

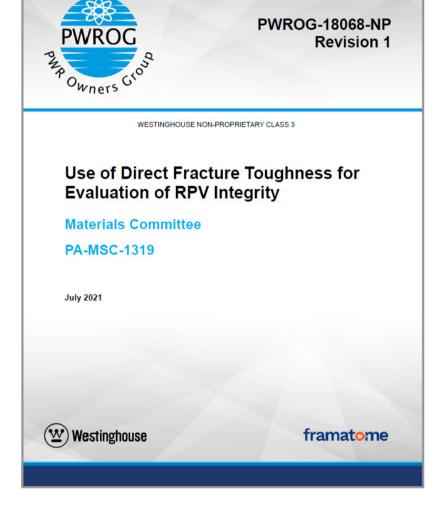
All Rights Reserved

PWR Owners Group

W) Westinghouse

Global Expertise • **One Voice**

PWROG-18068, "Use of Direct Fracture Toughness for Evaluation of RPV Integrity"


Brian Hall - Westinghouse

LWRS Spring meeting April 30 – May 1, 2024

PWROG PWROG-18068-NP, "Use of Direct Fracture Toughness for Evaluation of RPV Integrity"

- The methodology justifies the use of direct fracture toughness data to evaluate RPV integrity as an alternative to the requirements/methods of pressurized thermal shock (PTS) (10 CFR 50.61) and pressure-temperature (P-T) limit curves (10 CFR 50, Appendix G). The topical report discusses a methodology to:
 - Generate irradiated or unirradiated ductile-brittle transition reference temperature (T_0) according to the industry consensus ASTM E1921-20 **Standard Test Method**
 - Adjust the data for differences between the tested material using industry consensus ASTM E900-15 Standard Guide for predicting embrittlement
 - Account for test result uncertainty and material variability
 - Apply the data using NRC-endorsed methods

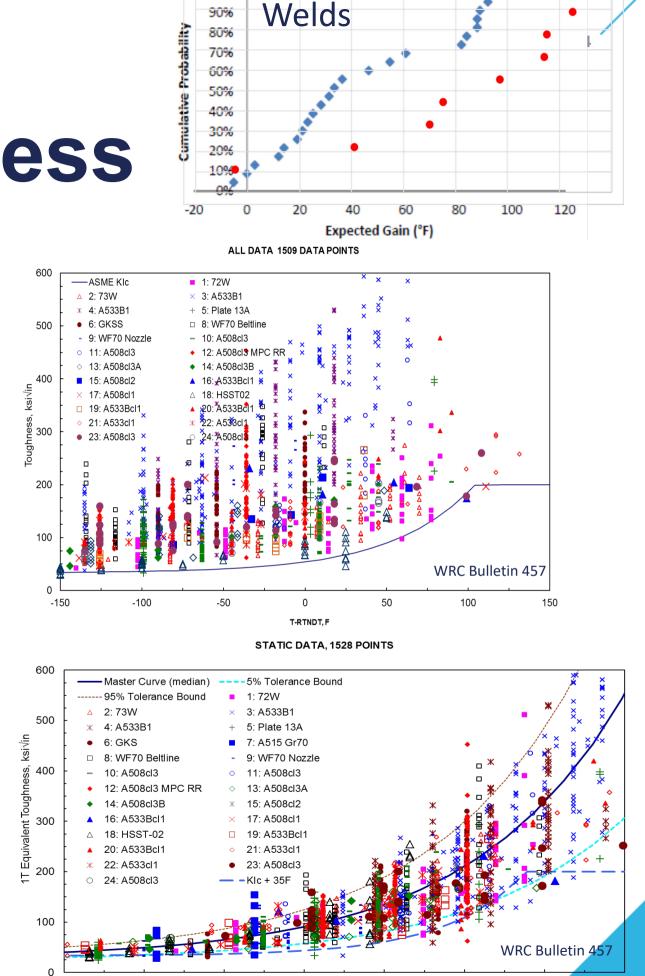
Direct Fracture Toughness Activities

PWROG-18068-NP submitted to NRC for review in July 2021

• Provides a methodology to use fracture toughness data as an alternative to specific sections of NRC-approved topical reports for generating pressure-temperature curves

