
 

 

 

 

Light Water Reactor Sustainability Program 

 

Thermodynamic and kinetic model of 
phase stability in austenitic steel under 

light water reactor conditions 

August 31, 2018 

U.S. Department of Energy 

Office of Nuclear Energy 
 



 

 

 

DISCLAIMER 
This information was prepared as an account of work sponsored by an 

agency of the U.S. Government. Neither the U.S. Government nor any 
agency thereof, nor any of their employees, makes any warranty, expressed 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness, of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately 
owned rights. References herein to any specific commercial product, 
process, or service by trade name, trade mark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the U.S. Government or any agency thereof. The views and 
opinions of authors expressed herein do not necessarily state or reflect 
those of the U.S. Government or any agency thereof. 



 

 ii 

  

Light Water Reactor Sustainability Program 

Thermodynamic and kinetic model of phase stability 
in austenitic steel under light water reactor conditions 

August 31, 2018 Milestone 

 
Shipeng Shu (University of Wisconsin–Madison) 

Mahmood Mamivand (University of Wisconsin–Madison) 
Huibin Ke (University of Wisconsin–Madison) 

Tam Mayeshiba (University of Wisconsin–Madison) 
Benjamin Afflerbach (University of Wisconsin–Madison) 

Jia-Hong Ke (University of Wisconsin–Madison) 
Dane D. Morgan (University of Wisconsin–Madison) 

 
Key Collaborators 

G. Robert Odette (University of California, Santa Barbara) 
Peter B. Wells (University of California, Santa Barbara) 

Nathan Almirall (University of California, Santa Barbara) 
 
 
 

August 31, 2018 

 
 

Prepared for the 
U.S. Department of Energy 
Office of Nuclear Energy 

 



 

 iii 

  



 

 iv 

SUMMARY 
This report has been assembled to address the following milestone due 

August 31, 2018: 

Milestone Number: M2LW-18OR0402053 

Title: “Complete report on the thermodynamic and kinetic model of phase stability in 

austenitic steel under light water reactor conditions”  
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1. INTRODUCTION 
Both Austenitic stainless steels and low-alloy ferritic steels find broad applications in the nuclear 

industry. Austenitic stainless steels are major structural materials in the nuclear reactor core, thanks 

to their high strength, corrosion resistance, and formability. However, in the harsh environment of 

the reactor core, elevated temperature and neutron irradiation lead to materials degradation, 

including void swelling and precipitation hardening. Specifically, precipitation in the 316 

austenitic stainless steels has been studied in a number of irradiation conditions [1-3]. 

Experimental studies have revealed that the following precipitates can form at temperatures below 

400 °C: M23C6 and M6C carbides, γ’ (Ni3Si) and G-phase (M6Ni16Si7). In this milestone report, we 

focus on carbide precipitation under irradiation. The main motivation is that, in experiments, the 

observed volume fraction of carbide appears to be smaller than the thermodynamic prediction [1-

4]. We study the effect of irradiation dose rate on the stability of the carbides, with a goal to help 

better understand the experimental studies. Specifically, we assess the possible competition 

between radiation enhanced diffusion and ballistic mixing, and assess if the latter might be a source 

of reduced carbide volume fraction. To achieve the goal, we developed a cluster dynamics (CD) 

model which treats the combined effects of radiation enhanced diffusion and ballistic dissolution. 

The model was used to gain insights regarding the precipitation evolution mechanisms of the 

carbide precipitates.  

Although the work during this milestone period has focused on austenitic alloys, we have also 

maintained a small effort related to reactor pressure vessel (RPV) steels that was needed to 

complete work from the previous milestone period. Therefore, we also report on these efforts and 

summarize them below.  

One of the projects is on the hardening of RPV steels. Made primarily by ferritic low-alloy steels, 

RPVs are permanent components in light water reactors (LWRs) and their irradiation 

embrittlement is one of the potential barriers to extending the lifetime of light water reactors. 

Therefore, predicting and having insight into the RPVs embrittlement in extended life conditions 

play a critical role in LWRs further licensing. In this report, we have made further progress on 

ongoing projects that use cluster dynamics models to study the RPVs embrittlement and gain 

insight into extended life conditions.  New observations and discussions are reported. The details 

of the cluster dynamics method for this system are included for completeness. We have also 

developed a machine-learning-based approach, as opposed to a physics-based approach, to 
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modeling the mechanical response of RPVs. Here we report on recent developments in our 

machine learning model and its performance for fitting and predicting changes in RPV yield stress.  

The other RPV related work that we include in this report is on the irradiation dose rate effect 

of Cu precipitation in ferritic alloys. Specifically, to reduce the complexity of studying multi-solute 

RPV alloys, we use two model alloys: Fe-Cu and Fe-Cu-Mn. Irradiation dose rate effects are 

studied using accelerated-damage experiments in test reactors and charged-particle accelerator 

facilities. Neutrons and ions create vacancy and self-interstitial defects, whose production is 

measured in dose units of displacements per atom (dpa). The use of both neutron and ion methods 

is useful to understand the effects of irradiation dose rate on microstructural evolution processes, 

including irradiation enhanced precipitation, and to properly interpret results from experiments 

using accelerated-damage experiments with ions. Here we report on precipitation in Fe-Cu and Fe-

Cu-Mn alloys irradiated at dose rates ranging from ~10-10 dpa/s (neutrons) to ~10-5 dpa/s (70 MeV 

Fe ions). Atom probe tomography, small angle neutron scattering, and rate theory models show 

that precipitation is affected by both dose rate and alloy composition. We report on the 

experimental results and provide an understanding of the observed trends using rate theory models. 
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2. EXECUTIVE SUMMARY OF MAJOR RESULTS 
 

1. Preliminary study of carbide precipitation in 316 SS using CD modeling indicates that 

ballistic mixing could lead to a significantly reduced carbide volume fraction under 

relevant dose rates for some reactors or previous experimental irradiation studies. 

However, the results are ambiguous due to strong sensitivity of the ballistic mixing effects 

to the exact thermodynamic driving force for precipitation. This driving force has 

uncertainties due to possible fitting errors and temperature dependence that are within the 

ranges relevant for widely varying ballistic mixing response. The observed low carbide 

volume fractions may therefore be a ballistic mixing effect or an experimental error, or a 

combination of both. However, higher irradiation dose rate does lead robustly to a higher 

fraction of vacancy-interstitial recombination, which leads to less precipitation at the same 

dose when compared to lower dose rate conditions. 

2. We identified that in the CD simulation, at very high fluence, the predicted volume fraction 

of Cu+MNSPs is on dislocations. This is physically plausible since the dislocations are the 

preferred precipitation sites energetically, however, this simulation result is not consistent 

with the available experiments. Possible reasons are under investigation. 

3. Machine learning using Gaussian Kernel Ridge Regression (GKRR) accurately predicts 

the change in yield stress for compositions and conditions represented within the 

IVAR/IVAR+ database and random K-Fold cross-validation (CV) suggests little over-

fitting. However, prediction of new data from the ATR2 dataset shows that the GKRR 

method hyperparameter optimization is insufficient for robust predictions. Gaussian 

Process modeling is explored as a method to avoid these issues with GKRR and shows 

significant promise, but still has errors that are systematic and too large. Multiple paths to 

improvement are still available and will be explored.  (see Sec. 4.2). [5] 

4. Experimental study of the precipitation in Fe-Cu and Fe-Cu-Mn illustrates that 1) decrease 

in the efficiency of radiation enhanced diffusion, due to increased vacancy-self interstitial 

recombination; and, 2) increase the rate of ballistic mixing that partly dissolves the 

precipitate constituents. The key parameter is the rate of ballistic mixing relative to the rate 

that solutes are reacquired by diffusion. The Mn in the ternary alloy traps vacancies and 

enhances recombination, leading to very different precipitate evolution kinetics.  
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3. METHODS 
 

3.1 Cluster Dynamics Simulations 
Part of the cluster dynamics simulation model has been discussed in previous milestone [6]. The 

methods are included in this report for completeness.  

 

3.1.1 Basic Cluster Dynamics model 
As described in previous milestones, the CD method [7-10] gives the size distribution of clusters 

by solving a series of ordinary differential equations as follows: 

 
!"($,&)
!&

= 𝜔$*+,$
(,) 𝑓(𝑛 − 1, 𝑡) − 𝜔$,$*+

(*) 𝑓(𝑛, 𝑡) + 𝜔$,+,$
(*) 𝑓(𝑛 + 1, 𝑡) −

𝜔$,$,+
(,) 𝑓(𝑛, 𝑡), 

(1) 

where 

𝑓(𝑛, 𝑡) = concentration of clusters containing n atoms at time t. 

The coefficient 𝑤	$,$,+
(,) 	s are the rates at which clusters of size n absorb single atoms to grow to 

size n+1, 𝑤	$,$*+
(*) 	s are the rates at which clusters of size n emit single atoms to shrink to size n-1, 

and ΔG(n) is the formation energy of clusters with n atoms. More details regarding this method 

can be found in Ref. [7-10]. 

For a system containing k precipitating components, the rates of absorption are given by: 

 𝜔$,$,+
(,) = 5∑ 7 89:

;

<=9;=9?@
(?) AB

CD+ E
*+

, (2) 

where 

𝑤	$9,$9,+
(,)  = rate at which clusters of size n gain one atom of species i. 

The parameter 𝑣CG accounts for the change in the composition of component i as the cluster 

grows from size n to n+1. It is defined by the following expression: 

 , (3) 

where 

𝑥CG = atomic fraction of component i in clusters of size n. 

Here it is assumed that 𝑥CG does not change with n, thus 𝑣CG equals 𝑥CG. 

For diffusion-limited growth of the clusters, the absorption rate becomes: 

€ 

ν iα = xiα + n
dxiα
dn
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 , (4) 

 
, 

(5) 

where 

Cβ = total volume concentration of the particles of the different components in the 

ambient phase 

𝑥CI = molar fraction of the different components in the ambient phase. 

The emission rate is given by: 

 , (6) 

where 

ΔG(n) = formation energy of clusters with n atoms from the matrix, which can be 

written as: 

 , (7) 

where 

gp = free energy per atom of the precipitate phase 

μi = chemical potential of component I in the matrix 

σ(n) = interfacial energy of a cluster of size n. 

With this form, the difference ΔG(n+1)-ΔG(n) reduces to: 

 , (8) 

The chemical potentials can be written as: 

 𝜇C = 𝜇CK + 𝑘𝑇[𝑙𝑛𝛾C + 𝑙𝑛𝑐C], (9) 

Where 𝛾C is the activity coefficient. When the matrix phase is in equilibrium with the precipitate 

phase we have the relationship: 

 

gT − ∑ 𝑥CG𝜇CC = 0  

gT −V𝑥CG[𝜇CK + 𝑘𝑇𝑙𝑛𝛾C] = 𝑘𝑇V𝑥CG𝑙𝑛𝑐WX
CC

 
(10) 

In dilute alloys, the 𝛾C in Eq. (13) will become constant according to Henry’s law, thus according 

to Eq. (11) - (13), we can obtain 

€ 

ω n,n+1
(+) = 4πcβaαDeff

d n1/ 3

€ 

1
Deff

d =
ν iα
2

xiβDii=1

k

∑

€ 

ω n+1,n
(−) =ω n,n+1

(+) exp(
ΔG(n +1) − ΔG(n)

kBT
)

€ 

ΔG(n) = n(gp − xiµ i) + σ (n)
i
∑

€ 

ΔG(n +1) − ΔG(n) = gp − xiµ i + [σ (n +1) − σ (n)]
i
∑
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 ΔG(𝑛 + 1) − ΔG(𝑛) = 𝑘𝑇∑ 𝑥CG𝑙𝑛
[\X
[9C + [𝜎(𝑛 + 1) − 𝜎(𝑛)], (11) 

Substituting Eq. (14) into Eq. (9), the emission rate can be written as: 

 𝜔$,+,$
(*) = 𝜔$,$,+

(,) ∏ [\
_\

\
`̀ `̀ `̀ `̀

∏ [9
_9

9
exp	 de($,+)*e($)

fgh
i, 

  

(12) 

where ∏ 𝑐C
j9

C  and ∏ 𝑐W
j\

W
`̀ `̀ `̀ `̀  are the solute product and solute product at equilibrium, respectively, 

and they are represented by 𝐾lT and 𝐾lT`̀ `̀` , respectively. 

