Light Water Reactor Sustainability Program

RELAP-7 Closure Verification Part 1: Vertical Pre-CHF Closures

September 2017

DOE Office of Nuclear Energy

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, do not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Light Water Reactor Sustainability Program

RELAP-7 Closure Verification Part 1: Vertical Pre-CHF Closures

> R.C Johns G.B. Swindlehurst D. Andrs R.A.Berry J.E. Hansel R.C. Martineau L. Zou

September 2017

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov/lwrs

Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

Executive Summary

This report presents the efforts to verify the closure relations used in vertical pre-CHF flow regimes for RELAP-7. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being jointly developed by the Idaho National Laboratory (INL) and Los Alamos National Laboratory(LANL). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's and TRACE's capabilities and extends their analysis capabilities for all reactor system simulation scenarios.

The RELAP-7 code utilizes the well-posed 7-equation two-phase flow model for compressible two-phase flow. Closure models used in the TRACE code have been reviewed and selected to reflect the progress made during the past decades and provide a basis for the closure correlations implemented in the RELAP-7 code.

The vertical pre-CHF relations are in excellent agreement with the implementation in TRACE and are ready to be part of a more expanded developmental assessment effort.

Acknowledgements

The authors wish to express their appreciation to Mr. Christopher Murray of the US Nuclear Regulatory Commission for graciously providing the source code for the TRACE closure relations, and to Mr. Jay Spore of Information Systems Laboratories, Inc. for discussions on the implementations of those relations.

Table of Contents

Executive Summary	2
Acknowledgements	3
Introduction	5
RELAP-7 Models	6
Basic Equations Models	6
Flow-Field and Other Constitutive Models	6
Component / Equipment Models	7
Verification Methodology	7
Choice of Verification Conditions	8
Verification Results	10
Wall Drag	11
Interfacial Drag	15
Interfacial Heat Transfer	15
Wall Heat Transfer	21
Conclusions	30
Works Cited	

Introduction

The RELAP-7 (Reactor Excursion and Leak Analysis Program) code is the next generation nuclear reactor system safety analysis code being developed at Idaho National Laboratory(INL). The code is based on the INL's modern scientific software development framework MOOSE (Multi-Physics Object Oriented Simulation Environment) [1]. The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains, and improves upon, RELAP5's [2] and TRACE's [3] abilities and extends the analysis capability for all reactor system simulation scenarios.

This document presents the verification activities on the closure relations used in vertical flow for pre-critical heat flux(CHF) flow conditions, that is, where the wall heat flux is less than that required for departure from nucleate boiling(DNB). Future reports will address verification of the closures for horizontal flow including stratified flow, as well as for Post-CHF conditions.

RELAP-7 Models

RELAP-7 can be perceived as having been derived from two major theoretical foundations, the first being a set of mathematical models to describe the physical phenomena being simulated, and the second being a set of numerical methods to act on those mathematical models to obtain meaningful outputs.

We assign these models into 4 categories:

- Basic equations models
- Flow-field and other constitutive models
- Component / equipment models
- Special-purpose models

Basic Equations Models

The basic equation models category includes the fundamental conservation and transport PDEs, as well as the thermodynamic state relations for the fluid (equation of state):

- Conservation of fluid mass
- Conservation of fluid momentum
- Conservation of fluid energy
- Heat Transfer
- Equation of state

Flow-Field and Other Constitutive Models

To model transfers of mass, momentum, and energy, both between fluid phases and between the fluid and wall, the basic equations must be supplemented with an additional set of models. These transfer models are derived from the literature and form the majority of the empirical correlations in RELAP-7.

Greater detail on the closure relations theory is presented in RELAP-7 Closure Correlations [4]

The flow-field and other constitutive models category includes the following:

- Flow regime maps
- Fluid mass exchange models
 - > Wall mass transfer (boiling and condensation at the fluid-wall interface)

- Interphase mass transfer (evaporation/flashing and condensation at the phasic interface)
- Fluid momentum exchange models
 - Wall momentum losses (drag)
 - Interphase momentum transfer (drag and entrainment)
 - Localized pressure losses (e.g., orifice plate, grid spacer, etc.)
- Fluid energy exchange
 - Wall energy transfer
 - Interphase energy transfer

Like TRACE, from which we derive most of our closures, RELAP-7 uses flow regime maps to determine which models to apply. Currently, RELAP-7 shares a map for interfacial drag and heat transfer, but has independent maps for wall drag and wall heat transfer.

