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Probabilistic Risk Assessment (PRA) methods have been successfully employed in the 
nuclear industry in conjunction with deterministic analysis methods in order to assess risk 
associated to nuclear power plants. The final goal of these analyses is not only to determine 
frequency of core damage (or frequency of large release of radioactive material outside the 
containment) but also to determine what are the most probable accident sequences and the 
components that contribute the most to the overall plant risk. Following this reasoning the 
Nuclear Regulatory Commission (NRC) has released a rule, known as 10CFR50.69, that 
provides guidance to plant utilities to focus on the most critical (from a safety point of 
view) systems, structure and components (SSCs). The objective is to relax the quality 
requirements on the SSCs that do not significantly affect the plant risk and to identify SSCs 
that contribute the most to the plant safety. As of now, industry has started to address 
10CFR50.69 by employing a blend of both deterministic and PRA methods with the 
objective to decrease plant operational costs while maintaining plant safety levels 
unchanged. In light of the limitations of classical PRA methods, (e.g., very conservative 
success criteria and large approximations on recovery actions) the RISMC has developed 
a PRA method (which can be classified as dynamic PRA method) that employs system 
analysis codes (normally employed in deterministic safety analysis) coupled with statistical 
analysis codes. The driving advantage of this method is the much higher fidelity of the 
analysis since timing and sequencing of events are implicitly modeled, success criteria are 
defined on the plant dynamics and recovery actions are an integral part of the analysis. In 
this report, we show how 10CFR50.69 can be addressed by employing the RISMC PRA 
method. We present the mathematical PRA framework behind 10CFR50.69 and how it can 
be extended to Dynamic PRA methods. We proved the soundness of the proposed method 
by employing it on standard reliability models and then on an industry relevant test case 
such as a large break Loss Of Coolant Accident (LOCA) scenario. 
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Safety and risk associated to nuclear power plants are typically measured by employing Probabilistic Risk 
Assessment (PRA) methods in conjunction with deterministic analysis methods. Deterministic methods employ 
system analysis codes (e.g., RELAP5 [1] or MELCOR [2]) in order to assure that plant safety systems can prevent 
Core Damage (CD) condition for a given set of accident conditions. PRA methods [3] employ static Boolean 
logic structures (Event Trees – FT – and Fault-Tree – FT –) in order to determine accident sequences that includes 
failure of System Structure and Components (SSCs) given a set of prescribed initiating events. 

The goal of PRA methods is not only to determine frequency of CD (or frequency of large release of 
radioactive material outside the containment or early cancer fatalities) but also to determine what are the most 
probable accident sequences and the components that contribute the most to the overall plant risk.  

This is performed by modeling deductively the accident progression using ET structures and by modeling 
inductively the stochastic failure of the safety systems using FT structures. Figure 1 shows a simplified ET for a 
large break loss of cooling accident (LOCA). In order to reach a safe state of the plant, the reactor protection 
system trips the reactor and performs the cooling of the reactor through the emergency cooling system (ECCS). 
A failure in any of these two systems will cause CD. Note that in the ET pictured in Figure 1, the sequencing of 
events (and accompanying branching conditions) are already pre-fixed in the system logic designed by the analyst.  

 
Figure 1. Example of system analysis using a combination FTs and ETs. 
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Branching probabilities associated to Reactor Trip and ECCS are determined using FTs: a combinations of 
logic gates (e.g., AND and OR gates) which connect basic events (i.e., A, B, C and D) to the Top Event (e.g., 
failure of ECCS). For the system pictured in Figure 1, the reactor trip system can fail if both events A and B occur 
(“AND” gate) while ECCS system fails if either events C or D occur (“OR” gate) 

In light of the limitations of classical PRA methods (e.g., very conservative success criteria and large 
approximations on recovery actions) the RISMC project [4] has developed a PRA method (which can be classified 
as dynamic PRA method) that employs system analysis codes (normally employed in deterministic safety 
analysis) coupled with statistical analysis codes. The driving advantage of this method is the much higher fidelity 
of the analysis since timing and sequencing of events are implicitly modeled, success criteria are defined on the 
plant dynamics and recovery actions are integral part of the analysis.  

In early 2000, the Nuclear Regulatory Commission (NRC) released a rule, known as 10CFR50.69, that 
provides guidance to plant utilities and operators to focus on the most critical (from a safety point of view) 
systems, structures and components (SSCs). The objective is to relax the quality requirements (and, thus, decrease 
procurement costs) on the SSCs that do no significantly affect the plant risk and to identify SSCs that actually 
contribute the most to the plant safety. As of now, industry has started to address 10CFR50.69 by employing a 
blend of both deterministic and PRA methods with the objective to decrease plant operational costs while 
maintaining plant safety levels unchanged.  

The essential step behind 10CFR50.69 is to measure risk importance of SSCs [5]: this is usually performed 
using classical Risk Importance Measures (RIMs) such as Risk Achievement Worth (RAW) and Fusel-Vessely 
(FV) applied to the data generated ET-FT methods (i.e., cut sets). 

In this report we show how 10CFR50.69 can be addressed by employing the RISMC PRA method. Firstly, 
we present the mathematical PRA framework behind measuring risk importance of SSCs and how it can be 
extended to Dynamic PRA methods. We proved the soundness of the proposed method by employing it on 
standard reliability models and then on an industry relevant test case such as a Large Break Loss Of Coolant 
Accident (LOCA) scenario.  

 

 

In early 2000s, the US Nuclear Regulatory Commission (NRC) released the 10CFR50.69 [6] rule which 
contains categorization requirements for plant SSCs supported by a regulatory guide. Additionally, the rule 
contains a new treatment requirements that applies to SSCs based on their associated risk-informed safety class 
(RISC) categorization. This rule has the benefit of grouping and integrating all the risk-informed requirements 
into one single rule.  

The rule approach enables the NRC to identify in one place what the regulatory treatment Safety-related SSCs 
that a risk-informed categorization process determines are significant contributors to plant safety are termed RISC-
1 SSCs (see Figure 2). Non safety-related SSCs that the risk-informed categorization determines to be significant 
contributors to plant safety are termed RISC-2 SSCs. Safety-related SSCs that a risk-informed categorization 
process determines are not significant contributors are termed RISC-3 SSCs. Finally, non safety-related SSCs that 
a risk-informed categorization process determines are not significant contributors to plant safety are termed RISC-
4 SSCs.  

RISC-1 and RISC-2 SSCs will continue to meet applicable special treatment requirements and will also have 
requirements that ensure that key categorization assumptions that relate to credited performance in beyond design 
basis scenarios are technically valid, and updated consistent with the process feedback requirements in the rule. 
RISC-3 SSCs will have requirements that maintain with reasonable confidence the capability of performing their 
safety-related functions under design basis conditions.  
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RISC-4 SSCs will be removed from any applicable special treatment requirements and have no additional 
requirements imposed by 10CFR50.69 rule (recognizing that any technical/functional requirements continue to 
apply unless they are changed via the normal design change process including 10CFR50.69 rule).  

As part of the “Delivering the Nuclear Promise”, the Nuclear Energy Institute (NEI) in collaboration with 
Electric Power Research Institute (EPRI) started a set of operational activities to assist the nuclear industry with 
the goals of: 

• Maintain Operational record: safety remains an essential priority, advanced reliability and resilience of 
plants 

• Increase value: clean energy benefits, R&D improvements 

• Improve efficiency: reduced operation costs, maintain/increase capacity factor 

The last goal (i.e., the reduction of operational costs) is being addressed by extensively employing the 10CFR50.69 
rule for a large number of plant systems. 

 

 
Figure 2. Categorization of SSCs according to NRC rule 10CFR50.69. 

 

During FY17, as part of this R&D project, we have performed the following activities in order to address 
10CFR50.69 using the RISMC approach: 

1. Development of RIMs for any data generated by simulation-based (i.e., dynamic) PRA method such as 
Monte-Carlo [7] or Dynamic Event Trees (DETs) [8] 

2. Implementation of these RIMs as integral part of the RAVEN statistical framework 

3. Extension of these RIMs on a time dependent domain which can be used as part of risk-monitoring tools 
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4. Validation of the proposed RIMs against analytical test cases and against classical PRA tools such as 
SAPHIRE 

5. Performed a full simulation based PRA analysis for an industry level test case such as PWR LB-LOCA 

6. Comparison of the analysis between RAVEN-RELAP5 and SAPHIRE on the PWR LB-LOCA test case 

7. Development of new margin-centric RIMs that incorporate in the assessment the intrinsic dynamic 
behavior of accident progression 
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The RISMC approach employs both deterministic and stochastic methods in a single analysis framework 
(see Figure 3). In the deterministic method set we include: 

• Modeling of the thermal-hydraulic behavior of the plant [9] 

• Modeling of external events such as flooding [10] 

• Modeling of the operator responses to the accident scenario [11] 

Note that deterministic modeling of the plant or external events can be performed by employing specific 
simulator codes but also surrogate models [12], known as reduced order models (ROM). ROMs would be 
employed in order to decrease the high computational costs of codes. In addition, multi-fidelity codes can be 
employed to model the same system; the idea is to switch from low-fidelity to high-fidelity code when higher 
accuracy is needed (e.g., use low-fidelity codes for steady-state conditions and high-fidelity code for transient 
conditions) 

In the stochastic modelling we include all stochastic parameters that are of interest in the PRA analysis such 
as: 

• Uncertain parameters 

• Stochastic failure of system/components 

 

 
Figure 3. Overview of the RISMC modeling approach. 

