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ABSTRACT 

This report documents the research progress accomplished in FY 2023 in two 

topic areas. The first part of this report documents the final year progress of a 

three-year research effort on evaluating the stress corrosion cracking (SCC) 

initiation and growth behavior of Ni-base alloys in lithium hydroxide (LiOH) vs. 

potassium hydroxide (KOH)-containing PWR primary water. The material types 

and the specific water chemistry conditions evaluated in this research were 

selected based on discussions with EPRI, who is assisting the U.S. pressurized 

water reactor utilities in a potential transition from LiOH to KOH. In FY 2023, 

the testing focused on the last material to evaluate ï a first-generation Ni-base 

weld metal Alloy 82. Direct comparisons of SCC initiation and crack growth 

behavior were made on Alloy 82 in a LiOH vs. KOH-containing environment, 

followed by post-test characterizations and statistical analysis. Results suggest 

that replacing LiOH with KOH as the pH moderator in PWR primary water 

would not adversely impact the SCC initiation and propagation behavior of Alloy 

82. The second part of this report provides a status update of the ongoing Phase 

V long-term SCC initiation testing on cold-worked Alloy 690 materials, where 

the effect of key material, mechanical, and environmental factors on the long-

term grain boundary degradation and crack initiation behavior of Alloy 690 are 

being evaluated in state-of-the-art SCC initiation testing systems equipped with 

in-situ detection of macroscopic crack initiation. A detailed summary of the 

microscopy analyses performed in FY 2023 is also provided to evaluate 

precursor damage and crack evolution in all tested Alloy 690 specimens after 

Phase IV exposure. Insights obtained from the latest testing and characterization 

results are discussed to facilitate the prediction of Alloy 690 degradation in 

service-relevant conditions. 
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FY 2023 Progress on Stress Corrosion Crack 
Initiation Test of Ni-Base Alloys in PWR Primary Water 

 

1. Project Background 

 

1.1 Objective 

The first objective of the LWRS task at Pacific Northwest National Laboratory (PNNL) is to identify 

underlying mechanisms controlling stress corrosion cracking (SCC) initiation and other possible long-

term degradation modes that can potentially degrade SCC resistance in Ni-base alloys. Understanding and 

modeling the fundamental processes causing crack nucleation is a key step in predicting and mitigating 

SCC in the primary and secondary water systems of light water reactors (LWRs). It is also important to 

understand the long-term microstructural stability and performance of these alloys as a crucial step 

moving forward to fulfill their promise for broader applications in LWRs. Mechanistic information 

obtained could provide key insights to mitigate or control SCC in these materials, optimize inspection and 

maintenance schedules for the most susceptible materials and locations, and potentially define SCC-

resistant materials. The second objective of this task is to evaluate the impact of emerging technologies 

proposed for sustaining reliable and economical operation of LWRs on SCC resistance of Ni-base alloys. 

The research scope is defined with regulatory and industry needs and is linked to state-of-the-art 

laboratory testing and microscopic characterizations. 

 

1.2 Focus of Current Report 

This report documents the research progress accomplished in fiscal year (FY) 2023 on two topic 

areas. The first part of this report (Chapter 2) documents the final year progress of a three-year research 

effort on evaluating the SCC initiation and growth behavior of Ni-base alloys in lithium hydroxide 

(LiOH) vs. potassium hydroxide (KOH)-containing PWR primary water. The material types and the 

specific water chemistry conditions evaluated in this research were selected based on discussions with the 

Electric Power Research Institute (EPRI), who is assisting the U.S. pressurized water reactor (PWR) 

utilities in a potential transition from LiOH to KOH. Direct comparisons of SCC initiation and crack 

growth behavior were made on Alloy 82 in a LiOH vs. KOH-containing environment to assess whether 

the change in water chemistry impacts the crack initiation and propagation behavior of this Ni-based weld 

metal. The second part of this report (Chapter 3) provides a status update of the ongoing Phase V long-

term SCC initiation testing on cold-worked (CW) Alloy 690 materials, where the effect of key material, 

mechanical, and environmental factors on the long-term grain boundary (GB) degradation and crack 

initiation behavior of Alloy 690 are being evaluated in state-of-the-art SCC initiation testing systems 

equipped with in-situ detection of macroscopic crack initiation. A detailed summary of the microscopy 

analyses performed in FY 2023 is also provided to evaluate precursor damage and crack evolution in all 

tested Alloy 690 specimens after Phase IV exposure. Insights obtained from the latest testing and 

characterization results are discussed to facilitate the prediction of Alloy 690 degradation in service-

relevant conditions. 
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2. Evaluation of the SCC Initiation and Crack Growth Behavior of 
Alloy 82 in KOH vs. LiOH-Containing PWR Primary Water  

