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SUMMARY 
Cables are initially qualified for nuclear power plant use for 40 years. As plants extend their 

operating license to 60 and 80 years, continued use of these cables must shift to a performance-based 
approach since it is cost prohibitive to completely replace cables that are likely still capable of 
performing their design function. A variety of cable tests are available and are commonly applied 
during outages when the cables can be taken out of service.  

Frequency domain reflectometry (FDR) is one of these test methods that is being more broadly 
accepted and used because it not only detects anomalies along the cable with a low-voltage signal that 
does not stress the cable insulation, but the technique also locates the anomalies. This supports 
follow-up local inspection and local repair or partial replacement of a damaged cable segment. 
Currently, FDR testing is only applied to cables that are taken out of service since the test instrument 
would be damaged by operational voltages.  

A related technology that has found some acceptance in the aircraft and rail industry is spread 
spectrum time domain reflectometry (SSTDR). This technology has been implemented with a custom 
commercial instrument by LiveWire Innovation Inc. that is designed to operate on live cables up to 
1000 volts.  

PNNL performed a test of the LiveWire SSTDR system and an FDR system in 2022 using their 
Accelerated and Real-time Environmental Nodal Assessment (ARENA) cable motor test bed, that 
allowed many conditions to be evaluated under realistic and controlled conditions without risking 
safety critical systems of an actual power plant. The LiveWire system clearly showed its best 
response at the highest frequency bandwidth of 48Mhz. The FDR test system was most sensitive to 
cable anomalies from 100 to 500 MHz. Although the SSTDR and FDR bandwidths are not directly 
comparable, both the SSTDR and FDR show similar trends in their frequency bandwidth responses. 
Lower frequencies propagate further along the cable but have poorer resolution capability that can, 
for example, reveal the start and stop of cable damage segments. Higher frequencies have better 
spatial resolution but the signal attenuates more with propagation distance along the cable and so may 
be less suitable for long cable inspections. Although the FDR tests seemed less noisy than the 
SSTDR, both systems showed indications of thermal damage, low-resistance faults between phases, 
and for unshielded cable – sensitivity to the presence or absence of water as the cable was passed 
through a water bath. The data suggested that a higher frequency SSTDR may be more sensitive to 
cable anomalies and could better resolve the start and stop of damage segments. A PNNL SSTDR 
was developed to examine higher bandwidth frequencies based on a software-controlled laboratory 
instrument without requiring changes to the commercial SSTDR system.  

One of the main conclusions of the previous effort was that cable reflectometry plots can be 
difficult for humans to analyze due to baseline noise, low or noisy anomaly response peaks, or large 
responses from cable ends. Detection of cable anomalies for many of these frequencies and test 
conditions was challenging for manual analysis. This presented an ideal opportunity for ML analysis 
to distinguish undamaged cable indications from anomalous cable indications. This research discusses 
application of machine learning (ML) to reflectometry cable test methods. The goal was to assess 
feasibility to distinguish undamaged cable reflectometry responses from damaged or anomalous cable 
reflectometry responses. The assessment considered the 3 instruments, multiple frequency 
bandwidths from each instrument, multiple cable anomalies and test conditions, and both supervised 
and unsupervised ML approaches. 

The PNNL software-controlled laboratory instrument with expanded bandwidth capabilities was 
set to test cables at 50, 100, 200, 300, 400, and 500 MHz. The FDR was also set to acquire data at 50, 
100, 200, 300, 400, and 500 MHz. The LiveWire SSTDR collected data at 6, 12, 24, and 48 Mhz. For 
unsupervised ML, all 6 PNNL SSTDR and FDR frequencies were used and only the 48 MHz 
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LiveWire data was considered. For supervised data, the PNNL SSTDR and FDR 300 and 500 MHz 
data was excluded plus all 4 LiveWire SSTDR frequencies were included. The test matrix included 
42 test conditions although 3 were identically labeled and so reduced the number of supervised cases 
accordingly. The three instruments were evaluated over the test matrix conditions. The data was 
distributed to two independent teams – one applying unsupervised learning methods and the other 
applying supervised methods to the data.  

Although approaches and analysis methods were not identical or directly comparable, both 
outputs were encouraging. The unsupervised prediction weighted accuracy was assessed by 
instrument and by frequency. It performed better at high frequencies with the highest prediction 
accuracy of 0.84 for the higher frequency FDR, 0.79 for the 48-MHz LiveWire SSTDR, and 0.77 for 
300-MHz PNNL SSTDR. The initial weighted accuracy average across all frequencies for using 
supervised ML was 0.56 to 0.68. The supervised analysis was repeated with noisier training data 
removed resulting in weighted accuracies of 0.69 to 0.87. These weighted accuracies are not directly 
comparable due to differences in the supervised and unsupervised analysis details but do indicate an 
encouraging trend. Even with limited and unbalanced data, strong prediction accuracies seem 
encouraging for further work including more data under a wider range of conditions.  
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1. INTRODUCTION 
The Light Water Reactor Sustainability (LWRS) program has a cable nondestructive evaluation 

(NDE) effort that aims to evaluate and advance promising NDE methods for cable inspection in support 
of nuclear power plant (NPP) owner and operator interest to improve cable management reliability and 
reduce cost. NDE techniques are designed to detect and locate aging and operational damage and 
degradation prior to failures. Although most safety critical cables are initially qualified in accordance with 
NRC Guide 1.1211 (NRC 1977) and IEEE 383 (IEEE 2015) for 40 years, most US plants have applied 
for or have been granted life extensions beyond their initial 40-year license. Part of the life extension 
program is to justify continued service of cables based on performance tests rather than the initial 
qualification that only justified service to 40 years. This extension is needed because completely replacing 
NPP cables would be cost prohibitive and experience has shown that cables can continue to function 
safely long beyond their initial qualification. Testing is normally performed during outages when the 
cables can be taken out of service, de-energized, and tested using a variety of test methods. This approach 
is costly to the utility and subjects the cables to risks of damage during re-termination and the stresses 
associated with some of the test methods.  

Reflectometry techniques offer a promising improvement to cable testing. A test instrument is 
connected to the cable end and a voltage wave is applied that travels along the cable. If an impedance 
change is encountered, part of the energy is reflected back to the reflectometry test instrument that can 
sense the reflected wave. The time delay between wave initiation and reflection detection is related to the 
distance along the cable by the wave velocity of propagation. Two types of reflectometry are considered 
in this research – Frequency Domain Reflectometry (FDR) and Spread Spectrum Time Domain 
Reflectometry (SSTDR). FDR is becoming more commonly used in NPPs to identify and locate damage. 
SSTDR is being used in the rail and aircraft industry and is being evaluated for NPPs. A particular 
advantage of SSTDR is that it can be applied to low voltage energized cables as an online technique. 
Implementing this in NPPs offers significant potential advantages in that cable condition monitoring need 
not be limited to outage testing, does not require human error-susceptible de-termination/re-termination, 
and offers the possibility of improved sensitivity by monitoring for changes in the cable condition that 
can minimize noise influences of tight-radius bends, proximity to metal (for unshielded cable), cable end 
responses, and manufacturing anomalies.  