The RISMC approach heavily relies on multi-physics system simulator codes (e.g., RELAP5-3D [1]) 
coupled with stochastic analysis tools (e.g., RAVEN [13,14]).  From a PRA point of view, a simulation run can 
be described by using two sets of variables: 

•  represents the status of components and systems of the simulator (e.g., status of emergency core 
cooling system, AC system) 

Parameters Distribution 

Wave height (m) Exponential 

Wave impact time (h) Uniform 

Diesel recovery time (h) Weibull 

Off-site grid recovery timea (h) Lognormal 

Off-site grid recovery timeb (h) Lognormal 

Batteries failure time (h) Triangular 

Batteries recovery time (h) Lognormal recccccoocovoovovovovvvovovcccovovovovcoovovccoccovovccccoc tery te tery teery teery tery tery ti (i (i (ime (ime (ime (ime (ime (h)h)h)h)h)h)h)h) LLLLognoLognoLognoLognoLogno lllrmalrmalrmalrmalrmal 
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•  represents the temporal evolution of a simulated accident scenario, i.e.,  represents a single 
simulation run. Each element of  can be for example the values of temperature or pressure in a specific 
node of the simulator nodalization. 

From a mathematical point of view, a single simulator run can be represented as a single trajectory in the 
phase space. The evolution of such a trajectory in the phase space can be described as follows: 

 (1) 

where: 

•  is the actual simulator code that describes how  evolves in time 

•  is the operator which describes how  evolves in time, i.e., the status of components and systems at 
each time step 

•  is the set of stochastic parameters 

Starting from the system located in an initial state, , and the set of stochastic parameter 
values (which are generally generated through a stochastic sampling process), the simulator determines at each 
time step the temporal evolution of . At the same time, the system control logic1 determines the status of the 
system and components . The coupling between these two sets of variables is shown in Figure 4. 

 

 

Figure 4. Relationship between simulator physics code (H) and control logic (C). 

By using the RISMC approach, the PRA analysis is performed by [15]: 

1. Associating a probabilistic distribution function (pdf) to the set of stochastic parameters  (e.g., timing of 
events) 

2. Performing stochastic sampling of the pdfs defined in Step 1 

3. Performing a simulation run given  sampled in Step 2, i.e., solve the system of equations (1) 

4. Repeating Steps 2 and 3 M times and evaluating user defined stochastic parameters such as CD probability 
( ). 

The goal of RIM analysis is to measure risk importance of the set of stochastic parameters . The analysis 
presented in this report focuses on how RIMs can be extended to Dynamic PRA data.  

                                                        
1 Which is usually an integral part of the system simulator 

Θ(t) 
c(t) 

H

C

Θ(0) 
s 
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The value of a PRA analysis is not limited to the determination of the risk associated to a nuclear power plant 
(through the determination of CD or LERF probability) but, more importantly, it provides insights about which 
components/systems impact the most the plant risk and which ones are the most safety relevant (i.e., they assure 
plant basic safety functions).  

These insights can be generated by defining a set of metrics that measure the risk importance of 
system/components. Typically, in classical PRA methods, the set of metrics are determined by evaluating CD 
probability assuming the component failed or perfectly reliable (see Section 3.1).  

 

In ET-FT based PRA methods, for any basic event, the most used RIMs measures are: Risk Achievement 
Worth (RAW), Risk Reduction Worth (RRW), Birnbaum (B) and Fussell-Vesely (FV) [5,16]. All these RIMs are 
calculated by determining three values based on core damage frequency (CDF):  

• : nominal CDF 

• : CDF for basic event i assuming perfectly reliable 

• : CDF for basic event i assuming it has failed 

Once these three values are determined, then the RIMs are calculated [5] as follows for each basic event i: 

(1) 

(2) 

(3) 

(4) 

Note the four RIMs listed above is not exhaustive; in literature, it is possible to find additional RIMs such as the 
Differential Importance Measure (DIM) [17]. Since, the scope of this paper is limited to risk-informed application 
of 10CFR50.69, we focused this report only on the four RIMs listed above. 

 

 

In a Dynamic PRA environment,  is obtained (e.g., through Monte-Carlo sampling) by: 

• Running  simulations (e.g., RELAP5-3D runs) 

• Counting the number  of simulations that lead to core damage (CD) condition 

• Calculating  

Note that while basic events in classical PRA are mainly Boolean, in a Dynamic PRA environment the sample 
parameters can be, not only Boolean, but more often continuous. In this work we assume that basic events in a 
classical PRA framework coincide with the stochastic parameters in a RISMC framework. 

As an example, let us consider two basic events: 

1. Emergency Diesel Generator (EDG) failure to start, and,  

2. EDG failure to run 
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In classical PRA analysis, a probability value is associated to both basic events. On the other side, in a 
Dynamic PRA framework, a Bernoulli distribution could be associated to the first basic event and a continuous 
distribution (e.g., exponential distribution) could be associated to the second basic event.  

At this point a challenge arises: the determination of  and  for each sampled parameter; two possible 
approaches can be followed2: 

1. Perform a Dynamic PRA for  and for each  and  

2. Determine an approximated value of  and  from the simulation runs generated to calculate  

Regarding Approach 1, given the computational costs of each Dynamic PRA, it is unfeasible to determine  
and  for each sampled parameter. In fact, if we consider  sample parameters (i.e., S basic events), then the 
risk importance analysis would require  Dynamic PRA analyses.  

Regarding Approach 2, a method (implemented in RAVEN as an internal post-processor) was developed and 
it is here presented. This method requires an input from the user: 

• Range, , of the variable  that can be associated to “basic event with component perfectly reliable” 

• Range, , of the variable  that can be associated to “basic event in a failed status” 

Given this kind of information, it is possible to calculate  and  as follows3: 

 (6) 

 (7) 

 (8) 

Note that this approach has an issue related to the choices of  and . Depending on their values,  and  
might change accordingly. In addition, the statistical error associated to the estimates of  and  also changes.  

An example is shown in Figure 5 for both cases (discrete and continuous) of a basic event  represented as 
a stochastic variable which is sampled (e.g., through a Monte-Carlo process) for each simulation run. Consider 
the continuous case and assume  correspond to the basic event “EDG failure to run”. The user might impose the 
following in order to determine  and : 

•  where  may be set equal to the simulation mission time (e.g., 24 hours). This implies that 
a sampled value for EDG failure to run greater than 24 hours implies that the EDG actually does not fail 
to run (reliability equal to 1.0) 

•  where  may be set to an arbitrary small value (e.g., 5 min). This implies that a sampled 
value for EDG failure to run smaller than 5 min implies a reliability equal to 0.0 

Note that while the definition of  is perfectly reasonable, one would argue that a smaller interval should be 
chosen for  (e.g., 30 seconds or less).  

                                                        
2 A possible approach would be to develop a new sampling strategy designed ad-hoc to maximize the amount of data that can be generated 

to determine more reliable values of  and . However, research of effective algorithms is still under way. 
 
3 It is here indicated: 
•  as the number of simulations leading to core damage and with parameter   
•  as the number of simulations leading to core damage and with parameter  
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Recall that ideally, a value of  should be theoretically chosen (and not an interval); however, given 
the nature of the distribution this is not allowed. Given the nature of the problem, we are bound to choose an 
interval : 

• A small interval in the neighbor of  would lead to a value of  close to the theoretical one. 
However, the number of actual sampled values falling in  would be very small, i.e., large stochastic 
error. 

• A large interval in the neighbor of  would lead to a value of  far from the theoretical one. 
However, the number of actual sampled values falling in  would be very high, i.e., small stochastic 
error. 

A solution to the large statistical error associated to a very small interval  can be solved by employing 
different sampling algorithms other than the classical Monte-Carlo one.  

 

 
Figure 5. Treatment of discrete (top) and continuous (bottom) stochastic variables for reliability 

purposes. 

As an example, a better resolution of the final value for  can be achieved by sampling uniformly the range 
of variability of  and associating an importance weight to each sample. At this point the counting variable  
is weighted by the weight of each sample. By sampling uniformly the range of variability of , the number of 
samples in the interval  would be significantly higher. 

Note that the RIMs described so far are limited to a binary logic of the outcome variable (e.g., OK vs. CD). 
Dynamic PRA approaches typically generate a continuous value of the outcome variables (e.g., Peak Clad 
Temperature - PCT). In our application (see previous sections) we typically convert PCT to a discrete one as 
follows:

• : outcome = CD 

pdfi 

xi 0 xi
+ xi

- 

Ii+ Ii- 

pdfi 

xi 0 xi
+ xi

- 

Ii+ Ii- 

Reliability = 1.0 Reliability = 0.0 

Reliability = 1.0 Reliability = 0.0 
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• : outcome = OK 

Given the different structure of the approach used in this paper to solve a PRA problem (i.e., Dynamic instead 
of classical PRA), the reader might think that a different set of RIMs should/could be developed in order to capture 
the nature of the problem solved using Dynamic PRA. 

As a starting point, it would be worth investigating the nominal probabilistic distribution (pdf) of PCT with 
the one obtained when reliability of each basic event (sampled parameter) is 0.0 or 1.0. So now we can indicate: 

1. : nominal pdf of PCT 

2. : pdf of PCT associated to basic event  assuming basic event is perfectly reliable 

3. : pdf of PCT associated to basic event  assuming basic event has failed 

An example is shown below for a hypothetical case where obtained  is indicated using an histogram 
while the limit value for PCT is shown using the red line passing at 2200 F. 