The distribution function f(n=1,t) at n=1 is described as: 

 , 
  

(13) 

3.1.2 Simulation Models for carbide precipitation in Austenitic stainless steels 

3.1.2.1 Thermodynamics 
The carbides formed in the 316 SS at around 300 °C are M23C6 and M6C. The composition of 

the 316 stainless steel used in this study is listed in Table 1. CALPHAD predictions of Carbide 

composition change as a function of temperature, using OCTANT database [11], are shown in 

Figure 1. Results show minor changes in composition with temperature. Thus, to simplify the 

model, we approximately treat the carbides as line compounds with compositions shown in Figure 

1. Specifically, at 320 °C, the composition is Cr0.562Mo0.102Fe0.129C0.207 for M23C6, and 

Cr0.047Mo0.543Fe0.274C0.137 for M6C. 

The interfacial energies between the carbides and the matrix are not available experimentally. 

Thus, we take the value predicted by OCTANT using the nearest-neighbor broken bond method 

[4], γM23C6-Fe = 0.25 J/m2, γM6C-Fe = 0.35 J/m2.  

Table 1 Chemical composition of typical 316 stainless steel. 

Element Fe Cr Ni Mn Si C Mo 

Composition 

(wt%) 

Bal. 16.6 10.6 1.12 0.68 0.054 2.25 

 

€ 

f (n = 1,t) = cβ xiβ
xiα

i=1

k

∏
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Figure 1. Temperature dependence of the carbide composition. (a) M23C6; (b) M6C 

By treating the carbides as line compounds, the equilibrium solute product can be readily 

calculated as a function of temperature. The calculated equilibrium solute product values are 

shown in Figure 2. These calculated equilibrium solute product values are later used in the CD 

model, describing the thermodynamics of the carbide. Note, since in both carbides the main 

contents are C, Cr, Fe and Mo, we ignore the Mn and Ni elements when calculating the equilibrium 

solute product. 

 
Figure 2. Equilibrium solute product of the carbides.  
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3.1.2.2 Radiation enhanced diffusion (RED) model 
The radiation enhanced diffusion (RED) model used here is based on the one developed by 

Odette et al. [12]. The radiation enhanced diffusion coefficients are expressed as 

 DCnn = 𝐷p𝑋p
rst

ruv
+ 𝐷&w , (14) 

where Dirr is the diffusion coefficient under irradiation, Dv is the diffusion coefficient of vacancies, 

Xv is the vacancy concentration under irradiation, Dth is the solute thermal diffusion coefficient of 

solute under thermal aging condition, and Dsd is the self-diffusion coefficient of Fe in the matrix. 

Defect conservation balances, treating vacancy and SIA production, transport and fate, were 

used to establish the steady-state vacancy concentration (Xv) under irradiation, which can be 

expressed from rate theory models as a function of the fraction of vacancies and self-interstitials 

(SIA) that escape recombination and reach fixed dislocation sinks (gs), which is given as: 

 𝑋p =
xuyevz{|

r}~s
, (15) 

Here, ϕ is irradiation flux, σdpa is the displacement-per-atom (dpa) cross-section, ξ is the fraction 

of vacancies and SIA created per dpa. Assuming that defect recombination occurs as vacancies 

and SIA diffuse freely through the ferrite matrix it can be shown that 

 𝑔l =
�
�
�(1 + 𝜂)+/� − 1�, (16) 

 𝜂 = +��n}yevz{|
�{r}~s;

, (17) 

Here, rv is the SIA-vacancy recombination radius, Ωa is the atomic volume, and St is sink 

strength. 

We will assume that the precipitate growth is dominated by vacancy mediated diffusion of 

solutes to the precipitates, so correct modeling of the vacancy concentrations and associated RED 

is critical. Vacancy fates include clustering, annihilation at sinks and recombination with SIA. The 

dominant fixed sinks for vacancies are typically dislocations. Other sinks include dislocation 

loops, which are also dose/dose rate dependent. Modeling the detailed evolution of the size/number 

density of dislocation loops is complex. However, it has been shown that in austenitic stainless 

steels, the dislocation loop structures often saturate and reach a steady state at higher fluences. 

Thus, for simplicity, in this preliminary stage of the study, we treat the dislocation loops as a fixed 

sink. The total sink strength of the dislocation plus the dislocation loops is taken as 2×1014m-2 [13]. 
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The thermal diffusion coefficients of carbide components in 316 SS at 320 °C can be found in 

Ref. [4], and they are listed in Table 2. To obtain 𝜂, the constants used in the simulations are rv = 

0.57 nm, 𝜉 = 0.3, 𝜎�T� = 1.5 × 10*��𝑚�, Ω� is the atomic volume 1.18 × 10*�𝑛𝑚�, 𝐷p is the 

vacancy diffusion coefficient, 10-4×exp(-1.3/T) m2/s and 𝑆&  is the dislocation density, taken here 

as 2 × 10+�𝑚*� [4].  

Table 2 Thermal diffusion coefficients of carbide components in 316 SS at 320 °C [4]. 

Element Tracer diffusion coefficient (m2/s) 

C 6×10-20 

Cr 1×10-29 

Fe 9×10-30 

Mn 8×10-29 

Mo 2×10-29 

Ni 2×10-30 

 

3.1.2.3 Ballistic mixing 
As discussed previously, a precipitate can emit monomers as a result of thermal dissociation. 

For a system under irradiation, the emission can also result from irradiation induced ballistic 

mixing. As shown by Xu et al. [14], within the framework of the traditional cluster dynamics 

model, the ballistic dissolution rate can be superimposed onto the thermal dissociation rate. By 

introducing a precipitate size-independent cascade re-dissolution parameter (SICRD), the ballistic 

dissolution rate can be written as 

𝑤� = 𝑆𝐼𝐶𝑅𝐷 × ��
�
(𝑟$ + 𝑎K)� × 𝜙 ×

!; ¡¢£¤@¥¦§
!¨! 

.        (18) 

The value of SICRD can be determined by molecular dynamics simulations, and is approximately 

1 per PKA (Primary Knock-on Atom) [15]. !
; ¡¢£¤@¥¦§

!¨! 
 is the number of PKAs (>1keV) created 

per incident particle per unit depth. Adding the ballistic dissolution rate onto the normal thermal 

dissociation rate, the cluster dynamics model can keep its original form.  
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The !
; ¡¢£¤@¥¦§

!¨! 
 term can be determined by SRIM in the ion irradiation case [14]. However, 

the method does not apply to the neutron irradiation situation. The !
; ¡¢£¤@¥¦§

!¨! 
 term is essentially 

a PKA rate (in unit of PKA/cm3∙s). For a first approximation, we take the modified Kinchin-Pease 

model to calculate the number of displacements per PKA, then we use this value to convert a 

certain damage rate (in unit of dpa/s) to a PKA rate. The modified Kinchin-Pease model can be 

written as  

    (19) 

PKA rate can be written as 

                         (20) 

where !e
!hv

 is the differential normalized primary knock-on spectra for the particular irradiation. 

For simplicity, as a coarse approximation, we use Td as T1/2 (median in the PKA spectra),  

eliminating the integral. Thus  

PKA rate = displacement rate
 v(h@/;ª

 .                 (21) 

For steel, Ed = 40eV. Taking T1/2 to be 50keV as an example, the PKA rate = displacement rate/500. 

3.1.3 Simulation Models for the ferritic low-alloy RPV steels 

3.1.3.1 Heterogeneous nucleation 
In our previous milestone, we showed that homogeneous nucleation is inadequate to match the 

experimentally observed MNS precipitates number density in Cu-free alloys and some form of in-

cascade MNS precipitation is needed. Similarly, Monte Carlo simulations [16] show Cu will 

precipitate in cascade in FeCu binary alloys. In addition to in-cascade precipitation, formation of 

Cu and Cu-MNS precipitates on dislocations have been observed both in experiments [17] and 

simulations [18]. These results suggest the need for both in-cascade and on dislocation 

heterogeneous dislocation in addition to homogeneous nucleation. Heterogeneous nucleation at 

displacement rate
( )

d

d
d d dE

dT
N T T

s¥ ¶
¶ò



 

 11 

grain boundaries was not considered in the present study because the number of grain boundary 

nucleation sites are much smaller than those associated with cascades and dislocations for RPVs 

and will make a negligible contribution to high-fluence precipitate number densities (see Sec. 

3.1.3.1.3).   

3.1.3.1.1 Nucleation in cascade 
For nucleation in cascade the precipitates nucleation rate is proportional to cascade production 

per atom 𝜎𝑐𝑎𝑠𝜃/Ω (irradiation term) and ratio of the instantaneous solute product to reference 

solute product, 𝐾lT(𝑡)/𝐾lTK  (thermodynamics term). For simplicity we assume that cascades 

produce only one size precipitates. Therefore, the nucleation rate in cascade is 

  
𝑅w­&(𝑛w­&, 𝑡) = 𝛼 ∙ 𝜎[�l𝜃/Ω ∙ 𝐾lT(𝑡)/𝐾lTK  

And 𝑅w­&(𝑛 ≠ 𝑛w­&, 𝑡) = 0 
(22) 

 

where 𝛼 is cascade cluster production efficiency factor, 𝜎𝑐𝑎𝑠 is the cascade production cross 

section, 𝜃 is the neutron flux, and Ω is the atomic volume,  is instantaneous solute product 

and 𝐾lTK  reference solute product. 

With the cascade induced nucleation the general equation for cluster dynamics becomes: 

 
𝜕𝑓(𝑛, 𝑡)
𝜕𝑡 = 𝑅w­&(𝑛, 𝑡) + 𝜔$*+,$

(,) 𝑓(𝑛 − 1, 𝑡) − 𝜔$,$*+
(*) 𝑓(𝑛, 𝑡)

+ 𝜔$,+,$
(*) 𝑓(𝑛 + 1, 𝑡) − 𝜔$,$,+

(,) 𝑓(𝑛, 𝑡) 
(23) 

3.1.3.1.2 Nucleation on dislocation 
It is known that dislocations are favorable nucleation sites for second phase precipitation because 

precipitate formation on dislocation releases the excess free energy associated with the dislocations 

[19]. To account the effect of dislocations on nucleation we combine the CD model with the theory 

of heterogeneous nucleation on dislocations that was originally developed by Cahn [19]. 

Considering the effect of dislocation nucleation on CD model the Eq. (7) will be, 

 , (24) 

where the last term corresponds to the released excess free energy associated with the nucleation 

of a precipitate on dislocation and can be given as [19], 

 

)(tKsp

)()()()( pdisl
i

iip rGnxgnnG D++-=D å sµ
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, 

(25) 

where  and  are respectively the dislocation core radius and core energy,  is the 

precipitate radius,  is the distance between a point on the precipitate interface and the dislocation 

line,  is the distance from the center of a precipitate along the dislocation line, and  is elastic 

shear modulus.  

