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ABSTRACT

This reportdocuments the research progress accomplished in FY 2023 in two
topic areasThe first part of this report documerhefinal year progress of a
threeyear researchffort on evaluating thestress corrosion crackinGCQO
initiation and growth behavior di-base alloys itithium hydroxide LiOH) vs.
potassium hydroxideKOH)-containing PWR primary water. The material types
and the specific water chemistry conditions evaluated in this resgareh
selected based on discussions with EPRI, wiagssstinghe US. pressurized
water reactoutilities in a potential transition from LIOH to KOHh FY 2023,
the testing focused on the last material to evaluatfirst-generatiorNi-base
weld metal Alloy 82Direct comparisons of SCC initiation and crack gtowt
behaviorweremadeon Alloy 82in a LIOH vs. KOHcontaining environment
followed by posttest characterizations and statistical analysis. Results suggest
thatreplacing LiOH with KOH as the pH moderator in PWR primary water
would not adversely impatte SCCinitiation and propagation behavior Afloy
82. The second part of this repgrovides a status update of the ongoing Phase
V long-term SCC initiation testing on coldorked Alloy 690 materials, where
the effect of key material, mechanical, andisstmental factors on the long
term grain boundary degradation and crack initiation behavior of Alloy 690 are
being evaluated in statd-the-art SCC initiation testing systems equipped with
in-situ detection of macroscopic crack initiation. A detailed mamny of the
microscopy analyses performed in FY 2023lso providedo evaluate
precursor damage and crack evolution in all tested Alloy 690 specimens after
Phase IV exposure. Insights obtained from the latest testing and characterization
resultsarediscussed to facilitatéhe prediction of Alloy 690 degradation in
servicerelevantconditions.
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1. Project Background

1.1 Objective

The first objective othe LWRS task at Pacific Northwest National Laboratory (PNiNLtp identify
underlying mechanisms controlling stress corrosion cracking (SCC) initiation and other possible long
term degradation modes that can potentially degrade SCC resistanegaseNilloys. Understanding and
modeling the fundamental processassing crack nucleation is a key step in predicting and mitigating
SCC in the primary and secondary water systenfigtttfwater reactord {WRs). It is also important to
understand the lontgrm microstructural stability and performance of these allogscascial step
moving forward to fulfill their promise for broader applications in LWRs. Mechanistic information
obtained could provide key insights to mitigate or control SCC in these materials, optimize inspection and
maintenance schedules for the mastceptible materials and locations, and potentially define-SCC
resistant materials. The second objective of this task is to evaluate the impact of emerging technologies
proposed for sustaining reliable and economical operation of LWRs on SCC resistiintasé alloys.

The research scope is defined with regulatory and industry aedds linked to statef-the-art
laboratory testing and microscopic characterizations.

1.2 Focus of Current Report

This reportdocuments the research progress accomplishiesicial year £Y) 2023 on two topic
areasThe first part of this repofChapter 2documend thefinal year progress of threeyear research
effort on evaluating thesCC initiation and growth behavior of dase alloys ifithium hydroxide
(LIOH) vs. potassium hydroxideK(OH)-containing PWR primary water. The material types and the
specific water chemistry conditions evaluated in this resesecbselected based onstdiussions witlthe
Electric Power Research InstitutERR), who isassistinghe US. pressurized water reactd?\VR)
utilities in a potential transition from LiOH to KOH. Direct comparisons of SCC initiation and crack
growth behavioweremadeon Alloy 82 in a LIOH vs. KOHcontaining environment to assess whether
the change in water chemistry impacts the crack initiation and propagation behaviemNafttased weld
metal The second part of this repg@hapter 3) provides a status update of the ondgease V long
term SCC initiation testing on celdorked (CW) Alloy 690 materials, where the effect of key material,
mechanical, and environmental factors on the {imm grain boundary (GB) degradation and crack
initiation behavior of Alloy 690 are beireyaluated in statef-the-art SCC initiation testing systems
equipped with irsitu detection of macroscopic crack initiatiendetailed summargf the microscopy
analyses performed in FY 2083also providedo evaluate precursor damage and crack evwiun all
tested Alloy 690 specimens after Phase 1V exposuseghts obtained from the latest testing and
characterization resultgediscussed to facilitatine prediction of Alloy 690 degradation in service
relevant conditions.
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2. Evaluation of the SCC Initiation and Crack Growth Behavior of
Alloy 82 in KOH vs. LiOH-Containing PWR Primary Water