In order to make a connection to what has been presented in the previous section, note that by looking at 
Figure 6: 

 

As part of the RISMC analysis, the user might want to supplement the results obtained in the previous section 
with the information associated to a more effective margin analysis. 

In particular, of interest for RISMC applications is (see Figure 7) the concept of margin:

 given  

 
Figure 6. Plot of a hypothetical  

Using the same philosophy indicated in the previous section for classical RIMs, we want to determine: 

1. : pdf of the variable  given that  

2. : pdf of the variable  given that  for basic event  assuming it is 
perfectly reliable 

3. : pdf of the variable  given that  for basic event  when its assumed to 
be failed 
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Figure 7. Plot of  for the case shown in Figure 2 

Note now that ,  and  are now pdfs and not numerical values. Hence, now the 
challenge arises on how to compare two pdfs: 

•  vs.  

•  vs.  

A new definition of margin can be then defined:  

 

From here, once the pdf associated to the margin variable is determined it is possible to employ either the Z-tests 
or the Kolmogorov–Smirnov test in order to measure how this pdf changes when each basic event is considered 
perfectly reliable or failed.  

 
Figure 8. Plot of the pdfs for PCT (green) and CFT (red). 
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Figure 9. Plot of the pdf of the variable  (left) and plot of the pdf of the margin, i.e., 

 (right). 

 

 

The NRC rule 10CFR50.69 [6] provides guidance to identify components that are under strict quality 
assurance requirements and are minor contributors to the overall plant risk. Hence, an outcome of this rule is the 
reduction of plant operational costs while maintaining the same safety levels using risk-informed approaches.  

In addition, the information generated by the RISMC tools can be employed to:

• Invest plant resources on the actual SSCs that guarantee plant safety 

• Measure probabilistically the safety margins associated to safety related SSCs 

• Optimize maintenance and testing procedures directed toward components and systems that guarantee 
plant safety during accident scenarios  

• Provide insights to reactor operator crews about the components and systems that require constant 
monitoring during accident conditions 

• Design recovery actions and quantify timing to perform such actions 
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In order to test the methods here proposed we have identified several analytical test cases based on classical 
reliability configurations (e.g., series/parallel, components in stand-by, K-out-of-N) and we have also developed 
additional test cases using industry PRA codes such SAPHIRE. For all cases, the obtained results were matching 
the analytical ones within the statistical error boundaries. 

 
Figure 10. PWR scheme.  

In addition, we have developed additional thorough benchmarking testing between our approach (using 
RAVEN/RELAP5-3D) and classical approach (using SAPHIRE) for a more relevant test case: a PWR LB-LOCA. 
The system considered is a 3-loop PWR system (see Figure 10) which undergoes a double guillotine break of one 
of the three hot-legs. 

In this scenario, depressurization of the primary vessel occurs very quickly and large amount of water 
inventory is lost due to the break. In order to compensate loss of water inventory and provide cooling to the core 
in order to avoid core damage, several systems are employed: 

• Accumulator system (ACC) which consists of water tanks that are employed right at the beginning of the 
transient in order to flood the RPV  

• Low Pressure Injection (LPI) system which is an injection system that transfers cold water from the RWST 
tank to the RPV 

• Low Pressure Recirculation (LPR) system which is employed once the RWST tank is empty; this system 
is still composed by the same components of the LPI system but water source is now the water collected 
inside the containment through the containment sump. Thus the water lost from the RPV is collected at 
the bottom of the containment, it is cooled down through heat-exchangers and it is injected back into the 
RPV (i.e., low pressure recirculation mode). 

• Containment cooling system which controls containment thermodynamics behavior (temperature and 
pressure) in order to maintain its structural integrity 
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An overview of the performed analysis is shown in Figure 11 and it is structured as follows: 

1. Simplify the structure of the LB-LOCA FTs of SAPHIRE by grouping its basic events into macro basic 
events. 

2. Perform the calculation of the obtained SAPHIRE ET-FT model: determine CD probability, probability 
of each ET branch and the risk importance of each macro basic event 

3. Consider the SAPHIRE ET for the LB-LOCA initiating event and model the RELAP5-3D accident 
progression following consistently with the SAPHIRE ET logic.  

4. Construct the PWR logic based on the same macro basic events determined in Step 1: these macro basic 
events constitute the stochastic variables sampled by RAVEN  

5. Perform a dynamic analysis using RAVEN/RELAP5-3D for the system constructed in Steps 3 and 4, and 
determine probability of each ET branch and the risk importance of each macro basic events 

6. Compare the results obtained in Steps 3 and 5 

 

 
Figure 11. PWR LB-LOCA analysis overview. 

 

At a first glance, the two analyses provided almost identical results in terms of core damage probability: 8.13 
E-3 from SAPHIRE calculation and 8.24 E-3 from RAVEN/RELAP5-3D. However, the first differences between
the two methods arise when we evaluate the probability associated to each branch of the ET as indicated in Figure 
12. 

The first three branches have characterized with almost identical probabilities values; on the other side, 
probability of branch 4 had a much lower probability value when RAVEN/RELAP5-3D was employed: 5.76 E-
10. The cause of this difference is the success criteria that in SAPHIRE requires 2 ACCs out of 2 while one ACC 
system (out of 2) is sufficient to avoid CD in the first seconds of the transient. 
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Figure 12. Branch probability comparison. 

Given these differences, we have investigated the Peak Clad Temperature (PCT) for all simulations belonging 
to Branch 4. Figure 13 shows the histogram of PCT for all simulation falling in Branch 4: note that several 
simulations are not actually leading to CD condition. This implies that a failure of the ACC system does not imply 
CD. In fact, the LPI system can avoid CD if both ACCs have failed; depending on the number of LPI trains 
available the safety margin (i.e., 2200 - PCT) can range between 214 C and 422 C (see Figure 13). 

 

 
Figure 13. Histogram of PCT for the simulation belonging to branch 4 (see Figure 12) 

Thus, from the RAVEN/RELAP5-3D analysis Branch 4 needs to be restructured to reflect these 
considerations (i.e., ACC failure does not imply CD condition). In this respect, Figure 14 shows the ET structure 
updated from the results generated by the RAVEN/RELAP5-3D analysis. Note that the additional branching 
conditions on LPI and LPR have been added (when ACC is assumed failed) and two additional ET branches have 
been added. 
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Figure 14. Updated ET structure given RELAP5-3D/RAVEN analysis. 

This updated ET structure directly affected the RIM analysis: the RAW and FV importance measure of the 
basic events associated to LPI and LPR are identical between the two analyses. The only difference between the 
two analyses focused on the basic events associated to the ACC system. In fact, from the analysis presented above 
a failure of the ACC system is less risk-important when compared to the failure of the LPI or LPR systems. 

In order to determine if the acceptance criteria used by the SAPHIRE model were consistent with the ones 
derived by RELAP5-3D/RAVEN, several reference LBLOCA calculations were performed, changing at each run 
the actuation time and the availability of the ECCS components.  Results from the set of LBLOCA-DEGB 
calculations are reported in Table 1.  
 

Table 1. LBLOCA DEGB safety margins results. 

Cases for DEGB LBLOCA 1st PCT  
(K) 

2nd PCT 
(K) 

Margins 
1st peak 

(K) 

Margins 
2ndpeak 

(K) Accumulator LPIS 

0 1 

1044.9 

1218.8 

432.1 

258.2 
1 1 1002.2 474.8 
2 1 913.1 563.9 
0 2 1084.5 392.5 
1 2 958.1 518.9 
2 2 904.6 572.4 

 
The trend of the RPV water level and the PCT for the transients reported in Table 1 are shown in Figure 15. No 
core damage conditions (PCT>2200 F or 1477 K) were found for the investigated cases.  
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Figure 15. LBLOCA DEGB cases. PCT (left), RPV level (right). 
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In this report we have developed a series of risk-informed methods which can be employed to measure risk-
importance of system/components using simulation-based PRA methods. The design/development of these 
methods has been such that they are compatible with risk-importance measures developed for classical PRA 
methods. A series of analytical tests have been performed in order to prove the validity of such methods using 
classical reliability models. 

We have performed an exhaustive PRA analysis of a PWR system for LLOCA initiating event using RAVEN 
coupled with RELAP5-3D and compared this analysis with the ones performed by employing classical PRA tools 
such as SAPHIRE. The comparison of the two sets of results highlighted the limitations of classical PRA methods 
when employed to analyze complex system such nuclear systems. 

The analysis shows how the RISMC approach can be identified as an integrated deterministic and PRA 
method. Success criteria and timing/sequencing of events are implicitly modeled in the system simulator while 
stochastic model of systems/components are part of the sampling strategy. 

This report can be considered a first step toward addressing the NRC rule 10CFR50.69. The categorization 
step that is part of the 10CFR50.69 process can in fact be performed by employing the methods presented in this 
report. Since the analysis performed using the RISMC approach is compatible with classical PRA methods, 
10CFR50.69 can be performed by employing both classical and RISMC methods depending on the initiating 
event. 