A 2022 program (Glass et al. 2022) evaluated a commercial SSTDR system in the Pacific Northwest 
National Laboratory (PNNL) Accelerated and Real-time Environmental Nodal Assessment (ARENA) 
cable/motor test bed (Glass, Fifield, and Prowant 2021). Test conditions included FDR at 50-, 100-, 200-, 
and 400-MHz bandwidths, and SSTDR at 6, 12, 24, and 48 MHz. The actual frequency bandwidths are 
not equivalent but the general trend of higher or lower frequency bandwidths are common among all 
instruments. Lower frequency bandwidths propagate further along the cable but with lower spatial 
resolution. Higher bandwidths attenuate more and propagate shorter distances. Higher frequencies are 
generally noisier but offer better spatial resolution, which is helpful for many cable analysis situations. 
Conclusions from (Glass et al. 2022) included an observation that frequency bandwidth limitations of the 
commercial SSTDR may be limiting to fault detectability and speculation that a wider frequency 
bandwidth may offer improved performance.  

Another conclusion of the previous effort was that cable reflectometry plots can be difficult for 
humans to analyze due to baseline noise, low or noisy anomaly response peaks, or large responses from 
cable ends. Although some faults produced large and clear responses, many of the anomalies produced 
subtle indications that would be difficult to detect for both FDR and SSTDR measurements. This 
presented an ideal opportunity for machine learning (ML) analysis to distinguish undamaged cable 
indications from anomalous cable indications. This research assesses feasibility of ML applicability to 
reflectometry cable test methods. 
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A software-controlled laboratory instrument-based system was developed that allowed higher 
frequency bandwidths. Development of this PNNL SSTDR is documented in (Glass et al. 2023), and an 
initial evaluation of the PNNL SSTDR compared to FDR and the LiveWire SSTDR for 42 different cable 
test conditions is documented in (Glass et al. 2023). Test conditions included phase-to-phase mid-cable 
shorts and low-resistance faults, thermal damage, and water exposure.  

In this effort, data from (Glass et al. 2023) was used to evaluate ML ability to distinguish undamaged 
cable from cable with mid-span anomalies. Similar data was analyzed by to two independent teams. The 
Idaho National Laboratory (INL) team focused on unsupervised ML while the Pacific Northwest National 
Laboratory (PNNL) focused on supervised ML. The performance of each approach is discussed in this 
report. Before the approaches and results are discussed, an introduction to the ARENA test bed and the 
FDR and SSTDR methods is presented. 

1.1 Arena Cable Motor Test Bed 
To evaluate the degradation of electrical cables and particularly the interaction of electrical cable test 

technologies with various damage mechanisms, PNNL developed the ARENA test bed (Glass, Fifield, 
and Prowant 2021), shown in Figure 1. The vision behind the creation of this facility is to establish a 
modular test facility that allows for the implementation of a broad range of test methods to detect faults 
and anomalies in a variety of cables and systems in a controlled environment. ARENA includes: 

• A motor controller for 3-phase 480 VAC motor control. 
• A ½ horsepower 3-phase 480 VAC motor. 
• Remote start capability and barriers to protect operators from arc-flash exposure should cable fail. 
• Circuit breaker protection that guards and isolates the building power from test system failure. 
• A thermal aging oven that allows up to 10 m of cable to be spooled and thermally aged. 
• A water bath that allows cables to be submerged. 
• Cable trays like those found in NPPs that allow cables to be spread and protected from operators 

standing on the cables or moving them during testing. 
The system can be operated with either shielded or unshielded cable. For these tests, cable samples 

were ~ 100 ft in length with a 25-ft test lead.  
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Figure 1. The ARENA Test Bed (top) digital image and (bottom) schematic (Glass et al. 2023) 

1.2 FDR OVERVIEW 
FDR is being used in nuclear plants, particularly to locate areas of concern. The FDR instrument, 

typically based on a vector network analyzer (VNA), is connected to two cable conductors, one 
considered the primary conductor under test and the other considered the system ground, as shown in 
Figure 2, or to a parallel conductor within the cable bundle (Glass et al. 2017). The instrument directs a 
swept-frequency chirp along the conductor and then listens for any reflection caused by an impedance 
change along the cable length. By listening and detecting the reflections in the frequency domain, 
eliminating noise susceptible frequencies, then transforming to the time domain with an inverse Fourier 
transform (IFT), significant noise immunity and sensitivity to subtle impedance changes can be achieved 
(Glass et al. 2017). The signal is then transformed to time/distance domain using an inverse Fourier 
transform and the velocity of propagation (VOP) (Glass et al. 2017). The bandwidth for the FDR is 
software adjustable up to 1.3 GHz, but experience shows the best responses from 50 MHz to 500 MHz. 
Higher FDR bandwidths produce sharper peaks capable of spatially resolving more closely spaced 
impedance changes, but the higher frequencies do not propagate as far along the cable length. Typical 
tests are performed at multiple bandwidths (for this study, 50, 100, 200, 300, 400, and 500 MHz were 
used) providing the analysts both high and low frequency bandwidths to consider in dispositioning tests. 
FDR instruments are restricted to relatively low voltages and cannot tolerate testing on energized cable 
systems.  

 
Figure 2. FDR cable test introduces a swept frequency chirp onto a conductor then listens for any 
reflection from any impedance change along the cable length. 



 

15 

1.3 LiveWire SSTDR OVERVIEW 
The LiveWire commercial SSTDR produces a similar plot to the FDR, but all processing is in the 

time domain. A pseudo-random noise code (PN code) modulated with a square wave carrier through a 
high pass filter is input onto the cable conductor, and the instrument listens for any reflected response 
from cable anomalies (Figure 3). The SSTDR processes the signal as an autocorrelation, comparing the 
input PN code to any reflected signal detected. It can be used for measurements on energized cable up to 
1 kV. The autocorrelation algorithm produces a robust noise-tolerant signal response and, as with the 
FDR, responses are quite different as a function of the bandwidth. The LiveWire SSTDR instrument 
produced responses for this study at 6, 12, 24, and 48 MHz. The definition of bandwidth for FDR is 
different it is for SSTDR. The 2022 study (Glass et al. 2022) indicated that some higher bandwidth 
SSTDR responses could help with analysis and the probability of detection.  

 
Figure 3. LiveWire SSTDR cable test applies a PN code to the conductor for cross correlation analysis. 
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1.4 PNNL SSTDR OVERVIEW 
In response to interest in a higher bandwidth SSTDR, PNNL developed a flexible software-controlled 

laboratory-based SSTDR system to investigate SSTDR sensitivities to different cable impedance 
discontinuities as a function of bandwidth and particularly addressing higher frequency bandwidths than 
possible with the LiveWire instrument. The PNNL SSTDR system consists of the components in the 
function block diagram shown below in Figure 4 and the physical configuration shown in Figure 5. In the 
block diagram, the SSTDR signal generation is created by an arbitrary waveform generator (AWG) that 
creates a broadband excitation chirp. The AWG provides two outputs for a single waveform as a 
differential pair: the (+), or 0-degree waveform, is used as the signal injected down the cable line, and the 
(-), or 180-degree waveform, is used as a reference to correlate against the (+) signal as it is received. 
This method provides a phase and time synchronous copy of the SSTDR waveform and is ideal for cross 
correlations. The PNNL SSTDR was software-controlled for this test to produce reflectometry 
measurements with bandwidths of 50, 100, 200, 300, 400, and 500 MHz.  

