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Summary

The RELAP-7 code is the next generation nuclear reactor system safety analysis code be-
ing developed at the Idaho National Laboratory (INL). The code is based on the INL’s
modern scientific software development framework, MOOSE (Multi-Physics Object Ori-
ented Simulation Environment). The overall design goal of RELAP-7 is to take advantage
of the previous thirty years of advancements in computer architecture, software design,
numerical integration methods, and physical models. The end result will be a reactor sys-
tems analysis capability that retains and improves upon RELAP5’s capability and extends
the analysis capability for all reactor system simulation scenarios.

RELAP-7 is a new project started in Fiscal Year 2012. It will become the main reactor
systems simulation toolkit for the LWRS (Light Water Reactor Sustainability) program’s
RISMC (Risk Informed Safety Margin Characterization) effort and the next generation
tool in the RELAP reactor safety/systems analysis application series (the eventual replace-
ment for RELAP5). The key to the success of RELAP-7 is the simultaneous advancement
of physical models, numerical methods, and software design while maintaining a solid
user perspective. Physical models include both PDEs (Partial Differential Equations) and
ODEs (Ordinary Differential Equations) and experimental based closure models. RELAP-
7 utilizes well-posed governing equations for compressible two-phase flow, which can be
strictly verified in a modern verification and validation effort. Closure models used in RE-
LAP5 and newly developed models will be reviewed and selected to reflect the progress
made during the past three decades and provide a basis for the closure relations that will
be required in RELAP-7. RELAP-7 uses modern numerical methods, which allow im-
plicit time integration, second-order schemes in both time and space, and strongly coupled
multi-physics.

RELAP-7 is written with object oriented programming language C++. By using the
MOOSE development environment, the RELAP-7 code is developed by following the
same modern software design paradigms used for other MOOSE development efforts.
The code is easy to read, develop, maintain, and couple with other codes. Most impor-
tantly, the modern software design allows the RELAP-7 code to evolve efficiently with
time. MOOSE is an HPC development and runtime framework for solving computational
engineering problems in a well planned, managed, and coordinated way. By leveraging
millions of lines of open source software packages, such as PETSC (a nonlinear solver de-
veloped at Argonne National Laboratory) and LibMesh (a Finite Element Analysis pack-
age developed at University of Texas), MOOSE reduces the expense and time required
to develop new applications. MOOSE provides numerical integration methods and mesh
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management for parallel computation. Therefore RELAP-7 code developers have been
able to focus more upon the physics and user interface capability. There are currently
over 20 different MOOSE based applications ranging from 3-D transient neutron trans-
port, detailed 3-D transient fuel performance analysis, to long-term material aging. Multi-
physics and multi-dimensional analysis capabilities, such as radiation transport and fuel
performance, can be obtained by coupling RELAP-7 and other MOOSE-based applica-
tions through MOOSE and by leveraging with capabilities developed by other DOE pro-
grams. This allows restricting the focus of RELAP-7 to systems analysis type simulations
and gives priority to retain and significantly extend RELAP5’s capabilities.

During the Fiscal Year 2012, MOOSE was extended to better support system analysis
code development. The software structure for RELAP-7 had been designed and developed.
Numerical stability schemes for single-phase flow, which are needed for continuous finite
element analysis, have been developed. Major physical components have been completed
(designed and tested) to support a proof of concept demonstration of RELAP-7. The case
selected for initial demonstration of RELAP-7 was the simulation of a two-loop, steady
state PWR system. During Fiscal Year 2013, both the homogeneous equilibrium two-
phase flow model and the seven-equation two-phase flow model have been implemented
into RELAP-7. A number of physical components with two-phase flow capability have
been developed to support the simplified boiling water reactor (BWR) station blackout
(SBO) analyses. The demonstration case includes the major components for the primary
system of a BWR, as well as the safety system components for reactor core isolation
cooling (RCIC) and the wet well of a BWR containment. The homogeneous equilibrium
two-phase flow model was used in the simplified BWR SBO analyses. During Fiscal Year
2014, more detailed implementation of the physical models as well as the code perfor-
mance improvements associated with the seven-equation two-phase flow model are being
carried out in order to demonstrate more refined BWR SBO analyses with more realistic
geometries.

In summary, the MOOSE based RELAP-7 code development is a new effort. The
MOOSE framework enables rapid development of the RELAP-7 code. The developmental
efforts and results demonstrate that the RELAP-7 project is on a path to success. This the-
ory manual documents the main features implemented into the RELAP-7 code. Because
the code is an ongoing development effort, this RELAP-7 Theory Manual will evolve with
periodic updates to keep it current with the state of the development, implementation, and
model additions/revisions.
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1 Introduction

The RELAP-7 (Reactor Excursion and Leak Analysis Program) code is the next generation
nuclear reactor system safety analysis code being developed at Idaho National Laboratory
(INL). The code is based on the INL’s modern scientific software development framework
MOOSE (Multi-Physics Object Oriented Simulation Environment) [4]. The overall de-
sign goal of RELAP-7 is to take advantage of the previous thirty years of advancements in
computer architecture, software design, numerical integration methods, and physical mod-
els. The end result will be a reactor systems analysis capability that retains and improves
upon RELAP5’s [5] capability and extends the analysis capability for all reactor system
simulation scenarios.

The RELAP-7 project, which began in Fiscal Year 2012, will become the main reac-
tor systems simulation toolkit for LWRS (Light Water Reactor Sustainability) program’s
RISMC (Risk Informed Safety Margin Characterization) effort and the next generation
tool in the RELAP reactor safety/systems analysis application series (the eventual replace-
ment for RELAP5). The key to the success of RELAP-7 is the simultaneous advancement
of physical models, numerical methods, and software design while maintaining a solid
user perspective. Physical models include both PDEs (Partial Differential Equations) and
ODEs (Ordinary Differential Equations) and experimental based closure models. RELAP-
7 will utilize well-posed governing equations for two-phase flow, which can be strictly
verified in a modern verification and validation effort. Closure models used in RELAP5
and other newly developed models will be reviewed and selected to reflect the progress
made during the past three decades and provide a basis for the closure relations that will
be required in RELAP-7. RELAP-7 uses modern numerical methods, which allow im-
plicit time integration, second-order schemes in both time and space, and strongly coupled
multi-physics.

MOOSE is INL’s development and runtime framework for solving computational engi-
neering problems in a well planned, managed, and coordinated way. By using the MOOSE
development environment, the RELAP-7 code is developed by following the same mod-
ern software design paradigms used for other MOOSE development efforts. The code is
easy to read, develop, maintain, and couple with other codes. Most importantly, the mod-
ern software design allows the RELAP-7 code to evolve efficiently with time. MOOSE
provides numerical integration methods and mesh management for parallel computation.
Therefore RELAP-7 code developers need primarily to focus upon the physics and user
interface capability.
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There are currently over 20 different MOOSE based applications ranging from 3-D
transient neutron transport, detailed 3-D transient fuel performance analysis, to long-term
material aging. The advantage of multi-physics and multi-dimensional analyses capa-
bilities, such as radiation transport and fuel performance, can be obtained by coupling
RELAP-7 and other MOOSE-based applications (through MOOSE) and by leveraging
with capabilities developed by other DOE programs. This allows restricting the focus of
RELAP-7 to systems analysis-type simulations and gives priority to retain, and signifi-
cantly extend RELAP5’s capabilities.

Because RELAP-7 is an ongoing development effort, this theory manual will evolve
with periodic updates to keep it current with the state of the development, implementa-
tion, and model revisions. It is noted that, in some instances, the models reported in this
initial version of the theory manual cover phenomena which are not yet implemented, for
example the species balance equation for two phase flows. But when it made sense to in-
clude derivations, which we have already developed, or descriptions of models which are
currently ongoing, such as the entropy viscosity method, we have included such.

1.1 RELAP-7 Description of Approach

An overall description of the RELAP-7 architecture, governing theory, and computational
approach is first given as an instructive, and executive overview of the RELAP-7 project
direction.

1.1.1 Software Framework

MOOSE is INL’s development and runtime environment for the solution of multi-physics
systems that involve multiple physical models or multiple simultaneous physical phe-
nomena. The systems are generally represented (modeled) as a system of fully coupled
nonlinear partial differential equation systems (an example of a multi-physics system is
the thermal feedback effect upon neutronics cross-sections where the cross-sections are a
function of the heat transfer). Inside MOOSE, the Jacobian-Free Newton Krylov (JFNK)
method [6, 7] is implemented as a parallel nonlinear solver that naturally supports effec-
tive coupling between physics equation systems (or Kernels). The physics Kernels are de-
signed to contribute to the nonlinear residual, which is then minimized inside of MOOSE.
MOOSE provides a comprehensive set of finite element support capabilities (LibMesh [8],
a Finite Element library developed at University of Texas) and provides for mesh adapta-
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tion and parallel execution. The framework heavily leverages software libraries from DOE
SC and NNSA, such as the nonlinear solver capabilities in either the the Portable, Exten-
sible Toolkit for Scientific Computation (PETSc [9]) project or the Trilinos project [10] (a
collection of numerical methods libraries developed at Sandia National Laboratory). Ar-
gonne’s PETSc group has recently joined with the MOOSE team in a strong collaboration
wherein they are customizing PETSc for our needs. This collaboration is strong enough
that Argonne is viewed as a joint developer of MOOSE.

A parallel and tightly coordinated development effort with the RELAP-7 development
project is the Reactor Analysis Virtual control ENvironment (RAVEN). This MOOSE-
based application is a complex, multi-role software tool that will have several diverse tasks
including serving as the RELAP-7 graphical user interface, using RELAP-7 to perform
RISMC focused analysis, and controlling the RELAP-7 calculation execution.

Together, MOOSE/RELAP-7/RAVEN comprise the systems analysis capability of LWRSs
RISMC ToolKit.

1.2 Governing Theory

The primary basis of the RELAP-7 governing theory includes 7-equation two-phase flow,
reactor core heat transfer, and reactor kinetics models. While RELAP-7 is envisioned to
incorporate both single and two-phase coolant flow simulation capabilities encompassing
all-speed and all-fluids, the main focus in the immediate future of RELAP-7 development
is LWRs. Thus, the flow summary is restricted to the two-phase flow model.

1.2.1 7-Equation Two-Phase Model

To simulate light water (nuclear) reactor safety and optimization scenarios there are key is-
sues that rely on in-depth understanding of basic two-phase flow phenomena with heat and
mass transfer. Within the context of these two-phase flows, two bubble-dynamic phenom-
ena boiling (or heterogeneous boiling) and flashing or cavitation (homogeneous boiling),
with bubble collapse, are technologically very important. The main difference between
boiling and flashing is that bubble growth (and collapse) in boiling is inhibited by limita-
tions on the heat transfer at the interface, whereas bubble growth (and collapse) in flashing
is limited primarily by inertial effects in the surrounding liquid. The flashing process tends
to be far more explosive (or implosive), and is more violent and damaging (at least in the
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near term) than the bubble dynamics of boiling. However, other problematic phenomena,
such as departure from nucleate boiling (DNB) and CRUD deposition, are intimately con-
nected with the boiling process. Practically, these two processes share many details, and
often occur together.

The state of the art in two-phase modeling exhibits a lack of general agreement amongst
the so-called experts even regarding the fundamental physical models that describe the
complex phenomena. There exist a large number of different models: homogeneous mod-
els, mixture models, two-fluid models, drift-flux models, etc. The various models have
a different number of variables, a different number of describing equations, and even the
definition of the unknowns varies with similar models. There are conservative formula-
tions, non-conservative formulations, models and techniques for incompressible flows and
also for compressible flows. Huge Mach number variations can exist in the same prob-
lems (Mach number variations of 0.001 to over 100 with respect to mixture sound speed)
high-speed versus low-speed gives way to the need for all-speed. In their recent com-
pilation [11], Prosperetti and Tryggvason made important statements that have generally
been given insufficient attention in the past: ”uncertainties in the correct formulation of
the equations and the modeling of source terms may ultimately have a bigger impact on
the results than the particular numerical method adopted.” ”Thus, rather than focusing on
the numeric alone, it makes sense to try to balance the numerical effort with expected fi-
delity of the modeling”...”The formulation of a satisfactory set of average-equations mod-
els emerges as the single highest priority in the modeling of complex multiphase flows.”

Because of the expense of developing multiple special-purpose simulation codes (at
both the system and the detailed multi-dimensional level) and the inherent inability to
couple information from these multiple, separate length- and time-scales, efforts at the
INL have been focused toward development of multi-scale approaches to solve those mul-
tiphase flow problems relevant to light water reactor (LWR) design and safety analysis.
Efforts have been aimed at developing well-designed unified physical/mathematical and
high-resolution numerical models for compressible, all-speed multiphase flows spanning:
(1) well-posed general mixture level (true multiphase) models for fast transient situations
and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve inter-
face level phenomena like flashing and boiling flows, and critical heat flux determination,
and (3) multi-scale methods to resolve (1) and (2) automatically, depending upon speci-
fied mesh resolution, and to couple different flow models (single-phase, multiphase with
several velocities and pressures, multiphase with single velocity and pressure, etc.). In
other words, we are extending the necessary foundations and building the capability to
simultaneously solve fluid dynamic interface problems as well as multiphase mixtures
arising from boiling, flashing of superheated liquid, and bubble collapse, etc. in LWR

16



systems. Our ultimate goal is to provide models that, through coupling of system level
and multi-dimensional detailed level codes, resolve interfaces for larger bubbles (DNS-
like) with single velocity, single pressure treatment (interface capturing) and average (or
homogenize) the two-phase flow field for small bubbles with two-velocity, two-pressure
with well-posed models.

The primary, enabling feature of the INL (Idaho National Laboratory) advanced multi-
scale methodology for multiphase flows involves the way in which we deal with multi-
phase mixtures. This development extends the necessary foundations and builds the ca-
pability to simultaneously solve fluid dynamic interface problems as well as multiphase
mixtures arising from boiling, flashing or cavitation of superheated liquid, and bubble col-
lapse, etc. in light water reactor systems. Our multi-scale approach is essentially to solve
the same equations everywhere with the same numerical method (in pure fluid, in multi-
velocity mixtures, in artificially smeared zones at material interfaces or in mixture cells, in
phase transition fronts and in shocks). Some of the advantages of this approach include:
coding simplicity and robustness as a unique algorithm is used, conservation principles are
guaranteed for the mixture, interface conditions are perfectly matched, and the ability to
include the dynamic appearance/disappearance of interfaces. This method also allows the
coupling of multi-velocities, multi-temperature mixtures to macroscopic interfaces where
a single velocity must be present. This entails development on two main fronts. The first
requires the derivation (design) of theoretical models for multiphase and interfacial flows
whose mathematical description (equation system) is well-posed and exhibits hyperbol-
icity, exhibiting correct wave dynamics at all scales. The second requires the design of
appropriate numerical schemes to give adequate resolution for all spatial and time scales
of interest.

Because of the broad spectrum of phenomena occurring in light water nuclear reactor
coolant flows (boiling, flashing, and bubble collapse, choking, blowdown, condensation,
wave propagation, large density variation convection, etc.) it is imperative that models
accurately describe compressible multiphase flow with multiple velocities, and that the
models be well-posed and unconditionally hyperbolic. The currently popular state of the
art two-phase models assume the pressures in each phase are equal, i.e. they are single
pressure models, referred to herein as the “classical” 6-equation model. This approach
leads to a system of equations that is ill-posed, not hyperbolic, and it has imaginary char-
acteristics (eigenvalues) that give the wrong wave dynamics. The classical 6-equation
model is inappropriate for transient situations and it is valid only for flows dominated
by source terms. Numerical methods for obtaining the solution of the 6-equation model
rely on dubious properties of the numerical scheme (for example truncation error induced
artificial viscosity) to render them numerically well-posed over a portion of the compu-
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tational spectrum. Thus they cannot obtain grid-converged solutions (the truncation error
goes down thus the artificial viscosity diminishes and the ill-posed nature returns). This
calls into question the possibility of obtaining “verification”, and thus, “validation” (what
does it mean to validate a model that cannot be verified?).

To meet this criterion, we have adopted the 7-equation two-phase flow model [12–
14]. This equation system meets our requirements, as described above it is hyperbolic,
well-posed, and has a very pleasing set of genuinely nonlinear and linearly degener-
ate eigenvalues . This 7-equation system is being implemented in RELAP-7, via the
INL MOOSE (Multi-physics, Object Oriented Simulation Environment) finite element
framework, through a 7-step progression designed to go successively from single-phase
compressible flow in a duct of spatially varying cross-sectional area to the compressible,
two-phase flow with full thermodynamic and mechanical nonequilibrium. This same 7-
equation model, along with its reduced subsystems, is being utilized as described above
to build Bighorn, the next generation 3-D high-resolution, multiscale two-phase solver.
This will give a unique capability of consistently coupling the RELAP-7 system analy-
sis code to our multi-dimensional, multi-scale, high-resolution multiphase solver and the
other MOOSE-based fuels performance packages.

There is yet another benefit to this approach alluded to above with the mention of re-
duced subsystems of the 7-equation model. Because of the way the 7-equation system
for two-phase flow is constructed, it can evolve to a state of mechanical equilibrium (pha-
sic pressure and velocity equilibrium) whereby a very nice 5-equation system results, and
even further to thermodynamic equilibrium (phasic temperature and Gibb’s energy equilib-
rium) whereby the classical 3-equation homogeneous equilibrium model (HEM) results.
The rate at which these various equilibrium states are reached can be allowed to occur
naturally or they can be controlled explicitly to produce a locally reduced model (reduced
subsystem) to couple/patch with simpler models. For example this reduction method en-
ables the coupling of zones in which total or partial nonequilibrium effects are present to
zones evolving in total equilibrium; or it can be used to examine the admissible limits of a
physical system because all limited models are included in this general formulation.

1.2.2 Core Heat Transfer and Reactor Kinetics

The nuclear reaction that takes place within the reactor core generates thermal energy
inside the fuel. Also, the passive solid structures, such as piping and vessel walls and
the internal vessel structures, represent significant metal masses that can store and release
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large amounts of thermal energy depending on the reactor fluid (coolant) temperature. The
RELAP-7 code must calculate the heat conduction in the fuel and the metal structures to
simulate the heat-transfer processes involved in thermal-energy transport. Therefore, in
addition to the two-phase fluid dynamics model described above, RELAP-7 necessarily
simulates the heat transfer process with reactor kinetics as the heat source. The heat-
conduction equation for cylindrical or slab geometries is solved to provide thermal history
within metal structures such as fuel and clad. The volumetric power source in the heat
conduction equation for the fuel comes from the point kinetics model with thermal hy-
draulic reactivity feedback considered [15]. The reactor structure is coupled with the ther-
mal fluid through energy exchange (conjugate heat transfer) employing surface convective
heat transfer [16] within the fluid . The fluid, heat conduction, conjugate heat transfer
and point kinetics equations may be solved in a fully coupled fashion in RELAP-7 in con-
trast to the operator-splitting or loose coupling approach used in the existing system safety
analysis codes. For certain specific transients, where three-dimensional neutronics effects
are important (i.e., rod ejection), three-dimensional reactor kinetics capabilities are avail-
able through coupling with the RattleSNake [17] code. RattleSNake is a reactor kinetics
code with both diffusion and transport capabilities being developed at INL based on the
MOOSE framework.

1.3 Computational Approach

Stated previously, the MOOSE framework provides the bulk of the ”heavy lifting” avail-
able to MOOSE-based applications with a multitude of mathematical and numerical li-
braries. For RELAP-7, LibMesh [8] provides the second-order accurate spatial discretiza-
tion by employing linear basis, one-dimensional finite elements. The Message Passing
Interface (MPI, from Argonne National Laboratory) provides for distributed parallel pro-
cessing. Intel Threading Building Blocks (Intel TBB) allows parallel C++ programs to
take full advantage of multicore architecture found in most large-scale machines of today.
PETSc (from Argonne), Trilinos (from Sandia), and Hypre [18] (from Lawrence Liver-
more National Laboratory) provide the mathematical libraries and nonlinear solver capa-
bilities for JFNK. In MOOSE, a stiffly-stable, second-order backward difference (BDF2)
formulation is used to provide second-order accurate time integration for strongly coupled
physics in JFNK.

With the objective of being able to handle the flow all-fluids at all-speeds, RELAP-7 is
also being designed to handle any systems-level transient imaginable. This can cover the
typical design basis accident scenarios (on the order of one second, or less, time scales)

19



commonly associated with RELAP5 simulations to reactor core fuel burnup simulations
(on the order of one year time scales). Unfortunately, the JFNK algorithm can be ineffi-
cient in both of these time scale extremes. For short duration transients, typically found in
RELAP5 simulations, the JFNK approach requires a significant amount of computational
effort be expended for each time step. If the simulation requires short time steps to re-
solve the physics coupling, JFNK may not be necessary to resolve the nonlinear coupling.
The Pressure-Corrected Implicit Continuous-fluid Eulerian (PCICE) algorithm [19, 20] is
an operator-split semi-implicit time integration method that has some similarities with RE-
LAP5’s time integration method but does not suffer from phase and amplitude errors, given
a stable time step. Conversely for very long duration transients, JFNK may not converge
for very large time steps as the method relies on resolving the nonlinear coupling terms,
and thus, may require an initial estimate of the solution close to the advanced solution time
which maybe unavailable. Recently, INL LDRD funds have been directed toward devel-
oping a point implicit time integration method for slow transient flow problems [21]. If
successfully integrated into the MOOSE framework, this slow transient capability would
be available to RELAP-7. Thus, a three-level time integration approach is being pursued
to yield an all-time scale capability for RELAP-7. The three integration approaches are
described as follows:

1. The PCICE computational fluid dynamics (CFD) scheme, developed for all-speed
compressible and nearly incompressible flows, improves upon previous pressure-
based semi-implicit methods in terms of accuracy and numerical efficiency with a
wider range of applicability. The PCICE algorithm is combined with the Finite Ele-
ment Method (FEM) spatial discretization scheme to yield a semi-implicit pressure-
based scheme called the PCICE-FEM scheme. In the PCICE algorithm, the total
energy equation is sufficiently coupled to the pressure Poisson equation to avoid iter-
ation between the pressure Poisson equation and the pressure-correction equations.
Both the mass conservation and total energy equations are explicitly convected with
the time-advanced explicit momentum. The pressure Poisson equation then has the
time-advanced internal energy information it requires to yield an accurate implicit
pressure. At the end of a time step, the conserved values of mass, momentum,
and total energy are all pressure-corrected. As a result, the iterative process usually
associated with pressure-based schemes is not required. This aspect is highly advan-
tageous when computing transient flows that are highly compressible and/or contain
significant energy deposition, chemical reactions, or phase change.

2. The JFNK method easily allows implicit nonlinear coupling of dependent physics
under one general computational framework. Besides rapid (second-order) conver-
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gence of the iterative procedure, the JFNK method flexibly handles multiphysics
problems when time scales of different physics are significantly varied during tran-
sients. The key feature of the JFNK method is combining Newton’s method to solve
implicit nonlinear systems with Krylov subspace iterative methods. The Krylov
methods do not require an explicit form of the Jacobian, which eliminates the com-
putationally expensive step of forming Jacobian matrices (which also may be quite
difficult to determine analytically), required by Newton’s method. The matrix-vector
product can be approximated by the numerical differentiation of nonlinear resid-
ual functions. Therefore, JFNK readily integrates different physics into one solver
framework.

3. Semi-implicit methods can step over certain fine time scales (i.e., ones associated
with the acoustic waves), but they still have to follow material Courant time step-
ping criteria for stability or convergence purposes. The new point implicit method
is devised to overcome these difficulties [21]. The method treats only certain so-
lution variables at particular nodes in the discretization (that can be located at cell
centers, cell edges, or cell nodes) implicitly, and the rest of the information related
to same or other variables at other nodes are handled explicitly. The point-wise
implicit terms are expanded in Taylor series with respect to the explicit version of
the same terms, at the same locations, resulting in a time marching method that is
similar to the explicit methods and, unlike the fully implicit methods, does not re-
quire implicit iterations. This new method shares the characteristics of the robust
implementation of explicit methods and the stability properties of the uncondition-
ally stable implicit methods. This method is specifically designed for slow transient
flow problems wherein, for efficiency, one would like to perform time integrations
with very large time steps. Researchers at the INL have found that the method can
be time inaccurate for fast transient problems, particularly with larger time steps.
Therefore, an appropriate solution strategy for a problem that evolves from a fast
to a slow transient would be to integrate the fast transient with a semi-implicit or
implicit nonlinear technique and then switch to this point implicit method as soon
as the time variation slows sufficiently. A major benefit of this strategy for nuclear
reactor applications will reveal itself when fast response coolant flow is coupled to
slow response heat conduction structures for a long duration, slow transient. In this
scenario, as a result of the stable nature of numerical solution techniques for heat
conduction one can time integrate the heat part with very large (implicit) time steps.
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2 Single-Phase Thermal Fluids Models

2.1 Single-Phase Flow Model

RELAP-7 treats the basic pipe, duct, or channel flow component as being one dimensional
with a cross-sectional area that varies along its length. In this section the instantaneous,
area-averaged balance equations are derived to approximate the flow physics. This deriva-
tion will begin with a three dimensional local (point-wise), instantaneous statement of the
balance equations. For economy of derivation these local balance equations are repre-
sented in generic form. The area-averaged balance equations will then be derived from
this local generic form, from which the specific area averaged mass, momentum, energy,
and entropy equations will be given.

A local generic transport equation can be stated as

∂

∂t
(ρψ) +∇ · (ρψu) +∇ · J − ρφ = 0 (1)

where ρ is the local material mass density, u is the local material velocity, and ψ, J , and
φ are generic “place holder” variables that can take on different meanings to represent
different physical balance equations. To represent balance of mass, momentum, energy,
and entropy these generic variables take on the meaning of the variables shown in Table 1.
Notice that these variables can take on scalar, vector, or second order tensor character as
needed in the equation of interest. In particular, the symbol J is used to represent either a
vector or tensor, depending on the equation in question.

Table 1. Balance Equation Variable Definitions.

Balance Equation ψ J φ

mass 1 0 0
momentum u pI − τ g
total energy E q + pI · u− τ · u g · u+ r

ρ

entropy s 1
T
q 1

ρ
∆

It is assumed that an instantaneous section of the variable duct can be represented as
shown in Figure 1. It is necessary to introduce specific forms of the Leibnitz and Gauss
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Figure 1. Diagram showing the variable-area duct used in the
derivation of the governing equations.

rules, or theorems, from advanced calculus that are specialized to the specific geometry of
Figure 1. These rules will be used as tools to shorten the derivations. First, the “Leibnitz
Rule” states:

∂

∂t

∫
A(x,t)

f(x, y, z, t) dA =

∫
A(x,t)

∂f

∂t
dA+

∫
c(x,t)

fuw · n̂ ds (2)

where

ds ≡ dc
n̂ · n̂c

(3)

and uw is the velocity of the (possibly) moving wall. Next, the “Gauss Theorem” is given
by ∫

A(x,t)

∇ ·B dA =
∂

∂x

∫
A(x,t)

B · n̂x dA+

∫
c(x,t)

B · n̂ ds (4)

23



For brevity, in the following derivations we shall suppress the explicit dependence
on (x, t) of the area A and boundary c in the relevant integrals. Integrating the local,
instantaneous relation (1) over A, gives∫

A

∂

∂t
(ρψ) dA+

∫
A

∇ · ρψu dA+

∫
A

∇ · J dA−
∫
A

ρφ dA = 0. (5)

Applying the the Leibnitz and Gauss rules listed above to this equation results in

∂

∂t
A〈ρψ〉A +

∂

∂x
A〈ρψu · n̂x〉A +

∂

∂x
A〈J · n̂x〉A−A〈ρφ〉A = −

∫
c

(ṁψ+J · n̂) ds (6)

where

〈f〉A ≡
1

A

∫
A

f(x, y, z, t) dA (7)

ṁ ≡ ρ(u− uw) · n̂. (8)

Finally, because the walls are impermeable and u · n̂|c = uw · n̂|c, Equation (6) reduces to

∂

∂t
A〈ρψ〉A +

∂

∂x
A〈ρψu · n̂x〉A +

∂

∂x
A〈J · n̂x〉A − A〈ρφ〉A = −

∫
c

J · n̂ ds. (9)

This is the instantaneous, area-averaged generic balance equation.