- WCAP- 14040-A
- o BAW-10046A
- Applicable to all PWRs
- NRC accepted PWROG-18068 for review
- 25 multi-part requests for additional information received March 2022
 - A number of meetings and changes made to address NRC questions
 - Final RAI responses and PWROG-18068 markup submitted March 8, 2024
- Parallel complimentary, different method in ASME Code with ballot of Code Case N-914 Methods to account for embrittlement
 - Basis in MRP-462, Rev. 1 Draft (Feb. '23)
 - Addressing reviewer comments

Why Direct Fracture Toughness


Master Curve

- Reduced uncertainty
- Reduced inconsistency
- Characterizes margin statistically
- Based on actual fracture toughness measurement

Testing Irradiated Material

- Reduced embrittlement prediction uncertainty
- Reduced embrittlement prediction error (bias)
 - e.g., RG1.99R2 high fluence non-conservatism
- Uncertainties are accounted for explicitly

LWRS Spring meeting April 30 – May 1, 2024: Direct Fracture Toughness for Evaluation of RPV Integrity

100%

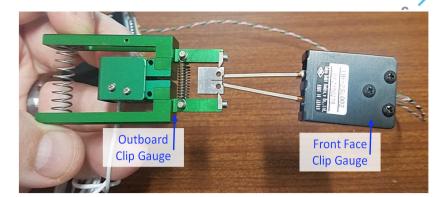
200

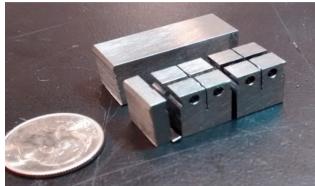
150

Methodology for Application of Master Curve Test Data

– For PTS evaluations, the following is used:

 $RT_{PTS} = RT_{T0} + adjustment + margin$


- Using ASME Section XI, Appendix G 2013
- $-K_{lc} = 33.2 + 20.734 \exp[0.02 (T {T_0 + 35 + adjustment + margin})]$ (K_{lc} curve with RTT₀) -OR
- Using Code Case N-830-0 as modified by the NRC condition $- K_{Jc-lower95\%} = 22.9 + 33.3 \exp[0.0106 (T - {T_0 + adjustment + margin})]$
- This topical report provides a methodology to determine the adjustment and *margin* terms

