors measure
some property of the mass, here, the position of the mass. Exampéndritbreemass systems are
sketched irFigure9 andFigure 10, respectively; the sketch for the thneass system shows hdie
simulatorcan be scaled up generatanore complicated system by combining the basic building blocks
into larger configurations.

position

damper

—

/ \/\ mass force
spring
Figure9. Sketch of a onenass SMD system.
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Figure10. Sketch of a threenass SMD system connected in series.



There are several reasons why the SMD system was selected for this research. First, it is conceptually
simple, with just a few basic components; however, those components can be combined to generate high
order (HO) systems with coupled variables. Secdrglsystem is easily scalable to include many sensors
and actuators. Thes&@o characteristics are important in emulating the lmgge HO systems in NPPs.

Third, thesystem allows the straightforward incorporation of process anomalies by modifying system
parameters (here, the spring stiffness and damping coefficients). Mbd#eationsresult in slowly

changing anomalies that are difficult to see during manual inspection but are detectable using advanced
analytical approaches.

For the onanass systemfd-igure9, the dynamics are described by a differential equation, as per
Newt on6s Second Law. Il n this cas eofthetspriegfascea,m of t he
damper force, and actuator force. The basic differential equation assuming a linear spring and damper can
be written as follows:

G m Qo O (1)
whered is the masspis the damping coefficieniQis the springstiffness, Ois the actuator forgevis the
displacement of the mass, — is the velocity of the mass, andl — is the accelerationf the mass

The above differential equation is for a system with just one mass and one actuats. But,
mentioned, one benefit of using these basic building blocks is that they can be combined into larger
system sizes (e.g., the thramss system). When including multiple masses, each mass can either be
attached to a fixed 0Agmasgesdebnnectedthe displaceroentlarmir mas s .
velocity of the spring and damper forces (see above) become the relative displacement and relative
velocities between the two connected masses. This results in a differential equation for each mass present
in the system, and the resulting set of equations represents a highly coupled and interacting dynamic
system.

The above differential equation is for a system with a linear spring and damper, but this system is
easily extendable to include nonlinear components. One method is to make the spring nantintbis,
is often modeled by using a cubic polynomial withisg force equal tdQ® Qa . This nonlinearity is
important because real systems are, to various extents, nonlinear, so the additional term makes the
simulation more representative of NPP systems.

To further emulate real systems, this simulation atsmmunts for both process and measurement
noise. Process noise introduces uncertainty in the model dynamics, because the true underlying dynamics
can never be perfectknown. Measurement noise introduces uncertainty in the sensor readings, since
sensors annot perfectly capture the true parameter of interest they are estimating.

Finally, this simulation platform can easily insert anomalies by changing the system parameters (here,
the spring stiffnes€and damper coefficiem). These changes occur afiaction of time, so during
normal operation, the parameters are set to their nominal values. During anomalous operation, they are
slowly varied, causing changes to the overall system behavior that affecrtélations betweethe
variables, though theschanges are subtle enough to go unnoticed by human operators.

Once the differential equations for the system have been determined, they must be solved for the mass
positions. For some closed form forcing functiahg, differential equations may be sahamnalytically;
however, the forcing functions used here do not have a closed form. Thus, the best way to solve them is to
use numerical integration approaches to provide an approximate solution. One of the most popular
numerical integration methods is tRengeKutta solver. Most major programming languages have
extensive functionalityor numerical integrationsing robust, accurate integration routines. The
simulation results are the mass positions and actuator forces. From a dynamic system theuretic poi
view, these represent both input and output variables, and both are important for detecting anomalies in
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dynamic systems. In an NPP, examples of input variables include heater power, motor power, and valve
position, while examples of output variabiaslude temperature, pressure, and fluid level.