2.1.1 Single-Phase Flow Field Equations

To obtain mass, momentum, energy, and entropy forms, the variables from Table 1 are
substituted into the instantaneous, area-averaged generic balance equation to produce the
respective balance equations. The conservation of mass equation is given by:

∂

∂t
A〈ρ〉A +

∂

∂x
A〈ρu〉A = 0 (10)

where u = u · n̂x is the x-component of velocity. The momentum balance equation is:

∂

∂t
A〈ρu〉A +

∂

∂x
A〈ρuu〉A − A〈ρg〉A

+
∂

∂x
A〈pn̂x − τ · n̂x〉A =

∫
c

(−pI · n̂+ τ · n̂) ds (11)
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where I is the identity tensor. To reduce this equation further, note that

∂A

∂x
= −

∫
c

n̂ · n̂x ds (12)

Now take the projection of the momentum equation along the duct axis, i.e. take the scalar
product of this equation with n̂x, and use identity (12) to get the final version of the
instantaneous, area averaged momentum balance equation

∂

∂t
A〈ρu〉A +

∂

∂x
A〈ρu2〉A +

∂

∂x
A〈p〉A −

∂

∂x
A〈(τ · n̂x) · n̂x〉A

= p̃
∂A

∂x
+ A〈ρgx〉A +

∫
c

(τ · n̂) · n̂x ds (13)

where gx is the component of gravity along the duct axis and p̃ is the average pressure
around curve c on the wall, which can generally differ from 〈p〉A. Here the term which
accounts for deviations of the wall pressure from this mean wall pressure has been ne-
glected, i.e. the local wall pressure has been assumed constant along c giving p̃(x, t); the
deviatoric term could be included if a higher order approximation is warranted. In the past,
the average wall pressure has typically been assumed equal to the area averaged pressure,
i.e. p̃(x, t) = 〈p〉A. More will be said of this later. The total energy conservation equation
is

∂

∂t
A〈ρE〉A +

∂

∂x
A〈ρEu · n̂x〉A +

∂

∂x
A〈(q + pI · u− τ · u) · n̂x〉A − A〈ρg · u〉A

− A
〈
ρ
r

ρ

〉
A

= −
∫
c

(q + pI · u− τ · u) · n̂ ds (14)

or, as is typically done, by assuming the shear stress terms are small enough to be neglected
in the total energy equation

∂

∂t
A〈ρE〉A +

∂

∂x
A〈ρEu〉A +

∂

∂x
A〈qx + pu〉A − A〈ρg · u〉A − A〈r〉A

= −
∫
c

pu · n̂ ds−
∫
c

q · n̂ ds (15)

where E = e + u·u
2

is the specific total energy and e is the specific internal energy. This
equation can be reduced further by noting the identity

∂A

∂t
=

∫
c

uw · n̂ ds (16)
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Again, because u · n̂|c = uw · n̂|c, the identity (16) allows the energy equation to be finally
written as

∂

∂t
A〈ρE〉A +

∂

∂x
A〈ρEu〉A +

∂

∂x
A〈qx + pu〉A − A〈ρg · u〉A − A〈r〉A

= −p̃∂A
∂t
−
∫
c

q · n̂ ds (17)

where the last term on the right hand side is the net heat transfer from the fluid to the duct
wall. The entropy inequality relation is next written as an equality (an entropy production
equation) as:

∂

∂t
A〈ρs〉A +

∂

∂x
A〈ρsu〉A +

∂

∂x
A
〈qx
T

〉
A
− A〈∆〉A = −

∫
c

q

T
· n̂ ds (18)

where the last term on the right hand side is the entropy flux due to heat transfer to the duct
wall and ∆ is the entropy production per unit volume due to the process being irreversible.

With this form of the balance equations a closure equation will need to be supplied
describing how the local cross-sectional area will change, both spatially and temporally,
e.g. stretching or expanding due to pressure. Also, the usual assumption is made (though
not necessarily accurate) that the covariance terms of the averaging process are negligible,
i.e. if f = 〈f〉A + f ′ and g = 〈g〉A + g′ then

〈fg〉A = 〈f〉A〈g〉A + 〈f ′g′〉A︸ ︷︷ ︸
=0

= 〈f〉A〈g〉A, (19)

wherein the notational simplification 〈f〉A ⇒ f can be utilized. With this assumption the
mass, momentum, total energy, and entropy balances can be respectively written as

∂ρA

∂t
+
∂ρuA

∂x
= 0 (20)

∂ρuA

∂t
+
∂ (ρu2A+ pA)

∂x
= p̃

∂A

∂x
− Fwall friction (21)

∂ρEA

∂t
+
∂(ρE + p)uA

∂x
= −p̃∂A

∂t
−Qwall (22)

∂ρsA

∂t
+
∂ρsuA

∂x
+

∂

∂x

(
qxA

T

)
− A∆ = −Qwall

T̃
(23)

where the Fwall friction is the average duct wall shear force (friction), Qwall is the average
heat flux from the fluid to the duct wall and T̃ is the average fluid temperature along the
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line c on the duct wall. Also note that in writing the momentum equation (21) the last
term on the left hand side of the momentum equation (13) has been neglected as being
insignificant. Of course, if the duct wall is rigid, the cross-sectional area is not a function
of time and is a function of spatial position only; i.e. A = A(x) only, and ∂A

∂t
= 0.

2.2 Single-Phase Flow Constitutive Models

2.2.1 Single-Phase Flow Wall Friction Factor Model

The wall friction term in (21) takes the general form

Fwall friction =
f

2dh
ρu |u|A (24)

where f is the (Darcy) friction factor, and dh is the hydraulic diameter, defined as

dh =
4A

Pwet
(25)

and Pwet is the so-called wetted perimeter of the pipe, which is defined as the “perimeter of
the cross-sectional area that is wet.” More accurately, it is that portion of the perimeter of
the cross-sectional area for which a wall-shear stress exists. Because of its dependencies,
f is usually a function of x, along with the other flow variables. Furthermore, in the case
of a variable-area duct or pipe, both the cross-sectional area and the wetted perimeter are
functions of x, and therefore dh is also a function of x. In the particular case of a pipe with
circular cross section and radius r(x), we have A = πr2, Pwet = 2πr, and consequently

dh = 2r(x) = 2

√
A

π
(26)

so that (24) becomes

Fwall friction =
f

4
ρu |u|

√
πA (27)

This relationship simply states that the wall shear force due to the fluid flow is proportional
to the bulk kinetic energy of the flow.

Currently, the same wall friction factor model is used for single-phase flow as that used
in RELAP5 [22]. The friction factor model is simply an interpolation scheme linking the
laminar, laminar-turbulent transition, and turbulent flow regimes. The wall friction model
consists of four regions which are based on the Reynolds number (Re):
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1. f = fmax for 0 ≤ Re < 64.

2. Laminar flow for 64 ≤ Re < 2200.

3. Transitional flow for 2200 ≤ Re < 3000.

4. Turbulent flow for Re ≥ 3000.

where Re is defined as

Re =
ρ|u|dh
µ

(28)

where µ is the fluid viscosity, which in general depends on the fluid temperature. The
laminar friction factor depends on the cross-sectional shape of the channel and assumes
steady state and fully-developed flow (and a variety of other assumptions). It is defined as

f =
64

ReΦS

, 64 ≤ Re < 2200 (29)

where ΦS is a user-defined shape factor for noncircular flow channels, and has a value
of 1 for circular pipes. For the transition from laminar to turbulent flow, a reciprocal
interpolation method is employed. This choice is motivated by the form of (29), and is
valid over the region Remin ≡ 2200 ≤ Re ≤ Remax ≡ 3000. Solving for the parameter N
in the relation

N

Remin
− N

Remax
= 1 (30)

yields

N =
RemaxRemin

Remax −Remin
. (31)

The reciprocal weighting function w is then defined as

w =
N

Remin
− N

Re
(32)

and varies from 0 to 1 as the Reynolds number varies from Remin to Remax. Finally, the
transition friction factor formula is defined as

f = (1− w)flam,Remin + wfturb,Remax . (33)

Formula (33) is valid for 2200 ≤ Re ≤ 3000, flam,Remin is the laminar friction factor at
Remin, and fturb,Remax is the turbulent friction factor atRemax. The turbulent friction factor is
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given by a Zigrang-Sylvester approximation [23] to the Colebrook-White correlation [24],
for Re ≥ 3000:

1√
f

= −2 log10

{
ε

3.7D
+

2.51

Re

[
1.14− 2 log10

(
ε

D
+

21.25

Re0.9

)]}
(34)

where ε is the surface roughness, D is the pipe diameter, and the factor 1.14 corrects the
value of 1.114 present in the original document.

2.2.2 Single-Phase Flow Convective Heat Transfer Model

The general form of the convective heat transfer term in (22) is

Qwall = Hwaw (T − Twall)A (35)

where aw is the so-called heat transfer area density, Hw is the convective wall heat transfer
coefficient, Twall = Twall(x, t) is the average temperature around perimeter c(x, t), and
T = T (x, t) is the area average bulk temperature of the fluid for cross-section at (x, t). In
the constant-area case, the heat transfer area density is roughly defined as:

aw ≡ lim
∆x→0

wetted area of pipe section of length ∆x

volume of pipe section of length ∆x
(36)

For a constant-area pipe with radius r and circular cross-section, formula (36) yields

aw = lim
∆x→0

2πr∆x

πr2∆x
=

2

r
(37)

For a variable-area duct or pipe, if we consider the “projected area” through which heat
transfer can occur, we observe that the rate of change of the pipe’s area, ∂A

∂x
, also plays a

role (though it may be neglected). If we wish to account for the rate of change of the pipe’s
area, in (35) we can set

awA∆x ≡ “projected area of a pipe segment of length ∆x” (38)

and then take the limit as ∆x → 0. The right-hand side of (38) of course depends on the
geometric shape of the pipe cross section. For a circular pipe with cross sectional area
A(x) and associated radius r(x), the formula for the lateral surface area of a right-circular
frustum of height ∆x implies that (38) can be written as:

awA∆x = π

(
2r +

∂r

∂x
∆x

)
∆x

√
1 +

(
∂r

∂x

)2

(39)
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In the limit as ∆x→ 0, we obtain

awA = 2πr

√
1 +

(
∂r

∂x

)2

=

√
4πA+

(
∂A

∂x

)2

(40)

where (40) arises upon substitution of the cross-sectional area formula for a circle. Note
also that we recover

awA = 2πr (41)

from (40) in the constant area case. The resulting wall heating term in this case is

Qwall = Hw (T − Twall)

[
4πA+

(
∂A

∂x

)2
] 1

2

(42)

Clearly, pipes with rapidly changing cross-sectional area, i.e. ∂A
∂x
� 1, have a larger pro-

jected area than pipes with slowly-varying cross-sectional areas. Conversely, if the area is
not changing rapidly with x, this additional term can safely be neglected.

It is possible to derive an analogous formula to (40) for polygonal cross sections other
than circles. For example, for a square cross section with side length L(x), the analog
of (39) is

awA∆x = 2

(
2L+

∂L

∂x
∆x

)
∆x

√
1 +

1

4

(
∂L

∂x

)2

(43)

which, as ∆x→ 0 yields,

awA = 4L

√
1 +

1

4

(
∂L

∂x

)2

=

√
16A+

(
∂A

∂x

)2

(44)

where we have used the relations A(x) = L2(x), ∂A
∂x

= 2L∂L
∂x

.

Currently, the same wall heat transfer model for single-phase flow is used as in RE-
LAP5 [25]. The convective heat transfer coefficient is determined by many factors, i.e.,
hydraulic geometry, fluid types, and several Buckingham π-group dimensionless num-
bers. For single-phase, different flow regimes can be involved, including laminar forced
convection, turbulent forced convection, and natural convection. For the current version,
all the heat transfer models are based on steady-state and fully-developed flow assump-
tions. These assumptions may become questionable, for example, in a short pipe with
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strong entrance effect. Effects that account for flow regions which are not fully developed
will be added in the future.

In RELAP5, many different hydraulic geometries are included, but they can be di-
vided into two basic types: internal and external. Internal flow geometries include differ-
ent shapes of pipes, parallel plates, annuli, and spheres; external flow geometries include
single tube, single plate, tube bundles, and spheres. Each geometry may have different
flow directions, such as vertical, horizontal, with/without cross flow, and helical. To help
users communicate the flow field geometry types, RELAP5 uses a numbering system.
RELAP-7 follows the same numbering system. Currently, only the two most commonly
used geometries are included in RELAP-7: “101,” the default geometry, for internal pipe
flow, and “110,” for a bundle of in-line rods with parallel flow only.

2.2.2.1 Internal Pipe Flow

For internal pipe flow, (the default geometry) the maximum of the forced-turbulent, forced-
laminar, and free-convection coefficients is used for non-liquid metal fluids in order to
avoid discontinuities in the heat transfer coefficient. The forced laminar heat convection
model is an exact solution for fully-developed laminar flow in a circular tube with a uni-
form wall heat flux and constant thermal properties. The laminar Nusselt number (Nu) is
here defined to be

Nu =
Hwdh
k

= 4.36 (45)

where k is the fluid thermal conductivity, based on fluid bulk temperature. The turbulent
forced convection model is based on the Dittus-Boelter correlation

Nu = CRe0.8Prn (46)

where C = 0.023, Pr is the Prandtl Number, n = 0.4 for heating, and n = 0.3 for cooling.
The applicable ranges and accuracy of the correlation are discussed in Section 4.2.3.1.1
of [25]. The Churchill and Chu Nu-correlation,

Nu =

0.825 +
0.387Ra

1
6(

1 +
(

0.492
Pr

) 9
16

) 8
27


2

(47)

is used for free convection along a vertical flat plate, where Ra = GrPr is the Rayleigh
number. The Grashof number Gr is defined as

Gr =
ρ2gβ(Tw − T )L3

µ2
(48)
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where β is the coefficient of thermal expansion andL is the natural convection length scale.
The default natural convection length scale is the heat transfer hydraulic diameter. For
liquid metal fluids (with Pr < 0.1), the following correlation is used for all the convective
heat transfer regimes:

Nu = 5.0 + 0.025Pe0.8 (49)

where Pe = RePr is the Peclet number.

2.2.2.2 Vertical Bundles with In-line Rods, Parallel Flow Only

The correlations for vertical bundles with in-line rods and parallel flow differs from the
default internal pipe flow only in the implementation of the turbulent flow multiplier of
Inayatov [26], which is based on the rod pitch to rod diameter ratio. The pitch is the
distance between the centers of the the adjacent rods. If the bundle consists of in-line
tubes on a square pitch or staggered tubes on an equilateral triangle pitch, the coefficient
C in (46) becomes

C = 0.023
P

D
(50)

where P is the pitch and D is the rod diameter. As in RELAP5, if P
D
> 1.6, then P

D
is

reset to 1.6. If P
D

is not provided, or is less than 1.1, a default value of 1.1 is used. For
liquid metals (with Pr < 0.1), the following correlation is used for all the convective heat
transfer regimes in vertical bundles

Nu = 4.0 + 0.33

(
P

D

)3.8(
Pe

100

)0.86

+ 0.16

(
P

D

)5

. (51)

Equation (51) is valid for 1.1 < P
D
< 1.4. If P

D
is outside this range, it is “clipped” to

either the maximum or minimum value.

2.2.3 Single-Phase Equations of State

In the following sections, we discuss several equations of state employed for the various
thermal-fluid models used in RELAP-7. When we say “equation of state,” we really mean
a so-called “incomplete” equation of state defined by a pair of equations

p = p(ρ, e) (52)
T = T (ρ, e) (53)

32



i.e., both the pressure and the temperature can be computed if the density and internal
energy are given. Reformulations of (52) and (53) which consist of two equations relating
the four quantities p, T , ρ, and e are also acceptable and useful in practice.

The pair of equations (52) and (53) may be contrasted with the case of a single ther-
modynamically consistent “complete” equation of state e = e(ϑ, s) where ϑ = 1/ρ is the
specific volume, and s is the specific entropy. Note that the existence of a complete equa-
tion of state implies the existence of an incomplete equation of state through the relations
p = −

(
∂e
∂ϑ

)
s
, and T =

(
∂e
∂s

)
ϑ
, but the converse is not true [27]. The partial derivative

notation
(
∂f
∂x

)
y

is used to denote the fact that f = f(x, y) and the derivative is taken with
respect to x while holding y constant. Solution of the Euler equations requires only an in-
complete equation of state (for smooth flows), hence we focus on the form (52)–(53) in the
present work. More will be said subsequently, when discussing selection and stabilization
of ”weak” solutions.

2.2.3.1 Barotropic Equation of State

The barotropic equation of state is suitable for a two-equation (isothermal) fluid model.
It describes only isentropic (reversible) processes, and implies a constant sound speed.
Shocks do not form from initially smooth data in fluids modeled with the barotropic equa-
tion of state; discontinuities present in the initial data may be retained and propagated
without “sharpening or steepening”. This equation of state, described here only for ref-
erence because it is used in RELAP-7 primarily for testing and verification purposes, is
given by

p = p0 + a2(ρ− ρ0)

= p0 + a2(U0 − ρ0) (54)

where a is a constant, roughly the sound speed. The derivatives of p with respect to the
conserved variables are

p,0 = a2 (55)
p,1 = 0 (56)
p,2 = 0 (57)
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2.2.3.2 Isentropic Stiffened Gas Equation of State

The isentropic stiffened gas equation of state is more general than the barotropic equation
of state. In this equation of state, the pressure and density are related by:

p+ p∞
p0 + p∞

=

(
ρ

ρ0

)γ
(58)

which is sometimes rearranged to read:

p = (p0 + p∞)

(
ρ

ρ0

)γ
− p∞ (59)

where p∞, γ, and ρ0 are constants which depend on the fluid. Representative values for
water are p∞ = 3.3 × 108 Pa, γ = 7.15, ρ0 = 103 kg/m3. Note that although the symbol
γ is used in (59), it should not be confused with the ratio of specific heats (the ratio of
specific heats is approximately 1 for most liquids). The isentropic equation of state is, of
course, not valid for flows with shocks, but for weak pressure waves and weak shocks the
approximation is not bad. The speed of sound in this fluid can be computed as

c2 =
∂p

∂ρ
=
γ

ρ
(p+ p∞) (60)

Hence, unlike the barotropic equation of state, the sound speed of this model varies with
the density and pressure values. In terms of conserved variables, we have:

p = (p0 + p∞)

(
U0

ρ0

)γ
− p∞ (61)

with derivatives

p,0 =
γ

U0

(p+ p∞) = c2 (62)

p,1 = 0 (63)
p,2 = 0 (64)

Finally, we note that Courant and Friedrichs [28] also discuss this equation of state in the
form

p = A

(
ρ

ρ0

)γ
−B (65)

Approximate values for the constants in (65) are given in Table 2.
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Table 2. Constants for Courant and Friedrich’s form of the isen-
tropic stiffened gas equation of state.

SI Imperial

ρ0 999.8 kg/m3 1.94 slug/ft3

γ 7
A 3.04076× 108 Pa 3001 atm
B 3.03975× 108 Pa 3000 atm

2.2.3.3 Linear Equation of State

A more general “linear” equation of state (a straightforward extension of (54)) which takes
into account variations in temperature as well as density, is given by

p = p0 +Kρ(ρ− ρ0) +KT (T − T0) (66)
e = e0 + cv(T − T0). (67)

Since Kρ ≡
(
∂p
∂ρ

)
T

and KT ≡
(
∂p
∂T

)
ρ

(evaluated at p0) are large for liquids (like water),
we see that large changes in pressure are required to produce changes in density, assuming
T is approximately constant. This observation is in accordance with what we expect for
a nearly incompressible fluid. If the working fluid is water, representative values for the
constants in (66) and (67) are given in Tables 3 (p0 = 1 MPa) and 4 (p0 = 5 MPa) for
several temperatures. The tables demonstrate that the various constants are not strongly
dependent on the absolute magnitude of the pressure. These constants are obtained from
the thermodynamic data for water available on the NIST website1.

In terms of conserved variables, (66) and (67) can be written as

p = p0 +Kρ(U0 − ρ0) +
KT

cv

(
U2

U0

− U2
1

2U2
0

− e0

)
(68)

T = T0 +
1

cv

(
U2

U0

− U2
1

2U2
0

− e0

)
, (69)

1http://webbook.nist.gov/chemistry/fluid
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and the derivatives of p with respect to the conserved variables are

p,0 = Kρ +
KT

cvU0

(
U2

1

U2
0

− U2

U0

)
= Kρ +

KT

cvρ

(
u2 − E

)
(70)

p,1 = −KTU1

cvU2
0

= −KTu

cvρ
(71)

p,2 =
KT

cvU0

=
KT

cvρ
. (72)

The derivatives of T with respect to the conserved variables are

T,0 =
1

cvU0

(
U2

1

U2
0

− U2

U0

)
=

1

cvρ

(
u2 − E

)
(73)

T,1 = − U1

cvU2
0

= − u

cvρ
(74)

T,2 =
1

cvU0

=
1

cvρ
. (75)

For completeness, the density is given as a function of pressure and temperature, and the
temperature as a function of pressure and density, for the linear equation of state:

ρ = ρ0 +
p− p0

Kρ

− KT

Kρ

(T − T0) (76)

T = T0 +
p− p0

KT

− Kρ

KT

(ρ− ρ0) . (77)

2.2.3.4 Stiffened Gas Equation of State

In the single-phase model discussed in this section, the fluid (whether it be liquid or va-
por) is compressible and behaves with its own convex equation of state (EOS). For initial
development purposes it was decided to use a simple form capable of capturing the essen-
tial physics. For this purpose, the stiffened gas equation of state (SGEOS) was selected
(LeMetayer et al. [3])

p(ρ, e) = (γ − 1)ρ(e− q)− γp∞ (78)

where p, ρ, e, and q are the pressure, density, internal energy, and the binding energy
of the fluid considered. The parameters γ, q, and p∞ are the constants (coefficients) of
each fluid. The parameter q defines the zero point for the internal energy, which will be
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Table 3. Constants for the linear equation of state for p0 = 1 MPa
and T0 = 375, 400, 425, and 450K.

T = 375K

p0 106 Pa
Kρ 2.1202× 106 Pa-m3/kg
ρ0 957.43 kg/m3

KT 1.5394× 106 Pa/K
T0 375 K
cv 4.22× 103 J/kg-K
e0 4.27× 105 J/kg

T = 400K

p0 106 Pa
Kρ 1.9474× 106 Pa-m3/kg
ρ0 937.87 kg/m3

KT 1.6497× 106 Pa/K
T0 400 K
cv 4.22× 103 J/kg-K
e0 5.32× 105 J/kg

T = 425K

p0 106 Pa
Kρ 1.7702× 106 Pa-m3/kg
ρ0 915.56 kg/m3

KT 1.6643× 106 Pa/K
T0 425 K
cv 4.22× 103 J/kg-K
e0 6.39× 105 J/kg

T = 450K

p0 106 Pa
Kρ 1.5552× 106 Pa-m3/kg
ρ0 890.39 kg/m3

KT 1.6303× 106 Pa/K
T0 450 K
cv 4.22× 103 J/kg-K
e0 7.48× 105 J/kg

relevant later when phase transitions are involved with two-phase flows. The parameter
p∞ gives the “stiffened” properties compared to ideal gases, with a large value implying
“nearly-incompressible” behavior.

The first term on the right-hand side of (78) is a repulsive effect that is present for any
state (gas, liquid, or solid), and is due to molecular motions and vibrations. The second
term on the right represents the attractive molecular effect that guarantees the cohesion
of matter in the liquid or solid phases. The parameters used in this equation of state
are determined by using a reference curve, usually in the

(
p, 1

ρ

)
plane. In LeMetayer et

al. [3], the saturation curves are utilized as this reference curve to determine the stiffened
gas parameters for liquid and vapor phases. The SGEOS is the simplest prototype that
contains the main physical properties of pure fluids — repulsive and attractive molecular
effects — thereby facilitating the handling of the essential physics and thermodynamics
with a simple analytical formulation. Thus, a fluid, whether liquid or vapor, has its own
thermodynamics.
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Table 4. Constants for the linear equation of state for p0 = 5 MPa
and T0 = 375, 400, 425, and 450K.

T = 375K

p0 5× 106 Pa
Kρ 2.1202× 106 Pa-m3/kg
ρ0 959.31 kg/m3

KT 1.5559× 106 Pa/K
T0 375 K
cv 4.26× 103 J/kg-K
e0 4.25× 105 J/kg

T = 400K

p0 5× 106 Pa
Kρ 1.9474× 106 Pa-m3/kg
ρ0 939.91 kg/m3

KT 1.6406× 106 Pa/K
T0 400 K
cv 4.26× 103 J/kg-K
e0 5.31× 105 J/kg

T = 425K

p0 5× 106 Pa
Kρ 1.7702× 106 Pa-m3/kg
ρ0 917.83 kg/m3

KT 1.6659× 106 Pa/K
T0 425 K
cv 4.26× 103 J/kg-K
e0 6.37× 105 J/kg

T = 450K

p0 5× 106 Pa
Kρ 1.5552× 106 Pa-m3/kg
ρ0 892.99 kg/m3

KT 1.6370× 106 Pa/K
T0 450 K
cv 4.26× 103 J/kg-K
e0 7.46× 105 J/kg

The pressure law, equation (78), is incomplete. A caloric law is also needed to relate
the fluid temperature to the other fluid properties (for example, T = T (p, ρ)) and thereby
completely describe the thermodynamic state of the fluid. For the fluid, whether liquid or
vapor, it is assumed that the thermodynamic state is determined by the SGEOS as:

e(p, ρ) =
p+ γp∞
(γ − 1)ρ

+ q (79)

ρ(p, T ) =
p+ p∞

(γ − 1)cvT
(80)

h(T ) = γ cvT + q (81)

g(p, T ) = (γcv − q′)T − cvT ln
T γ

(p+ p∞)(γ−1)
+ q (82)

where T , h, and g are the temperature, enthalpy, and Gibbs free enthalpy, respectively,
of the fluid considered. In this system, equation (80) is the caloric law. In addition to
the three material constants mentioned above, two additional material constants have been
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introduced, the constant volume specific heat cv and the parameter q′. These parameters
will be useful when two-phase flows are considered later. The values for water and its
vapor from [3] are given in Table 5. These parameter values appear to yield reasonable
approximations over a temperature range from 298 to 473 K [3]. Equation (81) can also

Table 5. Stiffened gas equation of state parameters for water and
its vapor, from [3].