Considering the typical size of Cu-MNS precipitates in RPVs (~3-4 nm) we approximate that no 

precipitate would nucleate within a distance of 5 nm from any evolving precipitate to avoid 

precipitates overlap. This assumption constrains the total available nucleation sites on dislocations 

by effectively dividing the dislocation line length by 5 nm, which for a typical RPV dislocation 

densities (2x1014 m-2) yields a nucleation site density of about 4x1022 m-3.     

3.1.3.1.3 Nucleation on grain boundaries 
Heterogeneous nucleation at grain boundaries was not considered in the present study because 

the concentration of grain boundary nucleation sites are expected to be much smaller than those 

associated with dislocations for RPVs. Assuming cubic grains, for an average grain size of L = 50 

µm and an effective grain boundary thickness where heterogeneous nucleation can occur of 𝛿 = 1 

nm, the potential nucleation sites at grain boundaries are 𝑁 = 𝐶K
³
´
 ~ 16 x 1023 m-3 , where 𝐶K is the 

number of atomic lattice sites per unit volume [20]. However, if we assume the distance of d = 5 

nm between precipitates the available nucleation sites at grain boundaries would be reduced by at 

least 𝑁 �;

�;
  ~ 5.2 x 1021 m-3)) where, N is the potential nucleation sites, a is the lattice parameter, 

and d is the distance between precipitates.   

3.1.3.1.1 Further notes on present excluded volume model for nucleation of 
precipitates  

In the course of very recent discussions we have identified a number of minor issues with the 

nucleation model. As noted in the above discussions, the number of available sites for nucleation 

on both dislocations and grain boundaries has been modified by a parameter d, representing the 

smallest allowed distance between precipitates, or equivalently, an exclusion distance between 

precipitates. We have used d to modify the available nucleation sites in the dislocation and grain 
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boundary models, where otherwise very large densities might occur. The first issue is that presently 

the modification is done at time zero and a modified nucleation site density is used in the 

simulation. However, a more rigorous model would evolve the nucleation site density in response 

to the precipitate density, as exclusion can only happen after a precipitate has formed. We do not 

expect this approximation to have a large impact, but the more rigorous model should be 

implemented in the future. A second issue is that the present model for the grain boundary sites in 

the presence of exclusion only consider the exclusion for the plane of grain boundary, and a more 

detailed consideration of the connection between grain boundary thickness and precipitate 

exclusion should be established. Given the small contribution to average precipitate size, number 

density, and volume fraction expected from grain boundaries this analysis is unlikely to have any 

significant impact. As a third and final issue, we note that a more rigorous model would include 

exclusion in the bulk in a manner consistent with the treatment of dislocations and grain 

boundaries. Given the typically lower number densities of bulk vs. dislocation and grain boundary 

precipitate concentrations the present approximation of ignoring exclusion in the bulk is a small 

approximation but a modification to have a fully consistent model should be developed. These 

changes will be introduced as part of general improvements planned in the model (see Sec. 6). 

3.1.3.2 Radiation enhanced diffusion (RED) model 
The RED model is similar to the one described in Sec. 3.1.2.2. However, in the ferritic low-alloy 

steels, the UMDs also act as vacancy sinks and can be dominant at very high flux. Furthermore, 

recombination will be greatly enhanced if vacancies are strongly bound to these UMDs. Odette et 

al.[12] have built a model to include the effect of UMD in the recombination-dominated regime 

under very high irradiation flux. This irradiation flux effect can be simply described by adjusting 

gs by a scaling law as  

 gl(𝜙) ≈ gl(𝜙n)(
|¶
|
)T, (26) 

Here, ϕr is a reference flux and p is a scaling exponential factor. The effective p starts at 1 in the 

thermal diffusion dominated regime at very low flux; p is 0 in the sink-dominated regime and 

p=0.5 in the recombination-dominated regime. The p again approaches 1 at high flux in the UMD 

sink-dominated regime. We will use this scaling law expression in our model to effectively include 

the effects of UMDs on the vacancy concentrations. 

3.1.4 Parameters for the MNSP Cluster Dynamics model 
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All the parameters used in the cluster dynamics model for MNSPs are given in this section, and 

most of them are the same as were reported in the previous milestone. The only differences are the 

reference solute product and heterogeneous nucleation generation rate coefficient in Sect. 

3.1.3.1.1. Instead of choosing 0.01 as the reference solute product, 2.4×10-3 is chosen, as a result 

the heterogeneous nucleation generation rate coefficient has been changed to 7.2×10-3 from 0.03, 

so that their ratio stays the same. As can be seen from Eq. (16), the model stays the same as long 

as the ratio between reference solute product and heterogeneous nucleation generation rate 

coefficient doesn’t change. The purpose of this change was so that the reference solute product is 

close to the equilibrium solute product around 290°C (in Table 3), which allows us to interpret the 

heterogeneous nucleation generation rate coefficient as the number of MNS clusters that will be 

generated per cascaded in the equilibrium state. The equilibrium solute products of the two phases 

studied at different temperatures are obtained from the TCAL2 database [21]. These equilibrium 

solute products at different temperatures are listed in Table 3. Note that the equilibrium solute 

product here for T6 are calculated with composition of 51.1%Ni-33.3%Mn-15.6%Si, since for the 

alloys studied here the predicted equilibrium compositions of T6 vary over a Ni composition of 

just 51%-52%. 

Table 3 Equilibrium solute product for each phase at different temperatures 

Temperature (°C) 
Equilibrium solute product (×10-3) 

T3 T6 

280 1.96 2.33 

284 2.12 2.53 

290 2.21 2.56 

300 2.45 2.82 

400 6.26 6.57 

425 7.86 7.95 

 

The thermal diffusion coefficients of Mn, Ni, Si and Fe in ferromagnetic Fe used in this paper 

are summarized in Table 4.  
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Table 4 Diffusion coefficients under thermal condition. 

Element D0 (cm2/s) Q (kJ/mol) Reference 

Mn 1.49 234.0 [22] 

Ni 1.4 245.6 [23] 

Si 0.78 231.5 [24] 

Fe 27.5 254.0 [25] 

   

All other parameters are listed in Table 5. Most of them are obtained from two papers [12, 26]. 

Four of them, heterogeneous nucleation size and rate coefficient (see Sec. 3.1.2) and two interfacial 

energies are fitting parameters. These parameters were fitted to 28 experimental data points of 

precipitate number density, mean radius and volume fraction for alloys under different irradiation 

conditions by mapping a fine grid of the values of these parameters in reasonable range, and the 

optimal set of parameters were obtained for parameter values where the smallest root mean square 

difference (RMSD) between simulation results and experimental data was realized. 

Table 5 Parameters used in calculating radiation enhanced diffusion coefficient and other 
parameters. 

SIA – vacancy recombination radius (rv, nm) 0.57 [12] 

Fraction of vacancies and SIA created per dpa (ξ) 0.4 [12] 

Displacement-per-atom (dpa) cross-section (σdpa, m2) 1.5×10-25 [12] 

Atomic volume (Ωa, m3) 1.18×10-29 

Vacancy diffusion coefficient pre-exponential factor (Dv, m2s-

1) 

1×10-4 [26] 

Vacancy migration energy ( , eV) 1.3 [26] 

Dislocation sink strength (dislocation density) (ρ, m-2) 2×1014 [12] 

Flux effect scaling exponential factor (p) 0.2 [27] 

Cascade cross section (σCascade, m2) 2×10-28 [27] 

Reference solute product (𝐾lTK ) 2.4 ×10-3 

Heterogeneous nucleation size (𝑛w) (FITTED) 60 

Heterogeneous nucleation generation rate coefficient (α) 

(FITTED) 

7.2×10-3 

€ 

Ev
m
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Interfacial energy of T3 phase (σΤ3, J/m2) (FITTED) 0.190 

Interfacial energy of T6 phase (σΤ6, J/m2) (FITTED) 0.175 

 

3.1.5 Parameters for the Cu-MNS Precipitates Cluster Dynamics model 
Formation of pure Mn-Ni-Si precipitates (MNSPs) in RPV steels is limited to Cu-free or very 

low Cu bearing (Cu<0.06 at.%) alloys and was addressed in Ref. [13] and previous milestones. 

However, there exist some level of Cu in major in-service RPV steels and its concentration can 

reach up to 0.25at.% [28]. In the presence of Cu, it is seen that MNSPs are usually spatially 

correlated with Cu-rich precipitates (CRPs) in RPV steels [29-33]. Note that here we define a CRP 

as a primarily Cu containing precipitate, but one that also includes other solutes (e.g., a Cu core 

with Mn, Ni and Si atoms coating it). In the method section, we described the general cluster 

dynamics model for single and multicomponent precipitates formation. In this section, we expand 

the CD model to treat the precipitation of Cu along with Mn-Ni-Si. The coupling of Cu and MNSPs 

is necessary to fully understand their combined impact on the embrittlement of RPV steels 

CRPs will form in alloys containing more than ~0.06 at.% Cu. The mechanism for formation of 

CRPs in the presence of MNS is still being explored, but from atom probe observations [34] and 

our KMC simulations, we propose that the mechanism is as follows. In the early stages of 

irradiation, Cu clusters precipitate out, then the Mn, Ni, and Si move toward Cu precipitates and 

coat the Cu precipitates in just a monolayer or so of Mn, Ni, and Si, forming CRPs. The CRPs 

enrichment in these solutes can be understood and modeled within the framework of both classical 

thermodynamics [35] and atomistic simulations [16]. As the irradiation continues the Cu depletes 

in the matrix (due to its very low solubility limit) while Mn-Ni-Si are still supersaturated. During 

the Cu precipitation and after, Mn, Ni, and Si continue to precipitate out on the CRP, forming an 

appendage morphology of a well-developed MNSP.      

The above process of coupling Cu and Mn-Ni-Si precipitation is highly complex, and all the 

features could not be readily incorporated into a practical model. Instead, we took an approximate 

approach that built separate Cu and MNS precipitate models, and then coupled them in a simple 

manner that mimicked the essence of the above processes, while simultaneously requiring 

relatively few adjustable parameters (as illustrated schematically in Figure 3). The right branch of 

Figure 3 shows the MNSP model, uses the theoretical approach from Ref. [13]. The left branch of 

Figure 3 shows the Cu precipitation model.  Finally, the coupling of Cu and MNS precipitation is 
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shown schematically by the middle branch of Figure 3. The coupling of Cu and MNS is described 

in some detail here as well as Sec. 4.1.4. 

We coupled the Cu and MNSP by assuming that during the Cu nucleation stage any Cu 

precipitate which has 20 atoms (~Cu precipitate critical size) or more has an accompanying MNSP 

that has a size proportional to the Cu precipitate. This effectively co-nucleates a MNSP with the 

Cu precipitate. The MNSP is a distinct precipitate from the Cu precipitate in the model, but does 

not grow independently during this co-nucleation phase as it is pinned to the Cu precipitate size. 

The ratio of MNSP to Cu precipitate size during this co-nucleation stage is a fitting parameter. 

