An Integrated Risk Assessment Strategy for DI&C Systems (IRADIC)

Goals of RISA Efforts on DI&C Risk Assessment:
- Provide a best-estimate, risk-informed capability to estimate quantitatively and accurately the safety margin obtained from plant digitalization, especially for the high safety-significant safety-related (HSSSR) DI&C systems
- Develop an advanced risk assessment strategy to support transition from analog to DI&C technologies
- Assure the long-term safety and reliability of vital safety-related DI&C systems
- Reduce uncertainty in costs and support integration of DI&C systems in the plant
Value Proposition for IRADIC Technology

- **IRADIC aims to provide a modularized platform** for I&C designers, software developers, plant engineers, and risk analysts to efficiently predict and prevent risk by:
 - **Identifying crucial failure modes** (including common cause failures [CCFs]) and system vulnerabilities
 - **Quantifying the reliability** of digital I&C systems with the identified digital failures
 - **Evaluating the impact of consequences** of digital failures on the plant responses.

Designs of Digital I&C Systems and Plants

IRADIC Technology

- **Hazard Analysis**
- **Reliability Analysis**
- **Consequence Analysis**

RESHA
(Redundancy-Guided Systemic Hazard Analysis)

PRA/MP-BEPU
(Multi-Physics Best-Estimate Plus Uncertainty)

BAHAMAS
(Bayesian and HRA-Aided Method for the Reliability Analysis of Software)

ORCAS
(Orthogonal Defect Classification for Assessing Software Reliability)

Suggestions to optimize designs and upgrades by quantitatively reducing risks and costs
How IRADIC Could Support Industry for Risk-Informing HSSSR DI&C Designs or Upgrades?

- IRADIC is expected to become an integrated risk-informed tool for vendors and utilities to meet the regulatory requirements and optimize the diversity and defense-in-depth (D3) applications in the DI&C designs and upgrades.

- IRADIC details the risk analyses of high safety-related and safety-significant (HSSSR) DI&C systems (A1) with an emphasis on potential CCFs.

Conceptual Framework for a Proposed Graded Approach for Assessing CCF and Defense-in-Depth (From Nuclear Regulatory Commission (NRC) public meeting for Modernization Plan #1D BTP 7-19 Update)

<table>
<thead>
<tr>
<th>Safety-Related</th>
<th>Non-Safety Related</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety-Significant</td>
<td>A1</td>
</tr>
<tr>
<td>Significant contributor to plant safety</td>
<td>Analysis Needed: D3 Assessment</td>
</tr>
<tr>
<td>Non-Safety-Significant</td>
<td>A2</td>
</tr>
<tr>
<td>Not a significant contributor to plant safety</td>
<td>Analysis Needed: Qualitative Assessment</td>
</tr>
</tbody>
</table>

NRC Branch Technical Position 7-19

Risk-Informed Graded Approach

Allows leveraging of any available risk information and insights
How IRADIC Could Support the Licensing Process of HSSSR Digital I&C Upgrades?

- **IRADIC** is expected to provide:
 - Technical basis and risk-informed insights to assist NRC and industry in formalizing licensing processes relevant to **addressing CCF issues** in HSSSR DI&C systems.

NRC Branch Technical Position 7-19

Clarification on Acceptable Methods for Addressing CCF

<table>
<thead>
<tr>
<th>Category</th>
<th>Method Name and Description</th>
</tr>
</thead>
</table>
| **Eliminate** | Internal Diversity
If sufficient diversity exists within the protection system, then vulnerabilities to Common Cause Failure (CCF) can be considered to be appropriately addressed without further action. |
| | Simple Design
A system is sufficiently simple such that every possible combination of inputs and every possible sequence of device states are tested, and all outputs are verified for every case. |
| **Limit** | Design Measures
Design measures are used to reduce the likelihood of a CCF (e.g., self-diagnostic, failure analysis, etc.). |
| **Mitigate** | Existing Equipment
An existing system or equipment is used to perform the diverse or different function to mitigate the loss of the safety function performed by the digital I&C system during a Design Basis Event (DBE). |
| | Manual Operator Action (MOA)
Actions that can be reasonably taken by operators to identify CCF failures and mitigate consequences within a realistic time frame during a DBE. |
| | Diverse Actuation System (DAS)
Independent and diverse system that can activate protection systems if primary system fails during a DBE. Technology used can be analog or digital. |
| **Accept** | Consequence Calculation
Consequence models, using best estimate methodologies, demonstrated that CCF failures concurrent with DBEs and Anticipated Operational Occurrences do not result in doses that exceed 10% of the applicable siting dose guideline values. |

INL-IRADIC Technology

- **Hazard Analysis**
 (CCF Identification)
- **Reliability Analysis**
 (Quantification of CCF probability)
- **Consequence Analysis**
 (PRA/Best-estimate analysis of CCFs in Design-basis events)
IRADIC Development Timeline and Status

IRADIC Technology

Hazard Analysis
- RESHA

Reliability Analysis
- BAHAMAS + ORCAS

Consequence Analysis
- PRA/LOTUS

FY-19: Methodology development
- BAHAMAS

FY-19: Methodology development of BAHAMAS

FY-20: Demonstration of BAHAMAS on safety-related DI&C systems (RTS, ESFAS)

FY-21: Demonstration on manual initiation of safety-related controls via human system interface (HSI)

FY-19~20: Demonstration on safety-related DI&C systems (RTS, ESFAS)

FY-21: Initial methodology development of ORCAS and demonstration on safety-related controls via human system interface (HSI)

FY-22: Methodology development of software CCF modeling

FY-22: Methodology improvement and uncertainty quantification, further demonstration of ORCAS on HSI

FY-19~20: Methodology development

FY-21: Demonstration on a generic PWR model

FY-22: Uncertainty and sensitivity analysis on a generic PWR model for different accident scenarios

RESHA: Redundancy-Guided Systemic Hazard Analysis

BAHAMAS: Bayesian and HRA-Aided Method for the Reliability Analysis of Software

ORCAS: Orthogonal Defect Classification for Assessing Software Reliability

LOTUS: The LOCA Toolkit for U.S. LWRs
JOURNAL PUBLICATION

CONFERENCE PAPER / PRESENTATION

TECHNICAL REPORT

Sustaining National Nuclear Assets

http://lwrs.inl.gov