Water γ q (J kg−1) q′ (J kg−1 K−1) p∞ (Pa) cv (J kg−1 K−1)

Liquid 2.35 −1167× 103 0 109 1816
Vapor 1.43 2030× 103 −23× 103 0 1040

be written as
h = cp T + q (83)

if we define cp = γcv. Combining (79) and (80) also allows us to write the temperature as

T =
1

cv

(
e− q − p∞

ρ

)
. (84)

In terms of conserved variables, the pressure is given by

p = (γ − 1)

(
U2 −

U2
1

2U0

− U0q

)
− γp∞. (85)

The derivatives of p with respect to the conserved variables are

p,0 = (γ − 1)

(
1

2

U2
1

U2
0

− q
)

= (γ − 1)

(
1

2
u2 − q

)
(86)

p,1 = (γ − 1)

(
−U1

U0

)
= (γ − 1) (−u) (87)

p,2 = γ − 1. (88)

In terms of conserved variables, the temperature is given by

T =
1

cv

(
U2

U0

− U2
1

2U2
0

− q − p∞
U0

)
. (89)
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The derivatives of T with respect to the conserved variables are

T,0 =
1

cvU2
0

(
p∞ +

U2
1

U0

− U2

)
=

1

cvρ2

(
p∞ + ρu2 − ρE

)
(90)

T,1 = − U1

cvU2
0

= − u

cvρ
(91)

T,2 =
1

cvU0

=
1

cvρ
. (92)

The sound speed for this equation of state can be computed as

c2 =
p

ρ2
(γ − 1)ρ+ (γ − 1)(e− q)

= γ

(
p+ p∞
ρ

)
. (93)

2.2.3.5 Ideal Gas Equation of State

The ideal gas equation of state is fundamental; many other equations of state are more-or-
less based on the ideal gas equation of state in some way. Although RELAP-7 is primarily
concerned with flows involving liquids and their vapors, there are certainly nuclear reactor
applications, such as helium cooling, where the ideal gas equation of state is relevant. The
pressure and temperature in a (calorically-perfect) ideal gas are given by

p = (γ − 1)ρe (94)

T =
e

cv
(95)

where γ = cp
cv

is the ratio of specific heats, and cv is the specific heat at constant volume,
which in a calorically-perfect gas is assumed to be constant. This equation of state is a
particular form of the stiffened gas equation of state already described in Section 2.2.3.4,
with q = p∞ = 0. We therefore omit giving a detailed listing of the derivatives of this
equation of state with respect to the conserved variables. The reader should instead refer
to Section 2.2.3.4, and the derivatives listed therein.
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3 Two-Phase Thermal Fluids Models

3.1 Seven Equation Two-Phase Flow Model

Many important fluid flows involve a combination of two or more materials or phases
having different properties. For example, in light water nuclear reactor safety and opti-
mization there are key issues that rely on in-depth understanding of basic two-phase flow
phenomena with heat and mass transfer. Within the context of these multiphase flows, two
bubble-dynamic phenomena: boiling (heterogeneous) and flashing or cavitation (homoge-
neous boiling), with bubble collapse, are technologically very important to nuclear reactor
systems. The main difference between boiling and flashing is that bubble growth (and
collapse) in boiling is inhibited by limitations on the heat transfer at the interface, whereas
bubble growth (and collapse) in flashing is limited primarily by inertial effects in the sur-
rounding liquid. The flashing process tends to be far more explosive (and implosive),
and is more violent and damaging (at least in the near term) than the bubble dynamics of
boiling. However, other problematic phenomena, such as crud deposition, appear to be
intimately connected with the boiling process. In reality, these two processes share many
details, and often occur together.

The multiple phases or components often exhibit relative motion among the phases or
material classes. The microscopic motions of the individual constituents are complex and
the detailed solution to the micro-level evolutionary equations is very difficult. Character-
istic of such flows of multi-component materials is an uncertainty in the exact locations
of the particular constituents at any particular time. For most practical purposes, it is not
possible to exactly predict or measure the evolution of the details of such systems, nor is it
even necessary or desirable. Usually, more gross features of the motion, or the “average”
behavior of the system are of greater interest. Here we present descriptive equations that
will predict the evolution of this averaged behavior. Due to the complexities of interfaces
and resultant discontinuities in fluid properties, as well as from physical scaling issues, it is
essential to work with averaged quantities and parameters. The rational approach pursued
here to examine two-phase flow must be based on the fundamental postulates of contin-
uum mechanics and upon careful use of averaging procedures. We begin by rigorously
specifying our concept of an average. There are several types of averaging. The published
literature predominantly contains two types of averaging: “volume averaging” [29,30] and
“time averaging” [31]. Occasionally variants, such as the “area averaging” described in the
single-phase flow section above for one-dimensional variable cross-sectional area, or com-
binations of the two, such as “volume-time averaging,” are used. However, a more general
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approach (least restrictions) will be utilized here, adopting what is known as “ensemble
averaging.” The equation forms that result from these different averaging approaches can
appear quite similar, though the physical/mathematical interpretation of the various terms
are certainly different and there are subtle differences in the inherent restrictions associated
with each.

When the physical system has a large amount of variability, a natural interpretation
of the meaning of predictions is in terms of expected values and variances. If there are
many different events, or “realizations,” possible, then the expected value is naturally an
“average” over all of these events, or the ensemble of realizations. The ensemble is then the
set of all experiments with the same boundary and initial conditions, with some properties
that we would like to associate with the mean and distribution of the components and
their velocities. A realization of the flow is a possible motion that could have happened.
Implicit in this concept is the intuitive idea of a “more likely” and a “less likely” realization
in the ensemble. Therefore, as we shall see, each ensemble of realizations, corresponding
to a given physical situation, has a probability measure on subsets of realizations. The
ensemble average is the generalization of the elementary idea of adding the values of the
variable for each realization, and dividing by the number of observations. The ensemble
average then allows the interpretation of phenomena in terms of repeatability of multi-
component flows.

One of the nice features of ensemble averaging, as opposed to volume averaging, is
that ensemble averaging does not require that a control volume contain a large quantity of
a particular component in any given realization. Consider the following example, taken
directly from Drew and Lahey [32], where the average of a particle-fluid mixture is of
interest. Gas turbines are eroded by particulate matter (or droplets) suspended in the gas
stream passing through the inlet and impacting on the various parts of the machine, e.g. the
turbine blades. The trajectories of individual particles moving through the gas turbine are
very complicated, depending on where and when the particles enter the inlet of the device.
Such predictions are usually not required. A prediction, however, that is of interest to the
designer is the average, or expected values, of the particle flux (or the concentration and
velocities of particles) near parts in the device that are susceptible to erosion. Since the
local concentration of particles is proportional to the probability that particles will be at
the various points in the device at various times, and the particle velocity field will be
the mean velocity that the particles will have if they are at that position in the device, the
design engineer will be able to use this information to assess the places where erosion due
to particle impact may occur.

It may be that there are no times for which there will be many particles in some repre-
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sentative control volume (or representative elementary volume, REV). So, volume averag-
ing, which depends on the concept of having many representative particles in the averag-
ing volume at any instant, will fail. The appropriateness of ensemble averaging is obvious.
Here the ensemble is the set of motions of a single particle through the device, given that
it started at a random point at the inlet at a random time during the transient flow through
the device. Clearly the solution for the average concentration and average velocity gives
little information about the behavior of a single particle in the device; however, the infor-
mation is very appropriate for assessing the probability of damage to the device. Similar
examples could be given where time averaging will fail, but where ensemble averaging
is again appropriate. The ensemble average is more fundamental than either time or vol-
ume averaging. In fact, both time and volume averaging can be viewed as approximations
to the ensemble average, which can be justified, respectively, for steady or homogeneous
flow [33].

3.1.1 Ensemble Averaging

A general method is presented here, based on the ensemble averaging concept [33–37]
for developing averaged balance or conservation equations for multiple materials, any one
of which may be at point x, at a given instant t. With this procedure, the most likely
state at a point, i.e. the expected value, will be determined simultaneously with which
material is most likely to be found at that point. Imagine running an experiment many
times and collecting data about the state of the flow at each point x and time t. This
information could include which material or phase is present, material density, velocity,
pressure, temperature, concentration, etc. From this information, one can compute the
ensemble average. The ensemble average of a generic property Q0 of a fluid or material
in a process is an average over the realizations

〈Q0〉(x, t) =
1

NR

NR∑
r=1

Q0,r(x, t) (96)

where NR is the number of times the process or experiment is repeated, and is a large
number. Now imagine that many of the realizations are near duplicates, i.e. they are
essentially the same state, with N occurrences. We can then rewrite the sum over the
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realizations as a sum over the number of states NR

〈Q0〉(x, t) =
1

NR

NR∑
r=1

N(x, t,Γ)Q0(Γ)

=

NΓ∑
r=1

N(x, t,Γ)

NR

Q0(Γ)

=

∫
all Γ

Q0(Γ)f(x, t,Γ) dΓ (97)

where f(x, t,Γ) = N(x,t,Γ)
NR

is the probability of the state Γ in the ensemble. Note that in
the limit of an infinite number of repetitions of the experiment, with a sum over all of the
states, the summation is replaced with an integral form in the definition of the ensemble
average. More correctly, because

∫
all Γ

f(x, t,Γ) dΓ = 1, f(x, t,Γ) is referred to as the
probability density.

The state is the full thermodynamic/kinematic description of the matter at a point x
and time t; for example, the set

Γ =

 ρ0,u0, h0, p0, τ0, . . .
ρ1

0,u
1
0, h

1
0, ρ

2
0,u

2
0, h

2
0, . . .

X1, X2, . . .

 (98)

where the various symbols used in (98) are described in Table 6, and

ρ0 =
∑
s

ρs0 (99)

ρ0u0 =
∑
s

ρs0u
s
0 (100)

ρ0h0 =
∑
s

ρs0h
s
0 . (101)

Other properties may also appear in the above thermodynamic/kinematic state such as the
phase or material temperature, θ0, the phase or material specific internal energy, e0, and
the phase or material specific entropy, s0.

In a typical multiphase flow, the ensemble averages of interest may include those listed
in Table 7. From a physical viewpoint, the bulk average density of a phase represents a
summation of all of the density values that occurred for that phase, divided by the total
number of experiments run. The bulk average density corresponds intuitively to the idea
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Table 6. State variable definitions.

Symbol Description

Xk(x, t) Phase or material indicator function: equal to 1 if material k is present, 0 otherwise
ρ0 Phase or material density
u0 Phase or material velocity
h0 Phase or material specific enthalpy
p0 Pressure
τ0 Deviatoric stress
ρs0 Species partial density
us0 Species velocity
hs0 Species partial enthalpy

of the mass of phase per unit volume of mixture, or the observed material density. On the
other hand, the intrinsic average density physically corresponds to a summation of all of
the density values that occurred for that phase, dividing by the number of times in which
that phase occurred in the experiments. The intrinsic average density corresponds intu-
itively to the idea of the mass of phase per unit volume of phase k , or the true material
density. Some researchers prefer to work with bulk average densities, e.g. Kashiwa and
Rauenzahn [34], while others prefer working with intrinsic densities, e.g. Drew and Pass-
man [33]. This is mostly an issue of convenience, since one can easily be converted to the
other. Here intrinsic averages will be used, and henceforth, when an average is mentioned,
mean intrinsic average will be implied unless indicated otherwise.

3.1.2 Seven-Equation Two-Phase Flow Field Equations

For a reasonably broad range of conditions (with common substances), the exact balance
equations, valid at a point inside each material, are

ρ̇0 = −ρ0∇ · u0 (102)
ρ̇s0 = −ρs0∇ · u0 −∇ · ρs0(us0 − u0) + ṙs0 (103)

ρ0u̇0 = ∇ · T0 + ρ0g (104)

ρ0Ė0 = ∇ · (T0 · u0) +∇ · q0 + ρ0g · u0 + ρ0ε0 (105)

ρ0ṡ0 >
ρ0ε0

θ0

−∇ ·
(
q0

θ0

)
. (106)
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Table 7. Multiphase flow ensemble averages of interest.

Ensemble Average Description

αk ≡ 〈Xk〉 Material k volume fraction
ρ̂k ≡ 〈Xkρ0〉 Material k bulk average density
ρk ≡ Xkρ0

αk
Material k intrinsic average density

ρ̂sk ≡ 〈Xkρ
s
0〉 Species s in material k bulk average density

ρsk ≡
Xkρ

s
0

αk
Species s in material k intrinsic average density

uk ≡ 〈Xkρ0u0〉
ρ̂k

= 〈Xkρ0u0〉
αkρk

Material k velocity
Ek ≡ 〈Xkρ0E0〉

ρ̂k
= 〈Xkρ0E0〉

αkρk
Material k total energy

sk ≡ 〈Xkρ0s0〉
ρ̂k

= 〈Xkρ0s0〉
αkρk

Material k entropy
T ≡ 〈T0〉 Mean mixture stress
Tk ≡ 〈XkT0〉

αk
Mean k-material stress

p ≡ 〈p0〉 Pressure (single pressure model)
pk ≡ 〈Xkp0〉

αk
Pressure in k-material

For these macroscopic balance laws the material derivative has been used, which is defined
as

Q̇0 ≡
∂Q0

∂t
+ u0 · ∇Q0 . (107)

Let the total variation of f in the phase space (x, t,Γ) be given by [34]

∂f

∂t
+ u0 · ∇f + Γ̇

∂f

∂Γ
=
df

dt
= 0 (108)

where it is assumed that, as a material point is followed through phase space, its probability
of occurrence remains constant. Various moments of this equation can be formed by first
multiplying this equation by Q0, and then averaging this result. It can be shown (see also
Kashiwa and Rauenzahn [34], here corrected) that the resulting equation is

∂

∂t
〈Q0〉+∇ · 〈Q0u0〉 = 〈Q̇0 +Q0∇ · u0〉 . (109)

This result is called the moment evolution equation and the details of its derivation are
given in [13, 14]. The averaged balance or conservation equations are obtained by letting
the generic Q0 be replaced by various “meaningful” functions and then by performing
judicious manipulations on the equations to bring about physically useful forms of the
equation.
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3.1.3 Mass Balance

Letting Q0 = Xkρ0 in (109) results in

∂ 〈Xkρ0〉
∂t

+∇ · 〈Xkρ0u0〉 =
〈
Ẋkρ0 +Xk(ρ̇0 + ρ0∇ · u0)

〉
. (110)

Introducing the pure material (microscopic) mass balance equation and the definition of
average into this equation gives

∂αkρk
∂t

+∇ · αkρkuk =
〈
Ẋkρ0

〉
. (111)

Because the time- and spatial-derivatives are being taken of functions that are not smooth,
this averaged mass balance equation is to be interpreted in the sense of distributions, or
generalized functions [38]. To examine the right hand side of this equation in more detail
the definition of the material derivative is first considered. It is defined by

Ẋk =
∂Xk

∂t
+ u0 · ∇Xk (112)

in a generalized function sense. By noting that for points not on the interface where either
Xk = 0 or Xk = 1 the partial derivatives both vanish, while for points on the interface
(which also move with the interface velocity) the function Xk is a jump that remains
constant so their material derivatives following the interface vanish, it is seen that the
material derivative of Xk following the interface vanishes,

∂Xk

∂t
+ uint · ∇Xk = 0 (113)

where uint denotes the velocity of an interface of phase or material k. Thus,〈
Ẋkρ0

〉
= 〈ρ0(u0 − uint) · ∇Xk〉 (114)

and the averaged mass balance equation becomes

∂αkρk
∂t

+∇ · αkρkuk = 〈ρ0(u0 − uint) · ∇Xk〉

≡ Ωmass
k . (115)

Because∇Xk has the sifting property of the Dirac delta function(al), the only contributors
(on the right hand side) are the material interfaces. As shown in [39, 40], ∇Xk is aligned
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with the surface unit normal vector pointing to phase k, ∇Xk = n̂kδ(x − xint, t). Thus
the Ωmass

k represents the flux of mass to phase k from the other phases via the interface,
usually just referred to as phase change. With no storage of mass at an interface, mass
balance requires further that

no. of phases∑
k=1

Ωmass
k = 0 . (116)

For later use, it is convenient to introduce the concept of interfacial area density of phase
or component k, defined as

Ak = −〈n̂k · ∇Xk〉 (117)

where n̂k is the unit exterior normal to phase or component k. Ak is the expected value
of the ratio of the interfacial area (in a small volume) to the (small) volume, in the limit as
that volume approaches zero.

3.1.4 Generic Balance Equation

To more expeditiously derive the other conservation equations, the averaged balance equa-
tion resulting from a generic, microscopic balance equation will be derived first. Then the
other balance equations can be found by judicious substitution of pertinent quantities into
the generic balance equation. Consider the generic, microscopic balance equation

∂ρ0ψ0

∂t
+∇ · ρ0ψ0u0 = ∇ · J0 + ρ0g0 (118)

or

ρ0ψ̇0 =
d(ρ0ψ0)

dt
+ (ρ0ψ0)∇ · u0 = ∇ · J0 + ρ0g0 . (119)

Equations (118) and (119) hold at each point where sufficient smoothness occurs for the
derivatives to be taken, otherwise at simple discontinuities its generic jump balance con-
dition

Jρ0ψ0(u0 − uint) + J0K · n̂ = m (120)

holds, where ψ0 is the conserved quantity, J0 is a molecular or diffusive flux, g0 is a source
density, and m is the interfacial source of ψ0. The notation J·K here denotes the jump
in the enclosed quantity across an interface. Obviously, these generic quantities must be
included in our state space, e.g.

Γ =

[
ρ0,u0, ψ0, J0, . . .
X1, X2, . . .

]
. (121)
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Let us also define averages of these quantities as

ψk ≡
〈Xkρ0ψ0〉
αkρk

(122)

Jk ≡
〈XkJ0〉
αk

(123)

gk ≡
〈Xkρ0g0〉
αkρk

. (124)

Letting Q0 = Xkρ0ψ0 in (109) gives

∂〈Xkρ0ψ0〉
∂t

+∇ · 〈Xkρ0ψ0u0〉 = ∇ · 〈XkJ0〉+ 〈Xkρ0g0〉

+ 〈[ρ0ψ0(u0 − uint)− J0] · ∇Xk〉 . (125)

Introducing the fluctuating velocity

u′k ≡ u0 − uk (126)

into this expression finally results in

∂αkρkψk
∂t

+∇ · αkρkψkuk = ∇ · αkJk +∇ · αkJFluctk + αkρkgk

+ Ωmass
k ψintk + Ωψ

k

where JFluctk = − 〈Xkρ0ψ0u′k〉
αk

is the flux of ψ due to fluctuations in the phase k velocity,
ψintk is the effective value of ψ that is transferred to phase k from the other phases due
to mass transfer, or phase change, and Ωψ

k is a flux of ψ to phase k not due to bulk mass
transfer from the other phase(s). This is the averaged generic balance equation. To obtain
balance at the interface, the generic jump balance equation requires the constraint

no. of phases∑
k=1

Ωmass
k ψintk + Ωψ

k = M (127)

where M = 〈m〉 is the expected net effect of all the interfacial ψ − source terms. With
this generic balance equation, the phasic species mass, momentum, and energy equations,
as well as the phasic entropy inequality, can readily be determined.
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3.1.5 Species Mass Balance

The microscopic species mass balance equation can be written as

∂ρs0
∂t

+∇ · ρs0us0 = ṙs (128)

where ρs0 is the species partial density, us0 is the species bulk velocity, and ṙs is the genera-
tion or source of the species due to chemical reactions. The species mass balance equation
is not usually written this way because not much is usually known about individual species
velocities. Instead, it is usually cast as

∂ρs0
∂t

+∇ · ρs0u0 = ∇ · ρs0(u0 − us0) + ṙs (129)

because of the availability (to a certain extent) of acquired empirical knowledge of the
behavior of the first term on the right hand side of this equation (species diffusion). This
equation is in the form of the generic balance equation (118) with the assignments of

ψ0 =
ρs0
ρ0

, J0 = ρ0
ρs0
ρ0

(u0 − us0), g0 =
ṙs

ρ0

. (130)

Thus the averaged species mass balance equation takes the form

∂

∂t
〈Xkρ

s
0〉+∇ · 〈Xkρ

s
0u0〉 = ∇ · 〈Xkρ

s
0(u0 − us0)〉+ 〈Xkṙ

s〉

+ 〈[ρs0(u0 − uint)− ρs0(u0 − us0)] · ∇Xk〉 . (131)

Again introducing the fluctuating velocity along with the definitions of averaged quanti-
ties, the final form of the averaged species mass balance equation is

∂αkρ
s
k

∂t
+∇ · αkρskuk = ∇ · 〈Xkρ

s
0(u0 − us0)〉

− ∇ · 〈Xkρ
s
0u
′
k〉

+ 〈ρs0(u0 − uint) · ∇Xk〉
− 〈ρs0(u0 − us0) · ∇Xk〉
+ Ṙs

k (132)

where the terms on the right-hand side of (132) are the relative species flux, fluctuational
diffusion, phase change, mass exchange, and average generation rate in phase k due to
chemical reactions, Ṙs

k ≡
〈Xk ṙs〉
αk

, respectively.
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3.1.6 Momentum Balance

The averaged momentum balance equation results from the generic averaged balance
equation with the assignments of

ψ0 = u0, J0 = T0, g0 = g0 (133)

to give:

∂αkρkuk
∂t

+∇ · αkρkuk ⊗ uk = ∇ · αk(Tk + T Fluct
k ) + αkρkgk

+ Ωmom
k + uintk Ωmass

k (134)

where the fluctuating stress T Fluct
k and the interfacial momentum source Ωmom

k are given
by

T Fluct
k ≡ −〈Xkρ0u

′
k ⊗ u′k〉
αk

(135)

Ωmom
k ≡ −〈T0 · ∇Xk〉 . (136)

The averaged interfacial momentum balance constraint (jump condition) is

γ =

no. of phases∑
k=1

Ωmom
k + uintk Ωmass

k (137)

where γ is the interfacial momentum source, i.e. surface tension source.

3.1.7 Energy Balance

The assignment of

ψ0 = E0 = e0 +
1

2
u0 · u0 (138)

J0 = T0 · u0 + q0 (139)
g0 = g0 · u0 + ε0 (140)
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to the variables of the generic averaged balance equation give the averaged energy balance
equation

∂

∂t
αkρk

(
ek +

1

2
uk · uk + eFluctk

)
+∇ · αkρkuk

(
ek +

1

2
uk · uk + eFluctk

)
= ∇ · [αk(Tk + T Fluct

k ) · uk]
−∇ · αk(qk + qFluctk ) + αkρk(εk + gk · uk)

+ Ωenergy
k + Ωmom

k · uintk + Ωmass
k

(
eintk +

1

2
uintk · uintk

)
(141)

where

eFluctk ≡ 1

2

〈Xkρ0u
′
k · u′k〉

αkρk
(142)

is the fluctuation kinetic energy,

qFluctk ≡ 〈Xkρ0u
′
ke
′
k〉

αk
+
〈XkT0 · u′k〉

αk
+

1

2

〈Xkρ0u
′
k(u

′
k · u′k)〉

αk
(143)

is the fluctuation energy flux,

εk ≡
〈Xkρ0ε0〉
αkρk

(144)

is the energy source,

Ωenergy
k ≡ 〈q0 · ∇Xk〉 (145)

is the interfacial heat source, and

Ωmom
k · uintk ≡ −〈T0 · u0 · ∇Xk〉 (146)

is the interfacial work term. The averaged interfacial energy balance constraint (interface
jump condition) is

no. of phases∑
k=1

Ωenergy
k + Ωmom

k · uintk + Ωmass
k

(
eintk +

1

2
uintk · uintk

)
= ξ (147)

where ξ is the interfacial energy source. The kinetic energy associated with the velocity
fluctuations, eFluctk , is a type of “turbulent” kinetic energy. Sometimes the sum ek + eFluctk

is interpreted as the effective internal energy per unit mass of phase k.
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It is sometimes useful to have an expression for the balance of fluctuation kinetic en-
ergy, eFluctk . Its evolutionary description is derived by introducing the partition u′k =
u0 − uk into the microscopic pure phase momentum balance, taking the dot product
of this equation with Xku

′
k, and then performing the statistical average over configura-

tions (keeping in mind that 〈Xkρ0u
′〉 vanishes) to obtain (details are left to the reader, see

e.g. [41])

αkρk
∂eFluctk

∂t
+ αkρkuk · ∇eFluctk = αkT

Fluct
k : ∇uk

−∇ · 〈Xkρ0
u′k · u′k

2
u′k〉

+ 〈Xku
′
k · (∇ · T0 + ρ0g0)〉 . (148)

This equation exhibits some similarity to the equation of evolution of the fluctuational
kinetic energy in a single-phase turbulent fluid [42]. The first term on the right side de-
scribes the influence of the gradient of uk on the development of eFluctk , the second term is
expected to diffuse eFluctk , and the last term represents the power developed by the stresses
and external forces [35].

For most multiphase flows, including some very (conceptually) simple flows such as
gas flow through a packed bed or through a pebble-bed nuclear reactor, the nature of eFluctk

is somewhat different than that of a turbulent single-phase flow. Contrary to a single-
phase fluid in which the fluctuations disappear for slow flows, these fluctuations for a
multiphase flow exist however slow the flow. For this reason, eFluctk that is produced by
hydrodynamic interactions between the phases has been called “pseudo-turbulence,” for
example by Lhuillier [35].

3.1.8 Entropy Inequality

The local form of the entropy inequality (106), sometimes called the “Second Law of
Thermodynamics,” is used to place restrictions on the constitutive relations used to give
unique phase or material behaviors. With the assignment of

ψ0 = s0, J0 = −q0

θ0

, g0 =
ε0

θ0

(149)
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to the variables of the generic averaged balance relationship, the averaged entropy inequal-
ity results,

∂αkρksk
∂t

+∇ · αkρkskuk ≥ ∇ · αk(Φk + ΦFluct
k )

+ αkρkSk + Ωentropy
k + Ωmass

k sintk (150)

where

Φk ≡ −

〈
Xk

q0

θ0

〉
αk

(151)

is the entropy flux,

ΦFluct
k ≡ −〈Xkρ0s

′
ku
′
k〉

αk
(152)

is the fluctuation entropy flux,

Sk ≡

〈
Xk

ρ0ε0
θ0

〉
αkρk

(153)

is a volumetric entropy source, and

Ωentropy
k ≡

〈
q0

θ0

· ∇Xk

〉
(154)

is an interfacial entropy source. This entropy inequality corresponds to what Drew and
Passman [33] call the microscopic entropy inequality. A macroscopic entropy inequality
can be obtained by summing inequalities (150) over all of the phases or materials present
in the mixture (for details, see Truesdell [43] and the other authors contained therein). The
macroscopic entropy inequality is useful for placing restrictions on the phasic or material
interaction constitutive relations. The averaged interfacial entropy inequality (interfacial
jump condition) is

no. of phases∑
k=1

Ωentropy
k + Ωmass

k sintk ≥ 0 . (155)
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3.1.9 Volume Fraction Propagation Equation

There remains one very important relationship to derive, a dynamic relationship that ef-
fectively reflects boundary conditions at the microscale. It accounts for the fact that the
constituent volume fractions may change without affecting the gross motion and, in a
sense, models the microstructural force systems operating within the multiphase mixture.
Beginning with the previous Lagrangian interface material derivative relationship for Xk,

∂Xk

∂t
+ uint · ∇Xk = 0 (156)

this equation is averaged to give〈
∂Xk

∂t
+ uint · ∇Xk

〉
=
∂αk
∂t

+ 〈uint · ∇Xk〉 = 0 . (157)

Introducing the fluctuating interface velocity u′I = uint − uI , where uI is the average
interface velocity, into this equation yields

∂αk
∂t

+ 〈uint · ∇Xk〉 =
∂αk
∂t

+ 〈(uI + u′I) · ∇Xk〉

=
∂αk
∂t

+ uI · ∇αk + 〈u′I ·Xk〉

=
∂αk
∂t

+ uI · ∇αk − Ωvol
k

= 0 (158)

where Ωvol
k (for which a constitutive description will be needed) is the driving function for

the change of volume fraction αk with time. In summary, the volume fraction propagation,
or volume fraction evolution equation is written as

∂αk
∂t

+ uI · ∇αk = Ωvol
k . (159)

The volume fraction evolution equation plays a central role in modern, well-posed two-
phase models with correct wave dynamics.