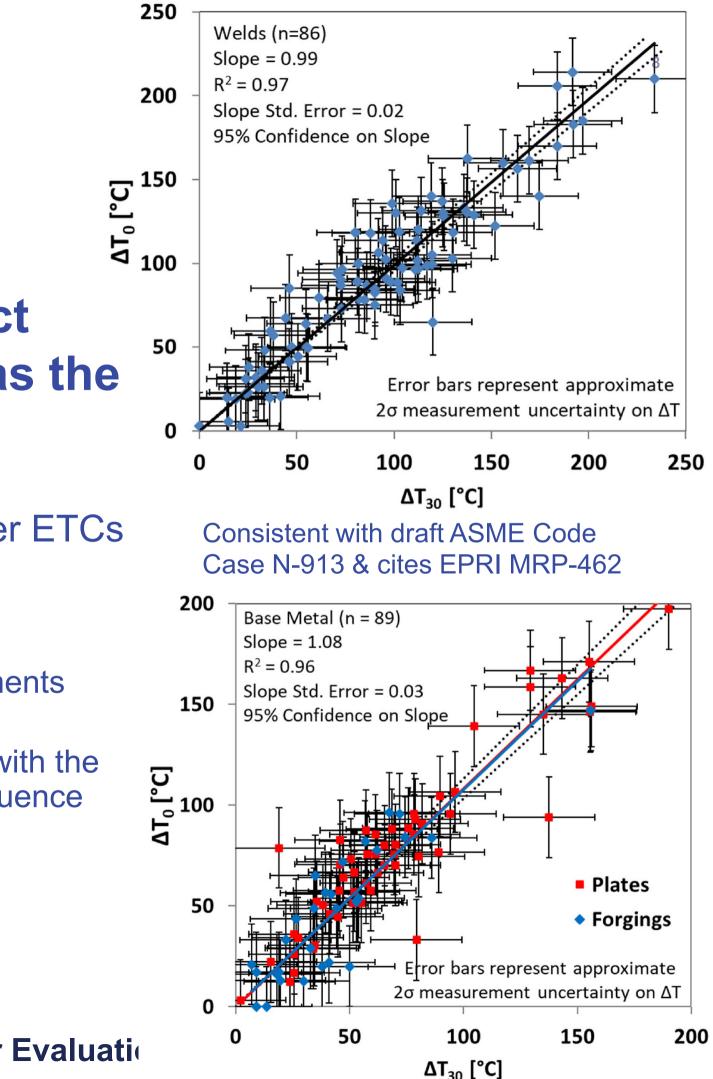


PWR OWNER'S Generation and Validation of T₀ Data

- Irradiated T₀ can be obtained by
 - Using existing data
 - Testing specimens machined from unirradiated archive material
 - Testing specimens machined from material irradiated in a PWR surveillance capsule, or
 - Irradiating specimens in at high flux & testing; e.g. material test reactor (MTR)
 - MTR irradiation must include validation material in each Cu group that have test materials
 - Low Cu: Cu weight percent (wt. %) ≤ 0.053
 - Medium Cu: Cu wt. % between 0.053 and 0.28
 - High Cu: Cu wt. % > 0.28
 - Ensures that MTR irradiated specimens are representative of PWR irradiated specimens
 - Potential Flux effect
 - Other differences: spectrum, temperature, unknown
 - Ensures a well-designed MTR irradiation of specimens

Specimen Testing

- Irradiation of the same heat of material is required to evaluate the RPV material of interest, except
 - Generic unirradiated T₀ method is described
 - Minimum 4 valid T_0 from same type, manufacturer, or class
 - 95/95 one-sided tolerance limit factor (k1) is used rather than 2 which is typically used for large populations
- Testing in accordance with ASTM E1921-20
 - Data sets are screened for inhomogeneity in accordance with 10.6 of ASTM E1921-20
 - Data sets that fail the screening criterion are evaluated in accordance with Appendix X5 "Treatment of Potentially Inhomogeneous Data Sets," of ASTM E1921-20 with T_{OIN} (as calculated in Appendix X5) substituted for T_0 .
 - Any geometry that meets ASTM E1921-20
 - A 10°C bias is added for the SEB Charpy size (10x10mm) specimen (ASTM E1921)



Data Adjustment

- Tested specimens will rarely reflect the exact same irradiation conditions and chemistry as the represented RPV material
 - Adjustments presented herein are made using the embrittlement trend curve (ETC) in ASTM E900-15 (other ETCs could also be used)

 $adjustment = (\Delta T_{30 RPV} - \Delta T_{30 Specimens}) \bullet (If BM, 1.1)$

- Best-estimate inputs are used for the irradiated data adjustments (Cu, Ni, Mn, P, Temp., Fluence)
- An NRC-approved method of fluence evaluation consistent with the plant licensing basis, or another NRC-approved method of fluence evaluation
- Weld = 1.0 and Base metal = 1.1

Margin Term

 $Margin = \sqrt{\sigma_{E1921}^2 + \sigma_{adjustment}^2 + \sigma_{tempspecimen}^2 + \sigma_{tempRPV}^2 + \sigma_{fluencespecimen}^2 + \sigma_{fluenceRPV}^2}$

