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ABSTRACT

Nuclear power plants (NPPs) are considering flexible plant operations to take advantage of excess
thermal and electrical energy. One option for NPPs is to pursue hydrogen production through high
temperature electrolysis as an alternate revenue stream to remain economically viable. The intent of
this study is to investigate the risk of a hydrogen production facility in close proximity to an NPP. A
100 MW, 500 MW, and 1,000 MW facility are evaluated herein. Previous analyses have evaluated
preliminary designs of a hydrogen production facility in a conservative manner to determine if it is
feasible to co-locate the facility within 1 km of an NPP. This analysis specifically evaluates the risk
components of different hydrogen production facility designs, including the likelihood of a leak
within the system and the associated consequence to critical NPP targets. This analysis shows that
although the likelihood of a leak in an HTEF is not negligible, the consequence to critical NPP
targets is not expected to lead to a failure given adequate distance from the plant.
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ACRONYMS AND TERMS

Acronym/Term Definition
NPP nuclear power plant
PRA probabilistic risk assessment
PRD pressure relief device
SOEC solid oxide electrolyzer cell
TNT trinitrotoluene
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1. INTRODUCTION

Nuclear power plants (NPPs) may use flexible plant operations and generation to take advantage
of excess thermal and electrical energy. However, NPPs must show that the operation of such a
system is safe and does not pose a significant threat to the high consequence NPP facilities and
structures. The risk associated with hydrogen production through high temperature electrolysis
has been evaluated for preliminary facility designs [1]. The intent of this study is to investigate
the risk associated with a more mature design of a 100 MW hydrogen generation facility.
Additionally, 500 MW and 1,000 MW hydrogen facility designs are investigated. In this analysis,
the hazards associated with a hydrogen generation facility are analyzed to determine the
minimum distance at which it can be located with respect to an NPP. A facility component list
was developed for the hydrogen generation facility designs. Next, the associated leak frequencies
for the individual components in the hydrogen facility were evaluated to develop an overall
facility leak frequency. The fragility of critical targets at the NPP site was used to inform the set-
back distance calculations. Finally, the consequences resulting from a hydrogen jet release in the
hydrogen production facility were calculated and compared to the target fragility. Several
different leak scenarios were considered in the evaluation, including full-bore and partial breaks.

11



2. HYDROGEN FACILITY COMPONENT LIST

Three hydrogen generation plant sizes are evaluated in this report: 100 MW, 500 MW, and 1,000
MW. The conceptual design of a 100 MW facility provided by Sargent & Lundy was used to define
the component list of the 100 MW facility [2], in addition to assumptions and engineering
judgement. The design was then used as a basis to define the component list for the 500 MW and
1,000 MW designs.

2.1 100 MW Plant Design

To develop the bottom-up leak frequency for the hydrogen generation facility, the components in
the system need to be documented. This list was used in conjunction with component specific leak
frequencies developed previously [1] to develop system level leak frequencies. The conceptual
design of the overall facility was provided by Sargent & Lundy [2]. The hydrogen process flow
diagram of the facility, from the electrolyzers to the offtake point, are shown in Figure 1. The
design includes the important equipment, including the solid oxide electrolyzer cell (SOEC)
modules, heat exchangers, compressors, etc. Additionally, the pipe size, length, and system
parameters were defined in the conceptual design.

Pressure: 300 psig
Temperature: 140 F
H2 Flow rate: 305 kg/hr
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H2 Flow rate: 305 kg/hr

1 1

1 1
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Other Blocks

Figure 1: Simplified Flow Diagram of Hydrogen Process Piping within the Hydrogen Facility with
Process Conditions [2]

However, this design did not explicitly define the number of secondary components, such as joints
and valves, that are important in the leak frequency analysis. Therefore, the double-line hydrogen
facility configuration was used as a basis for an estimate of the number of these components using
assumptions and engineering judgement. Figure 2 shows the double-line hydrogen facility
configuration used to estimate the component count in the facility downstream of the SOEC
modules.
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Figure 2. Double-line Configuration of 100 MW Hydrogen Facility [2]

The following estimates, and their basis, were used to define the number of components in the
hydrogen generation facility downstream of the SOEC modules:
- Section 1: SOEC Module to Heat Exchanger
o 60 SOEC Modules
o 60 Joints (Tees, elbows, reducers, expanders, etc.)
® Basis: joint for each SOEC module to common header
o 60 Valves
= Basis: isolation valve for each SOEC Module
o 10 Heat Exchangers
= Basis: after combined into common header, the flow is condensed by a heat
exchanger
- Section 2: Heat Exchanger to Blower
o 10 Joints
= Basis: joint for each header for connection between heat exchanger and
blower
o 10 Valves
® Basis: isolation valve for each header
o 10 blowers
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® Basis: pressure is increased by a blower immediately downstream of the heat

exchanger
Section 3: Blower to 1% Stage Compression
o 10 Joints

® Basis: joint for each common header from blower to separation vessel
o 10 Valves

= Basis: isolation valve for each header
o 10 Separation Vessels

® Basis: separation vessel for each common header prior to compression
o 10 Compressors

® Basis: compressor for each common header

Section 4: 1* Stage Compression to Drying/Purification

o 1]Joint

® Basis: joint for purification vessel
o 1 Valve

= Basis: isolation valve downstream of 1% compression
o 1 Vessel

® Basis: purification vessel downstream of 1* compression
Section 5: Purification to 2™ Stage Compression

o 4 ]Joints
® Basis: joint for purification vessel and buffer vessel
o 4 Valve

* Basis: isolation valves downstream of 2™ compression
o 4 Compressors
® Basis: 4 high-pressure compressors shown
o 1 Vessel
=  Basis: buffer vessel
Section 6: Downstream of 2™ Stage Compression

o 1 Valve
= Basis: isolation valve in offtake header
o 1]Joint

= Basis: joint for offtake
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The pipe length of each of the sections was documented in the preconceptual design. The double-
line configuration pipe length was listed as 4318 ft (1,316 m) for all sections combined. This pipe
length is used in the leak frequency analysis herein. A summary of the components downstream of
the SOEC modules is documented in Table 1.

Table 1: 100 MW Facility Component List Downstream of SOEC Modules

Components Count
Cylinder (vessel, separator, heat exchanger) 22
Valve 86
Joint (tee, elbow, reducer, expander) 86
Compressor 14
Pump/Blower 10

Pipe length (m) 1,316

For the individual SOEC modules, engineering judgement and the design of previous facilities were
used as a basis for the component count since the detailed design of the SOEC modules was not
available. Based on the component count documented in Appendix A of the previous analysis [1],
Table 2 shows the component count for a single SOEC module. Note, that the number of each of
the components is based on the hydrogen generation and purification systems from the previous
design. However, the pipe length was not explicitly defined for a single module previously. For this
analysis, it was estimated that each module would contain 200 ft (60.96 m) of internal piping, which
is approximately 4x the width of a single module.

Table 2: SOEC Module Component List

SOEC Module Components Count
Cylinder (vessel, separator, heat exchanger) 16
Valve 19
Joint (Tee, elbow, reducer, etc.) 3
Compressor 2
Pump/Blower 3
Piping within each Unit (m) 60.96
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Noting that there are 60 SOEC modules in the 100 MW design, the facility component list is

documented in Table 3. This component list is used in conjunction with the component level leak
frequencies to define the overall facility leak frequency.

Table 3: 100 MW Facility Component Quantity Summary

Components Count
Cylinder (vessel, separator, heat exchanger) 982
Valve 1,226
Joint (tee, elbow, reducer, expander) 266
Compressor 134
Pump/Blower 190
Pipe length (m) 4974

There is significant uncertainty in the facility component quantity summary due to the assumptions
and engineering judgement. To address this uncertainty, a +/- 10% component count sensitivity
case is evaluated in the system level leak frequency calculations to show the effect that the

component quantity has on leak frequency. Table 4 shows the component counts for these
sensitivity cases.

Table 4: 100 MW Component Quantity for Sensitivity Cases

Components +10% -10%
Cylinder 982 1,080 884
Valve 1,226 1,349 1,103
Joint 266 293 239
Compressor 134 147 121
Pump/Blower 190 209 171
Pipe length (m) 4,974 5,471 4,476

16



2.2. 500 MW Plant Design

The component list for the 500 MW hydrogen generation facility is defined by using the 100 MW
design as a basis. It is assumed that the 500 MW facility will use the same 10 MW blocks as the 100
MW hydrogen generation facility. The following assumptions were used to develop the component
count for the 500 MW facility.

- General Design Assumptions
o Itis assumed that there will be a total of 50 10 MW blocks in the 500 MW design.

o Itis assumed that the 10 MW blocks will be stacked 2-high in the 500 MW design.
To account for this, additional vertical piping, tees, and elbows are added to the
overall component count (see below).

o After Section 3 in the 100 MW design, the piping from the individual 10 MW blocks
is joined in a common header, which has been sized to accommodate the flow from
10 total 10 MW blocks. For the 500 MW design, it is assumed that there will be 5
parallel sets of piping for these sections, which each accommodate 10 total 10 MW
blocks. This assumption increases the total pipe length for the facility but allows for
the same pipe sizing as the 100 MW design.

o Itis assumed that downstream of Section 6 (second compression), all of the parallel
piping will combine into an underground common header for transport to the
storage facility. The pipe size will increase to account for the increase in flow due to
the power increase. Because this is downstream of second compression, it will not
affect the component count. However, it will affect the consequence analysis for the
500 MW plant.

- Section 1: SOEC Module to Heat Exchanger
o Fora 500 MW facility, there will be 50 10 MW blocks. The total component count
for this section is 5x the 100 MW design.
® 300 Joints (Tees, elbows, reducers, expanders, etc.)
= 300 Valves
= 50 Heat Exchangers
= Pipe Length: 4,125’ (1,257 m)
- Section 2: Heat Exchanger to Blower
o In the 100 MW design, there is a connection between the heat exchanger and blower
for each 10 MW block. For the 500 MW facility, there will be 50 10 MW blocks.
The total component count for this section is 5x the 100 MW design.
= 50 Joints
= 50 Valves
= 50 blowers
= Pipe Length: 6,600’ (2,012 m)
- Section 3: Blower to 1* Stage Compression
o In the 100 MW design, there is a connection between the blower and 1% stage
compression for each 10 MW block. Therefore, the total component count for this
section in the 500 MW facility is 5x the 100 MW design
= 50 Joints
= 50 Valves
= 50 Separation Vessels
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50 Compressors

- Section 3: Stacked 10 MW blocks
o To save space in the larger facility designs, it is assumed that the 10 MW blocks will
be stacked 2 high. This will introduce the need for additional tees and elbows to
connect the stacked modules to the common headers. Additionally, it is assumed that
there will be 10” of vertical pipe to connect the vertically stacked blocks downstream
of Section 3 to 1% stage compression.

