INL/EXT-17-43234 Rev. 0

Technologies for Detecting Interactions between Current Plant Configuration States and Component Manipulations Directed by In-Use Procedures

Shawn St. Germain Jacques Hugo Milos Manic Kasun Amarasinghe

September 2017

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Technologies for Detecting Interactions between Current Plant Configuration States and Component Manipulations Directed by In-Use Procedures

Shawn St. Germain (INL) Jacques Hugo (INL) Milos Manic (VCU*) Kasun Amarasinghe (VCU*)

September 2017

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

(*Virginia Commonwealth University School of Engineering)

(This page intentionally left blank)

EXECUTIVE SUMMARY

This research effort is a part of the Light Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by the Department of Energy. The LWRS Program is performed in close collaboration with industry R&D programs that provide the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). The LWRS Program serves to help the United States (U.S.) nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of these NPPs and extension of their current operating licenses.

A new area of LWRS research, Outage Risk Management Improvement seeks to improve the management of nuclear power plant outages through the development of tools to assist in evaluating pending activities against requirements to detect undesired interactions. Significant efforts are expended to manage the nuclear risk of an outage. The utilities conduct pre-outage risk assessments, based on a very detailed review of the outage schedule, to identify where combinations of outage work and equipment out-of-service would result in degraded conditions with respect to nuclear safety or regulatory compliance. Probabilistic risk assessment studies are conducted to quantify the incremental core damage frequency as a result of the outage activities and system unavailability. These studies are usually presented to site and fleet management, the site plant operational review committee, and the NPP's independent Nuclear Safety Review Board for concurrence that the outage is planned safely and that reasonable measures have been taken to reduce the added risk of conducting the outage.

During the outage, the plant configuration is monitored continuously to ensure that it conforms to the approved safety plan. Deviations must be assessed and approved by management committees and, in some cases, the plant operational review committee. In virtually all outage meetings and job briefings, the current nuclear safety status of the plant is communicated, including information on the specific equipment that is being relied on to meet the requirements of the nuclear safety plan. In addition, Operations and the Outage organizations implement several layers of physical and administrative barriers to prevent unintended interaction with the systems and equipment credited for nuclear safety.

In spite of all these efforts, nuclear safety challenges still occur too frequently in outages. While some of these are due to failures of equipment credited for safety, the majority occur because of human error. These typically involve some form of interaction between work activities and plant configuration changes. Some of them are very subtle and are extremely challenging to detect in advance. Nevertheless, they are not acceptable and represent clear opportunities to improve nuclear safety during outages. This project will develop tools and strategies to minimize these interactions.

(This page intentionally left blank)

ACKNOWLEDGMENTS

The Outage Risk Management Improvement research team would like to acknowledge the efforts of the following individuals and organizations that made this research possible: Michael Grigsby, Carlos Williams, Bruce Gordon, Mark Johnson and other members of the Arizona Public Services Palo Verde Nuclear Generating Station staff for hosting and participating in the research activities, and Milos Manic and the staff of Virginia Commonwealth University's School of Engineering for supporting the text mining and data analysis part of this research.

(This page intentionally left blank)

EXE	CUTIV	VE SUMMARY	iii
ACK	NOW	LEDGMENTS	v
ACR	ONYN	4S	ix
1	INTI	RODUCTION	1
2	Curr	ent Outage Risk Management	1
	2.1	Introduction	1
	2.2	Licensee Event Report Study	1
	2.3	Overview of Requirements	2
	2.4	Characterization of Information to Monitor	2
3	Tech	nologies to Support Outage Risk Management Improvement	3
	3.1	Situation Awareness and Information Visualization	3
	3.2	Operating Experience Optimization	5
	3.3	Logic Models	6
	3.4	Text Mining	8
	3.5	Data Processing and Integration	. 10
4	Visu	alization of Outage Requirements	.11
	4.1	Overview of Outage Risk Monitoring Technology	. 11
	4.2	Outage Requirements Monitoring Concept Development	. 12
	4.3	Visualization of Outage Status and System Requirements	. 13
	4.4	Objectives for Further Research and Development	. 17
5	CON	ICLUSIONS	. 18
6	REF	ERENCES	. 18
Appe	ndix A	A Title	. 23

CONTENTS

FIGURES

Figure 1. Halden Large Screen Display	6
Figure 2. Halden Technical Specification Logic Model	7
Figure 3. Halden Handling Display	8
Figure 4. Text Mining Process	10
Figure 5. OSREM Interface Concept Description	14
Figure 6. OSREM Interface Concept for Outage Day 17 - Mode 6	15

Figure 7.	OSREM Interface Concept for Outage Day 18 - Containment Closed 1	6
Figure 8.	OSREM Interface Concept for Outage Day 25	7

TABLES

Table 1. Shutdown LER Causes.	.2
Table 2. Action Verbs for Automated Document Evaluation	.9
Table 3. Licensee Event Reports – Potential Preventable Events	23

ACRONYMS

Atmospheric Dump Valve
Auxiliary Feedwater Pumps
Advanced Outage Control Center
Containment Atmosphere Dilution
Control Building Envelope
Decay Heat Removal
discrete signs
Emergency Core Cooling System
Emergency Diesel Generator
equipment part numbers
Feedwater pumps
Human Error
High Head Safety Injection
Human Systems Simulation Laboratory
International Atomic Energy Agency
Idaho National Laboratory
Institute For Nuclear Power Operations
Limiting Conditions for Operation
Licensee Event Reports
Loss of Offsite Power
large screen displays
Light Water Reactor Sustainability
Main Control Room
Main Feedwater
Nuclear Instrumentation
nuclear power plant
Off-site AC supply
Outage Control Center
Operation with a Potential to Drain the Reactor Vessel
probabilistic risk assessment
Post Accident Monitoring
Palo Verde Nuclear Generating Station

QC	quality control
R&D	research and development
RCP-B	Reactor Coolant Pump
RCS	Reactor Coolant System
RHR-A	Residual Heat Removal Pump Alpha
RMAL	Risk Management Action Level
RPS	Reactor Protection System
RWST	Refueling Water Storage Tank
SI	Safety Injection
SSFF	Safety System Functional Failure
SFP-A	Spent Fuel Pump Alpha
SRO	Senior Reactor Operator
T-AFW	Turbine-driven Auxiliary Feedwater pump
TDM	Term Document Matrix
TS	Technical Specification
U.S.	United States
WOG	Westinghouse Owners Group

1 INTRODUCTION

This research effort is a part of the Light Water Reactor Sustainability (LWRS) Program, which is a research and development program sponsored by the Department of Energy. The LWRS Program is performed in close collaboration with industry research and development programs that provide the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). The LWRS Program serves to help the United States nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of these NPPs and extension of the current operating licenses. One major area selected for research into enabling capability is in outage safety and efficiency.

A pilot project in the LWRS program, "Outage Risk Management Improvement", is a multi-year effort targeted at NPP outage improvement. The primary purpose of this pilot project is to improve real-time plant risk management and configuration control during outage as a function of work activities and plant system alignments. It will develop a means for combining actual plant status information with intended component manipulations embedded in procedures and work packages that are underway or scheduled.

2 CURRENT OUTAGE RISK MANAGEMENT

2.1 Introduction

Outage risk is currently managed primarily by relying on the scheduling of work within work windows that align with plant conditions that support these windows. There are various requirements that govern what work is allowed to be performed in these work windows.

Ensuring that the plant is continuously compliant with changing requirements while efficiently executing required work continues to challenge outage and operations staff. Better tools for managing the large amount of data associated with maintaining plant conditions within requirements should help reduce errors in configuration management and reduce costs.

2.2 Licensee Event Report Study

To help understand the nature of the challenges facing outage managers and operations supervisors tasked with approving work, a review of Licensee Event Reports (LERs) was conducted. LERs submitted from 2010 through 2015 for events that occurred during shutdown reactor conditions were reviewed. Of these LERs, 248 were identified as being related to an outage execution issue while the other 173 LERs were written during shutdown conditions for issues not related to outage execution and were ignored. Of the 248 LERs written related to outage execution, 113 were identified as being reasonably preventable and further evaluated.

Appendix A lists the LERs identified as being potentially preventable. Table 1 lists the most common high level causes identified in these events, the total is more than 113 since some events have more than one identified cause.

High Level Cause	Number of LERs noted
Configuration Control	26
Inadequate Procedures/ Procedure Use	66
Mode Change Issues	13
Poor Work Practices	11
Component Verification or Manipulation	6
Clearance Order Issues	5

Table 1. Shutdown LER Causes

2.3 Overview of Requirements

The primary source of requirements comes from the plant's technical specifications. These technical specifications detail the required safety systems and support systems that must be operable for various plant conditions, known as Limiting Conditions for Operation (LCO). Technical Specifications are required by and are part of the plant's operating license. The LCOs outline the maximum allowed out-of-service time for various plant modes for certain safety equipment.