 

During FY17 the following publications were developed: 

• Journal papers (see Appendices A and B): 

o D. Mandelli, Z. Ma, C. Parisi, D. Maljovec, A. Alfonsi, C. Smith, “Measuring Risk-Importance in 
a Simulation-Based PRA Framework - Part I: Mathematical Framework”, Draft for Reliability 
Engineering and System Safety. 

o D. Mandelli, C. Parisi, Z. Ma, D. Maljovec, A. Alfonsi, C. Smith, “Measuring Risk-Importance in 
a Simulation-Based PRA Framework - Part II: Comparison Between Simulation-Based and 
Classical PRA Methods”, Draft for Reliability Engineering and System Safety. 

• Conference papers: 

o D. Mandelli, Z. Ma, C. Parisi, A. Alfonsi, C. Smith, “Measuring Risk Importance in a Dynamic 
PRA Framework,” Proceedings for the Probabilistic Safety Assessment Conference PSA2017, 
American Nuclear Society (2017). 

o D. Mandelli, A. Alfonsi, C. Smith, “Risk Monitoring Capabilities from Dynamic PRA Data,” 
Proceedings for the ANS Winter Meeting, American Nuclear Society (2017). 
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Measuring Risk-Importance in a Simulation-Based
PRA Framework - Part I: Mathematical Framework

D. Mandelli, Z. Ma, C. Parisi, D. Maljovec, A. Alfonsi, C. Smith

Idaho National Laboratory (INL), 2525 Fremont Ave, 83402 Idaho Falls (ID), USA

Abstract

Risk importance measures are indexes that are used to rank systems, structures
and components (SSCs) using risk-informed methods. The most used/known
measures are: Risk Reduction Worth (RRW), Risk Achievement Worth (RAW),
Birnbaum (B) and Fussell-Vesely (FV). Once obtained from classical Proba-
bilistic Risk Analysis (PRA) analyses, these risk measures can be effectively
employed to relatively rank component importance. In contrast to classical
PRA methods, Dynamic PRA methods couple stochastic models with safety
analysis codes to determine risk associate to complex systems such as nuclear
plants. Compared to classical PRA methods, simulation-based approaches can
evaluate with higher resolution the safety impact of timing and sequencing of
events on the accident progression. The objective of this paper is to present
a series of methods that can be employed to measure risk importance of com-
ponents which are part of complex systems such as nuclear power plants. The
first set of measures are directly derived from classical risk importance measures
(e.g., RRW, RAW, B and FV) and that can be employed to any Dynamic PRA
analysis. In addition, we provide a set of risk importance measures that capture
the dynamic nature of the problem and provide insight related to plant safety
margins.

Keywords: Importance Measures, Dynamic PRA, Probabilistic Risk
Assessment

1. Introduction

Risk Importance Measures (RIMs) [1] are indexes that are used to rank
systems, structures and components (SSCs) based on their contribution to the
overall risk. The most used measures [2] are: Risk Reduction Worth (RRW),
Risk Achievement Worth (RAW), Birnbaum (B) and Fussell-Vesely (FV).5

Typically, this ranking is performed in a classical PRA framework, where
risk is determined by considering probability associated to the minimal cut sets
generated by static Boolean logic structures [3] (e.g., Event-Trees, Fault-Trees).
In a classical PRA analysis, each SSC is represented by a set of basic events; as
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an example emergency diesel generators can be represented by two basic events:10

failure to start and failure to run.
The risk measures associated to each basic event are calculated from the

generated cut-sets by determining:

• The nominal risk

• The increased risk assuming basic event failed15

• The reduced risk assuming basic event perfectly reliable

In this context, the Nuclear Regulatory Commission (NRC) has issued the
10CFR50.69 document [4] allowing plant owners to perform a risk-informed
categorization and treatment of SSCs in order to reduce operating and mainte-
nance costs while preserving acceptable risk levels. The described categorization20

is based on a set of risk importance measures obtained from the plant classic
PRA models.

In contrast to classical PRA methods, Dynamic PRA methods [5] couple
stochastic models (e.g., RAVEN [6], ADAPT [7], ADS [8], MCDET [9]) with
physics-based codes (e.g., RELAP5-3D [10], MELCOR [11], MAAP [12]) to25

determine risk associate to complex systems such as nuclear plants. Accident
progression is thus determined by the simulation code and not set a-priori by
the user. The advantage of this approach, compared to classical PRA methods,
is that a higher realism of the results can be achieved since:

• No assumption of timing/sequencing of events is assumed by the user30

but,instead, it is dictated by the accident evolution

• No success criteria are defined but, instead, the simulation stops if either
a fail or a success state are reached

• There is no need to compute convolution integrals in order to specify
probability of basic events that temporally depends on other basic events.35

• Addition of scenario-specific information such as timing and complexity
are available to inform human reliability models.

The scope of this paper is to present a method to determine classical RIMs
from Dynamic PRA data. Several test cases will be presented in order to show
how the calculation is performed. In addition, new margin-centric RIMs that40

better capture the continuous aspect of a Dynamic PRA approach will be pre-
sented.

2. Classical RIMs

Nuclear industry PRA codes such as SAPHIRE can calculate the following
seven different basic event importance measures for each basic event for the45

respective fault tree, accident sequence, or end state:
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• Fussell-Vesely (FV)

• Risk Increase Ratio (RIR)

• Risk Increase Difference (RID)

• Risk Reduction Ratio (RRR)50

• Risk Reduction Difference (RRD)

• Birnbaum (B)

• Uncertainty Importance

The FV importance measure indicates the fraction of the minimal cut set
upper bound (or sequence frequency, core damage frequency) contributed by55

the cut sets containing the basic event of interest. It is calculated in SAPHIRE
Version 8 as FV = F (i)/F (x) where:

• F (x) is the value of all the minimal cut sets evaluated with the basic event
probabilities at their mean value

• F (i) is the value of all the minimal cut sets that contain the basic event i.60

The RIR or RID importance measure indicates the increase (in relative ratio
changes or in actual differences) of the minimal cut set upper bound (or sequence
frequency, core damage frequency) when the basic event of interest has failed
(i.e., the basic event failure probability is 1.0).

The RIR importance is often called Risk Achievement Worth (RAW) in65

industry. The risk increase importance measures are calculated in SAPHIRE
Version 8 as follows: RIR = F (1)/F (x) and RID = F (1)− F (x) where:

• F (x) is the value of all the minimal cut sets evaluated with the basic event
probabilities at their mean value.

• F (1) is the value of all the minimal cut sets evaluated with the probability70

of the basic event of interest set to 1.0.

The RRR or RRD importance measure indicates the reduction (in relative
ratio changes or in actual differences) of the minimal cut set upper bound (or
sequence frequency, core damage frequency) if the basic event of interest never
fails (i.e., the basic event failure probability is 0.0). The Risk Reduction Ratio75

importance is also often called RRW in industry. The risk decrease importance
measures are calculated in SAPHIRE Version 8 as follows: RRR = F (x)/F (0)
and RRD = F (x)− F (0) where:

• F (x) is the value of all the minimal cut sets evaluated with the basic event
probabilities at their mean values.80

• F (0) is the value of all the minimal cut sets evaluated with the probability
of the basic event of interest set to 0.0.
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Parameters Distribution 

Wave height (m) Exponential 

Wave impact time (h) Uniform 

Diesel recovery time (h) Weibull 

Off-site grid recovery timea (h) Lognormal 

Off-site grid recovery timeb (h) Lognormal 

Batteries failure time (h) Triangular 

Batteries recovery time (h) Lognormal reccococoveoveoveoveoveovcc ecovcovecccocovovecccco ititiry timery timery time (h)(h)(h)(h)(h)(h) LLLognormaLognormaLognormaLognormallllll 

Figure 1: Overview of the RISMC approach

The Birnbaum importance measure is an indication of the sensitivity of the
minimal cut set upper bound (or sequence frequency, core damage frequency)
with respect to the basic event of interest. It is calculated as B = F (1)− F (0)85

• F(1) = value of all the minimal cut sets evaluated with the probability of
the basic event of interest set to 1.0.

• F(0) = value of all the minimal cut sets evaluated with the probability of
the basic event of interest set to 0.0.

The Uncertainty Importance measure is an indication of the contribution90

of the basic event of interest uncertainty to the total output uncertainty. This
importance measure is not widely used and is not discussed in further detail.

3. RISMC Approach to PRA

The Risk Informed Safety MArgin Characterization (RISMC) approach [13]
employs both deterministic and stochastic models in a single analysis framework95

(see Figure 1). In the deterministic method set we include elements such as:

• Modeling of the thermal-hydraulic behavior of the plant [14, 15]

• Modeling of external events such as flooding [16]

• Modeling of the operators responses to the accident scenario [17]

Note that deterministic modeling of the plant or external events can be100

performed by employing specific simulator codes but also surrogate models [18],
known as reduced order models (ROM). ROMs would be employed in order to
decrease the high computational costs of high fidelity codes. In addition, multi-
fidelity codes can be employed to model the same system; the idea is to switch
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from low-fidelity to high-fidelity code when higher accuracy is needed (e.g., use105

low-fidelity codes for steady-state conditions and high-fidelity code for transient
conditions)

In the stochastic modeling we include all stochastic parameters that are
of interest in the PRA analysis such as uncertain parameters and stochastic
failure of system/components. As mentioned earlier, the RISMC approach relies110

on multi-physics system simulator codes (e.g., RELAP5-3D [10]) coupled with
stochastic analysis tools (e.g., RAVEN [19]). From a PRA point of view, this
type of simulation can be described by using two sets of variables:

• c = c(t) represents the status of components and systems of the simulator
(e.g., status of pumps and valves)115

• θ = θ(t) represents the temporal evolution of a simulated accident sce-
nario, i.e., θ(t) represents a single simulation run. Each element of θ can
be for example the values of temperature or pressure in a specific node of
the simulator nodalization.