When the Cu nucleation stops, we decouple the co-nucleation and let the Cu and MNSP grow 

separately. The Cu growth after this stage is limited due to the significant Cu depletion in the 

matrix, but MNSPs continue to grow, which represents the appendage growth. This way of 

coupling Cu to MNSP is a quite severe approximation and leaves out many features of our 

understanding of the true mechanism of precipitation described above. Perhaps the most dramatic 

feature of the approximation is that we replace the complex process of Mn, Ni, and Si segregating 

to the Cu/Fe interface and then growing as an appendage with a single nucleation event of an 

MNSP separate from the Cu precipitate. This approximation still captures the key role of Cu 

catalyzing the nucleation and growth of MNSPs but greatly simplifies the process in ways that 

may impact the fidelity of the predicted MNSP evolution. The atom probe experiments and KMC 

simulations show that Cu precipitates are coated with Mn, Ni, and Si atoms, which means the Cu 

precipitate is really a CRP, and CRPs will have a different interfacial energy than pure Cu 

precipitates and pure MNSP. Therefore, we considered the interfacial energy of CRPs (Cu clusters 

bigger than 20) to be the average of a Cu and MNSP interfacial energy. We note that we tested the 

sensitivity of the results to this parameter and found very little variation in results by shifting this 

number between Cu interfacial energy to MNSP interfacial energy. At this stage we assess the 

impact of the model approximations by determining to what extent we can model a large body of 

Cu+MNSP evolution data, and the relatively good success we have compared to the experimental 

data (see Sec. 4.1.4) supports that our approach has captured the essential elements of the 

Cu+MNSP coupling.   
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Figure 3. A flowchart of precipitate formation in RPVs in the presence of Cu.    

3.2 Machine Learning 
3.2.1 Introduction 

In addition to the physics-based methods pursued above, we have also used machine learning 

and data mining to produce a generalizable model for predicting the effect of irradiation on RPV 

hardening. Previously, Castin et al. used artificial neural network (ANN) techniques to model 

hardening based on the RADAMO database (SCK�CEN), with a mean predictive error of 45 MPa; 

however, they note that there is room for improvement of the extrapolative ability of the model, 

particularly as the principal composition variables ended up being only Cu and Ni content, and the 

elemental compositions in the database did not vary independently.[36] Kemp et al. similarly used 

ANN to model and predict yield stresses based on published irradiated steel data taken over a wide-

range of temperatures, and had quite large errors in their model. The authors noted that the high 

errors for some dose rate and temperature ranges could be improved with additional data; that 

particular strengths of the model were its generalizability over alloys and its ability to give 

uncertainty estimates, which could then inform selection of additional data points for experiment; 

and that additional modeling approaches which could incorporate known physics could be 

complementary.[37] Our analysis is distinct from previous work in that it is using a very extensive 

dataset that is more focused on data relevant for RPV steels, including a more restricted 
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composition range and temperature range than some of the above studies, and we are using a 

somewhat different set of approaches. 

To complement the previous ANN studies, the present work uses primarily a more constrained 

Gaussian Kernel Ridge Regression (GKRR) model, requiring optimization of only two 

hyperparameters, along with physically based and empirically based descriptors taken from 

literature [12, 38]. We also consider a related Gaussian Kernel Gaussian Process (GP) model. This 

model functions in some ways similarly to the GKRR model but offers a few key improvements 

in usability. The model frameworks can be reapplied to produce different model forms as more 

data and descriptors become available. Additional data would take the form of more test data points 

at other compositions, flux, or fluence. Additional descriptors may be identified and added due to 

improved high fluence and flux understanding, e.g., effective fluence [12]based descriptors. 

3.2.2 Model introduction 
We develop a generalizable machine-learning model using the information available from the 

IVAR database, namely the elemental compositions of Cu, Ni, Mn, Si, P, and C, irradiation 

temperature, flux, and fluence, with hardening in MPa as the response. Flux and fluence are 

combined into an effective fluence defined by a p-value,[12] 

Gaussian Kernel Ridge Regression (GKRR) was implemented through the Python[39] package 

scikit-learn,[40] and produces a model from these descriptors. The radial basis function (RBF, or 

Gaussian) kernel determines the distance between feature vectors, and is characterized by 

hyperparameter 𝛾, where the value of the kernel 𝐾(𝑥, 𝑦) = 	exp(−𝛾‖𝑥 − 𝑦‖�), where small 

values of 𝛾 increase the tolerance of what feature vectors are considered similar, and the weighting 

induced by the kernel is smoothed out over a larger area of feature space. Ridge regression 

performs linear regression in the kernel and data space (which will be a non-linear function in 

original space when using a non-linear kernel) and uses the hyperparameter 𝛼 as the coefficient of 

an L2 norm penalty in the ridge regression. The hyperparameter 𝛼 can decrease the sensitivity of 

the fit to random error in cases where the descriptors have some interdependence, with larger 𝛼 

allowing less sensitivity and penalizing large coefficients.  

The Gaussian Process model (GP) was also implemented through the Python[39] package scikit-

learn [40], and employs the same kernel as the GKRR model but instead of using ridge regression 

uses the kernel to define the covariance of a prior distribution over the target functions and uses 

the training data to define a likelihood function that is used in it’s predictions. The GP model uses 
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the same 𝛾 hyperparameter. The kernel also has a scaling prefactor that can be modified to change 

the total range of values output from the RBF kernel. This prefactor is set to 1 for the current model 

because the values predicted have been normalized to have a unit standard deviation, suggesting a 

unit prefactor is appropriate. In addition to hyperparameters associated with the kernel there is also 

a noise parameter which can either be specified or optimized by the model. In the current results 

the noise is set to a very small value that plays a role only to introduce numerical stability. 

 

From experimental IVAR and IVAR+ data provided, we make the following changes before 

applying the machine learning models:  

• Removal of alloy LO, which has identical composition and data as alloy LC but was 

annealed for different times than other alloys in the database. 

• Removed duplicate entries (i.e., entries for the same alloy, flux, fluence, and temperature), 

with the lower hardening response removed, leaving the larger hardening response. The 

lower hardening response is typically for an alloy that has been annealed for different times 

than other alloys in the database. 

• Updated the irradiation temperature for alloys CM6, LC, LD, LG, LH, and LI at a flux of 

2.3x1014 n/cm2/sec and a fluence of 1.1x1021 n/cm2 from 290°C to 320°C after 

communication from UCSB (this change is due to the change in temperature recently 

reported for all the so-called ATR1 irradiations). 

In addition to the IVAR and IVAR+ datasets which are used for training models there is an 

ATR2 dataset which can be used for model validation. This dataset is never included in training 

and consists of 41 alloys irradiated at a fluence of 1.39´1020 n/cm2 and a flux of 3.641012  n/cm2/s. 

24 of the alloys are exact composition matches from the IVAR and IVAR+ datasets, and 17 alloys 

are not exact matches, but whose compositions fall within a bounding box made up by the max 

and min of each element the IVAR and IVAR+ datasets. 

3.2.3 Model fitting method – cross validation 
Cross-validation (CV)[41] assesses the predictive ability of the model and its independence from 

a particular training set by breaking data into training and testing data, fitting only to training data, 

and then assessing errors on testing data.  
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For n-fold CV (also known as k-fold CV), the dataset is split into n nominally equal parts, called 

folds. In a single test, the model is trained on the training data in n-1 of the n folds. The model is 

then used to predict the left-out testing fold, with each fold being left out once. Larger numbers of 

folds indicate that more data is being used to train the model. The root-mean-squared error (RMSE) 

for each n-fold CV test is given as the average RMSE over all n of the fold predictions and is 

referred to here as the “fold-average RMSE”. The test may be repeated several times, with the 

overall cross-validation RMSE given as the average of the fold-average RMSEs of all the tests. If 

the number of folds n equals the number of data points N, then the N-fold test does not need to be 

repeated, since there is no randomization when assigning fold members; this test is equivalent to 

leave-one-out CV. 

3.2.4 Model details 
As described above, the available data for regression consists of the elemental compositions of 

Cu, Ni, Mn, Si, P, and C, irradiation temperature, flux, and fluence, with hardening in MPa as the 

response. From this data, the descriptors used for regression are as follows, although the regression 

method described below could be reapplied to different or extended sets of descriptors. 

• Atomic percent values of Cu, Ni, Mn, Si, P, and C as reported by the alloy compositions 

in weight percent. Fe is assumed to be the remainder of the weight balance after the six 

elements described above.  

• Irradiation temperature 

• Effective fluence, as calculated from the method in Odette et al.,[12] Because the range of 

effective fluence spans several orders of magnitude, this descriptor is considered on a 

logarithmic scale. 

Each descriptor is normalized linearly over the total set of training and testing data, using the 

formula (𝑥 −𝑚𝑖𝑛) (𝑚𝑎𝑥 −𝑚𝑖𝑛)⁄ .  

The hyperparameters associated with our approach, using the GKRR model 𝛼 (alpha) and 

𝛾 (gamma) parameters, are optimized using a grid search. For the GP model a grid search is used 

to search for an optimal 𝛾 (gamma) parameter. 5-Fold cross validation is done from a range of 

values and the Root Mean Squared Error (RMSE) is used as the criteria for picking the best value. 

The other hyperparameters are fixed to reasonable values based on the data being predicted. 

3.3 Experimental 
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3.3.1 Materials and irradiation conditions 
The nominal composition of the two alloys used in this study are Fe-0.80at.% Cu and Fe-

0.78at.% Cu-1.05at.% Mn. The alloys were solution treated for 17 hours at 775 ˚C, quenched in a 

salt bath at 450 ˚C for 3 minutes, and air-cooled to room temperature. The 290°C ion irradiations 

were carried out at the Center for Accelerator Mass Spectrometry (CAMS) in Lawrence Livermore 

National Laboratory. The alloys were irradiated by 70-MeV Fe ions at two different dose rates. 

The dose/dose rate-depth map was calculated using SRIM (Stopping Range of Ions in Matter) [42] 

using the Kinchin and Pease option with Ed = 40 eV, as shown in Figure 4.  APT analysis was 

carried out at three dpa levels (0.3, 1.1 and 3 dpa) in the higher dose rate condition, and at one dpa 

level (0.03 dpa) in the lower dose rate condition. These dpa levels correspond to sampling depths 

in the two samples (0.3, 3.25, 5.0, and 5.9 µm), also shown in Figure 4. The neutron irradiations 

were at two fluxes of ~8×1010 n·cm-2s-1 and ~7.5×1012 n·cm-2s-1, spanning a neutron fluence range 

from ~5×1020 to ~1023 n·m-2. The neutron fluence was converted to the dpa unit to compare to the 

ion irradiation doses. The neutron irradiation flux, fluence and corresponding dose/dose rate 

conditions are summarized in Table 6. Details about the neutron irradiation experiments are 

reported elsewhere [43]. Based on previous experience with neutron dosimetry, and considering 

the dpa dose and location precision in the ion irradiation lift-outs (see below), we estimate that the 

dose uncertainties are ~20% for the test reactor irradiations and ~30% for the ion irradiations. 

While these are significant in an absolute sense, we do not believe they have major effect on the 

conclusions reached in this study. 
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Figure 4 The ion irradiation dose and dose rate as a function of depth below the sample surface, 
for both Fe-Cu and Fe-Cu-Mn samples. The low-dose sample was used for the 0.03 dpa APT tips; 
the high-dose sample was used for the 0.3 dpa, 1.1 dpa and 3.0 dpa APT tips. 

Table 6 Summary of fluxes and fluences of neutron irradiation. 