Another important source of requirements comes from the Shutdown Safety Plan. These Shutdown Safety Plan requirements typically come from a probabilistic risk assessment (PRA). The plant's PRA will calculate a shutdown risk level based on plant conditions and current defense-in-depth. The shutdown PRA model may be able to identify risks involved with work on multiple systems concurrently that may be overlooked if only the plant technical specifications were used. In order to maintain an adequate level of plant safety (low level of plant risk), trains of safety systems or support systems are protected to ensure the desired risk level is maintained. These protected systems are documented in a shutdown safety plan and plants will typically use visual indicators in the plant to alert personnel when they are approaching protected equipment.

Additional requirements may also come from a Mode Change Checklist. Prior to mode change, the new set of requirements that will become active are generally documented in some form of mode change checklist. The most common is the Mode 4 checklist that outlines the required systems that must be operable as well as surveillance tests that must be documented prior to entering mode 4 during plant start-up. Operations personnel typically have lists of equipment that require post maintenance testing that must be completed during the plant start-up before the plant reaches certain operational milestones such at primary coolant temperature or steam pressure.

2.4 Characterization of Information to Monitor

There are several sources of information that need to be monitored to ensure compliance with the various requirements that may be in place.

Work orders are the primary means of controlling the execution of work during an outage. Work orders are created before the outage and include required plant conditions, precautions and limitation and the actual work instructions. Work orders are typically placed in the schedule to match the prerequisites to the expected plant conditions. One finding during the LER review of operating experience was that issues commonly arise when work orders are modified and the impact of the changes are not fully verified against the position of the work in the schedule.

Clearance orders are used to provide protection for workers and equipment during maintenance from high energy fluids, electrical shock, or flooding. The boundaries for a clearance order may extend well beyond the actual area of work to ensure proper protection. There are numerous examples in the operating experience review where a clearance order isolated a system or portion of a system that was needed for decay heat removal at the time it was issued. Other problems arise when still active clearance orders disable a system needed for mode change during start-up.

Surveillance procedures provide guidance for the testing and inspection of plant systems and components. Similar to work orders, surveillance procedures contain prerequisites, precautions and limitations that should be met prior to starting the procedure. Surveillance procedures also need to be carefully scheduled to ensure compliance with requirements. One possible complication that sometimes arises during surveillance testing is the unintended automatic actuation of systems if plant conditions are not consistent with those required by the test or if equipment is not properly aligned to perform the test.

Plant operating procedures will also direct the manipulation of components that should be monitored to understand possibly complex system interactions.

The plant computer could also provide useful information for determining the status of key systems requiring monitoring during an outage. The plant computer may have parameter information related to valve position information, pump information or system flow information that could either validate that a particular system in in operation or detect that a system may be out of service.

3 TECHNOLOGIES TO SUPPORT OUTAGE RISK MANAGEMENT IMPROVEMENT

Currently, requirements are typically monitored and verified by experts using checklists, knowledge and experience. They are assisted by trying to identify plant impacts in the front matter of procedures and by building an outage schedule that places work into windows in which plant conditions support all the planned work. There is an opportunity to leverage several technologies to assist these experts in monitoring and verifying that proposed work is allowed by current requirements.

3.1 Situation Awareness and Information Visualization

As indicated before, a number of requirements govern what work may be performed in the different outage work windows. These requirements include, for example, LCOs that specify the maximum allowed out-of-service time for various plant modes for certain safety equipment, and the shutdown risk level based on plant conditions and current defense in depth. However, as shown in many LERs (see par. 2.2), nuclear safety challenges still occur during outages. These may be due to failure of safety equipment, but the majority occur because of human error. These typically involve work activities and plant configuration changes may be subtle and difficult to detect in advance, it is important to develop strategies and information tools to increase situation awareness for all plant personnel.

Situation awareness involves a person's ability to perceive the environment, to comprehend its meaning, and to project that understanding into the future to anticipate what might happen. This applies not only to operational situations, but also to the requirements for optimal outage performance. Optimal situation awareness requires knowledge of, for example, current outage performance parameters and the normal value of those parameters, the difference between current values and normal values, the past state of an activity, and its predicted future state. Situation awareness is maximized by integration of this information, and is thus critical when the Outage Control Center (OCC) team members are confronted by a complex and changing situation. It is directly related to individual worker and joint team performance, and is especially important during abnormal conditions (e.g., emergent conditions such as equipment damage, leaks, releases, etc.) when personnel are required to identify situations and problems not covered by normal procedures, make correct diagnoses of faults, and decide on a path forward.

The need to optimize situation awareness and reduce risk implies that all critical outage performance measures should be designed to support the execution of activities and the management of associated risks. In addition, this means that any associated information must be accessible in a way that not only supports all three levels of awareness, but also enables personnel to take appropriate action. Failure to communicate this information effectively is likely to undermine outage performance and also increase the risk probability.

Research has shown that the way in which information about the dynamic environment is represented in a person's mental model plays a significant role in anticipation of certain events, and thus also affects a conscious attention and search for information. There is also common agreement that the work situation in complex industrial environments is characterized by high information content, which, if not managed properly, may contribute to excessive mental workload, and hence worker error. Because of the unique cognitive and perceptual requirements posed by the complex information generated during outages, the design of effective information displays requires an understanding of human factors in general, and visual communication in particular. This involves an analysis of the nature, role, and composition of the discrete components of the visual elements of displays. This is a necessary element in the analysis of situation awareness, due to the very nature of the processes of representation, communication and interpretation of information in all work domains. In fact, the semantic content of information artifacts in the OCC is so high that it should be treated as a complex, hierarchical architecture of meanings, expectations, targets, values, and measures.

Well-designed visual displays of information are generally beneficial to situation awareness and therefore to communication and overall outage performance. However, the entire weight of responsibility for the success or failure of information displays does not fall on display technology alone. Designers of the information and the communication medium must thoroughly understand the work domain. They should understand that workers have already constructed a mental model of the domain into which the available information will be rapidly integrated. This implies that they possess a level of knowledge and expertise that often allows them to infer intended meaning from incomplete information. However, incomplete and inaccurate information introduces a level of uncertainty and risk, because workers' expertise cannot compensate for the failure of a display to present information in a way that matches their individual or collective mental model.

Previous analyses of communication patterns in OCCs (St. Germain et al., 2014) have demonstrated that more information is not necessarily better for optimal performance. Too much information can cause "cognitive clutter" and may interfere with effective response and appropriate mitigation. Methods of providing information to OCC team members are still very simplistic because they rely primarily on presenting raw data that does not exploit the potential of effective visual communication. Additionally, there is much more data available that is not typically evaluated, because methods have not yet been developed to process and integrate this information into something meaningful.

We know that the schemata that make up a person's mental model are constructed through perception, attention, pattern matching, analysis, synthesis, and metacognitive processes. These are all directly associated with the process that engages the senses in the interpretation of signs in an attempt to obtain meaning from visual representations. However, situation awareness analysis techniques (Endsley et al., 1995, 2000, 2003) have so far not included this perspective and more research is needed to understand how presentation of information in the OCC affects human performance and thus overall outage performance. More specifically, we need to understand how the display of OCC information is related to the total context of the outage and associated activities and emergent risks, that is, how does the individual worker and the team as a whole decide where to focus their attention, whether regarding the external world (the plant) or regarding their own interior world (mental model)? We also need to know what contributes to the perceptual salience of the information in various contexts. How does displayed information modify the worker's internal mental organization and subsequent action? Measures of optimal situation awareness therefore need to include an analysis of the actual information that the OCC members deal with: location, type, duration (transience), frequency (repetition), structure, format, accuracy, origin, etc. (Hugo, 2005).

Ultimately, a visual analytic approach to the design of outage risk management information will support the cognitive-semantic aspects of the analysis and design of information displays. A coherent taxonomy or framework of structured representations would provide a practical way to ensure consistency and coherence in the display architecture. It should thus be possible to ascertain with a greater degree of accuracy and confidence why, how and when certain display configurations promote and others inhibit situation awareness, and thus awareness of risks.

It can thus be concluded that, rather than relying on computer systems alone to alert plant staff to undesired interactions, humans will remain the primary means of controlling work within existing requirements. However, visualization tools like outage risk information dashboards can assist staff in maintaining awareness of ever-changing conditions and requirements, for example, the status of critical plant equipment, including reactor protection system, equipment cooling systems, residual heat removal, emergency diesel generators, etc.

3.2 Operating Experience Optimization

Operating experience is a valuable tool for preventing recurring issues for nuclear power plants. For operating experience to be effective, however, it needs to be easily accessible. Some form of operating experience database that can quickly and effectively identify operating experience that is relevant to the upcoming work may be extremely valuable in identifying potential error situations. Current operating experience databases, including the NRC's LER repository and INPO event reports, may be at too high a level to be effective in preventing the issues that are currently being repeated across the industry.