50 Joints (25 tees and 25 elbows)
Pipe length: 10°/stack * 25 stacks = 250’ (76 m)

- Section 4: 1* Stage Compression to Drying/Purification
o In the 100 MW design, all 10 MW blocks are combined into a single header for this
section. As stated previously, it is assumed there will be 5 parallel sets of headers for
the 500 MW design. Therefore, the total component count for this section in the
500 MW facility is 5x the 100 MW design.

5 Joints

5 Valves

5 Vessels

Pipe Length: 3,685 (1,123 m)

- Section 5: Purification to 2™ Stage Compression
o As in Section 4, the component count for the 500 MW facility is 5x the 100 MW

design.

20 Joints

20 Valve

20 Compressors

5 Vessel

Pipe Length: 1,265 (386 m)

- Section 6: Downstream of 2™ Stage Compression
o The component count for the 500 MW facility is 5x the 100 MW design for this

section as well.

5 Valve
5 Joint
Pipe Length: 965’ (294 m)

o SOEC Module Component List: There are 6 SOEC modules in each 10 MW block.
For the 500 MW design, there will be a total of 300 individual SOEC modules. The
total component contribution from the SOEC modules for the 500 MW design is
documented below.

4,800 Cylinders

5,700 Valves

900 Joints

600 Compressors

900 pumps/blowers

Pipe Length: 60,000’ (18,288 m)
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Table 5 documents the total component count of the 500 MW design. This component list is used
in conjunction with the component level leak frequencies to define the overall facility leak
frequency.

Table 5: 500 MW Facility Component Quantity Summary

Components Count

Cylinder (vessel, separator, heat exchanger) 4,910

Valve 6,130

Joint (tee, elbow, reducer, expander) 1,380
Compressor 670
Pump/Blower 950

Pipe length (m) 24,945

There is significant uncertainty in the facility component quantity summary due to the assumptions
and engineering judgement. To address this uncertainty, a +/- 10% component count sensitivity
case is evaluated in the system level leak frequency calculations to show the effect that the
component quantity has on leak frequency. Table 6 shows the component counts for these
sensitivity cases.

Table 6: 500 MW Component Quantity for Sensitivity Cases

Components +10% -10%
Cylinder 4,910 5,401 4,419
Valve 6,130 06,743 5,517
Joint 1,380 1,518 1,242
Compressor 670 737 603
Pump/Blower 950 1045 855
Pipe length (m) | 24,945 27,439 22,450
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2.3. 1,000 MW Plant Design

The same assumptions from the 500 MW design are used to define the component list for the 1,000
MW design. There are a total of 100 10 MW blocks in the 1,000 MW design. The blocks are
assumed to be stacked 2-high. Also, it is assumed that there will be 10 parallel sets of piping
downstream of Section 3. Where in the 500 MW design assumptions the component count of the
100 MW facility was multiplied by 5, in the 1,000 MW design it is multiplied by 10. Table 7
documents the total component count of the 1,000 MW design. This component list is used in
conjunction with the component level leak frequencies to define the overall facility leak frequency.

Table 7: 1,000 MW Facility Component Quantity Summary

Components Count

Cylinder (vessel, separator, heat exchanger) 9,820
Valve 12,260

Joint (tee, elbow, reducer, expander) 2,760
Compressor 1,340

Pump/Blower 1,900

Pipe length (m) 49,890

There is significant uncertainty in the facility component quantity summary due to the assumptions
and engineering judgement. To address this uncertainty, a +/- 10% component count sensitivity
case is evaluated in the system level leak frequency calculations to show the effect that the

component quantity has on leak frequency. Table 8 shows the component counts for these
sensitivity cases.

Table 8: 1,000 MW Component Quantity for Sensitivity Cases

Components +10% -10%
Cylinder 9,820 | 10,802 | 8,838
Valve 12,260 | 13,486 | 11,034
Joint 2,760 3,036 2,484

Compressor 1,340 1,474 1,206

Pump/Blower | 1,900 2,090 1,710

Pipe length (m) | 49,890 54,879 44,901
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3.

leak frequency values for the different normalized leak sizes from the previous analysis. Note, the

LEAK FREQUENCY

To quantify the risk of a leak in a hydrogen generation facility, it is necessary to establish the types of
accidents that can occur. To do this, component leakage frequencies representative of hydrogen
components must be documented as a function of the normalized leak size. Subsequently, the
system characteristics (e.g., system pressure) will be used to calculate the consequence of the
accident. A Bayesian statistical method was used in the previous analysis to document the
component level leak frequency [1]. Note, the types of leaks that are represented by these
frequencies correspond to random failures and material degradation. These frequencies are not
associated with accidents, weather, natural disasters, or human errors. Table 9 shows the component

leak fraction shown in the table is the ratio of the leak area to the total flow area of the pipe. As

shown, no hydrogen specific data is available for the pumps. Therefore, these components do not

have hydrogen specific leak frequency values and the generic leak frequencies are used in this

analysis.
Table 9: Hydrogen Component Leak Frequencies (yr?)
Leak Generic Leak Frequencies Hydrogen Leak Frequencies
Component Fraction : :
Mean 5th Median 95th Mean 5th Median 95th

0.0001 | 6.0E+00 | 2.5E-01 | 22E+00 | 1.9E+01 | 1.0E-01 | 5.9E-02 | 1.0E-01 | 1.6E-01
0.001 1.8E-01 | 2.1E-02 | 1.1E-01 | 54E-01 | 1.9E-02 | 6.8E-03 | 1.7E-02 | 3.8E-02
Compressor 0.01 9.2E-03 | 1.0E-03 | 5.2E-03 | 2.7E-02 | 6.3E-03 | 1.2E-03 | 4.6E-03 | 1.7E-02
0.1 34E-04 | 8.2E-05 | 2.6E-04 | 8.0E-04 | 2.0E-04 | 4.6E-05 | 1.5E-04 | 4.9E-04
1 3.3E-05 | 1.7E-06 | 1.2E-05 | 9.3E-05 | 3.2E-05 | 2.0E-06 | 1.5E-05 | 1.0E-04
0.0001 | 1.5E+00 | 6.6E-02 | 6.6E-01 | 5.3E+00 | 1.6E-06 | 3.5E-07 | 1.4E-06 | 3.4E-06
0.001 3.4E-02 | 3.4E-03 | 2.0E-02 | 1.0E-01 | 1.3E-06 | 3.7E-07 | 1.2E-06 | 2.8E-06
Cylinder 0.01 8.4E-04 | 1.6E-04 | 6.4E-04 | 2.1E-03 | 9.0E-07 | 2.6E-07 | 7.9E-07 | 1.9E-06
0.1 2.5E-05 | 6.6E-06 | 1.9E-05 | 59E-05 | 5.2E-07 | 1.6E-07 | 4.5E-07 | 1.1E-06
1 7.6E-07 | 1.9E-07 | 6.1E-07 | 1.8E-06 | 2.7E-07 | 8.1E-08 | 2.3E-07 | 6.0E-07
0.0001 | 2.8E+01 | 1.6E+00 | 1.3E+01 | 9.4E+01 | 6.1E-04 | 29E-04 | 5.8E-04 | 1.0E-03
0.001 22E+00 | 29E-01 | 1.4E+00 | 6.4E+00 | 2.2E-04 | 6.6E-05 | 2.0E-04 | 4.5E-04
Hose 0.01 2.1E-01 | 43E-02 | 1.6E-01 | 52E-01 | 1.8E-04 | 5.3E-05 | 1.6E-04 | 3.8E-04
0.1 2.2E-02 | 6.0E-03 | 1.7E-02 | 53E-02 | 1.7E-04 | 5.1E-05 | 1.5E-04 | 3.4E-04
1 5.6E-03 | 1.9E-04 | 2.0E-03 | 1.8E-02 | 8.2E-05 | 9.6E-06 | 6.2E-05 | 2.2E-04
0.0001 | 1.3E+00 | 7.0E-02 | 5.3E-01 | 4.6E+00 | 3.6E-05 | 2.3E-05 | 3.5E-05 | 5.1E-05
Joint 0.001 1.7E-01 | 2.1E-02 | 1.0E-01 | 5.2E-01 | 5.4E-06 | 8.4E-07 | 4.7E-06 | 1.2E-05
0.01 3.3E-02 | 42E-03 | 1.8E-02 | 9.3E-02 | 8.5E-06 | 2.9E-06 | 7.9E-06 | 1.6E-05
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Component . rI:a.k Generic Leak F reql‘lencies Hydrogen Leak Frec'luencies
cton | Mean 5th Median | 95th Mean 5th Median | 95th
0.1 41E-03 | 1.3E-03 | 3.5E-03 | 8.6E-03 | 8.3E-06 | 2.4E-06 | 7.5E-06 | 1.7E-05
1 8.2E-04 | 2.3E-04 | 6.3E-04 | 1.9E-03 | 7.2E-06 | 1.8E-06 | 6.4E-06 | 1.5E-05
0.0001 | 5.9E-04 | 7.1E-05 | 3.6E-04 | 1.8E-03 | 9.5E-06 | 2.1E-06 | 8.0E-06 | 2.2E-05
0.001 8.6E-05 | 1.7E-05 | 6.2E-05 | 2.2E-04 | 45E-06 | 1.1E-06 | 3.7E-06 | 1.1E-05
Pipe 0.01 3.5E-05 | 9.1E-07 | 1.1E-05 | 1.3E-04 | 1.7E-06 | 9.9E-08 | 9.6E-07 | 5.9E-06
0.1 47E-06 | 2.3E-07 | 1.9E-06 | 1.6E-05 | 8.4E-07 | 5.8E-08 | 4.6E-07 | 2.9E-06
1 3.7E-06 | 1.0E-08 | 3.2E-07 | 1.0E-05 | 5.3E-07 | 5.5E-09 | 1.5E-07 | 2.3E-06
0.0001 | 3.9E-02 | 2.4E-03 | 1.8E-02 | 1.3E-01 NA NA NA NA
0.001 6.5E-03 | 8.5E-04 | 4.2E-03 | 1.9E-02 NA NA NA NA
Pump 0.01 2.5E-03 | 9.9E-05 | 9.5E-04 | 8.3E-03 NA NA NA NA
0.1 2.8E-04 | 7.2E-05 | 2.1E-04 | 6.7E-04 NA NA NA NA
1 1.2E-04 | 54E-06 | 49E-05 | 4.1E-04 NA NA NA NA
0.0001 | 2.0E-02 | 2.2E-03 | 1.2E-02 | 6.4E-02 | 29E-03 | 1.9E-03 | 2.9E-03 | 4.2E-03
0.001 2.8E-03 | 5.0E-04 | 1.9E-03 | 7.5E-03 | 6.3E-04 | 2.7E-04 | 5.9E-04 | 1.1E-03
Valve 0.01 1.2E-03 | 2.6E-05 | 3.1E-04 | 4.0E-03 | 8.5E-05 | 6.6E-06 | 5.4E-05 | 2.7E-04
0.1 0.4E-05 | 1.8E-05 | 5.3E-05 | 1.5E-04 | 3.0E-05 | 8.7E-06 | 2.5E-05 | 6.7E-05
1 2.6E-05 | 83E-07 | 8.5E-06 | 9.1E-05 | 1.1E-05 | 4.7E-07 | 4.8E-06 | 4.2E-05
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Hydrogen generation system leak frequencies were estimated via sampling. The leak frequency
distributions for each component and leak size were sampled many times (N = 5e06). Each sample
was then multiplied by the corresponding count of that component type in the hydrogen generation
system to get system-wide component leak frequencies. This assumes that all components of a single
type (e.g., valves) have the same leak frequencies within a single sample realization. The system-wide
component leak frequencies were then added within each leak size bin to get the overall system leak
frequency. For example, the frequency for 1% leaks for the hydrogen generation system is the sum
of the 1% leak frequencies for all compressors, cylinders, joints, pipes, pumps, and valves.