2.1 Chapter Overview

The cost and availability of LT havecreated an interest in using KOH to replace LiOH for primary
system pH control in PWRs. A key concern regardisigg KOH is its potential effect on the structural
materials employed in the reactor internals, especially dmakie alloys wittimited prior experience
with exposure to KOH water chemistry. In collaboration with an ongoing #Rjualification program
to determine if KOH PWR water chemistry is acceptable from a materials degradation perspective as
compared to LIOH PWR water chemistry, PNLperforming supporting tests under LWRS to
investigate whether replacing LiOH with KOH has a negative impact on the SCC behavidrasfeNi
alloys. The testing materials and water chemistries were determined together with EPRI. SCC testing
began in FY 201 on two highstrength Nibase Alloy X750 and Alloy 718, and the results were
summarized in two previous milestone repftt2]. In this chapter, the SCC initiation and crack growth
testing activities on Alloy 82, the last material evaluated in this task, will be reported in detail. The effect
of replacing LiOH with KOH as the phhoderator in PWR primary water on the SCC behavior of Alloy
82 will bediscussedbaseddn results obtained from SCC testing, pest characterization, and statistical
analysis.

2.2 Experimental Methods

2.2.1  SCC Initiation Test Systems and Testing Approach

The SCCinitiation testng is performed in statef-the-art multispecimen autoclave systems equipped
with an active loading unit, a flow loop for water chemistry control, argitindirect current potential
drop OCPD) monitoring for crack initiation.

30.4mm (1.2inch) tall uniaxial tensile specimens are used for the tEgjargl). All specimens
have an identical gauge length afrdn. A precision serveelectric bad control system applies the load on
the loading string(s)ising a target load of 460 (~1050Ibs). Different stress levels can be achieved by

varying the gauge diameter in the specimens loaded in the same string, allowing multiple specimens to be
tesed at their yield stress (YS) or any other target stfemsmost specimengl e m sur f ace fi

prepared to facilitate thexaminatiorof precursor damage and cracks on the surface.

= ©.300 |=
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Figurel. PNNL initiationspecimen desigimhe cqauge diameter is selected based on material strength
and carnvary from 2.754.5 mm (0.110.18 inches)The gauge length set at4.0 mm (0.157
inches) Overall height is 30.5nm (1.2 inches)lllustrated dimensions are in inch units.
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Figure2 shows the load train and DCPD instrumentation foistr@lly loadedCC initiation
specimesset up at PNNL. Currentlywo mediumsizeSCC initiation systas and one large SCC
initiation system are being used under the scope of LWRS. Theésdumsizesystemsachcantest up
to 6 fully instrumented specimens, and the large SCC initiation system allows 36 spdoilbeetested
simultaneously with up td2 specimens instrumentetihe KOH vs. LIOH SCC initiation testing on
Alloy 82 utilized onemediumsize LWRS test systernfhis testsystem wadgirst filled with KOH-based
water chemistryAfter thecompletion of thesCC initiation testing in the KOH water chemistry, the
system wasleanedollowing a proceduresimilar to what isdescribed for otthe-fly water chemistry
change during SCC crack growth testing in Sec®i@?2.4 A control study of SCC initiation in the target
LiOH-based water chemistry was then performed on the same Alloy 82 m#&t@ihlvas used at a
concentration that provides the same pH as LIOH (neutral pHOAC3. Six specimens were tested in
each water chemistry. To acquire results within a practical timeframestisevere performedith
accelerant factors in temperature and dissolved hydrogen level. A tegherature (3609Ghan in
service(325°C)was used for these testa addition, aissolved hydrogen concentratias selected that
corresponds tan electrochemical corrosion potential at the Ni/NiO stability line, where the SCC
initiation susceptibility is believed to be the highest foibldsealloys.