 
Figure 4. Block diagram of PNNL SSTDR system 

 

 
Figure 5. PNNL SSTDR initial test configuration 
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2. TEST CASES 
Cables were tested in the ARENA cable and motor test bed (PNNL 2022). Evaluated cables were low 

voltage, tri-core, shielded and non-shielded cables manufactured by General Cable® (Catalog number 
383830). The overall specifications for the selected cables are given in Table 1. Both shielded and non-
shielded cable variants were comprised of three 14 AWG conductor wires insulated by ethylene 
propylene rubber (EPR) and protected by a chlorinated polyethylene (CPE) jacket. Additionally, the 
shielded cable contains an aluminum foil shield layer between the jacket and insulated wires. The cables 
have a voltage rating of 600 V and an operating temperature rating of 90 °C. All FDR and SSTDR tests 
were performed on cables of around 100-ft length. 
Table 1. Manufacturer information for the cables selected for evaluation. 

Manufacturer P/N Jacket Insulation Type 
General Cable 354800 CPE EPR Shielded 

6-903-SH 14AWG-3/C FR-EP 600V FR-EPR/CPE Foil Shielded 600V E-2 
General Cable 383830 CPE EPR Non-Shielded 

6-903-G 14AWG-3/C FR-EP 600V FR-EPR/CPE Non-Shielded 600V E-2 
EPR = ethylene-propylene rubber; CPE = chlorinated polyethylene. 

 
Tests were conducted using (1) an undamaged cable with open, short, 100 ohm, 312 ohm, and 2k ohm 

terminations at the distal cable ends, (2) thermally aged cable that entered and exited an oven at 45 to 75 
ft, (3) phase-phase and phase-shield low-resistance faults at 26 ft, and (4) water immersion in a water bath 
from 61 to 67 ft.  

Data can be viewed in either dB or magnitude arbitrary units (a.u.) and each display has its own 
advantages. The dB response compresses the full data set and allows some visibility of the lower-level 
changes between the responses from the two cable ends but still allows viewing the cable end response. 
The magnitude plots can show more subtle responses but may require the higher peaks associated with the 
cable ends to be truncated. Examples of this are shown in Figure 6 and Figure 7. These plots are of an 
anomalous cable response with a 100-ohm phase to phase fault at 26 ft. This is a relatively obvious 
indication with a substantial amplitude response above the noise floor at 50 ft between the peaks from the 
cable ends at 25 ft and 125 ft. The cable start peak is at 25 ft because there is a 25-ft test lead between the 
instrument and the cable start. The dashed vertical lines mark the beginning of the cable after the test lead 
and the peak corresponding to the cable end. One example of an undamaged cable is shown in Figure 8. 
Note that there are no peaks between the cable end responses. Seventeen cases of undamaged cable were 
presented with different cable end impedance terminations. The 100-ohm fault anomaly is rather easily 
distinguished from the undamaged condition but many of the cases were much more challenging to 
identify an anomaly response above the noise.  
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Figure 6. dB response for 100-ft shielded and undamaged cable with 100 ohms at 26-ft (shown as 
approximately 50-ft on plot due to test lead). The dashed vertical line marks the beginning of the cable 
after the test lead and the peak corresponding to the cable end.  

 

 
Figure 7. Magnitude response for 100-ft shielded and undamaged cable with 100 ohms at 26-ft (shown 
as approximately 50-ft on plot due to test lead). 
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Figure 8. 100-ft shielded undamaged cable with distal end phase-phase short  

The full test matrix is shown in Table 2. The test condition 2nd column is coded as either green for 
undamaged cables or yellow for cables with an anomalous condition that the reflectometry test is targeted 
to detect. For each of the 4 frequency bandwidths, a subjective ranking (-1, 0,1) and a color code (orange, 
yellow, or green) are assigned in accordance with guidelines of Table 3. There are 17 undamaged 
conditions and 25 anomalous conditions. This constitutes a slightly unbalanced distribution of data but 
still supports the ML effort. Note that there are a significant number of orange or yellow cells in  
indicating that manual interpretation of the data is challenging. 
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Table 2. Test matrix shows undamaged and damaged cable conditions and a subjective ranking of each test 
condition by instrument and frequency bandwidth. 

 

  

Key:  Green conditions are for undamaged cable PNNL SSTDR FDR LiveWire
Key: Yellow conditions are for anomalous cable condition 50 100 200 400 50 100 200 400 6 12 24 48

# Test condition 
1 100ft Shielded Cable, 100 ohm phase - shield at distal end 1 1 1 1 1 1 1 1 -1 -1 1 1
2 100ft Shielded Cable, 2k ohm phase - shield at distal end 1 1 1 1 1 1 1 1 -1 0 1 1
3 100ft Shielded Cable, 312 ohm phase - shield at distal end 1 1 1 1 1 1 1 1 -1 -1 1 1
4 100ft Shielded Cable, Undamaged Cable (short distal end) 1 1 1 1 1 1 1 1 -1 1 1 1
5 100ft Shielded Cable, Short phase-shield at distal end 1 1 1 0 1 1 1 1 -1 1 1 1
6 100ft Shielded Cable, Undamaged Cable (short distal end) 1 1 1 1 1 1 1 1 -1 0 1 1

7 100ft Shielded Cable, Undamaged Cable 100 ohms at 26-ft 1 1 0 1 1 1 0 1 -1 1 1 1
8 100ft Shielded Cable, Undamaged Cable 2kohms at 26-ft 1 1 1 1 1 1 1 1 -1 -1 1 1
9 100ft Shielded Cable, Undamaged Cable 2kohms at distal end 1 1 1 1 1 1 1 1 -1 1 1 1