One likely solution could be a task support application as part of the outage requirements monitoring application discussed in section 4.2 below. However, the variety of causes of error among stations will make it impractical to design a solution that would address all situations. As for normal operating experience review, it will be necessary to classify all events and causes in a coherent framework. This will allow the development of a database that would be easily accessible by everyone at all stations, instead of relying on the laborious analysis of LERs. Many of the causes identified to date (see Appendix A) are related to communication issues and information accessibility, so it should be possible to create a tool that serves as an "issues register" that builds on a repository of known and historical events and causes. This could be a client/server tool that allows workers to access information on a dashboard in the OCC, as well as on a handheld device from any workplace.

The purpose of such an outage risk management dashboard would be to enable staff to accurately track the status of all critical equipment, plant configurations, work orders, checklists, and procedures. In addition, it could allow review of operating experience, and add information on observations, surveillances, corrective actions, etc. needed to achieve the objectives of the outage, specifically critical decisions that would affect safety, cost, time and resources.

The amount of information required on this outage risk management resource should be big enough to allow well-informed decisions, and small enough to avoid overwhelming the cognitive capacity of the user. Ideally, all information required for critical, real-time decision-making should be observable at a glance and in a single, fixed location. This implies the need to represent an integrated collection of information on a single large display panel so it can be monitored at a glance by all OCC team members. Some or all of the information could also be made available for dissemination to remote locations and handheld devices.

Effective management of outage risk relies on processing and interpreting enormous volumes of data. A large part of this data can be represented visually, but this will require a detailed investigation of the structure and semantic content of the information indicated in the previous section. As described in a previous project report (St. Germain & Hugo, 2016), the application of visual analytic methods to very large and complex datasets could be beneficial in understanding, reasoning and decision making. Coupled with this is the desired ability to detect the unexpected. This requires timely, defensible, and

understandable assessment of data, and the means to communicate these assessments effectively for action. This approach will aim to create tools and techniques to enable outage crews to synthesize information and derive insight from large amounts of dynamic, ambiguous, and often conflicting data. More specifically, this approach should allow the development of interactive visual representations that can amplify natural human capabilities for detecting patterns, establishing links, and making inferences from complex outage data, described in more detail below.

3.3 Logic Models

Logic modeling may be an important tool in organizing and maintaining complex requirements. Logic models are currently used to determine what systems may be concurrently taken out of service for the shutdown safety plan, but are not necessarily used to monitor other outage activities in real time. Researchers at OECD Halden Reactor Project have developed large screen displays (LSDs) in support of outages [8]. One important element of the outage LSD is automatic supervision of the requirements in the Technical Specifications for each operating mode. Figure 1 shows the entire LSD.

Figure 1. Halden Large Screen Display

Figure 2 shows an example of the Technical Specifications logic model. The logic model takes input from various signals, including the plant computer, to verify that systems are operable. Specification that are prescribed in natural language terms in the requirements are translated into logic equations. The logic models are attempting to verify "operability" of required systems which includes verifying that support systems such as cooling water and electrical power are also operable. The monitor uses signals from the process computer to validate that support systems are available and properly aligned. The system needs to be able to correlate process signals with operability requirements. Some operator input is also required where the plant monitor does not have an instrument signal. Since not every aspect of operability is generally known by the process computer, operators need to understand the limitations of such a system. Even if such a model does not completely verify system operability, it is still provides an excellent backup to the plant staff in monitoring these important systems.

Figure 2. Halden Technical Specification Logic Model

If a situation arises where an LCO is not met, a "handling display" is used to guide operators directly to the logic diagram so they know where the issue is originating. Figure 3 shows an example of the handling display. Using this information, operators can quickly identify and correct the cause of the inoperability.

(indust) (311 Head								1-1	1011-101	44	Irecide	mahning	Pres	K118-77-8	kning	- Averaged	Kanyes	Shiri	nogaies for	dition of	Hasteringshild Ri.	RevAvsi	· 7
TEST		Drift)	edningsk -trav und	krav unde der begrä	er begräi Srisnings	nsningslin linjen	jen -		Driftk	larhets Peri	överv od 1	akning	8				Flane Drifts Lj.dr	enligt og de llar Tiklar anlik Tiklar anlik	attalar of crittles	Iningskrav			
STF säkerhetsfunktioner	Härkyl	dnöd- ning		Re	esteffe	ktkyln	ng		Nöd	iventila	tion)	ljälpkra	aftförs	örjnin	g			-		
STEAS 3.4 Hardnodkylning	323	327	712	721	321	713	723	324	742	749	746	622	625	641	650	661	662	663	671-3	677	Period 6 sim A-D (state and	
17.17. 3.7 Reakterinneskitning	4	4		4	4	4	A	4		4	R	731	T39	4	A	4		4	4	4	Period 1 sub B/D e	sriftkline	
317 3.8 Resteffektkylning												AIC	AIC		1000						PHILE TOUR T	e-mailar	
STF 10 3.9 Nodventilation	C	¢	c	6		e									¢	6	C.	c	c		Period 2 and Arc. (11110	
TTT 1 10 3.10 Hjälpkraftförsörjning	B	B	B	8	8	В	B	C	C	C	D	T31	T39	B	8	В	B	B	B	B			
	D	D	D	D	D	D	D					BID	BID	D	D	D	D	D	D	D			
(InterArriduat)	1	10 12	12	10		1 1 1	12	10	12	<u>1</u>	F	1	Г Т	10 12	10	[0 [2	1	10	1	ा ब			
									Ompl	lanering													
Inmatning Inför och under period 1		Inmatn	ing in	för oc	h und	er peri	od 1-3					Lb	-		1	Inmati	ning ir	ntör o	ch un	der pei	riod 1-3	LANK THE	
V Backspolning 323 CB1 driftklar		Y Reakt	ortankle	ock dem	onterat							2.	4, 2, 5, 3,			¥ 7461	VB27 fel	m				3.5	
Backspolning 323 CA1 driftsdar 3.7		Monte	erat reak	ktortanki	lock								5			¥ 746	CB23 dri	iftidar				(3.9	
V Backspolning 323 CD1 driftklar		Bestr	hlat brie	nsle finn	is inte i	reaktorn										v 746	CD23 dri	iftklar				3.0	
		inga a	inteten	pagar I c	oj avstal	ngbar ko	stakt me	d reakte	rtanken	underh	ardeva	10				749	CA1 drift	DIA				100	
		Samu	en mali	un oram	neire is	angen de	monter:	abotecho	manada	-	-					2 749	VAG dem	NUM .					
		V Rind	lock mo	starad a	Per 161	MC2	- ocure	and the p	y ginnue		gu.					740	VA7 della	the last				100	
		v Blind	lock mos	nterad e	fter 161	VDR							2			7461	VC6 dut	th lar				122	
			oca mo		ates 305											746	107 410	th law				1992	
		v Reakt	orn har	varit i di n i reakt	riftläge i or-, inte	Kall avst mdels- o	alld reak ch brän:	tor i min debassi	st 2 dyg na unde	in Instider 6	a ^Q C		x ()			N Brie	stelever	rans inc	m 7 du				
		V Syste	m 721/7 v driftki	12 och 7 Iara pun	723/713 apar oct	är driffikli värmev	ara t en s lixtare i	rådan or system	sfattning 321 och	j att kyln 324	ing					Oljan	ns Cold I	filter plu	igging p nk och e	ioin CFP lagtank	P understiger temperaturen i	1.10	
		V Tillop	p av kvl	vatten ti	ill anläg	aningen	sker via	tillopps	canalen	L13			z				1.10			1			
		V Intags	ibyggna	aden är o	hiftklar	med 2 re	nsfack																
		V Tillop	pstunne	L7 och	tillopp	skulverta	rna L1, 1	Z och L	ar driff	ixlara		2	i			Inmati	ning e	ndast	vid p	oblem	med ventilationsspjäi		
		. Avlop	pstunne	el L9, av	loppska	mai L14 d	ch avio	ppskulv	ertarna l	4. L.S.						742	VA14 blo	ockerad	i stänet	läge		3.9	
		L11 0	ch L12 a	ir driftkla	ara											742	VC14 blo	ockerad	i stanet	läge		2.0	
		Recit	kulation	sanlägg	ningen	L6 är drif	tklar, då	havsvat	tentem	peratures	a är					742	VA21 blo	ockerad	I stängt	läge		1.5	
5		recirk	ulations	n i drift i svatten i	ir under	1ºC	nperatu	ren efter	medanac	ming av			-			742	VC21 blo	ockerad	i stängt	läge		1.0	
		Vilueka	ana VA	-	ach MA	-										742	VA54 blo	ckerad	i stängt	täge		1.4	
		- LOCKO	and the				i where a	and the second			1					7421	VC54 blo	ckerad	i stängt	läge		2.9	
		v avskil	ida utry	mmen fo	vagg es srekomi	ner eljest	1 4991	nenan v	minatyc	menelaesi			71			742	VA61 blo	ockerad	i stängt	läge		3.0	
		, Samti	lga dörr	rar mella	in ventil	asjonsm	ässigt a	vskilda u	trymme	en.						742	VC61 blo	ockerad	i stängt	läge		2.0	
		är stä	ngda vie	d passag	je											746	VB21 blo	ockerad	i stängt	täge		1.8	
		V Minst	en dörr	i varje t	illträden		till reak	torbyga	naden ä	rstängd		3				746	VB22 blo	ockerad	i stängt	läge		3.8	
					-											746	VB28 blo	ockerad	i stängt	läge		3.9	
																746 1	VD21 blo	ockerad	i stängt	läge		1.0	
																746	VD22 bid	ockerad	i stängt	läge		1.1.1	