 

2.1 Chapter Overview 

The cost and availability of Li-7 have created an interest in using KOH to replace LiOH for primary 

system pH control in PWRs. A key concern regarding using KOH is its potential effect on the structural 

materials employed in the reactor internals, especially on Ni-base alloys with limited prior experience 

with exposure to KOH water chemistry. In collaboration with an ongoing EPRI-led qualification program 

to determine if KOH PWR water chemistry is acceptable from a materials degradation perspective as 

compared to LiOH PWR water chemistry, PNNL is performing supporting tests under LWRS to 

investigate whether replacing LiOH with KOH has a negative impact on the SCC behavior of Ni-base 

alloys. The testing materials and water chemistries were determined together with EPRI. SCC testing 

began in FY 2021 on two high-strength Ni-base Alloy X-750 and Alloy 718, and the results were 

summarized in two previous milestone reports [1, 2]. In this chapter, the SCC initiation and crack growth 

testing activities on Alloy 82, the last material evaluated in this task, will be reported in detail. The effect 

of replacing LiOH with KOH as the pH moderator in PWR primary water on the SCC behavior of Alloy 

82 will be discussed based on results obtained from SCC testing, post-test characterization, and statistical 

analysis. 

2.2 Experimental Methods 

2.2.1 SCC Initiation Test Systems and Testing Approach 

The SCC initiation testing is performed in state-of-the-art multi-specimen autoclave systems equipped 

with an active loading unit, a flow loop for water chemistry control, and in-situ direct current potential 

drop (DCPD) monitoring for crack initiation. 

30.4 mm (1.2-inch) tall uniaxial tensile specimens are used for the tests (Figure 1). All specimens 

have an identical gauge length of 4 mm. A precision servo-electric load control system applies the load on 

the loading string(s) using a target load of 4670 N (~1050 lbs). Different stress levels can be achieved by 

varying the gauge diameter in the specimens loaded in the same string, allowing multiple specimens to be 

tested at their yield stress (YS) or any other target stress. For most specimens, a 1 ɛm surface finish was 

prepared to facilitate the examination of precursor damage and cracks on the surface. 

 

 
Figure 1. PNNL initiation specimen design. The gauge diameter is selected based on material strength 

and can vary from 2.75-4.5 mm (0.11-0.18 inches). The gauge length is set at 4.0 mm (0.157 

inches). Overall height is 30.5 mm (1.2 inches). Illustrated dimensions are in inch units.  
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Figure 2 shows the load train and DCPD instrumentation for the serially loaded SCC initiation 

specimens set up at PNNL. Currently, two medium-size SCC initiation systems and one large SCC 

initiation system are being used under the scope of LWRS. The two medium-size systems each can test up 

to 6 fully instrumented specimens, and the large SCC initiation system allows 36 specimens to be tested 

simultaneously with up to 12 specimens instrumented. The KOH vs. LiOH SCC initiation testing on 

Alloy 82 utilized one medium-size LWRS test system. This test system was first filled with KOH-based 

water chemistry. After the completion of the SCC initiation testing in the KOH water chemistry, the 

system was cleaned following a procedure similar to what is described for on-the-fly water chemistry 

change during SCC crack growth testing in Section 2.2.2.4. A control study of SCC initiation in the target 

LiOH-based water chemistry was then performed on the same Alloy 82 material. KOH was used at a 

concentration that provides the same pH as LiOH (neutral pH at 310°C). Six specimens were tested in 

each water chemistry. To acquire results within a practical timeframe, the tests were performed with 

accelerant factors in temperature and dissolved hydrogen level. A higher temperature (360°C) than in 

service (325°C) was used for these tests. In addition, a dissolved hydrogen concentration was selected that 

corresponds to an electrochemical corrosion potential at the Ni/NiO stability line, where the SCC 

initiation susceptibility is believed to be the highest for Ni-base alloys.  

A reversing DCPD technique developed by General Electric [3] was adapted for online monitoring of 

SCC initiation behavior based on original work by KAPL [4]. Details of the PNNL approach were 

provided in previous publications [5, 6]. In the SCC initiation testing of Alloy 82 to evaluate the KOH vs. 