This calculation can be summarized as follows. For a fixed component type, ¢ €

{Compressors, Cylinders, Joints, Pipes, Pumps, Valves}, let N, be the number of components of
that type in the system. Let F, ;(s) denote the ith sampled leak frequency for leaks of size s €
{0.01% 0.1%, 1%, 10%, 100%} for component ¢. Then the system leak frequency, Fsygtem, for the
single realization, i, is:

Fsystem,i(s) = Z(Nc X Fc,i(s))

Sample statistics (5" percentile, median, mean, and 95" percentile) summarizing the system leak
frequency were calculated from the 5e6 samples of Fgystem i(S) for each leak bin. This sample size
proved more than sufficient for stable estimates of these statistics.

3.1. 100 MW Plant Design

Table 3 defines the total number of components in the 100 MW hydrogen generation facility, which
corresponds directly to the leak frequencies listed in Table 9. Table 10 shows the total system
frequency as a function of break size. Note, that the median leak frequency indicates that a very
small leak size (normalized leak area of 0.0001) is fairly common (~ 17 expected occurrences/yr).
However, a full rupture (normalized leak area of 1) is expected to occur less than 8 times every 100
years.

Table 10: 100 MW Hydrogen Facility System Frequency (yr?)

HTEF System Frequency
Leak Size
Mean 5th Median 95th

0.0001 1.80E+01 | 1.19E+01 | 1.74E+01 | 2.61E+01
0.001 3.50E+00 | 1.72E+00 | 3.18E+00 | 6.34E+00
0.01 1.09E+00 | 3.23E-01 8.43E-01 | 2.64E+00
0.1 1.57E-01 8.60E-02 1.48E-01 2.58E-01

1 8.57E-02 3.11E-02 7.23E-02 1.83E-01
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For the sensitivity case in which there is +10% more components, Table 11 shows the resulting
system frequency. As expected, the leak frequency increases due to the additional components. The
median leak frequency indicates that a very small leak size would occur ~19 times a year, while a full
rupture is expected to occur ~8 times every 100 years.

Table 11: 100 MW Sensitivity Case (+10%) System Frequency (yr?)

Leak Size HTEF System Frequency
Mean 5th Median 95th
0.0001 | 1.97E+01 | 1.31E+01 | 1.91E+01 | 2.86E+01
0.001 3.84E+00 | 1.89E+00 | 3.50E+00 | 6.96E+00
0.01 1.19E+00 | 3.55E-01 | 9.26E-01 | 2.90E+00
0.1 1.73E-01 | 9.46E-02 | 1.63E-01 | 2.84E-01
1 9.44B-02 | 3.43E-02 | 7.95E-02 | 2.01E-01

For the sensitivity case in which there is -10% less components, Table 12 shows the resulting system
frequency. The leak frequency decreases due to there being less components. The median leak

frequency indicates that a very small leak size would occur ~16 times a year, while a full rupture is
expected to occur ~7 times every 100 years.

Table 12: 100 MW Sensitivity Case (-10%) System Frequency (yr?)

Leak Size HTEF System Frequency
Mean 5th Median 95th
0.0001 | 1.62E+01 | 1.07E+01 | 1.57E+01 | 2.35E+01
0.001 316E+00 | 1.56E+00 | 2.87E+00 | 5.72E+00
0.01 9.79E-01 | 291E-01 | 7.61E-01 | 2.39E+00
0.1 1.41E-01 | 7.74E-02 | 1.33E-01 | 2.32E-01
1 7.71E-02 | 2.80E-02 | 6.50E-02 | 1.64E-01
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3.2. 500 MW Plant Design

Table 13 shows the total system frequency of the 500 MW design as a function of break size. Note,
that the median leak frequency indicates that a very small leak size (normalized leak area of 0.0001) is
expected to occur more frequently than the 100 MW design (almost 2 occutrences/week). However,
a full rupture (normalized leak area of 1) is expected to occur ~43 times every 100 years.

Table 13: 500 MW Hydrogen Facility System Frequency (yr?)

HTEF System Frequency
Leak Size
Mean 5th Median 95th
0.0001 8.98E+01 | 5.95E+01 | 8.68E+01 | 1.30E+02
0.001 1.75E+01 | 8.63E+00 | 1.59E+01 | 3.17E+01
0.01 5.43E4+00 | 1.62E+00 | 4.23E+00 | 1.32E+01
0.1 7.94E-01 4.35E-01 7.48E-01 1.31E+00
1 4.34E-01 1.57E-01 3.66E-01 9.27E-01

For the sensitivity case in which there is +10% more components, Table 14 shows the resulting
system frequency. The median leak frequency indicates that a very small leak size would occur ~99
times a year, while a full rupture is expected to occur ~48 times every 100 years.

Table 14: 500 MW Sensitivity Case (+10%) System Frequency (yr™?)

Leak Size HTEF System Frequency
Mean 5th Median 95th
0.0001 | 9.88E+01 | 6.54E+01 | 9.55E+01 | 1.43E+02
0.001 1.93E+01 | 9.50E+00 | 1.75E+01 | 3.49E+01
0.01 5.98E+00 | 1.78E+00 | 4.65E+00 | 1.45E+01
0.1 8.73E-01 | 479E-01 | 8.23E-01 | 1.44E+00
1 478E-01 | 1.73E-01 | 4.02E-01 | 1.02E+00
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For the sensitivity case in which there is -10% less components, Table 15 shows the resulting system
frequency. The median leak frequency indicates that a very small leak size would occur ~81 times a
year, while a full rupture is expected to occur ~39 times every 100 years.

Table 15: 500 MW Sensitivity Case (-10%) System Frequency (yr?)

Leak Size HTEF System Frequency
Mean 5th Median 95th
0.0001 | 8.08E+01 | 5.35E+01 | 7.82E+01 | 1.17E+02
0.001 1.58E+01 | 7.77E+00 | 1.43E+01 | 2.86E+01
0.01 4.89E+00 | 1.46E+00 | 3.80E+00 | 1.19E+01
0.1 715E-01 | 3.92E-01 | 6.73E-01 | 1.18E+00
1 391E-01 | 1.42E-01 | 3.29E-01 | 8.34E-01
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3.3. 1,000 MW Plant Design

Table 16 shows the total system frequency of the 1,000 MW design as a function of break size.
Note, that the median leak frequency indicates that a very small leak size (normalized leak area of
0.0001) is expected to occur more frequently than the 100 MW design (~ nearly once every two
days). However, a full rupture (normalized leak area of 1) is expected to occur ~87 times every 100
years.

Table 16: 1,000 MW Hydrogen Facility System Frequency (yr?)

HTEF System Frequency
Leak Size
Mean 5th Median 95th

0.0001 1.80E+02 | 1.19E+02 | 1.74E+02 | 2.61E+02
0.001 3.50E+01 | 1.73E+01 | 3.19E+01 | 6.35E+01
0.01 1.09E+01 | 3.24E+00 | 8.45E+00 | 2.65E+01
0.1 1.59E+00 | 8.71E-01 | 1.50E+00 | 2.62E+00

1 8.69E-01 3.15E-01 7.32E-01 | 1.85E+00

For the sensitivity case in which there is +10% more components, Table 17 shows the resulting
system frequency. The median leak frequency indicates that a very small leak size would occur ~198
times a year, while a full rupture is expected to occur ~96 times every 100 years.

Table 17: 1,000 MW Sensitivity Case (+10%) System Frequency (yr)

Leak Size HTEF System Frequency
Mean 5th Median 95th
0.0001 | 1.98E+02 | 1.31E+02 | 1.91E+02 | 2.87E+02
0.001 3.85E+01 | 1.90E+01 | 3.51E+01 | 6.98E+01
0.01 1.20E+01 | 3.57E+00 | 9.30E+00 | 2.91E+01
0.1 1.75E+00 | 9.58E-01 | 1.65E+00 | 2.88E+00
1 9.56E-01 | 3.47E-01 | 8.05E-01 | 2.04E+00
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For the sensitivity case in which there is -10% less components, Table 18 shows the resulting system
frequency. The median leak frequency indicates that a very small leak size would occur ~162 times a
year, while a full rupture is expected to occur ~78 times every 100 years.

Table 18: 1,000 MW Sensitivity Case (-10%) System Frequency (yr?)

Leak Size HTEF System Frequency
Mean 5th Median 95th
0.0001 | 1.62E+02 | 1.07E+02 | 1.56E+02 | 2.35E+02
0.001 3.15E+01 | 1.56E+01 | 2.87E+01 | 5.71E+01
0.01 9.79E+00 | 2.92E+00 | 7.61E+00 | 2.38E+01
0.1 1.43E+00 | 7.84E-01 | 1.35E+00 | 2.36E+00
1 7.82E-01 | 2.84E-01 | 6.58E-01 | 1.67E+00
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4. TARGET FRAGILITY

The fragility of a component at an NPP defines the hazard condition at which the component may
fail to perform its specified function. NPPs must show that the operation of a hydrogen generation
facility is safe and does not pose a significant threat to the high consequence NPP facilities and
structures. Target fragilities are calculated for two hazards: detonation overpressure and fire heat
flux.

4.1. Detonation Overpressure Fragility

Previously, the critical structures outside of the reactor building and their corresponding
overpressure fragility have been identified [3]. Table 19 shows the blast overpressure fragilities of
these critical structures. These effective pressures will be used in the consequence analysis herein to
define distances from the leak at which these levels are reached.