10 100ft Shielded Cable, Undamaged Cable 312 ohms at 26-ft 1 1 1 1 1 1 0 1 -1 1 1 1
11 100ft Shielded Cable, Undamaged Cable 312 ohms at distal end 1 1 1 1 1 1 1 1 -1 1 1 1
12 100ft Shielded Cable, Undamaged Cable connected to motor 1 1 1 1 1 1 1 1 -1 1 1 1
13 100ft Shielded Cable, Undamaged Cable short at 26-ft 0 0 0 0 0 0 0 0 -1 -1 0 0
14 Additional Testing, cable wirenut splices 0 0 0 0 0 0 0 0 -1 0 0 0
15 100ft Shielded Cable, 100 ohm phase - shield at distal end 1 1 1 1 1 1 1 1 -1 1 1 1
16 Phase-Phase Faults, Undamaged Cable 100 ohm at distal end 1 1 1 1 1 1 1 1 1 1 1 1
17 Phase-Phase Faults, Undamaged Cable 100 ohms at 26-ft -1 -1 1 1 -1 1 1 1 -1 -1 -1 -1
18 Phase-Phase Faults, Undamaged Cable 2kohms at distal end 1 1 -1 -1 1 1 1 1 -1 -1 -1 1
19 Phase-Phase Faults, Undamaged Cable 2kohms at26-ft 1 1 1 -1 0 1 1 1 -1 -1 0 1
20 Phase-Phase Faults, Undamaged Cable 312 ohms at 26-ft -1 -1 1 1 -1 1 1 1 -1 -1 -1 -1
21 Phase-Phase Faults, Undamaged Cable 312 ohms at distal end 1 1 -1 -1 1 0 0 0 -1 1 1 1
22 Phase-Phase Faults, Undamaged Cable connected to motor 1 1 1 1 1 1 1 1 -1 1 1 1
23 Phase-Phase Faults, Undamaged Cable short at 26-ft 1 1 1 1 1 1 1 1 -1 1 1 1
24 Thermally aged cable in oven, Good Undmgd Cable 1-pos 2-neg end1 open ends 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
25 Thermally aged cable in oven, Good Undmgd Cable 1-pos 2-neg end2 open ends 0 0 -1 -1 -1 1 -1 -1 -1 -1 -1 -1
26 Thermally aged cable in oven, Good Undmgd Cable 2-pos 3-neg end1 open ends 1 1 -1 -1 0 0 -1 -1 -1 -1 -1 -1
27 Thermally aged cable in oven, Good Undmgd Cable 2-pos 3-neg end2 open ends -1 0 -1 -1 -1 1 0 -1 -1 -1 -1 0
28 Thermally aged cable in oven, Good Undmgd Cable 3-pos 1-neg end1 open ends 1 1 -1 -1 0 0 -1 -1 -1 -1 -1 -1
29 Thermally aged cable in oven, Good Undmgd Cable 3-pos 1-neg end2 open ends -1 0 -1 -1 -1 1 -1 -1 -1 -1 -1 0
30 Thermally aged cable in oven, Good Undmgd Shielded Cable 1-pos 2-neg end1 open ends 0 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1
31 Thermally aged cable in oven, Good Undmgd Shielded Cable 1-pos 2-neg end2 open ends 0 0 -1 -1 0 0 -1 -1 -1 -1 -1 -1
32 Thermally aged cable in oven, Good Undmgd Shielded Cable 2-pos 3-neg end1 open ends 0 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1
33 Thermally aged cable in oven, Good Undmgd Shielded Cable 2-pos 3-neg end2 open ends 0 0 -1 -1 1 -1 -1 -1 -1 -1 -1 -1
34 Thermally aged cable in oven, Good Undmgd Shielded Cable 3-pos 1-neg end1 open ends 0 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1
35 Thermally aged cable in oven, Good Undmgd Shielded Cable 3-pos 1-neg end2 open ends 0 0 -1 -1 1 0 -1 -1 -1 -1 -1 -1
36 Thermally aged cable in oven, Thermally Aged Cable short ends(1,2) at ambient -1 0 0 -1 1 1 1 -1 -1 -1 -1 1
37 Thermally aged cable in oven, Thermally Aged Cable connected to motor at ambient -1 1 0 -1 1 1 0 -1 -1 -1 -1 -1
38 Thermally aged cable in oven, Thermaly Aged Cable 1-pos 2-neg end 1 open ends at ambiant -1 0 0 1 1 1 0 -1 -1 1 1 1
39 Water Bath Tests, shielded cable with 3-ft section in bath -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1
40 Water Bath Tests, shielded cable with 3-ft section out of bath 1 1 1 1 1 1 1 1 -1 1 1 1
41 Water Bath Tests, unshielded cable with 3-ft section in bath 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1
42 Water Bath Tests, unshielded cable with 3-ft section out of bath 1 1 1 1 1 1 1 -1 -1 0 1 1ColCol Col Col ColColCol ColColuColCo Col

Relative ranking sum by bandwidth 17 17 16 14 16 20 18 20 -21 4 14 17
Relative ranking sum by measurement system 64 74 14
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Table 3. Subjective evaluation guidelines for reflectometry measurement data 

Condition assessed for FDR/BW, LiveWire SSTDR/BW, PNNL SSTDR/BW Value/Color 
Undamaged cable – ends visible, no anomalous peaks 1 
Undamaged cable – ends visible, unexplained peaks observed 0 
Undamaged cable – ends not visible, reflectometry response not apparent -1 
Anomalous cable – ends visible and damage response clearly visible 1 
Anomalous cable – ends visible and damaged response weakly or possibly visible 0 
Anomalous cable – ends visible but no clear anomalous response noted -1 
Anomalous cable – ends not visible and no anomalous damage response noted -1 

 

3. MACHINE LEARNING FEASIBILITY FOR CABLE 
REFLECTOMETRY TESTS  

The objective of this section is to assess the feasibility of applying ML analysis to automatically 
differentiate between normal or undamaged and anomalous cable reflectometry data. This is different than 
determining what type of issue exists, which is usually the step following identification of the existence of 
an issue. The cable anomaly detection algorithm is trained on historical reflectometry data and is then 
asked to decide about the health status of the cables using new and unseen data. Automating this process 
is particularly important for two reasons: 1) the machine could be better in identifying anomalies than the 
human. Algorithms have been shown to have high degrees of accuracy in anomaly and change detection 
applications (Nassif et al. 2021). 2) the machine can perform the analysis instantly. This benefit is 
particularly important for SSTDR reflectometry with the LiveWire instrument that is designed to support 
online measurements. Data may be monitored continuously to detect damage that can progress quickly so 
that it may not be practical for a human to react and analyze reflectometry responses quickly enough.  

When considering the ML process, it was assumed that baseline normal reflectometry data for a range 
of time periods and operating conditions would be available to train an algorithm. Additionally, a limited 
amount of anomalous reflectometry data would be available. This assumption seems reasonable for an 
online test scenario where the measurement will start monitoring a cable while it is healthy, enabling 
ample accumulation of normal data. This also means the normal historical data would represent that exact 
cable in normal conditions over a range of power levels and operating conditions. 

ML paradigms are often divided into unsupervised and supervised learning (Harley, Zafar, and Tran 
2023). With unsupervised learning, the model is trained with input data features but without known data 
labels. Supervised learning trains the algorithm using known data labels. The algorithm then tries to fit 
any new test data to one or more of the labeled training data. Approximately the same reflectometry data 
was provided to two teams – one that applied an unsupervised ML approach at the INL and a second 
applying a supervised learning approach at the PNNL. The teams worked independently, and both the 
specific data considered (see Table 4) and the analysis approach were slightly different as discussed 
below.  
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Table 4. Available and analyzed data for supervised and unsupervised ML analysis applied to cable 
reflectometry test data. 

 

3.1 Unsupervised Machine Learning Applied to Cable Reflectometry 
The unsupervised anomaly detection approach was taken where no labeled instances of anomalies or 

undamaged cable were used in training the algorithm. The idea behind this type of approach is to learn 
patterns and features that represent normal behavior. Based on these patterns, the algorithm provides an 
anomaly score, with the goal that normal data should have low anomaly scores and anomalous data 
should have high scores. An example of this anomaly score concept is shown in Figure 9, where the 
curves are probability density functions showing the relative prevalence of seeing data with those scores 
for both normal and anomalous data. In anomaly detection applications, the amount of separation between 
the normal and anomalous classes is both problem and algorithm dependent. 

 

 
Figure 9. Probability density functions for hypothetical normal and anomalous classes, with a selected 
threshold to differentiate them. 

Instrument\Frequencies 6 12 24 48 50 100 200 300 400 500
Unsupervised Data
PNNL SSTDR Y Y Y Y Y Y
FDR Y Y Y Y Y Y
LiveWire Y
Supervised - initial analysis
PNNL SSTDR Y Y Y Y
FDR Y Y Y Y
LiveWire Y Y Y Y
Supervised -2nd analysis
PNNL SSTDR Y Y
FDR Y Y Y
LiveWire Y Y
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As discussed earlier, the collected reflectometry data included three methods (FDR, LiveWire 
SSTDR, and PNNL SSTDR) and multiple frequencies (ranging from roughly 50-500 MHz). An important 
question was how to make use of the data across the different frequencies. Because this was a feasibility 
study, this effort treated each frequency dataset as independent, meaning that frequencies from the same 
method were not combined in making a single decision. The primary benefit from this was that it enabled 
comparisons to be made of the different frequencies to see which were most powerful in differentiating 
normal from anomalous conditions.  