Component / Equipment Models

RELAP-7, as a primarily 1D systems code, uses Component / Equipment models in situations where it is neither desirable, nor computationally feasible, to model components in full detail using only the fundamental basic equations models. Instead, component and equipment models use simplified input and output models to capture the relevant effects and performance of system components. Some subcategories of Component / Equipment models include the following:

- Centrifugal pump
- Check-valve
- Valve

Component / Equipment Models are verified as a part of the development of the component itself and are not verified here.

Verification Methodology

To check both the flow regime maps and the individual closure relations, we have chosen to verify specific points inside the domain of each correlation and every flow regime. We determine a set of thermal hydraulic properties and flow conditions, that use a particular correlation and verify that the flow regime logic selects the correct correlation and that the result matches what the TRACE code implementation provides.

To verify these states, we have developed a capability in RELAP-7 to calculate the output of these relations without running a full model. This ensures that we can precisely set the flow conditions even in states that are far from equilibrium.

We have also created a similar standalone utility based on the TRACE Modules for closure relations provided by the US Nuclear Regulatory Commission. This utility receives a complete

set of flow conditions and thermodynamic state, and with these values computes the correlated value. For the TRACE property utility, we have bypassed TRACE's Equation of State (EOS) package and provide all required thermodynamic properties to these utilities based on the RELAP-7 formulation of IAPWS-95. This avoids issues in variations due to the evaluation of thermodynamic properties, and simplifies the utility logic as it does not need to instantiate TRACE components.

These capabilities assure that we will be able to continually verify that the closure relations are properly implemented with greater confidence than can be obtained simply through the use of validation test cases.

Choice of Verification Conditions

For Part 1, vertical correlations less that the critical heat flux or DNB, a matrix of 36 cases was developed for wall drag, interfacial drag, interfacial heat transfer, and wall heat transfer. The cases were selected with the intent to test each combination of fluid state (subcooled, saturated, superheated, void fraction, and flow regime) that results in a different closure being utilized according to the coded logic in RELAP-7. For wall drag, interfacial drag, and interfacial heat transfer closures, the two-phase flow regimes include bubbly/slug, annular/mist, cap bubble/slug, and transition regions. For wall heat transfer only the pre-DNB closures were tested, and these included laminar and turbulent forced convection, laminar and turbulent natural convection, film condensation, and transition regions.

For wall drag seven cases were tested. For interfacial drag six cases were tested. For interfacial heat transfer five cases were tested. For wall heat transfer eighteen cases were tested. The figure below shows the coded logic in RELAP-7 for wall heat transfer, with each branch of the logic tree considered in the selection of test cases.

Figure 4. Logic to determine pre-CHF wall heat transfer mode following TRACE code [3].

Three types of test problems were used in the 36 test cases. For the wall drag and interfacial drag cases, measured data and small extensions of the measured data were used to test the RELAP-7 closures. The wall drag test data used were the Ferrell-McGee data that were used for the TRACE code validation. The interfacial drag test data used were the Argonne air-water test data, also used for the TRACE code validation. For the interfacial heat transfer cases a dummy RELAP-7 Pipe component test problem consisting of a 0.1 meter diameter pipe at ~500°K was created. For the wall heat transfer test cases three test problems were used. The first was the same dummy Pipe component test problem. The second was a single fuel rod and subchannel RELAP-7 RodBundle component based on the BEAVRS PWR neutronics benchmark database, which is applicable to a Westinghouse 17x17 fuel assembly design with a 0.360 inch diameter fuel rod. The third was the Christensen Test 15 data used for the turbulent forced convection test case.

For many of the 36 test cases the RELAP-7 input file parameter values required some adjustments so that the RELAP-7 coded logic would result in testing the desired closure. Parameter values that were candidates for adjustment were the power, the fluid velocity, and the hydraulic diameter.