A reversing DCPD technique developed by General Eld8fiwas adaptetbr online monitoring of
SCC initiation behavior based on original workK&PL [4]. Details of the PNNL approach were
provided in previous publicatiofS, 6]. In the SCC initiation testing of Allo§2to evaluate the KOH vs.
LiOH effect, allspecimens were tested at or just slightly abbe# tyield stress under constant loatie
full load was applied to the specimens withir2 Hays of reaching the test temperature. At the start of a
test, the target load (the load at ~0.2% plastic strain) was achieved aveours at a constant straate
of ~1x10° st. This displacement rate allowsonitoringof thestrain evolutiorby DCPDwith a
sufficiently low noise levelFor example, in Figure 3, some specimens may Yield slightly earlier than
others in a multspecimen load train system dueantrinsic differences in yield strength and/or gauge
diameter. In such a case, small amounts of plastic strain up to ate3owed in these specimens to
achievea minimum of 0.15% plastic strain the others. The specimesie therheld at an actively
controlled constant load until DCPD detects crack initiation. All relevant environmental parameters and
DCPD data are monitored and periodicaifyedo a file.If a test is interrupted for specimen
examinations or to remove an initiated specimen, tmairging specimens will beeturnedto their
original load after the test restaftdlowing the same steps described above where stress versus strain
response is monitorefligure4 shows the evolution of both the nogferenced and the referenced strains
throughout the exposure of an Alloy 600 specimen. As mentioned above, by subtracting the reference
voltage from the gauge voltage, the contribugiofresistivity driftand creep are largebtiminated in the
referenced strain response. Whdtacking andsome amount agreepcontribute to the observed DCPD
response simultaneouskye crack initiation time is determined when an apparent increages dcthe
strain rate above the noise levehis is thought to be the onsetstéble crack growth at engineering
relevant rates



(a) 6-Specimen (b) 36-Specimen
SCC Initiation System SCC Initiation System
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Figure2. Theload trairs usedat PNNL in the (ajnediumsize SCC initiation test system witl

capacity of testing up to 6 fully instrumented specimens and the (b)dizef@CC initiation

test system witla capacity of testing up to 24 instrumented specimens and up to 36 specimens
in total.
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2.2.2 SCC Crack Growth Test Systems and Testing Approach
2221 Overview of SCC Crack Growth Test Systems

Although the LWRS SCC initiatiotest systems can be converted to perform stress corrosion crack
growth rate (SCCGR) evaluations, they are fully occupied 282 and FY 202®y SCC initiation
testing ofCW Alloy 690 and Alloy82. As a resultpneU.S. Nuclear Regulatory Commission (RR
owned SCGR testsystemwasborrowed under an agreement to investigate the effect of KOH vs. LiOH
on the SCC growth behavior Afloy 82.

The NRC SCCGR test systems at PNNL were designed and constructed to measure crack length
under welldefined materigand environmental conditions aedsure that the growth rate response is
reproducible and characteristic of the test conditiBnsexample of the SCCGR test system is shown in
Figureb. Detailed information on the development of these test systems can be found el§gwhere
However, two key features of these test systems are reviewed here because they are important to the KOH
vs. LiOH evaluations.

Firstly, crack length is measurédsitu. This has high value because it allows for evaluating SCCGR
response beforand after "orthe-fly" changes in environmental conditions. For SCCGR testing, it is the
best means to ensure that a measurement is not affected by extraneous parameters associated with
alternative approachgsuch as stopping a test to change water chigm@n-the-fly evaluations are also
time and cosefficient.

Secondly, control of ion species in the test system recirculating water loop is attained using a mixed
bed demineralizer. F@mulated standard PWR primary water testangontrolled amount diforic acid
and lithium hydroxide are introduced to the demineralizer. An amount is selected such that stable B and
Li values are attained in the test system water, i.e., the demineralizer neither absorbs nor releases B and Li
as the water passes througtvhen no other ions are present. The relevance to the KOH evaluation effort
is that this approach to PWR primary water chemistry simulation requires preparing a dedicated
demineralizer for each water chemistry to be investigated. It also requires diycatafuned procedure
for swapping out water ethe-fly. This approach will be discussed in detail in the next section.



Figure5. The ypical SCCGRtest system used at PNNL.