3.1.1 Preliminary Visual Evaluation 
During preliminary investigations, one of the first questions was whether it was possible to visually 

see a difference between normal and anomalous data. To answer this question, each anomaly was plotted 
against the set of all normal data. Two examples of PNNL SSTDR data are shown in Figure 10 and 
Figure 11; in these figures, the dashed lines are the set of normal data and the solid blue line is the 
anomaly being analyzed. The data are plotted over the range of available frequencies. The x-axis is in ft 
and the y-axis is in dB. Starting with Figure 10, the anomalous data set is clearly visually different, so is a 
good candidate for an automated approach to detect this anomaly. By contrast looking at Figure 11, the 
anomalous data set is far more similar to the set of normal data, meaning an algorithm will have a more 
difficult time differentiating this from normal conditions. These visual plots provided some reference for 
guiding development of the detection methods used. 
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Figure 10. Visual comparisons between the anomalous 100-ft shield cable undamaged cable short at 26-ft 
condition PNNL SSTDR spectrometry data and the set of normal PNNL SSTDR spectrometry data.  
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Figure 11. Visual comparisons between an example anomalous thermally aged cable PNNL SSTDR 
spectrometry data and the set of normal PNNL SSTDR spectrometry data. 

3.1.2 Approach 
For ML applications in general, data are separated into training and testing sets, where the training set 

is used to train the algorithm, and the test set (unseen by the algorithm) is used to assess the performance 
of the algorithm. This is a necessary step to avoid bias that would exist if the algorithm assessed 
performance with data that was used to train the algorithm. For this feasibility study, there were limited 
data with which to train and test a model. In total, there were 17 normal cable experiments and 25 
anomalous cable experiments. With such a limited number of samples, the complexity of the algorithms 
was limited to avoid overfitting. Overfitting is the idea of extracting features that are specific only to the 
training samples and thus do not generalize well, providing poor performance on data not included in the 
training set. 
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Using the unsupervised framework described earlier, the approach taken in this effort was to compare 
unseen normal and anomalous data to a normal only training set using a distance metric that measured 
how far the unseen data was from the training set. This distance metric was directly used as the anomaly 
scoring algorithm, with small values indicating a high degree of similarity to the training set, and large 
values indicating a small degree of similarity (i.e., ideally indicating an anomaly). Two distance metrics 
were used: one that calculated the minimum point-wise distance between the test sample and the training 
set, and one that calculated the minimum vector-wise distance. For either of these to work, the 
spectrometry data needed to be sampled to contain the same number and spacing of x-axis values. This 
was done by interpolating each spectrometry dataset using a fixed set of values. It is important to note that 
for this effort, the process does work because all the cables were the same length; a more complicated 
sampling process may be necessary for cables of different lengths. If used in the field with historical 
baseline readings of a given cable compared with unseen data of that same cable, the approach used here 
should also be valid. 

Starting with the point-wise distance metric, for a given test sample, the metric calculated the 
Euclidian distance at each point along the x-axis between the test sample and all the training samples and 
selected the minimum value. Then, the average value over the x-axis was selected as the anomaly score. 
In other words, this metric calculated the minimum distance between the test sample and the set of 
training samples. An example of this metric is shown in Figure 12; the test sample is shown in blue, and 
two training samples are shown using a dashed line in orange and green. The shaded area represents the 
minimum point-wise distance, and the color shows which of the two training samples is used to calculate 
the minimum. 

By contrast, using the vector-wise distance metric, the metric calculated the Euclidian distance 
between the test sample (treated as a vector of values) and each training sample (also treated as vectors) 
and selected the minimum value. Here, the metric calculated the minimum distance between the test 
sample and the closest training sample. An example of this metric is shown in Figure 13. Here, the shaded 
area represents the minimum vector-wise distance, and the color is always the same because it selects the 
training sample that is closer to the test sample. 

 
Figure 12. Example of the point-wise distance metric between a test sample and a training set. 
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Figure 13. Example of the vector-wise distance metric between a test sample and a training set. 

In addition to the distance metrics, two additional preprocessing options were tested and compared. 
The first option was to use the reflectometry data in either magnitude or decibels scale, to evaluate 
whether there was a performance difference between the two. The visual plots above are all in decibels, 
but that does not suggest which would work better. The second option was to include the synthetic 
minority over-sampling technique (SMOTE) originally developed for imbalanced classification problems 
(Chawla et al. 2002). At a high level, this is a data augmentation approach that takes two training samples 
and combines them to form a new synthetic training sample. In this effort, every possible pair of training 
samples was used, and the combination was done through averaging. Between the two distance metrics 
and preprocessing options, this resulted in eight approach permutations (Table 5).  

Table 5. The different approach permutations tested in this effort. 

Number Distance Metric Scale Include SMOTE 
1 Point-wise Magnitude Yes 
2 Point-wise Magnitude No 
3 Point-wise Decibels Yes 
4 Point-wise Decibels No 
5 Vector-wise Magnitude Yes 
6 Vector-wise Magnitude No 
7 Vector-wise Decibels Yes 
8 Vector-wise Decibels No 

 

Based on the limited data, one consideration in this effort was how to calculate anomaly scores for 
both the normal and anomalous data. This was necessary because if the normal data were separated into 
fixed training and testing sets, the testing set would contain too little normal data to generate reliable 
results. This was overcome using a cross-validation approach. Conceptually, this is a strategy of training 
and testing multiple times with different training and testing sets in order to generate anomaly scores for 
all of the data while avoiding overlap between the training and testing sets. 
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The cross-validation approach used was called leave-one-out cross validation. Based on the 
unsupervised framework, the data were split 17 times (equal to the size of the normal samples). During 
each split, one rotating normal sample and all the anomalous samples were placed in the testing set, the 
remaining 16 normal samples were placed in the training set, and the algorithm used the training set to 
calculate anomaly scores for each sample in the testing set. At the end of the 17 splits, a single anomaly 
score was calculated for each normal sample and 17 scores were calculated for each anomalous sample, 
which were then averaged, resulting in a single anomaly score for each data sample. This leave-one-out 
approach is shown in Figure 14. 

 

Figure 14. The leave-one-out cross validation approach used to calculate anomaly scores for all the data 
(17 split number undamaged cases and 42 sample number test cases) 

 

3.1.3 Evaluation Metric 
This effort used the weighted accuracy to report and compare the performance of different approach 

options, spectrometry methods, and frequencies. Accuracy was selected because it is highly interpretable 
compared to some other classification metrics, making it a clear choice, particularly for a feasibility study. 
Weighted accuracy was specifically chosen because it averages the accuracy for each class individually, 
which is beneficial when there are unequal numbers of samples in the different classes. As an example, if 
there are 99 normal samples and one anomalous sample and all are labeled as normal, the accuracy would 

be 99
100

= 0.99, but the weighted accuracy would be 
99
99+

0
1

2
= 0.5. 

Using the developed approaches, anomaly scores for each sample and combination of approach 
options were calculated. To convert these to weighted accuracies, thresholds had to be selected. For this 
feasibility study, thresholds were selected to maximize the weighted accuracies. While these are likely 
higher than would be seen in real conditions, they provide appropriate approximations of the weighted 
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accuracies to determine whether the algorithms are working and be able to compare the algorithms 
against each other. 

3.1.4 Performance 
The first comparisons were between the point-wise and vector-wise distance metrics, and the 

magnitude and decibels scale. The weighted accuracies for these cases averaged over all spectrometry 
methods, frequencies, and SMOTE combinations are shown in Table 6. The averaging was done because 
it provides a better measure of just the effects of interest averaged over multiple possible implementations 
of that effect. Based on the results, interestingly the point-wise distance metric and magnitude scale did 
better than point-wise and decibels combination, but the vector-wise distance metric and decibels scale 
did better than the vector-wise and magnitude combination. As such, only these two better combinations 
were included in further analyses. 
 