Verification Results

RELAP-7 and TRACE provide nearly identical values for each of the conditions evaluated, in all cases yielding less than 1% difference between codes. We believe that these differences are primarily due to a lack of precision in input thermodynamic state, and to a lesser extent, differences in compiler optimization and order of operations. Because of this, unless stated otherwise, results presented in the following tables match both RELAP-7 and TRACE to the precision presented in the table. All values are in SI units.

In the course of verifying these relations, we have come across both implementation errors in RELAP-7 and errors in documentation of TRACE. For the vertical flow relations, all of these issues have been resolved. We know of no errors with respect to the relations in TRACE or RELAP-7 at this time.

Wall Drag		T/H Conditions	Reference (INI /EXT_17_016E2)
Single-Phase	Liquid	 Ferrell-McGee Subcooled Data TRACE App. A, p. A-62; T = 384.01 (70 K subcooled) P = 1.023e6 Pa D_h = 0.0508 m A = 2.027e-3 m2 Vel_liquid = 5.45e-02 m/s RESULTS Cw_liquid = 7.664E-3 Cw_vapor = 0 	Eqn 10, p. 13
Single-Phase	Vapor	 2) Ferrell-McGee Superheated Data TRACE App. A, p. A-62; T = 484.01 K (30 K superheated) P = 1.023e6 Pa D = 0.0508 m A = 2.027e-3 m2 Vel_vapor = 7.07e-01 m/s RESULTS Cw_liquid = 0 Cw_vapor = 7.625E-3 	Eqn 10, p. 13

Wall Drag Table 1: Wall Drag verification cases

Eqn 18, p. 14	Eqn 20, p. 15
<pre>3) Dummy Problem T_liquid = 500 K T_vapor = 520 K T_wall = 500 K P = 3.768e6 Pa (Psat for 520 K) D_h = 0.1 m A = 7.85e-3 m2 Vel_liquid = 1.0 m/s Vel_vapor (air) = 1.0 m/s Vel_vapor = 0.1 RESULTS Cw_liquid = 3.082E-3 Cw_vapor = 0</pre>	 4) Ferrell-McGee Saturated Data TRACE App. A, p. A-71, Test 1A-8 P = 8.184e5 Pa T_liquid = 444.50 K (Tsat) T_vapor = 444.50 K (Tsat) T_wall = 445 K Alpha_vapor = 444.50 K (Tsat) T_wall = 445 K Alpha_vapor = 0.536 Mass flow = 0.0582 kg/s D = 0.01168 m A = 1.071e-4 m2 Vel = 1.299 m/s RESULTS Cw_liquid = 1.884E-2 Cw_vapor = 0
Liquid with subcooled boiling	Liquid with nucleate boiling
Bubbly/Slug	Bubbly/Slug
Two-Phase	Two-Phase

Eqn 32, p. 16	Eqn 24, p. 15
5) Ferrell-McGee Saturated Data TRACE App. A, p. A-71, Test 1A-2 P = 8.211e5 Pa T = 444.63 K (Tsat) Alpha_vapor = 0.825 Mass flow = 0.0581 kg/s D = 0.01168 m A = 1.071e-4 m2 Vel = 3.393 m/s Vel = 3.393 m/s RESULTS Cw_liquid = 4.216E-3 Cw_vapor = 0	 6) Ferrell-McGee Saturated Data TRACE App. A, p, A-71, Test 1A-6 P = 8.246e5 Pa T = 444.81 K (Tsat) Alpha_vapor = 0.981 Mass flow = 0.0580 kg/s D = 0.01168 m A = 1.071e-4 m2 Vel = 25.52 m/s RESULTS RESULTS Cw_liquid = 3.734E-3 Cw_vapor = 0
0.8 < α< 0.9	Full liquid film (>25 microns)
Transition	Annular/Mist
Two-Phase	Two-Phase

Eqn 28, p. 16										
7) Dummy Problem (extending #6 with	higher void fraction)	P = 8.246e5 Pa	T = 444.81 K (Tsat)	Alpha_vapor = 0.992	(0.99143 = 25 micron)	Mass flow = 0.0580 kg/s	D = 0.01168 m	A = 1.071e-4 m2	Vel = 25.52 m/s	RESULTS Cw_liquid = 3.371E-3 Cw_vapor = 1.263E-3
Partial liquid film	(<25 microns based	on α and wetted	perimeter)							
Annular/Mist										
Two-Phase										