Table 19: Blast Overpressure Fragilities of Critical Structures

Critical Effective Total Fragility

Structure Pressure (Wind and
(psi) Missiles)

All Category I 0.59 0

Structures
0.97 4.00E-04
1.49 4.60E-03
2.16 4.00E-02

Storage Tanks 0.59 2.10E-03

(CST, RWST,

etc.) 0.97 2.80E-03
1.49 1.60E-02
2.16 5.40E-02

Circulating 0.1 8.00E-04

Water/Service

Water Pump 0.2 5.80E-02

Area in Pump

House 0.28 1.50E-01
0.59 5.20E-01
0.97 9.40E-01
1.49 1.00E+00
2.16 1.00E+00
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Critical Effective Total Fragility
Structure Pressure (Wind and
(psi) Missiles)
Switchyard, 0.32 3.78E-01
General
0.48 9.74E-01
0.71 1.00E+00
Transmission 0.1 0.00E+00
Tower
0.16 0.00E+00
0.2 8.00E-01
0.32 9.18E-01
0.48 1.00E+00
0.71 1.00E+00
Standby 0.32 1.99E-01
Auxiliary
Transformer 0.48 2.68E-01
0.71 3.11E-01
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For the consequences evaluated herein, the distance from the leak at which each discrete
overpressure value from Table 19 is reached is reported for input into the probabilistic risk
assessment (PRA) model. Table 20 documents the discrete values evaluated in this report.
Additionally, the general overpressure fragility value of 1 psi documented in Regulatory Guide 1.91
was evaluated [4].

Table 20: Discrete Fragility Overpressure Values

Effective
Pressure
psi kPa
0.1 0.69
0.16 1.1
0.2 1.38
0.28 1.93
0.32 2.21
0.48 3.31
0.59 4.07
0.71 4.9
0.97 6.69
1.0 6.90
1.49 10.27
1.50 10.34
2.16 14.89
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4.2. Radiative Heat Flux

In addition to the overpressure consequence, the thermal radiation from a jet fire event was
quantified for the different leak scenarios. The thermal radiation contour levels used to define
distances from the accident were based on industry values used in risk and safety analyses [5]. These
values, and their definitions, are documented below.

o 37.5kw/m2

= Sufficient to cause damage to process equipment
o 25kw/m2

* Minimum energy required to ignite wood at indefinitely long exposure
o 12.5kw/m2

*  Minimum energy required for piloted ignition of wood, and melting of plastic
tubing. This value is typically used as a fatality number

o 9.5kw/m2
= Sufficient to cause pain in 8 seconds and 2nd degree burns in 20 seconds
o 5kw/m2

= Sufficient to cause pain in 20 seconds. 2nd degree burns are possible. 0
percent fatality. This value is often used as an injury threshold
o 1.6kw/m2

= Discomfort for long exposures
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5. CONSEQUENCE EVALUATION METHODOLOGY

The consequence of an accident in the hydrogen generation facility is an important parameter in the
overall risk assessment. A leak in the system could release an unconfined high-pressure hydrogen jet
with the potential to damage surrounding structures. The flammable jet released from the leak could
result in a detonation, which would expose nearby targets to damaging overpressure. However, due
to the strong concentration gradients in the hydrogen jet, the detonable region of the cloud is
reduced when compared to the total amount of fuel within the flammability range. Detonations are
inherently unstable and depend on critical dimensions and the concentration gradient of the
hydrogen jet, which determine if a propagating detonation wave can be supported. The limits of the
hydrogen concentration in the jet to support detonation reduce the portion of the flammable cloud
that is available as fuel. The overpressure released through detonation of the large cloud can be
calculated from the detonable region, which is compared to the target fragility criteria to determine if
critical damage occurs [6]. In addition to an overpressure event, the hydrogen plume may ignite and
result in a jet flame. In this case, the thermal radiation from the flame is the metric of concern in
terms of consequence of the accident. Note that this analysis does not account for possible natural
and man-made barriers between the detonation area and the targets (i.e., the facility walls were not
credited to reduce the overpressure at the critical NPP targets).

HyRAM+ Version 5.0 was used to perform the consequence quantification for the leak scenarios at
a hydrogen generation facility near an NPP. The HyRAM+ software toolkit integrates data and
methods relevant to assessing the safety of the delivery, storage, and use of hydrogen and other
alternative fuels. It incorporates experimentally validated models of various aspects of release and
flame behavior. The technical reference manual details the methodology and equations that are used
to evaluate overpressure and heat flux as a result of a hydrogen release [7]. The physics models
utilized in this evaluation are listed below:

- For our base case evaluation of overpressure as a result of detonation of a hydrogen plume
resulting from a leak in the hydrogen generation facility, the Bauwens method for
unconfined overpressure was utilized. In this method, the detonable mass within the
unconfined hydrogen plume is calculated and then the overpressure is based on detonation
of that mass of fuel [7].

- An additional sensitivity evaluation for the overpressure analysis was performed using the
Trinitrotoluene (TNT) equivalence method. This method is based on finding the mass of
TNT that contains the same energy as the fuel being combusted [7].

- The radiative heat flux from an ignited hydrogen plume is calculated in HyRAM+ by using a
weighted, multi-source model [7].
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6. CONSEQUENCE ASSESSMENT

In order to perform the consequence assessment, the conceptual design of the hydrogen generation
facility was reviewed to define the key accident impact scenarios. Next, the system properties for
each of the scenarios were defined. The metrics of interest, overpressure and radiative heat flux,
were then evaluated as a function of distance from the accident source to determine the extent of
impact. All results are reported as the nearest whole meter that does not exceed the parameter of
interest.

6.1. Accident Impact Scenarios

The accident impact scenarios are defined by the different sections outlined in the Sargent & Lundy
conceptual design of the 100 MW hydrogen generation facility [2]. There are six sections in the
conceptual design that have unique system parameters (pressure, temperature, etc.). A scenario was
evaluated for each of these different sections to capture the full range of system parameters that are
present in the facility. Table 21 outlines the different scenarios and corresponding system
parameters. Note, that for each scenario, the composition of the gas was assumed to be 100%
hydrogen. Also, for the scenarios that did not result in a choked flow condition from the leak
(Scenarios 1, 2, and 3), the mass flowrate was used to define the hydrogen plume. Section 4 and 5
have the same system parameters, only the hydrogen percentage is different. Therefore, only a
single evaluation was performed for these sections. These accident impact scenarios are applicable to
the 500 MW and 1,000 MW designs as well, due to the assumptions made in the facility component
list definition (see Sections 2.2 and 2.3).

Table 21: Accident Impact Scenarios and System Parameters

Scenario Description System Parameters Pipe size | Pipe ID
# Pressure Temp m (Ib/s) (SCHL40) (in)
(psig) (F)
1 Module 0.4 356 0.031 1.5 1.61
2 Heat Exchanger 0.4 140 0.183 3 3.068
3 Blower 5 140 0.183 3 3.068
4 1st Compression 300 140 1.833 4 4.026
5 Purification 300 140 1.833 4 4.026
6 2nd Compression 1500 140 1.833 3 3.068
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As noted in Section 2.2 and 2.3, it is assumed that the parallel piping in the 500 MW and 1,000 MW
designs join in 2 common header downstream of 2™ compression. This line will then connect to a
hydrogen storage facility that is assumed to have 1,000 kg of hydrogen storage. The storage facility is
not co-located with the hydrogen generation facility. Accident impact scenarios are defined to
evaluate the consequence of an overpressure event from the common headers and storage facility.

The common header downstream of 2™ compression is assumed to be underground and be
encompassed by concrete piping. Therefore, there is mitigation to blast effects and radiative heat
flux should a leak occur. Additionally, the confined space around the header would prevent the
formation of a hydrogen plume. However, the unmitigated/unobstructed overpressure of a
detonation event is evaluated herein to identify the potential impact of a leak from the common
header and inform mitigation strategy. To perform this evaluation, the size of the common header is
estimated based on the total expected flowrate for the 500 MW and 1,000 MW designs. The
recommended range of flow velocity for gases in piping systems is between 10 and 30 m/s [8]. The
minimum pipe size necessary to accommodate the total flow is estimated using a flow velocity of 30
m/s, the mass balance equation (assuming incompressible flow), and the flowrates and properties
defined for Section 6 in the 100 MW conceptual design [2].

m = vAp
Where:
m is the mass flow rate
For 500 MW, 9.165 1b/s (5x the flowrate defined in the 100 MW design) [2]
For 1,000 MW, 18.33 Ib/s (10x the flowrate defined in the 100 MW design) [2]

p is the density of hydrogen at 140 °F and 1,514.7 psia, 0.4485 Ib/ft’ (calculated in
HyRAM+)

v is the flow velocity, 30 m/s [8]

A is the cross-sectional area of the pipe, which is calculated for the 500 MW and 1,000 MW
designs
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The resulting minimum pipe diameter of the header for the 500 MW and 1,000 MW designs are 6.2
inches and 8.7 inches, respectively. To accommodate these minimum pipe diameters, an 8”, SCH 40
steel pipe (ID 7.981”) and 107, SCH 40 steel pipe (ID 10.020”) [9] are used to define the common
header accident impact scenarios for the 500 MW and 1,000 MW designs, respectively. Table 22
shows the accident impact scenarios evaluated to address the common header for the 500 MW and
1,000 MW designs.

Table 22: Accident Impact Scenarios and System Parameters for Common Headers

Scenario Description System Parameters Pipe size | Pipe ID
# SCH 40 i
Pressure Temp m (Ib/s) ( ) (in)
(psig) (F)

7 500 MW 1500 140 9.165 8 7.981
Common Header

8 1,000 MW 1500 140 18.33 10 10.020
Common Header

To address the consequence of a leak at the hydrogen storage facility, an accident impact scenario
for a leak from a hydrogen storage tank is evaluated. It is assumed that the storage of 1,000 kg of
hydrogen at the facility will be accomplished through the use of several transportable hydrogen
storage tanks. A survey of commercially available hydrogen storage tanks yielded a 994 L, 23.9 kg
hydrogen storage tank at 35 MPa (5,076 psi) and 15 °C (59 °F) [10]. It is assumed that the storage
facility will use 42 of these tanks to store the 1,000 kg of hydrogen. The size of the leak from one of
the storage tanks is defined by the orifice diameter of the pressure relief device (PRD) installed on
the tank. PRDs are installed on high-pressure hydrogen systems as the main mitigation safeguard to
prevent catastrophic failure. For hydrogen storage up to 95 MPa, a PRD with an orifice diameter of
0.25 inches has been shown to be effective in performing its venting function [11]. Therefore, it is
assumed that the leak diameter for the hydrogen storage accident impact scenario is 0.25 inches.