Even before 2000, past researchers had proposed and utilized various forms of the in-
dependent volume fraction evolution equation: second order (in time) with “microinertia”
effects [29,44], first order (in time) as above with “viscous damping” effects [45–50], and
zeroth order (in time) which amounts to a steady-state version balancing the microstruc-
tural forces operating within the Ωvol

k function [33, 51–56]. Most of these were also used
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in conjunction with so called “two pressure” two-phase flow models, which will be ex-
amined next. Since 2000, the literature has become much more voluminous, documenting
the variations of models utilizing an independent volume fraction evolution equation, usu-
ally with independent phasic pressures. Most are from Europe. It is not the intent here to
provide a review of such.

To gain closure for this set of generic material (fluid) balance equations, additional
relations must be specified which will restore information that was lost during the averag-
ing process, and render the model material specific. All of these relations are collectively
referred to as constitutive relations. Those that are pertinent to the RELAP-7 equation
system will be discussed in the following section on constitutive equations, but it is easier
to discuss the microstructural force model, which is an important part of Ωvol

k , in the vol-
ume fraction evolution equation now, before reducing the multi-dimensional model above
(which will be applied in other INL MOOSE-based applications) to the 1-D variable cross-
sectional area equation system employed in RELAP-7.

The need for, and form of, a dynamic volume fraction evolution equation is presented
next with deliberate choice of an “intuitive” engineering approach over, perhaps, a “rig-
orously theoretical” approach. Consider a cell mixture physics model for two-phase flow
in which a fixed volume V is instantaneously filled with two immiscible constituents or
phases (e.g. from a computational fluid dynamical modeling point of view, these two
constituents may have been advected into a mixed cell control volume). These two con-
stituents have masses m1 and m2 occupying volumes V1 and V2, respectively, such that

V1 + V2 = V . (160)

The constituent phases have material density ρ1 and ρ2, respectively, so

V = V1 + V2

=
m1

ρ1

+
m2

ρ2

(161)

or

1 =
V1

V
+
V2

V
= α1 + α2

=
m1

V ρ1

+
m2

V ρ2

(162)

where α1 = V1

V
and α2 = V2

V
are now volume fractions (or with ensemble averaging,

expected phasic presence) of each constituent or phase. For each phase, because ρ1 = m1

V1
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and ρ2 = m2

V2
, using a generic equation of state gives

p1 = f1(ρ1, e1)

= f1

(
m1

V1

, e1

)
(163)

p2 = f2(ρ2, e2)

= f2

(
m2

V2

, e2

)
. (164)

Generally the pressures p1 and p2 of the two phases are not equal. In fact, if V1 and V2 are
adjusted (subject to the V ∗1 + V ∗2 = V constraint) until the two phase pressures are equal
to the “equilibration” or “equilibrium pressure” or “relaxed pressure”, p, then

p = f1

(
m1

V ∗1
, e1

)
= f2

(
m2

V ∗2
, e2

)
. (165)

At this equilibrium pressure the corresponding phase volumes yield the equilibrium vol-
ume fractions

αe1 =
V ∗1
V
, αe2 =

V ∗2
V

. (166)

Alternatively, equations (163) and (164) can be rewritten as

p1 = f1(ρ1, e1)

= f1

(
m1

α1V
, e1

)
(167)

p2 = f2(ρ2, e2)

= f2

(
m2

α2V
, e2

)
= f2

(
m2

(1− α1)V
, e2

)
(168)

and equivalently, α1 can be varied until the equilibrium pressure is obtained along with the
corresponding equilibrium volume fraction(s). Note also that, for two phases α1 +α2 = 1
and consequently dα1

dt
= −dα2

dt
and d2α1

dt2
= −d2α2

dt2
. Intuitively, this can be accomplished in

a dynamical manner with
dα1

dt
=
p1 − p2

τ
. (169)

If α1 is compressed too much (such that p1 > p2) then α1 will increase with time (i.e.
relax) letting p1 reduce while α2 decreases, thereby letting p2 increase. This process will
continue until p1 = p2 = p and thus dα1

dt
= 0. The relaxation rate, τ , controls the rate at

which the phases (pressures) equilibrate or relax.
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With analogy to the classical dynamics of simple mass-dashpot systems, a more gen-
eral dynamical description of volume fractions could even be considered, wherein

d

dt

[
(microinertia)× dα1

dt

]
+ (compression viscosity)× dα1

dt
= (microstructural forces)

= F . (170)

The microstructural force F is a relaxation term that is intended to model the driving force
or resistance exhibited by the mixture to changes in its configuration (volume fractions).
Playing further upon this simple abstraction (analogy), the “microinertia” function is anal-
ogous to “mass” and the “compression viscosity” function is analogous to the viscous
damping coefficient. As a simple example from mechanics, consider the compaction of a
gas-solid particle bed [57] with

F =

{
αsαg(ps − pg − βs) , ps − βs > 0
−αsαgpg , ps − βs ≤ 0

(171)

in accordance with the view of compaction as an irreversible process. βs is the “config-
uration pressure” of the bed. If the microinertia and the configuration pressure are set to
zero, then

dα1

dt
=
α1α2(p1 − p2)

µ
(172)

where for this example µ could be referred to as the “compaction viscosity”. Note the mul-
tiplicative coefficient α1α2 in the driving force F . This term is included for two reasons.
First, α1α2 is roughly proportional to the interfacial area per unit volume, Ai

V
. Second, bet-

ter behavior results in the single-phase limit, i.e. α1 → 0, (α2 → 1) or α2 → 0, (α1 → 1).
This concept will be further refined for the two-phase flow model of RELAP-7.

3.1.10 Multi-dimensional Two-Phase Governing Equations

Before moving on to the 1-D variable cross-sectional area form of the 7-equation two-
phase model (next section), it is useful to collect a simplified multi-dimensional version
of the mass, momentum, and energy balance equations, equations (115), (134), and (141)
respectively, as well as the volume fraction evolution equation (159) with simple pressure
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driving force. For the liquid (“liq” subscript) and vapor (“vap” subscript) phases, we have

∂ (αρ)liq
∂t

+∇ · (αρu)liq = Ωmass
liq (173)

∂ (αρu)liq
∂t

+∇ · (αρu⊗ u+ αpI)liq = pint∇αliq + λ(uvap − uliq)

+ (αρ)liq g + uintΩ
mass
liq (174)

∂ (αρE)liq
∂t

+∇ · [α(ρE + p)u]liq = pintuint · ∇αliq + λu′int(uvap − uliq)

− µp′int(pliq − pvap) + EintΩ
mass
liq +Qliq (175)

∂αliq
∂t

+∇αliq · uint = µ(pliq − pvap) +
Ωmass
liq

ρint
(176)

∂ (αρ)vap
∂t

+∇ · (αρu)vap = −Ωmass
liq (177)

∂ (αρu)vap
∂t

+∇ · (αρu⊗ u+ αpI)vap = pint∇αvap − λ(uvap − uliq)

+ (αρ)vapg − uintΩmass
liq (178)

∂ (αρE)vap
∂t

+∇ · [α(ρE + p)u]vap = pintuint · ∇αvap − λu′int(uvap − uliq)

+ µp′int(pliq − pvap)− EintΩmass
liq −Qliq (179)

∂αvap
∂t

+∇αvap · uint = −µ(pliq − pvap)−
Ωmass
liq

ρint
(180)

where uint is the interface velocity inside the two-phase control volume and u′int is the
average interfacial velocity. The pressure exerted on the interfacial surface inside the two-
phase control volume, interface pressure, is denoted pint and the average interfacial pres-
sure by p′int. In these equations Qliq denotes the direct energy transfer from the vapor
phase to the liquid phase not due to interphase mass transfer, and Ek = ek + 1

2
uk · uk +

ghk,datum (k = liq, vap) represents the phasic total energy. Note that in a two-phase sys-
tem, the saturation constraint allows either (176) or (180) to be replaced by the algebraic
relation

αvap = 1− αliq . (181)

In this relaxation model, µ has been redefined as the reciprocal of that used above to
intuitively describe the volume fraction evolution equation (where it was referred to, in a
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narrow context, as a “compaction viscosity”; before that it was referred to as compression
viscosity and as a relaxation rate time constant τ ). Now in this new form, µ will be
more generally called the pressure relaxation coefficient or function and similarly λ is
the velocity relaxation coefficient or function. Relaxation models play a key role in the
modern theory of hyperbolic partial differential equations – physically, analytically, and
numerically (see Leveque [58] for an introduction).

3.1.11 One-dimensional, Variable Cross-sectional Area, Seven Equation Two-phase
Model

Because it is not economical to solve the entire two-phase flow field with highly re-
solved three-dimensional computational fluid dynamics for an entire light water reactor
coolant system, it is necessary to construct a one-dimensional model for flow in pipes,
nozzles, and other components. The one-dimensional model is constructed from the multi-
dimensional model, following the approach developed in the one-dimensional Single-
Phase Flow Model Section 2.1, to allow the representation of continuously variable cross-
sectional area.

Consider flow through a duct with local cross-sectional area A = A(x, t). Actually,
most of the time we consider local cross-sectional area to depend upon position coordinate
x only, for which a time rate of change of cross-sectional area is not necessary because for
this case ∂A

∂t
= 0. However, A(x, t) is left inside the time derivative terms for generality

and possible future use. Applying the methods developed in the Single-Phase Flow Model
Section 2.1 to the 7-equation model in Section 3.1.10 results in:

∂ (αρ)liq A

∂t
+
∂ (αρu)liq A

∂x
= −ΓAintA (182)

∂ (αρu)liq A

∂t
+
∂αliqA (ρu2 + p)liq

∂x
= pintA

∂αliq
∂x

+ pliqαliq
∂A

∂x
+ Aλ(uvap − uliq)
− ΓAintuintA

− Fwall friction,liq − Ffriction,vap

+ (αρ)liq Ag · n̂axis (183)
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∂ (αρE)liq A

∂t
+
∂αliquliqA (ρE + p)liq

∂x
= pintuintA

∂αliq
∂x
− p̄intAµ(pliq − pvap)

+ ūintAλ(uvap − uliq)

+ ΓAint

(
pint
ρint
−Hliq,int

)
A

+Qint,liq +Qwall,liq (184)
∂αliqA

∂t
+ uintA

∂αliq
∂x

= Aµ(pliq − pvap)−
ΓAintA

ρint
(185)

for the liquid phase, and

∂ (αρ)vapA

∂t
+
∂ (αρu)vapA

∂x
= ΓAintA (186)

∂ (αρu)vapA

∂t
+
∂αvapA (ρu2 + p)vap

∂x
= pintA

∂αvap
∂x

+ pvapαvap
∂A

∂x
+ Aλ(uliq − uvap)
+ ΓAintuintA

− Fwall friction,vap − Ffriction,liq

+ (αρ)vapAg · n̂axis (187)

∂ (αρE)vapA

∂t
+
∂αvapuvapA (ρE + p)vap

∂x
= pintuintA

∂αvap
∂x

− p̄intAµ(pvap − pliq)

+ ūintAλ(uliq − uvap)

− ΓAint

(
pint
ρint
−Hvap,int

)
A

+Qint,vap +Qwall,vap (188)
∂αvapA

∂t
+ uintA

∂αvap
∂x

= Aµ(pvap − pliq) +
ΓAintA

ρint
(189)

for the vapor phase. As before, it is noted that for two-phase flow, either of the differential
relations (185) or (189) may be replaced with the algebraic relation

αvap = 1− αliq (190)

throughout, reducing the total number of equations to be solved to seven.

In equations (182)–(189), Γ is the net mass transfer per unit interfacial area from the
liquid to the vapor phase and Aint is the interfacial area per unit volume of mixture. Also,
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Hliq,int and Hvap,int are the liquid and gas total enthalpies at the interface, respectively.
The nomenclature has also been modified so that now uint and ūint are, respectively, the
interfacial velocity and average interfacial velocity; and pint and p̄int are, respectively, the
interfacial pressure and average interfacial pressure. In the momentum balance equations
n̂axis is the unit vector directly along the axis of the duct, which is also the ± flow direc-
tion. Of course Fwall friction,k is the frictional force due to the wall acting on phase k and
Ffriction,k′ is the frictional force acting on phase k due to the presence of the other phase k′.
Similarly, Qint,k is the direct heat transfer from the interface to phase k and Qwall,k is the
direct heat transfer from the wall to phase k.

Equation system (182)–(189) is the basic system solved with RELAP-7. The sys-
tem was implemented within the MOOSE computational framework following a series of
logically-complete steps [59] designed to confidently allow physically- and mathematically-
meaningful benchmark testing at each step of increased complexity. This 7-equation two-
phase model allows both phases to be compressible. Because pvap is not, in many practical
problems, very different from pliq (with the exception of surface tension effects), most
traditional two-phase models assume pvap = pliq which allows the elimination of one de-
pendent variable and serves as a substitute for the volume fraction evolution equation.
However, pvap u pliq does not entail the same property for their partial derivatives [52].
Therefore the assumption of pvap = pliq is very restrictive when derivatives are involved.
As pointed out by Boure and Delhaye [60], it requires that pressure disturbances have the
same average effect on the two phases and, in particular, that they propagate at the same
velocity within the phases. While the assumption pvap = pliq has proved useful in many
cases, it is definitely too restrictive when propagation phenomena are important2. The
RELAP-7 approach forgoes this assumption and retains the 7-equation model as its basis.

More importantly, the 7-equation model allows for complete mechanical and thermo-
dynamic non-equilibrium between the phases and it is hyperbolic and well-posed in the
sense of Hadamard3. The system has symmetrically occurring eigenvalues and eigen-

2With the complex characteristics that can occur with the classical 6-equation model, it is not clear how
to set the boundary conditions, and high wave number instabilities occur during convergence testing. It
has been argued that equation sets with complex characteristics may still model a range of phenomena quite
adequately if the numerical method introduces sufficient dissipation to damp the high frequency instabilities.
There are obviously real physical effects that do this but are left out of the equations. As pointed out in [61]
one does not always know whether these effects are important and under what conditions they are important.

3The mathematician Jacques Hadamard [62] espoused that a “well-posed” mathematical model of phys-
ical phenomena should have the properties that (1) a solution exists, (2) the solution is unique, and (3) the
solution’s behavior depends continuously upon the initial conditions. Problems that are not well-posed are
said to be “ill-posed.” Early researchers in two-phase flow knew that, if due diligence was not exercised, an
ill-posed formulation could result; and they understood the need for a well-posed model, as summarized in
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vectors with respect to the two-phases; its wave speeds (eigenvalues) are (u ± c)liq and
(u ± c)vap for the genuinely nonlinear fields, and uliq, uvap, and uint (multiplicity 2) for
the linear degenerate fields. This 7-equation two-phase model is a relaxation model and
it has the very desirable feature of naturally devolving to simpler, even classical, models
upon mechanical and/or thermodynamical relaxation [64]. Thus, this model can readily
couple to simpler models via a natural transition from the 7-equation model to a classical
6-equation (ill-posed) model, a 5-equation Kapila model [65, 66], a 4-equation homoge-
neous relaxation model (HRM), or a 3-equation homogeneous equilibrium model (HEM).
It is noted that, because of this feature, experience shows that some physically and math-
ematically realistic solutions may, upon first examination, appear counter-intuitive to the
inexperienced modeler. More will be said about this later.

3.2 Seven-Equation Two-Phase Flow Constitutive Models

Without additional closure equations the balance relations derived above are generic, i.e.
they apply to all materials (fluids). They must made to apply to the unique material (fluid)
being considered – material specific. Also, though averaging the microlevel balance equa-
tions led to a “simplified” or perhaps more tractable model, this simplification (averaging)
led to a loss of information, and some additional relations must also be specified to sup-
ply (or restore) at least some information that was lost in this process4. Collectively, any
additional relations, or sub-models, that must be specified to render mathematical closure
(allowing a solution to be obtainable) to the generic balance equations are known as “con-
stitutive relations”. Familiar examples of constitutive relations from single-phase flow
include ideal gas equation of state, Newtonian fluid stress-rate of strain laws, Fourier’s
law for heat conduction, k-ε turbulence model.

Because the 7-equation two-phase model’s most unique features are reflected in the
presence of a volume fraction evolution equation, interfacial pressure and velocity, and
mechanical relaxation terms involving pressure and velocity relaxation, it is natural to be-
gin with their constitutive relations. Constitutive ideas associated with the volume fraction
evolution equation were discussed previously for pedagogical reasons. Thermodynamical
relaxation will be discussed subsequently, followed by other closures.

Hughes et al. [63].
4The process of averaging the balance equations produced a system with more unknowns than equations;

thus postulates or empirical correlations are required to resolve this deficiency.
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3.2.1 Interface Pressure and Velocity, Mechanical Relaxation Coefficients

In the original 7-equation model of Baer and Nunziato [49], pint was chosen to be equal to
the phasic pressure of the phase with the largest acoustic impedance which for two-phase
liquid-vapor flow corresponds to that of the liquid, i.e. pint = pliq. On the other hand, they
took the interface velocity uint to be that of the phase with the smallest acoustic impedance,
which for liquid-vapor flows corresponds to that of the vapor phase, or uint = uvap. Later,
Saurel and others chose the following interfacial values

pint =
∑
k=1,2

αkpk (191)

uint =

∑
k=1,2 αkρkuk∑
k=1,2 αkρk

. (192)

In this early research, mechanical relaxation parameters µ and λ were also specified in
a, more or less, ad hoc manner. Abgrall and Saurel [67] introduced a clever generaliza-
tion to the development of the 7-equation model, the discrete equation method (DEM),
which permits some interesting closure capability. In reviewing the traditional approach
presented above, the microscopic level, single-phase balance equations (PDEs) are first av-
eraged to obtain macroscopic averaged balance equations (again PDEs). Then appropriate
simplifying assumptions, including constitutive relations, are applied to this macroscopic
system giving a simplified averaged balance equation system. Finally, the simplified aver-
aged PDE system is discretized numerically using finite difference, finite volume, or finite
element methods and the numerical solution is obtained.

With the DEM approach, a generic phase distribution topology is first assumed, then
a discretized solution is developed within the computational cell employing Riemann or
approximate Riemann methods. Then finally, this discrete local solution is effectively av-
eraged over the cell volume and time to obtain a meaningful macroscopic solution. The
DEM method carries a pressure and velocity for each phase and, because it effectively
only solves Euler equations locally, is hyperbolic and well-posed and gives correct wave
dynamics. But this new homogenization method offers an additional bonus; the DEM can
be used not only to obtain the 7-equation model above, but also explicit closure formulas
for pint, uint, µ, and λ that are symmetric, compatible with the second law of thermo-
dynamics, and responsible for the fulfillment of interface conditions when dealing with
contact/interface problems! In the continuous limit of small mesh spacing and time steps
along with employment of the Godunov weak wave limit, the finite closure relations con-
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verge [14, 68] to

pint = p̄int +
ZliqZvap
Zliq + Zvap

sgn
(
∂αliq
∂x

)
(uvap − uliq) (193)

p̄int =
Zvappliq + Zliqpvap

Zliq + Zvap
(194)

uint = ūint + sgn
(
∂αliq
∂x

)
pvap − pliq
Zliq + Zvap

(195)

ūint =
Zliquliq + Zvapuvap

Zliq + Zvap
(196)

λ =
1

2
µZliqZvap (197)

µ =
Aint

Zliq + Zvap
(198)

where λ is the velocity relaxation coefficient function, µ is the pressure relaxation coef-
ficient function, Zk = ρkck, (k = liq, vap), is the phasic acoustic impedance and Aint is
the specific interfacial area (i.e. the interfacial surface area per unit volume of two-phase
mixture) which must be specified from some type of flow regime map or function. The
DEM model for two-phase flow of water and its vapor in a one dimensional duct of spa-
tially varying cross-section was derived and demonstrated with these closures by Berry et
al. [12].

Remark (1): From this specification of λ and µ it is clear that special coupling is
rendered. To relax the 7-equation model to the ill-posed classical 6-equation model, the
pressures should be relaxed toward a single pressure for both phases. This is accomplished
by specifying the pressure relaxation coefficient to be very large, i.e. letting it approach
infinity. But if the pressure relaxation coefficient goes to infinity, so does the velocity
relaxation rate also approach infinity. This then relaxes the 7-equation model not to the
classical 6-equation model, but to the mechanical equilibrium 5-equation model of Kapila.
This reduced 5-equation model is also hyperbolic and well-posed. The 5-equation model
provides a very useful starting point for constructing multi-dimensional interface resolv-
ing methods which dynamically captures evolving, and even spontaneously generating,
interfaces [69]. Thus the 7-equation model of RELAP-7 can be relaxed locally to couple
seamlessly with such a multi-dimensional, interface resolving code.
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Remark (2): Numerically, the mechanical relaxation coefficients µ (pressure) and λ
(velocity) can be relaxed independently to yield solutions to useful, reduced models (as
explained previously). It is noted, however, that relaxation of pressure only by making
µ large without relaxing velocity will indeed give ill-posed and unstable numerical solu-
tions, just as the classical 6-equation two-phase model does, with sufficiently fine spatial
resolution, as confirmed in [12, 70].

Remark (3): Even though the implementation of the 7-equation two-phase model
within RELAP-7 (or any other code for that matter) does not use the generalized approach
of DEM, the interfacial pressure and velocity closures as well as the pressure and velocity
relaxation coefficients of Equations (193) to (198) are utilized.

3.2.2 Wall and Interphase Friction

A simple wall friction model results from making the same assumptions as for single-
phase duct flow with the exception that the duct wall area over which the shear stress acts
is reduced by the fraction of the wall area which the phase occupies. Thus

Fwall friction,k =
fk
2dh

ρkuk |uk|αkA (199)

for phases k = (liq, vap), where fk is the wall friction factor associated with phase k. As
discussed in Section 2.2.1, the hydraulic diameter dh depends on the shape of the cross
section, and the position x in the pipe.

The friction force acting between the two phases due to their relative motion is also
given in analogy to that of single-phase duct flow:

Ffriction,k′ = fk, k′
1

2
ρk(uk − uint) |uk − uint|AintA (200)

for k = (liq, vap), k′ = (vap, liq), with fk,k′ denoting the friction factor acting upon phase
k due to the (relative) motion of the other phase k′.

The frictional pressure drop in each phase will be different in general due the different
velocities of the two phases. However, because of the tendency toward pressure equilib-
rium between the phases an effective pressure drop will be realized.
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3.2.3 Wall and Interface Direct Heat Transfer

Without wall boiling, the direct, convective heat transfer from the wall to fluid phase k
will be the same as that of a single-phase except the duct wall area over which this heat
transfer can occur is weighted by the wetted fraction of the phase. That is,

Qwall,k = Hw,kaw (Tk − Twall)αkA (201)

for phase k = (liq, vap), where Hw,k is the wall convective wall heat transfer coefficient
associated with phase k. Similarly, the direct heat transfer from/to the interface to/from
the phase k, which will also be used to determine the mass transfer between the phases, is

Qint,k = hT,k (Tint − Tk)AintA (202)

with hT,k denoting the convective heat transfer coefficient between the interface and phase
k. The phasic bulk temperature Tk is determined from the respective phase’s equation of
state.

3.2.4 Interphase Mass Transfer

For a vapor to be formed from the liquid phase (vaporization) energy must be added to the
liquid to produce vapor at nucleation sites; whether the liquid is heated directly or decom-
pressed below its saturation pressure. A liquid to vapor phase change may occur based
on two main mechanisms. The first is related to vaporization induced by external heating
or heat transfer in a nearly constant pressure environment which is called heterogeneous
boiling, or simply boiling. This heat input can occur through a solid/liquid interface with
the solid typically hotter than the liquid, or through a liquid/gas interface with the gas
being hotter than the liquid.

The second case corresponds to “flashing” vaporization such as cavitation induced
by strong and rapid depressurization of the liquid phase (this is sometimes referred to as
homogeneous boiling). In this relaxation process no extra energy is needed for the phase
change; the necessary energy is already contained in the liquid phase in the form of internal
energy. The process of phase change from vapor to liquid is known as condensation. The
vapor condenses when it loses energy by heat transfer to a cool surface, but decompression
of a saturated vapor also causes condensation at nucleation sites in the vapor. Nucleation
sites are small particles or impurities in a fluid, or cavities or protrusions on a surface
from which bubbles or droplets can grow during a change of phase. The phase change by
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condensation is similar to the first mechanism discussed and will be treated in the same
manner.

To examine the mass flow rate between phases, local mechanisms of the vaporiza-
tion (condensation) process are considered between the liquid phase and its associated
vapor in the presence of temperature gradients. The mechanisms of interest here are dom-
inated by heat diffusion at the interface. The pertinent local equations to consider are the
mass and energy equations. As a vaporization front propagates slowly (on the order of
1 mm/s to 1 m/s) compared to acoustic waves present in the medium (which propagate
with speeds of the order 1 km/s), acoustic propagation results in quasi-isobaric pressure
evolution through vaporization fronts. The momentum equation is therefore not needed –
because the quasi-isobaric assumption (neglecting the pressure and kinetic energy varia-
tions in the total energy equation) is made. The mass and energy balance equations are
integrated over a “pill-box” control volume containing an interface (see e.g. Kuo [71]), as
shown in the upper graphic of Figure 2, to obtain the algebraic “jump conditions”

ρliq,intuliq,int · n̂liq + ρvap,intuvap,int · n̂vap = 0 (203)
or

Γliq + Γvap = 0 (204)

for mass, and

Γliqhliq,int + qliq,int · n̂liq + Γvaphvap,int + qvap,int · n̂vap = 0 (205)

for energy, where the subscript int denotes the interface location. For convection domi-
nated heat flux at the interface, and using local equilibrium conditions between phases at
the local interface (equality of pressure and temperature), the heat fluxes can be defined as

qk,int · n̂k = −kk∇Tk,int · n̂k
= hT,k (Tint − Tk) (206)

where Tint is the common interface temperature of phases. Combining these relations
gives a simple expression for the interphase mass flow rate

Γ = Γvap =
hT,liq (Tliq − Tint) + hT,vap (Tvap − Tint)

hvap,int − hliq,int

=
hT,liq (Tliq − Tint) + hT,vap (Tvap − Tint)

Lv (Tint)
(207)

where Lv (Tint) = hvap,int−hliq,int represents the latent heat of vaporization. The interface
temperature is determined by the saturation constraint Tint = Tsat(p) with the appropriate
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pressure p = p̄int determined above, the interphase mass flow rate is thus determined. The
lower graphic of Figure 2, schematically shows the p-T state space in the vicinity of the
saturation line (shown for the case with Tliq < Tvap).