)rag
_
σ
. <u> </u>
പ്പ
Ľ
Ð
<u> </u>

Table 2. Interfacial Drag verification cases.

	cqn 65, p. 23 cqn 67, 68. p. 24	Eqn 73, p. 25
	8) ANL Air-Water Test B-14 TRACE App. A, p. A-33, ANL-6755 T = 293.15 K P = 1.013e5 Pa D_h = 0.06985 (2.75 inch ID) A = 0.04124 m2 Vel_liquid = 0.030 m/s Vel_vapor (air) = 0.048 m/s Alpha_vapor = 0.108 RESULTS F_int = 1.403E+4	9) ANL Air-Water Test B-13 TRACE App. A, p. A-33, ANL-6755 T = 293.15 K P = 1.01365 Pa D_h = 0.06985 (2.75 inch ID) A = 0.04124 m2 Vel_liquid = 0.030 m/s Vel_liquid = 0.030 m/s Vel_vapor (air) = 0.217 m/s Alpha_vapor = 0.299 (note that test was actually 0.303) RESULTS F_int = 7.094E+3
	Pipe bubbly (α <0.2)	Transition (0.2 < α < 0.3)
	Bubbly/Slug	Bubbly/Slug
Interfacial Drag		

m/s	xtending ANL Test G-17 - Eqn 78, p. 26 inch ID) s
A = 0.04124 m2 Vel_liquid = 0.244 m/s Vel_vapor (air) = 3.762 r Alpha_vapor = 0.849 RESULTS RELAP-7: F_int = 199.9 TRACE: F_int = 200.6	13) Dummy Problem (e highest void test) T_vapor = 293.15 K T_wall = 293.15 K T_liquid = 493.15 K P = 1.01365 Pa D_h = 0.06985 m (2.75 i A = 0.04124 m2 Vel_iquid = 0.01 m/s Vel_iquid = 0.01 m/s Vel_vapor (air) = 1.0 m/ Alpha_vapor = 0.85 RESULTS F_int = 196.08
	α > ~0.90
	Annular/Mist

nsfer
ອ
Ē
<u></u>
σ
<u> </u>
Т
σ
cial
rfacial
erfacial
terfacial
Interfacial

Table 3. Interfacial Heat Transfer verification cases.

	nterfacial Heat iransfer	Bubbly F													Cap Bub	Flow										
_		Flow													ble/Slug											
											_	_												_		
		14) Dummy Pipe Problem	T_liquid = 500 K	T_vapor = 520 K	P = 2.639e6 Pa	(Psat for 500 K)	D h = 0.1 m	$A = 7.85e-3 m^2$	Vel liauid = 2.0 m/s	Vel vapor = 2.0 m/s	 -	RESULTS	Vhtc_liquid = 4.87e4	Vhtc_vapor = 1.51e5	15) Dummy Pipe Problem	T_wall = 500	T_liquid = 500 K	T_vapor = 520 K	P = 2.639e6 Pa (Psat for 500 K)	D_h = 0.1 m	A = 7.85e-3 m2	Vel_liquid = 3.0 m/s	Vel vapor = 3.0 m/s	Alpha vapor = 0.3	RESULTS	Vhtc_liquid = 1.46e5
		Eqn 143, p. 38	Eqn 149, p. 38												Eqn 155, p. 39	Eqn 161, p. 40										

Eqn 191, p. 44												Eqn 166, p. 41													
16) Dummy Pipe Problem T wall = 500	T_liquid = 500 K	T_vapor = 520 K	P = 2.639e6 Pa (Psat for 500 K)	D_h = 0.1 m	A = 7.85e-3 m2	Vel_liquid = 5.0 m/s	Vel_vapor = 5.0 m/s	Alpha_vapor = 0.6	RESULTS	Vhtc lianid - 0 90cE	Vhtc_vapor =2.00e5	17) Dummy Pipe Problem	T_wall = 500 K	T_liquid = 480 K	T_vapor = 520 K	P = 2.639e6 Pa (Psat for 500 K)	D_h = 0.1 m	A = 7.85e-3 m2	Vel_liquid = 2.0 m/s	Vel_vapor = 2.0 m/s	Alpha_vapor = 0.1	-	RESULTS	Vhtc_liquid = 1.71e5	Vhtc_vapor =1.43e5
0.5 < α< 0.75																									
Transition												Correction for	Subcooled	Boiling for	Dispersed	Bubbles									