From a mathematical point of view, a single simulator run can be represented
as a single trajectory in the phase space. The evolution of such a trajectory in
the phase space can be described mahtematically as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂θ

∂t
= Ξ(θ, c, s, t)

∂c

∂t
= Γ(θ, c, s, t)

(1)

where:120

• Ξ is the actual simulator code that describes how θ evolves in time

• Γ is the operator which describes how c evolves in time , i.e., the status
of components and systems at each time step

• s is the set of stochastic parameters.

Starting from the system located in an initial state, θ(t = 0) = θ(0), and the125

set of stochastic parameters (which are generally generated through a stochas-
tic sampling process), the simulator determine at each time step the temporal
evolution of θ(t). At the same time, the system control logic determines the
status of the system and components c(t).

By using the RISMC approach, the PRA analysis is performed by [16]:130

1. Associating a probabilistic distribution function (pdf) to the set of param-
eters s (e.g., timing of events)

2. Performing stochastic sampling of the pdfs defined in Step 1

3. Performing a simulation run given s sampled in Step 2, i.e., solve the
system of equations 1135
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4. Repeating Steps 2 and 3 M times and evaluating user defined stochastic
parameters such as core damage (CD) probability (PCD).

Note that s includes not only uncertain parameters characteristic of the
simulator (e.g., pipe friction coefficients) but also the set Basic Events (BEs)
associated to the considered components.140

The goal of measuring components risk importance is to identify the com-
ponents that contribute the most to the system/plant overall risk.

The objective of this identification process once completed is that plant re-
sources (e.g., procurement costs, maintenance, testing) can be directed towards
more risk-significant components or they can be replaced with more reliable145

models while fewer resources can be allocated to components that are of lower
risk.

3.1. RISMC Approach and Classical PRA

In a classical PRA framework, each BE has a unique probability value as-
sociated to it (with possible uncertainty) while in a dynamic PRA each BE150

has a probability distribution function (pdf) associated to it. This pdf that
describes the stochastic behavior of the component can be discrete in nature
(e.g.,a Bernoulli distribution) or continuous (e.g., exponential).

As an example lets consider two basic events associated to the emergency
diesel generators (EDGs) of a nuclear power plant: EDG failure to start (EDG FS)155

and EDG failure to run (EDG FS). In a classical PRA framework two proba-
bility values would be associated to each basic event: pEDG FS and pEDG FR.
In a dynamic PRA framework two pdfs would be associated to each basic event:

• EDG FS ∼ Bern(pEDG FS) (Bernoulli distribution representing success
0 or failure 1)160

• EDG FR ∼ Exp(λEDG FR) (Exponential distribution representing the
time of failure).

When comparing Dynamic vs. Classical PRA approaches note the following:

• EDG FS has the identical statistical model in the two approaches

• EDG FR has different statistical models; however, if we set

pEDG FR =

∫ MT

0

λEDG FR · e−λEDG FRtdt (2)

where MT is the EDG mission time, then the two models are identical165

from a statistical perspective.

An additional methodological difference among classical and dynamic PRA
is the modeling of sequencing and timing of events. In classical PRA this is typ-
ically performed using Event-Trees (ETs) where sequence and timing of events
are set by the analysis prior to the analysis. An example of an ET is shown in170

Fig. 2 for large Loss Of Coolant Accident (LOCA): successful outcome of each
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Figure 2: Large LOCA ET.

ET branch is guaranteed only if the accumulator, low-pressure injection (LPI)
and low-pressure recirculation (LPR) systems successfully perform their func-
tion. Each ET branch corresponds to a possible accident scenario while each
branching point corresponds to the successful or failed activation of a system175

(accumulator, LPI and LPR) The ET construction requires the definition of a
set of acceptance criteria (e.g., collapsed level greater than 1/3 of core height)
and a set of success criteria for each system involved in the accident progression.
This criteria are determined by the analysis and might be backed up by a set
of thermal-hydraulic calculations.180

In a dynamic PRA method, timing and sequencing of events are uniquely
dictated by the system control logic and by the set of stochastic parameters
s,i.e., the construction of the ET is replaced by coding the plant control logic
(e.g., system activation points and activation rules). In addition, acceptance
criteria and success criteria are incorporated into the physics model of the code185

Back to the large LOCA scenario, in a dynamic framework it would be modeled
by:

• Employing a system simulator code (e.g., RELAP5-3D)

• Defining three stochastic parameters:

– accumulator system: failure on demand (Bernoulli distribution)190

– LPI system: failure to run (Exponential distribution)

– LPR system: failure to run (Exponential distribution)

• Setting the condition to end a code simulation run and its corresponding
outcome:

– OK outcome: mission time (e.g., 24 hours)195

– Fail outcome: maximum core temperature greater than 2200 F

Note that discrepancies among classical and dynamic PRA methods can
occur for sequence of events coupled with system dynamics. Assuming two
events A and B occur in sequence and time of activation of each of them is
a stochastic variable (tA ∼ pdfA(t) and tB ∼ pdfB(t)), the actual activation
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time TB of system B is a stochastic variable given by the sum of tA and tB
(TB = tA + tB). In a classical PRA framework, the distribution of TB (i.e.,
pdfA+B(t)) can be determined by solving the convolution integral:

pdfA+B(t) =

∫ ∞

−∞
pdfB(t− τ)pdfA(τ)dτ (3)

This convolution integral get more complex when accident progression include
a large number of events and system dynamics affect timing of events.

4. RAVEN

The Risk Analysis and Virtual ENviroment (RAVEN1) [6, 19] is a flexible200

and multi-purpose uncertainty quantification, regression analysis, probabilistic
risk assessment, data analysis and model optimization framework. Depending
on the tasks to be accomplished and on the probabilistic characterization of the
problem, RAVEN perturbs (e.g., Monte-Carlo, latin hypercube, reliability sur-
face search) the response of the system under consideration by altering its own205

parameters. The system is modeled by third party software (e.g., RELAP5-
3D [10], MELCOR [11]) and accessible to RAVEN either directly (software
coupling) or indirectly (via input/output files). The data generated by the
sampling process is analyzed using classical statistical and more advanced data
mining approaches. RAVEN also manages the parallel dispatching (i.e. both on210

desktop/workstation and large High Performance Computing machines) of the
software representing the physical model. RAVEN heavily relies on artificial in-
telligence algorithms to construct surrogate models of complex physical systems
in order to perform uncertainty quantification, reliability analysis (limit state
surface) and parametric studies.215

By statistical analysis we include:

• Sampling of codes, either stochastic, e.g., Monte-Carlo [20] and Latin Hy-
percube Sampling (LHS) [21], deterministic (e.g., grid and Dynamic Event
Tree (DET) [22, 23]) or adaptive [24, 25]

• Generation of ROMs [18], also known as Surrogate models220

• Post-processing of the sampled data and generation of statistical param-
eters (e.g., mean, variance, covariance matrix).

Figure 3 shows a general overview of the elements that comprise the RAVEN
statistical framework:

• Model: it represents the pipeline between input and output space. It225

comprises both codes (e.g., RELAP5-3D [10]) and also ROMs

1Official website: https://raven.inl.gov,
GITHUB repository: https://github.com/idaholab/raven
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Figure 3: Overview of RAVEN statistical framework components

• Sampler: it is the driver for any specific sampling strategy, e.g., Monte-
Carlo, LHS, DET [26, 27])

• Database: the data storing entity

• Post-processing module: the module that performs statistical analyses and230

visualizes results.

5. Classical RIMs in a Dynamic PRA Context

In a Dynamic PRA environment, R0 is obtained (e.g., through Monte-Carlo
sampling) by:

1. Running N simulation (e.g., RELAP5 runs)235

2. Counting the number NCD of simulations that lead to Core Damage (CD)
condition

3. Calculating R0 = NCD

N

Note that while basic events in classical PRA are mainly discrete (binary), in
a Dynamic PRA environment the sample parameters can be, not only discrete,240

but more often continuous. As an example, let consider two basic events:

• Emergency Diesel Generator (EDG) failure to start, and,

• EDG failure to run

In classical PRA analyses, a probability value is associated to each basic
event. In a Dynamic PRA framework, a Bernoulli distribution could be asso-245

ciated to the first basic event and a continuous distribution (e.g., exponential
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distribution) could be associated to the second basic event. At this point a
challenge arises: the determination of R−

i and R+
i for each sampled parameter;

two possible approaches can be followed :

1. Perform a Dynamic PRA for R0 and each R−
i and R+

i (requiring three250

times the number of calculations)

2. Determine an approximated value of R−
i and R+

i from the simulation runs
generated to calculate R0

Regarding Approach 1, given the computational costs of each Dynamic PRA,
it is inefficient to determine R−

i and R+
i for each sampled parameter. In fact, if255

we consider S sample parameters (i.e., S basic events) over N simulations, then
the risk importance analysis would require N(2S + 1) simulations.