Figure 3. Halden Handling Display

3.4 Text Mining

A large amount of power plant operational information resides in a relatively unstructured textual form in diverse types of documents. This information is typically impenetrable to automated processing. Operating procedures typically contain sections documenting precautions and limitations for procedure use and initial conditions. However, there may be additional equipment impacts that are not obvious by simply reading the front matter of the procedures. Supervisors approving work rely heavily on the schedule and the description of the work to ensure that the procedure would be authorized at a particular time.

Computational techniques that include text mining and text analytics have been developed in recent years to discover and present knowledge – facts, business rules, and relationships – embedded in a variety of written sources. A specialized area of text mining called natural language processing may be useful for extracting information from sources that have a nearly regular structure.

Revealing information from procedures and other documents through text mining may provide another layer of protection from undesired interactions by automatically detecting component manipulations that may not be in alignment with requirements at that moment.

Text mining may thus be an important tool for identifying plant impacts from procedures or work orders that need to be performed during an outage. The underlying principle is that computational techniques will be used to comb through procedures and work orders to identify equipment manipulations that will affect shutdown risk.

In this research effort, text mining algorithms will be used to identify plant impacts from procedures or work orders that are performed during an outage. Specialized textual analysis methodologies will be used to process the procedures and work orders to automatically create correlations between work procedures component manipulations. In addition, the method could combine action verbs with equipment part numbers (EPNs) associated with plant equipment that is monitored by the system. In this case, text mining technology would be combined with logic models to determine the EPNs that need to be monitored and relate them to the action verbs that may change the state of the monitored systems. Table 2 lists some example action verbs that may be relevant for detection of component manipulations.

Affected Item/SSC	Related Act	ion Verbs
Valves	Open	Close
	Ensure Open	Ensure Closed
	Check position	Throttle
	Stroke	Inspect
Pumps	Stop	Start
	Check	Inspect
Motor	Stop	Start
	Check	Inspect
Instrument/Display	Calibrate	Read
	Monitor	Inspect
Control	Actuate	Adjust
	Align	Close
	Maneuver	Move
	Manipulate	Open
	Press	Release
	Rotate	Turn
Tools	Use	Select
	Inset	Remove
	Turn	Move
Procedure	Calculate	Check
	Close	Compare
	Complete	Declare
	Direct	Ensure
	Enter	Initiate
	Inspect	Install
	Manipulate	Mark
	Measure	Monitor
	Move	Notify
	Obtain	Open
	Perform	Press
	Read	Record
	Release	Remove
	Review	Rotate
	Shift	Start
	Stop	Write

Table 2. Action Verbs for Automated Document Evaluation.

The first step in this approach consists of identifying the correlation between a predefined set of action verbs and a predefined component. For example, in the initial analysis, the focus is on the portion of a document that needs to be parsed through the text mining algorithm. The text mining algorithm processes the extracted text portion in individual sentences or statements. From the initial analysis, a Term Document Matrix (TDM) is created from the sentences, where each row represents a sentence and each column represent a unique word. The value represents the frequency in which the word appears in the sentence. Figure 4 illustrates the text mining process.

Figure 4. Text Mining Process

In order to treat the initial as a supervised learning problem, each sentence is assigned a class label. The classes are defined as "containing an action word and the component name" and "not containing action verb and component number". Therefore, once the TDM is created, it is treated as a feature vector to a classification problem. The purpose of the classification process is to train a classifier which learns the correlations associated with that component number and action word.

Example procedures will be used to train the system and test the accuracy of the text mining process. The information derived from text mining will be combined with numerous other data sources to more fully validate that plant conditions are in compliance with current requirements.

3.5 Data Processing and Integration

Important information is also available from various databases already in use at the plant that may be combined with expected component manipulations derived from text mining procedures or work orders. Some components have instrumented status that is available through the plant computer. Some facilities will have a database of component positions that are controlled via a clearance order.

As described in a later section, one of the objectives of this research to develop a software application that would integrate and display all the available component and system information to help personnel fully understand plant status and determine if proposed procedures or work orders will cause a conflict. A combination of enhanced information display and logical processing may provide the required information to detect complex potential issues. Another possible area for investigation is in the field of machine learning. Machine learning uses computer algorithms that can learn from and make predictions about data. Machine learning on unstructured data may provide a method of detecting very complex system interactions that might be very difficult to detect with traditional work management practices.

It may be useful to think of plant requirements monitoring as occurring in both real time and in a predictive manner. Work control SROs and Operations personnel in the main control room are responsible for real time monitoring every time they authorize work orders, surveillance procedures, clearance orders or operation instructions. Given that the schedule is controlling the future work that is to be performed, there may be an opportunity for a machine learning system to relate the appropriate documents to scheduled activities, derive future component manipulations and validate the impact to plant systems through complex logic modeling. In this way, each time the schedule is published, the system could automatically evaluate the impact of the changes to the new schedule to current and future requirements. A further check on the plant logic model could be performed by tying in any other data source with plant status information.

4 VISUALIZATION OF OUTAGE REQUIREMENTS

4.1 Overview of Outage Risk Monitoring Technology

The term Risk Monitor has been defined by International Atomic Energy Agency (IAEA) [11] as: "a plant specific real-time analysis tool used to determine the instantaneous risk based on the actual status of the systems and components. At any given time, the Risk Monitor reflects the current plant configuration in terms of the known status of the various systems and/or components – for example, whether there are any components out of service for maintenance or tests. The Risk Monitor model is based on, and is consistent with, the Living PSA. It is updated with the same frequency as the Living PSA. The Risk Monitor is used by the plant staff in support of operational decisions."

A number of Risk Monitors have been developed and deployed worldwide and there has been continued growth in the number of plants using risk monitors that are growing increasingly sophisticated. They are generally used by plant operators to provide risk information during normal operations as well as during outages.

According to the IAEA [12], risk monitor software currently available supports a wide range of functions including both quantitative and qualitative measures of risk. Quantitative risk measures include Core Damage Frequency, Large Early Release Frequency, and sometimes the boiling frequency for shutdown states. Qualitative measures typically include color-coded displays that indicate the status of safety functions and systems and their ability to respond to plant transients.

Risk monitor software capabilities may include the following:

- 1. Provide information on acceptability of current and annual average risk
- 2. Assist in compliance with Technical Specifications for unplanned plant unavailabilities
- 3. Provide advice on the acceptability of future planned plant unavailabilities (e.g., during outages)
- 4. Assist in planning multiple plant unavailabilities
- 5. Provide advice on deterministic and probabilistic risk criteria.

A recent trend in risk monitoring is for quantitative and qualitative risk information to be used as one of the inputs into an integrated decision making process at the plant [12]. The aim is to ensure that all operations and configurations comply with mandatory requirements (such as the plant Technical Specifications), the deterministic requirements (such as maintaining defense-in-depth and adequate safety margins) are met, and that the risk from the plant is understood in making a decision on plant safety issues.

Risk monitors have been proven useful and necessary to help specify operational safety criteria. However, little progress has been made to date in developing a more pragmatic approach to providing realtime information on actual plant configuration and system status during outages. More specifically, due to modeling assumptions and limitations, neither risk monitors, nor logic models (as shown in Figure 2) provide accurate information on specific equipment required and their real-time status as the outage progresses through periods of relatively low, moderate and high risk. The research described in this report aims to address that shortcoming.

4.2 Outage Requirements Monitoring Concept Development

Outage procedures provide guidance for the protection of plant equipment to minimize plant risk and also to define responsibilities and actions to be taken to ensure safe operation of the plant during outages. Although procedures are indispensable, they depend on a large amount of prior learning and experience. This disadvantage is compounded by the large number of procedures for all plant conditions and evolutions. This applies to procedures for the main control room as well as the OCC. Multiple procedures are needed for accurate performance of a complete job, from the initiation of the job, to achieving a well-defined end result. Each procedure encompasses a set of activities defining activities to produce one or more outcomes. Furthermore, many of the procedures are cross-functional and also involve many individual as well as interdependent systems.