Name Flux ϕ ( n·cm-2s-1) Fluence ϕt (n·cm-2) Dose rate (dpa/s) Dose (dpa) 

L1     

L2     

L3     

L5     

H1     

H5     

H6     

3.3.2 Atom probe tomography 
Atom probe tomography (APT) characterization was carried out at University of Wisconsin–

Madison on a CAMECA Local Electrode Atom Probe (LEAP) 3000 Si (~57% total detection 

108 10´ 165 10´ 101.2 10-´ 57.5 10-´

108 10´ 171 10´ 101.2 10-´ 41.5 10-´

108 10´ 172 10´ 101.2 10-´ 43.0 10-´

108 10´ 173 10´ 101.2 10-´ 44.5 10-´

127.5 10´ 174 10´ 81.1 10-´ 46.0 10-´

127.5 10´ 185.1 10´ 81.1 10-´ 37.7 10-´

127.5 10´ 191 10´ 81.1 10-´ 21.5 10-´
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efficiency). APT tips were fabricated using a dual-beam focused ion beam (FIB) system (Zeiss 

Auriga) with standard lift-out method as described in Ref. [44]. After general shaping of the needle 

at 30 kV, low-energy milling at 5 kV was used to precisely locating tip at the desired depth, which 

was followed by a final 2 kV clean-up milling to reduce the Ga damage and contamination. 

The tips were analyzed using voltage mode at 50 K to mitigate the preferential field evaporation 

of Cu atoms. The tips were electrically pulsed with a pulse fraction of 20%, a pulse rate of 200 

kHz, and a target evaporation rate between 0.5% and 1.5%. A minimum of two tips were studied 

for each condition. For samples with lower precipitate number density, more tips were analyzed. 

Reconstruction of the tips were performed using the CAMECA IVAS software (version 3.6.14). 

The reconstruction used the SEM micrographs to estimate the tip radii along the z-axis. Due to the 

sample alignment process during initial stage of the evaporation, the data from the very top part of 

the tip were excluded from the reconstruction. The initial tip radius for the reconstruction was 

determined by enforcing the measured interspacing distance of (200) and/or (110) planes to be 

equal to the theoretical value for bcc Fe. Standard value for the image compression factor (ICF = 

1.65) and the evaporation field of pure Fe (Fe = 33 V nm-1) [45] were used. 

To determine the size and composition of the precipitates, cluster analysis was performed using 

a modified maximum separation algorithm [46], which is based on the fact that solute atoms that 

belong to one cluster are closer than those within the matrix. The order of the method was chosen 

to be 5, i.e., a solute atom can only be considered as a core atom of a cluster if there are at least 5 

solute atoms to be in its proximity (defined by dmax, typically ~ 0.7 nm). More details on 

determining the order of the method can be found in Ref. [43]. After a core atom is identified, 

solute atoms within dmax of a core atom are included in the cluster. In the last step, matrix atoms 

around the outside of the cluster are removed using the erosion method [47], with erosion distance 
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~ dmax. Also, clusters containing less than Nmin (typically ~ 30) atoms are ignored, since they are 

assumed to be a result of random fluctuation in the material [48]. 

The precipitate sizes (rp) were calculated by counting the solute atoms in the precipitates, 

corrected by the detection efficiency, assuming that the solute atomic volume is the same as Fe. 

The number density (N) of the precipitate was calculated by dividing the number of precipitates 

by the total reconstruction volume. Precipitates on the edge of the reconstruction volume was not 

used to calculate the precipitate size, but counted as 0.5 when calculating the number density. 

Precipitate volume fraction was calculated by dividing the number of solute atoms inside the 

precipitates by the total number of atoms in the APT reconstruction volume. The average 

precipitate size, number density and volume fraction were calculated by performing total atom 

count weighted averaging of measurements from multiple tips. More details on calculating the 

averages can be found in Refs. [34] and [43]. 

Note that the atom probe tomography technique has multiple artifacts that can affect the 

interpretation of the reconstruction results. As shown in many previous studies, trajectory 

aberration artifacts that spray adjoining matrix atoms into the Cu core lead to artificially high Fe 

composition in Cu precipitates [49, 50]. Trajectory aberrations result from preferential evaporation 

of Cu (and other low filed emission solutes) that locally flatten or dimple the otherwise 

hemispherical APT, leading to an unphysically high atomic densities in the precipitates. Trajectory 

aberration artifacts were recently analyzed for the Fe-Cu/Fe-Cu-Mn alloys by inter-comparing the 

results of various characterization methods, showing that the precipitates do not contain a 

significant amount of Fe (< 6%) [43]. Therefore, in this study, only solute atoms are counted when 

determining the precipitate size and volume fraction. 
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4. RESULTS 
4.1 Cluster Dynamics 

4.1.1 Precipitation of Carbides in 316 stainless steels: without irradiation 
In this section, we show the CD simulation results on the precipitation process of the carbides 

in 316 stainless steels under thermal annealing. As shown in Figure 5, at 385 °C the MatCalc 

simulations (solid line) [4] using OCTANT database predict a relatively rapid formation of a 1.2% 

volume fraction M23C6, which then gets replaced gradually by M6C while increasing to a final 

volume fraction of 1.7% [4]. Note for the modeling results, radiation enhanced diffusion is 

considered, but that there is no enhancement under thermal annealing. To test the consistency of 

the CD model with thermodynamic predictions from OCTANT, we simulate with CD the 

annealing of the 316 steels at 320 °C, starting from a solid solution state. Significant precipitation 

of carbides is observed. Figure 6 shows the volume fraction, average precipitate radius and the 

number density of the precipitate as a function of annealing time. We see the same transition 

sequence in the CD prediction as seen with Octant modeling. In addition, the saturated M6C 

volume fraction is also consistent with the OCTANT prediction. Note, the plots of the precipitate 

radius and number density generally show a nucleation, growth, and dissolution sequence for the 

M23C6 phase, where the latter corresponds to the shift to a dominant M6C phase. Also, it is worth 

noting that at this low annealing temperature, the time needed for significant precipitation is 

extremely long. Thus, the precipitation of bulk carbides in this alloy observed in the experiments 

is very likely a direct result of the irradiation enhanced diffusion of the solutes. We also note that 

in experiments, there have been works looking at both the grain boundary and the grain interior 

[1-4]. The experimental observations are similar in both cases in that with irradiation, the volume 

fractions are lower than the thermodynamics predictions. Note that grain boundary precipitation is 

likely much faster but here we focus on modeling bulk precipitates since the nucleation process is 

simpler to model. 
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(a)                                                                       (b) 

 
Figure 5 Evolution of total carbides (M23C6 and M6C) volume fraction compared to experimental 
data. We note that the nature of precipitates in Renault (2009) were uncertain and could be carbide 
or G-phase. Adapted from Ref. [4]. 
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(c)                                                                       

 

Figure 6. CD simulation of annealing of a 316 SS at 320 °C (a) volume fraction (b) precipitate 
radius (c) precipitate number density.  

4.1.2 Precipitation of Carbides in 316 stainless steels: effect of irradiation 
In this section, we show the CD simulation results of the precipitation process of the carbides in 

316 stainless steels under irradiation. As stated in Section 1, one of the interesting points from 

available experiments is that, under irradiation, the volume fraction of the carbides characterized 

by TEM is often smaller than that predicted by the thermodynamics. For example, Figure 5 shows 

the comparison of three experiments compared to the thermokinetics prediction. One of the 

possible reasons of this discrepancy is the ballistic mixing effect, which is directly related to the 

irradiation dose rate. Higher irradiation dose rate has been shown to be associated with stronger 

ballistic mixing [51]. The goal of the work during this milestone period has been to assess if 

ballistic mixing and associated dose rate effects might be impacting the carbide volume fraction. 

To assess the dose rate effect, we plot the precipitate volume fraction, radius and number 

density as a function of irradiation dose rate. Dose rates from 10-10 dpa/s to 10-4 dpa/s were used. 

For all cases, significant precipitation of the carbides has been observed. As shown in Figure 7a, 

at 0.1 dpa, the M23C6 volume fraction is nearly saturated at 1.2% for all dose rates except for the 

10-4 dpa/s case. However, the transition from M23C6 to M6C which was observed in the annealing 

case did not happen at the dose of 0.1 dpa for the irradiated condition. Instead, the M6C volume 

fraction is always nearly zero. As suggested by Figure 6, the intrinsic kinetics of the precipitation 

is very slow. It is thus possible that our simulations to less than 1 dpa are not long enough to 

reproduce the transition to the more stable carbide, which would be expected at high enough dose. 
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(a) 

(b) 

As shown in Figure 7b, the CD model predicts a smaller radius associating with higher dose rates, 

which is consistent with the increasing number density trend shown in Figure 7c. 
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(c) 

 

Figure 7. Precipitate evolution at 0.1 dpa (a) volume fraction (b) precipitate radius (c) precipitate 

number density.  

At a higher dose of 1 dpa, as shown in Figure 8a, the M23C6 volume fraction is fully saturated at 

1.2% for all dose rates. Similar to the 0.1 dpa condition, no transition from M23C6 to M6C was 

observed. Again, such a transition is expected at high enough dose. The precipitate sizes are larger, 

and the number densities are lower, compared to the  0.1 dpa condition at the same dose rate. 

However, the general trend of the precipitate size/number density evolution is similar to the 0.1 

dpa condition. With the volume fraction saturating, the size/number density evolution trend 

suggests that with higher dose rate, the coarsening does not increase as much with increasing dose 

as with the lower dose rate. This is likely due to the higher vacancy-interstitial recombination 

fraction, which yields effectively less diffusion for a given total dose.  
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(a) 

(b) 
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(c) 

(a) 

 
Figure 8. Precipitate evolution at 1 dpa (a) volume fraction (b) precipitate radius (c) precipitate 
number density. 

In Figure 9, the precipitate evolution is plotted as a function of irradiation dose, at two dose 

rates, 10-10 and 10-4 dpa/s. For both dose rates, we see the sequence of nucleation, growth and 

coarsening. Again, it is evident that the precipitation process occurs at lower fluence for the lower 

dose rate situation and that even the highest flux does not significantly alter the volume fraction at 

greater than ~0.1 dpa in this model.  
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(c) 

(b) 

 

 
Figure 9. Precipitate evolution as a function of irradiation dose. 

These CD model with our specific parameterization and simulated conditions suggests that for a wide 

range of dose rate values the primary dose rate effect is on radiation enhanced diffusion, and the ballistic 

mixing does not have a significant effect on the final volume fraction of the carbide phases. This result 

suggests that the observed reduced volume fraction of carbides compared to that expected from 

thermodynamic considerations maybe be an experimental artifact, associated with somehow missing 

significant carbide volume fraction in the characterization. However, the model has significant uncertainties 
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which turn out to have and significant impact on the conclusions, and we explore those in more detail in 

Sec. 4.1.3.  

4.1.3 Precipitation of Carbides in 316 stainless steels: effect of change of solute 
product 

The thermodynamics of the precipitation process is largely determined by the solute product 

parameter, which sets the solubility limit of the metal and C relative to the carbide precipitates. It 

is important to assess the sensitivity of our observations as a function of the solute product as this 

quantity may have some errors. It has been shown that the solute product is related to the relative 

free energy of the precipitate phase to the dissolved soluts, which can be written as ∇𝐺 =

𝑘𝑇𝑙𝑛(𝐾lT)[13]. Thus, a change in free energy as a function of a change in equilibrium solute 

product can be written as ΔΔ𝐺 = 𝑘𝑇𝑙𝑛(𝐾𝑠𝑝
′`̀ `̀ `

𝐾𝑠𝑝`̀ `̀ `), where 𝐾lT¿`̀ `̀` is the changed equilibrium solute product. 