LiOH effect, all specimens were tested at or just slightly above their yield stress under constant load. The 

full load was applied to the specimens within 1ï2 days of reaching the test temperature. At the start of a 

test, the target load (the load at ~0.2% plastic strain) was achieved over 1ï2 hours at a constant strain rate 

of ~1×10-5 s-1. This displacement rate allows monitoring of the strain evolution by DCPD with a 

sufficiently low noise level. For example, in Figure 3, some specimens may yield slightly earlier than 

others in a multi-specimen load train system due to intrinsic differences in yield strength and/or gauge 

diameter. In such a case, small amounts of plastic strain up to ~1.5% are allowed in these specimens to 

achieve a minimum of 0.15% plastic strain in the others. The specimens are then held at an actively 

controlled constant load until DCPD detects crack initiation. All relevant environmental parameters and 

DCPD data are monitored and periodically saved to a file. If a test is interrupted for specimen 

examinations or to remove an initiated specimen, the remaining specimens will be returned to their 

original load after the test restarts following the same steps described above where stress versus strain 

response is monitored. Figure 4 shows the evolution of both the non-referenced and the referenced strains 

throughout the exposure of an Alloy 600 specimen. As mentioned above, by subtracting the reference 

voltage from the gauge voltage, the contributions of resistivity drift and creep are largely eliminated in the 

referenced strain response. While cracking and some amount of creep contribute to the observed DCPD 

response simultaneously, the crack initiation time is determined when an apparent increase occurs in the 

strain rate above the noise level. This is thought to be the onset of stable crack growth at engineering-

relevant rates. 
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Figure 2. The load trains used at PNNL in the (a) medium-size SCC initiation test system with a 

capacity of testing up to 6 fully instrumented specimens and the (b) large-size SCC initiation 

test system with a capacity of testing up to 24 instrumented specimens and up to 36 specimens 

in total. 
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Figure 3. Example of stress versus strain plot during the initial loading of tensile specimens for SCC 

initiation testing. The displacement in the actuator and the total load is plotted in the secondary 

x (upper) and y (right) axis, respectively. 

 

 
Figure 4. Non-referenced and referenced DCPD strain response for IN052, an 8% CW specimen from 

Alloy 600MA plate heat NX6106XK-11. 
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2.2.2 SCC Crack Growth Test Systems and Testing Approach 

2.2.2.1 Overview of SCC Crack Growth Test Systems  

Although the LWRS SCC initiation test systems can be converted to perform stress corrosion crack 

growth rate (SCCGR) evaluations, they are fully occupied in FY 2022 and FY 2023 by SCC initiation 

testing of CW Alloy 690 and Alloy 82. As a result, one U.S. Nuclear Regulatory Commission (NRC) 

owned SCCGR test system was borrowed under an agreement to investigate the effect of KOH vs. LiOH 

on the SCC growth behavior of Alloy 82. 

The NRC SCCGR test systems at PNNL were designed and constructed to measure crack length 

under well-defined material and environmental conditions and ensure that the growth rate response is 

reproducible and characteristic of the test conditions. An example of the SCCGR test system is shown in 

Figure 5. Detailed information on the development of these test systems can be found elsewhere [7]. 

However, two key features of these test systems are reviewed here because they are important to the KOH 

vs. LiOH evaluations. 

Firstly, crack length is measured in situ. This has high value because it allows for evaluating SCCGR 

response before and after "on-the-fly" changes in environmental conditions. For SCCGR testing, it is the 

best means to ensure that a measurement is not affected by extraneous parameters associated with 

alternative approaches, such as stopping a test to change water chemistry. On-the-fly evaluations are also 

time and cost-efficient. 

Secondly, control of ion species in the test system recirculating water loop is attained using a mixed 

bed demineralizer. For simulated standard PWR primary water testing, a controlled amount of boric acid 

and lithium hydroxide are introduced to the demineralizer. An amount is selected such that stable B and 

Li values are attained in the test system water, i.e., the demineralizer neither absorbs nor releases B and Li 

as the water passes through it when no other ions are present. The relevance to the KOH evaluation effort 

is that this approach to PWR primary water chemistry simulation requires preparing a dedicated 

demineralizer for each water chemistry to be investigated. It also requires a carefully planned procedure 

for swapping out water on-the-fly. This approach will be discussed in detail in the next section. 
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Figure 5. The typical SCCGR test system used at PNNL. 