Regarding Approach 2, a unique method (implemented in RAVEN as an
internal post-processor) was developed and it is presented. This method requires
input from the user:260

• Range, I−i , of the variable si that can be associated to the statement
“basic event with component perfectly reliable”

• Range, I+i , of the variable si that can be associated to the statement
“basic event in a failed status”

Note that the reason we require these types of input in the dynamic analyses is265

that the parameter space is defined as a continuum unlike the discrete Boolean
space found in classical PRA.

Given this kind of information, it is possible to calculate R+
i and R−

i as
follows:

R0 =
NCD

N
(4)

R+
i =

NCD,si∈I+
i

N
(5)

R−
i =

NCD,si∈I−
i

N
(6)

where:

• NCD,si∈I+
i
is the number of simulations leading to core damage and with

parameter si ∈ I+i270

• NCD,si∈I−
i

is the number of simulations leading to core damage and with

parameter si ∈ I−i

Since these measures are condtioned on the choices of I+i and I−i , depending
on their values, R+

i and R−
i might change accordingly. In addition, the statisti-

cal error associated to the estimates of R+
i and R−

i also changes as a function of275

the sampling process. An example is shown in Figure 4 for both cases (discrete
and continuous) of a basic event xi represented as a stochastic variable which
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is sampled (e.g., through a Monte-Carlo process) for each simulation run. If we
consider the continuous case and assume si correspond to the basic event “EDG
failure to run”. The user might impose the following in order to determine R+

i280

and R−
i :

• I−i = [T−
i ,∞] where T−

i may be set equal to the simulation mission time
(e.g., 24 hours). This implies that a sampled value for EDG failure to run
greater than 24 hours implies that the EDG actually does not fail to run
(reliability equal to 1.0)285

• I+i = [0, T+
i ] where T−

i may be set to an arbitrary small value (e.g., 5
min). This implies that a sampled value for EDG failure to run smaller
than 5 min implies a reliability almost equal to 0.0

Note that while the definition of I−i is perfectly reasonable, the reader could
argue that a smaller interval should be chosen for I+i (e.g., 30 seconds or less).290

Recall that ideally, a value of si = 0.0 should be theoretically chosen (and not
an interval); however, given the nature of the distribution this is not usefull.
Given the nature of the problem, we are bound to choose an interval I+i :

• A small interval in the region of si = 0.0 would lead to a value of R+
i close

to the theoretical one. However, the number of actual sampled values295

falling in I+i would be very small, leading to a large stochastic error.

• A large interval in the region of si = 0.0 would lead to a value of R+
i far

from the theoretical one. However, the number of actual sampled values
falling in I+i would be very high, i.e., small stochastic error.

A solution to the large statistical error associated to a very small interval300

I+i can be solved by employing different sampling algorithms other than the
classical Monte-Carlo one. As an example, a better resolution of the final value
for R+

i can be achieved by sampling uniformly the range of variability of xi

and associate an importance weight to each sample. At this point the counting
variable NCD is weighted by the weight of each sample. By sampling uniformly305

the range of variability of xi, the number of samples in the interval I+i would
be significantly higher.

6. Test Examples

In order to better understand the results obtained in this section, it is worth
to illustrate a link between classical PRA and RISMC approach. Let’s con-310

sider a system that is composed by two components (i.e, A and B) in a series
configuration where each component has a failure probability (i.e., pA and pB
respectively) as shown in Fig. 5.

In a classical PRA framework such system can be modeled using a FT
method that is composed by two basic events: A failed and B failed. Sys-315

tem failure would be represented by a single “AND” gate that combine the two
basic events as shown in Fig. 5.
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pdfi 

xi 0 xi
+ xi

- 

Ii+ Ii- 

pdfi 

xi 0 xi
+ xi

- 

Ii+ Ii- 

Reliability = 1.0 Reliability = 0.0 

Reliability = 1.0 Reliability = 0.0 

Figure 4: Treatment of discrete (top) and continuous (bottom) stochastic variables for relia-
bility purposes.
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In a RISMC approach, such system would be modeled by using two stochastic
parameters (i.e., varA and varB) with a Bernoulli distribution Bern(p) associ-
ated to each of them: varA ∼ Bern(pA) and varB ∼ Bern(pB). The model that320

emulates system response would simply implement the “AND” logic of the varA
and varB . In order to determine system failure probability a numerical inte-
gration has to be performed in a 2-dimensional (a dimension for each stochastic
parameter).

Two possible sampling strategies can be followed:325

• Monte-Carlo: generate N samples and count the the number of samples
that lead to system failure

• Grid: partition the 2-dimensional space into a Cartesian grid; gener-
ate a sample for each partition and associate a probability weight w
to each sample. This weight can be determined by integrating the pdf330

pdf(A,B) = Bern(pA) Bern(pB) in each partition. In this specific case,
since each stochastic parameter has two possible outcomes (i.e. 0 and 1),
the space has been partitioned into 4 regions as shown in Fig. 6. Each cell
of Fig. 6 has indicated the system outcome: system failure (F) or system
success (OK).335

The Monte-Carlo approach would require a large number of samples in order
to decrease the statistical error associated to system failure probability. On the
other hand, a Grid sampler would determine the exact value of system failure
probability with only 4 samples:

1. sample 1: A = 0 and B = 0 (bottom left cell of Fig. 6), w1 = (1 − pA) ·340

(1− pB)

2. sample 2: A = 1 and B = 0 (top left cell of Fig. 6), w2 = pA(1− pB)

3. sample 3: A = 0 and B = 1 (bottom right cell of Fig. 6), w3 = (1−pA) ·pB
4. sample 4: A = 1 and B = 1 (top right cell of Fig. 6), w4 = pA · pB

Note that each sample/cell of Fig. 6 that leads to system failure corresponds to345

a specific cut-set

• Cut-set 1 (CS1) corresponds to sample 2; pCS1 = pA

• Cut-set 2 (CS2) corresponds to sample 3; pCS2 = pB

• Cut-set 3 (CS3) corresponds to sample 4; pCS3 = pA · pB
Hence, the two methods (classical and PRA) would provide identical results.350

Observe now that the number of samples required for M stochastic param-
eters (assuming they are all distributed with a Bernoulli distribution) would be
equal to 2M . Thus this strategy can be employed for a small value of M .
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Figure 5: Components A and B in a series configuration (left) and its associated Fault-Tree
(right).
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C 

Figure 7: System considered for Examples 1 and 2.

SYS1

SYSTEM FOR TEST CASE 1

CASE11

FAILURE OF BOTH B AND C

5.0000E-02B-FTS

COMPONENT B FAILS TO 
START

1.0000E-01C-FTS

COMPONENT C FAILS TO 
START

1.0000E-02A-FTS

COMPONENT A FAILS TO START

Figure 8: FT structure for the system shown in Fig. 7.

6.1. Example 1: series/parallel configuration

The first example consists of 3 components arranged in a series/parallel355

configuration as shown in Fig. 7. In this case the following probabilities of
failures (on-demand) are provided:

• pA = 1.0 · 10−2

• pB = 5.0 · 10−2

• pC = 1.0 · 10−1
360

From a classical PRA perspective, this system can be modeled using a FT
as shown in Fig. 8.

From a RISMC (i.e., dynamic PRA) point of view the analysis of this system
is performed as follows (see Section 3.1):

• Define 3 stochastic parameters (i.e., S = 3):365

– s1: status of component A

– s2: status of component B

15



Table 1: Results obtained for Example 1.

Analytical SAPHIRE RAVEN
FVA 0.67 0.67 0.67
FVB 0.33 0.34 0.33
FVC 0.33 0.34 0.33

Analytical SAPHIRE RAVEN
RAWA 66.9 66.9 66.9
RAWB 7.3 7.3 7.3
RAWC 3.98 3.98 3.98

– s3: status of component C

• Assign a distribution to each stochastic parameter; in this case a Bernoulli
distribution370

• Define I+i and I−i for each distribution: in this case we have chosen I−i =
[0.0, 0.1] and I+i = [1.0, 1.1]

• Generate N samples, for example by employing Monte-Carlo or Grid sam-
pling strategies

• Determine R0, R
−
i and R+

i for each component375

• Determine the desired RIMs for each component

Note that a Monte-Carlo sampling is not the best sampling strategy in terms
of computational costs. This is even more relevant if the value of pA, pB or pC
were several order of magnitude lower.

A more effective sampling strategy would be the Grid sampling (see Sec-380

tion 3.1): the stochastic variables are sampled over a fixed Cartesian grid and
a probability weight is associated to each sample. In this case, each stochastic
variable si is sampled over two values, 0.0 and 1.0, and the probability weights
w0

i and w1
i values associated to each sample coordinate are:

• si = 0.0: w0
i = prob(si ∈ [−∞, 0.5])385

• si = 1.0: w1
i = prob(si ∈ [0.5,+∞])

Following this grid sampling strategy, only 23 = 8 are needed. Table 1, the
FV and RAW importance values for all three components obtained by RAVEN
(using a Grid sampling strategy) are shown compared with the analytical ones.

6.2. Example 2: time-dependent stand-by configuration390

The second example considers a simplified ECCS model (see Fig. ??) of a
reactor. It consists of the following components and for a subset of them a value
of mean time to failure (MTTF) is provided:
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Figure 9: System considered for Example 3.

Table 2: Results obtained for Example 2.