Eqn 167, p. 41												
18) Dummy Pipe Problem	T_wall = 500	T_liquid = 500 K	T_vapor = 520 K	P = 2.639e6 Pa (Psat for 500 K)	D_h = 0.1 m	A = 7.85e-3 m2	Vel_liquid = 15.0 m/s	Vel_vapor (air) = 15.0 m/s	Alpha_vapor = 0.9	RESULTS	Vhtc_liquid = 1.05e7	Vhtc_vapor =1.83e5
Annular/Mist	Flow											

_
d)
<u> </u>
S
_
0
<u> </u>
1
-
T
(0
(۵
$\mathbf{\Psi}$
—
_
_
σ
~
~
>
\geq
~

Table 4. Wall heat transfer verification cases.

Wall Heat				
Transfer				
Single-Phase	Pipe	$\alpha = 0$	19) Laminar Forced Convection	Eqn 226, p. 52
Liquid			Dummy Pipe Problem	
			T_liquid = 500 K	
			(Psat = 2.639e6)	
			P = 5.0e6 Pa (>Psat)	
			T_wall = 500 K	
			D_h = 0.1 m	
			A = 7.85e-3 m2	
			Vel_liquid = 1.0e-3m/s	
			RESULTS	
			Hw = 27.8	
			20) Turbulent Forced Convection	Eqn 230, p. 52
			Christensen Test 15,	
			INL/EXT-98-0083, Vol. 3, p. 4-47; ANL-6385 (p. 96)	
			T = 530.84 K (12.5 K subcooling)	
			T_wall = 550 K	
			P = 5.52e6 MPa	
			$D_{-}h = 0.0176 m$	
			A = 4.928e-4 m2	
			Vel = 1.15 m/s	
			Q_wall = 9.93e5 W/m2 (70 kW)	
			P_hf = 0.111 m (1.11 cm x 4.44 cm square duct;	
			1.27 m height)	
			A = 4.9284e-4 m2	
			RESULTS	

			Hw = 9738	
			21) Laminar Natural Convection	Eqn 232, p. 53
			Dummy Pipe Problem	
			T_liquid = 500 K	
			P = 5.0e6 Pa (>Psat)	
			T_wall = 500 K	
			$D_{-}h = 0.02 m$	
			A = 7.85e-3 m2	
			Vel_liquid = 1.0e-3	
			RESULTS	
			Hw = 1610	
			22) Turbulent Natural Convection	Eqn 233, p. 53
			Dummy Pipe Problem	
			T liquid = 500 K	
			P = 5.0e6 Pa (>Psat)	
			D_h = 0.1 m	
			A = 7.85e-3 m2	
			Vel_liquid = 1.0e-2	
			RESULTS	
			Hw = 1562	
Single-Phase	Rod Bundle	$\alpha = 0$	23) Laminar Forced Convection	Eqn 237, p. 53
Liquid			BEAVRS Rod Bundle	
			T_liquid = 500 K	
			P = 5.0e6 Pa (>Psat)	
			T_wall = 510 K	
			D_h = 1.295E-4 m	
			POD = 1.37	
			A = 9.303e-5 m2	
			Vel_liquid = 1.0 m/s	