To better illustrate the model for vaporization or condensation, Figure 3 shows pure
liquid and pure vapor regions separated by an interface. Representative temperature pro-
files are shown for heat transfer from vapor to liquid or liquid to vapor. As discussed by
Moody [1], either vaporization or condensation can occur for both temperature profiles.
The interphase mass transfer is determined by the net interfacial heat transfer: if net heat
transfer is toward the interface, vapor will form; conversely, if net heat transfer is away
from the interface, liquid will condense. Figure 3 shows heat transfer rates qvap and qliq
from the vapor and liquid sides of the interface. For bidirectional phase change (vapor-
ization and condensation), mass transfer based on heat balance at the interface is adopted.
When vaporization occurs, vapor is assumed to form at a saturated interface temperature
Tint = Tsat(p̄int). If condensation occurs, liquid is assumed to form also at a saturated
interface temperature Tint = Tsat(p̄int). The interfacial total enthalpies correspond to the
saturated values in order that the interphase mass transfer rate and conservation of total
energy be compatible:

Hk,int = hk,int +
1

2
u2
int (208)

for phase k = (liq, vap), where hk,int is the phase k specific enthalpy evaluated at the
interface condition. Phasic specific enthalpy depends upon the equation of state used and
will be discussed with the equations of state. The interfacial density corresponds to the
liquid saturated density ρint = ρliq,sat(pint).

3.2.5 Stiffened Gas Equation of State for Two-phase Flows

With the 7-equation two-phase model each phase is compressible and behaves with its own
convex equation of state (EOS). For initial development purposes it was decided to use a
simple form capable of capturing the essential physics. For this purpose the stiffened gas
equation of state (SGEOS) [3] was selected

p(ρ, e) = (γ − 1)ρ(e− q)− γp∞ (209)

where p, ρ, e, and q are the pressure, density, internal energy, and the binding energy of
the fluid considered. The parameters γ, q, and p∞ are the constants (coefficients) of each
fluid. The first term on the right hand side is a repulsive effect that is present for any
state (gas, liquid, or solid), and is due to molecular vibrations. The second term on the
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Figure 3. Vaporization and condensation at a liquid-vapor inter-
face (after Moody [1]).
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right represents the attractive molecular effect that guarantees the cohesion of matter in
the liquid or solid phases. The parameters used in this SGEOS are determined by using a
reference curve, usually in the

(
p, 1

ρ

)
plane.

LeMetayer [3] uses the saturation curves as this reference curve to determine the stiff-
ened gas parameters for liquid and vapor phases. The SGEOS is the simplest prototype
that contains the main physical properties of pure fluids, repulsive and attractive molecular
effects, thereby facilitating the handling of the essential physics and thermodynamics with
a simple analytical formulation. Thus each fluid has its own thermodynamics. For each
phase the thermodynamic state is determined by the SGEOS:

e(p, ρ) =
p+ γp∞
(γ − 1)ρ

+ q (210)

ρ(p, T ) =
p+ p∞

(γ − 1)cvT
(211)

h(T ) = γcvT + q (212)

g(p, T ) = (γcv − q′)T − cvT ln
T γ

(p+ p∞)γ−1 + q (213)

where T , h, and g are the temperature, enthalpy, and Gibbs free enthalpy, respectively, of
the phase considered. In addition to the three material constants mentioned above, two
additional material constants have been introduced, the constant volume specific heat cv
and the parameter q′. The method to determine these parameters in liquid-vapor systems,
and in particular the coupling of liquid and vapor parameters, is given in [3]. The values
for water and its vapor from that reference are given in Table 2. These parameter values
appear to yield reasonable approximations over a temperature range from 298 to 473K.

Unlike van der Waals type modeling where mass transfer is a thermodynamic path,
with the 7-equation two-phase model the mass transfer modeling, which produces a re-
laxation toward thermodynamic equilibrium, is achieved by a kinetic process. Thus the
7-equation model preserves hyperbolicity during mass transfer. From equation (212) it is
readily seen that the phase k specific enthalpy evaluated at the interface condition from
equation (208) is

hk,int = cp,kTint + qk (214)

because cp,k = γkcv,k.

The bulk interphase mass transfer from the liquid phase to the vapor phase Γ is due
to their difference in Gibb’s free energy. At saturated conditions the Gibb’s energies of
the two-phases are equal. It is necessary to determine the saturation temperature Tsat(p)
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for given pressure p = p̄int and the heat of vaporization Lv (Tsat(p̄int)) at this saturation
temperature with the SGEOS for each phase. For this calculation the procedure of [3] is
adopted. This procedure for the determination of SGEOS parameters can be made very
accurate provided the two reference states are picked sufficiently close to represent the
experimental saturation curves as locally quasi-linear. Restrictions occur near the critical
point, but away from this point wide ranges of temperatures and pressures can be consid-
ered. At thermodynamic equilibrium at the interface, the two phasic Gibbs free enthalpies
must be equal, gvap = gliq, so the use of equation (213) yields

ln (p+ p∞,vap) = A+
B

T
+ C ln(T ) +D ln (p+ p∞,liq) (215)

where

A =
cp,liq − cp,vap + q′vap − q′liq

cp,vap − cv,vap
(216)

B =
qliq − qvap

cp,vap − cv,vap
(217)

C =
cp,vap − cp,liq
cp,vap − cv,vap

(218)

D =
cp,liq − cv,liq
cp,vap − cv,vap

. (219)

Relation (215) is nonlinear, but can used to compute the theoretical curve Tsat(p). A
simple Newton iterative numerical procedure is used. With Tsat(p) determined, the heat of
vaporization is calculated as

Lv (Tint) = hvap,int − hliq,int
= hk,int

= (γvapcv,vapT + qvap)− (γliqcv,liqT + qliq) . (220)

3.3 Homogeneous Equilibrium Two-Phase Flow Model (HEM)

As remarked in Section 3.1.11 and Section 3.2.1, the 7-equation two-phase model nat-
urally reduces to simpler models with appropriate relaxation. If mechanical relaxation,
in which pressure and velocity are relaxed to a single value, is preformed the 5-equation
model of Kapila results. If, in addition, thermodynamic relaxation is performed, in which
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temperatures and Gibb’s energies are relaxed to a single value, the 3-equation Homoge-
neous Equilibrium Model (HEM) is obtained. The HEM model is also know as the EVET
(Equal Velocity, Equal Temperature) model, wherein it is implied that the pressures are
equal and a saturated condition, which also implies that the Gibb’s energies for the liquid
and vapor phases are equal. The 3-equation HEM model is the simplest (at least from the
balance equation viewpoint) and oldest of the two-phase model hierarchy [64], however
some of its other properties, e.g. effective sound speed, are more difficult, and may even
exhibit discontinuities in transitions from single- to two-phase.

For some applications where the HEM representation is physically appropriate, it may
be more economical to begin with the 3-equation HEM model, rather than carrying the
additional expense of a relaxed 7-equation model. The the 3-equation HEM model is in-
cluded also as a selectable model in RELAP-7. It is noted that a partially- or transitionally-
relaxed 7-equation model will be very useful for coupling of the spatial regions where the
unrelaxed 7-equation model is needed with spatial regions where the 3-equation HEM
model may be used.

3.3.1 HEM Field Equations

In the HEM model, the two phases in the mixture are assumed to be in thermodynamical
and mechanical equilibrium and the pressure in the mixture is taken to be equal to the
saturation pressure. Consequently, the two-phase mixture is effectively treated as a single
(pseudo) fluid whose properties are suitable averages of the phasic properties of the indi-
vidual phases. The balance equations for HEM are the same as those for the single-phase
flow as shown in (20) through (23); but each primary variable now represents the state of
a homogeneous mixture of two phases. Therefore, the primary variables are denoted with
an overbar as ρ̄, ρu, ρE and ρs, where for example ρ̄ = (1−α)ρliq,sat(T )+αρvap,sat(T ) is
the mixture density and α is again the probability of presence (or volume fraction) of the
vapor phase.

In the RELAP-7 solution of the HEM model, the primary variables are solved with
fully implicit time discretization and the vapor volume fraction is calculated with

α =
ρ̄− ρliq,sat(T )

ρvap,sat(T )− ρliq,sat(T )
(221)

where ρliq,sat(T ) and ρvap,sat(T ) are the saturated density of liquid and vapor respectively
for a given temperature T .
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3.3.2 HEM Constitutive Models

The same closure models are used for the HEM model as for the single-phase flow, such as
wall friction coefficients and convective heat transfer coefficients, except that the following
viscosity and thermal conductivity models are used:

µ̄ = µliq(1− α) + αµvap (222)
k̄ = kliq(1− α) + αkvap . (223)

The stiffened gas equation of state discussed above for the single-phase and 7-equation
two-phase model is used also for the HEM model.
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4 Heat Conduction Model

4.1 Heat Conduction Model

The heat conduction model calculates the temperature distributions in the solid compo-
nents in the nuclear reactor system, such as the fuel, pipe walls, core barrel and core ves-
sel, steam generator tubes, etc. It consists of a single, simplified energy balance equation,
i.e., the transient heat conduction equation

ρCp
∂T

∂t
−∇ · (k∇T )− q′′′ = 0 (224)

where ρ, Cp, k are density, specific heat, and thermal diffusivity, respectively, of the solid
materials. q′′′ is the volumetric heat source. Boundary conditions include three general
types. The first type is the Dirichlet boundary condition, which provides a fixed boundary
temperature

Tbc = T0 . (225)

The second type is the Neumann boundary condition, which provides a heat flux boundary
condition

q′′bc = −k ∂T
∂n̂bc

= q′′0 . (226)

The third type is the Robin boundary condition, which provides the convective heat trans-
fer boundary condition

− k ∂T
∂n̂bc

= hconv(Tcoolant − Tbc) . (227)

Both 1-D and 2-D solutions for the heat conduction model are available in RELAP-7.

4.2 Material Properties

Thermal properties, such as thermal conductivity k, material density ρ, and specific heat
capacity Cp, for three materials are implemented in RELAP-7: uranium dioxide, the gas
of the gap between the fuel rods and their cladding, and zircaloy. The implementation
is consistent with values used in MATPRO [72] whenever possible. The constant room-
temperature densities (ρ) are stored and are multiplied by temperature-dependent specific
heat capacities (Cp) to generate the volumetric heat capacities. For all of the properties,
constant values are assumed beyond the specified temperature ranges. Arbitrary low and
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high values of 5 and 5000K are included to avoid problems with out-of-range material
property data.

4.2.1 Uranium Dioxide

The reference density for uranium dioxide is ρ = 10980 kg/m3. Its specific heat capac-
ity information is provided in Section 2.2 of the MATPRO manual. Assuming that the
material is pure UO2 (with no PuO2), and that the oxygen-to-metal ratio is 2.0,

Cp =
296.7× 535.2852

T 2
(
exp

(
535.285
T

)
− 1
)2 exp

(
535.285

T

)
+ 2.43× 10−2T

+
2× 8.745× 107 × 1.577× 105

2× 8.3143T 2
exp

(
−1.577× 105

8.3143T

)
.

The uranium dioxide thermal conductivity data are taken from Section 2.3 of the MATPRO
manual. The general equation for the thermal conductivity of solid fuel is

k =
D

1 + T ′(1−D)

Cv
(A+BT ′′)(1 + 3eth)

+ 5.2997× 10−3T exp

(
−13358

T

)[
1 + 0.169

(
13358

T
+ 2

)2
]

(228)

where k is thermal conductivity (W/m-K), D is the fraction of theoretical density (dimen-
sionless); a value of 0.95 is currently assumed. A is a factor proportional to the point
defect contribution to the phonon mean free path. Assuming an oxygen-to-metal ratio of
2.0, this factor is 0.339 m-s/kg-K. B is a factor proportional to the phonon-phonon scat-
tering contribution to the phonon mean free path. Assuming no plutonium, this factor is
0.06867 m-s/kg-K. Cv is the phonon contribution to the specific heat at constant volume
(J/kg-K). For pure UO2, this is given by

Cv =
296.7× 535.2852

T 2
[
exp

(
535.285
T

)
− 1
]2 exp

(
535.285

T

)
(229)

eth is the linear strain term for temperatures above 300 K (dimensionless), which is given
by

eth =
∆L

L0

= 1.0× 10−5T − 3.0× 10−3 + 4.0× 10−2 exp

(
−6.9× 10−20

1.38× 10−23T

)
(230)
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where T is fuel temperature (K). If the fuel temperature is less than 1364K, T ′ = 6.5 −
0.00649T . For temperatures greater than 1834 K, T ′ = −1. For values between these two,
interpolation is employed (between these two temperatures).

4.2.2 Zircaloy

The reference density of zircaloy is 6551 kg/m3. Its specific heat capacity is obtained
by table look-up (see Table 4-2 in the MATPRO manual) with a temperature range of
300–1248 K. The zircaloy thermal conductivity is taken from Section 4.4 of the MATPRO
manual. The equation used is

k = a0 + a1T + a2T
2 + a3T

3 (231)

for 300 < T < 2098K, and k = 36 for T ≥ 2098K. The remaining ai parameters in (231)
are given in Table 8.

Table 8. Zircaloy thermal conductivity parameters.

a0 7.51
a1 2.09× 10−2

a2 −1.45× 10−5

a3 7.67× 10−9

4.2.3 Fuel Rod Gap Gas

Representative gap gas properties are developed for a combination of fill and fission prod-
uct gases. A 0.1066/0.1340/0.7594 mole fraction He/Kr/Xe mixture is modeled. A repre-
sentative fuel rod internal pressure of 4.1 MPa is assumed to determine the gap gas density.
Using the perfect gas relation and a temperature of 300 K yields ρ = 183.06 kg/m3. Using
the perfect gas relation, the specific heat capacity is determined to be Cp = 186.65 J/kg-
K. From Section 12.1.1 of the MATPRO manual, the gas mixture thermal conductivity is
given by

kmix =
n∑
i=1

[
kixi

xi +
∑n

j=1(1− δij)ψijxi

]
(232)
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where

ψij = φij

[
1 + 2.41

(Mi −Mj)(Mi − 0.142Mj)

(Mi −Mj)2

]
(233)

and

φij =

[(
1 + ki

kj

)1/2 (
Mi

Mj

)1/4
]2

2
2
3

(
1 + Mi

Mj

)1/2
(234)

and n is the number of components in mixture. Mi is the molecular weight of compo-
nent i (kg), xi is the mole fraction of component i, and ki is the thermal conductivity
of component i (W/m-K). The thermal conductivities of the three elements are given by
kHe = 2.639× 10−3T 0.7085, kKr = 8.247× 10−5T 0.8363, kXe = 4.351× 10−5T 0.8616. Us-
ing these equations, thermal conductivity values are provided, as a function of the mixture
temperature, for temperatures from 300 to 3000K.
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5 Numerical Methods

5.1 Spatial Discretization Algorithm

This section focuses on the weak statement associated to the strong form of the one-
dimensional, variable cross-sectional area form of the Euler equations (20)–(22) summa-
rized in Section 2.1.1. Start by writing the equations in “vector” form as

R(U) ≡ ∂U

∂t
+
∂F

∂x
− S = 0 (235)

where

U ≡

 ρA
ρuA
ρEA

 , F ≡

 ρuA
(ρu2 + p)A
ρuHA

 (236)

and S = S(U) consists of the remaining source terms. Note thatU and F are identical to
their meanings in the “constant-area” equations, up to multiplication by the area, A. The
variational statement proceeds by dotting (235) by an “admissible” vector test function
W (more details of which will be given momentarily), integrating over the domain Ω, and
applying the divergence theorem. Solutions U are sought such that∫

Ω

(
∂U

∂t
·W − F · ∂W

∂x
− S ·W

)
dΩ +

∫
Γ

(F ·W ) n̂x dΓ = 0 (237)

holds for all admissible W . Note that the test function W is not chosen arbitrarily. In
particular, we require thatW come from the space of vector functions

W ∈


w0

0

 ,
0
w
0

 ,
0

0
w

 (238)

where w ∈ W is a scalar test function. In the present work, and in general practice, the
spaceW is taken to be (a subspace of) the Hilbert space H1(Ω). This choice, for instance,
guarantees enough smoothness that (237) makes sense. The approximate problem then
proceeds by selecting only test functions from a finite-dimensional subspace of W , de-
noted by Wh, and which is spanned by the basis {φi}, i = 1, . . . , N . We then seek Uh

with components in the same space asWh, satisfying the boundary conditions, and such
that∫

Ω

(
∂Uh

∂t
·W h − F h · ∂W

h

∂x
− Sh ·W h

)
dΩ +

∫
Γ

(
F h ·W h

)
n̂x dΓ = 0 (239)
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holds for all W h defined analogously to (238), with components inWh. Note that (239)
has been placed in a “continuous” setting, that is, a mesh and finite element discretization
has been introduced requiring a continuous solution. Equation (239) remains a “weak”
restatement of the “strong” equations (235) in the sense that derivatives of the solution
and its flux need not be continuous. More will be said of this subsequently, in the upcom-
ing section on stabilization methods. Written out in component form, and denoting the
components of Uh by Uh

0 , Uh
1 , and Uh

2 , (239) expands to:∫
Ω

(
∂Uh

0

∂t
φi − Uh

1

∂φi
∂x

)
dΩ +

∫
Γ

Uh
1 n̂xφi dΓ = 0 (240)

∫
Ω

[(
∂Uh

1

∂t
− Uh

0 gx +
f

2dh
Uh

1

∣∣∣∣Uh
1

Uh
0

∣∣∣∣− ph∂A∂x
)
φi −

(
(Uh

1 )2

Uh
0

+ phA

)
∂φi
∂x

]
dΩ

+

∫
Γ

(
(Uh

1 )2

Uh
0

+ phA

)
n̂xφi dΓ = 0 (241)

∫
Ω

[(
∂Uh

2

∂t
+Hwaw(T h − Tw)A− Uh

1 gx

)
φi − Uh

1H
h∂φi
∂x

]
dΩ

+

∫
Γ

Uh
1H

hn̂xφi dΓ = 0 (242)

Equations (240)–(242) must hold for i = 1, . . . , N . Note that the approximate pressure, ph,
temperature, T h, and enthalpy,Hh are functions of the conserved variablesUh

0 , U
h
1 , U

h
2 . As

mentioned, a continuous Galerkin formulation is employed, and therefore the unknowns
are expressed in the same basis used for the test functions, i.e.

Uh
0 =

∑
j

(U0)jφj (243)

Uh
1 =

∑
j

(U1)jφj (244)

Uh
2 =

∑
j

(U2)jφj (245)

The coefficients (U0)j , (U1)j , and (U2)j vary in time only, and comprise the solution vector
at each iteration. Note that (240)–(242) are so-called “semi-discrete” equations: they
have been discretized in space, but the temporal derivatives remain in continuous form.
In Section 5.2 we discuss the various time discretization methods employed in RELAP-
7. Furthermore, it is well-known that a continuous Galerkin discretization of this set of
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hyperbolic equations is equivalent to a central difference method for a certain choice of
integration rule, and therefore will exhibit oscillatory instabilities unless some artificial
diffusion is added to stabilize the method. In Section 5.4, we discuss the SUPG (5.4.1)
and entropy viscosity (5.4.2) stabilization schemes used in the present work.

5.2 Time Integration Methods

RELAP-7, through MOOSE, supports a number of standard implicit time integration
methods such as the backward Euler (Section 5.2.1) and BDF2 (Section 5.2.2) methods.

5.2.1 Backward Euler

The backward Euler method [73] is a well-known, first-order, A-stable implicit time inte-
gration method. Given a generic semi-discrete equation in a form similar to (240)–(242),∫

Ω

(
∂uh

∂t
+G(uh)

)
φi dΩ = 0 (246)

the backward Euler method results in the temporal discretization∫
Ω

(
un+1 − un

∆t
+G(un+1)

)
φi dΩ = 0 (247)

where ∆t is the timestep, tn+1 = tn + ∆t, and un ≡ uh(tn) is a shorthand notation used
to refer to the finite element solution at time level n. Equation (247) is a fully-discrete
(possibly nonlinear) equation which must be satisfied for each i.

Note that the backward Euler method, when applied to the linear convection equation

∂u

∂t
+ a

∂u

∂x
= 0 (248)

yields a leading-order truncation error term of the form

∂u

∂t

∣∣∣∣
tn+1

=
un+1 − un

∆t
+

∆t

2

∂2u

∂t2

∣∣∣∣
tn+1

+O(∆t2)

=
un+1 − un

∆t
+
a2∆t

2

∂2u

∂x2

∣∣∣∣
tn+1

+O(∆t2) (249)
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where (249) follows from differentiating the continuous equation (248) with respect to
time:

∂2u

∂t2
= −a ∂

∂t

(
∂u

∂x

)
= −a ∂

∂x

(
∂u

∂t

)
= −a ∂

∂x

(
−a∂u

∂x

)
= a2∂

2u

∂x2
. (250)

Rearranging terms in (249) and adding a∂u
∂x

to both sides allows us to write

un+1 − un

∆t
+ a

∂u

∂x
=
∂u

∂t
+ a

∂u

∂x
− a2∆t

2

∂2u

∂x2
+O(∆t2) (251)

where all the continuous derivatives are assumed to be evaluated at time level tn+1. Thus,
the semi-discrete form of the linear convection on the left-hand side of (251) is equal to the
continuous parabolic partial differential equation on the right-hand side, which includes
“artificial” diffusion of O(a

2∆t
2

), to within O(∆t2). For this reason, we often say that
the backward Euler time discretization is inherently stabilizing for the hyperbolic equa-
tion (248). Obviously, the artificial viscosity for the complete scheme is a composite of
the artificial viscosity of both the time and spatial discretization.

The backward Euler time integration method should only be used for transients with
RELAP-7 as an initial scoping calculation, or if only the steady-state solution is of inter-
est. For accurate transient solutions with RELAP-7, the BDF2 time integration method,
described next, is highly recommended because it is a second-order (in time) discretiza-
tion.

5.2.2 BDF2

The backward differentiation formula (BDF) is a family of implicit methods for numer-
ically integrating ordinary differential equations. Some notable members of this family
include BDF1, which is equivalent to the backward Euler [74] method discussed in Sec-
tion 5.2.1, and BDF2, which is the highest-order BDF method which is still A-stable. For
fixed step-size ∆t, the BDF2 method applied to the ordinary differential equation

∂u

∂t
= f(t, u) (252)

u(t = 0) = u0 (253)

yields the update step:

un+1 =
4

3
un − 1

3
un−1 +

2

3
∆tf(un+1, tn+1) (254)
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Dividing through by 2
3
∆t, equation (254) can be alternatively written as

3
2
un+1 − 2un + 1

2
un−1

∆t
= f(un+1, tn+1) (255)

The left-hand side of (255) can be interpreted as a backward-difference approximation to
the continuous time derivative ∂u

∂t
, and may be employed in a manner analogous to (247)

to derive a fully-discrete system of equations:∫
Ω

( 3
2
un+1 − 2un + 1

2
un−1

∆t
+G(un+1)

)
φi dΩ = 0 (256)

based on the semi-discrete equations (240)–(242). Since BDF2 requires two old timesteps,
the method must be “bootstrapped” by a lower-order method, such as backward Euler,
when starting. The BDF2 method is recommended for most transient simulations with
RELAP-7.

5.3 The PCICE Algorithm

The PCICE-FEM scheme [19, 20, 75, 76] is a finite element method (FEM) spatial dis-
cretization of the Pressure-Corrected Implicit Continuous-fluid Eulerian (PCICE) algo-
rithm. The PCICE algorithm defines the temporal discretization and hydrodynamic cou-
pling procedure for the PCICE-FEM scheme. It is an advanced semi-implicit, mass-
momentum coupled pressure-based scheme. The governing hydrodynamic equations for
this scheme (for single phase) are the conservative form of the balance of momentum equa-
tions, mass conservation equation, and the total energy equation. An operator splitting pro-
cess is performed between explicit and implicit operators of the semi-implicit equations
to render the PCICE-FEM scheme in the class of predictor-corrector schemes. With the
complete set of semi-implicit governing equations in the PCICE-FEM scheme cast in this
form, an explicit predictor step and two semi-implicit pressure-correction steps with the
elliptic pressure Poisson solution are performed to implicitly couple the momentum, den-
sity, and pressure. The result of this predictor- corrector formulation is that the pressure
Poisson equation in the PCICE-FEM scheme is provided with sufficient internal energy
information to avoid an iterative scheme.

To develop an all-speed/all-fluid simulation capability, the conservative form of gov-
erning equations are required. For reader convenience, the single-phase, variable area
one-dimensional Euler equations with friction, wall-heating, and gravity forcing terms are
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recalled here by

∂(Aρ)

∂t
+
∂(Aρu)

∂x
= 0 (257)

∂(Aρu)

∂t
+
∂A(ρu2 + p)

∂x
= p

∂A

∂x
+Df + (Aρ)gx (258)

∂(AρE)

∂t
+
∂(Aρu)H

∂x
= Hw + (Aρu)gx (259)

where Aρ, Aρu, and AρE are the conserved variables. ρ is the fluid density, u is the fluid
velocity, p is the thermodynamic pressure, E ≡ e + 1

2
u2 is the specific total energy, e is

the internal energy, Df is the momentum friction drag, Hw is the “wall” heat transfer, and
gx is the strength of the gravity vector in the x-direction. The total enthalpy is given by

H =
AρE + Ap

Aρ

These equations can be written in compact differential form as
∂U

∂t
+
∂F

∂x
= Q (260)

where U is the vector of the conservative variables, {Aρ,Aρu,AρE}, F is the convective
flux vector, and Q is the source vector, given by

F =

 Aρu
(Aρu)2/Aρ+ Ap

AρuH

 , Q =

 0
p∂A
∂x

+Df + (Aρ)gx
Hw + (Aρu)gx

 .

The PCICE algorithm is based upon the idea that both the balance of momentum and mass
equations can be solved simultaneously to provide for a mathematically strong coupling
between Ap-Aρu-Aρ. The PCICE algorithm is basically composed of two phases, an
explicit predictor with two passes through a semi-implicit corrector.

5.3.1 Explicit Predictor

The explicit predictor step of the PCICE algorithm is composed of a basic two-step Runge-
Kutta time integration scheme, which is second-order accurate in time,

U 1/2 = Un − ∆t

2

∂ (Fproj)
n

∂x
+

∆t

2
Qn
proj (261)

U 1 = Un −∆t
∂ (Fproj)

1/2

∂x
+ ∆tQ

1/2
proj (262)
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where

Fproj =

 Aρu
(Aρu)2/Aρ

Aρu(AρE)/Aρ

 , Qproj =

 0
Df + (Aρ)gx
Hw + (Aρu)gx


is the partial flux that ignores the pressure contribution in the explicit predictor phase of the
PCICE algorithm. U1 is the partial solution for the explicit predictor phase of the PCICE
algorithm.