Using multiple procedures during certain operational conditions, and also different procedures during different evolutions presents severe challenges during normal operations, but especially during outages and off-normal conditions. This challenge can be alleviated by providing information that represents "real-time truth" about the exact plant configuration and the condition of equipment required during different operational states.

All personnel involved in the outage need up-to-date information on equipment status to support critical decisions regarding the outage schedule and application of resources. As indicated in previous sections, optimizing situation awareness and taking the correct actions to reduce risk implies that all critical outage performance measures should be available to support decision-making. The availability of accurate, real-time information on system status will not only support situation awareness, but also enable personnel to take appropriate, timely action to ensure compliance with technical specifications.

St. Germain et al. [7] described the characteristics of effective displays for the OCC and how such displays and the data they represent would be based on the task requirements of outage crew members, the work domain, and the context within which it is used. The specific context, that is, safety and risk reduction during outages, is complex and multi-tiered. It is composed of the physical environment (the OCC, the Main Control Room, and the various plant areas), the various operational phases of the outage, specific events and actions during the outage, technical specifications, procedures, and rules for conduct of operations. Some of this information is paper-based (for example, outage reports, procedures, technical specifications, etc.), some is provided by the plant computer, some is located on instruments in the main control room, and some is conveyed by means of email or verbal communication. This means that the formats and sources of this information is directly related to system status (for example, which systems are required during specific evolutions, and whether a system is in operation, operable, on standby, or out of service); other information deals with schedules, activities, work orders, resources, risk level, and much more.

Clearly, to ensure correct and effective response to anticipated and emergent conditions, all this information is required for critical, real-time decision-making and should ideally be observable at a glance in multiple locations. This implies the need for an integrated collection of information that can be monitored at a glance by OCC team members, control room staff, and maintenance staff.

4.3 Visualization of Outage Status and System Requirements

As indicated before, risk monitors do not provide real-time information on actual plant configuration and system status during outages. A preliminary investigation has identified a number of key parameters that could contribute significantly to the ability to understand the risks associated with changing conditions during an outage. Making these parameters and requirements visible in real-time would enable all personnel involved to anticipate and prepare for the configuration changes and requirements during plant evolutions.

A conceptual Outage Status and Requirements Monitor could contain the following information sections:

- 1. Key Plant Parameters. This would include the status of key systems and the overall plant condition during Modes 1 through 6, for example, reactor power, containment status, reactor coolant system, decay heat, spent fuel pool temperature and level, etc.
- 2. Current plant configuration. Critical parameters to be displayed in this section would include the current mode, Risk Management Action Level (RMAL), bulk coolant Time to Boil, Protected Train, outage work window, etc.
- 3. Next Configuration. This section of the proposed display would provide a prospective indication of the requirements for the next phase of the evolution, or work window.
- 4. Finally, the proposed display would include a simplified plant mimic diagram that indicates the status of the key systems during the outage, specific modes, and specific work windows. System status would be indicated by means of symbols for systems and trains that are in the following conditions:
 - Protected and running
 - Protected and in standby
 - Running but not protected, which means systems that can be stopped for maintenance
 - Standby and available for maintenance
 - Out of service

The following images illustrate a conceptual Outage Status and Requirements Monitor (called "OSREM" for convenience in this report).

Figure 5 shows a possible layout of the sections mentioned above. The annotations provide a brief explanation of the content and intent of each section:

Figure 5. OSREM Interface Concept Description

Figure 6 shows the key parameters and plant configuration for work during Mode 6 on Day 17 of the outage. It shows the following conditions for the current configuration:

- 1. The Containment hatch is open.
- 2. The Reactor Coolant System (RCS) inventory is increased, as shown by the high level of the tanks.
- 3. The current Westinghouse Owners Group (WOG) work window is 7 ("Start core Reload to Reloaded").
- 4. RMAL is Green.
- 5. Train Alpha systems are protected.
- 6. The core is in the process of being unloaded.
- 7. The Residual Heat Removal Pump Alpha (RHR-A) and Spent Fuel Pump Alpha (SFP-A) are protected and running.
- 8. Feedwater pumps (FWP), Auxiliary Feedwater Pumps (AFW) and Turbine-driven Auxiliary Feedwater pump (T-AFW) are in Standby.
- 9. FWP-B and Reactor Coolant Pump (RCP-B) are out of service.
- 10. Off-site AC supply (O.S.S) from Train A is available.
- 11. The Emergency Diesel Generator (EDG-A) is protected and in Standby.
- 12. The next configuration is still in Mode 6, with activities for WOG window 8 ("Reassembly to Mode 5").

Figure 6. OSREM Interface Concept for Outage Day 17 - Mode 6

Figure 7 shows the key parameters and plant configuration for work during Mode 6 on day 18 of the outage. It shows the following conditions for the current configuration:

- 1. Fuel load is complete and the Containment hatch is now closed.
- 2. WOG Window 7 ("Reassembly to Mode 5") is in progress.
- 3. FWP-B is still out of service.
- 4. RCP-B is now in Standby.
- 5. The EDG-A is protected and in Standby.
- 6. The next configuration is still in Mode 6, with WOG window 8 ("Mode 5 to Mode 4").

Figure 7. OSREM Interface Concept for Outage Day 18 - Containment Closed

Figure 8 shows a preview of the key parameters and plant configuration for work during Mode 4 on day 25 of the outage. The current configuration is "grayed out" in this display to avoid confusion with the preview of the next configuration. This preview is accessed by clicking the "Preview" button on the Next Configuration panel. It shows the following conditions for the current configuration:

- 1. The RCS is filled and vented and RCS inventory level is reduced, as shown by the lower level of the tanks.
- 2. RCPs should be started, but RCP-B is currently in Standby, so it is highlighted and flashing to show that it should be running in Mode 4.
- 3. RHR-B pump and SFP-B pump are running.
- 4. The T-AFW pump is out of service and it is highlighted and flashing (shown in the image as orange highlights) to alert the crew that it would be out of compliance for Mode 4.
- 5. The status of the main operating states are shown in the bottom bar of the display. In this example it is shown that the RCS would not be fully compliant in Mode 4, due to the RCP-B that is in standby.

Other exceptions can be highlighted in a similar manner.

Figure 8. OSREM Interface Concept for Outage Day 25

Once these prospective values and requirements have been examined, the user would return to the previous display by clicking the "Back" button.

The OSREM interface described above is a very basic concept and will require a significant amount of research. This will be one of the objectives of the next phase of this project.

4.4 Objectives for Further Research and Development

1. Investigate the development of algorithms for text mining and machine learning.

It is expected that this research will examine the applicability of supervised, unsupervised, and reinforcement learning in the formalization of algorithms for properties in large datasets. This may include development of decision trees, probabilistic classification, statistical analysis, and various other techniques.

- 2. Develop and demonstrate technologies to detect undesired system configurations based on concurrent work activities (e.g., inadvertent drain paths and interaction of clearance boundaries). This could take the form of the OSREM prototype described above and could include the following:
 - Develop databases to simulate output from a risk monitor and work orders.
 - Install the prototype on the HSSL and integrate with the Palo Verde Nuclear Generating Station (PVNGS) plant simulator.
 - Conduct simulator trials in the HSSL with PVNGS outage and PRA staff.
 - Document results of trials as basis for refinement of the prototype.
- 3. Investigate requirements to interface OSREM with a plant computer, such as at PVNGS, to access real-time system status and performance information. This may include:

- Investigation of the instrumented status of required systems and availability of signals from the field.
- Develop requirements for interfacing of OSREM with existing plant risk monitors, related databases, and clearance orders.
- Investigate the automatic evaluation of the impact of schedule changes on current and future requirements.
- Investigate the development, or integration from a risk monitor, of plant logic models and other sources of plant status information.
- 4. Investigate the development of an operating experience database or repository of known and historical events and cause analysis data that can be accessed by workers at any location during an outage and also during normal operations. This could eventually form part of the proposed OSREM application.
- 5. Develop a real-time outage risk management strategy and conduct trial experiments with OSREM in the OCC and the MCR (or training simulator) at PVNGS. The purpose of these experiments would be to obtain accurate information on outage and maintenance procedures and risk management, to get feedback from potential users, and ultimately provide evidence of how nuclear safety can be improved during outages by detecting configuration control problems caused by work activity interactions with changing system alignments.

5 CONCLUSIONS

While current methods of outage risk management have so far prevented any serious outage related accident, a review of LERs and industry events suggests there is still room for improvement. Looking at the causes of these outage related events, is appears that plants still struggle with maintaining plant conditions within technical specification requirements. Some of the weaknesses are related to configuration management and issues with procedures, particularly following procedure revisions. It appears that recent advances in data processing and analytics may provide a technology solution to provide a backup to plant operators in ensuring plant work is in compliance with requirements. A combination of data visualization, natural language text mining and logic models could be employed to develop an advanced requirements monitor to support outage operations. Future work will involve developing a prototype requirements monitor to test various technological aspects to determine the suitability and real time accuracy of such a system.