Table 6. Weighted accuracies for combinations of distance metric and scale, averaged over spectrometry 
methods, frequencies, and SMOTE combinations. 

Distance Metric Scale Weighted Accuracy 
Point-wise Magnitude 0.729 
Point-wise Decibels 0.705 

Vector-wise Magnitude 0.681 
Vector-wise Decibels 0.743 

 

Next, the effects of using the SMOTE data augmentation algorithm were investigated. For just the 
point-wise and magnitude, and vector-wise and decibels combinations, the results are shown in Table 7, 
again averaging over all spectrometry methods and frequencies. These results show that the SMOTE 
algorithm appears to have benefited both approaches, putting their weighted accuracies very close to each 
other (although as seen later, the individual accuracies over different methods and frequencies are still 
different). Similar to the last analysis, only those combinations that included SMOTE were analyzed 
further. 

Table 7. Weighted accuracies for combinations of distance metric, scale, and SMOTE, averaged over 
spectrometry methods and frequencies. 

Distance Metric Scale Include SMOTE Weighted Accuracy 
Point-wise Magnitude Yes 0.748 
Point-wise Magnitude No 0.709 

Vector-wise Decibels Yes 0.749 
Vector-wise Decibels No 0.737 

Based on these analyses, only two combinations of distance metric, scale, and SMOTE were selected 
for final results: point-wise, magnitude, and including SMOTE (first row in Table 5); and vector-wise, 
decibels, and including SMOTE (row 7 in Table 5). The results separated by method and frequency are 
shown in Figure 15 and Figure 16 for point-wise and vector-wise distance metrics, respectively. Based on 
these results, higher frequencies for the PNNL SSTDR and FDR generally showed better performance 
than lower frequencies, FDR generally performed better than PNNL SSTDR, and the LiveWire SSTDR, 
although only included one frequency, did significantly better than PNNL SSTDR and FDR at its 
respective frequency. Overall, the best, worst, and median classifier weighted accuracies were 0.83, 0.57, 
and 0.76, respectively, indicating that half of the classifiers had accuracy greater than or equal to 0.76. 
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Figure 15. Weighted accuracies as a function of frequency for the point-wise distance metric and 
magnitude scale approach applied to the LiveWire SSTDR, PNNL SSTDR, and FDR datasets. 

 
Figure 16. Weighted accuracies as a function of frequency for the vector-wise distance metric and 
decibels scale approach applied to the LiveWire SSTDR, PNNL SSTDR, and FDR datasets. 

3.2 Supervised Machine Learning Applied to Cable Reflectometry  
Supervised ML applies an algorithm to learn from labeled training data to make predictions or 

decisions without human intervention. In contrast to unsupervised anomaly detection, both labeled normal 
and anomalous data are used to train the supervised ML algorithm. One challenge with this approach for 
detection problems is that if data for a novel anomaly (i.e., one that the supervised algorithm has not seen 
before) is presented, it may not be obvious which class the algorithm should classify it as because the 
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algorithm has not seen that label before. By contrast, the unsupervised approach simply learns normal, so 
all anomaly classes are novel anomalies seen as different from normal. 

3.2.1 Evaluation Metric 
In this effort, an F1 score (described below) is used as a metric for model performance. The F1 score 

is considered a good metric for imbalanced data because it balances the trade-off between precision and 
recall. The definition of the F1-score, recall, precision, and accuracy are given below.  

Accuracy = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 
𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃

 

Precision = 𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶 𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃
𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶 𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃+𝐹𝐹𝐹𝐹𝐴𝐴𝑃𝑃𝐶𝐶 𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃

 

Recall = 𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶 𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃
𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶 𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃+𝐹𝐹𝐹𝐹𝐴𝐴𝑃𝑃𝐶𝐶 𝑁𝑁𝐶𝐶𝑁𝑁𝐹𝐹𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃

 

F1-score = 2 ×  𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃×𝑅𝑅𝐶𝐶𝐶𝐶𝐹𝐹𝐴𝐴𝐴𝐴
𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃+𝑅𝑅𝐶𝐶𝐶𝐶𝐹𝐹𝐴𝐴𝐴𝐴

  

 

A confusion matrix is used in this section. The confusion matrix is used in ML and statistics to 
evaluate the performance of a classification algorithm. It provides a summary of the predicted and actual 
classifications of a classification model to assess the model's accuracy.  

3.2.2 Approach 
In supervised learning, the algorithm is provided with a dataset consisting of input-output pairs. The 

algorithm learns to map inputs to outputs. The data from four different bandwidths from each of FDR, 
LiveWire SSTDR, and PNNL SSTDR were analyzed similarly to the unsupervised ML. Data Pre-
processing was applied to all the data to align the data in time and distance along the cable.  

An equal number of aligned data points (0.0-ft bin width for 140-ft cable length) for all the 
frequencies was acquired without changing the shape of the curve as presented in Figure 17 (a). Since the 
intensity values in the raw data were both in +Y and -Y axis, in the data processing pipeline, all the values 
along +Y axis were shifted (b) and normalized (c) so that all the intensity values fell between 0 to 1. The 
intensity of the peaks was used as an anomaly indicator.  
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Figure 17. Data preprocessing steps for the ML models. 

Each of the reflectometry data samples were labeled either 0 (undamaged) or 1 (damaged). There 
were 14 uniquely labeled undamaged samples (3 of 17 labels were identical) where each test case had 4 
frequency bandwidths leading to 56 of 164 undamaged samples (34%). There were 27 damaged or 
anomalous test conditions also with 4 frequencies leading to 108 of 164 damaged or anomalous cases 
(66%). The PyCaret Python Library code (Python 2023) was then used to apply classification algorithms 
including:  

Logistic Regression (lr): Logistic Regression is a statistical technique used for binary classification 
tasks, where the goal is to predict one of two possible outcomes based on a set of input features. Unlike 
linear regression, which predicts continuous values, logistic regression employs the logistic function to 
constrain predictions between 0 and 1. This function transforms the linear combination of features and 
their respective coefficients into probabilities, representing the likelihood of belonging to the positive 
class. By setting a threshold, typically 0.5, these probabilities are then used to make binary predictions 
(Wright 1995). Logistic Regression is widely used due to its simplicity, interpretability, and effectiveness 
in a variety of fields such as healthcare, marketing, and natural language processing. 

Ridge Classifier (ridge): The Ridge Classifier is a variant of logistic regression, primarily used for 
binary and multiclass classification tasks. It incorporates L2 regularization, also known as Ridge 
regularization, into the logistic regression model. This regularization method adds a penalty term based on 
the squared magnitudes of the coefficients of the model, discouraging large coefficient values, and thus 

(a) Pre-processed data after making it equal 
bin of 2801 

(b) Shift the intensity to +Y axis 

(c) Normalized the intensity 
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preventing overfitting. The Ridge Classifier constructs a linear decision boundary that separates different 
classes while mitigating multicollinearity issues and stabilizing the model (Hoerl and Kennard 1970). 

Linear Discriminant Analysis (LDA): Linear Discriminant Analysis (LDA) is a supervised 
classification technique used to find a linear combination of features that best separates different classes 
in a dataset. LDA aims to maximize the distance between the means of different classes while minimizing 
the variance within each class, resulting in a robust decision boundary (Fisher 1936). By transforming the 
original feature space into a lower-dimensional space, LDA not only improves classification accuracy but 
also reduces the dimensionality of the data, making it valuable for dimensionality reduction in addition to 
classification. This method is particularly effective when dealing with multi-class classification problems 
and is widely used in applications such as image recognition, medical diagnosis, and pattern recognition. 