2222 General SCC Crack Growth Testing Approach

ThePNNL SCCGR testystems have been designed for use with 1T andd@&ipact tensiondT)
specimensand for this taskside grooved 0.5T CT specimens were u3&e details of the specimen
geometry are shown fRigure6. Beforeloading a specimen in the autoclave, the sample thickness
(total thickness) and  (total thickness subtracting side groove deptigtch depth, and width values
were all measured anécorded into the data record for the telsting the sample dimensions and the YS
of the specimen at the test temperatfokowing American Society for Testing and Materials (ASTM)
Standard EL681, an upper limit on the value of the sdregensity K) is calcdated using the formula:

o, Ofpg X 1)
wheresysis the YS at the test temperatused D is the smallestmongthe effectivespecimen thickness
(6 0 D ), the remaining uncracked specimen width, and the crack ldngtiecase of

materials with large amounts of work hardeningpére the ratio of ultimate tensile strength to yield
strength is greater thdn3), such as annealed 38€riesstainless steeBndlow-strengthNi-base alloys,
the average of the yield and ultimateess is used in place of the ¥owing ASTM guidelinesThe
tests conducted for this task were within this calcul&tédit, but the calculated upper limit dfis not
considered a striataluebut rather provides a reference point for what magdmsidered a higbtress
intensity for a given material.
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Figure6. Schematic drawing of a 0.5T CT specim@wersized loading holes (~9m diameter) are
used to accommodate ceramic inserts that provide electrical isolatweenethe CT
specimen and clevises

Crack growth testare usuallyperformed with two specimetsadedin seriednto a test system,
allowing a greater range of material conditions to be examined in a shortergrasEsbssintpst
reproducibility by using two samples from the same material condiiber the sample dimensions are
measured and spoteld locations are marked on tk@mple, it is cleaned and inserted into a test system
Precracking of a sample is done in situ at the test temperature when a single specimen is being tested
Initial precracking of two or more specimens mounted in sérissu is not performed becausettime
needed to nucleate a precrack isoimsistentvhich can cause the specimens to have much different
precrack lengthsConsequentiyprecracking two specimens in series likefjl lead to specimensaving
different precrack length3he differing pecrack lengths would makieimpossible to maintain and
control the K level in both specimens during and after precrackings,the approacHor testing at
PNNL is tonucleate a crack individually on each of the two specimens under fatigue in airgtblgw
continued precracking of the two samples loaded together irCsiak transitioning steps are carefully
selected to grow the precrack in higgmperature water using the following stages: (1) fatigue, (2)
corrosion fatigue, and (3) SCTypically, this means producing initial precracks of ~1 mm in air followed
by an additional ~1 mm by cycling in situ before transitioning to slow cyclic loading plus hold times to
promote SCCAnN Instron servohydraulic test frame is used to precrack CT specimensandathe same
DCPD electronics and system control software used for the crack growth systems is also used for the
Instron test frame.

The first step in precracking to cycle the sample at a relatively high frequenéy@2Hz) with a
large load ratigR) and Knaxless tharor equal tahe K level chosen for constant Ks the crack begins
to grow from the notchR is increasedand frequencys reduced while the K.« value is increase®y
precracking in this way, each precrack segment can grow beyond the plastic zone created by the previous
segmentCyclic loading steps at 0.1 Hz down to 0.001 Hz are performed inthigherature water for all
samplesThe final plase involves crack transitioning by very slow cycling with a hold time ranging from
1 hto 24 hThis grows the crack beyond the precracking plastic zone and allows the crack to transition
from transgranular (TG) fatigue to the crack growth morphologyntiahally occurs under constant K
conditions Depending on the material susceptibility, this may be either Ti®@engranular IG) cracking.
For materials such adloy 82 that readily undergtGSCC growth in LWR environments, obtaining a



steady SCC growth rate after transitioning to constant K can easily be accomplished by following a
standard procedure.

2.2.2.3 Uncertainties in Crack Growth Data Measurements

While the noise resolution of the PNNL DCREst methodsnomore than +3 um and allows for
establishing trends in tregack growth rateGQGR) down to ~5x168° mm/s, the accuracy of these rates
depends on some factors that cannot be fully assdsseexample, crack front irregularity caffectthe
DCPDmeasuredCGR Thereis no way to document the variation in the shape of the crack front as the
crack grewandtherefore, this effect cannot be accurately included intesstcrack length corrections
Another issue is thatniquely identifying eeh test phase on a crack surface is often impe@saitér the
test has ended\s a result, the pogéest correction is typically based on the entire in situ pastbthe
test An additional complication is the effect of ligament or contact formatiocomstant K crack growth
Even though attempts are madeassess these effects during the teste are naccuratgosttest
meando assesbBow well this method work<rack growth testing experience and interactions with the
international expert comuamity have produced many insights into issues, but many uncertainties cannot
be effectively quantifiedBased on our experience, stafethe-art testing methods, and data analysis
approach, we believe overall uncertaintiesG@R measurements aet+50%for SCGsusceptible
materials with steady growth respondacertainty in reported stress intensity for a relatively straight