6 REFERENCES

- [1] Endsley, M. R. (1995). Measurement of Situation Awareness in Dynamic Systems. *Human Factors*, 37(1), 65-84.
- [2] Endsley, M. R. (2000). Direct measurement of situation awareness: Validity and use of SAGAT. In M. R. Endsley & D. J. Garland (Eds.), *Situation Awareness Analysis and Measurement* (pp. 147-173). Mahwah: Lawrence Erlbaum Assoc.
- [3] Endsley, M. R., Bolte, B., & Jones, D. G. (2003). *Designing for situation awareness: An approach to user-centred design*. London: Taylor and Francis.
- [4] Hearst, M. (2003). *What is Text Mining?* SIMS, UC Berkeley.
- [5] Hugo, J. (2005). The Semiotics of Control Room Situation Awareness. In *Thatcher, A., J. James, & A. Todd (Eds.), CybErg 2005* (pp. 1–14). Johannesburg, South Africa: International Ergonomics Association Press.

- [6] St. Germain, S., Farris, R.K., Whaley, A.M., Medema, H.D. Gertman, D.I. (2014). Guidelines for Implementation of an Advanced Outage Control Center to Improve Outage Coordination, Problem Resolution, and Outage Risk Management. INL/EXT-14-33182. Idaho National Laboratory: Idaho Falls, ID.
- [7] St. Germain, S., Farris, R. and Thomas, K. (2015). *Development of Improved Graphical Displays* for an Advanced Outage Control Center, Employing Human Factors Principles for Outage Schedule Management. INL/EXT-15-36489. Idaho National Laboratory: Idaho Falls, ID.
- [8] St. Germain, S. and Hugo, J. (2016). Development of an Overview Display to allow Advanced Outage Control Center Management to quickly evaluate Outage Status. INL/EXT-16-39622. Idaho National Laboratory: Idaho Falls, ID.
- [9] Svengren, H., Eitrheim, M., Fernandes, A. and Kaarstad, M. (2016). *Human-System Interfaces for Near-Term Applications: Documentation of the Design Concept.* HWR-1181. OECD Halden Reactor Project: Halden, Norway.
- [10] Tufte, E. R. (2001). *The Visual Display of Quantitative Information* (2nd ed.). Cheshire, CT: Graphics Press.
- [11] State of Living PSA and Further Developments. NEA/ CSNI/ R(99)15. OECD Nuclear Energy Agency, July 1999.
- [12] Risk Monitors The State of the Art in their Development and Use at Nuclear Power Plants. NEA/CSNI/R(2004)20. OECD Nuclear Energy Agency, July 1999.

(This page intentionally left blank)

Appendix A

Licensee Event Report Review

(This page intentionally left blank)

A X	
NDI)	
Ш	
API	
	l

LICENSEE EVENT REPORT REVIEW Table 3. Licensee Event Reports – Potential Preventable Events

Table 3 Lic

		I AUIC J. LIC	cellsee Evellt Reports - Fotelitia	LIEVEIIIAUIE EVEIIIS.		
LER Number	Plant Name	Event Date	Title	Cause	TS Violated/ Reportability	System
2192012004	Oyster Creek	10/29/2012	MCR HVAC System Technical Specification Violation	Configuration Control	3.17.B.1	MCR HVAC
2192013005	Oyster Creek	12/17/2013	Reactor Protection System (RPS) Actuation with the Reactor in Hot Shutdown	Inadequate Procedure		RPS
2192014005	Oyster Creek	09/19/2014	Secondary Containment Declared inoperable	Configuration Control	3.5.G, 4.5.G	Containment
2202012007	Nine Mile Point 1	11/06/2012	High Pressure Coolant Injection (HPCI) System Logic Actuation Following an Automatic Turbine Trip Signal due to High Reactor Water Level	Configuration Control	HPCI Actuation	MFW
2372011004	Dresden 2, Dresden 3	10/24/2011	Personnel Error Results in Control Room Emergency Ventilation Air Conditioning System Inoperability	Component Verification	SSFF	CCSW, CREVAC
2472014003	Indian Point 2	03/18/2014	Technical Specification (TS) Prohibited Condition Due to a Mode Change with an Inoperable 22 Auxiliary Feedwater Pump	Mode Change	3.7.5	AFW

	TS Violated/ System Reportability	3.4.9.3 HHSI	3.3.2 SI Instr.	3.3.1 RPS Instr.	3.4.9.3 SI	3.4.9.3 RCS PORV		
	Cause	Configuration Control	Configuration Control	Component Verification	Configuration Control	Configuration Control		
	Title	Non-compliance with TS 3.4.9.3 due to Manual Isolation Valve Found in Incorrect TS Configuration	Condition Prohibited by Technical Specifications Due to Instrument Valve Mispositioning	Condition Prohibited by Technical Specifications due to Instrument Process Line Reversal During Replacement	Safety Injection Flow Path Not Isolated due to Manual Valve Out of Position	Power Operated Relief Valve (PORV) Inoperable for Greater Than Allowed Outage Time due to Lifted Leads	Primary Containment Isolation Valve Inoperable for Longer than Allowed by the Technical	
	Event Date	06/25/2012	08/25/2012	09/06/2012	02/27/2013	03/23/2013	11/22/2012	
.(be	Plant Name	Turkey Point 3	Turkey Point 3	Turkey Point 3	Turkey Point 3	Turkey Point 4	Browns Ferry 1	
Table 3. (continut	LER Number	2502012002	2502012003	2502012004	2502013004	2512013001	2592012010	

	em	ST	A Instr.	A Instr.	le Switch	~		ıy Additive
	Syst	RW	PAN	PAN	Mod	RHF	RCS	Spra
	TS Violated/ Reportability	3.5.4	3.3.3	3.3.3	3.10.4	Loss of DHR	OPDRV	3.0.4
	Cause	Configuration Control	Configuration Control	Procedure Use	Procedure Use	Procedure Use	Procedure Use	Configuration Control
	Title	Unplanned LCO 3.5.4 Entry Due to RWST Alignment to Purification	Plant Modification Interfered with the Operation of Containment Wide Range Level Indicator	Non-Environmentally- Qualified Splice Rendered Post Accident Monitoring Instrumentation Channel Inoperable	Failure to Lock Mode Switch in Refuel Position During Control Rod Exercises	Loss of Shutdown Cooling due to Improperly Landed Jumper Wire	Use of the Reactor Water Cleanup System to Lower Level without Declaring an Operation with a Potential to Drain the Reactor Vessel (OPDRV) with Secondary Containment Inoperable	Condition Prohibited by Technical Specifications
	Event Date	03/16/2012	03/08/2012	10/06/2013	12/01/2011	05/02/2015	05/14/2015	04/14/2013
ed).	Plant Name	Robinson 2	Robinson 2	Robinson 2	Monticello	Monticello	Monticello	Point Beach 1
Table 3. (continu-	LER Number	2612012002	2612012003	2612013001	2632011011	2632015002	2632015003	2662013002

									/ ent
	System	AFW	LTOP	AFW	EFW	RHR	RPS	RHR	Secondary Containm
	TS Violated/ Reportability	3.7.5		3.7.5		Loss of DHR	Invalid Actuation	Loss of DHR	OPDRV
	Cause	Procedure Use	HE, Wrong Component	Procedure Use	HE, Component manipulation	Inadequate Procedure	Procedure Use	Inadequate Procedure	Inadequate Procedure
	Title	Mode Transition with Turbine-Driven Auxiliary Feedwater Pump 1-1 Inoperable	Low Temperature Overpressure Protection (LTOP) System Inoperable due to Human Performance Error	Mode Transition with Turbine-Driven Auxiliary Feedwater Pump 1-1 Inoperable	Invalid Actuation of Motor Driven Emergency Feedwater System	Loss of Shutdown Cooling (RHR)	Reactor Scram due to Scram Discharge Volume High Water Level	Isolation of Shutdown Cooling Results in Loss of Safety Function	Missing Vent Plug Results in Technical Specifications Prohibited Condition
	Event Date	11/06/2010	06/07/2012	06/13/2012	11/18/2010	05/12/2011	05/22/2011	10/14/2012	11/07/2012
ed).	Plant Name	Diablo Canyon 1	Diablo Canyon 1	Diablo Canyon 1	Oconee 3	Browns Ferry 3	Browns Ferry 3	Cooper Station	Cooper Station
Table 3. (continu	LER Number	2752011001	2752012003	2752012004	2872010901	2962011001	2962011002	2982012004	2982012006