K Neighbors Classifier (KNN): The K Nearest Neighbors (KNN) Classifier is a simple and intuitive 
supervised machine learning algorithm used for classification tasks. It works by finding the K nearest data 
points in the training dataset to a given test data point based on a distance metric (usually Euclidean 
distance) in the feature space. The class of the majority of these K nearest neighbors is then assigned to 
the test data point, effectively determining its classification (Peterson 2009). It is versatile and can handle 
both binary and multiclass classification problems, although its performance can be sensitive to the choice 
of K and the distance metric. 

Naive Bayes (nb): The Naive Bayes classifier is a probabilistic and simple yet powerful machine 
learning algorithm used for classification tasks, particularly in natural language processing and text 
analysis. It is based on Bayes theorem and the assumption of feature independence, which simplifies 
calculations. The algorithm calculates the probability of a data point belonging to a particular class by 
considering the conditional probabilities of the individual features given that class. Then, it selects the 
class with the highest probability as the prediction (Al-Aidaroos, Bakar, and Othman 2010). Despite its 
"naive" assumption of feature independence, Naive Bayes often performs remarkably well in practice and 
is computationally efficient. It is widely used for tasks like spam email detection, sentiment analysis, and 
document categorization. 

SVM - Linear Kernel: A Support Vector Machine (SVM) with a linear kernel is a machine learning 
algorithm that aims to find a straight-line (in two dimensions) or a hyperplane (in higher dimensions) that 
best separates different classes in a dataset. It accomplishes this by maximizing the margin, which is the 
distance between the separating hyperplane and the nearest data points of each class, known as support 
vectors (Cortes and Vapnik 1995). This approach results in a robust classification model that generalizes 
well to new data. SVMs with linear kernels are particularly effective when the data exhibits a clear linear 
separation, making them a valuable tool in various applications, including text classification, image 
recognition, and bioinformatics. 

Gaussian Process Classifier (gpc): A Linear Kernel: A Support Vector Machine (SVM is a 
probabilistic machine learning model used for classification tasks. It extends the idea of Gaussian 
processes from regression to classification problems. The gpc models the relationship between input 
features and class labels as a probability distribution, capturing both the predicted class labels and the 
associated uncertainty (Rasmussen 2004). It provides a powerful framework for uncertainty quantification 
in classification tasks, making it useful in scenarios where not only accurate predictions but also 
confidence estimates are essential, such as medical diagnosis or fraud detection. The gpc can be employed 
with different kernel functions to capture various patterns and complexities in the data, and it naturally 
handles multiclass classification and imbalanced datasets while offering a principled way to balance 
model complexity and generalization. 

MLP Classifier (mlp): A Multi-Layer Perceptron (MLP) Classifier is a type of artificial neural 
network used for supervised classification tasks. It consists of multiple layers of interconnected neurons 
(nodes) that process input data, apply nonlinear transformations, and make predictions. An MLP typically 
includes an input layer, one or more hidden layers, and an output layer. Each neuron in a layer receives 
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inputs, applies a weighted sum, and passes the result through an activation function, enabling it to model 
complex, nonlinear relationships in the data (Haykin 1999). MLPs are known for their ability to handle 
intricate patterns and are widely used in various domains, including image recognition, natural language 
processing, and predictive modeling, thanks to their capacity to learn intricate features and adapt to 
different types of data. However, they require careful hyperparameter tuning and sufficient data to prevent 
overfitting. 

Decision Tree Classifier (dt): A Decision Tree Classifier is a popular machine learning algorithm 
used for both classification and regression tasks. It operates by recursively partitioning the dataset into 
subsets based on the values of input features, creating a tree-like structure of decisions. At each node of 
the tree, the algorithm selects the feature that best separates the data, typically using metrics like Gini 
impurity or information gain for classification tasks. The decision tree continues to split the data until it 
reaches a predefined stopping criterion, such as a maximum tree depth or a minimum number of data 
points per leaf. To make predictions, data points traverse the tree from the root node to a leaf node, where 
they are assigned the majority class label (for classification) or the mean value (for regression) of the 
training examples in that leaf (Wu et al. 2008). Decision Trees are interpretable and intuitive, capable of 
capturing complex interactions in the data, but they are prone to overfitting when not properly pruned or 
regularized.  

Random Forest Classifier (rf): A Random Forest Classifier is an ensemble learning method that builds 
upon the concept of decision trees. It constructs a multitude of decision trees during training, each based 
on a random subset of the training data and a random subset of the input features. The randomness 
introduced in both data and feature selection helps to reduce overfitting and increase the model’s 
robustness (Ho 1995). During classification, the predictions from all individual trees are combined, 
typically by majority voting for classification tasks, to make a final prediction. Random Forests are 
known for their high predictive accuracy, ability to handle large and complex datasets, and resistance to 
overfitting.  

Extra Trees Classifier (et): An Extra Trees Classifier, short for Extremely Randomized Trees 
Classifier, is an ensemble learning method closely related to Random Forests. Like Random Forests, it 
builds multiple decision trees during training to make predictions. However, what sets Extra Trees apart is 
the additional randomness introduced in the tree construction process. In Extra Trees, decision trees are 
created with random splits that are not based on the best possible split points, as is the case in standard 
decision trees or Random Forests. Instead, Extra Trees selects random thresholds for feature splits, 
making the algorithm computationally efficient and less prone to overfitting (Geurts, Ernst, and Wehenkel 
2006). Despite this extra randomness, Extra Trees often achieves similar or even superior performance to 
Random Forests, especially when dealing with noisy or high-dimensional data. It is a valuable choice for 
tasks where robustness and computational efficiency are crucial considerations. 

Ada Boost Classifier (ada): Ada Boost (Adaptive Boosting) Classifier is an ensemble learning 
technique that combines multiple weak classifiers to create a strong classifier. It assigns weights to 
training instances, giving more weight to misclassified data points in each iteration to improve their 
classification. Weak learners, often simple decision trees or shallow models, are trained sequentially, with 
each focusing on the previously misclassified data. The final prediction is a weighted sum of the 
individual weak learners, where their weights are determined based on their accuracy (Schapire 2013) 
AdaBoost is effective for improving the classification performance of weak models and can handle both 
binary and multiclass classification problems. 

Gradient Boosting Classifier (gbc): Gradient Boosting Classifier is a powerful ensemble method that 
builds an additive model by sequentially fitting new weak learners to the residual errors of the previous 
model. It starts with an initial prediction (usually the mean of the target variable) and then constructs 
decision trees in subsequent iterations to predict the remaining errors. The predictions from each tree are 
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combined, with each tree correcting the errors of the previous ones (Friedman 2001). Gradient Boosting is 
known for its strong predictive performance and ability to capture complex relationships in the data. 

Extreme Gradient Boosting (xgboost): Xgboost classifier is an optimized and scalable implementation 
of gradient boosting that has gained popularity for its efficiency and high performance. It incorporates 
several techniques, such as regularized learning objectives and parallel processing, to enhance training 
speed and reduce overfitting (Chen and Guestrin 2016). Xgboost is widely used in ML competitions and 
real-world applications due to its excellent predictive accuracy, feature selection capabilities, and ability 
to handle large datasets. 

