

Spring Review Panel Briefing

Flexible Plant Operations & Generation

LWR Thermal Energy Extraction Pre-conceptual Design Study

Alan Wilson Sr. Vice President Sargent & Lundy

Wednesday May 1, 2024

Sargent & Lundy (S&L) Areas of Support 2023 - 2024

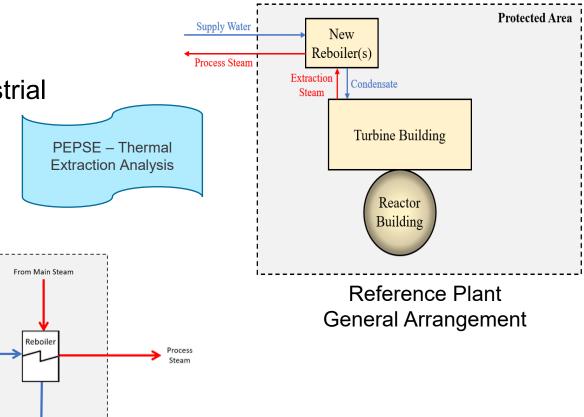
- High Volume TPD Analysis from PWR (Completed Q2 2023 – Q1 2024)
 - 30% TPD
 - 50% TPD
 - 70% TPD
- 500MW NPP (PWR) H2 Integration Design

(To be Completed Q2 2024)

- **General Focus Areas**
 - 500MW_{DC} Hydrogen Facility Design
 - Update NPP-H2 Facility Integration Design

- 500MW NPP (BWR) H2 Integration Design
- (To be Completed Q4 2024)
 - Focus Areas
 - BWR Thermal Extraction
 - NPP H2 Integration Design

High Volume TPD Analysis from PWR Overview


Suppl

Wate

Research Objective

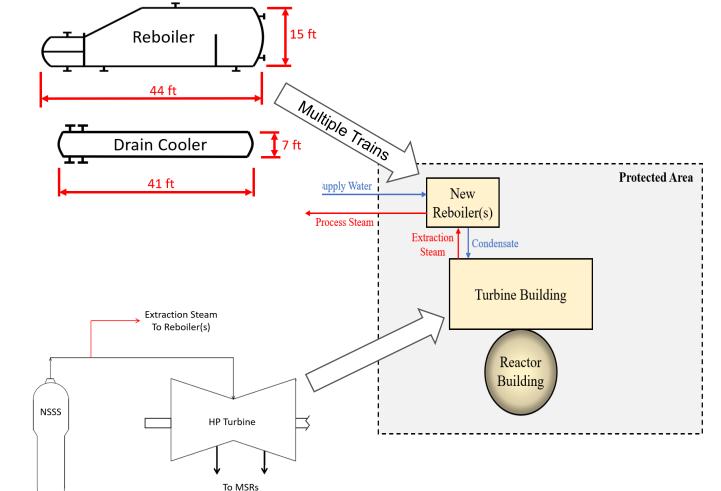
Assess feasibility of extracting large volumes of thermal energy (i.e., steam) from a PWR for industrial steam utilization applications

- Heat Balance Modeling
- Plant Impacts and Considerations
- Plant Secondary Equipment Evaluations
 - ✓ High Pressure Turbine (HPT)
 - ✓ Low Pressure Turbines (LPTs)
 - ✓ Condenser
 - ✓ Power Train Pumps
 - ✓ Moisture Separator Reheaters (MSRs)
 - ✓ Feedwater Heaters (FWHs)
 - ✓ Extraction Steam Lines
 - ✓ Heater Drains

Supply/Return Locations

To Condenser

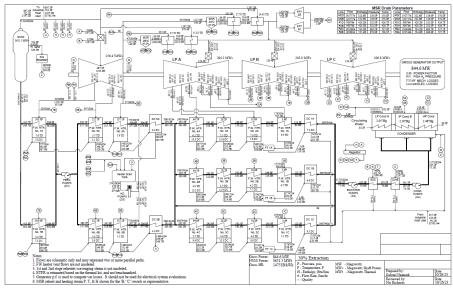
Protected Area



Thermal Power Dispatch (TPD) Cases

- 1. 30% TPD (June 2023)
 - ✤ ~1,100 MWt Extraction
- 2. 50% TPD (November 2023)
 - ~1,825 MWt Extraction
 - Alternate FWH bypass scenario
- 3. 70% TPD (January 2024)
 - ✤ ~2,550 MWt Extraction