	8				S			ainment
	Syste	AC	AFW	AC	ECC	S/G	SW	Conta
	TS Violated/ Reportability	3.8.2	Invalid Actuation	Invalid Actuation	3.5.2		3.8.1.2	3.6.13
	Cause	Clearance Order	Clearance Order	HE, Wrong Component	Inadequate Procedure	Configuration Control	HE, Wrong Component	HE, Work Practices
	Title	Condition Prohibited by Technical Specification 3.8.2, AC Sources- Shutdown	Main Transformer Lockout and Associated Loss of Buses Results in System Actuation	Loss of Station Backfeed Results in Loss of One Train of Offsite Power During Refueling Outage	Valve SI-11A, Safety Injection to Loop A Cold Leg, Breaker Found ON with Plant in MODE 3	Unanalyzed Condition due to Removal of Multiple Steam Generator (S/G) Lateral Support Shims and Bumpers	Isolation of Service Water (SW) to the EGD-A While in Mode 6	Changed Modes from Mode 5 to Mode 4 with Divider Barrier Inoperable
	Event Date	04/08/2011	10/29/2015	03/10/2011	03/24/2011	12/31/2013	11/04/2012	11/30/2010
ued).	Plant Name	Point Beach 2, Point Beach 1	Point Beach 2	Kewaunee	Kewaunee	Prairie Island 2	Salem 2	Cook 2
Table 3. (continu	LER Number	3012011003	3012015005	3052011002	3052011003	3062014001	3112012004	3162010003

Table 3. (continue	ed).					
LER Number	Plant Name	Event Date	Title	Cause	TS Violated/ Reportability	System
3172014005	Calvert Cliffs 1	03/14/2014	Condition Prohibited by Technical Specifications due to AFW Actuation System Channel Inoperable due to Human Performance Error	Configuration Control	3.3.4	AFW
3212012001	Hatch 1	02/28/2012	Non-Compliance with Technical Specification 3.9.4 for Control Rod Position Indication During Shutdown	Configuration Control, Clearance Order	3.9.4	Rod Control
3232013001	Diablo Canyon 2	02/28/2013	Valid EDG 2-1 Start Signal Caused by a Loss of 4kV Class 1E Bus G	Procedure Use		AC
3232013003	Diablo Canyon 2	03/18/2013	Technical Specification 3.6.3 and 3.0.4.a Not Met due to Human Error	Procedure Use, Configuration Control, Mode Change	3.6.3	Containment
3252012003	Brunswick 1, Brunswick 2	04/09/2012	Valid Emergency Diesel Generator Actuation	HE, Work Practices	Actuation	AC
3252012006	Brunswick 1	09/19/2012	Operation Prohibited by Technical Specifications due to OPDRV	HE, Work Practices	3.6.4	Containment
3252014002	Brunswick 1	03/09/2014	Secondary Containment Isolation Dampers Inoperable During OPDRV	Procedure conflict	3.6.4	Containment

						ent		ent	
	System			IZ	RHR	Containme	AC	Containme	AC
	TS Violated/ Reportability			3.3.1	Loss of DHR	3.6.4	Actuation	3.6.1	Actuation
	Cause			Procedure Use	Inadequate Procedure	Inadequate Procedure	Procedure Use	Procedure Conflict, turnover, mode change	HE, Work Practices
	Title	Failure to Comply with TS for Containment Penetrations During Fuel Movement Resulting from	Containment	Nuclear Instrumentation (NI)System Power Range Neutron Flux Trip Low Range Bistable Incorrectly Calibrated - Revision 1	Momentary Loss of Shutdown Cooling During Refueling Outage	Secondary Containment Damper Inoperable, Condition Prohibited by Technical Specifications	Transformer Installation Error Causes Loss of Off- Site Power	Containment Atmosphere Dilution (CAD) System Valves Misaligned for Ascension into Mode 2	Unit 1 Inadvertent Start of EDG upon Unexpected Under Voltage Condition
	Event Date	10/21/2013	3.9.4	06/22/2011	11/10/2010	11/24/2012	10/05/2012	11/24/2012	02/10/2012
ied).	Plant Name	Sequoyah 1	Procedure Use	Sequoyah 2	Duane Arnold	Duane Arnold	FitzPatrick	FitzPatrick	St. Lucie 1
Table 3. (continu	LER Number	3272013004	Ineffective Procedures	3282011001	3312010005	3312012005	3332012005	3332012009	3352012001

Table 3. (continue	ed).					
LER Number	Plant Name	Event Date	Title	Cause	TS Violated/ Reportability	System
3352012007	St. Lucie 1	04/02/2012	1A2 EDG Coolant Leakage Rendered EDG Inoperable	Procedure Use		AC
3362014005	Millstone 2	05/17/2014	Train "A" Containment Spray Inoperable due to Gas Voids	Procedure Conflict, Communication	3.6.2	CS
3412012001	Fermi 2	04/11/2012	Loss of Shutdown Cooling due to a Voltage Transient	Clearance order, Communication	Loss of DHR	RHR
3412012002	Fermi 2	04/26/2012	Reactor Scram During Reactor Pressure Vessel Hydrostatic Test	Procedure Use	Actuation	RPS
3412015007	Fermi 2	10/04/2015	OPDRV with Secondary Containment Inoperable	Procedure Conflict	OPDRV	Containment
3462012001	Davis-Besse	05/19/2012	Direct Current (DC) Source for Diesel Generator Transferred to Inoperable Source During Fuel Movement	Configuration Control	3.8.5	DC
3462014001	Davis-Besse	05/04/2014	Manual Initiation of the RPS due to Unexpected Indication of Control Rod Movement	Inadequate Procedure	Actuation	RPS
3462014002	Davis-Besse	05/05/2014	Manual Initiation of the Reactor Protection System due to Disconnected Cooling of a Control Rod Drive	HE, Work Practices	Actuation	RPS
3482012003	Farley 1	04/05/2012	Unplanned A Train LOSP During SI with LOSP Testing	Procedure Use	Actuation	AC

	System	AC	RPS	RPS	ECCS	II	RPS	HPCI
	TS Violated/ Reportability	Actuation	Actuation	Actuation	3.5.2	3.3.13	Actuation	3.5.1
	Cause	Inadequate Procedure	Procedure Conflict	Procedure Use	Configuration Control	Configuration Control	Inadequate Procedure	Inadequate Procedure, Work practices
	Title	Unplanned B Train LOSP During Switchyard Breaker Testing	Valid Manual Actuation of the Reactor Protection System due to a Personnel Error and Surveillance Test Weakness	Valid Manual Actuation of the Reactor Protection System During Refuel Outage Testing	Conditions Prohibited by Technical Specifications due to Low Pressure ECCS Inoperabilities	Missed TS LCO Surveillance Requirement When One Source Range Monitor Removed from Service	Unplanned RPS Actuation due to Scram Discharge Volume High Level During Surveillance Test	HPCI Declared Inoperable Due to Error in Connecting Tubing to a Hydraulic Actuator
	Event Date	04/06/2012	07/19/2012	04/16/2013	05/04/2015	01/25/2011	02/16/2013	03/18/2013
ted).	Plant Name	Farley 1	Limerick 1	Limerick 2	Hope Creek	San Onofre 3	Hatch 2	Hatch 2
Table 3. (continu	LER Number	3482012004	3522012006	3532013001	3542015003	3622011001	3662013001	3662013003

	System	EFW	Containment Monitor	Containment	AFW	RCIC	RCIC	AC	LTOP
	TS Violated/ Reportability	3.7.1	3.3.3	3.6.3	Actuation	3.5.3	3.5.1	Actuation	3.4.12
	Cause	Procedure Use	Procedure Use	Configuration Control	Inadequate Procedure	Inadequate Procedure	Inadequate Procedure	HE, Work Practices	Configuration Control
	Title	Technical Specification 3.0.4 Violation due to a Mode Change with an Inoperable Emergency Feedwater Pump	Purge Radiation Monitor Discovered Inoperable During Fuel Movement	Manual Containment Isolation Valve inoperable longer than allowed by Technical Specifications	Auxiliary Feedwater System Actuation While in Mode 4	Reactor Pressure Exceeded 150 psig With Reactor Core Isolation Cooling Inoperable	Condition Prohibited by Technical Specification due to Unknown RCIC Inoperability	Inadvertent Trip of 2B3 4.16kv Switchgear	Safety Injection Pump Capable of Injecting into Reactor Coolant System in Mode 5
	Event Date	06/09/2014	10/26/2015	11/02/2012	10/07/2015	04/22/2013	06/27/2011	10/07/2012	05/09/2011
ied).	Plant Name	Arkansas 2	Arkansas 2	McGuire 2	McGuire 2	LaSalle 1	Susquehanna 2	St. Lucie 2	Watts Bar 1
Table 3. (continu	LER Number	3682014004	3682015001	3702012001	3702015001	3732013004	3882011002	3892012003	3902011001