Table 23: Accident Impact Scenarios and System Parameters for Storage Tank

Scenario Description System Parameters Leak
# ) Diameter
Pressure Temp m (Ib/s) (in)
(psig) (F)
9 Hydrogen Storage 5,076 59 N/A 0.25
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Full-bore leaks were analyzed for each of the different scenarios as the bounding consequence in a
given section. For Scenarios 4, 5, 6, 7, and 8partial leaks were also analyzed. The partial break sizes
that were analyzed were 10% of leak area and 1% of leak area, which correspond to the leak
frequency categories (see Section 3). Table 24 documents the leak diameter calculations for the
partial break scenarios.

Table 24: Leak Diameter for Partial Break Scenarios
Relative 3.068" Pipe ID 4.029" Pipe ID 7.981" Pipe 10.020" Pipe

Leak Area ID ID
D A D A D A D A
1] 3.07 7.39 | 4.03 12.74 | 798 | 50.00 | 10.02| 78.81
0.1 097 0.74 | 1.27 1.27 | 2.52 5.00 3.17 7.88
0.01 | 0.31 0.074 | 0.40 0.13 | 0.80 0.50 1.00 0.79
0.001 | 0.10 0.0074 | 0.13 0.013 | 0.25 0.05 0.32 0.08
0.0001 | 0.03 0.00074 | 0.04 | 0.0013 | 0.08 | 0.005 0.10 | 0.008

6.2. Overpressure

This section documents the results of the overpressure consequence analysis for the scenarios
outlined in Section 6.1. As stated previously, the Bauwens methodology to calculated unconfined
overpressure was utilized to perform the base case simulations. Additionally, the TNT equivalence
method was evaluated as a sensitivity to address uncertainty in the calculation methodology. See the
HyRAM+ technical reference manual for more detail on these models [7]. Traceability figures for
the calculations performed in HyRAM+ are included in Appendix A.
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6.2.1. Scenario 1,2 & 3

Due to the system parameters for Scenarios 1, 2, & 3, the leak flow is unchoked. For these cases,
the mass flowrate was used in HyRAM+ to dictate the resulting hydrogen plume. Because none of
the full-bore leak scenarios resulted in appreciable overpressure at distance, no partial breaks were
evaluated for these cases. Table 25 shows the distance at which the overpressure generated from the
detonation did not exceed the discrete fragility overpressure values. As shown, Scenario 3 is the
limiting scenario in this set. The overpressure in this scenario is less than 0.1 psi at a distance of 30
meters from the accident location.

Table 25: Scenario 1, 2, & 3 Overpressure Results

Overpressure

Effective Scenario 1 Scenario 2 Scenario 3

Pressure Distance Distance Distance
i | kP (m) (m) (m)
0.1 0.69 9 26 29
0.16 1.1 6 19 21
0.2 1.38 6 16 18
0.28 1.93 5 13 15
0.32 221 5 12 14
0.48 3.31 A 10 11
0.59 4.07 3 9 10
0.71 4.9 3 8 9
0.97 6.69 3 7 8

1 6.90 3 7 8
1.49 | 10.27 3 6 6
1.5 10.34 3 6 6
2.16 | 14.89 2 5 6
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Figure 3 shows the overpressure as a function of distance from the leak location. As shown, the
overpressure drops below 1 psi less than 10 meters from the leak location for each of the scenarios.

Scenario 1,2, &3

Scenario 3

Scenario 2

Scenario 1

10

Overpressure (psi)
L

0 2 - 6 8 10 12 14 16 18

Distance from Leak (m)

Figure 3: Scenario 1, 2, & 3 Overpressure Results
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6.2.2.

Scenario 4 & 5

As discussed previously, the system parameters for Scenario 4 & 5 are identical, so a single case was
evaluated to cover both scenarios. However, for these scenarios, 10% and 1% area partial break
cases were also evaluated. Table 26 shows the distance at which the overpressure generated from
the detonation did not exceed the discrete fragility overpressure values. As shown, the overpressure
drops below 1 psi at 34 meters for the full-bore break case. The partial break cases show that

overpressure is reduced considerably as the leak size is reduced.

Table 26: Scenario 4 & 5 Overpressure Results

Scenario 4 & 5: Overpressure

Effective 100% Area 10% Area 1% Area

Pressure Distance (m) Distance (m) Distance (m)
psi kPa
0.1 0.69 140 37 9
0.16 1.1 102 27 6
0.2 1.38 88 23 6
0.28 1.93 71 19 5
0.32 2.21 65 18 4
0.48 3.31 51 14 4
0.59 4.07 45 12 3
0.71 4.9 41 11 3
0.97 6.69 34 10 3

1 6.90 34 10 3
1.49 | 10.27 28 8 2
1.5 10.34 28 8 2
2.16 | 14.89 24 7 2
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Figure 4 shows the overpressure as a function of distance from the leak location. As shown, the
overpressure drops below 1 psi in less than 10 meters for both of the partial breaks analyzed. The
tull-bore scenario drops below 1 psi at 34 meters from the leak location.

Scenario 4 & 5: Downstream of 1st Compression and Purification

100% 10% 1%
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Overpressure (psi)
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Distance from Leak (m)

Figure 4: Scenario 4 & 5 Overpressure Results
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6.2.3. Scenario 6

The system parameters for Scenario 6 represent the limiting conditions in terms of consequence in
the 100 MW hydrogen generation facility. For this scenario, 10% and 1% area partial break cases
were also evaluated. Table 27 shows the distance at which the overpressure generated from the
detonation did not exceed the discrete fragility overpressure values. As shown, the overpressure
drops below 1 psi at 61 meters for the full-bore break case. Similar to Scenario 4 & 5, the partial

break cases show that overpressure is reduced considerably as the leak size is reduced.

Table 27: Scenario 6 Overpressure Results

Scenario 6: Overpressure

Effective 100% Area 10% Area 1% Area

Pressure Distance (m) Distance (m) Distance (m)
psi kPa
0.1 0.69 258 72 17
0.16 1.1 187 52 13
0.2 1.38 161 45 11
0.28 1.93 129 36 9
0.32 2.21 118 33 9
0.48 3.31 92 26 7
0.59 4.07 81 23 6
0.71 4.9 73 21 6
0.97 6.69 62 18 5

1 6.90 601 18 5
1.49 | 10.27 49 15 4
1.5 10.34 49 14 4
2.16 | 14.89 42 12 4

42




Figure 4 shows the overpressure as a function of distance from the leak location. As shown, the
overpressure drops below 1 psi less than 20 meters for both of the partial breaks analyzed. The full-
bore scenario drops below 1 psi at 61 meters from the leak location.

Scenario 6: Downstream of 2nd Compression
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Figure 5: Scenario 6 Overpressure Results
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6.2.4. Scenario 7

The system parameters for Scenario 7 are evaluated to inform the necessity for appropriate
mitigation strategies for the 500 MW plant if a common header is used to transport the hydrogen to
a storage facility. For this scenario, 10% and 1% area partial break cases were also evaluated. Table
28 shows the distance at which the overpressure generated from the detonation did not exceed the
discrete fragility overpressure values. As shown, the overpressure drops below 1 psi at 168 meters
for the full-bore break case. Similar to the other scenarios, the partial break cases show that

overpressure is reduced considerably as the leak size is reduced.

Table 28: Scenario 7 Overpressure Results

Scenario 7: Overpressure
Effective 100% Area 10% Area 1% Area
Pressure Distance (m) Distance (m) Distance (m)

psi kPa
0.1 0.69 734 210 57
0.16 1.1 530 153 42
0.2 1.38 456 131 36
0.28 1.93 365 105 29
0.32 2.21 334 97 27
0.48 3.31 259 75 21
0.59 4.07 228 67 19
0.71 4.9 204 60 17
0.97 6.69 171 50 14

1 6.90 168 50 14
1.49 | 10.27 136 40 12
1.5 10.34 136 40 12
2.16 | 14.89 114 34 10
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Figure 6 shows the overpressure as a function of distance from the leak location. As shown, the
overpressure drops below 1 psi less than 50 meters for both of the partial breaks analyzed. The full-
bore scenario drops below 1 psi at 168 meters from the leak location.

Scenario 7: 500 MW Common Header
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Figure 6: Scenario 7 Overpressure Results
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6.2.5. Scenario 8

The system parameters for Scenario 8 are evaluated to inform the necessity for appropriate
mitigation strategies for the 1,000 MW plant if a common header is used to transport the hydrogen
to a storage facility. For this scenario, 10% and 1% area partial break cases were also evaluated.
Table 29 shows the distance at which the overpressure generated from the detonation did not
exceed the discrete fragility overpressure values. As shown, the overpressure drops below 1 psi at
215 meters for the full-bore break case. Similar to the other scenarios, the partial break cases show
that overpressure is reduced considerably as the leak size is reduced.

Table 29: Scenario 8 Overpressure Results

Scenario 8: Overpressure
Effective 100% Area 10% Area 1% Area
Pressure Distance (m) Distance (m) Distance (m)

psi kPa
0.1 0.69 943 266 74
0.16 1.1 0681 193 54
0.2 1.38 585 166 47
0.28 1.93 468 133 38
0.32 2.21 429 122 35
0.48 3.31 331 95 27
0.59 4.07 292 84 24
0.71 4.9 262 76 22
0.97 6.69 219 64 18

1 6.90 215 63 18
1.49 | 10.27 174 51 15
1.5 10.34 173 51 15
2.16 | 14.89 145 43 13
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Figure 7 shows the overpressure as a function of distance from the leak location. As shown, the
overpressure drops below 1 psi less than 65 meters for both of the partial breaks analyzed. The full-
bore scenario drops below 1 psi at 215 meters from the leak location.

Scenario 8: 1,000 MW Common Header
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Figure 7: Scenario 8 Overpressure Results
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6.2.6. Scenario 9

The system parameters for Scenario 9 are evaluated to inform the consequence of a leak from a
nearby storage facility. There are many options that a utility can choose for hydrogen storage (tank
size, pressure, PRD size, etc.). A commercially available tank was evaluated for a PRD release to
illustrate a typical consequence at a storage facility. Because the full-bore leak scenario did not result
in appreciable overpressure at distance, no partial breaks were evaluated for this case. Table 30
shows the distance at which the overpressure generated from the detonation did not exceed the
discrete fragility overpressure values. As shown, the overpressure drops below 1 psi at 8 meters for
the full-bore break case.

Table 30: Scenario 9 Overpressure Results

Effective Scenario 9
Pressure 100% Area
psi \Pa Distance (m)

0.1 0.69 32
0.16 1.1 23
0.2 1.38 20
0.28 1.93 16
0.32 2.21 15
0.48 3.31 12
0.59 4.07 11
0.71 4.9 10
0.97 6.69 8
1 6.90 8
1.49 10.27 7
1.5 10.34 7
2.16 14.89 6
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Figure 8 shows the overpressure as a function of distance from the leak location. As shown, the
overpressure drops below 1 psi around 8 meters for the full-bore leak scenario.