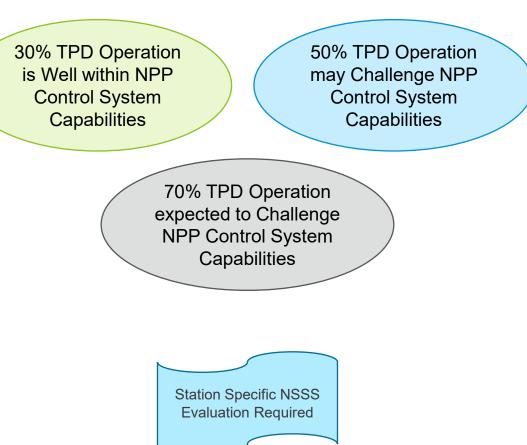
Reference Nuclear Power Plant


- Westinghouse 4-loop PWR
 - Capacity: 1,225 MWe (3,650 MWt)
 - Main Steam Extraction
 - Condenser Return

PEPSE Heat Balance Summary

- Greater TPD leads to:
 - Decreased electrical output and plant efficiency
 - Reduced Main Steam flows
 - Reduced Final Feedwater Temperature

PEPSE Heat Balance Result Summary


Description	Units	Thermal Extraction Scenario			
		Baseline (0%)	30%	50%	70%
Generator Electric Power	MWe	1,228.0	844.6	585.3	327.3
Thermal Power Extracted	MWt	0	1,095	1,827	2,557
% of Flow - MS	%	0	21.9	37.6	55.0
MS Flow from SGs	lbm/hr	16,037,390	15,436,290	14,952,560	14,316,180
HP Turbine Inlet Flow	lbm/hr	15,218,400	11,272,260	8,615,524	5,893,152
LP Turbine Inlet Flow	lbm/hr	3,673,069	2,677,248	1,980,267	1,230,440
Condenser Duty	BTU/hr	8.21E+09	5.78E+09	4.18E+09	2.57E+09
Final Feedwater Temperature	°F	440.9	413.3	389.0	354.0
Reboiler Inlet Mass Flow	lbm/hr	-	3,376,114	5,629,289	7,878,196

Example TPD Heat Balance Diagram

Plant Impacts and Considerations

- Mechanical Transients
 - ♦ 30% TPD \rightarrow 22% of Main Steam Flow
 - ♦ 50% TPD \rightarrow 38% of Main Steam Flow
 - ♦ 70% TPD \rightarrow 55% of Main Steam Flow
- Plant Hazards
 - HELB Program impacts
 - Water/steam hammer considerations
- Core Reactivity and Plant Response
 - Startup/shutdown
 - Thermal Load Rejection

Equipment Evaluations

- Minimal Adverse Impacts
 - ✓ High Pressure Turbine (HPT)
 - ✓ Low Pressure Turbines (LPTs)
 - ✓ Condenser
 - ✓ Power Train Pumps
 - ✓ Moisture Separator Reheaters (MSRs)
 - ✓ Heater Drain Tanks
- Significant Adverse Impacts Above 50% TPD
 - Feedwater Heaters (FWHs)
 - Flow accelerated corrosion concerns due to increased velocities
 - Extraction Steam Lines
 - Increased pressure drop and liner thickness requirements
 - FWH Drain Control Valves
 - \circ Increased flow capacity (C_v) requirements
 - Operational changes may be required

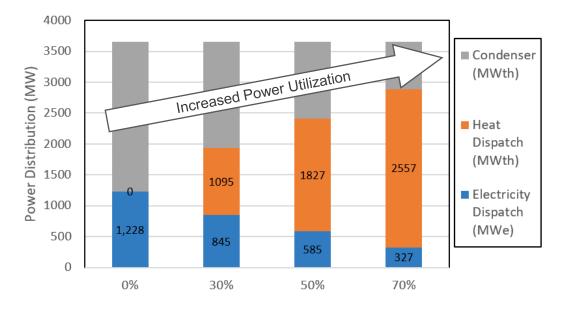
No Major Equipment Replacements Expected for 30% TPE