5.3.2 PCICE Algorithm Temporal Discretization

The target discretization for the PCICE algorithm temporal integration is based upon the
second-order Crank-Nicholson scheme. For the conservation of mass,

Aρi − Aρn = −∆t

2

∂

∂x

[
(Aρu)i + (Aρu)n

]
(263)

the balance of momentum,

(Aρu)i − (Aρu)n = −∆t

2

∂

∂x

[(
Aρu2

)i−1
+
(
Aρu2

)n]− ∆t

2

∂

∂x

[
A(pi + pn)

]
+

∆t

2
(pi + pn)

∂A

∂x
+

∆t

2

(
Qi−1
ρu +Qn

ρu

)
(264)

and the conservation of total energy,

(AρE)i − (AρE)n = −∆t

2

∂

∂x

[
(AρuH)i + (AρuH)n

]
+

∆t

2

(
Qi−1
ρE +Qn

ρE

)
(265)

where

H i =
(AρE)i−1 + Api

Aρi

Qρu = Df + (Aρ)gx, and QρE = Hw + (Aρu)gx. In the above temporal discretization, i
is a correction index and i = 1 refers to the advanced time predictor solution, U1, given
by (262). The PCICE algorithm requires two semi-implicit corrections to achieve second-
order accuracy in time. For the semi-implicit correction in equations (263)–(265), i = 2, 3.
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5.3.3 Intermediate Momentum Solution

Directly substituting equation (264) into equation (263) will yield second order deriva-
tives of the outer product contained in the balance of momentum convective flux terms
and third-order derivatives for the divergence of the divergence of the viscous stress ten-
sor. In order to avoid these difficult terms, an intermediate explicit momentum solution,
composed of previous iterate terms in equation (264), is employed

SA = (Aρu)n − ∆t

2

∂

∂x

[(
Aρu2

)i−1
+
(
Aρu2

)n]
+

∆t

2

(
Qi−1
ρu +Qn

ρu

)
. (266)

Solving this intermediate step allows equation (264) to be re-written in terms of the in-
termediate momentum solution, SA, by substituting equation (266) into equation (264),
yielding

(Aρu)i = SA −
∆t

2

∂

∂x

[
A(pi + pn)

]
+

∆t

2
(pi + pn)

∂A

∂x
. (267)

Equation (267) is the pressure correction equation for the momentum components once
pi is known. As will be shown below, the explicit values of SA will be incorporated
into the pressure Poisson equation, while the integral form of SA will be employed in the
momentum component pressure correction for increased efficiency.

5.3.4 Pressure Poisson Equation

The first point to consider is what pressure variable form the pressure Poisson equation
should solve. There are three obvious choices, the thermodynamic pressure, pi, the change
in pressure across a time step, δp = pi − pn, and a pressure correction variable, p′ =
pi−pi−1. We have found that a pressure correction variable provides the best performance
and greatest ease in applying Dirichlet and von Neumann boundary conditions for solving
with the Krylov subspace method.

Solving the pressure correction variable for pi and substituting into equation (267)
yields

(Aρu)i = SA −
∆t

2

∂

∂x

[
A(p′ + pi−1 + pn)

]
+

∆t

2
(p′ + pi−1 + pn)

∂A

∂x
. (268)

This form of the balance of momentum equations is mathematically identical to equa-
tion (264) and is in a form that is easily substituted into equation (263). Performing this
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substitution, which eliminates (Aρu)i as an unknown, yields the basic form of the pressure
Poisson equation

Aρi − Aρn = −∆t

2

∂

∂x
[SA + (Aρu)n] +

∆t2

4

∂2

∂x2

[
A(p′ + pi−1 + pn)

]
− ∆t2

4

∂

∂x

[
(p′ + pi−1 + pn)

∂A

∂x

]
. (269)

Note that this equation is still a representation of the change in density composed of ex-
plicit convection and source terms with an implicit pressure correction. For the same
reason (of efficience) that we collected explicit momentum terms into SA, we now collect
the explicit mass convection and pressure terms of equation (269) into a new mass variable

G = −∆t

2

∂

∂x
[SA + (Aρu)n] +

∆t2

4

∂2

∂x2

[
A(pi−1 + pn)

]
− ∆t2

4

∂

∂x

[
(pi−1 + pn)

∂A

∂x

]
(270)

where G differs from SA in that it will be used only in an integral sense. Equation (269)
can now be represented in terms of G, yielding

Aρi − Aρn = G+
∆t2

4
+

∆t2

4

∂2

∂x2
(Ap′)− ∆t2

4

∂

∂x

(
p′
∂A

∂x

)
. (271)

Equation (271) is the PCICE algorithm pressure correction equation for density once p′ is
known.

Equation (271) resulted from the substitution of the balance of momentum equations
into the mass conservation equation to eliminate the implicit momentum components as
unknowns. This then leaves the situation where there is now one equation and two un-
knowns, i.e., ρi and p′. To remedy this situation, we employ the equation of state to
express ρi in terms of p′. While the PCICE algorithm is not restricted to any specific equa-
tion of state, the algorithmic development here reflects pressure’s functional dependence
on density and internal energy

p = f(ρ, e) . (272)

Differentiating equation (272) with respect to time and equating with the change in density
term of equation (271),

Aρi − Aρn =
A(p′ + pi−1 − pn)(

∂f
∂ρ

)
e

−

(
∂f
∂e

)
ρ(

∂f
∂ρ

)
e

A(ei−1 − en) (273)
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yields the final form of the pressure Poisson equation for the PCICE algorithm

Ap′(
∂f
∂ρ

)
e

− ∆t2

4

∂2

∂x2
(Ap′)− ∆t2

4

∂

∂x

(
p′
∂A

∂x

)
=

(
∂f
∂e

)
ρ(

∂f
∂ρ

)
e

A(ei−1 − en)

− A(pi−1 − pn)(
∂f
∂ρ

)
e

+G . (274)

At this point, all the pressure correction equations have appeared in the development of
the PCICE algorithm. With the solution of equation (274) for p′, the pressure correction
equations, (271), (267), and (265), repeated below for conveience, are now solvable:

Aρi − Aρn = G+
∆t2

4
+

∆t2

4

∂2

∂x2
(Ap′)− ∆t2

4

∂

∂x

(
p′
∂A

∂x

)
. (271)

(Aρu)i = SA −
∆t

2

∂

∂x

[
A(pi + pn)

]
+

∆t

2
(pi + pn)

∂A

∂x
. (267)

(AρE)i − (AρE)n = −∆t

2

∂

∂x

[
(AρuH)i + (AρuH)n

]
+

∆t

2

(
Qi−1
ρE +Qn

ρE

)
. (265)

5.4 Solution Stabilization Methods

In review of solutions to nonlinear hyperbolic, initial-boundary value problems such as the
single- and two-phase equation systems of RELAP-7, it is known that even with smooth
initial data, the existence of a globally smooth solution may be violated because of the
nonlinearity of the flux functions and other nonlinear terms. The concept of a weak solu-
tion is introduced to guarantee the existence of a global solution; however, the uniqueness
of the solution(s) is lost because the problem may allow infinitely many weak solutions.
An additional condition is usually imposed, which is called the “entropy condition,” to
select a unique solution from the infinitely many weak solutions. The unique solution is
called the “entropy solution.”

In the literature, although there are several different ways of defining the entropy con-
dition, they are all equivalent in the sense that they select the same entropy solution. For
numerical schemes, this entropy condition and solution is sought through utilization of
so-called conservative formulations of the physically descriptive equations along with
appropriate specification of an artificial viscosity, either added directly to the governing
equations or implied by the discretization employed. That is, a discretization scheme is
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selected, or built, which is consistent with the entropy condition, thereby guaranteeing that
the numerical computation faithfully captures the physically relevant solution.

It is not easy to satisfy the somewhat contradictory objectives of capturing singularities
(like shocks or interfaces) without instability or numerical dispersion while also realizing
better resolution where the solution is smooth. Consequently, a plethora of schemes fill
the literature, all attempting to accomplish this, either better or more robustly. First order
Godunov upwind schemes are overly dissipative while sophisticated higher order meth-
ods, which are typically a nonlinear combination of first order dissipative schemes and
basic higher order schemes that are necessarily oscillatory, need to employ flux limiters to
prevent unphysical oscillations. Even linear hyperbolic equation systems can be problem-
atic for numerical discretization schemes. For example, the well-known central difference
method generally produces oscillations for simple linear advection.

It is well-known that the continuous Galerkin finite element method, as described in
Section 5.1, is unstable when applied directly to hyperbolic systems of equations. It at-
tempts to approximate potentially nonlinear discontinuous solutions with continuous, δ-
mollified solutions as nearly as possible with the functional space selected and element
spacing chosen [77]. For certain finite element spaces and integration rules, the central
difference method and Galerkin finite element methods are equivalent. This spatial dis-
cretization is known to not produce sufficient entropy locally. To compensate, especially
for equations in conservative form, the method attempts to achieve this through a train of
entropy producing oscillations in the vicinity of the local entropy production deficit. For
example, this discretization exhibits oscillations when applied to convection-dominated
flows.

Currently available options of solution stabilization for RELAP-7 application include
SUPG, entropy viscosity, and Lapidus methodologies. Plus, the low-order backward Eu-
ler time integration method described above is known to introduce an O(∆t) artificial
viscosity through its discretization error. The main details of two schemes, the Streamline
Upwind/Petrov Galerkin method (SUPG) (Section 5.4.1) and the entropy viscosity method
(Section 5.4.2) are described in the following sections.

90



5.4.1 Streamline Upwind/Petrov-Galerkin Method

The Streamline Upwind/Petrov-Galerkin (SUPG) method is introduced by first writing (20)–
(22) from Section 2.1 in system notation as

R(V ) ≡ ∂V

∂t
+
∂G

∂x
− S = 0 (275)

where

V ≡

 ρA
ρuA
ρEA

 G ≡

 ρuA
(ρu2 + p)A
ρuHA

 (276)

and S comprises the remaining source (gravity, wall-heating, friction) terms. Note that
a slightly different notation for the area conserved variables, V , and flux, G, has been
utilized because it will prove useful to refer to the non-area conserved variables in the
discussion which follows. As in Section 5.1, the weak form proceeds by dotting (275)
with an admissible test function W , integrating over the domain Ω, and applying the
divergence theorem. We then define

a(V ,W ) ≡
∫

Ω

(
∂V

∂t
·W −G · ∂W

∂x
− S ·W

)
dΩ +

∫
Γ

(G ·W ) n̂x dΓ (277)

for subsequent use. To introduce the SUPG method, we begin by defining the non-area
conserved variable and flux vectors

U ≡

 ρ
ρu
ρE

 F ≡

 ρu
ρu2 + p
ρuH

 . (278)

In particular, note that V = AU andG = AF . If F and U are continuous, the chain rule
can be used to write

∂F

∂x
=
∂F

∂U

∂U

∂x
≡ A∂U

∂x
. (279)

The matrixA is known as the “flux Jacobian” matrix. The identities

∂G

∂x
= A

∂F

∂x
+
∂A

∂x
F (280)

A
∂V

∂x
= A

(
A
∂U

∂x
+
∂A

∂x
U

)
= A

∂F

∂x
+
∂A

∂x
AU (281)
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can be combined to eliminate the A∂F
∂x

terms and obtain

∂G

∂x
= A

∂V

∂x
+ (F −AU)

∂A

∂x
. (282)

Substituting (282) into (275) then gives

R̃(V ) ≡ ∂V

∂t
+A

∂V

∂x
+ (F −AU)

∂A

∂x
− S = 0 (283)

which is the so-called “quasi-linear” form of (275).

A few remarks about (283) are warranted. First, in the special case where F is a “ho-
mogeneous function of degree 1,” F = AU , and the term in (283) which is proportional
to ∂A

∂x
vanishes. The flux F is a homogeneous function of degree 1 for the ideal gas equa-

tion of state, but not for equations of state in general. It is relatively straightforward to
show that

F −AU =

 0
p̂
up̂

 (284)

where

p̂ ≡ p− p,0ρ− p,1ρu− p,2ρE . (285)

For the stiffened gas equation of state, we can use the partial derivatives discussed in Sec-
tion 2.2.3.4 to compute p̂ = −γp∞. Finally, we note that the two forms of the residual,
R and R̃, coincide if the exact solution V is smooth. Some solutions, e.g. with shocks,
violate this assumption, but the SUPG method is nevertheless still applicable in such situ-
ations. The SUPG method may now be stated succinctly as: find V such that

a(V ,W ) +
∑
K

∫
ΩK

AT ∂W

∂x
· τSUPGR̃(V ) dΩK = 0 (286)

for all admissible W . In (286), AT is the transpose of the flux Jacobian matrix, τSUPG is
in general a 3 × 3 matrix of solution-dependent stabilization parameters, and the second
term of (286) is traditionally written as a sum of integrals over the finite elements ΩK

because of the possibility of higher-order derivatives in R̃, although there are no such
higher derivatives present in the current work. The method (286) is said to be “consistent”
in the following sense: if the true solution V (which satisfies (275) pointwise and the weak
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form (277)) is smooth, then it also satisfies (283), and therefore the additional stabilizing
term is zero.

The “stabilizing” effects of (286) come specifically from the inviscid flux terms of the
quasi-linear residual (283), i.e.∫

ΩK

AT ∂W

∂x
· τSUPGR̃(V ) dΩK =

∫
ΩK

AT ∂W

∂x
· τSUPG

(
. . .+A

∂V

∂x
+ . . .

)
dΩK

=

∫
ΩK

∂W

∂x
·
(
AτSUPGA

∂V

∂x

)
dΩK + . . . (287)

where the ellipsis are used to represent other terms in the quasi-linear residual which do
not lead to stabilization, but are nevertheless required for consistency. The matrix M ≡
AτSUPGA can be thought of as the “artificial diffusivity” tensor associated with the method.
Thus, a major design goal of the SUPG method is to pick τSUPG in such a way thatM is:

1. O(h) in size, so the scheme retains the Galerkin method’s order of accuracy.

2. Positive-definite, to mimic a physical diffusion tensor.

Most of the effort and “art” in implementing the SUPG method is therefore concerned
with choosing τSUPG appropriately. For advection-dominated one-dimensional systems
of conservation equations, Hughes et. al [78] have shown that a possible form for the
stabilization operator τSUPG is

τSUPG =
h

2
|A|−1 (288)

where h is element length, and the absolute value of aA is defined as

|A| ≡ P |D|P−1 (289)

where D is a diagonal matrix of eigenvalues of A and P is a matrix whose columns are
A’s eigenvectors. The absolute value of a diagonal matrix D is defined simply by taking
the absolute value of each of the entries on the diagonal. For the one-dimensional Euler
equations with a generic equation of state p = p(U0, U1, U2) having partial derivatives
p,i ≡ ∂p

∂Ui
, i = 0, 1, 2, we have:

A =


0 1 0

p,0 − u2 p,1 + 2u p,2

u (p,0 −H) up,1 +H u (1 + p,2)

 . (290)
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The eigenvalues of the matrix defined in (290) are given by

λ1 = u (291)

λ2,3 = u+
p,1 + up,2

2
±
[
4 (p,0 + up,1 +Hp,2) + (p,1 + up,2)2]1/2

2
(292)

The eigenvalues (292) will be real (and hence the system will be hyperbolic) only if the
term under the square root sign is ≥ 0. It may be readily verified that, for a given equation
of state, (292) reduces to λ2,3 = u ± c, where c is the local sound speed. In general, the
form (292) is preferred because it explicitly demonstrates the intrinsic role of the equation
of state in determining the eigenvalues ofA.

The matrix of eigenvectors ofA is given by

P ≡

 c1 c3 c2

λ1c1 λ2c3 λ3c2

1 1 1

 (293)

where

c1 ≡
−p,2

p,0 + λ1p,1
(294)

cj ≡
−λj
dj

, j = 2, 3 (295)

dj ≡ (H − u2)(up,2 − λj) + u(p,0 − u2) , j = 2, 3 . (296)

Its inverse is

P−1 ≡ 1

detP

λ2c3 − λ3c2 c2 − c3 c2c3(λ3 − λ2)
λ3c2 − λ1c1 c1 − c2 c1c2(λ1 − λ3)
λ1c1 − λ2c3 c3 − c1 c1c3(λ2 − λ1)

 (297)

where
detP ≡ c1(c2 − c3)λ1 + c3(c1 − c2)λ2 + c2(c3 − c1)λ3 . (298)

The preceding discussion provides all the information necessary to implement the
SUPG scheme (286). In addition to the code required to implement the Galerkin part
of the finite element method, one needs new code to define the stabilization matrix and
quasi-linear residuals, and code to assemble the new residual contributions. For effective
preconditioning and to implement solvers other than the JFNK method, one also needs to
compute Jacobian contributions for the new stabilization terms, but this procedure is not
discussed in detail here.
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5.4.2 Entropy Viscosity Method

As an available option, RELAP-7 employs a new technique, introduced recently [79–82],
which requires the addition of artificial dissipation terms to the equations while ensuring
that the physical entropy minimum principle remains satisfied. Additional details regard-
ing its application to the 7-equation two-phase model and to low Mach number flows are
directly based upon INL-sponsored, independent research of Delchini [83]. This entropy
viscosity method is independent of the spatial discretization employed, so it can be used
with the standard Galerkin, continuous Finite Element Method (FEM). Though shown be-
low for a simplified 7-equation two-phase model, the entropy viscosity method is available
for use with single-phase flow systems as well.

The simplified 7-equation two-phase model equation system is:

∂

∂t
(αkA) + uIA

∂αk
∂x

= Aµ (Pk − Pj) (299)

∂

∂t
(αkρkA) +

∂

∂x
(αkρkukA) = 0 (300)

∂

∂t
(αkρkukA) +

∂

∂x

[
αkA

(
ρku

2
k + Pk

)]
= αkPk

∂A

∂x
+ PIA

∂αk
∂x

+ Aλ (uj − uk) (301)
∂

∂t
(αkρkEkA) +

∂

∂x
[αkAuk (ρkEk + Pk)] = PIuIA

∂αk
∂x
− µP̄I (Pk − Pj)

+ ūIAλ (uj − uk) (302)

where ρk, uk, Ek and Pk are the density, the velocity, the specific total energy and the
pressure of kth phase, respectively. The pressure and velocity relaxation parameters are
denoted by µ and λ, respectively. The variables with index (·)I correspond to the interfacial
variables and a definition for those can be found above (and in [12]). The cross-sectional
area A is only function of space, so ∂A

∂t
= 0. In [12], the entropy equation is derived for

each phase, by assuming that there exists a phasic entropy function sk that depends upon
the density ρk and the specific internal energy ek:

ρkA

(
∂sk
∂t

+ uk
∂sk
∂x

)
=

Zj
Zj + Zk

λ (uk − uj)2 +
Zk

Zj + Zk
µ (Pk − Pj)2

+
Zk

Zj + Zk

∣∣∣∣∂α∂x
∣∣∣∣ [Zj (uk − uj) + sgn

(
∂α

∂x

)
(Pk − Pj)

]2

(303)

where Zj = ρjcj and cj represents the acoustic impedance and the speed of sound of phase
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j, respectively. The symbol sgn(·) denotes a function that returns the sign of the quantity
(·).

From (303), it is clear that the entropy minimum principle is satisfied since the right-
hand side is only composed of positive terms. In the remainder of this exposition all of
the source terms (right-hand sides of (299)–(302)) are dropped in order to simplify the
derivation. It will not affect the final result, provided that the definitions of the entropy
residual (below) are amended to include contributions of any heat source/sink terms [84],
since all of the source terms combine in a sum of positive terms when deriving the entropy
function. The phase index k is also dropped.

To apply the entropy viscosity method, appropriate dissipative terms are added to each
of the equations as follows

∂

∂t
(αA) + uIA

∂α

∂x
=

∂

∂x
(αAl) (304)

∂

∂t
(αρA) +

∂

∂x
(αρuA) =

∂

∂x
(αAf) (305)

∂

∂t
(αρuA) +

∂

∂x

[
αA
(
ρu2 + P

)]
= αP

∂A

∂x
+

∂

∂x
(αAg) (306)

∂

∂t
(αρEA) +

∂

∂x
[αAu (ρE + P )] =

∂

∂x
[αA (h+ ug)] (307)

where f , g, h and l are the dissipative terms. By adding these dissipative terms to each
equation, the entropy equation gets modified; extra terms will appear in the right-hand side
that are a function of the dissipative terms. The sign of these new terms needs to be studied
in order to conserve positivity of the right-hand side. This is achieved by the following
steps:

• Recast the system of equation given in (304)–(307) in terms of the primitive vari-
ables (α, ρ, u, e) (we only account for the dissipative terms here).

• Derive the entropy equation by using the chain rule

ds

dt
= sρ

dρ

dt
+ se

de

dt
(308)

where d
dt

is the material derivative. The terms se and sρ denote the partial derivative
of the entropy s with respect to e and ρ, respectively.

• Isolate the terms of interest and choose an appropriate expression for each of the
dissipative terms in order to ensure positivity of the right-hand side.
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The first step consists of recasting the system of equations in terms of the primitive vari-
ables as

A
∂α

∂t
+ uIA

∂α

∂x
=

∂

∂x
(αAl) (309)

αA

(
∂ρ

∂t
+ u

∂ρ

∂x

)
+ ρα

∂

∂x
(uA) + Γ =

∂

∂x
(αAf)− ρ ∂

∂x
(αAl) (310)

αρA

(
∂u

∂t
+ u

∂u

∂x

)
+

∂

∂x
(αPA) = αP

∂A

∂x
+

∂

∂x
(αAg)

− u ∂
∂x

(αAf) (311)

αρA

(
∂e

∂t
+ u

∂e

∂x

)
+ αPA

∂u

∂x
+ αuP

∂A

∂x
=

∂

∂x
(αAh) + αAg

∂u

∂x

+

(
u2

2
− e
)

∂

∂x
(αAf) (312)

where Γ = ρA (u− uI) ∂α
∂x

has been used. The function Γ can be ignored since it is
used to get the right-hand side of (303). For the second step, the continuity and internal
energy equations can be combined using the chain rule given in (308) to obtain the entropy
equation

αρA
ds

dt
+ α (ρsρ + Pse)

(
A
∂u

∂x
+ u

∂A

∂x

)
=

se

[
∂

∂x
(αAh) + αAg

∂u

∂x
+

(
u2

2
− e
)

∂

∂x
(αAf)

]
+ ρsρ

[
∂

∂x
(αAf)− ρ ∂

∂x
(αAl)

]
. (313)

The last step is a little more involved. For clarity of a first approach, the entropy
equation, (313), can be split into four separate terms for further consideration. The first
term of the left-hand side is the Lagrangian (or material) derivative of the entropy function
s. It does not need to be modified since its sign has to be determined by looking at the
other terms. The second term in the left-hand side is usually set to zero by assuming that
ρsρ +Pse = 0. Any other alternative would require the term ρ2sρ +Pse to be function of
the velocity u or its derivatives, and the cross-section A, in order to be able to determine
its sign. In addition, any entropy function obeying to the relation ρsρ + Pse = 0, also
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obeys the second thermodynamic law:

Tds = de− P

ρ2
dρ

⇓

se =
1

T
≥ 0, sρ = −se

P

ρ2
(314)

where T is the fluid temperature.

The right-hand side of (313) is more difficult to handle. It requires further assumptions
in the definition of the dissipative terms h and g. The first term of the right-hand side can
be simplified by using the following expression for the dissipative terms h and g

g = ρµ
∂u

∂x
+ uf (315)

h = h̃− u2

2
f (316)

which results in

se

[
∂

∂x
(αAh) + αAg

∂u

∂x
+

(
u2

2
− e
)

∂

∂x
(αAf)

]
=

se

[
∂

∂x

(
αAh̃

)
− e ∂

∂x
(αAf)

]
+ seρµ

(
∂u

∂x

)2

(317)

where µ is a positive viscosity coefficient, and h̃ is a new dissipative term. In (317), it is
noted that the term seρµ

(
∂
∂x
u
)2 is always positive and does not need any further modifica-

tion. Thus, it remains to determine the sign of the other term se

[
∂
∂x

(
αAh̃

)
− e ∂

∂x
(αAf)

]
,

along with ρsρ
[
∂
∂x

(αAf)− ρ ∂
∂x

(αAl)
]
, that are now independent of the velocity u. Then,

we define the variableR as

R ≡ se

[
∂

∂x

(
αAh̃

)
− e ∂

∂x
(αAf)

]
+ ρsρ

[
∂

∂x
(αAf)− ρ ∂

∂x
(αAl)

]
. (318)

The reader is reminded that all of the above steps are valid for any phase of the system
under consideration, i.e. each phase is considered independently of the other, and that the
objective is to prove the entropy minimum principle. In order to determine the sign of R
in (318), the dissipative term f is split into two other dissipative terms: f = f1 +f2. Then,
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R is recast as

R = se

(
∂

∂x

(
αAh̃

)
− e

(
∂

∂x
(αAf1) +

∂

∂x
(αAf2)

))
+ ρsρ

∂

∂x
(αAf1)︸ ︷︷ ︸

R1

− ese
∂

∂x
(αAf2) + ρsρ

(
∂

∂x
(αAf2)− ρ ∂

∂x
(αAl)

)
︸ ︷︷ ︸

R2

. (319)

Integration by parts yields:

R =
∂

∂x

[
αA
(
seh̃+ (ρsρ − ese) f1

)]
− αAh̃ ∂

∂x
(se)− αAf1 (ρsρ − ese)︸ ︷︷ ︸

R1

+
∂

∂x

[
αA
(
(ρsρ − ese) f2 − ρ2sρl

)]
− αAf2

∂

∂x
(ρsρ − ese) + αAl

∂

∂x

(
ρ2sρ

)︸ ︷︷ ︸
R2

.

(320)

The R1 term is actually identical to what is obtained in the single-phase entropy equa-
tion [85]. Positivity of this term is ensured by assuming concavity of the entropy function
s as a function of 1

ρ
and e and using the following definition for f1 and h̃

h̃ = κ
∂

∂x
(ρe) (321)

f1 = κ
∂ρ

∂x
(322)

where κ is a positive viscosity coefficient. It remains now to determine the sign of R2

in (320)

R2 ≡
∂

∂x

[
αA
(
(ρsρ − ese) f2 − ρ2sρl

)]
− αAf2

∂

∂x
(ρsρ − ese) + αAl

∂

∂x

(
ρ2sρ

)
.

The term R2 can be simplified by assuming that the dissipative terms f2 and l are related
to each other by

f2 =
ρ2sρ

ρsρ − ese
l (323)

which leads to the following expression forR2

R2 = αAρ2sρl

(
− 1

ρsρ − ese
∂

∂x
(ρsρ − ese) +

1

ρ2sρ

∂

∂x

(
ρ2sρ

))
. (324)
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To determine the sign of (324), it is required for l to be a function of the density ρ and the
partial derivative sρ. A sufficient condition is to set

sρl ∝ −
1

ρsρ − ese
∂

∂x
(ρsρ − ese) +

1

ρ2sρ

∂

∂x

(
ρ2sρ

)
(325)

which yields

R2 = αAρβ

(
− 1

ρsρ − ese
∂

∂x
(ρsρ − ese) +

1

ρ2sρ

∂

∂x

(
ρ2sρ

))2

(326)

with

l = β
1

ρsρ

(
− 1

ρsρ − ese
∂

∂x
(ρsρ − ese) +

1

ρ2sρ

∂

∂x

(
ρ2sρ

))
(327)

where β is a positive viscosity coefficient. The definition of the dissipative term l can be
simplified further to get the final expression

l = β
1

ρsρ

(
ρsρ

ρsρ − ese
∂

∂x

(
ρsρ
ese

)
+

1

ρ

∂ρ

∂x

)
(328)

or in a more friendly form using (314):

l = βT

[
ρ

P + ρe

∂

∂x

(
P

ρe

)
− 1

P

∂ρ

∂x

]
. (329)

In summary, the dissipative terms are defined as

l = βT

[
ρ

P + ρe

∂

∂x

(
P

ρe

)
− 1

P

∂ρ

∂x

]
(330)

f = κ
∂ρ

∂x
+

ρ2sρ
ρsρ − ese

l (331)

g = ρµ
∂u

∂x
+ uf (332)

h = κ
∂

∂x
(ρe)− u2

2
f + ug . (333)

At this point, some remarks are in order:
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1. The dissipative term l requires the definition of a new viscosity coefficient β. In
theory this viscosity coefficient is independent of the other viscosity coefficients µ
and κ. Its definition should account for the eigenvalue associated with the void frac-
tion equation uI . In addition, an entropy residual can be determined by analogy to
Burger’s equation. It is noted, however, that the eigenvalue uI can be discontinuous
since its definition involves the sign of the void fraction gradient, which makes the
theory more challenging. For simplicity, we ignore this aspect of the theory in this
report.