 

2.2.2.2 General SCC Crack Growth Testing Approach 

The PNNL SCCGR test systems have been designed for use with 1T and 0.5T compact tension (CT) 

specimens, and for this task, side grooved 0.5T CT specimens were used. The details of the specimen 

geometry are shown in Figure 6. Before loading a specimen in the autoclave, the sample thickness ὄ  

(total thickness) and ὄ  (total thickness subtracting side groove depth),  notch depth, and width values 

were all measured and recorded into the data record for the test. Using the sample dimensions and the YS 

of the specimen at the test temperature, following American Society for Testing and Materials (ASTM) 

Standard E-1681, an upper limit on the value of the stress intensity (K) is calculated using the formula: 

ὑ „ ὈȾρȢςχ (1) 

where sys is the YS at the test temperature, and D is the smallest among the effective specimen thickness 

(ὄ ὄ Ͻὄ ), the remaining uncracked specimen width, and the crack length. In the case of 

materials with large amounts of work hardening (where the ratio of ultimate tensile strength to yield 

strength is greater than 1.3), such as annealed 300-series stainless steels and low-strength Ni-base alloys, 

the average of the yield and ultimate stress is used in place of the YS following ASTM guidelines. The 

tests conducted for this task were within this calculated K limit, but the calculated upper limit on K is not 

considered a strict value but rather provides a reference point for what may be considered a high-stress 

intensity for a given material. 
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Figure 6. Schematic drawing of a 0.5T CT specimen. Oversized loading holes (~9.5 mm diameter) are 

used to accommodate ceramic inserts that provide electrical isolation between the CT 

specimen and clevises.  

 
Crack growth tests are usually performed with two specimens loaded in series into a test system, 

allowing a greater range of material conditions to be examined in a shorter period or assessing test 

reproducibility by using two samples from the same material condition. After the sample dimensions are 

measured and spot-weld locations are marked on the sample, it is cleaned and inserted into a test system. 

Precracking of a sample is done in situ at the test temperature when a single specimen is being tested. 

Initial precracking of two or more specimens mounted in series in situ is not performed because the time 

needed to nucleate a precrack is inconsistent which can cause the specimens to have much different 

precrack lengths. Consequently, precracking two specimens in series likely will lead to specimens having 

different precrack lengths. The differing precrack lengths would make it impossible to maintain and 

control the K level in both specimens during and after precracking. Thus, the approach for testing at 

PNNL is to nucleate a crack individually on each of the two specimens under fatigue in air, followed by 

continued precracking of the two samples loaded together in situ. Crack transitioning steps are carefully 

selected to grow the precrack in high-temperature water using the following stages: (1) fatigue, (2) 

corrosion fatigue, and (3) SCC. Typically, this means producing initial precracks of ~1 mm in air followed 

by an additional ~1 mm by cycling in situ before transitioning to slow cyclic loading plus hold times to 

promote SCC. An Instron servohydraulic test frame is used to precrack CT specimens in air, and the same 

DCPD electronics and system control software used for the crack growth systems is also used for the 

Instron test frame. 

The first step in precracking is to cycle the sample at a relatively high frequency (2ï10 Hz) with a 

large load ratio (R) and Kmax less than or equal to the K level chosen for constant K. As the crack begins 

to grow from the notch, R is increased, and frequency is reduced while the Kmax value is increased. By 

precracking in this way, each precrack segment can grow beyond the plastic zone created by the previous 

segment. Cyclic loading steps at 0.1 Hz down to 0.001 Hz are performed in high-temperature water for all 

samples. The final phase involves crack transitioning by very slow cycling with a hold time ranging from 

1 h to 24 h. This grows the crack beyond the precracking plastic zone and allows the crack to transition 

from transgranular (TG) fatigue to the crack growth morphology that normally occurs under constant K 

conditions. Depending on the material susceptibility, this may be either TG or intergranular (IG) cracking. 

For materials such as Alloy 82 that readily undergo IGSCC growth in LWR environments, obtaining a 
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steady SCC growth rate after transitioning to constant K can easily be accomplished by following a 

standard procedure.  

2.2.2.3 Uncertainties in Crack Growth Data Measurements 

While the noise resolution of the PNNL DCPD test method is no more than ±3 µm and allows for 

establishing trends in the crack growth rate (CGR) down to ~5x10-10 mm/s, the accuracy of these rates 

depends on some factors that cannot be fully assessed. For example, crack front irregularity can affect the 

DCPD-measured CGR. There is no way to document the variation in the shape of the crack front as the 

crack grew; and therefore, this effect cannot be accurately included in post-test crack length corrections. 