- Accounts for uncertainties
 - Simplified, bimodal or multimodal can be used if inhomogeneous
 - Adjustment using ETC: $\sigma_{adjustment} = max \left[9^{\circ}C, \{C \cdot ([If BM, 1.1] \cdot \Delta T_{30RPV})^{D}\} \cdot \frac{|adjustment|}{(If BM, 1.1) \cdot \Delta T_{30RPV}}\right]$
 - Irradiation temperature (effect of uncertainty on embrittlement using the ETC)
 - Test specimens; 0 if irradiated in assessed RPV
 - RPV; (2°F can conservatively be used)
 - **Fluence** (effect of uncertainty on embrittlement using the ETC)
 - Test specimens (0 if unirradiated)
 - RPV projection

Determination of σ_{F1921}

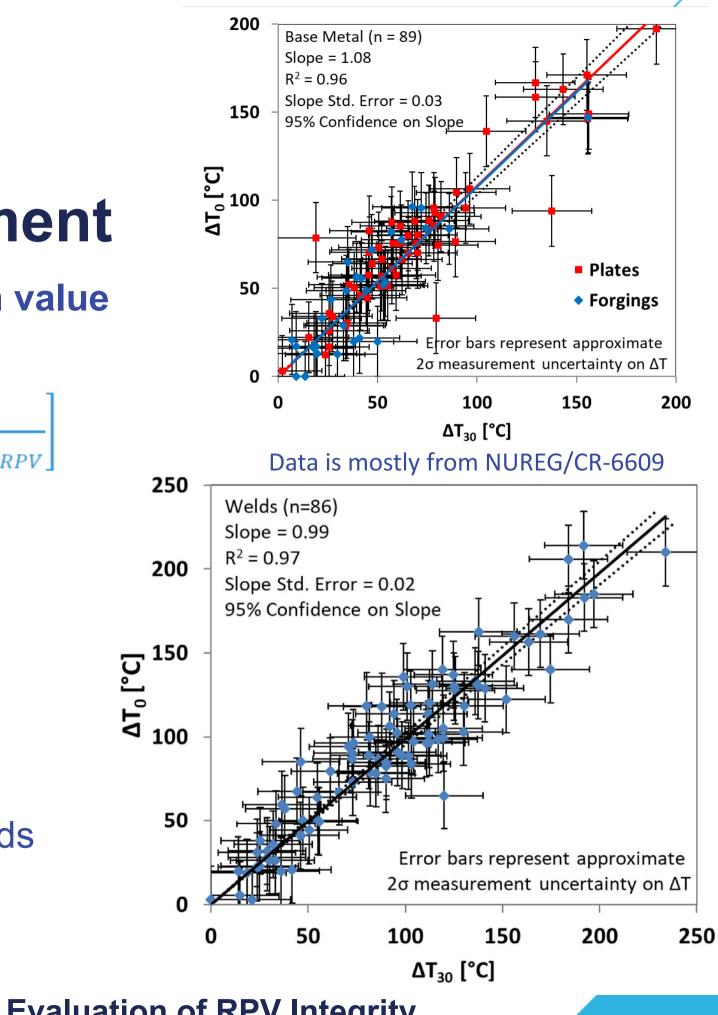
- σ_{F1921} is calculated in accordance with paragraph 10.10 of ASTM E1921
 - (with standard calibration practices, $\sigma_{exp} = 4^{\circ}C$)

Uncertainty due to material variability

- In 2019, a homogeneity screening procedure was added to ASTM E1921, Appendix X5
 - Identifies datasets which do not follow expected normal material Weibull distribution and the 95% lower bound curve would not bound 95% of data
 - Inhomogeneity can result from initial toughness variation (i.e. segregation) or uneven embrittlement due to chemical composition variation

LWRS Spring meeting April 30 – May 1, 2024: Direct Fracture Toughness for Evaluation of RPV Integrity

Basis: J. B. Hall, E. Lucon, and W. Server, "Practical Application of the New Homogeneity Screening Procedure Added to ASTM E1921-20 and Appendix X5 Inhomogeneous Data Treatment," Journal of Testing and Evaluation 50, no. 4 (July/August 2022): 2190-2208. https://doi.org/10.1520/JTE20210716