2. The dissipative term f is a function of l. Thus, all of the other dissipative terms are
also functions of l.

3. The partial derivatives se and sρ can be computed using the definition provided
in (314), and are functions of the thermodynamic variables: pressure, temperature
and density.

4. All of the dissipative terms are chosen to be proportional to the the void fraction α
and the cross-sectional area A. For instance, αAl is the flux of the dissipative term
in the void fraction equation through the area seen by the phase αA. When one of
the phases disappears, the dissipative terms must to go to zero for consistency. On
the other hand, when α goes to one, the single-phase equation must be recovered.
This statement gives a condition for defining the viscosity coefficient β.

5. The seven equation model can be used to simulate situations in which the phases do
not interact: mass and heat exchange do not occur. Then, the void fraction of each
phase is expected to remain constant even though the other characteristic variables
of the fluid can vary: ∂

∂t
(Aα)+uIA

∂α
∂x

= 0. The dissipative term in the void fraction
equation is a function of the thermodynamic variables and, thus, may cause the void
fraction to change. This situation can be avoided by carefully defining the viscosity
coefficient β to be proportional to the entropy residual for η(α) that is known to be
zero when the void fraction is a constant:

∂

∂t
(Aα) + uIA

∂α

∂x
= 0

ηα

[
∂

∂t
(Aα) + uIA

∂α

∂x

]
= 0

A
∂η

∂t
+ uIA

∂η

∂x
= 0

where ηα is the derivative of η with respect to α, and A is assumed to be space-
dependent only.
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It remains now to specify the coefficients κ, µ, and β in the artificial viscous terms of
our balance equation system. In the current version of the method [84], κ and µ are set for
each phase as though that phase was a single phase only. Furthermore, they are set equal
in each phase; that is κk = µk for k = liq, vap. The current definition includes an upper
bound coefficient that will give a first order viscosity, denoted with subscript max, and a
coefficient that will give a high-order viscosity, denoted with subscript e. The first-order
viscosity coefficients κmax,k and µmax,k are proportional respectively to the largest local,
phasic eigenvalue |uk|+ ck and is equivalent to a first-order upwind scheme

κmax,k(x, t) = µmax,k(x, t) =
h

2
(|uk|+ ck) (334)

where h is the grid size. Such schemes are known to be monotone, but overly dissipative.
The higher-order viscosity coefficients κk,e and µk,e are set proportional to the entropy
production that is evaluated by computing the local entropy residual De,k as

De,k(x, t) =
∂sk
∂t

+ uk
∂sk
∂x

=
sk,e
Pk,e

(
dkPk
dt
− c2

k

dkρk
dt

)
︸ ︷︷ ︸

D̃e,k(x,t)

(335)

where dk
dt

denotes the material k or total-k derivative, Pk,e is the partial derivative of the
phase-k pressure Pk with respect to the phase-k internal energy ek, and sk,e is the par-
tial derivative of the phase-k entropy with respect to the phase-k internal energy ek. The
expression for the entropy residual has been written as a function of pressure and den-
sity. Because Dk,e and D̃k,e are proportional to each other, the definition of the viscosity
coefficients κk,e and µk,e are written to depend upon D̃e,k as follows

κk,e(x, t) = µk,e(x, t) = h2 max(|D̃e,k(x, t)|, J)

(1−Mk)ρkc2
k +Mkρk|uk|2

(336)

where Mk is the phasic Mach number. The denominator has the same dimensions as
pressure and is designed to ensure consistency when dealing with low Mach number flows.
The jump J is chosen to be proportional to the jump of the pressure and density gradients
at the interfaces

Ji+1/2 = |uk|i+1/2 max

(s
∂Pk
∂x

{

i+1/2

, c2
k

s
∂ρk
∂x

{

i+1/2

)
(337)

where

JqKi+1/2 ≡ |qi − qi+1| (338)
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denotes the jump in a given quantity q, and i + 1/2 denotes the interface between cells i
and i+ 1.

Lastly, the β terms must be specified. From the fourth and fifth remarks above, β for
each phase must go to zero as either of the volume fractions αliq or αvap approach zero.
The current model uses the simple specification

βk = αliqαvapκk,e (339)

to satisfy these restrictions.

5.5 Jacobian-Free Newton Krylov Solver

The RELAP-7 code solves coupled multi-physics problems using the Jacobian-Free New-
ton Krylov (JFNK) approach via the MOOSE framework. Field equations solved in
the current RELAP-7 code include PDEs to describe one-dimensional fluid flow in pipe
systems and heat conduction in solids, as well as ODEs to describe physics in zero-
dimensional components and the point kinetics equations.

The JFNK method is a fully-coupled, multi-level method for solving large nonlinear
equation systems. In general, it consists of at least two levels: the outer Newton loop for
the nonlinear solve and the inner Krylov loop for the linear systems of equations associated
to Newton iteration. The JFNK method has become an increasingly popular option for
solving large nonlinear equation systems arising from multi-physics problems over the
last 20 years, and has branched out into a number of different disciplines [6].

In what follows, a brief description of the JFNK method as it applies to the RELAP-7
application is given. The FEM-discretized field equations are first written as

F (u) = 0 (340)

where F represents the nonlinear equation system and u is the solution vector. Newton’s
method requires an initial guess, u0, to start the iteration process. For the transient prob-
lems of interest here, the solution at a previous time step is generally used as the initial
guess for the method. At the kth iteration, the residual vector is defined as

rk ≡ F (uk) . (341)

Clearly if uk satisfies (340) exactly, the kth residual will be zero. To update the solution
vector, the following equation is solved for the update vector, δuk+1:

J(uk)δuk+1 = −rk (342)
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where J(uk) is the Jacobian matrix evaluated at uk. In index notation,

Jij ≡
∂Fi
∂uj

. (343)

After δuk+1 is obtained, the (k + 1)st solution iterate is computed by

uk+1 = uk + δuk+1 . (344)

The Newton iteration is terminated when one of the following conditions is met:

1. The residual vector norm, |rk|, is sufficiently small.

2. The relative residual vector norm |rk|
|r0| is sufficiently small.

3. The step size norm, |δuk+1| is sufficiently small.

Note that (342) represents a large linear system of equations. In the JFNK method,
we need not explicitly form the matrix J : only its action on a vector (via matrix-vector
product) is required. Effective preconditioning is generally required for Krylov subspace
methods to be efficient, i.e., for the method to converge in a reasonable number of it-
erations. A preconditioned version of equation (342) can be expressed as (using right
preconditioning as an example),

JkP−1
(
P δuk+1

)
= −rk (345)

where P is the preconditioning matrix. In the approach current used in RELAP-7, an
analytical Jacobian matrix is computed according to (343), and passed to the underlying
numerical solver library as the matrix P for preconditioning purposes.
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6 Component Models

The RELAP-7 code is an advanced system analysis tool based on components to represent
the major physical processes in the reactor system. A real reactor system is very complex
and contains hundreds of different physical components. It is impractical to resolve the
real geometry of the entire system. Instead simplified thermal hydraulic models are used
to represent (via “nodalization”) the major physical components and describe the major
physical processes (such as fluids flow and heat transfer). There are three main types of
components developed in RELAP-7: (1) one-dimensional (1-D) components describing
the geometry of the reactor system, (2) zero-dimensional (0-D) components for setting
boundary conditions, and (3) 0-D components for connecting 1-D components.

6.1 Pipe

Pipe is the most basic component in RELAP-7. It is a 1-D component which simulates
thermal fluids flow in a pipe. Both a constant cross section area and a variable cross sec-
tion area options are available for the Pipe component. The wall friction and heat transfer
coefficients are either calculated through closure models or provided by user input. The
pipe wall temperature can be provided as the wall heat transfer boundary condition. All
the thermal fluids dynamic models described in Chapter 2 are available in the Pipe compo-
nent which includes the isothermal flow model, single-phase non-isothermal flow model,
fully nonequilibrium 7-equation two-phase model, and the much simpler homogeneous
equilibrium two-phase flow model.

6.2 PipeWithHeatStructure

The PipeWithHeatStructure component simulates fluids flow in a 1-D pipe coupled with
1-D or 2-D heat conduction through the pipe wall. The adiabatic, Dirichlet, or convective
boundary conditions at the outer surface of the pipe wall are available. Either a plate type
or cylindrical type of heat structure can be selected. Volumetric heat source within the
fluids or solid materials can be added.
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6.3 CoreChannel

The CoreChannel component is a composite component designed to simulate the coolant
flow and heat conduction inside a fuel rod as well as the conjugate heat transfer between
the coolant and the fuel rod. In this component, the fuel rod is divided into the same
number of segments as that of the coolant flow pipe elements. Each fuel rod segment is
further simulated as 1-D or 2-D heat conduction model perpendicular to the fluid flow
model. Both plate type fuel rod and cylindrical fuel rod type can be simulated. The
solid fuel part is able to deal with typical LWR fuel rod with complex clad/gap/fuel pellet
geometries. The flow model and conjugate heat transfer model are fully coupled.

6.4 HeatExchanger

A Heat Exchanger component is a combination of two pipes with a solid wall in between.
Similar to the CoreChannel model, the fluids flow model and conjugate heat transfer model
are fully coupled. More complicated and realistic steam generator component will be
developed in the future.

6.5 Junction/Branch

6.5.1 Lagrange Multiplier Based Junction Model

This model is implemented by the FlowJunction component. It uses a 1D mortar finite
element method to couple together the pipes which begin/end in the junction. The mortar
method is implemented using Lagrange multipliers. For the sake of simplicity, we don’t
give the full details of the mortar method here. Instead we list only the constraints that are
enforced by method:

g0 :
∑
i

ρiuiAin̂xi = 0

g1 :
∑
i

(pi + ρiu
2
i )Ain̂xi −

∑
i n̂xiAi

∑
i piAi∑

iAi
− 1

2
sgn(ui)Kiρiu

2
iAi = 0

g2 :
∑
i

ρiHiuin̂xiAi = 0 .
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For more details on the mortar method see [86].

6.5.2 Volume Branch Model

The volume branch model is a 0-D component representing a joint/junction model with
volume (inertia) effects considered. This model conserves the mass and energy among all
connecting components. The governing equations of the mass and energy conservation for
the VolumeBranch component are

d(ρvbVvb)

dt
+

N∑
i=1

(ρu)i · n̂iAi = 0 (346)

d((ρe)vbVvb)

dt
+

N∑
i=1

((ρe)i + Pi)ui · n̂iAi = 0 (347)

where ρvb and Vvb are the density and volume of the VolumeBranch component respec-
tively. (ρu)i is the mass flux at the connecting nodes. ui is the fluid flow velocity at the
connecting nodes. Ai is the flow area of the connecting components. Pi is the pressure at
the connecting nodes. N is the number of connecting components. (ρe)vb is the internal
energy of the VolumeBranch component and (ρe)i is the internal energy at the connect-
ing nodes. The internal energy, instead of the total energy, is used in the energy equation
since the energy changes due to the work of all the forces is difficult to capture in the
VolumeBranch component and thus neglected (except the pressure). This assumption
is valid for low speed flow applications.

The momentum conservation is more difficult to model in this 0-D component. A
simplified model is used to account for various pressure losses in the VolumeBranch
component.

Pi = Pvb + ∆Pacc + s∆Pform + ∆Pg (348)

where the pressure loss due to acceleration is: ∆Pacc = 1
2
(ρu2)vb − 1

2
(ρu2)i. The variable

s = 1 if the fluids flow into the VolumeBranch component while s = −1 if the fluids
flow out of the VolumeBranch component. The pressure loss due to the form loss
is: ∆Pform = 1

2
K(ρu2)i. The pressure loss due to the gravity is ∆Pg = ρvb∆H , and

∆H is the height difference between the elevation of the center of the VolumeBranch
component and the elevation of the connecting components.

Note that the friction loss is neglected in this model. This is because the friction loss
is dependent on the flow path, and it is very difficult (and non-physical) to model the
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friction loss in the 0-D component. On the other hand, the friction loss in a large volume
is always very small. If the friction loss has to be considered, the form loss coefficient can
be adjusted to account for it.

The above simplifications of modeling the momentum conservation works well as long
as the pressure propagation is much faster than the fluid transport, which is true for incom-
pressible flows and low speed compressible flows.

6.6 Pump

The simplified pump model is based on three assumptions:

• quasi-steady state,

• incompressible flow,

• and 100% pump efficiency.

Currently, the RELAP-7 pump designed as one 0-D junction component which provides:

• one BC for upstream pipe: pressure

• two BCs for downstream pipe: pressure and total energy.

Only one scalar variable –pump pressure pJ is defined as the unknown for the pump model,
which uses the mass balance as the nonlinear equation:

(ρu)1A1n̂1 + (ρu)2A2n̂2 = 0 , (349)

where ρu is the momentum for the connecting pipes, A the cross-section area, and n̂ is
the direction normal (n̂ = 1 for the inlet and n̂ = −1 for the outlet). It is assuming that
internal energy does not change through a pump, so

eout = ein = eJ . (350)

Pressures at inlet and outlet are calculated with incompressible flow Bernoulli’s equation.
It is also assumed that the pump work is added to the fluid only in the entrance segment
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and the loss in the exit segment is negligible. For normal flow

p1 = (pJ +
1

2
ρJu

2
J)− ρ1gH −

1

2
ρ1u

2
1 (351)

p2 = (pJ +
1

2
ρJu

2
J)− 1

2
ρ2u

2
2 (352)

where
ρJ = ρ(eJ , pJ) (353)

uJ =
ρ1u1A1

ρJAJ
(354)

g is the gravity constant and H is the pump head. H can be set as an input parameter
which can be changed through the control system to simulate dynamic process such as
coastdown, or H can be calculated by coupling with a shaft work, i.e., provided by a
turbine,

H =
Ẇt

ρ1u1A1g
(355)

where Ẇt is the turbine shaft power. Downstream total energy is calculated by

ρEbc = ρbc

(
eJ +

1

2
u2
bc

)
. (356)

For reverse flow, the pump is treated as a resistance junction. The reverse form loss coeffi-
cients for inlet (K1) and outlet (K2) are given by the user. The pressures at inlet and outlet
for reverse flow conditions are

p1 = (pJ +
1

2
ρJu

2
J)− 1

2
(1 +K1)ρ1u

2
1 (357)

p2 = (pJ +
1

2
ρJu

2
J)− 1

2
(1−K2)ρ2u

2
2 . (358)

The pump can also be simulated as a time dependent junction with given mass flow rate as
a function of time.

6.7 Turbine

A turbine is a device that converts energy contained in high-pressure and high-temperature
fluid into mechanical work. The complicated configuration of a turbine precludes a com-
plete first-principle model, at least for the purpose of system transient calculations. In
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RELAP5 [22], quasi-steady state mass, momentum, and energy conservation equations
are used for flow across a turbine stage. However, several questionable assumptions, such
as constant density across the turbine blade stage, are used to derive the momentum equa-
tion. For a complex curved flow path, it is almost impossible to derive an accurate 0-D
momentum equation. The force between the junction solid wall and the fluid is unknown
due to the lack of geometric definition in 0-D and no simple assumptions can be made.
This is why Bernoulli’s equation (or mechanical energy equation) is used instead for 0-D
junction or branch models in current reactor safety system codes such as RELAP5 [22],
TRAC [87], and TRACE [88]. However, for compressible flow in a turbine, Bernoulli’s
equation for isentropic compressible flow is identical to the total energy conservation equa-
tion. Hence, the Bernoulli’s equation cannot be used for momentum.

Lacking an equation for momentum, we instead use turbine characteristics curves for
momentum, which is based on actual dynamical turbine performance data. Turbine charac-
teristics curves reflect the complex relationships of the non-dimensional turbine mass flow
rate and turbine efficiency with pressure ratio and the non-dimensional rotational speed.
Fig. 4 shows one example of turbine characteristics curves [2]. In the figure, subscript 03
indicates the upstream stagnation condition, subscript 04 indicates the downstream stag-
nation condition and N is the rotational speed. Note that the curves dynamically capture
the choking behavior. To further simplify the curves, a couple of assumptions are made:
(1) Turbine thermal efficiency is constant, and (2) Non-dimensional mass flow rate is not
a function of non-dimensional rotational speed (by noting that all the curves for differ-
ent rotational speeds tend to collapse together). With these assumptions, an equation for
rotational speed is not needed, and only one characteristics curve for mass flow rate is
sufficient to establish the equation for momentum.

Based upon the aforementioned discussion, we developed a new simple turbine com-
ponent model as a junction without volume. Thermal inertia in the solid structures and
fluid is ignored, similar to that in RELAP-5. Fig. 5 shows the T -s diagram for a thermody-
namical process in a turbine. Point 1 represents inlet static condition and point 2 represents
outlet static condition; point 2s is the end point for a reversible process; point 01, 02, and
02s represent the stagnation conditions corresponding to points 1, 2, and 02, respectively.

Because a quasi-steady state turbine is a 0-D component which provides

• one BC for inlet pipe: p1 (inlet pressure)

• two BCs for outlet pipe: p2 (outlet pressure), ρ2 (outlet density)

• turbine shaft power: Ẇt
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Figure 4. Turbine characteristics (credit of Saravanamuttoo,
Rogers, and Cohen [2]).

four equations are needed to close the system. The first one is mass conservation Eq. (349).
The mass flow rate is calculated as ṁ = ρuA.

As discussed before, turbine characteristics are used for the momentum equation. As-
suming constant thermal efficiency and ignoring rotational speed effect, we have

ṁ
√
T01

p01

ṁmax
√
T01r

p01r

= f(p01/p02) . (359)

The subscript r denotes nominal design reference value and 0 denotes stagnation con-
dition. ṁmax is the nominal maximum design mass flow rate through the turbine. The
turbine characteristic curve f(p01/p02) should come from turbine vendors. According to
reference [89], the curve for a HP (High Pressure) steam turbine is defined as

f(p01/p02) =

√
1−

(
p02

p01

)2

. (360)
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Figure 5. T -s diagram for a turbine.

This equation matches the real test data very well. However, this curve is not valid when
the pressure ratio is equal or less than 1. Therefore, a similar smooth curve is used

f(p01/p02) = tanh

(
β

(
p02

p01

− 1

))
(361)

where β is a constant and is calculated by the following formula

tanh

(
β

(
p01r

p012

− 1

))
=

ṁr

ṁmax

. (362)

Therefore, β is determined by the design pressure ratio and the ratio of nominal mass flow
rate at design point with the maximal mass flow rate. The energy equation for turbine is

η =
h01 − h02

h01 − h02s

(363)

where η is the turbine thermal efficiency, and h the enthalpy. Fig. 5 shows the location of
the thermodynamic states on a T -s diagram.

Turbine shaft work is calculated by

Ẇt = ṁ(h01 − h02) . (364)
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Eqs. (349), (359) and (363) are used to solve for p1, p2, and ρ2, and Eq. (364) is used to
compute turbine power. To derive stagnation states, recognize that

h0 = h+
1

2
u2 (365)

where u is the velocity. Then assuming an isentropic process, from the static state, (h1, p1),
the stagnation state (h01, p01) may be found. For ideal gas, the following equations hold
(pages 54 to 56, ref [2])

p0 = p

(
1 +

γ − 1

γ

ρu2

2p

)γ/(γ−1)

(366)

T0 = T

(
p0

p

)(γ−1)/γ

(367)

where γ is the ratio of specific heats. h1, u1, and T1 are obtained from turbine inlet pipe
as coupled variables and p1 is a scalar variable unknown. h01 is calculated according to
Eq. (365). p01 is calculated according to Eq. (366). T01 is calculated according to Eq. (367).

The pressure p2 and density ρ2 are scalar variable unknowns. According to an EOS
(equation of state) relationship, h2 is evaluated

h2 = h (p2, ρ2) (368)

u2 is obtained from turbine outlet pipe as a coupled variable. h02 is calculated according
to Eq. (365). p02 is calculated according to Eq. (366). To derive h02s, we need two ther-
modynamic states at 2s. Note p2s = p2. We can obtain the density at 2s by following the
isentropic line from point 1 (see Fig. 5)

ρ2s

ρ1

=

(
p2

p1

)1/γ

. (369)

According to the EOS relationship, h2s is evaluated with p2 and ρ2s. Now h02s can be
calculated according to Eq. (365). When the stagnation pressure at the inlet is less than
the stagnation pressure at the outlet, the turbine is treated as a closed valve. Major phys-
ical parameters for the turbine model include thermal efficiency, nominal mass flow rate,
design pressure ratio, and design stagnation inlet temperature and pressure.

6.8 SeparatorDryer

Boiling Water Reactors (BWRs) use a steam separator to increase the quality of steam
prior to generation of mechanical energy in the turbine. A steam separator component
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is based on the principle of centrifugal separation, where the liquid/gas phase separation
occurs as a mixture of water and steam flows upward in a vortex motion within vertical
separator tubes. Therefore, the outflows of the steam separator are a flow of steam from
the top exit and a flow of liquid water from the discharge to the bulk water surrounding the
separator barrel. Typically, the quality of the steam at the outlet of the separator is at least
90%. In addition, steam dryers are used to further increase the quality of steam to ensure
that the steam is dry.

In RELAP-7 the separator dryer component is developed to model both the steam
separators and moisture dryers together. Currently only an ideal separation model with
perfect steam separation has been implemented into RELAP-7. The mechanistic separator
and dryer models will be implemented in the future. The steam SeparatorDryer
component has one inlet and two outlets. Each connection has a form loss coefficient
K, which generally accounts for pressure loss due to expansion/contraction, mixing, and
friction.

The conservation equations of mass and energy for the SeparatorDryer model are
the following:

V
dρsd
dt

+
3∑
i=1

(ρu)i · n̂iAi = 0 (370)

V
d(ρe)sd
dt

+
3∑
i=1

((ρe)i + Pi)ui · n̂iAi = 0 (371)

where ρsd and (ρe)sd are the density and internal energy of the SeparatorDryer component
respectively. V is the volume of the SeparatorDryer component. (ρu)i is the mass
flux at the connecting nodes. ui is the velocity at the connecting nodes. Ai is the flow area
of the connecting component. (ρe)i is the internal energy of the connecting nodes. Pi is
the pressure at the connecting nodes.

An incomplete form of the momentum equation is used to account for the various
pressure losses in the SeparatorDryer component:

Pi = Psd + ∆Pacc + s∆Pform + ∆Pg (372)

where s = 1 if fluids flow into SeparatorDryer and s = −1 if fluids flow out of
the SeparatorDryer. Psd is the reference pressure of the SeparatorDryer which
is taken as the value in the center of SeparatorDryer. The pressure loss due to ac-
celeration is: ∆Pacc = 1

2
(ρu2)sd − 1

2
(ρu2)i. The pressure loss due to the form loss is:
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∆Pform = 1
2
K(ρu2)i. The pressure loss due to the gravity is ∆Pg = ρsd∆H , and ∆H is

the height difference between the elevation of the connecting pipe and the center elevation
of the SeparatorDryer component.

6.9 DownComer

The BWR pressure vessel down comer is a 0-D model with a large volume that connects
the feedwater pipe, the separator dryer discharge, the steam dome, and the down comer
outlet. The volume is filled with vapor at the top and liquid at the bottom. During tran-
sients, the liquid level will increase or decrease (depending on the nature of the transient),
which affects the mass flow rate through the reactor core; therefore, it is important to track
the liquid level for transient analysis.

In the current model, it is assumed that there is no mass and energy exchange between
the liquid and vapor phase in the down comer. Additionally, the vapor phase pressure is
the same as that of the steam dome. Therefore, all the balance equations are solved for the
liquid phase only.

The mass and energy conservation for the liquid in the down comer model are

dρ`V`
dt

+
3∑
i=1

(ρu)i · n̂iAi = 0 (373)

d(ρe)`V`
dt

+
3∑
i=1

((ρe)i + Pi)ui · n̂iAi = 0 (374)

where ρ` is the liquid density in the down comer component. V` is the liquid volume of
down comer. (ρu)i is the mass flux at the connecting nodes. Ai is the flow area of the
connecting pipe. (ρe)` is the internal energy of the liquid in the down comer and (ρe)i
is the internal energy at the connecting nodes. Pi is the pressure at the connecting nodes
between the down comer of other components.

The following pressure balance equation is used to calculate the liquid level:

Pdc = Pg +
1

2
ρ`gz (375)

where Pdc is the down comer reference pressure with its value taken at the center of the
liquid volume. Pg is the pressure in the vapor space of the down comer and z is the liquid
level relative to the bottom elevation of down comer.

115



For the case of liquid level above the pipe connection elevation, the incomplete form
of the momentum equation is used to account for the various pressure losses in the down
comer component

Pi = Pdc + ∆Pacc + s∆Pform + ∆Pg . (376)

The pressure loss due to acceleration is ∆Pacc = 1
2
(ρu2)dc,`− 1

2
(ρu2)i. The variable s = 1

if fluid is flowing into the down comer and s = −1 if fluid is flowing out of the down
comer. The pressure loss due to the form loss is ∆Pform = 1

2
K(ρu2)i. The pressure

loss due to the gravity is ∆Pg = ρ`g∆H , where ∆H is the height difference between the
elevation of the center of the liquid volume and the elevation of the connecting pipes. In
contrast, if the liquid level is below the pipe connection elevation, then

Pi = Pg . (377)

6.10 Valves

The current valve component developed in RELAP-7 is a simplified model to simulate the
fundamental functions (i.e. open and close) of generic valves. The valve component is a
junction type of components and it connects one pipe on each side. The valve is initiated
with a given user input (i.e., fully open or fully closed). It then starts to react (i.e., close
or open) and is triggered either by a preset user given trigger time or by a trigger event,
which requires the RAVEN code control logic. In its opening status, either fully open or
partially open, it serves as a regular flow junction with form losses. In its fully closed
status, the connected two pipes are physically isolated. The current valve model also
includes the gradually open/close capability similar to a motor driven valve to simulate
the physical behavior of a valve open/close procedure. It also has the benefit of avoiding
spurious numerical oscillations that are caused by an instantaneous open/close procedure.
Additional, specific valve components to be developed in the future (e.g., gate valve and
check valve) are planned to enhance the RELAP-7 capabilities for engineering analysis.

6.11 Compressible Valve Models

The valve model introduced in the previous section is for low speed nearly incompressible
flow cases. For reactor safety simulations, there are cases where high speed compressible
flow models are needed. One such example is a safety/relief valve (SRV), which either
is activated by passive setting points such as pressure (safety valve mode) or by active
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control actions through an electric motor or compressed air (relief mode). Normally, a
SRV would discharge pure gas or steam. However, there are transients in a LWR that can
involve the discharge of two-phase mixture or pure liquid through a SRV [90]. As an initial
version of simplified SRV model, only steam/gas is considered. Since the SRV always has
the minimal cross section area along the release line, it is assumed that choking always
happens in the throat of the SRV. To further simplify the model, is is further assumed that
choking will happen whenever the valve is open. Also, the steam/gas is currently treated
as an ideal gas.