	ε	0.		Control	uinment				
	Syste	LTOI	SI	Rod (Conta	RSD	AC	AC	MGS
	TS Violated/ Reportability	3.4.12	Actuation	3.9.4	OPDRV	3.3.3	Actuation	Actuation	
	Cause	Configuration Control	Procedure Use	Procedure Use	Inadequate Procedure	HE, Procedure, Work Practices	HE, Work Practices	Inadequate Procedure	Inadequate Procedure
	Title	Entry into Mode 4 Without Meeting LCO 3.4.12, "Cold Overpressure Mitigation System (COMS)"	Inadvertent Safety Injection During Reactor Startup due to Excessive Differential Steam Line Pressure	Failure to Follow Technical Specification During Control Rod Exercise	Operation Prohibited by Technical Specifications due to Valve Leakage	Jumper makes Suppression Pool Spray Valve Remote Transfer Switch Inoperable	Unplanned Loss of 4.16KV Bus 7 Switchgear	Valid Actuation of B EDG- A due to Loss of 'B-SB' 6.9kV Safety Bus	Operation Prohibited by Technical Specification due to Exceeding Hydrogen and Oxygen Concentrations in the Waste Gas System
	Event Date	09/21/2009	05/27/2011	06/29/2011	06/03/2013	06/04/2013	05/22/2015	11/05/2010	11/11/2013
ued).	Plant Name	Watts Bar 1	Summer 1	Columbia	Columbia	Columbia	Columbia	Harris	Harris
Table 3. (continu	LER Number	3902012003	3952011003	3972011001	3972013003	3972013004	3972015004	4002010004	4002013004

able 3. (continu	ed). Diant Namo	Duron4	Title	Course	TC Violotod/	Cristom
JEK Number	rlant Name	Event Date	IIIIe	Cause	1.5 Violated/ Reportability	System
4102012003	Nine Mile Point 2	06/04/2012	Suppression Pool Level Below Technical Specification Limit During Mode Change	Configuration Control, Mode Change	3.6.2	Suppression Pool
4122012001	Beaver Valley 2	09/24/2012	Automatic Actuation of Standby Service Water Pump During EDG-A Test	Inadequate Procedure, Work practices	Actuation	SW
4122012003	Beaver Valley 2, Beaver Valley 1	10/30/2012	Mode 3 Entered with Both Trains of Turbine Trip Circuitry Inoperable	Inadequate Procedure, Mode Change	3.3.2	ESF Actuation Inst.
4132011002	Catawba 1	04/23/2011	Safety System Actuation of AFW due to Feedwater Isolation During Unit Shutdown	Clearance order conflict	Actuation	AFW
4132012003	Catawba 1	12/22/2012	Technical Specification (TS) Limiting Conditions for Operation (LCOs) 3.0.4 and 3.7.5 Were Violated due to Unit 1 Entering Mode 3 with Turbine Driven AFW Pump Unknowingly Inoperable	HE, Work Practices, Mode Change	3.7.5	AFW
4232013005	Millstone 3	05/15/2013	Loss of Containment Integrity due to Failed Airlock	HE, Work Practices		Containment
4242012004	Vogtle 1	10/05/2012	Unplanned AF Actuation	Inadequate Procedure	Actuation	AFW

	iystem	C	SPS	tHR	RPS Instr.	M	LC C	Containment
	TS Violated/ S Reportability	3.8.1	3.3.1 F	3.5.2 F	3.3.2 F	Actuation S	Actuation 4	OPDRV C
	Cause	Configuration Control, Mode Change	Procedure Use	Configuration Control, Mode Change	Configuration Control, Mode Change	Procedure Use	Work Practices	Procedure Use
	Title	Switchyard Configuration During Startup Results in Operation Prohibited by Technical Specifications	Condition Prohibited by Technical Specifications due to Scram Discharge Volume Level Switch Isolation	Both Trains of RHR Inoperable During Testing in MODE 3	Mode 3 Entered with Turbine Trip Safety Function Disabled due to Safety Related Relay Leads Lifted	Unplanned Actuation of Standby Service Water System due to Procedure Inadequacy	EDG-A Start Circuit Actuation due to Loss of Power from Reserve Station Service No. 2	OPDRV Requirements Not Met During Control Rod Drive Mechanism Replacements
	Event Date	10/18/2011	03/25/2013	04/25/2014	10/01/2015	01/20/2011	03/07/2015	01/17/2010
ed).	Plant Name	Perry	Реггу	Comanche Peak 2	Byron 1	River Bend	River Bend	Clinton 1
Table 3. (continu-	LER Number	4402011003	4402013002	4462014002	4542015006	4582011001	4582015002	4612010004

	System	RCS	RHR	RCS	Rod Contro	SI		SI
	TS Violated/ Reportability	3.6.1	Loss of DHR	3.6.1	3.9.4	Actuation		3.3.2
	Cause	Procedure Use	Procedure Use	Procedure Use	Procedure Conflict	Procedure Use	Inadequate Procedure	Inadequate Procedure, Mode Change
	Title	Missed Surveillance due to Preconditioning Valve prior to Leak Rate Test	Reactor Protection System Actuation and Loss of Shutdown Cooling	Missed Surveillance due to Preconditioning Valve prior to Leak Rate Test	Condition Prohibited by Technical Specification 3.9.4 for Failing to Disarm Control Rod Drive prior to Fuel Moves in Mode 5 with One Control Rod Position Indication Channel Inoperable	Automatic Safety Injection Actuation due to Operating Crew Failure to Follow Procedures	Procedure Weakness Allowed Entry into Mode 6 with One Source Range Monitor Inoperable	One Train of Automatic Safety Injection Blocked During Entry into Mode 3 due to Procedural Weakness
	Event Date	12/01/2011	12/18/2011	12/01/2011	04/30/2015	03/19/2011	04/30/2011	03/19/2012
led).	Plant Name	Clinton 1	Clinton 1	Clinton 1	Clinton 1	Wolf Creek	Wolf Creek	Wolf Creek
Table 3. (continu	LER Number	4612011005	4612011008	4612011009	4612015003	4822011004	4822011005	4822012002

	Ę			ainment			n Dilution	ine Trip Inst.
	Syste	I	RCS	Conta	AC	ECCS	Boror	Turbi
	TS Violated/ Reportability	3.9.3	3.9.2	3.7.10	3.8.1	3.5.1	3.4.1	3.3.2
	Cause	Configuration Control	Configuration Control	Inadequate Procedure	Inadequate Procedure	Procedure Use	Inadequate Procedure	Inadequate Procedure, Mode
ed).	Title	Movement of Irradiated Fuel Progressed after Non- Conservative Decision Making Resulted in Removal of One Source Range Monitor from Service	Inadvertent Non- Compliance With TS 3.9.2, Unborated Water Source Isolation Valves	Control Building Envelope (CBE) Boundary Door Open During Movement Of Irradiated Fuel Assemblies	Violation of TS 3.8.1 Due To An Inoperable Offsite AC Electrical Power Source	All ECCS Accumulator Isolation Valve Operator Breakers Closed in Mode 3 With RCS Pressure Greater Than 1000 PSIG	Technical Specification Requirement Not Met Regarding Unborated Water Sources	Unit 2 Plant Mode Change with Turbine Trip Disabled
	Event Date	02/16/2013	11/13/2011	04/18/2013	05/19/2013	11/18/2014	04/30/2011	11/30/2011
	Plant Name	Wolf Creek	Callaway	Callaway	Callaway	Callaway	South Texas 1, South Texas 2	South Texas 2
Table 3. (continu	LER Number	4822013003	4832011007	4832013004	4832013007	4832014005	4982011001	4992011003

	System	CREFS	RPS	AFW	RPS	ADV
	TS Violated/ Reportability	3.3.9	3.3.2	3.7.5	Actuation	3.7.4
ied).	Cause	Inadequate Procedure	Inadequate Procedure, Mode Change	Inadequate Procedure	Inadequate Procedure	Inadequate Procedure, Work practices, Mode Change
	Title	Irradiated Fuel Movement with Misaligned Control Room Essential Filtration System	Inoperable Steam Generator Low Pressure Reactor Trip and Main Steam Isolation Signal Channels	Entry into Mode 3 with one Auxiliary Feedwater Train Inoperable	Unit 3 Manual Reactor Trip During Low Power Physics Testing	Condition Prohibited by Technical Specification 3.0.4 due to an Inoperable Atmospheric Dump Valve (ADV)
	Event Date	04/08/2011	05/02/2011	11/02/2012	04/15/2012	05/01/2015
	Plant Name	Palo Verde 2	Palo Verde 2	Palo Verde 2	Palo Verde 3	Palo Verde 3
Table 3. (continu	LER Number	5292011001	5292011002	5292012003	5302012001	5302015002