Light Gradient Boosting Machine (lightgbm, LGBM) classifier is another gradient boosting algorithm 
that is designed for efficiency and speed. It uses a histogram-based approach for tree building, which 
significantly reduces memory usage and speeds up training (Ke et al. 2017). Lightgbm is well-suited for 
large datasets and has become a popular choice in various domains, including recommendation systems, 
fraud detection, and image analysis. It offers options for both classification and regression tasks and 
includes features like categorical variable support and early stopping for efficient model training. 

During model training, the data was split into 80% (131 out of 164 data) for training and 20% (33 out 
of 164 data) for validation. Since the data set was somewhat imbalanced, SMOTE was also applied as it 
was originally developed for imbalanced classification problems (Chawla et al. 2002). Each model was 
trained both with and without the SMOTE processing technique. 

3.2.3 Performance 
The performance metric of the best performing models among all the above-mentioned ML models 

for different data set is provided in Table 8. The F1 score was chosen to select the best performing model 
and accuracy. Recall and precision was also calculated for the models. Table 8 demonstrates that the best-
performing model varies across different datasets. This highlights the importance of training multiple 
models for such data sets, rather than relying on a single model. To understand the classification strength, 
a confusion matrix is generated for the three reflectometry test methods in Figure 18.  

For the damaged or anomalous class without SMOTE, all three reflectometry test method prediction 
accuracies were better than with SMOTE calculations as presented in Figure 18. With SMOTE, the 
prediction accuracy for the un-damaged class slightly improved with a decrease in the accuracy for the 
damaged/anomalous class. 

 

Table 8. Performance metrics for the best ML models for each data set. 

Machine Name Best ML Model SMOTE 
(Yes/No) 

Accuracy Recall  Precision F1  

FDR lightgbm No 0.7929 0.8806 0.8241 0.8434 
FDR et Yes 0.8011 0.8931 0.8254 0.8497 

PNNL SSTDR et No 0.7775 0.9417 0.7744 0.8481 
PNNL SSTDR ada Yes 0.7709 0.8403 0.8255 0.8283 

LW SSTDR lr No 0.8385 0.9042 0.8610 0.8764 
LW SSTDR lr Yes 0.7923 0.8111 0.8636 0.8289 
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Figure 18. Confusion matrix for different ML models for different dataset. 
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In order to capture both the anomalous and undamaged class predictive accuracy, a weighted 
accuracy was calculated as discussed earlier. Table 9 presents the weighted accuracy for the ML models 
for all the data sets. Table 9 implies that using SMOTE increases the accuracy slightly even though there 
is a small increase in incorrect predictions for the major or anomalous class except for the LiveWire 
SSTDR data set. Additionally, overall model performance is slightly better in LiveWire SSTDR and FDR 
data set compared to the PNNL SSTDR data set probably due to the presence of high noise in the higher 
frequencies of the PNNL SSTDR data. 

 
Table 9. Weighted accuracy for the ML models for all the data set. 

Machine Name Best ML Model SMOTE (Yes/No) Weighted Accuracy 
(%) 

FDR lightgbm No 65.90 
FDR et Yes 68.18 

PNNL SSTDR et No 56.81 
PNNL SSTDR ada Yes 65.90 

LW SSTDR lr No 72.72 
LW SSTDR lr Yes 65.90 

 
One hypothesis was that due to some noisy data, particularly higher frequency FDR and PNNL 

SSTDR and lower frequency LiveWire SSTDR that was considered all together for each instrument, the 
overall weighted accuracies were lower than they would be with only the cleaner data. To test this 
hypothesis, some of the noisy data was omitted for model training. The 400 MHz data set was omitted for 
FDR, 200 and 400 MHz sets were omitted for PNNL SSTDR, and the 6 MHz and 12 MHz data sets were 
omitted for the LiveWire SSTDR data. Therefore, for the new calculation FDR had 123 samples, PNNL 
SSTDR and LiveWire SSTDR had 82 samples. It is important to mention the 80/20% data split was 
implemented along with the same model training protocols for the down-selected data as for the full data 
set. Table 10 presents the weighted accuracy for the new calculations. From the table, it is clear that for 
all cases, weighted accuracy increased, which signifies the importance of high-quality noise free/less 
noisy data in order to get a reliable ML prediction accuracy. For instance, the PNNL SSTDR weighted 
prediction accuracy improved from 56.81% to 69.69% for the case of without SMOTE calculation. For 
the LiveWire SSTDR, the low-noise weighted accuracy was 87.12% with the SMOTE calculation. This 
compares favorably to a weighted accuracy of 65.90% with the noisy data included. 

 
Table 10. Weighted accuracy for the ML models for the down-selected data set. 

Machine Name Best ML Model SMOTE (Yes/No) Weighted Accuracy 
(%) 

FDR svm No 73.95 
FDR ridge Yes 70.83 

PNNL SSTDR xgboost No 69.69 
PNNL SSTDR et Yes 69.69 

LW SSTDR lightgbm No 83.33 
LW SSTDR lr Yes 87.12 
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4. CONCLUSIONS 
Cable reflectometry techniques like FDR, LiveWire SSTDR, and PNNL SSTDR show promise to test 

cables and identify anomalous behavior before cable failure thereby minimizing unplanned outages and 
allowing repair to be scheduled and managed. Online cable test methods are expected to become more 
important as isolation technologies mature and utilities move to reduce manual outage related test 
programs. Cable reflectometry is a promising cable test method, but plots can be difficult for humans to 
analyze due to baseline noise, low or noisy anomaly response peaks, or large responses from cable ends. 
The goal of this task was to assess feasibility of ML methods to distinguish undamaged from damaged or 
anomalous reflectometry data. The assessment considered the 3 reflectometry instruments, multiple 
frequency bandwidths from each instrument, multiple cable anomalies and test conditions, and both 
supervised and unsupervised ML approaches. 

The PNNL software-controlled laboratory instrument with expanded bandwidth capabilities was set 
to test cables at 50, 100, 200, 300, 400, and 500 MHz. The FDR was also set to acquire data at 50, 100, 
200, 300, 400, and 500 MHz. The LiveWire SSTDR collected data at 6, 12, 24, and 48 Mhz. For 
unsupervised ML, all 6 PNNL SSTDR and FDR frequencies were used and only the 48 MHz LiveWire 
data was considered. For supervised data, the PNNL SSTDR and FDR 300 and 500 MHz data sets were 
excluded and all 4 LiveWire SSTDR frequencies were included. The test matrix included 42 test 
conditions, although 3 were identically labeled and so reduced the number of supervised cases 
accordingly. Except as noted above, approximately the same data was used by two independent teams – 
one applying unsupervised learning methods and the other applying supervised methods to the data. 
Although analysis methods were not identical or directly comparable, both the supervised and 
unsupervised ML outputs were encouraging. The primary performance metric was the weighted 
prediction accuracy.  

The unsupervised prediction weighted accuracy was assessed by instrument and by frequency. It 
performed better at high frequencies with the highest prediction accuracy of 0.84 for the higher frequency 
FDR, 0.79 for the 48MHz LiveWire SSTDR, and 0.77 for 300MHz PNNL SSTDR.  

For supervised ML, the initial analysis considering all the data and combining all frequency 
bandwidths, the weighted accuracy average across all frequencies for using supervised ML was 0.56 to 
0.68. The supervised analysis was repeated with noisier training data removed resulting in improved 
weighted accuracies of 0.69 to 0.87. The supervised and unsupervised analysis performances were not 
directly comparable due to differences in the input data and analysis details but they do indicate an 
encouraging trend. Even with limited and unbalanced data, strong prediction accuracies seem encouraging 
for further work that should including more data under a wider range of conditions.  
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