final crack a .fFor a mighlg unevendiraltciaak,ghe f o r

front is 010%

local variability is ot easily quantified and may be substantial.
2.2.2.4  Water Chemistry Control for the KOH vs. LiOH Study

This study ains to produce quantitative SCCGR data througsittnmeasurement of crad&ngthin
KOH-based water chemistries and corresponding reference-h#3Eld water chemistrigsat will serve
as the point of comparisofhe water chemistries to be evaluated in the SCC growth rate testiag
recommendedly EPR| with details listed infablel. The effects of KOH relative to LiOMere
evaluated in thbeginningof-cycle (BOC) water chemistry artthe end-of-cycle (EOC) water chemistry.
A mid-cycle water cheistry wasalso evaluated. This miclycle B/K chemistrywasevaluated
because BLO decays by thermal neutron absorption during reactor opetafooduceli-7:

108 (' n’Li (). LIOH and KOH concentrations were selected to progideutral pH at 310°C. pH at the
360°C test temperature is slightly basic. For these particular bases, this occurs-aguistdent

concentrations

Tablel. Nominal PWR primary water chemistries identified by EPRI for the KOH vs. LiOH study.

Environment ppm B, ppm Li, or ppm K pH(310°C) pH(360°C)
1500 B/ 2.2 Li
BOC 1500 B/ 12.4 K 0 8.39
10 B /0.23 Li
EOC 10B/130K 7.0 8.26
Mid-cycle 1000B/3.3K+ 1.0Li 7.0 8.36

The key to the test is to make-tive-fly changes between Land K-containing water chemistries
with no change in any other conditions. By following this methodology, a direct comparison of SCCGR
of KOH vs. LiOHis obtained with no other changes to that.fEhe desired test system water and
corresponding demineralizer filters were prepared beforehand to achieWideid bed demineralizer
filters wereequilibrated tahedesignated chemistry at room temperatyeirculatingdeaerated water
through adop with the demineralizer and adding the corresponding chemicalthendiésired B and Li

or K valueswereattained and stahle
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To gain experience and ensure that theharfly water chemistry changegould be successfully
implemented during testing,veater chemistry change trial from 1500 ppm B/2.2 ppm Li to 1500 ppm
B/12.4 ppm K and then to 10 ppm B/0.23 ppm Li was performed before the start of the actual tests. All
the other environmental conditions (e.g., temperature, dissolved hydrogen, etc¢tterthe same
target values used in the test. A simplified water board setup in preparation for these changes is illustrated
in Figure7. The onthefly changes weraccomplished bdraining95 volume» of theold solution inside
thewatercolumn and then switching the inlet flaw draw watefrom theprepared new deaerated
solution in a fivegallon containerThis refillsthe water column and pussthe new solution through the
autoclave and the water boahd.addition, the solution being purged from the autoclavedeaanted
into a disposal container during all autoclaveuwmaé exchanges using the outlet before reaching the
demineralizefilter (Figure7). This process is repeated approximately fd &utoclave volume
exchanges. The firshree exchanges take place with the demineralizer valved out from the water
chemistry control board. After the third volume exchange, a demineralizer configured for the new target
water chemistry is valved iTable2 summarizes the evolution of monitored environmental parameters
during the entire process of an-thve-fly water chemistry change trial run from 1500 ppm B/2.2 ppm Li
to 1500 ppm B/12.4 ppm K. The changeowsually took ~5 hours to complete, but 24 houesegiven
for the system to equilibrate. Whether the final concentration of the solution is on par with the target can
be determined by acquiring a water sample after the equilibration is reached.