> Major Equipment Replacement and/or Operational Change Expected for 70% TPE

Minor Equipment

Replacement and/or

Operational Change


Expected for 50% TPE

Conclusions

- Increased thermal power utilization with greater TPD
- 30% TPD is expected to be feasible for existing PWRs
 - No Major Equipment Replacement Expected
 - Within Control System Design Capabilities
- 50% TPD may be feasible for some existing PWRs
 - Minor Equipment Replacement Expected
 - Potential Operating Changes
 - Potential Control System Impacts
- 70% TPD is not expected to be achievable for most PWRs
 - Significant Equipment and Controls Impacts

% Thermal Power Extracted

Power Distribution for Different TPD Scenarios

500MW NPP (PWR) – H2 Integration Design Overview

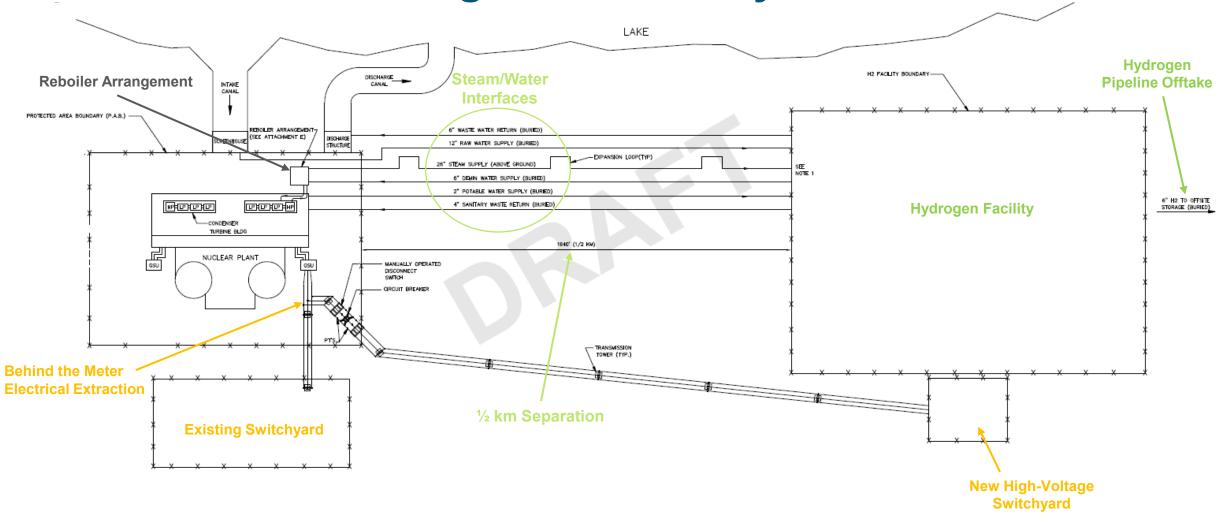
500MW NPP – H2 Integration : SOEC Plant Design

NPP Reference Plant

- Based upon typical for 1/3 of operating US NPP Units
 - Westinghouse 4-loop PWR
 - 1200MW_e / 3,700MW_{th} / SWYD: 345kV