Another issue is that uniquely identifying each test phase on a crack surface is often impossible after the 

test has ended. As a result, the post-test correction is typically based on the entire in situ portions of the 

test. An additional complication is the effect of ligament or contact formation on constant K crack growth. 

Even though attempts are made to assess these effects during the test, there are no accurate post-test 

means to assess how well this method works. Crack growth testing experience and interactions with the 

international expert community have produced many insights into issues, but many uncertainties cannot 

be effectively quantified. Based on our experience, state-of-the-art testing methods, and data analysis 

approach, we believe overall uncertainties for CGR measurements are at ±50% for SCC-susceptible 

materials with steady growth response. Uncertainty in reported stress intensity for a relatively straight 

final crack front is Ò10% after correcting for observed crack length. For a highly uneven final crack, the 

local variability is not easily quantified and may be substantial. 

2.2.2.4 Water Chemistry Control for the KOH vs. LiOH Study 

This study aims to produce quantitative SCCGR data through in-situ measurement of crack length in 

KOH-based water chemistries and corresponding reference LiOH-based water chemistries that will serve 

as the point of comparison. The water chemistries to be evaluated in the SCC growth rate testing were 

recommended by EPRI, with details listed in Table 1. The effects of KOH relative to LiOH were 

evaluated in the beginning-of-cycle (BOC) water chemistry and the end-of-cycle (EOC) water chemistry. 

A mid-cycle water chemistry was also evaluated. This mid-cycle B/K chemistry was evaluated 

because B-10 decays by thermal neutron absorption during reactor operation to produce Li -7: 
10B(n,Ŭ)7Li  [8]. LiOH and KOH concentrations were selected to provide a neutral pH at 310°C. pH at the 

360°C test temperature is slightly basic. For these particular bases, this occurs at molar-equivalent 

concentrations. 

 

Table 1. Nominal PWR primary water chemistries identified by EPRI for the KOH vs. LiOH study. 

Environment ppm B, ppm Li, or ppm K pH(310°C) pH(360°C) 

BOC 
1500 B / 2.2 Li 

7.0 8.39 
1500 B/ 12.4 K 

EOC 
10 B / 0.23 Li 

7.0 8.26 
10 B / 1.30 K 

Mid-cycle 1000 B / 3.3 K + 1.0 Li 7.0 8.36 

 
The key to the test is to make on-the-fly changes between Li- and K-containing water chemistries 

with no change in any other conditions. By following this methodology, a direct comparison of SCCGR 

of KOH vs. LiOH is obtained with no other changes to the test. The desired test system water and 

corresponding demineralizer filters were prepared beforehand to achieve this. Mixed bed demineralizer 

filters were equilibrated to the designated chemistry at room temperature by circulating deaerated water 

through a loop with the demineralizer and adding the corresponding chemicals until the desired B and Li 

or K values were attained and stable. 
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To gain experience and ensure that the on-the-fly water chemistry changes would be successfully 

implemented during testing, a water chemistry change trial from 1500 ppm B/2.2 ppm Li to 1500 ppm 

B/12.4 ppm K and then to 10 ppm B/0.23 ppm Li was performed before the start of the actual tests. All 

the other environmental conditions (e.g., temperature, dissolved hydrogen, etc.) were set to the same 

target values used in the test. A simplified water board setup in preparation for these changes is illustrated 

in Figure 7. The on-the-fly changes were accomplished by draining 95 volume% of the old solution inside 

the water column and then switching the inlet flow to draw water from the prepared new deaerated 

solution in a five-gallon container. This refills the water column and pushes the new solution through the 

autoclave and the water board. In addition, the solution being purged from the autoclave was decanted 

into a disposal container during all autoclave volume exchanges using the outlet before reaching the 

demineralizer filter (Figure 7). This process is repeated approximately for 5ï6 autoclave volume 

exchanges. The first three exchanges take place with the demineralizer valved out from the water 

chemistry control board. After the third volume exchange, a demineralizer configured for the new target 

water chemistry is valved in. Table 2 summarizes the evolution of monitored environmental parameters 

during the entire process of an on-the-fly water chemistry change trial run from 1500 ppm B/2.2 ppm Li 

to 1500 ppm B/12.4 ppm K. The changeover usually took ~5 hours to complete, but 24 hours were given 

for the system to equilibrate. Whether the final concentration of the solution is on par with the target can 

be determined by acquiring a water sample after the equilibration is reached. 