Analytical SAPHIRE RAVEN
FVvalve 0.30 0.69 0.30
FVpump1 0.26 0.82 0.26
FVpump2 0.26 0.82 0.26

Analytical SAPHIRE RAVEN
RAWvalve 1.18 1.10 1.18
RAWpump1 1.12 1.05 1.12
RAWpump2 1.12 1.05 1.12

• Motor-operate valve M (MTTF = 24 h, λvalve = 0.041667)

• Two redundant pumps, pump1 and pump2 (MTTF = 12 h, λpump1 =395

λpump2 = 0.083333)

• Heat exchanger HX (reliability = 1.0)

Pump1 is normally used while pump2 is on standby. If Pump1 fails then
pump2 provide water flow in a switching arrangement. Pump2 cannot fail while
in standby. Switch from pump1 to pump2 is perfectly reliable. The cooling400

is such that it takes 2 hours to reach vessel failure condition if the M-pump1-
pump2 system has failed. Mission time is again equal to 24 hours.

Note in this case classical PRA methods require model adjustments via con-
volution calculations in order to correctly determine system reliability. Table 2
are shown the FV importance for all three components obtained by RAVEN405

(using a Monte-Carlo sampling strategy) compared with the analytical ones.

6.3. Example 3: K out of N configuration

The third example is similar to the one shown in Section 6.2 It consists of
the following components:

• Motor-operate valve M (MTTF = 24 h, λvalve = 0.041667)410
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Figure 10: System considered for Example 3.

Table 3: Results obtained for Example III.

Analytical SAPHIRE RAVEN
FVvalve 0.032 0.64 0.033
FVpump1 0.076 0.94 0.081
FVpump2 0.076 0.94 0.081
FVpump3 0.076 0.94 0.081

Analytical SAPHIRE RAVEN
RAWvalve 1.02 1.0 1.02
RAWpump1 1.01 1.0 1.01
RAWpump2 1.01 1.0 1.01
RAWpump3 1.01 1.0 1.01

• Three pumps, pump1, pump2 and pump3 (MTTF = 12 h, λpump1 =
λpump2 = λpump3 = 0.083333)

• Heat exchanger HX (reliability = 1.0)

All pumps are initially running but 2 out of 3 are required to cool the system.
Mission time is again equal to 24 hours.415

Table 3 are shown the FV importance for all three components obtained by
RAVEN (using a Monte-Carlo sampling strategy) compared with the analytical
ones.

6.4. Example 4: time and physics dependent stand-by configuration

The forth example considers the system of Example 2 (see Section 6.2) but420

it considers also the temporal behavior of the reactor. The top event is not the
failure of valve-pump1-pump2 system but it occurs when core temperature T
reaches a threshold value Tmax (i.e., reactor failure). Mission time is still 24
hours.

Note that the configuration is slightly different from the one presented in425

the first two examples (here a stand-by configuration is introduced) but also the
condition of system failure is dictated by the dynamic behavior of the PWR.
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Figure 11

Table 4: Results obtained for Example 4.

FV RAW
valve 0.58 2.21
pump1 0.28 1.48
pump2 0.28 1.48

The system is designed such that a late failure of the ECCS may not lead to
system failure (i.e., natural circulation is providing enough cooling). In other
words, the ECCS is vital especially in the hours right after a reactor scram.430

In principle, this test case cannot be solved analytically due to the complexity
of the reactor behavior. It can be solved by identifying the time Tlim (limit time)
after which a failure of the valve-pump1-pump2 system does not cause reactor
failure since natural circulation can provide enough cooling. Note that Tlim

could only be determined be recursively run the system simulator until a good435

estimate of Tlim is reached.
Figure 11 shows the histogram of the failure time of valve-pump1-pump2

system along with the limit time Tlim for the two different power levels (100%
and 120%). Note that a higher power level implies a faster reactor heatup
rate; hence, the valve-pump1-pump2 system must provide more cooling before440

the natural circulation can sustain a failure of the valve-pump1-pump2 system:
Tlim increases.

6.4.1. Considerations on the mission time

In the example presented in Section 6.4 two code stopping conditions were:
core temperature greater than 2200 F and simulation time reaches 24 hours445

(mission time). Note that the mission time stopping condition imposes that a
simulation is considered successful even if the valve-pump1-pump2 system has
failed and the reactor temperature increases; if a longer mission time would be
chosen then the simulation would be classified no longer with an OK outcome
but with a fail outcome. Thus, special attention has be given to the assumptions450
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behind the mission time.
Depending on the employed code simulator the best solution is to re-define

the mission time Tmiss as the time below which events can occur; in addition,
the code is set to end the simulation not when the mission time is reached but at
a time Tend = Tmiss + Trelax where the addition of Trelax allows the simulation455

to reach a steady-state condition.

6.4.2. Considerations on the sampling strategy

In order to get accurate results of the risk importance measures the number
of simulation runs to perform can be very high (order of thousands and up). In
addition, given that each simulation run may require hours of simulation time,460

this kind of analysis may be feasible only for large high performance computing
systems.

An alternative approach is to employ ROMs instead of the actual simulation
code so that a large number of data points can be generated in a much faster
time on standard computing machines. In this case the approach would be as465

follows:

1. Generate a limited set of sample points using the simulation code

2. Train and validate a ROM given the data set generated in Step 1

3. Perform the analysis with the ROM obtained in Step 2

The training and creation of the ROM can be performed in several ways; for470

the applications targeted by this paper we have found two optimal choices.
The first one explores the totality of input space uniformly and it recon-

structs the response of the code in the input space.
The second one exploits the binary nature of the problem (i.e., the outcome

of each simulation run is binary: either OK or failed) and it try to determine475

the limit surface: the boundaries in the input space that separate failure region
(i.e., characterized by the undesired simulation outcome; e.g., core damage)
from success region (i.e., characterized by the desired simulation outcome; e.g.,
max clad temperature below 2200 F). This sampling strategy, called “adaptive
sampling” (or smart sampling), can obtain much better statistical results since480

the the code response is queried in the most relevant zones of the input space
(the limit surface).

The steps for the adaptive sampling strategy are:

1. Perform a set of runs of the simulator code: the number of required runs
may depend on the dimensionality of the input space485

2. Given the set of simulation runs obtained in Step 1, create a ROM. The
objective of this ROM is to infer the response of the simulator code, i.e.,
create an approximate output given the same set of input parameters

3. Identify a set of points on the limit surface

4. Chose a subset of points from the ones obtained in Step 4490

5. Perform a simulation run for each of the points obtained in Step 5 using
the simulator code

6. Repeat Steps 2 through 6 until convergence is reached
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Initial training 
samples  

Initial estimate of 
the limit surface 

Figure 12: Example of adaptive sampling

An example of adaptive sampling is shown in Fig. 12 for a 2-dimensional
case. Figure 12 shows the location of the chosen sample points and the estimate495

of the limit surface as the iteration illustrated above progresses. Note that the
code is evaluated in a safety strategic area: the limit surface.

7. Extension To Time-Dependent Data

In order to extend the calculation presented in Section 5 in the time-domain
we need additional information: the temporal profile of the status of those500

components that might be taken offline due to maintenance or testing.
We will follow this notation:

• Ξ represents the system configuration, i.e., the status of components and
systems of the plant on the time scale τ of the plant lifetime

• RAWi(τ), FVi(τ), RRWi(τ)), Bi(τ) are the RIMs determined for the505

basic event i calculated on the time scale τ

Note that in our application the status of each component can be only binary:
component operating or component off-line (i.e., either because it is failed or
under maintenance/testing). Thus component performance degradation is not
considered. The calculation algorithms is as follows given a set of simulated510

data:

1. Divide the temporal profile into L segments where the status of the com-
ponents, i.e. the system configuration Ξ, remain constant

2. For each time segment, i.e., for l = 1, . . . , L
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2.1. Determine R0 according to the system configuration Ξl for segment
l

R0(l) =
NCD,Ξ=Ξl

NΞ=Ξl

(7)

2.2. For each component determine R−
i and R+

i515

• If the component is on-line, R−
i and R+

i are determined as fol-
lows:

R+
i (l) =

NCD,si∈I+
i ,Ξ=Ξl

NΞ=Ξl

(8)

R−
i (l) =

NCD,si∈I−
i ,Ξ=Ξl

NΞ=Ξl

(9)

• If the component is off-line determine R+
i (l) according to Eq. ??

and set R−
i (l) = R+

i (l)

7.1. Test case

For the scope of this paper we have chosen an example that can help the
reader to understand the proposed algorithm. This a simple system composed520

of three components (i.e., A, B and C) in a parallel/series configuration shown
in Figure 7. To each component a failure rate is provided when the system is
called on demand:

• λA = 1.0 · 10−3hr−1

• λB = 5.0 · 10−3hr−1
525

• λC = 1.0 · 10−2hr−1

Even though the system can be solved analytically we have chosen a dynamic
method to solve it in order to show how the proposed methods is implemented.
By using a Monte-Carlo based Dynamic PRA method, we have generated a
database of simulated data where each data point is structured as follows:530

• Input variables: failure time of components A, B and C (i.e., si) sampled
from their own distribution (i.e., exponential with lambda values provided
at the beginning of this section)

• Output variables: status of the system (either OK or CD)

We have selected the temporal profile for two components: A and C as shown535

in Fig. 13. By following the algorithm presented above it has been possible to
determine the temporal profiles of:

• system failure probability (see Fig. 14 left)

• RIMs such as FV (see Fig. 14 right)
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Figure 13: Temporal profile of the status for component A (blue line) and C (green line).