			RESULTS	
			Hw = 6.33e4	
			24) Turbulent Forced Convection	Eqn 243, p. 54
			BEAVRS Rod Bundle	
			T_liquid = 500 K	
			P = 5.0e6 Pa	
			T_wall = 510 K	
			D_h = 1.295E-4 m	
			PoD = 1.37	
			A = 9.303e-5 m2	
			Vel_liquid = 6 m/s	
			RESULTS	
			Hw = 1.48e5	
			25) Natural Convection	Eqn 244, p. 54
			BEAVRS Rod Bundle	
			T_liquid = 500 K	
			P = 5.0e6 Pa	
			T_wall = 510 K	
			P/D = 1.37	
			D_h = 1.295E-2 m (BEAVRS	
			divided by 100)	
			A = 9.303e-5 m2	
			Vel_liquid = 0.01 m/s	
			RESULTS	
			Hw = 2130	
Two-Phase	Pipe	$0 < \alpha < 0.8$	26) Laminar Forced Convection	Section 6.1.2, p. 54
		Tw > Tsat	Dummy Pipe Problem	describes the modified
		Tw < Tonb	T = 520 K (Tsat)	liquid phase Reynolds
			P = 3.768e6 Pa (Psat)	number that is applied
			Q_wall = 1.0e-5 W/m2	to the single phase
			T_wall = not specified	closures
			T_liquid = 520 K	

T_vapor = 520 K	D_h = 0.1 m	A = 7.85e-3 m2	Vel_liquid = 1.0e-3	Vel_vapor = 1.0e-3	Alpha_vapor = 0.1	RESULTS	Hw_liquid = 26.90	Hw_vapor =0	27) Turbulent Forced Convection	Dummy Pipe Problem	T = 520 K (Tsat)	P = 3.768e6 Pa (Psat)	Q_wall = 1.0e-5 W/m2	T_wall not specified	T_liquid = 520 K	T_vapor = 520 K	D_h = 0.1 m	A = 7.85e-3 m2	Vel_liquid = 4 m/s	Vel_vapor = 4 m/s	Alpha_vapor = 0.1	RESULTS	Hw_liquid = 1.98e4	Hw_vapor = 0

			28) Laminar Natural Convection	
			Dummy Pipe Problem	
			T = 520 K (Tsat)	
			P = 3.768e6 Pa (Psat)	
			Q_wall = 1.0e-5 W/m2	
			T_wall not specified	
			T_liquid = 520 K	
			T_vapor = 520 K	
			$D_{-}h = 0.2 m$	
			A = 7.85e-3 m2	
			Vel_liquid = 0.5e-3 m/s	
			Vel_vapor = $0.5e-3 \text{ m/s}$	
			Alpha_vapor = 0.01	
			KESULIS	
			Hw_liquid = 15.5	
			Hw_vapor = 0	
Two-Phase	Rod Bundle	0 < α < 0.8	29) Laminar Forced Convection	Section 6.1.2, p. 54
		Tw > Tsat	BEAVRS Rod Bundle	describes the modified
		Tw < Tonb	T = 520 K (Tsat)	liquid phase Reynolds
			P = 3.768e6 Pa (Psat)	number that is applied
			T_wall = not specified	to the single phase
			Q_wall = 1.0e-5 W/m2	closures
			T_liquid = 520 K	
			T_vapor = 520 K	
			$D_h = 1.295E-4 m$	

PoD = 1.37 A = 9.303e-5 m2 Vel_liquid = 1.0e-3 m/s (from above) Vel_vapor = 1.0e-3 m/s Alpha_vapor = 0.4 RESULTS Hw_liquid = 3.55e4 Hw_vapor = 0	30) Turbulent Forced Convection BEAVRS Rod Bundle T = 520 K (Tsat) P = 3.768e6 Pa (Psat) T_wall = not specified Q_wall = 1.0e-5 W/m2 T_liquid = 520 K T_vapor = 520 K D_h = 1.295E-4 m Vel_liquid = 6 m/s Vel_vapor = 6 m/s Alpha_vapor = 0.4	RESULTS Hw_liquid = 1.49e5 Hw_vapor = 0 31) Laminar Natural Convection BEAVRS Rod Bundle T = 520 K (Tsat) P = 3.768e6 Pa (Psat) T_wall = not specified Q_wall = 1.0e-5 W/m2 T_liquid = 520 K

AVRS divided by 1.0e4) m/s ·m/s	Eqn 251, p. 55 ed sat) st) 4
T_vapor = 520 K D_h = 1.295 m (BE/ PoD = 1.37 Vel_liquid = 1.0e-5 Vel_vapor = 1.0e-5 Alpha_vapor = 0.4 RESULTS Hw_liquid = 16.0 Hw_vapor = 0	32) Turbulent Dummy Pipe Probl T_liquid = 520 K (T5 T_wall = 500 K Q_wall not specifie T_vapor = 520 K P = 3.768e6 Pa (Psa D_h = 0.1 m A = 7.85e-3 m2 Vel_liquid = 6.0 m/ Vel_vapor = 6.0 m/ Vel_vapor = 0.95 RESULTS Hw_liquid = 6.19e4 Hw_vapor = 0
	Tw < Tsat 0 .9 < α < 0.9999
	Film Condensation