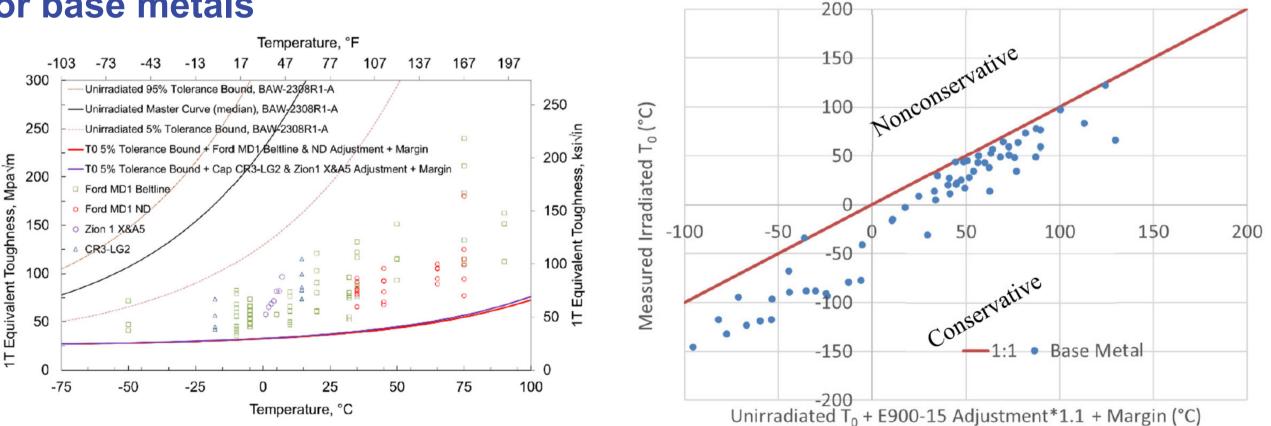


Determination of $\sigma_{adjustment}$

σ_{adjustment} is proportional to ASTM E900-15 σ with a minimum value of 9°C

 $\sigma_{adjustment} = max \left[9^{\circ}C, \{C \bullet ([If BM, 1.1] \bullet \Delta T_{30RPV})^{D} \} \bullet \frac{|adjustment|}{(If BM, 1.1) \bullet \Delta T_{30RPV}} \right]$

- Adjustment from unirradiated results in use of full σ_{E900}
- With small adjustments, the 9°C is the value used
- 9°C uncertainty due to material variability
 - Typical σ_{E1921} ranges from 6 to 8°C
 - Typical σ_{41J} ranges from 4 to 10°C
 - $\sqrt{T_{0init}^2 + T_{0irr}^2 + T_{30init}^2 + T_{30irr}^2} = \sqrt{6^2 + 8^2 + 4^2 + 10^2} = 14.4^{\circ}C$
 - Standard Deviation on Fit Residuals = 17°C for BM and Welds
 - $\sqrt{17^2 14.4^2} = 9^{\circ}C$ (material variability)


Basis: J. B. Hall, B. Golchert, and D. Simpson, "An Examination of Margins Needed to Ensure Conservative Application of T0 to RPV Fracture Toughness,"

ASME PVP2024-125225

Margin Evaluation

- Method was used with measured fracture toughness data to evaluate if margin is sufficient
 - Unirradiated T_0 was adjusted to irradiated T_0 with margin added from same heat (irradiated T_0 as if from RPV assessed)
 - Adjustment from unirradiated results in use of full σ_{E900}
- 98% of the data is bounded for base metals
- 100% is bounded for welds
- Data is mostly from NUREG/CR-6609

Does the method bound measured T₀ at 2nd condition?