The Compressible Valve is designed as a single 0-D junction component which pro-
vides:

• one BC for upstream pipe: pressure (pi)

• two BCs for downstream pipe: momentum (ρu)o and total enthalpy (Ho).

Therefore three equations are needed to close the system. First consider the case when the
valve is open. The pi unknown will correspond to the mass conservation:

(ρu)1A1n̂1 − (ρu)oA2n̂2 = 0 (378)

where (ρu)1 is the coupled momentum for the connecting inlet pipe end, A the cross-
section area, and n̂ direction normal (n̂1 = 1 for the inlet and n̂2 = −1 for the outlet). The
(ρu)o unknown corresponds to the following equation for the choked condition

(ρu)oA2n̂2 − ṁc = 0 (379)

where ṁc is the critical mass flow rate calculated by the equation for isentropic ideal gas
flow [91]

ṁc = At(ρu)c = At (γpcρc)
1/2 (380)

where At is the cross-section area at the valve throat, which can be controlled by the valve
action, i.e., from 0 to the fully open area. The critical pressure pc and the critical density
ρc are determined by

pc
pi0

=

(
2

γ + 1

) γ
γ−1

(381)

ρc
ρi0

=

(
2

γ + 1

) 1
γ−1

(382)
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where the subscript i0 indicates the stagnation condition for the inlet. For non-ideal choked
flow (not to be confused with non-ideal gas) through a valve, mc can be modified by
multiplying the valve coefficient Cv [91] which is defined as the ratio of real mass flow
rate over the ideal mass flow rate. The valve coefficient model will be included in the near
future.

For ideal gas and isentropic flow, the steady state mass flow rate is calculated as

ṁsub = A2

{
2

(
γ

γ − 1

)
pi0ρi0

(
p2

pi0

) 2
γ

[
1−

(
p2

p0i

) γ−1
γ

]} 1
2

(383)

By comparing the subsonic mass flow rate and the choking mass flow rate, we can de-
termine whether choking happens. When ṁsub ≥ ṁc, Eq. (379) is used for momentum;
Otherwise subsonic flow momentum equation is used:

(ρu)oA2n̂2 − ṁsub = 0 (384)

The Ho unknown will correspond to the energy conservation:

(ρu)1A1n̂1H1 − (ρu)oA2n̂2Ho = 0 . (385)

When the valve is fully closed, the following equations are used for pi, (ρu)o, and Ho,
respectively

pi − p1 = 0 (386)
(ρu)o − (ρu)2 = 0 (387)

Ho −H2 = 0 . (388)

p1, (ρu)2, and H2 are coupled variables from the connecting pipe ends. The pipe end BCs
are treated as solid wall conditions when the valve is fully closed. Subsonic compress-
ible flow model, valve coefficient model, stiffened gas model, and two-phase critical flow
model will be included in a later version.

6.12 Wet Well Model

The wet well refers to the suppression chamber of a BWR reactor, which is composed of
water space and gas space. The 0-D wet well model simulates both spaces. Fig. 6 shows

118



the schematic of the simplified model. Major assumptions include: (1) the suppression
pool is well mixed; (2) the kinetic energy in both spaces is ignored, therefore the water
space pressure follows a hydrostatic distribution; (3) no mass transfer between water and
gas space; (4) gas space is filled with 100% nitrogen gas; (5) the geometry of the wet well
is rectangular; and (6) no steam venting from dry well to the suppression pool. The wet
well model developed with these assumptions is adequate to simulate slow transients such
as extended station black-out transients. However, the current model is not suitable for
LOCA analysis. With these assumptions, mass and energy balance equations apply for

Figure 6. A simplified wet well model.

both gas and water spaces. By assuming one pressure for the gas space, another equation
for the water level is obtained. The mass conservation equation for the gas space is

dmg

dt
= −ṁv (389)

where mg is the gas mass and ṁv is the venting mass flow rate to the dry well which is
obtained from the connected pipe controlled by the vacuum breaker.
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Energy conservation equation for the gas space is

d(me)g
dt

= Acα (Tw − Tg)− ṁvHv (390)

where (me)g is the total internal energy (also total energy since kinetic energy is assumed
to be 0) for the gas space, Ac the average cross section area for the wet well, α the effective
heat transfer coefficient given by user input, Tw and Tg are temperatures for water and gas,
respectively. Hv is the total enthalpy from upstream. The small pressure work due to the
change of the volume is ignored since the change of water volume is slow and small due
to its tremendous volume. The gravity change inside the volume is ignored due to low
density.

The mass conservation equation for the water space is

dmw

dt
= ṁin − ṁout (391)

where mw is the total mass of water, ṁin is the inlet steam mass flow rate and obtained
from the connected steam pipe, and ṁout is the outlet water mass flow rate

ṁout = (ρu)outAout (392)

where (ρu)out the outlet momentum which is coupled from the connected water pipe, and
Aout the pipe cross section area.

The total energy conservation equation for the water space is

d(me)w
dt

= ṁin (Hin + (zi − 0.5Lw)g)

− ṁout (Hout + (zo − 0.5Lw)g)

− Acα(Tw − Tg)− q̇ (393)

where (me)w is the total internal energy for the water space, Hin is the total enthalpy cou-
pled from the connecting steam pipe, zi is the inlet steam pipe end elevation relative to the
pool bottom, Lw is the pool water level, zo, of the outlet water pipe end elevation relative
to the pool bottom, q̇ is the active heat removal rate from the immersed heat exchanger,
and Hout is the total enthalpy for the outlet water pipe which can be calculated for outflow
as

Hout =
ρew + pw(ρw, 0, ρew)

ρw
+

1

2
u2
out . (394)
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uout is the exit speed and is obtained from coupled water pipe end. The methods to cal-
culate the average water density ρw and specific volume energy ρew will be introduced
shortly. For inflow condition, Hout will be coupled from the pipe end. In Eq. (393), it is
assumed that the gravity center is at the half depth of the water pool. Reference pressure
in the water space is defined at the middle elevation of the pool

pw = pg +
1

2
Lwρwg (395)

where pw is the reference water pressure and pg the gas pressure. Pressure and temperature
are calculated from EOS relationships. The momentum of gas and water are assumed to
be 0. Therefore, the total energy is

ρEt = ρe = ρ
me

m
. (396)

In the code implementation of the wet well model, mg, (me)g, mw, (me)w, and Lw are
designated as the primary variables to be solve for, with corresponding equations (389),
(390), (391), (393), and (395). Another set of auxiliary variables is defined to close the
system, which include gas density ρg and water density ρw. Gas density is calculated
according to

ρg =
mg

Ac(Lt − Lw)
(397)

where Lt is the total effective height of the wet well. Similarly, the average water density
is calculated according to

ρw =
mw

AcLw
. (398)

Initial conditions for the primary variables are calculated according to the initial water
level Lw(0), gas pressure pg(0), and gas temperature Tg(0). Boundary conditions for three
connecting pipes are set similarly as for the reverse pump BCs. For example, the inlet
steam pipe needs one BC pin

pin +
1

2
(ρu2)in = pi +Kin

1

2
(ρu2)in (399)

where Kin is the form loss coefficient and pi is the water pressure at the elevation of inlet
steam pipe end

pi = pw + (0.5Lw − zi)ρwg . (400)

The other two pipe’s BCs are set in a similar manner.
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6.13 Time Dependent Volume

Time Dependent Volume is a 0-D component that provides a time dependent pressure and
temperature boundary condition to its connected 1-D component. It is purely a boundary
condition type of component, and it does not add any entries to the global unknowns
vector. When acquired by its connected component, it provides a pressure, a temperature,
and vapor or gas volume fraction boundary condition as follows:

P (t) = P0 +
dP

dt
(t− t0) (401)

T (t) = T0 +
dT

dt
(t− t0) (402)

α(t) = α0(t) +
dα

dt
(α− α0) . (403)

This component can trivially provide constant pressure and temperature (and vapor or gas
volume fraction) boundary conditions. Obviously, more complicated functions can also be
implemented.

6.14 Time Dependent Junction

The Time Dependent Junction (TDJ) component provides either a velocity or mass flow
rate (not both) boundary condition. The fluids temperature and vapor or gas volume frac-
tion are specified in TDJ in providing this boundary condition. It is purely a boundary
condition type of component, adding no entries to the nonlinear equations set.

T (t) = T0 +
dT

dt
(t− t0) (404)

α(t) = α0(t) +
dα

dt
(α− α0) (405)

The velocity or mass flow rate boundary condition can be set, respectively, as

v = v0 +
dv

dt
(v − v0) (406)

ṁ = ṁ0 +
dṁ

dt
(ṁ− ṁ0) . (407)
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6.15 SubChannel

A fully coupled subchannel channel model for the single-phase has been implemented into
RELAP-7. The single-phase subchannel model includes four balance equations: mass,
energy, axial momentum, and lateral momentum. The mass balance equation for the sub-
channel i is

Ai
∂ρi
∂t

+
∂(ρiuiAi)

∂x
+
∑
j∈K(i)

wi,j = 0 (408)

where i is the index of subchannel i. Ai is the flow area for subchannel i. j is the index of
a subchannel which is adjacent to subchannel i. K(i) is the set of lateral interfaces (gaps)
on the boundary of subchannel i. wi,j = ρulsk is the mass flow rate per unit length in the
lateral direction across the gap k between subchannels i and j. sk is the width of gap k.

The axial momentum balance for subchannel i is

Ai
∂ρiui
∂t

+
∂(ρiuiuiAi)

∂x
+ Ai

∂Pi
∂x

+ Aigρi +

1

2

(
f

Dh

+K ′i

)
ρiui|ui|Ai +

∑
j∈K(i)

wi,ju
∗ +

∑
j∈K(i)

wti,j(ui − uj) = 0 (409)

where f is the wall friction coefficient, Dh is the subchannel hydraulic diameter, and K ′i
is the form loss coefficient. u∗ is the lateral donor axial velocity at gap face k. If the flow
is into the subchannel i, then u∗ = uj , otherwise, u∗ = ui. wti,j is the turbulent mixing
mass flow rate per unit length in the lateral direction at gap face k. wti,j is the fluctuating
crossflow which is related to the eddy diffusely εt, bywti,j = εtρi

sk
lk

. In the current RELAP-
7 implementation, wti,j is calculated as wti,j = βskḠ, where β is the turbulent mixing
parameter and Ḡ is the average mass flux in the adjacent subchannels.

The lateral momentum balance for subchannel i is

∂wi,j
∂t

+
∂wi,jū

∂x
− sk
lk

(Pi − Pj) +
1

2

sk
lk
KG
|wi,j|
ρ̄s2

k

wi,j = 0 (410)

where ū = 1
2
(ui+uj) and ρ̄ = 1

2
(ρi+ρj). sk is the width of lateral gap k. lk is the distance

between centroids of subchannels i and j. KG is the lateral loss coefficient which accounts
for the friction and form pressure loss caused by the area change.
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The total energy balance equation for subchannel i is

Ai
∂ρiEi
∂t

+∇ · (ρiuiHiAi) + ρigAiui +∑
j∈K(i)

wi,jH
∗ +

∑
j∈K(i)

wti,j(Hi −Hj) +
∑
j∈K(i)

k

li
(Ti − Tj) +

∑
r∈M(i)

φi,rhwawAi(Ti − Tw,r) = 0 (411)

where H = E + P
ρ

is the total enthalpy and H∗ is the donor total enthalpy. k is the fluid
thermal conductivity. φi,r is the heated perimeter fraction associated with the subchannel
i. M(i) is the set of fuel rods that surround the subchannel i. hw is the convective heat
transfer coefficient and aw is the ratio of heat transfer surface area to the fluid volume. Ti
is the fluids temperature in subchannel i and Tw,r is the fuel rod wall temperature which is
obtained from the solution of the heat conduction equation.

6.16 Reactor

The reactor component is a virtual component to allow users to specify the reactor power
(i.e., steady-state power or decay heat curve) or heat source.

124



7 Reactor Kinetics Model

There will be two options available for the computation of the reactor power in the RELAP-
7 code. The first option is the point kinetics model; this option has been implemented into
RELAP-7. The second option will be a multi-dimensional neutron kinetics model. This
option, which is not available yet, will be achieved through the coupling with the Rat-
tleSnake code. RattleSnake is the Sn neutron transport code being developed at the INL
using the MOOSE framework. Chapter 8 has more in-depth discussions on this option.

The reactor point kinetics model is the simplest model that can be used to compute the
transient behavior of the neutron fission power in a nuclear reactor. The power is computed
using the space-independent, or point kinetics, approximation which assumes that power
can be separated into space and time functions. This approximation is adequate for cases
in which the space distribution remains nearly constant.

The point kinetics model computes both the immediate (prompt and delayed neutrons)
fission power and the power from decay of fission products. The immediate power is that
released at the time of fission and includes power from kinetic energy of the fission prod-
ucts and neutron moderation. Decay power is generated as the fission products undergo
radioactive decay. The user can select the decay power model based on the RELAP-7 ex-
act implementation of the 1979 ANSI/ANS Standard, the 1994 ANSI/ANS Standard, or
the 2005 ANSI/ANS Standard.

7.1 Point Kinetics Equations

The point kinetics equations are the following:

dn(t)

dt
=
ρ(t)− β

Γ
n(t) +

Nd∑
i=1

λiCi(t) + S (412)

dCi(t)

dt
=
βfi
Γ
n(t)− λiCi(t), i = 1, 2, . . . , Nd (413)

where t is time (s), n is the neutron density (neutrons/m3), ρ is the reactivity (only the time-
dependence has been indicated, however, the reactivity is dependent on other variables). βi
is the effective delayed neutron precursor yield of group i and β =

∑Nd
i=1 βi is the effective

delayed neutron fraction. Γ is the prompt neutron generation time (s). λi is the decay
constant of group i (1/s). Ci is the delayed neutron precursor concentration in group i
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(nuclei/m3). Nd is the number of delayed neutron precursor groups. fi = βi
β

is the fraction
of delayed neutrons of group i. S is the source rate density (neutrons/m3-s).

The neutron flux (neutrons/m2-s) is calculated as

φ(t) = n(t)v (414)

where v is neutron velocity (m/s). The fission rate (fissions/s) ψ(t) is calculated as

ψ(t) = V Σfφ(t) (415)

where V is the volume (m3) and Σf is the macroscopic fission cross section (1/m). The
reactor power is calculated from

Pf (t) = Qfψ(t) (416)

where Pf is the immediate (prompt and delayed neutron) fission power (Mev/s) and Qf is
the immediate fission energy per fission (Mev/fission).

7.2 Fission Product Decay Model

The 1979, 1994, and 2005 Standards for decay power can be implemented by advancing
the differential equations, which become

dγαj(t)

dt
=
Fγaαj
λαj

Fαψ(t)− λαjγαj(t) j = 1, 2, . . . , Nα (417)

where α = 1, 2, 3 for the 1979 Standard and α = 1, 2, 3, 4 for the 1994 and 2005 Stan-
dards. The parameters a and λ were obtained by fitting to fission decay power data. The
fitting for each isotope used 23 groups (Nα = 23). For the 1979 Standard, data are pre-
sented for three isotopes, U235, U238, and Pu239. For the 1994 and 2005 Standards, data
are presented for four isotopes, U235, U238, Pu239, Pu241. Fγ is an input factor to allow
easy specification of a conservative calculation. It is usually 1.0 for best-estimate calcula-
tions. Fα is the fraction of fissions from isotope α. Summation of Fα over α is 1.0. The
uncorrected decay power is calculated as

P ′γ(t) =

NI∑
α=1

Nα∑
j=1

λαjγαj(t) (418)
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where NI = 3 for the 1979 Standard and NI = 4 for the 1994 and 2005 Standards. ψ is
the fission rate from all isotopes.

The 1979, 1994, and 2005 Standards use a correction factor to the energy from fis-
sion product decay to account for the effects of neutron absorption. The equation for the
correction factor is the following:

G(t) = 1.0 + (3.24E − 6 + 5.23E − 10t)T 0.4ψg (419)

where ψg is the number of fissions per initial fissile atom, T is the reactor operating time
including any periods of shutdown, and t is the time since shutdown. Limits on the quan-
tities are 1.0 ≤ ψg ≤ 3.0, T < 1.2614 × 108, and t < 104 seconds. The corrected decay
power is given by

Pγ = G(t)P ′γ . (420)

The RELAP-7 implementation of the 1979, 1994, and 2005 Standards is exact (i.e., not
a curve fit). The data for all standards are built into the code as default data, but the user
may enter different data.

7.3 Actinide Decay Model

The actinide model describes the production of U239, Np239, and Pu239 from neutron
capture by U238 using the descriptive differential equations

dγU(t)

dt
= FUψ(t)− λUγU(t) (421)

dγN(t)

dt
= λUγU(t)− λNγN(t) . (422)

The actinide decay power is calculated as

Pα(t) = ηUλUγU(t) + ηNλNγN(t) . (423)

The quantity FU is user-specified and is the number of atoms of U239 produced by neutron
capture in U238 per fission from all isotopes. A conservative factor, if desired, should be
factored into FU . The λ and η values can be user-specified, or default values equal to those
stated in the 1979, 1994, or 2005 ANS Standards can be used. The first equation describes
the rate of change of atoms of U239. The first term on its right hand side represents the
production of U239; the last term is the loss of U239 due to beta decay. The second equation
describes the rate of change of NP 239. The production of Np239 is from the beta decay of
U239, and Pu239 is formed from the decay of Np239.
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7.4 Transformation of Equations for Solution

The differential equations to be advanced in time are the point kinetics equations, fission
products decay equations, and actinide decay equations. Multiplying by V Σf andX which
is the conversion factor from MeV/s to Watts, the equations become

d

dt

[
Xψ(t)

v

]
=

[ρ(t)− β]Xψ(t)

Γv
+

Nd∑
i=1

λiXV ΣfCi(t) +XV ΣfS (424)

d

dt
[XΣfCi(t)] =

βfiXψ(t)

Γv
− λiXV ΣfCi(t) i = 1, 2, . . . , Nd (425)

d

dt
[Xγαj(t)] =

FγaαjFαXψ(t)

λαj
− λαjXγαj(t) j = 1, 2, . . . , Nα (426)

d

dt
[XγU(t)] = FUXψ(t)− λUXγU(t) (427)

d

dt
[XγN(t)] = λUXγU(t)− λNXγN(t) (428)

where α = 1, 2, 3 for the 1979 Standard and α = 1, 2, 3, 4 for the 1994 and 2005 Stan-
dards. The total power PT is the sum of immediate fission power, corrected fission product
decay, and actinide decay power, and now in units of watts is

PT (t) = QfXψ(t) +G(t)

NI∑
α=1

Nα∑
j=1

λαjXγαj(t) + ηUλUXγU(t) + ηNλNXγN(t) (429)

whereNI = 3 for 1979 Standard andNI = 4 for the 1994 and 2005 Standard. For solution
convenience, the following substitutions are made:

ρ(t) = βr(t) (430)
Xψ(t) = ψ′(t) (431)

XV ΣfΓvS

β
= S ′ (432)

XV ΣfvCi(t) =
βfi
Γλi

Wi(t) i = 1, 2, . . . , Nd (433)

Xγαj(t) =
FγaαjFα
λ2
αj

Zαj(t) j = 1, 2, . . . , Nα (434)

XγU(t) =
FU
λU

ZU(t) (435)

XγN(t) = ZN(t) (436)
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where α = 1, 2, 3 for the 1979 Standard and α = 1, 2, 3, 4 for the 1994 and 2005 Stan-
dards. The equations to be integrated are now

d

dt
ψ′(t) =

β

Γ

[
(r(t)− 1)ψ′(t) +

Nd∑
i=1

fiWi(t) + s′

]
(437)

d

dt
Wi(t) = λiψ

′(t)− λiWi(t) i = 1, 2, . . . , Nd (438)

d

dt
Zαjt = λαjψ

′(t)− λαjZαj(t) i = 1, 2, . . . , Nd (439)

d

dt
ZU(t) = λUψ

′(t)− λUZU(t) (440)

d

dt
ZN(t) = FUZU(t)− λNZN(t) (441)

where α = 1, 2, 3 for the 1979 standard and α = 1, 2, 3, 4 for the 1994 and 2005 standards.
The total power is given by

PT (t) = Qfψ
′(t) +G(t)

NI∑
α=1

Nα∑
j=1

FγaαjFαZαj(t)

λαj
+ FUηUZU(t) + ηNλNZN(t) (442)

where NI = 3 for the 1979 standard and NI = 4 for the 1994 and 2005 Standards.

7.5 Reactivity Feedback Model

The reactivity feedback model implemented in RELAP-7 is the same as the separable
model used for RELAP5. In the separable model, each effect is assumed to be indepen-
dent of the other effects. The model assumes nonlinear feedback effects from moderator
(thermal fluids) density and fuel temperature changes and linear feedback from moderator
and fuel temperature changes. The separable model defining reactivity is defined as:

r(t) =
ns∑
i=1

rsi(t)+

nρ∑
i=1

[WρiRρ(ρi(t))+aMi∆TMi(t)]+

nF∑
i=1

[WFiRF (TFi(t))+aFi∆TFi(t)]

(443)

The quantities rsi are obtained from input tables defining ns reactivity (scram) curves
as a function of time. Rρ is a table defining reactivity as a function of the current modera-
tor density of fluid ρi(t) in the thermal fluids volume i (density reactivity table). Wρi is the

129



density volume weighting factor for volume i. ∆TMi(t) is the spatially averaged modera-
tor fluid temperature difference between the current time t and the start of the transient for
volume i. aMi is the volume fluid temperature coefficient (not including density changes)
for volume i and nρ is the number of thermal fluids volumes in the reactor core. The quan-
tity RF is a table defining the Doppler reactivity as a function of the heat structure plume
average fuel temperature TFi(t) in the heat structure. ∆TFi(t) is the difference between
the current time t and the start of the transient. WFi and aFi are the fuel temperature heat
structure weighting factor and the heat structure fuel temperature coefficient, respectively,
for heat structure i. Finally, nF is the number of fuel volumes in a reactor core.

Boron feedback is not provided, but will be added in a later version. The separable
model can be used if boron changes are quite small and the reactor is near critical about
only one state point.
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8 Multi-Dimensional Capability and Interface with
RAVEN

The RELAP-7 code consists mainly of 1-D and 0-D components, however, for certain
applications, such as the reactivity insertion accident, the multi-dimensional effects are
essential. Other ongoing MOOSE based codes provide the multi-dimensional capabilities
the RELAP-7 code can leverage. These codes include the RattleSnake code for 3-D neu-
tron kinetics, BISON for 3-D fuel performance, and BigHorn for 2-D/3-D computational
fluid dynamics. These codes can be coupled with the RELAP-7 code to provide the nec-
essary multi-dimensional analysis capability. It is noted that the coupling work is not yet
complete.

MOOSE

RELAP7 Bison RattleSnake

RAVEN Marmot

Bighorn

Figure 7. Multi-physics and multi-dimensional capability cou-
pling for RELAP-7
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8.1 RattleSnake

RattleSnake is a radiation SN transport code built using the MOOSE framework. It solves
the multigroup SN transport equation in the formulation of Self-Adjoint Angular Flux
(SAAF) with the continuous finite element method. RattleSnake can solve both the tran-
sient and eigenvalue problems with arbitrary order of scattering anisotropy. It can solve
problems on 2D and 3D unstructured higher-order meshes in parallel. RattleSnake is de-
signed to be easily inserted into a system of from pin-resolved fuel performance analysis to
full-core safety analysis for tightly coupled multiphysics simulations. A multigroup cross
section library format in XML (eXtendable Makeup Language) and its manipulator for
interpolation and mixing operations are created within RattleSnake. Depletion capability
is being developed for the code.

8.2 Bison/MARMOT

BISON [92] is a MOOSE based nuclear fuel performance code applicable to a variety
of fuel forms including light water reactor fuel rods, TRISO particle fuel, and metallic
rod and plate fuel. It solves the fully-coupled equations of thermomechanics and species
diffusion, for either 1D spherical, 2D axisymmetric or 3D geometries. Fuel models are
included to describe temperature and burnup dependent thermal properties, fission product
swelling, densification, thermal and irradiation creep, fracture, and fission gas production
and release. Plasticity, irradiation growth, and thermal and irradiation creep models are
implemented for clad materials. Models are also available to simulate gap heat transfer,
mechanical contact, and the evolution of the gap/plenum pressure with plenum volume,
and fission gas addition. BISON has been coupled to the mesoscale fuel performance code
MARMOT, demonstrating fully-coupled multiscale fuel performance capability. BISON
is currently being validated against a wide variety of integral fuel rod experiments.

MARMOT [93] is a finite element-based phase field code for modeling irradiation-
induced microstructure evolution. It predicts the effect of radiation damage on microstruc-
ture evolution, including void nucleation and growth, bubble growth, grain boundary mi-
gration, and gas diffusion and segregation. The phase field equations can be coupled with
heat conduction and solid mechanics from ELK (Extended Library of Kernels which is a
library for common kernels, boundary conditions and material base classes) to consider
the effect of temperature and stress gradients on the evolution. In addition, MARMOT
calculates the effect of the microstructure evolution with various bulk material properties,
including thermal conductivity and porosity. Once the bulk properties have been calcu-
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lated, they can be passed to BISON for a fuel performance simulation.

8.3 BigHorn

The overall research goal of Bighorn is to develop a simulation capability for reactor mul-
tiphysics around the next-generation implicit all-speed (nearly incompressible to highly
compressible) flow method with an all-fluid (gas, liquid, liquid metal, two-phase mix-
ture, etc.) capability to simulate the mass and energy transport of nuclear energy systems.
Strong mathematical coupling of fluid flow and solid-state heat transfer, or conjugate heat
transfer (CHT), results in a unique approach to energy conservation. Combined with
JFNK, severe multi-scale temporal issues will be alleviated and phenomena that exhibit
strong physical coupling yet defy strong mathematical coupling, such as radiation trans-
port, will be fully-coupled in an implicit numerical scheme. The coupling techniques in-
corporated into Bighorn will result in a state-of-the-art multiphysics approach by allowing
the strong mathematical coupling of turbulent coolant flow and solid-state heat conduc-
tion with the implicit numerical coupling of radiation transport (both neutron and photon).
With an all-fluid capability, the Bighorn simulation tool will have application to Light Wa-
ter Reactors (LWR), the Next Generation Nuclear Plant (NGNP) concepts, Sodium-cooled
Fast Reactors (SFR), etc.

8.4 RAVEN

RAVEN(Reactor Analysis and Virtual Control Environment) is a multi-tasking applica-
tion focused on RELAP-7 simulation control, reactor plant control logic, reactor system
analysis, uncertainty quantification, and probability risk assessments (PRA) for postulated
events. RAVEN is being developed to drive RELAP-7 for which the following functional
capabilities are provided:

• Derive and actuate the control logic required to do the following:

– Simulate the plant control system

– Simulate the operator (procedure guided) actions

– Perform Monte Carlo sampling of random distributed events

– Perform event three based analysis.
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• Provide a GUI to do the following:

– Input a plant description to RELAP-7 (component, control variable, control
parameters)

– Concurrent monitoring of Control Parameters

– Concurrent alteration of control parameters.

• Provide Post Processing data mining capability based on the following:

– Dimensionality reduction

– Cardinality reduction.

– Uncertainty quantification and propagation
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