This report considers two different system configurations: anoaes system and a thremss
system connected in serid&s.the onemass systenHgure9), the data are comprised of the mass
position and actuator foefor a total of two variables. Similarly, in the threass systenHgurel10),
the types of data are the same, but correspond to three masses and three factadtdas of six
variables. The simulations covered a span of five years, with two anomalies pdoryaaotal of ten
anomalies

These oneand threemass systems were simulated, but because they share such similar patterns,
simulation plots are only shown for the thireass system. For each of these plots, both the mass
positions and actuator forces are shokigure11 shows the simulation results for the full five years in
order to reveal any lontgrm trends in the system behatidrhis plot shows the general scale of the
variables and theoise, and gives a higbvel overview of the interactions between the variables.
Figure12 shows the results for a tamonth period, affording a closer view of theiiidual transients
and the variable correlations. This figure shows the interactions between the variables and the time
constants of the transients, which were selected to be slow in order to emulate the slower transients seen
in NPPs Figure13 shows the results for a thregonth period in which operation transitioned from
normal to anomalousfter the black dotted lind his figure shows how subtle the anomalies atechv
makes them difficult to detect without the use of advanced analytics.

Mass Position

Actuator Force

Time

Figurell. Simulation results for the thremass system fdhe full five yearsThe top plot shows the
mass positions, and the bottom plot showsattteator forces.

8 Theseyearsareshobnecause the Python packageds default dates spanne
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Figurel2. Simulation results for the thramass system fdwo months

Mass Position

T T T T T
1970-05-01 1970-05-23 1970-06-15 1970-07-08 1970-07-31

2.0 +
1.5 o
1.0 H
0.5

0.0 A

Actuator Force

=059

-1.0 4

=15 T T T T T
1970-05-01 1970-05-23 1970-06-15 1970-07-08 1970-07-31

Time

Figure13. Simulation results for the thramass system transitioning from normal to anomalous
operations

In addition to the position and force results, it is helpful to plot the magnitudes of the anomalies.

These are the percent changes in the spring stifieaad damper coefficients that modify the underlying
differential equations. Each anomaly is insedsd ramp anomaly, meaning it starts from zero and
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increases to some maximum value (Bepire14 for a plot of the magnitudes over time). Note that each
anomaly has a different maximum magnitude and a different duration.

0.0

o] \] \ \
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-17.5
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Figurel14. Plot showing the varying magnitudes and durations of each anomaly.

One important pointregardn g t hi s system is that the fAdetectahb
variables: the anomaly magnitude (mentioned above) and the spring displacement magnitudes. To
understand this second variable, the differential equation for theasg systernan be simplified by
assuming the mass as rest, then incorporate some anonnadigiced change to the stiffness. This results
in:

Q Q w O (2

In this equation, the detection algorithms have access to noisy measurenoesuts @in order to infer

whether the spring stiffness is nominal or anomalous. However, when the valieeabdse to zero (i.e.,

the magnitude of the mass displacemsmi@se to zero), the effect of the anomaly on the system

approaches zero. In other words, as the mass displacements shrink, the anomalous effect becomes smaller
and therefore harder to detect. This means two important variables must be consideredan order

determine the difficultly of detecting a given anoma&wnsideration of both of these variabjgays an

important role in explaining some of the results in later sections, and is also representative of NPP

systems. For example, consider a case ichwibration dataare used to detect anomalies in a pump

motor. Even if the anomalous vibrations are apparent at normal running speeds, they may shrink or

change patterns at slower pump speeds, potentially confounding an anomaly detection algorithm.