Case 9: Storage PRD 100% Leak
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Figure 8: Scenario 9 Overpressure Results
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6.2.7.

To quantify the uncertainty in the methodology used to calculate the overpressure results, a different
unconfined overpressure method was used in a sensitivity analysis. The TNT equivalence method
was evaluated for each of the scenarios to identify the difference in set-back distances between the
two methods. The HyRAM+ technical reference manual includes details on the default inputs and
equations used to perform the TNT equivalence calculations [7]. Note, a 3% equivalence factor is
used to scale the flammable mass. This is the default value in HyRAM+ for TNT equivalence
calculations, which is the recommended value from the Center for Chemical Process Safety [12].
Table 31 through Table 36 show the overpressure results from the TNT equivalence method
sensitivity. The TINT equivalence method resulted in larger distances to the discrete overpressure

Sensitivity Analysis

values than that of the Bauwens methodology.

Table 31: Scenario 1, 2, & 3 TNT Equivalence Sensitivity Results

Overpressure
Effective Scenario 1 Scenario 2 Scenario 3
Pressure Distance (m) Distance (m) Distance (m)
psi kPa
0.48 3.31 7 16 16
0.59 4.07 6 14 14
0.71 4.9 6 12 13
0.97 6.69 5 10 11
1 6.90 5 10 10
1.49 | 10.27 4 8 8
1.5 10.34 4 8 8
2.16 | 14.89 3 7 7
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Table 32: Scenario 4 & 5 TNT Equivalence Sensitivity Results

Scenario 4 & 5: Overpressure

Effective 100% Area 10% Area 1% Area

Pressure Distance (m) Distance (m) Distance (m)
psi kPa
0.48 3.31 80 26 8
0.59 4.07 69 22 7
0.71 4.9 61 20 7
0.97 6.69 51 16 5

1 6.90 49 16 5
1.49 | 10.27 39 13 4
1.5 10.34 39 13 4
2.16 | 14.89 33 11 4

Table 33: Scenario 6 TNT Equivalence Sensitivity Results

Scenario 6: Overpressure

Effective 100% Area 10% Area 1% Area

Pressure Distance (m) Distance (m) Distance (m)
psi kPa
0.48 3.31 131 42 14
0.59 4.07 113 36 12
0.71 4.9 101 32 11
0.97 6.69 83 27 9

1 6.90 81 26 9
1.49 | 10.27 64 21 7
1.5 10.34 64 21 7
2.16 | 14.89 53 17 6
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Table 34: Scenario 7 TNT Equivalence Sensitivity Results

Scenario 7: Overpressure

Effective 100% Area 10% Area 1% Area
Pressure Distance (m) Distance (m) Distance (m)
psi kPa
0.48 3.31 331 108 35
0.59 4.07 285 93 30
0.71 4.9 254 83 27
0.97 6.69 209 68 22
1 6.90 204 67 22
1.49 | 10.27 161 53 17
1.5 10.34 161 53 17
2.16 | 14.89 135 44 14

Table 35: Scenario 8 TNT Equivalence Sensitivity Results

Scenario 8: Overpressure

Effective 100% Area 10% Area 1% Area

Pressure Distance (m) Distance (m) Distance (m)
psi kPa
0.48 3.31 408 136 44
0.59 4.07 352 117 38
0.71 4.9 314 104 34
0.97 6.69 258 86 28

1 6.90 252 84 27
1.49 | 10.27 199 66 21
1.5 10.34 199 66 21
2.16 | 14.89 167 55 18
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Table 36: Scenario 9 TNT Equivalence Sensitivity Results

Effective Scenario 9
Pressure 100% Area
psi Pa Distance (m)

0.48 3.31 22
0.59 4.07 19
0.71 4.9 17
0.97 6.69 14
1 6.90 14
1.49 10.27 11
1.5 10.34 11
2.16 14.89 9
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Figure 9 through Figure 14 show comparison plots between the two methodologies for each of the
scenarios. As shown, the TNT method is limiting for each of the scenarios.
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Figure 9: Scenario 1, 2, & 3 Sensitivity Results Comparison
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Figure 10: Scenario 4 & 5 Sensitivity Results Comparison
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Figure 13: Scenario 8 Sensitivity Results Comparison
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Figure 14: Scenario 9 Sensitivity Results Comparison
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Table 37 through Table 42 shows a comparison of the results between the two methodologies. As
mentioned, the TNT equivalence method results in larger distances at each of the discrete
overpressure fragility values. Generally, the difference between the two models increases as the
distance from the leak increases. For the 0.48 psi fragility value, the largest nominal difference was
seen in Scenario 8 at 77 meters.

Table 37: Scenario 1, 2, & 3 Sensitivity Results Comparison

Scenario 1, 2 & 3: Overpressure
Effective % Increase for TN'T Method Nominal Increase for TN'T Method
Pressure Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
Distance | Distance | Distance | Distance | Distance | Distance
psi | kPa (m) (m) (m) (m) (m) (m)
0.48 3.31 75% 60% 45% 3 6 5
0.59 4.07 100% 56% 40% 3 5 4
0.71 4.9 100% 50% 44% 3 4 4
0.97 6.69 67% 43% 38% 2 3 3
1 6.90 67% 43% 25% 2 3 2
1.49 | 10.27 33% 33% 33% 1 2 2
1.5 10.34 33% 33% 33% 1 2 2
2.16 | 14.89 50% 40% 17% 1 2 1
Average % Increase for TNT Average Nominal Increase for TNT
Method Method
66% 45% 34% 2 3.375 2.875
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Table 38: Scenario 4 & 5 Sensitivity Results Comparison

Scenario 4 & 5: Overpressure

Effective % Increase for TN'T Method Nominal Increase for TNT Method
Pressure  17100% Area | 10% Area | 1% Arca | 100% Area | 10% Area | 1% Area
Distance Distance | Distance | Distance | Distance | Distance
psi | kPa (m) (m) (m) (m) (m) (m)
0.48 3.31 57% 86% 100% 29 12 4
0.59 4.07 53% 83% 133% 24 10 4
0.71 4.9 49% 82% 133% 20 9 4
0.97 6.69 50% 60% 67% 17 6 2
1 6.90 44%, 60% 67% 15 6 2
1.49 | 10.27 39% 63% 100% 11 5 2
1.5 10.34 39% 63% 100% 1 5 2
2.16 | 14.89 38% 57% 100% 9 4 2
Average % Increase for TNT Average Nominal Increase for TN'T
Method Method
46% 69% 100% 17 7.125 2.75

60




Table 39: Scenario 6 Sensitivity Results Comparison

Scenario 6: Overpressure

Effective % Increase for TN'T Method Nominal Increase for TNT Method
Pressure 171009 Area | 10% Area | 1% Arca | 100% Asca | 10% Area | 1% Area
Distance Distance | Distance | Distance | Distance | Distance
psi | kPa (m) (m) (m) (m) (m) (m)
0.48 3.31 42% 62% 100% 39 16 7
0.59 4.07 40% 57% 100% 32 13 6
0.71 4.9 38% 52% 83% 28 11 5
0.97 6.69 34% 50% 80% 21 9 4
1 6.90 33% 44% 80% 20 8 4
1.49 | 10.27 31% 40% 75% 15 6 3
1.5 10.34 31% 50% 75% 15 7 3
2.16 | 14.89 26% 42% 50% 11 5 2
Average % Increase for TNT Average Nominal Increase for TN'T
Method Method
34% 50% 80% 22.625 9.375 4.25
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Table 40: Scenario 7 Sensitivity Results Comparison

Scenario 7: Overpressure

Effective % Increase for TN'T Method Nominal Increase for TN'T Method
Pressure 71009 Area | 10% Area | 1% Arca | 100% Arca | 10% Area | 1% Area
Distance Distance | Distance | Distance | Distance | Distance
psi | kPa (m) (m) (m) (m) (m) (m)
0.48 3.31 28% 44% 67% 72 33 14
0.59 4.07 25% 39% 58% 57 26 11
0.71 4.9 25% 38% 59% 50 23 10
0.97 6.69 22% 36% 57% 38 18 8
1 6.90 21% 34% 57% 36 17 8
1.49 10.27 18% 33% 42% 25 13 5
1.5 10.34 18% 33% 42% 25 13 5
2.16 14.89 18% 29% 40% 21 10 4
Average % Increase for TNT Average Nominal Increase for TN'T
Method Method
22% 36% 53% 40.5 19.125 8.125
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Table 41: Scenario 8 Sensitivity Results Comparison

Scenario 8: Overpressure

Effective % Increase for TN'T Method Nominal Increase for TN'T Method
Pressure  17100% Area | 10% Area | 1% Arca | 100% Area | 10% Area | 1% Area
Distance Distance | Distance | Distance | Distance | Distance
psi | kPa (m) (m) (m) (m) (m) (m)
0.48 3.31 23% 43% 63% 77 41 17
0.59 4.07 21% 39% 58% 60 33 14
0.71 4.9 20% 37% 55% 52 28 12
0.97 6.69 18% 34% 56% 39 22 10
1 6.90 17% 33% 50% 37 21 9
1.49 10.27 14% 29% 40% 25 15 6
1.5 10.34 15% 29% 40% 26 15 6
2.16 14.89 15% 28% 38% 22 12 5
Average % Increase for TNT Average Nominal Increase for TN'T
Method Method
18% 34% 50% 42.25 23.375 9.875
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Table 42: Scenario 9Sensitivity Results Comparison

Scenario 9: Overpressure

Effective % Increase for TNT Method Nominal Increase for TNT Method
Pressure
100% Area Distance (m) 100% Area Distance (m)
psi kPa
0.48 3.31 83% 10
0.59 4.07 73% 8
0.71 4.9 70% 7
0.97 0.69 75% 6
1 6.90 75% 6
1.49 | 10.27 57% 4
1.5 10.34 57% 4
216 | 14.89 50% 3
Average % Increase for TNT Average Nominal Increase for TN'T
Method Method
68% 6
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6.3. Radiative Heat Flux

The radiative heat flux from a jet flame resulting from an ignited hydrogen leak was also evaluated as
a potential consequence. HyRAM+ was utilized to perform the radiative heat flux calculations as a
function of distance [7]. Note, the jet flame resulting from an ignited hydrogen leak does not remain
completely horizontal due to buoyancy. Therefore, the y-value (height) at which the heat flux is
reported is not zero. The jet flame will rise at different rates based on the varying input parameters.
The heat flux reported in these results is at the y-coordinate that represents 75% of the visible flame
length along the streamline of the jet flame, which is different for each case. Note, this is the default
behavior in HyRAM+ [7].