LWRS Spring meeting April 30 – May 1 Figure 9 Comparison of Fracture Toughness Values to Bounding Curves for Weld Heat 72105 Adjusted from Unirradiated T₀

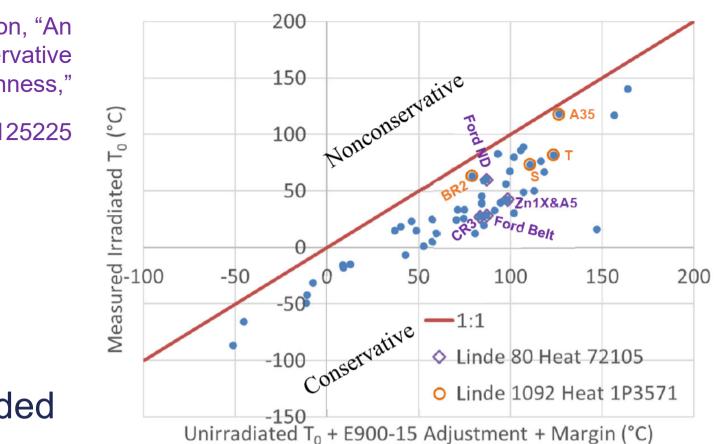
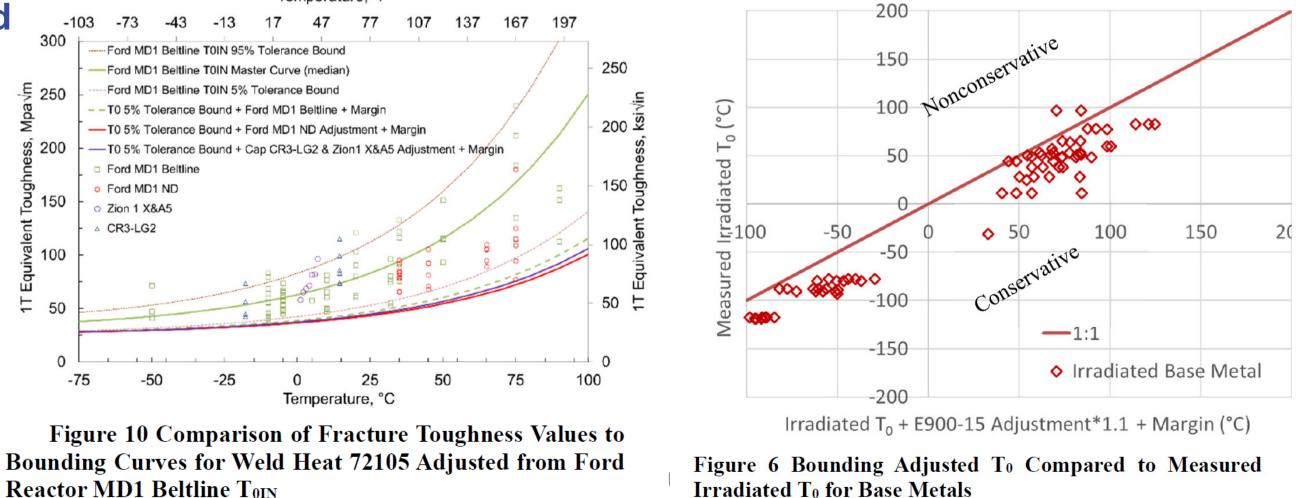


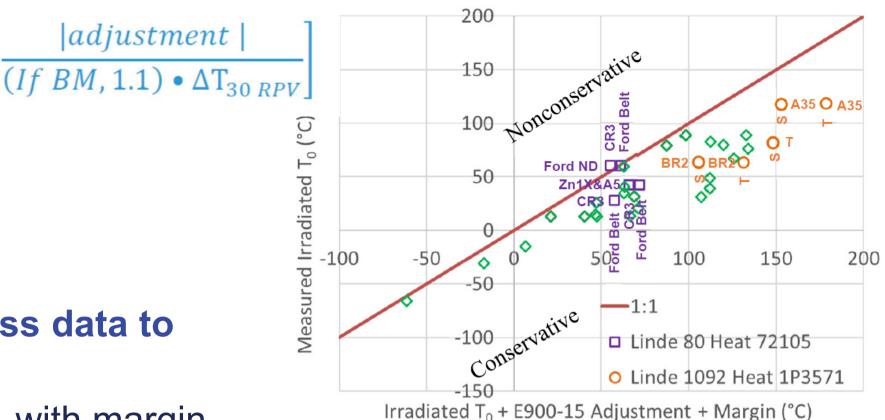
Figure 3 Bounding Adjusted T_0 Compared to Measured Irradiated T_0 for Weld Metals (labels are capsule names which are referenced later)