2.2 Dymola PWR Simulator

The second simulator generated virtN&Pdata usinghe commercial DymolaModelica software
This softwareis used to buildepresentative nuclear reactor modbaktemploy control loops to regulate
operation(e.g., aProportional Integral Derivativeontroller is used to determitiee optimal control
actions based on collected sensor dathe PWR modelfor simulaing the systeré sansient behaviors
is shown inFigure15. The PWR consists of primary and secondary $ptige components of which are
connected by blue solid lines. The reactor cehewn as the orange block on the lower ledis itsinlet
and outletémperatures measured ahdnsent to the control systepas represented hige red daséd
line. The pressurizewhichis connected to the hot lefpaturesafety valves and a systerontrolled
pressurizer heater. The coolant in the hot leg flows mdasteam generator and is pumped badkdo
core by the primary pump. For the secondary loop, the feedwater is pumped, heated, and consequently
converted into steam in the boiler druimenreleased intétheatmosphere. The steam generation amount
and feelwater flow rateveremeasuredandthe resultslelivered to the control system faraking
actuation command calculatiorihe layout of the control system for a normal operation state is shown in
Figurel6. The model used standard controllers (€2goportional Integral Derivativand T to set the
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mass flow rate of the primary pump, the steam generator feedwater pump, the core reactivity, and the
pressuri zerdés heater. Six different sensors were
power, coolant temperature of the core inlet and outlet, pressurizer pressure, steam generation amount,
andfeedwater mass flow rat€he results of the siulationwere used to test the anomaly detection
algorithm.

As with the SMD simulator discussed above, both the noise and anomalies were incorporated into the
simulations Noisewasdynamically added to the control commasmaisisensor signals to simulate real
behaviorthat includedorocess and sensor noise. Anoeslvere added in the form of corrupted sensor
readings (e.g., level indicators and thermocouple readings) and/or control commands (e.g., valve
alignment)with the resulting changd=eingsubtlein comparson withthe noise level.

Given the wide range ohamalies expected in an NPP, three different types of anomalies were used
for this initial study: wide anomalies, whigihadually devealdp over longer time periogmdarethen
gradually removegdnarrow anomaliegyhich are similar to wide anomalies but d®p over shorter time
periods; and persisteahomalieswhich gradually develop but are not removElde first two anomal
typesrepresent situatiorin whichthe anomalies are discovered and renddyethe regular maintenance
work orders, whereas theirtth represergundiscovered anomalies.
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Figure15. Layout of theDymola-simulated PWR?
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The selected wide anaties were introduced in the primary loop core flow rate. To simulate noise,
Gaussian noise of a magnitude representative of flowrate measurements in a typical NPP was added in a
dynamic manner. This was achieved by adding the noise to the sensor reaftingsending them to the
controller. This ensured that the noise propagated dynamically throughout the actuated commands to the
rest of the reactor, as shownHigure1l7. The temporal evolutions of different sensors are shown in
Figure18i Figure20. Two simulations were completed, both with process noise, though one had no
anomalies and the other had two wide anomalie simulation with no anomalies is shown for
illustration purposes only and is not used by the anodetigction algorithmi-or the simulation with
anomaliespneis introduced betweeh00Q 2000 seconds anthe other isntroduced between 3000
4000 seconds. These graphs show that, when noise is present, the anomalies have little impact on the
system behawr after they are removed, as would be expected during operation. For example, the first
wide anomaly was gradually introduced at 1000 seconds and then completely removed by 2000 seconds.
The normal behavior (blue) and anomalous behavior (orange) asérigdishable over the ranges in
which no anomalies were introduced. Similarly, the temporal evolutions of the total power for the narrow
and persistent anomalies are showRigure21 andFigure22, respectively. For the persistent anomaly
scenario, an additional narrow anomaly was added at 6000 seconds, and a persistentdimmyeady
anomaly was introduced at 8000 seconds.

b The time scale of the simulation is shorter than the typical time needed for anomalies to grow. This was not considered an
issue, since the short time scale of simulation was proportmitize anomaly development rate, regardless of time scale.
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Figure18. Standardizedotal power with two wide anomalies

15



2.5
~—— Normal

Abnormal
2.0

1.5+

1.0+

0.5 -

0.0 -

Standardized Core Outlet Temperature

0 1000 2000 3000 4000 5000
Time [sec]

Figure19. Standardized core outlet temperature with two wide anomalies

—— Normal

2.51 Abnormal

2.0

1.5

1.0

0.5

0.0 1

Standardized Steam Generation

_1.0’

0 1000 2000 3000 4000 5000
Time [sec]
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Figure21. Abnormalscenario with two narrow anomalies

Figure22. Abnormal scenario with three narrow anomalies and one persistent anomaly.
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