Modified Water Board
[
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T ©
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£ ©
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1/, turn &= e
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‘l

Figure7. Simplified schematic of the modified water board setup fethexfly chemistry changes used
in the SCCGR test system. The red arrows indicate the direction of the water flow.
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Table2. Environmental parameter tracking at each autoclave volume exchange during thethé@l on
fly water chemistry changeover from 1500 ppm B/2.2 fypto 1500 ppm B/12.4 ppm K.

Vol. Resistivity | Conductivity H Temp B content | Li content | K content

change #| (Kohm-cm) (eS/c P (°C) (ppm) (ppm) (ppm)

0 47.32 21.13 6.15 23.45 1512 2.19 0

1 38.78 25.79 N/A 24.89 N/A N/A N/A

2 36.62 27.31 N/A 24.97 N/A N/A N/A

3 35.17 28.43 N/A 25.00 N/A N/A N/A

4 33.90 29.49 N/A 24.94 N/A N/A N/A

5 29.83 33.52 6.09 23.55 1637 ~0 12.97

6 30.21 33.10 6.18 23.49 1501 ~0 12.77

2.2.3 Material and specimen preparation

Alloy 82 is a compatible weld metal for Alloy 600 for automatic gas tungsten arc welding. The Alloy
82H weld (Heat 21712) used in this study is an-hrouse multipass buildup bythe Naval Nuclear
Laboratory(NNL). The composition of this weld comparexdtihe Alloy 82H specification is given in
Table3. As shown irFigure8,t he wel d bl ock was recei ventldheat an
treatment (PWHT) at ~621 °C for 8.5 hours with a hgatate of ~16.8C/hour from room temperature
to 621 °C and a cooling rate of ~31 °C/hour from 621 to 310 °C, followed bgdir ¢

Table3. Chemicalcomposition(wt. %) of Alloy 82H Heat217192 in comparison to thélloy 82H
specifications

Element | A8B2 Spec| Alloy 82H Heat 217192

C 00 . ] 0.04

Cr 18/ 22 20.1

Fe 03 0.7

Mn 2535 2.75

Ni Bal. 72.8

Ti 00. 7 0.47

Co 00 . 1 0.04

P 00. 0 0.01

Cu OO0 . § 0.07

S 00. 0 0.002

Si OO0 . § 0.07
Nb+Ta | 2.0/3.0 2.5 (Ta: 0.069)

Pb 0.002

11
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direction

Figure8. The asreceived Alloy 82H (Heat 21718) block for this study.

Figure9illustrates the cutting plan of the-esceived A82 block for this study. A piece was first cut
from the bottom of diideaintofthredsulblbcasp e suiidcks wece each d
cold-forged(CF) to a 30% reduction in thickness along the direction identified in the figure. Although our
baseline cold work condition for Alloy 600 and 182 were I8#hiction in thicknesst was decided to
first test Alloy 82 in a 30%CF condition because it contains a higher Cr content than Alloy 600 and 182,
and literature data has shown that it could be much more resistant to SCionnirat prpagdion in
high-temperature water. Three CT specimens wexehined from the first sdblock, while six initiation
specimens were each extracted from the second and thitdaikb Both the CT and the initiation
specimens were oriented in theSTorientation of the weld. Like what we normally do for Alloy 182dve
specimens, all the 30%CF Alloy 82 initiation specimens were polished to a very fine surface finésh
gauge sectioending with colloidal silica and then examined in SB®orethe initiation testing. Quite
unexpectedly, large, irregularly shapeddireg defects were found in three specimanvith examples
shown inFigure10. While these specimens were excluded from testing, four specimens went in the first
SCC hitiation test in BOC LiOH chemistry, and three of them initiated immediatelylafidingup to
100% vyield stresdHjgurel1l). These data clearly suggest tthat30% CF condition was too aggressive
for meaningful evaluation of the SCC initiation behavior of this Alloy 82 material. As a result, another
bl ock was sectioned fr om tforgedto @1p% @ductibntinghicknesé s hape
along the samforging directionas the 30%CF bloclkourteerspecimens were machinethd their
gauge section asagain polished tacolloidal silica finish. This timgonly two specimens exhileitl
obvious welding defectsn the surfaceuring the preaest examinatiosy so the remaining twelve
specimens were used for SCC initiation testing, six in the BOC LiOH condition and the other six in the
BOC KOH condition.
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Figure9. Schematic of the A82 block cutting plan for specimen preparation.
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