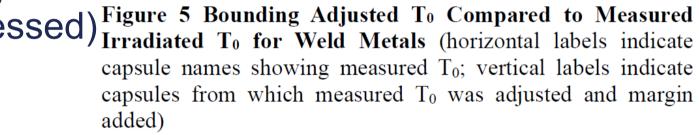
Figure 4 Bounding Adjusted T₀ Compared to Measured
a Irradiated T₀ for Base Metals

 $\sigma_{adjustment} = max \left[9^{\circ}C, \{C \bullet ([If BM, 1.1] \bullet \Delta T_{30RPV})^{D} \} \bullet \frac{1}{C} \right]$


Margin Evaluation

- Method was used with measured fracture toughness data to evaluate if margin is sufficient
 - Irradiated T_0 was adjusted to another irradiated T_0 with margin added from same heat (2nd irradiated T₀ as if from RPV assessed)^{Figure 5} Bounding Adjusted T₀ Compared to Measured Irradiated T₀ for Weld Metals (horizontal labels indicate
 - With small adjustments, the 9°C is the value used
- 97% of the data is bounded


Basis: J. B. Hall, B. Golchert, and D. Simpson, "An Examination of Margins Needed to Ensure Conservative Application of T0 to RPV Fracture Toughness,"


ASME PVP2024-125225

LWRS Spring meeting April 30 – May

Reactor MD1 Beltline TOIN

PWROG-18068 Summary

The benefits of an irradiated direct fracture toughness data evaluation methodology are:

- Establishes a robust fracture toughness basis ensuring public health and safety by reducing uncertainty and enabling a statistical understanding of the actual irradiated RPV fracture toughness
- Specifically, this topical report discusses a methodology to:
 - Determine the ductile-brittle transition reference temperature (T_0)
 - Adjust the data for differences between the tested material and the RPV component of interest
 - Account for test result, adjustment and input uncertainties and material variability in the respective RPV component
 - Apply the data using the ASME Section XI Code.

Next Steps

- Final RAI responses and PWROG-18068 markup submitted to NRC on March 8, 2024
 - NRC accession numbers: ML24068A101, ML24068A102, ML24068A103, ML24068A104, ML24068A105
- NRC draft safety evaluation expected in May
 - Review and provide comments
 - NRC then issues final safety evaluation (approved method utilities can use)
- Once approved via NRC safety evaluation
 - Submit pilot plant evaluations using existing T_0 data
 - Develop detailed test matrix
 - Select limiting materials most likely to benefit plants
 - Balance irradiated material testing cost vs. unirradiated vs. benefit

Collaboration Activities

○ Recent

- Dr. Chen and Sokolov have attended PWROG materials committee meetings to listen to ongoing activities and present LWRS work
- ORNL provided archive Palisades pressurizer weld for use in plant SLR application of direct fracture toughness
- PWROG provided unirradiated archive Zion Unit 1 weld and plate to ORNL so that irradiated RPV beltline test results could be compared
- Palisades high fluence capsule was withdrawn, shipped, disassembled with specimens sent to ORNL for testing

• Future possibilities

- \circ Test Zion Unit 1 surveillance capsule materials for T₀ to compare to RPV shell test results • Provide unirradiated archive Palisades weld and plate to ORNL so that irradiated high fluence capsule
- test results could be compared
- Testing and expertise to help resolve observed ductile instabilities (test record crack jumps) when testing irradiated stainless and RPV steel on upper-shelf

Questions?

The Materials Committee is established to provide a forum for the identification and resolution of materials issues including their development, modification and implementation to enhance the safe, efficient operation of PWR plants.