6.3.1. Scenarios 1,2, & 3

Similar to the overpressure evaluation, only full-bore leaks were evaluated for Scenario 1, 2, and 3.
Table 43 shows the results for the different radiation levels outlined in Section 4. As shown, even
for the lowest radiation fragility value, the set-back distance is within 15 m from the leak source.

Table 43: Scenario 1, 2, & 3 Heat Flux Results

Heat Flux
Radiation Level | Scenariol | Scenario 2 | Scenario 3
(kw/m?) Distance Distance Distance
(m) (m) (m)
1.6 6 13 13
5 5 10 10
9.5 5 9 9
12,5 5 9 9
25 4 8 8
37.5 4 8 8
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Figure 15 shows the heat flux as a function of distance from the leak for Scenario 1, 2, & 3. As
shown, the heat flux drops rapidly as the distance from the leak increases.

Scenario 1 (0.73 m elevation), 2 (2.31 m elevation), & 3 (2.57 m elevation)

Scenario 1

Scenario 2

Scenario 3

] w w £
%3] ] %] o]

]
[=]

Heat Flux (kw/m?2)

15

10

0 2 4 6 8 10 12 14 16 18
Distance from Leak (m)

Figure 15: Scenario 1, 2, & 3 Heat Flux Results
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6.3.2. Scenarios 4 &5

Full-bore, 10%, and 1% area partial break cases were evaluated for Scenario 4 and 5. Table 44 shows
the results for the different radiation levels outlined in Section 4. As shown, the minimum heat flux
sufficient to cause damage to process equipment (37.5 kw/m?) occurs at 56 meters for the full-bore

leak. As with overpressure, the heat flux is significantly reduced as the break size decreases.

Table 44: Scenario 4 & 5 Heat Flux Results

Scenario 4 & 5: Heat Flux
Radiation Level | 100% Area | 10% Area 1% Area
(kw/m?) Distance Distance Distance
(m) (m) (m)
1.6 115 35 10
5 82 26 8
9.5 70 23 7
12.5 66 22 7
25 59 20 6
37.5 56 19 6

67



Figure 16 shows the heat flux as a function of distance from the leak for Scenario 4 & 5. Similar to
the overpressure, the full-bore leak results in much further distances to discrete heat flux values than
the partial leak cases.

Scenario 4 & 5: Downstream of 1st Compression and Purification
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Figure 16: Scenario 4 & 5 Heat Flux Results
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6.3.3. Scenario 6

The system parameters for Scenario 6 represent the limiting conditions in terms of consequence in
the 100 MW hydrogen generation facility for heat flux as well. For this scenario, 10% and 1% area
partial break cases were also evaluated. Table 45 shows the results for the different radiation levels
outlined in Section 4. As shown, the minimum heat flux sufficient to cause damage to process
equipment (37.5 kw/m?) occurs at 88 meters for the full-bore leak. As with overpressure, the heat
flux is significantly reduced as the break size decreases.

Table 45: Scenario 6 Heat Flux Results

Scenario 6: Heat Flux
Radiation Level | 100% Area | 10% Area 1% Area
(kw/m?) Distance Distance Distance
(m) (m) (m)

1.6 192 60 17

5 135 44 13

9.5 115 38 12

12.5 108 36 11

25 94 33 11

37.5 88 31 10
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Figure 17 shows the heat flux as a function of distance from the leak for Scenario 6. Similar to the
overpressure, the full-bore leak results in much further distances to discrete heat flux values than the
partial leak cases.

Scenario 6: Downstream of 2nd Compression
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Figure 17: Scenario 6 Heat Flux Results
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6.3.4. Scenario 7

The system parameters for Scenario 7 represent the limiting conditions in terms of consequence in
the 500 MW hydrogen generation facility. For this scenario, 10% and 1% area partial break cases
were also evaluated. Table 46 shows the results for the different radiation levels outlined in Section
4. As shown, the minimum heat flux sufficient to cause damage to process equipment (37.5 kw/m?)
occurs at 208 meters for the full-bore leak. As with overpressure, the heat flux is significantly
reduced as the break size decreases.

Table 46: Scenario 7 Heat Flux Results

Scenario 7: Heat Flux
Radiation Level | 100% Area | 10% Area 1% Area
(kw/m?) Distance Distance Distance
(m) (m) (m)
1.6 503 157 48
5 344 111 36
9.5 286 94 31
12.5 266 89 30
25 226 78 27
37.5 208 74 26
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Figure 18 shows the heat flux as a function of distance from the leak for Scenario 7. Similar to the
overpressure, the full-bore leak results in much further distances to discrete heat flux values than the
partial leak cases.

Scenario 7: 500 MW Combined Header
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Figure 18: Scenario 7 Heat Flux Results
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6.3.5. Scenario 8

The system parameters for Scenario 8 represent the limiting conditions in terms of consequence in
the 1,000 MW hydrogen generation facility. For this scenario, 10% and 1% area partial break cases
were also evaluated. Table 47 shows the results for the different radiation levels outlined in Section
4. As shown, the minimum heat flux sufficient to cause damage to process equipment (37.5 kw/m?)
occurs at 255 meters for the full-bore leak. As with overpressure, the heat flux is significantly
reduced as the break size decreases.

Table 47: Scenario 8 Heat Flux Results

Scenario 8: Heat Flux
Radiation Level | 100% Area | 10% Area 1% Area
(kw/m?) Distance Distance Distance
(m) (m) (m)
1.6 629 199 62
5 428 140 45
9.5 354 118 39
12.5 328 111 37
25 278 97 34
37.5 255 91 32
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Figure 19 shows the heat flux as a function of distance from the leak for Scenario 8. Similar to the
overpressure, the full-bore leak results in much further distances to discrete heat flux values than the
partial leak cases.

Scenario 8: 1,000 MW Combined Header
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Figure 19: Scenario 8 Heat Flux Results
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6.3.6. Scenario 9

The system parameters for Scenario 9 represent a leak scenario at the hydrogen storage facility. For
this scenario, only a full-bore break case was evaluated. Table 48 shows the results for the different
radiation levels outlined in Section 4. As shown, the minimum heat flux sufficient to cause damage
to process equipment (37.5 kw/m?) occurs at 15 meters for the full-bore leak.

Table 48: Scenario 9 Heat Flux Results

Radiation 100% Area
Level Distance
(kw/m’) (m)

1.6 27

5 20

9.5 18
12.5 17

25 16
37.5 15
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Figure 20 shows the heat flux as a function of distance from the leak for Scenario 9.
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Figure 20: Scenario 9 Heat Flux Results
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6.4. Regulatory Guide 1.91

Regulatory Guide 1.91 describes approved methods for evaluating postulated explosions at facilities
in close proximity to NPPs [4]. This guide dictates the use of the TNT equivalence method to
calculate the minimum safe distance from the NPP. Additionally, it documents a general fragility
criterion of 1 psi. The methods used in this analysis differ somewhat to what was defined in the
regulatory guide. A different method for calculating overpressure was used in this analysis, which
was developed specifically for hydrogen (Bauwens). Additionally, the discrete fragility values are
defined for different components, most of which are more conservative than the 1 psi fragility
criterion. For comparison, the TNT equivalence method results are compared to the 1 psi fragility
comparison to address the methodology prescribed in the regulatory guide. Note, the guidance states
that scenario specifics should be used to justify the value for yield used in the TNT equivalence
method. As stated, a 3% yield is the default value used in HyYRAM+, which is the recommended
value from the Center for Chemical Process Safety [12]. Table 49 shows the results from the TNT
equivalence method compared to the 1 psi fragility comparison. As shown, the maximum distance
is seen in Scenario 8 at 252 meters.

Table 49: Regulatory Guide 1.91 Results

Scenario Distance to
1 psi (m)

Scenario 1 5
Scenario 2 10
Scenario 3 10
Scenario 4 & 5: 100% 49
Scenario 4 & 5: 10% 16
Scenario 4 & 5: 1% 5
Scenario 6: 100% 81
Scenario 6: 10% 26
Scenario 6: 1% 9
Scenario 7: 100% 204
Scenario 7: 10% 67
Scenario 7: 1% 22
Scenario 8: 100% 252
Scenario 8: 10% 84
Scenario 8: 1% 27
Scenario 9: 100% 14
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7. CONCLUSION

The risk of a hydrogen generation facility located near an NPP has been evaluated herein, including
the likelihood of an accident and the consequence. The frequency was developed with a bottom-up
approach by documenting the components in the facility and calculating the frequency contribution
from each component. For the 100 MW facility, the frequency of a leak in the evaluated system is
fairly high (~14 expected occutrences/year for a very small leak and ~2 expected occutrences every
100 years for a full rupture). This is because there are 60 modular units that increase the number of
components, which increases the likelihood of a leak. As expected, due to the additional
components in the 500 MW and 1,000 MW designs, the frequency of a leak increases significantly
for the higher power designs. Although the frequency of a leak is not negligible, the consequence of
a detonation does not detrimentally affect critical targets at the NPP at a sufficient distance. For the
100 MW plant, the maximum safe distance from all of the scenarios evaluated was 161 meters at a
fragility criterion of 0.2 psi. This occurred in Scenario 6, which is downstream of the second
compression in the system. Due to the assumptions made for the 500 MW and 1,000 MW designs,
this result is also applicable for the higher power designs. However, additional scenarios were
evaluated for the 500 MW and 1,000 MW designs to evaluate the unmitigated consequence of a
common header downstream of second compression that transports hydrogen to a storage facility.
It is assumed that the header would be underground with concrete piping as a barrier, so the
consequence is mitigated. Without mitigation, the overpressure consequence from the larger pipe
diameter for the 500 MW and 1,000 MW designs is significantly greater than that of Scenario 6.

The consequence of radiative heat-flux was also quantified for all of the scenarios as an alternative
consequence of a hydrogen leak. The maximum safe distance in terms of heat flux was 88 meters to
the fragility criterion value of 37.5 kw/m” (heat flux sufficient to cause damage to process
equipment). This occurred in Scenario 6 as well. As with overpressure, the unmitigated consequence
of radiative heat-flux from a common header in the 500 MW and 1,000 MW designs would be
significantly larger. Partial leak sizes were evaluated for each of the relevant scenarios to illustrate
how the consequence diminishes for the smaller leak sizes.