Based on this, a 2, 3, 4 and 5-fold increase of the equilibrium solute product leads to a change of 

free energy of ≈ 40, 60, 70, and 80 meV/atom of M23C6 at 320 °C (Note that the precipitate 

formation energy Δ𝐺 = 𝑘𝑇𝑙𝑛À𝐾𝑠𝑝ª is approximately 400 meV). We focus on 320 °C as that is the 

temperature for which our model fitting was carried out and it is therefore where we expect the 

most physically robust model. We consider a flux of 10-6 dpa/s, which is close to that used in 

relevant experimental studies (9.4×10-7 dpa/s)[52], which studies were also done at 330 °C, similar 

to the temperature we are modeling. CD tests show that a 3-fold increase of equilibrium solute 

product is unable to destabilize the precipitate under irradiation of 10-6 dpa/s at 1 dpa and shows 

almost no effect on volume fraction, see Figure 10. However, under the same condition, with a 4-

fold increase of equilibrium solute product, no stable precipitate appear to form at any dose up to 

10 dpa.  
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Figure 10.  volume fraction of M23C6 at 10 dpa, plotted as a function of solute product increase. 

This strong dependence of volume fraction on solute product was unexpected and has 

significant implications for the result. First, it suggests that temperature effects of just ~20 degrees 

could play a significant role on the stability of the carbides under varying flux, since the M23C6 

(M6C) solute product can vary by 3´ (6´) over this temperature range (see Figure 2). Second, it 

suggests that relatively minor errors in low temperature solute products may have a significant 

influence on the results. Given this role of temperature and sensitivity, a more detailed study that 

attempts to exactly match temperature and flux conditions of the experiments and provide 

validated solute product values would be valuable. We have not pursued such efforts within the 

scope of the present modeling given its approximate nature and dependence on fits developed at 

320 °C, but such an extension of the present work is of interest for future study.  

4.1.4 Precipitation of Cu-MNS in RPV steels  
In Figure 11 we compare the CD model results and the experimental data used in fitting the 

model for evolution of precipitates in LC, LD, LH, and LI alloys as a function of fluence. In these 

plots, we run the CD code for an average environment condition (1x1016 n/m2/s, 290 °C) to get a 

smooth average trend (yellow line) and run the CD code for all specific experimental data 
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conditions to give the best possible comparison (green triangle points). The experimental data 

given in Figure 11 are obtained via small angle neutron scattering (SANS) measurements. To 

consistently compare the CD results with SANS data we follow the SANS data post processing 

for CD data, which is fitting the particle size distribution (PSD) to a log-normal distribution and 

then using the log-normal distribution function to extract the particles number density and mean 

size. To get the log-normal distribution function we fit the µ and b (mean and standard deviation 

of the variable’s natural logarithm, respectively) of log-normal distribution somehow its first and 

second moments match with the first and second moment of the CD particle size distribution. After 

fitting the CD PSD with a log-normal distribution, we calculate particles mean size and number 

density as following.  

 < 𝑟 > 	 = [
∫𝑛(𝑟)𝑟�𝑑𝑟
∫𝑛(𝑟)𝑑𝑟

]+/� (27) 

 𝑁 = 	Å𝑛(𝑟)𝑑𝑟 (28) 

where n(r) is the log-normal fit function of CD particle size distribution. 

 𝑛(𝑟) =
𝑁∗

𝑟𝛽√2𝜋
𝑒
*(ËÌ(n)*Í);

�I;  (29) 

N* in above equation is calculated somehow the Eq. 25 gives equal particles number density 

for CD and log-normal fit function for particle sizes in SANS resolution range (size > 1 nm). 
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Figure 11. Comparison between CD model and experimental results for evolution of precipitates 
in LC, LD, LH, and LI alloys as a function of fluence. Yellow line is the CD results for an 
average irradiation condition (1x1016 n/m2/s, 290 °C) obtained using the SANS fitting process. 
Green triangles denoted CD points that are values calculated at the exact conditions of the 
experiments. 

As shown in Figure 11, the CD model predicts a small drop in volume fraction at very high 

fluences, which is unexpected. To understand this point, we plot the detailed spatial distribution 

of the precipitates in Figure 12. As shown in the figure, most of the Cu precipitate are on the 

dislocation. The T6 appendage phase are defined as the precipitates nucleated on the fast-

forming Cu precipitates, thus the T6 appendage phase is also considered as on dislocations. 

T3/T6 on dislocation are the MNSPs not associated with Cu, but still on dislocations. We see that 

from 7×1024 n/m2 to 5×1025 n/m2, the volume fraction of precipitates on dislocations decreases, 

while the volume fractions of T3/T6 precipitates on dislocations increase, but at a smaller 

magnitude. These changes combined appear to lead to the decrease of the total precipitate 



 

 38 

volume fraction. From a purely thermodynamics point of view, it is difficult to understand the 

reduced volume fraction. However, it is possible that due to the dislocation line modified Gibbs-

Thomson relationship, the coarsening kinetics of precipitates on dislocations might be modified. 

It is easy to understand why the precipitates evolve to eventually reside on dislocations, as these 

are the most stable locations. However, it appears that this process occurs more quickly than in 

experiments in our model.  This may be in part due to the fact that our Cu diffusion coefficient 

likely unphysically high to compensate the fact that we ignore the mobility of small Cu clusters 

(described in the previous report). The high Cu diffusion may lead to faster kinetics in the 

simulations, leading to faster microstructural evolution compared to experiment, which result in 

all Cu precipitates being on dislocations. More work is needed to assess if these high-fluence 

processes will be altered by an improved Cu model and to what extent they might be a sign that 

additional physics is needed in the model. 

 
Figure 12. A detailed examination of volume fraction of different phases nucleated by various 
mechanisms of LC (modeled as Cu0.25Ni0.81Mn1.1Si0.46) alloy irradiated at a flux of 1×1016n m-2s-1. 
The results show that at very high fluence, the volume fraction of appendage precipitates decreases, 
in favor of MnNiSi precipitates on dislocations.  
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4.2 Machine Learning 
4.2.1 Results 

Figure 13a shows a full fit RMSE of 15 MPa for training the model on the complete set of 

IVAR+ experimental data and then predicting the data back according to the input. Figure 13b 

shows results of best and worst fits for 5-fold CV, with an average 5-fold CV RMSE of 17.8 +/- 

0.3 MPa averaged over 100 tests. The similarity in fully fitted RMSE and CV RMSE shows that 

the model is not prone to over-fitting. These encouraging results show that the model is robust for 

predicting within the IVAR+ data.  

a) 

 

 

b) 

 

 

Figure 13. (a) Full fitting and (b) 5-fold cross-validation (CV) of IVAR+ experimental data using 
the GKRR model. The best and worst CV fits are evaluated out of 100 cross-validation tests. For 
each cross-validation test, the RMSE values from each of the five folds are averaged into a single 
RMSE value. The best CV fit has the lowest fold-average RMSE of the 100 tests, and the worst 
CV fit has the highest fold-average RMSE. The points shown in red or blue are for all five folds 
of each test. 



 

 40 

Figure 14 shows cross validation RMSE values across a range of model hyperparameters for the 

IVAR+ data. Cross Validation (CV) tests like in Figure 13b are done for a range of 

hyperparameters 𝛼 and 𝛾 and the log of the Root Mean Squared Error (RMSE) of the predictions 

are given in each box. Identified in orange boxes is an area of degenerate performance in which 

the CV test predicts the model will have very similar performance. To further test the predictive 

capability across this region eight models were made (scanning from top to bottom across the 

region) and used to predict a separate ATR2 dataset. The results are shown in Figure 15. 

 

 

Figure 14. Heatmap of GKRR model performance across a wide range of hyperparamters. 
Orange boxes identify a region of degenerate performance in the hyperparameters don’t 
significantly change the performance of the 5-fold cross validation test. 

Figure 15 shows how the GKRR model performs in predicting the ATR2 dataset across the 

identified degenerate performance space in Figure 14. Although some combinations of 

hyperparameters perform similarly, there are cases where the error increases by more than 400%. 

This result reveals that although the cross-validation testing within the IVAR+ dataset predicts a 

nearly degenerate region of optimal model performance the models in this region are not equally 

accurate at predicting entirely new datasets such as the ATR2 dataset. Therefore, it is necessary to 
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find a better approach than 5-fold CV to estimate model predictive ability when trying to optimize 

hyperparameters for models that will be used to predict entirely new data not highly similar to 

IVAR+ samples. 

To try to overcome the limitations of the GKKR model a new type of machine learning model 

called a Gaussian Process (GP) model was employed. The GP model functions in some ways 

similarly to the GKRR model, however it has different hyperparameters which could help us 

determine a unique model with optimal predictive ability for new data. As mentioned in the 

methods section, two of the three hyperparameters can be set to constant values based on the 

structure of our data. The third can be optimized using a grid search during the model fitting 

process. This means that the previous method of hyperparameter fitting using 5-fold CV can be 

made much faster as there is only 1 hyper parameter to optimize over. Figure 16 shows an example 

of the ATR2 data predicted using the GP model. The current performance is similar to the 

performance obtained from the best of the GKRR predictions from Figure 15 with an RMSE of 

around 80 MPa. It can be seen that there is still room for improvement as the model has an overall 

strong underprediction. In this initial test we set the GP kernel to match as closely with the previous 

GKRR model as possible. In the future we will explore different kernels, and optimizations of 

those to improve model performance and prediction. 

 

 
Figure 15. RMSE of predicting ATR2 dataset with 8 different hyperparameter combinations 
identified from the IVAR+ CV testing 
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Figure 16. Gaussian Process Model prediction of the ATR2 dataset 

 

4.3 Precipitation in Fe-Cu and Fe-Cu-Mn alloys 
4.3.1 APT analysis 

All of the ion irradiations resulted in significant precipitation of Cu in both the Fe-Cu and Fe-

Cu-Mn alloys. Figure 17 shows four 20 nm thick atom map sections for the Fe-Cu alloy at different 

doses and dose rates. The longer dimension of the sections is parallel to the z-axis of the atom 

probe tip. Note that some of the Cu precipitates appear to be elliptical, elongating along the z-

direction, which is a result of the lower evaporation field of Cu compared to the Fe matrix [53]. 

However, with the solute-counting based method that we used to calculate the precipitate size, the 

geometry of the reconstructed precipitates does not affect the results. The average precipitate sizes, 

number densities and volume fractions are summarized in Table 7. The volume fractions of the 

precipitates being similar, at 0.71 ± 0.05 at.% for all the irradiation conditions, together with the 

fact that the Cu concentration in the matrix being near zero suggests that the Cu precipitation is 

basically complete even at the lowest dose level. The precipitate sizes and number densities are 

also very similar for all four irradiation conditions. 
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Figure 17: 20 nm thick sections from atom maps showing species distribution for Fe-Cu alloys 
irradiated at different doses. (a) 0.03 dpa (b) 0.3 dpa (c) 1.1 dpa (d) 3.0 dpa. Cu atoms are shown 
in green. Only solute atoms are shown. Note the background signal is not corrected by IVAS in 
the visualization of the reconstruction, which leads to higher apparent Cu composition in the matrix 
in some cases (for instance in the 0.3 dpa sample).  

Table 7. Summary of the microstructural measurements by APT for Fe-Cu  alloy 

Dose (dpa) Dose rate (dpa/s) d (nm) N (m-3) fv (at.%) Cu in matrix (at.%) 

0.03 3.2×10-7 3.59 2.86×1023 0.67 0.02 ± 0.00 

0.3 3.2×10-6 3.55 3.26×1023 0.76 0.01 ± 0.01 

1.1 1.2×10-5 3.61 2.83×1023 0.69 0.02 ± 0.00 

3.0 3.2×10-5 3.51 3.29×1023 0.73 0.04 ± 0.04 

 

Corresponding 20 nm thick atom map sections for the Fe-Cu-Mn alloy are shown in Figure 18. 