 

 
Figure 7. Simplified schematic of the modified water board setup for on-the-fly chemistry changes used 

in the SCCGR test system. The red arrows indicate the direction of the water flow. 
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Table 2. Environmental parameter tracking at each autoclave volume exchange during the trial on-the-

fly water chemistry changeover from 1500 ppm B/2.2 ppm Li to 1500 ppm B/12.4 ppm K. 

Vol. 

change # 

Resistivity 

(Kohm-cm) 

Conductivity 

(ɛS/cm) 
pH 

Temp 

(°C) 

B content 

(ppm) 

Li content 

(ppm) 

K content 

(ppm) 

0 47.32 21.13 6.15 23.45 1512 2.19 0 

1 38.78 25.79 N/A 24.89 N/A N/A N/A 

2 36.62 27.31 N/A 24.97 N/A N/A N/A 

3 35.17 28.43 N/A 25.00 N/A N/A N/A 

4 33.90 29.49 N/A 24.94 N/A N/A N/A 

5 29.83 33.52 6.09 23.55 1637 ~ 0 12.97 

6 30.21 33.10 6.18 23.49 1501 ~ 0 12.77 

 

2.2.3 Material and specimen preparation 

Alloy 82 is a compatible weld metal for Alloy 600 for automatic gas tungsten arc welding. The Alloy 

82H weld (Heat 21719-2) used in this study is an in-house multi-pass build-up by the Naval Nuclear 

Laboratory (NNL). The composition of this weld compared to the Alloy 82H specification is given in 

Table 3. As shown in Figure 8, the weld block was received in an ñLò shape. It received a post-weld heat 

treatment (PWHT) at ~621 °C for 8.5 hours with a heat-up rate of ~16.8 °C/hour from room temperature 

to 621 °C and a cooling rate of ~31 °C/hour from 621 to 310 °C, followed by air cool.  

 

Table 3. Chemical composition (wt. %) of Alloy 82H Heat 21719-2 in comparison to the Alloy 82H 

specifications. 

Element A82 Spec Alloy 82H Heat 21719-2 

C Ò0.1 0.04 

Cr 18ï22 20.1 

Fe Ò3 0.7 

Mn 2.5ï3.5 2.75 

Ni Bal. 72.8 

Ti  Ò0.75 0.47 

Co Ò0.1 0.04 

P Ò0.03 0.01 

Cu Ò0.5 0.07 

S Ò0.015 0.002 

Si Ò0.5 0.07 

Nb+Ta 2.0ï3.0 2.5 (Ta: 0.069) 

Pb  0.002 
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Figure 8. The as-received Alloy 82H (Heat 21719-2) block for this study. 

Figure 9 illustrates the cutting plan of the as-received A82 block for this study. A piece was first cut 

from the bottom of the ñLò shaped block and divided into three sub-blocks. The sub-blocks were each 

cold-forged (CF) to a 30% reduction in thickness along the direction identified in the figure. Although our 

baseline cold work condition for Alloy 600 and 182 were 15% reduction in thickness, it was decided to 

first test Alloy 82 in a 30%CF condition because it contains a higher Cr content than Alloy 600 and 182, 

and literature data has shown that it could be much more resistant to SCC initiation and propagation in 

high-temperature water. Three CT specimens were machined from the first sub-block, while six initiation 

specimens were each extracted from the second and third sub-block. Both the CT and the initiation 

specimens were oriented in the T-S orientation of the weld. Like what we normally do for Alloy 182 weld 

specimens, all the 30%CF Alloy 82 initiation specimens were polished to a very fine surface finish in the 

gauge section ending with colloidal silica and then examined in SEM before the initiation testing. Quite 

unexpectedly, large, irregularly shaped welding defects were found in three specimens, with examples 

shown in Figure 10. While these specimens were excluded from testing, four specimens went in the first 

SCC initiation test in BOC LiOH chemistry, and three of them initiated immediately after loading up to 

100% yield stress (Figure 11). These data clearly suggest that the 30% CF condition was too aggressive 

for meaningful evaluation of the SCC initiation behavior of this Alloy 82 material. As a result, another 

block was sectioned from the top of the ñLò shaped block, cold-forged to a 15% reduction in thickness 

along the same forging direction as the 30%CF block. Fourteen specimens were machined, and their 

gauge section was again polished to a colloidal silica finish. This time, only two specimens exhibited 

obvious welding defects on the surface during the pre-test examinations, so the remaining twelve 

specimens were used for SCC initiation testing, six in the BOC LiOH condition and the other six in the 

BOC KOH condition. 
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Figure 9. Schematic of the A82 block cutting plan for specimen preparation. 

 














































































































