<u> </u>	Transition from	Tw ≤ Tsat	33) Turbulent Forced Convection	Section 6.1.4 (p. 55)
+	forced convection	$0.8 < \alpha < 0.9$	Dummy Pipe Problem	describes the
t	to film		T = 523.5 K (Tsat)	interpolation used
0	condensation		P = 4.0e6 Pa	between two-phase
			Q_wall = 6.375 W/m2jh	and condensation
			T_wall not specified	
			T_liquid = 520 K	
			T_vapor = 520 K	
			D h = 0.1 m	
			Vel liauid = 4 m/s	
			Vel vanor = 4 m/s	
			$A = 2.3 \delta E_{2}$	
			Alpha_vapor = 0.85	
			RESULTS	
			Hw_liquid = 2.85e4	
			Hw vanor = 0	
	Pipe Wall Boiling	Subcooled	34) Subcooled Liauid	Section 6.1.5 (p. 56)
)	Nucleate Boiling	Dummv Pipe Problem	describes the
		Tlin < Tsat	T = 510 K (Tsat = 520 K)	development
		H H		
		$I \le 1000$	- Wall = 520 K	
		α > 0	Q_wall not specified	
			T_liquid = 510 K	
			T_vapor = 510 K	
			P = 3.768e6 Pa (Psat)	

			$D_{-}h = 0.1 m$	
			A = /.85e-3 m2	
			Vel_liquid = 4 m/s	
			Vel_vapor = 4 m/s	
			Alpha_vapor = 0.1	
			RESULTS	
			Hw liquid = 1.98e4	
			 Hw_vapor = 0	
Pipe Wall	Boiling	Nucleate Boiling	35) Saturated Liquid	Section 6.1.5 (p. 56)
		Tliq = Tsat	Dummy Pipe Problem	describes the
		Tw > Tonb	T = 520 K (Tsat)	development
		α > 0	T_wall =534 K	
			Q_wall not specified	
			T_liquid = 520 K	
			T_vapor = 520 K	
			P = 3.768e6 Pa (Psat)	
			D_h = 0.1 m	
			A = 7.85e-3 m2	
			Rho_l = 803.5kg/m3	
			Rho_g =18.894kg/m3	
			μ_l = 1.077e-4 Pa-s	
			μ_g = 1.731e-5 Pa-s	
			Vel_liquid = 4 m/s	
			Vel_vapor = 4m/s	
			Re = 2.98e6	
			$\alpha = 0.1$	
			RESULTS	
			Hw_liquid = 1.87e5	
			Hw_vapor = 0	

Conclusions

Based on the excellent agreement between TRACE and RELAP-7, we feel confident that the TRACE closure correlations for vertical pre-CHF flow conditions have been implemented correctly. Once the remaining correlations have been verified and coupled with appropriate components models, RELAP-7 will be ready for an expanded developmental assessment where the interaction of the closure relations, solution algorithms, and component models can be demonstrated, evaluated and assessed.

Works Cited

- [1] D. Gaston, C. Newman, G. Hansen and a. D. Lebrun-Grandi'e, "MOOSE: A parallel computational framework for coupled systems of nonlinear equations," Nuclear Engineering and Design, vol. 239, pp. 1768-1778, 2009.
- [2] R. L. Moore, S. M. Sloan, R. R. Schultz and a. G. E. Wilson, "RELAP5/MOD3 Code Manual, Volume 1: Code Structure, System Models, and Solution Methods," 1995.
- [3] US Nuclear Regulatory Commission, "TRACE V5. 0 Theory Manual, Field Equations, Solution Methods, and Physical Models," Draft.
- [4] L. Zou, R. Berry, R. Martineau, D. Andrs, H. Zhang, J. Hansel and R. Johns, "RELAP-7 Closure Correlations," 2017.