The precipitate size, number density, and volume fraction are summarized in Table 8. In the ternary 

alloy, similar to the binary case, nearly complete Cu precipitation is observed even at the lowest 

dpa level. However, in the ternary alloy the total volume fraction of precipitates does not saturate, 

but continues to increase with increasing doses. This is due to Mn enrichment in the Cu-rich core, 

especially at the precipitate-matrix interface, as will be shown later.  
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The average precipitate sizes are smaller, and the number densities are higher in the Fe-Cu-Mn 

alloy compared to the Fe-Cu alloy. The precipitate sizes increase slightly in the ternary alloy from 

0.03 dpa to 0.3 dpa, but decrease at higher dose, although the differences are not large. In contrast, 

number densities increase monotonously with dose, roughly doubling between 0.03 and 3 dpa. 

Figure 18a illustrates the observation that the precipitates in the lowest-dose (0.03 dpa) condition 

tend to form in strings, indicating preferential nucleation and growth on dislocations. However, 

for all other irradiation conditions, the spatial distribution of the precipitates is rather uniform. The 

unusually high dislocation density in the lowest-dose tips (at a 300nm depth) is likely due to the 

polishing procedure prior to irradiation that induces some mechanical deformation immediately 

below the sample surface.  
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Figure 18: 20 nm thick sections from atom maps showing species distribution for Fe-Cu-Mn alloys 
irradiated at different doses. (a) 0.03 dpa (b) 0.3 dpa (c) 1.1 dpa (d) 3.0 dpa. Cu atoms are shown 
in green, and Mn atoms are shown in blue. Only solute atoms are shown. 

Table 8 Summary of the microstructural measurements by APT for Fe-Cu-Mn alloy 

Dose 
(dpa) 

Dose rate 
(dpa/s) 

d 
(nm) 

N (m-3) fv 
(at.%) 

Cu in matrix 
(at.%) 

Mn in matrix 
(at.%) 

0.03 3.2×10-7 2.70 6.28×1023 0.73 0.06 ± 0.03 0.67 ± 0.02 

0.3 3.2×10-6 2.83 6.64×1023 0.77 0.07 ± 0.01 0.60 ± 0.00 

1.1 1.2×10-5 2.57 9.76×1023 0.88 0.01 ± 0.01 0.56 ± 0.01 

3.0 3.2×10-5 2.33 1.66×1024 1.10 0.02 ± 0.02 0.76 ± 0.02 
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Figure 19 shows the size distribution of precipitates in both Fe-Cu and Fe-Cu-Mn alloys after 

irradiation at the four dpa values. At the lowest dose both alloys show signs of multimodal size 

distributions, and are broader than distributions at higher dpa. As noted previously, the 

precipitation in the lowest-dose sample could be affected by polishing induced dislocations. 

Irradiations at higher dpa levels lead to size distributions that are almost identical for Fe-Cu 

samples, while for the Fe-Cu-Mn alloy, the peak positions of the distributions shift to smaller sizes 

with simultaneously increasing dose and dose rate, and the distribution become narrower. 

 
Figure 19: Precipitate size distribution. (a) Fe-Cu (b) Fe-Cu-Mn 

Figure 20 shows that the fraction of Cu in Fe-Cu-Mn alloy precipitates monotonically decreases 

with increasing dose due to a growing Mn content. Figure 7 shows corresponding proximity 

histograms (proxigrams) of the Mn composition as a function of the distance from the precipitate-

Fe interface. A proxigram for an Fe-Cu-Mn alloy thermally annealed at 300˚C for 8300h is shown 

for comparison. In all cases the Mn is primarily enriched in a shell surrounding a Cu-rich core. 

The irradiated alloys are much more enriched in Mn, and the enrichment increases with higher 

dpa. 



 

 47 

 
Figure 20: Cu composition in precipitates in Fe-Cu-Mn alloy as a function of irradiation dose.  

 
Figure 21: Radial Mn concentration profile plotted as a function of distance from Cu/Fe interface 
in the Fe-Cu-Mn alloy. The profiles are not corrected for Fe in the precipitates, although this Fe 
content is likely an artifact of the APT method.  

4.3.2 Comparing results from ion irradiations and those from neutron irradiations 
The same Fe-Cu and Fe-Cu-Mn alloys were previously irradiated by neutrons in test reactor, 

with much lower dose rates and a dpa range whose maximal value is just below that of the lowest 

ion irradiation dpa value. The precipitation process was characterized using the small-angle 

neutron scattering (SANS) technique. Details on the SANS measurements can be found in Ref. 
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[43]. Here we take the results from neutron irradiation experiments and compare the precipitate 

characteristics with those obtained in this study from ion irradiation experiments. The results are 

plotted a function of irradiation dose, as shown in Figure 22. The neutron results, at lower dpa 

levels, are plotted in red filled circles on the left side of the dashed line, while the ion results, at 

higher dpa levels, are plotted as filled black squares on the right side of the dashed line.  

Under neutron irradiation, the precipitates in both alloys rapidly nucleate and undergo growth 

and coarsening, with increasing size and volume fraction, accompanied by a decreasing number 

density. The precipitates in the Fe-Cu-Mn alloy are far smaller and more numerous than those in 

the Fe-Cu binary. In contrast to the neutron irradiation trends, there is little change in the size, 

number density and volume fraction of the precipitates in the Fe-Cu alloy under ion irradiation. 

Further, while the ion irradiation volume fraction is saturated at a value close to the highest neutron 

dpa condition, as well as the total Cu content of the Fe-Cu alloy, the corresponding precipitate size 

and number densities are much smaller and larger, respectively.   

The effects of ion irradiations on precipitation in the Fe-Cu-Mn alloy is very different from those 

in the Fe-Cu alloy. First, for the ternary alloy, the precipitate sizes and number densities are similar 

for the ion and neutron irradiations at a comparable dpa level (the highest for neutrons and lowest 

for ions). Further, it is again evident that Cu is fully precipitated at all the ion irradiation dpa levels.  

In the higher-dose neutron irradiated conditions and essentially all ion-irradiation conditions, Cu 

is fully precipitated in both alloys. At lower neutron dose rates, the precipitates coarsen as 

expected, with increasing size and decreasing number density. However, at higher ion dose rates 

the Fe-Cu alloys have a constant size, number density and volume fraction, indicating a significant 

effect of BM. An even stronger apparent BM effect is observed in the Fe-Cu-Mn alloy, where the 

precipitate size actually decreases slightly, while the number density increases with higher dose 
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rates and dose. The corresponding increase in volume fraction is largely associated with an 

increase in the Mn content of the precipitates. It is important to point out that the interpretation of 

the data is confounded by correlated differences in the dose rate and dose; that is, higher dose rates 

are associated with higher dose. Thus, it is not possible to directly determine if the system is in a 

true dose rate dependent steady state (patterning regime), which is predicted by theoretical 

considerations.  
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Figure 22: The precipitate volume fraction, diameter and number density of precipitates for both 
the Fe-Cu and Fe-Cu-Mn alloys, plotted as a function of irradiation dose. 

4.3.3 Discussions 
The major objective of this work is to investigate the effects of irradiation dose rate on 

precipitation in Fe-Cu and Fe-Cu-Mn model alloys. We have shown that precipitation in the ion-

irradiated, higher-dose conditions is not a simple continuation of that in the neutron-irradiated, 

lower-dose case. Key observations include: 
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1. In the neutron-irradiated Fe-Cu alloy, the precipitate nucleation, with overlapping growth 

and coarsening kinetics, is similar to that expected for classical thermal diffusion-controlled 

kinetics, but greatly accelerated by RED. However, under ion irradiation, the precipitates 

are much smaller and more numerous, and do not evolve with increasing dpa.   

2. In the neutron-irradiated Fe-Cu-Mn alloy, the precipitate evolution is similar to that in the 

Fe-Cu alloy, but the sizes are smaller and number densities are larger. However, the Fe-Cu-

Mn alloy appears to experience “inverse coarsening” under ion irradiation.  

We will rationalize these observations by considering the combined effects of RED and BM 

and the effects of Mn alloying. 

As stated in the Introduction Section, the radiation enhanced diffusion coefficient DRED is a 

complex function of a number of factors, including the fraction of mobile point defects that escapes 

recombination and annihilates at sinks (gs), which is in turn determined by irradiation dose rate 

and sink density. With a fixed sink density, higher irradiation dose rate results in higher fraction 

of mobile point defects to annihilate by recombination, leading to lower DRED. Therefore, for the 

same total irradiation dose, different dose rates can lead to different amounts of diffusion (diffusion 

length). Thus, to isolate the irradiation dose rate dependent RED from other dose rate effects, it is 

important to compare results with the same amount of diffusion, which is achieved by using the 

concept of effective dose (or effective dpa). As will be discussed in the following paragraph, 

examining results in an effective dose scale accounts for the effects of different dose rates on 

diffusion.  

As Odette and co-workers described previously [12], the effective dpa is defined by scaling the 

actual irradiation dpa as 
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 effective	dpa = dpa × d xu(|)
xu(|¶)

i ,                       

where gs(f) and gs(fr)  are the fraction of vacancies that are not eliminated by recombination at the 

actual flux and a reference flux, respectively. Here the reference flux fr is taken as 3×1011n cm-2s-

1. Specifically, for ion-irradiated conditions, the irradiation dose (in unit of dpa) is first converted 

to an equivalent neutron fluence using the dpa cross section, then to effective dose (effective dpa). 

This scaling ensures that at the same effective dose, the amount of RED is the same for different 

irradiation conditions.  

Figure 23 shows the precipitate size as a function of effective dose in unit of dpa for both model 

alloys. It is shown that after the scaling, the ranges of the effective dose of the ion-irradiated 

conditions and the neutron-irradiated conditions overlap. This suggests that although the ion 

irradiations result in higher irradiation doses compared to the neutron irradiations, the amounts of 

diffusion (effective dpa) are comparable. If the only significant dose rate effect is on RED, the 

curves of the ion and the neutron results are expected to collapse to one, as illustrated in Ref. [12], 

where all the irradiation dose rates involved are similar, and relatively low. The fact that the two 

curves deviate from each other indicates that other than RED, there exists other important dose 

rate effects, among which the BM is the most likely one. With proper combination of irradiation 

parameters, the BM can prevent the formation of large precipitates [54, 55]. As pointed out by 

Enrique and co-workers [56], when the effect of RED and BM are comparable, the system chooses 

a mesoscale phase separation length scale, i.e., a steady-state precipitate size in our dilute alloys. 

For ion-irradiated Fe-Cu and Fe-Cu-Mn samples irradiated to more than 0.3 dpa (or 0.018 and 

0.0036 effective dpa, for the binary and ternary alloy, respectively), the fact that the precipitate 

size does not increase as a function of effective dpa suggests that the precipitates could be 

approaching the steady-state sizes corresponding to the particular dose rates, as predicted by the 
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theory [51, 56]. Such precipitate size evolution is consistent with the patterning regime. On the 

other hand, in neutron-irradiated conditions, the results suggest that the BM effect is not as 

significant as in the ion-irradiated conditions, and the precipitates grow and coarsen in a similar 

manner as in a thermally annealed system (while being accelerated by RED), which demonstrates 

macroscopic phase separation [51, 56].  

 
Figure 23: Precipitation size plotted as a function of effective dose (dpa), which considers the dose 
rate effect on RED. (a) Fe-Cu; (b) Fe-Cu-Mn. 

Considering the competing effects of RED and ballistic mixing, as described in the introduction 

section and in Ref. [56], the relative rate of irradiation-induced ballistic jumps and radiation 

enhanced diffusion determines the precipitation evolution. The ballistic jump frequency of atoms 

relates to the dissolution rate of the precipitates by BM, while the RED coefficient characterizes 

the rate of bringing back solutes to the precipitates from the matrix. The important variable that 

determines the size of the Cu precipitate is reduced forcing parameter γ =Γb/DRED. Since for neutron 

and heavy-ion irradiations, Γb is simply proportional to the point defect generation rate, the γ is 

determined by the dose rate dependence of DRED, as will be discussed next.  