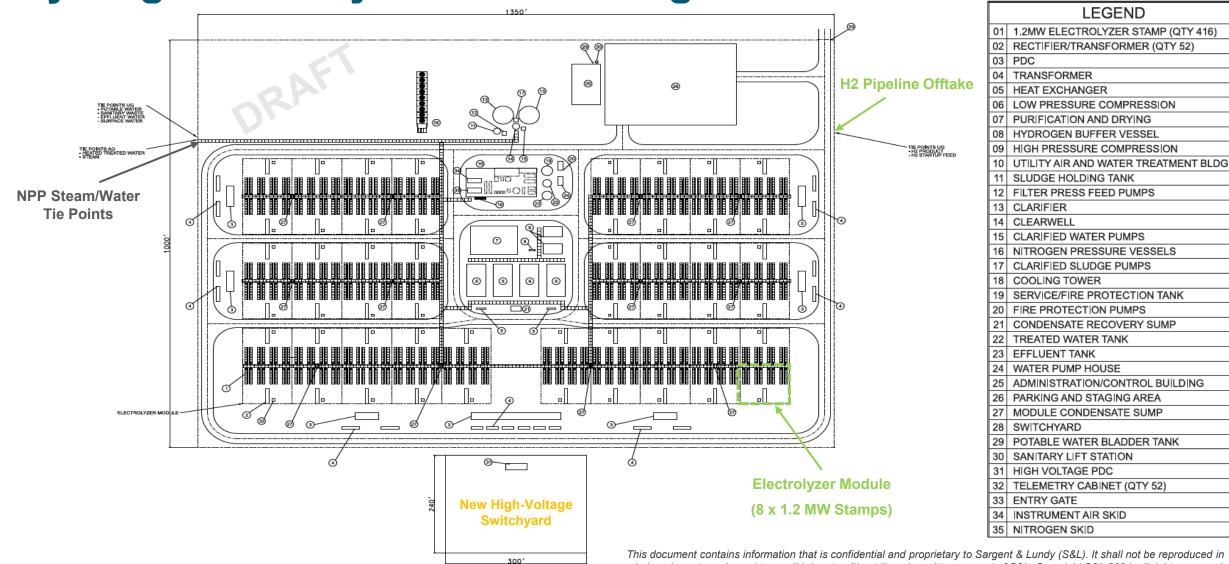
In Progress Work

Hydrogen Facility Plant


- 500MW_{DC}
 - Thermal Load 100MW_{th}
 - Hydrogen Production 320
 metric tons/day

Focus

Area

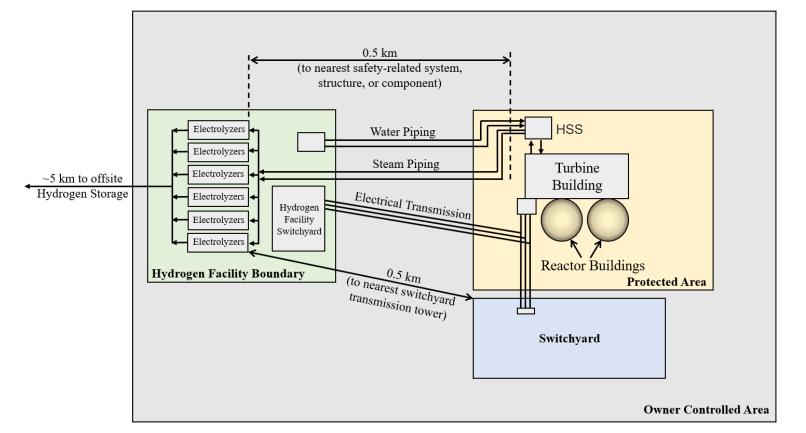


500MW NPP – H2 Integration Site Layout

Hydrogen Facility General Arrangement

whole or in part or released to any third party without the prior written consent of S&L. Copyright S&L 2024; all rights reserved.

Nuclear Plant Thermal Integration P&ID



500MW NPP (BWR) – H2 Integration Design Overview

S&L Pre-Conceptual Plant Design

- NPP (BWR) Reference Plant
 - Typical US BWR Units
 - GE Type 4 BWR
 - 1,100MW_e / 4,000MW_{th}
 - Hydrogen Steam Supply (HSS) Equipment
- Hydrogen Facility Plants
 - 500MW_{DC}
 - Thermal Load 100MW_{th}
 - Hydrogen Production: ~320 metric tons/day

Sargent & Lundy LWRS Hydrogen Design Team Leads:

Alan J. Wilson, PE, Principal Investigator, <u>alan.j.wilson@sargentlundy.com</u> Steven Malak, Sr. Project Manager, <u>steven.malak@sargentlundy.com</u> Henry Fidlow, Responsible Engineer, <u>henry.r.fidlow@sargentlundy.com</u> Pawel Kut, Thermal Analysis Lead, <u>pawel.kut@sargentlundy.com</u> Richard Lindberg, Mechanical Engineering Lead, <u>richardel.c.lindberg@sargentlundy.com</u> Hassan Abughofa, Electrical Engineering Lead, <u>hassan.abughofah@sargentlundy.com</u> Casey Loughrin, Hydrogen System Design Lead, <u>casey.j.loughrin@sargentlundy.com</u> Mark Prasse, Hydrogen SME, <u>marc.g.prasse@sargentlundy.com</u>

Sustaining National Nuclear Assets

lwrs.inl.gov