Additionally, sensitivity evaluations for the overpressure results were run with the TNT equivalence
methodology. These results were more conservative than the base-case methodology used herein.
The TNT equivalence methodology was evaluated as a sensitivity because it is the prescribed
overpressure calculation method in Regulatory Guide 1.91 [4]. However, the Bauwens model was
used as the base case because it is specifically applicable to the consequence of interest for this
application (detonation of a hydrogen plume). Based on the assumptions made about the design and
system properties of the hydrogen generation facility, locations at distances greater than those
calculated herein would allow for the safe colocation with NPPs.
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APPENDIX A. HYRAM+ TRACEABILITY FIGURES

This appendix contains the traceability figures from the HyRAM+ consequence calculations for
both overpressure and radiative heat flux.
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A.3. Scenario 3
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A.5. Scenario 4 & 5: 10% Leak Area
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Figure A-26: Scenario 4 & 5 (10% leak) Heat Flux Output Traceability Figure
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Figure A-27: Scenario 4 & 5 (10% leak) Bauwens Overpressure Input Traceability Figure
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Figure A-28: Scenario 4 & 5 (10% leak) Bauwens Overpressure Output Traceability Figure
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Figure A-32: Scenario 4 & 5 (1% leak) Heat Flux Output Traceability Figure

95




A.6.2 Bauwens Overpressure

M HyRaM. - o ®
File Took  Help
aRAMede | [Fryss
Fust: [idem v - Unconfined Overpressure
Calculates unconfined cverpressure and impulse behavior for delayed ignition of gaseaus hydrogen jets
Pl Dispecn
ecmister,
o Ouet
Rame Tengersurs / Trjectry
Calcuiation method Bouens v
Fodmie Fest P Motiona! nozzie model VicslOhugen v
Uncardined Overpesare Flud phase = -
Tenperture. Freanee, Densty
Tork Mass Parameter 0 Auomacaty set phot e bt
Maaa Fow Rate. Varatie Ve e ~
= ) Fabrerher -
L srtiert presare u7 Pu <
Lok cameer 04 ch <
Fekesor ange [l Degess <
Docharge cosficent 1
Tork i proemre fbechdte) | 3147 Fi 2
Tk fd et ] Fatrerhet o
veressure i K min 5 Weter <
veseessumm it Kmax 0 Meter =
Ovemresmre i ¥ min o Weter -
Ovegeessume i ¥ max s Weter -
Ovesessnm i Zmn 3 e <
Oveseesnse o Zmas s et o
g plt X 2 Weter <
mpuive plot X max 45 Wt -
e piot ¥ e [ M |
peations i1} (50,251 252, 259, 254,255, 256 257,258, 258 260 S0 slmerss
Y postons i 0.0.0.0.0.0.0.0,0,0,0.0.0.0.0.0.0.0.0.0.0.| edemente
2 poatons i) 0.0000000000000000.0000] Heementr
Overpresaure cordourlevels WPa). 06311138, 190, 221,331,407, 49,669,109
Impuise cortouriewel kPa's;  [113.018,027.05
Calsdne

Figure A-33: Scenario 4 & 5 (1% leak) Bauwens Overpressure Input Traceability Figure
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Figure A-34: Scenario 4 & 5 (1% leak) Bauwens Overpressure Output Traceability Figure
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Figure A-35: Scenario 4 & 5 (1% leak) TNT Overpressure Input Traceability Figure
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Figure A-36: Scenario 4 & 5 (1% leak) TNT Overpressure Output Traceability Figure
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A.7.

A.7.1. Heat Flux
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Figure A-38: Scenario 6 (100% leak) Heat Flux Output Traceability Figure
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A.7.2 Bauwens Overpressure
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Figure A-39: Scenario 6 (100% leak) Bauwens Overpressure Input Traceability Figure
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Figure A-40: Scenario 6 (100% leak) Bauwens Overpressure Output Traceability Figure
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A.7.3. TNT Equivalence Overpressure
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Figure A-41: Scenario 6 (100% leak) TNT Overpressure Input Traceability Figure
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Figure A-42: Scenario 6 (100% leak) TNT Overpressure Output Traceability Figure
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A.8.
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Scenario 6: 10% Leak Area
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Figure A-43: Scenario 6 (10% leak) Heat Flux Input Traceability Figure
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Figure A-44: Scenario 6 (10% leak) Heat Flux Output Traceability Figure
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A82 Bauwens Overpressure
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Figure A-45: Scenario 6 (10% leak) Bauwens Overpressure Input Traceability Figure
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Figure A-46: Scenario 6 (10% leak) Bauwens Overpressure Output Traceability Figure
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A.8.3. TNT Equivalence Overpressure
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Figure A-48: Scenario 6 (10% leak) TNT Overpressure Output Traceability Figure
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A.9. Scenario 6: 1% Leak Area
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Figure A-50: Scenario 6 (1% leak) Heat Flux Output Traceability Figure
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A9.2 Bauwens Overpressure
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Figure A-51: Scenario 6 (1% leak) Bauwens Overpressure Input Traceability Figure
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Figure A-52: Scenario 6 (1% leak) Bauwens Overpressure Output Traceability Figure
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A.9.3. TNT Equivalence Overpressure
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Figure A-53: Scenario 6 (1% leak) TNT Overpressure Input Traceability Figure
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Figure A-54: Scenario 6 (1% leak) TNT Overpressure Output Traceability Figure
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A.10. Scenario 7: 100% Leak Area
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Figure A-55: Scenario 7 (100% leak) Heat Flux Input Traceability Figure
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Figure A-56: Scenario 7 (100% leak) Heat Flux Output Traceability Figure
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A.10.2. Bauwens Overpressure
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Figure A-57: Scenario 7 (100% leak) Bauwens Overpressure Input Traceability Figure
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Figure A-58: Scenario 7 (100% leak) Bauwens Overpressure Output Traceability Figure
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A.10.3. TNT Equivalence Overpressure
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Figure A-59: Scenario 7 (100% leak) TNT Overpressure Input Traceability Figure
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Figure A-60: Scenario 7 (100% leak) TNT Overpressure Output Traceability Figure
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A.11. Scenario 7: 10% Leak Area
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Figure A-61: Scenario 7 (10% leak) Heat Flux Input Traceability Figure
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Figure A-62: Scenario 7 (10% leak) Heat Flux Output Traceability Figure
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A.11.2. Bauwens Overpressure
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Figure A-63: Scenario 7 (10% leak) Bauwens Overpressure Input Traceability Figure
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Figure A-64: Scenario 7 (10% leak) Bauwens Overpressure Output Traceability Figure




A.11.3.
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Figure A-65: Scenario 7 (10% leak) TNT Overpressure Input Traceability Figure
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Figure A-66: Scenario 7 (10% leak) TNT Overpressure Output Traceability Figure
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A.12. Scenario 7: 1% Leak Area
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Figure A-67: Scenario 7 (1% leak) Heat Flux Input Traceability Figure
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Figure A-68: Scenario 7 (1% leak) Heat Flux Output Traceability Figure
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A.12.2. Bauwens Overpressure
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Figure A-69: Scenario 7 (1% leak) Bauwens Overpressure Input Traceability Figure
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Figure A-70: Scenario 7 (1% leak) Bauwens Overpressure Output Traceability Figure

114



A.12.3. TNT Equivalence Overpressure
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Figure A-71: Scenario 7 (1% leak) TNT Overpressure Input Traceability Figure
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Figure A-72: Scenario 7 (1% leak) TNT Overpressure Output Traceability Figure
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A.13. Scenario 8: 100% Leak Area
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Figure A-73: Scenario 8 (100% leak) Heat Flux Input Traceability Figure
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Figure A-74: Scenario 8 (100% leak) Heat Flux Output Traceability Figure

116



A.13.2. Bauwens Overpressure
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Figure A-75: Scenario

8 (100% leak) Bauwens Overpressure Input Traceability Figure
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Figure A-76: Scenario 8 (100% leak) Bauwens Overpressure Output Traceability Figure




A.13.3. TNT Equivalence Overpressure
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Figure A-77: Scenario 8 (100% leak) TNT Overpressure Input Traceability Figure
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Figure A-78: Scenario 8 (100% leak) TNT Overpressure Output Traceability Figure
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A.14. Scenario 8: 10% Leak Area
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Figure A-79: Scenario 8 (10% leak) Heat Flux Input Traceability Figure
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Figure A-80: Scenario 8 (10% leak) Heat Flux Output Traceability Figure
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A.14.2. Bauwens Overpressure
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Figure A-81: Scenario 8 (10% leak) Bauwens Overpressure Input Traceability Figure
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Figure A-82: Scenario 8 (10% leak) Bauwens Overpressure Output Traceability Figure
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A.14.3. TNT Equivalence Overpressure
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Figure A-83: Scenario 8 (10% leak) TNT Overpressure Input Traceability Figure
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Figure A-84: Scenario 8 (10% leak) TNT Overpressure Output Traceability Figure

121



A.15. Scenario 8: 1% Leak Area
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Figure A-85: Scenario 8 (1% leak) Heat Flux Input Traceability Figure
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Figure A-86: Scenario 8 (1% leak) Heat Flux Output Traceability Figure
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A.15.2. Bauwens Overpressure
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Figure A-87: Scenario 8 (1% leak) Bauwens Overpressure Input Traceability Figure
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Figure A-88: Scenario 8 (1% leak) Bauwens Overpressure Output Traceability Figure
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A.15.3. TNT Equivalence Overpressure
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Figure A-89: Scenario 8 (1% leak) TNT Overpressure Input Traceability Figure
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Figure A-90: Scenario 8 (1% leak) TNT Overpressure Output Traceability Figure
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A.16. Scenario 9: 100% Leak Area
A.716.1. Heat Flux
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Figure A-91: Scenario 9 (100% leak) Heat Flux Input Traceability Figure
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Figure A-92: Scenario 9 (100% leak) Heat Flux Output Traceability Figure
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A.16.2. Bauwens Overpressure
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Figure A-93: Scenario 9 (100% leak) Bauwens Overpressure Input Traceability Figure
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Figure A-94: Scenario 9 (100% leak) Bauwens Overpressure Output Traceability Figure
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A.16.3. TNT Equivalence Overpressure

M HyRan - o ®
Fie Tocks  Help
aRA Mo | [Prsca
[ rree— Unconfined Overpressure
. calculates unconfined overpressure and impulse behavior for delayed ignition of gaseous hydrogen jets.
Phume Deperson
Aecumishon
e oupa
e[ vetan) o) Calcutstion method ™ -
Lt Motional nozzis model Yucol Ongen v
Uncortmed Ovesressun Fluid phose = .
Temperuse, Presaure, Dersty
Tark Mass Parameter A Asonstical se kit s ks
Mass Fow Raze
TNT Mo Ecpieslence

[0-95 552, 983, 534 535, 958 587 966, 95,1000 1 clomeres
¥ poations ml [0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.] M0 adomerts
2 poatzons fmi HO00 shemrts
e i b7

Calouiae

Figure A-95: Scenario 9 (100% leak) TNT Overpressure Input Traceability Figure
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Figure A-96: Scenario 9 (100% leak) TNT Overpressure Output Traceability Figure
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