The radiation enhanced diffusion coefficient of Cu can be approximately calculated as the 

transport of Cu via the interstitial dumbbell mechanism is not significant [57]. The thermal 

diffusivity of Cu [6] is readily available in the literature, thus the main task is to calculate gs (or 

(a)                                                               (b) 
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equvalently Cv since 𝑔l =
r}Õ}~s∗

�|evz{
, and the other values in this equation are known). To calculate 

gs, we consider the production, recombination, and sink elimination of point defects in an irradiated 

alloy. In addition, for the Fe-Cu-Mn alloy, due to significant solubility of Mn in Fe and the 

relatively high vacancy-Mn binding energy, it is likely that the vacancy trapping by Mn solutes 

can affect the vacancy concentration significantly. Taking all these mechanisms into account, the 

rate theory equations can be written as 

.            

where Cv and Ci  are the concentration of vacancy and interstitials; Dv (1.14×10-16m2s-1) [12]  and 

Di (when solving the equation, the absolute value of Di is not important, since Di is much larger 

than Dv) are the diffusion coefficients of vacancy and interstitial; η (≈ 0.3) is the fraction of residual 

vacancies and SIA that escape the initial in-cascade recombination; K0 is the production rate of 

point defects in unit of displacements per atom per second, dpa/s (first calculated within the NRT 

model [58] using SRIM [42], then corrected by the fraction of freely migrating defects [59]); Ctv 

is the concentration of occupied vacancy traps; τt is the average vacancy trapping time; Ω (1.18×10-

29m3) is the atomic volume of bcc Fe; 𝑆&∗ is the total sink strength of the sinks in the material; riv  

(0.57 nm) and rt  (0.57 nm) are the recombination and trap capture radii; Ct (~ 0.65%) is the total 

concentration of vacancy traps, which is taken to be the average Mn concentration in the matrix as 

measured by APT for each irradiation condition. The average trapping time τt  can be calculated 

by [12] 
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where b (0.248 nm) is the atomic spacing, Hb is the vacancy-trap binding energy, here taken as the 

vacancy-Mn binding energy, which is set to 27 kJ/mol [60]. The sinks being considered are 

permanent sinks and temporary sinks created in cascades during irradiation, i.e., the UMF sinks, 

which are believed to be solute-vacancy cluster complex [12, 61-63]. The total sink strength can 

be written as the sum of two parts, one from permanent sinks, the other from UMFs, 𝑆&∗ = 𝑆& +

𝑆Þßà . Permanent sinks in the calculation are modeled as pre-existing dislocations, which 

annihilate point defects by climbing. The pre-existing dislocation density in the two model alloys 

is considered to be low, and a value of St = 1×1013m-2 is taken. Under continuous irradiation, the 

steady-state concentration of UMFs is approximately proportional to K0, but saturates at high dose 

rates, due to volume exclusion effects [63, 64]. The creation cross section of the UMF is taken to 

be σc = 1.5×10-29m2, giving a creation rate of |eáâá
�

, where 𝜏[ is the UMF annealing time (3×1015s 

at 290 °C) [12]. The UMF saturation number density is set to 1024m-3 [63]. Taking advantage of 

the steady-state relationship !Õ}
!&
= !Õ9

!&
= 0 and  DiCi = DvCv [65], we can numerically solve for gs 

and the associated RED as a function of K0 (or equivalently irradiation dose rate).  

The calculated RED coefficient for both Fe-Cu and Fe-Cu-Mn alloys are plotted in Figure 24a. 

First observation is that, at the same irradiation flux, the Cu diffusion coefficient in the Fe-Cu alloy 

is higher than that in the Fe-Cu-Mn alloy, which is a direct result of the vacancy trapping effects 

from Mn in solid solution. Second, the dose rate dependences of the Cu diffusion coefficients are 

different. Different from the two classical diffusion regimes (sink-elimination regime and 

recombination regime) that are identified in a pure metal [66], for the Fe-Cu alloy, five diffusion 

regimes can be identified based on the dose rate dependence. At very low dose rate, the defect 
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generation rate is low, and most of the point defects generated annihilate by going to the sinks. 

This sink-elimination regime is characterized by 𝐷ãär ∝ 𝐾K. As dose rate increases, the higher 

defect production rate increases the fraction of point defects that annihilate by mutual 

recombination, while the sink strength of the steady-state UMF sinks is comparable to the 

permanent sinks. In this regime,	𝐷ãär ∝ æ𝐾K. If the dose rate further increases, the number 

density of the steady-state UMF sinks increases, and eventually become the dominate sinks. In this 

regime, again most of the irradiation induced point defects go to the sinks. However, since the 

UMF concentration itself is proportional to K0, the resulting DRED has no dependence on the dose 

rate, leading to a flat part of the DRED curve. We name this regime the UMF-sink-elimination 

regime to distinguish from the (permanent) sink-elimination regime. As we previously pointed out, 

the UMF concentration cannot increases indefinitely, but will saturate due to the volume exclusion 

effect [63]. Once the UMF concentration saturates, there is no longer strong dose rate dependence 

of the sink strength. Thus, the system returns to the sink-elimination regime (with saturated UMF 

sinks), again characterized by 𝐷ãär ∝ 𝐾K. At last, at even higher dose rate, mutual recombination 

of the point defects again dominates, leading to 𝐷ãär ∝ æ𝐾K. These five regimes are separated by 

dashed lines in a qualitative manner in Figure 24a. For the Fe-Cu-Mn alloy, our calculation reveals 

that the relationship 𝐷ãär ∝ æ𝐾K prevails for all the dose rates that we considered, suggesting that 

mutual recombination is always the dominant mechanism for defect annihilation.  

Having calculated DRED, we can use the reduced forcing parameter γ = Γb/ DRED (Figure 24b) to 

directly understand the irradiation responses observed in both the neutron and ion irradiations. 

First, for the neutron irradiation conditions, the γ values are small, and the system is in the 

macroscopic phase separation regime. Coarsening similar to that in the thermal systems occurs, 

but the diffusion kinetics is faster for the Fe-Cu then Fe-Cu-Mn alloy (see Figure 24a), leading to 
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larger precipitate sizes. Second, for the ion irradiation conditions, the γ values are larger compared 

to neutron-irradiated ones, and the precipitates reached steady-state sizes, suggesting that the 

systems are in the compositional patterning regime. Third, due to the solute trapping effect 

imposed by Mn, the detailed γ evolution trends are different for the two alloys. For the Fe-Cu 

alloy, γ has a very weak dose rate dependence in the ion dose rate range, leading to constant steady-

state precipitate size, as shown in Figure 23a.  However, for Fe-Cu-Mn alloy, γ ∝ æ𝐾K , which 

increases in a linear manner (in log-log scale) as dose rate increases, leading to decreasing 

precipitate size, as shown in Figure 23b.  
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Figure 24: (a) Radiation enhanced Cu diffusion coefficient as a function of dose rate and the 
equivalent flux. Five diffusion regimes are denoted for the Fe-Cu alloy. (b) gamma as a function 
of dose rate and the equivalent flux.  

(a)  

(b)  
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5. SUMMARY OF MAJOR RESULTS 
 

5.1 Cluster Dynamics 
5.1.1 Cluster dynamics simulation of carbide precipitation in 316 stainless steel 

• With the exact parameters of the current CD model at 320°C the simulation results indicate 

that the largest dose rate effect is on radiation enhanced diffusion, and that the ballistic 

mixing does not have a significant effect on the total volume fraction of the carbide phases. 

However, relatively minor changes in the thermodynamics associated with changes in the 

solute product of ~4 x (~70 meV/atom in Gibbs free energy for carbide formation), which 

correspond to changes expected over ~20-30ºC, completely change this result, leading to 

near total suppression of the carbide formation due to ballistic mixing, at least up to 10 dpa. 

Such changes are within the uncertainty of the model. 

• This work suggests that the discrepancy between the expected carbide volume fraction 

from thermodynamics and the experimental observation of carbide volume fraction under 

irradiation could be due to ballistic mixing contributions, as small changes within the 

model uncertainty show dramatic carbide suppression from ballistic mixing. However, 

more work is needed for a robust prediction of ballistic mixing effects and apparent low 

carbide volume fractions could be due to some form of experimental error, perhaps limited 

sampling by the TEM method, which may miss large carbides, especially at grain 

boundaries.  

5.1.2 Cluster dynamics simulation of Cu bearing ferritic RPV steels 

• The CD model predicts a small drop in volume fraction at very high fluences, which is 

unexpected. Detailed analysis suggests that this drop is associated with the fact that most 

of the Cu precipitates, along with the associated MNS appendages, have evolved to be on 

dislocations. Further investigation is needed to rationalize the possible relationship 

between the drop in precipitate volume fraction and the microstructural evolution of 

precipitates to dislocations, as well as to what extent the latter is correct for real systems. 

5.2 Machine Learning 
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• Machine learning using Gaussian Kernel Ridge Regression (GKRR) predicts the change in 

yield stress for compositions and conditions represented within the IVAR/IVAR+ database 

with a full fit and 5-fold CV RMSE of < 20 MPa. 

• Predicting entirely new datasets such as the ATR2 dataset shows that 5-fold CV RMSE 

may not be reliable in determining hyperparameters that allow robust prediction of new 

datasets. 

• Employing a new modeling approach, Gaussian Process Regression, can enable us to 

obtain robust hyperparameters and but still shows significant prediction error on new 

ATR2 data and needs further refinement (e.g., alternative kernels). 

5.3 Precipitation in Fe-Cu and Fe-Cu-Mn alloys: dose rate effect 

• We demonstrated very strong effects of irradiation dose rate on precipitation in the Fe-Cu 

and Fe-Cu-Mn model alloys. At the high-dose-rate of the ion irradiation, precipitates are 

much smaller than that under low-dose-rate neutron irradiation. 
• The evolution of the sizes of the precipitates in the ion-irradiated samples is determined by 

competition between the radiation enhanced diffusion and irradiation induced chemical 

mixing. In the Fe-Cu alloy, different dominating mechanisms for point defect annihilation 

leads to five diffusion regimes, which are characterized by different dose rate dependence 

of the radiation enhanced diffusion coefficient. 

• In the Fe-Cu-Mn alloy, the effect of vacancy trapping by Mn solutes significantly simplify 

the dose rate dependence of the diffusion coefficient, leading to only one diffusion regime 

for the dose rate range considered in the study. 
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6. FUTURE WORK 
The future work is expected to focus on RPV modeling. The main focus will be in improving 

the CD model, including removing minor approximations we have made, identifying and fixing 

the source of errors in low-solute and intermediate Ni alloys, very high flux ATR1 condition 

simulations, and Cu diffusion, enhancing the model beyond simple p-scaling for treating radiation 

enhanced diffusion, and refining the model by fitting to both all the available microstructural data 

and to the IVAR hardening database through empirical mechanical property models. This 

improved model will then be further adapted and refined for modeling thermal annealing behavior 

to assist in mitigation efforts. We will also further refine the machine learning approach, exploring 

the promise of Gaussian Process Regression. The machine learning models will be tested and 

improved by using virtual data of hardening vs. flux, fluence, temperature and composition that 

include both measured conditions, e.g., like those in IVAR, and unmeasured LWR conditions. 

These virtual data sets will be generated by models like our CD model and can be used to test the 

predictive ability of the machine learning approaches.  
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