Figure 14: Temporal profile for system failure probability (left) and FV profile (right) for
components B (green line), A (blue line) and C (red line).
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8. New RIMs in a Dynamic PRA Context540

Note that the RIMs described so far are tied to a binary logic of the outcome
variable (e.g., OK vs. CD). Dynamic PRA approaches typically generate a
continuous value of the outcome variables (e.g., peak clad temperature - PCT ).
In our application (see previous sections) we typically convert PCT to a discrete
one as follows:545

• PCT > 2200F : outcome = CD

• PCT < 2200F : outcome = OK

Given the different structure of the approach used in this paper to solve a
PRA problem (i.e., Dynamic instead of classical PRA), the reader might think
that a different set of RIMs should/could be developed in order to capture the550

nature of the problem solved using Dynamic PRA. As a starting point, it would
worth investigating the nominal probabilistic distribution (pdf) of PCT with
the one obtained when reliability of each basic event (sampled parameter) is 0.0
or 1.0. So now we can indicate:

• pdf0(T ): nominal pdf of PCT555

• pdf−
i (T ): pdf of PCT associated to basic event i assuming basic event is

perfectly reliable

• pdf+
i (T ): pdf of PCT associated to basic event i assuming basic event has

failed

An example is shown below for a hypothetical case where the obtained
pdf0(T ) is indicated using a histogram while the limit value for PCT is shown
using the red line passing at 2200 F. In order to make a connection to what has
been presented in the previous section, note that by looking at Fig. 15:

R0 =

∫ ∞

2200

pdf0(T ) dT (10)

As part of the RISMC analysis, the user might want to supplement the
results obtained in the previous section with the information associated to a
more effective margin analysis. In particular, of interest for RISMC applications
is (see Fig. 15) the concept of margin:

margin = 2200− PCT given PCT < 2200 (11)

Using the same philosophy indicated in the previous section for classical560

RIMs, we want to determine:

• margin0: pdf of the variable 2200− PCT given that PCT < 2200

• margin−
i : pdf of the variable 2200 − PCT given that PCT < 2200 for

basic event i assuming it is perfectly reliable
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Figure 15: Plot of a hypothetical pdf0(T ) (left) and its associated margin margin0 (right).

• margin+
i : pdf of the variable 2200 − PCT given that PCT < 2200 for565

basic event i when its assumed to be failed

Note now that margin0, margin−
i and margin+

i are pdfs and not numerical
values. Hence, now the challenge arises on how to compare two pdfs:

• margin0 vs. margin−
i

• margin0 vs. margin+
i570

Assume two pdfs are given: pdf1(x) and pdf2(x). A couple of approaches can
be followed: Z-test or KolmogorovSmirnov test. In the first approach (Z-test),
the following variable Z is computed:

Z1,2 =
mean(pdf1)−mean(pdf2)√

std dev2(pdf1)− std dev2(pdf2)
(12)

where:

• mean(pdf) correspond to the mean of pdf(x)

• std dev(pdf) correspond to the standard deviation of pdf(x)

In the second approach (KolmogorovSmirnov test), instead of the pdf, the
cumulative distribution functions (pdf) are considered: cdf1(x) and cdf2(x). In
particular, the Kolmogorov-Smirnov statistic is calculated as:

Z1,2 = sup
x
(cdf1(x)− cdf2(x)) (13)

Note that so far we have imposed clad failure temperature (CFT ) to be
a fixed value, i.e., 2200 F. In many RISMC applications CFT is no longer a575

numerical value but it can be un uncertain parameter, i.e., a pdf is associated
to CDF: pdf(T ). This tie goes back to the original logo of RISMC where a pdf
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Figure 16: Plot of the pdfs for PCT (green) and CFT (red) (top left), Plot of the pdf of the
variable CFT − PCT (top right) and Plot of the pdf of the margin, i.e., CFT − PCT > 0
(bottom).
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for “load” and “capacity” (see Fig. 16). A new definition of margin can be then
defined:

margin = (CFT − PCT ) given (CFT − PCT > 0) (14)

Once the pdf associated to the margin variable is determined it is possible580

to employ either the Z-tests or the KolmogorovSmirnov test in order to measure
how this pdf changes when each basic event is considered perfectly reliable or
failed.

9. Conclusions

This paper has presented a mathematical framework for determining risk585

importance measures in a simulation based, i.e. dynamic, PRA framework.
We have shown how classical measures can be derived and we have provided
few explanatory examples. We have also indicated how the data generation
method is important to maximize the amount of information generated by each
simulation run. Lastly we have presented a novel set of risk importance measures590

that are not bounded by a Boolean logic but explore the continuity of the
problem. The advantage of these measures is that they capture the idea of
“safety margin”.

Appendix A: Analytical Results

Example 1595

For the system described in Section 6.1 we have the following

R0 = pA + pBpC − pApBpC = 0.01495 (15)

R−
A = pBpC = 0.005 (16)

R+
A = 1.0 (17)

R−
B = pA = 0.01 (18)

R+
B = pA + pC − pApC = 0.109 (19)

R−
C = pA = 0.01 (20)

R+
C = pA + pB − pApB = 0.0595 (21)

Thus:

FVA =
R0 −R−

A

R0
= 0.665552 (22)

FVB =
R0 −R−

B

R0
= 0.331104 (23)

FVC =
R0 −R−

C

R0
= 0.331104 (24)
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Rsys (t) = Rvalve(t) ⋅ fpump1(τ )
0

t

∫ ⋅Rpump2 (t −τ )dτ

Figure 17: Reliability block diagrams for Example 2 (see Section 6.2).

and:

RAWA =
R+

i

R0
= 66.88963 (25)

RAWB =
R+

i

R0
= 7.29097 (26)

RAWC =
R+

i

R0
= 3.97993 (27)

Example 2

We can solve the system described in Section 6.2 using reliability block
diagrams (see Fig. 17).

Thus time dependent reliability of the system Rsys(t) as function of time t:

Rsys(t) = Rvalve(t)

∫ t

0

fpump1(τ)Rpump2(t− τ)dτ (28)

where:600

• Rvalve(t) = e−λvalvet

• fpump1(t) = λpump1e
−λ1t

• Rpump2(t) = e−λpump2t

It can be shown that if λpump1 = λpump2 = λ̄:

Rsys(t) = e−λvalvet[e−λ̄(1 + λ̄t)] (29)
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For this system we have the following for a mission time T = 24 hours:

R0 = 1.0−Rsys(T ) = 0.85063876 (30)

R−
valve = 1.0− [e−λ̄T (1 + λ̄T )] = 0.593994129 (31)

R+
valve = 1.0 (32)

R−
pump1 = 1.0−Rvalve(T ) = 0.6321205 (33)

R+
pump1 = 1.0−Rvalve(T )Rpump2(T ) = 0.95021292 (34)

R−
pump2 = R−

pump1 = 0.6321205 (35)

R+
pump2 = R+

pump1 = 0.95021292 (36)

Example 3

We can solve the system described in Section 6.2 using again reliability block
diagrams. Thus time dependent reliability of the system Rsys(t) as function of
time t:

Rsys(t) = Rvalve(t)R2oo3(t) (37)

where R2oo3(t) represents reliability of a set of three identical components in a605

2 out of 3 (2oo3) configuration.
It can be shown that if λpump1 = λpump2 = λpump3 = λ̄ (thus Rpump1(t) =

Rpump2(t) = Rpump3(t) = R̄(t) = e−λ̄t) then R2oo3(t) can be written as

R2oo3(t) =

3∑
n=2

(
3

n

)
R̄(t)n[1− R̄(t)]3−n = 3e−2λ̄t(1− e−λ̄t) + e−3λ̄t (38)

For this system we have the following for a mission time T = 24 hours:

R0 = 1.0−Rsys(T ) = 0.981609917 (39)

R−
valve = 1.0−R2oo3(T ) = 0.95001058 (40)

R+
valve = 1.0 (41)

R−
pump1 = 1.0−R1oo2(T )Rvalve(T ) = 0.907163789 (42)

R+
pump1 = 1.0−Rvalve(T )R̄(t)2 = 0.993262051 (43)

R−
pump2 = R−

pump1 (44)

R+
pump2 = R+

pump1 (45)

R−
pump3 = R−

pump1 (46)

R+
pump3 = R+

pump1 (47)

where R1oo2(t) represents reliability of a set of two identical components in a 1
out of 2 (1oo2) configuration:

R1oo2(t) =

2∑
n=1

(
2

n

)
R̄(t)n[1− R̄(t)]2−n = 2e−λ̄t(1− e−λ̄t) + e−2λ̄t (48)
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Abstract

In the past decade several advanced Dynamic Probabilistic Risk Analysis (PRA)
methods have been developed. These methods couple stochastic methods (e.g.,
RAVEN, ADAPT, ADS, MCDET) with safety analysis codes (e.g., RELAP5-
3D, MELCOR, MAAP) to determine risk associated to complex systems such as
nuclear plants. Compared to classical PRA methods, which are based on static
Boolean logic structures (e.g., Event-Trees -ET-, Fault-Trees -FT-), they can
determine risk associated to complex systems with higher resolution since the
implicitly model timing and sequencing of events on the accident progression. In
the first part of this article we have presented a set of risk importance measures
that can be employed on a dataset generated by any Dynamic PRA method
to rank components based on their importance from a safety point of view.
Such measures have been developed as a natural extension of ones employed in
industry PRA codes and they have been tested on several analytical test cases.
In this second part of the article we show a full comparison between classical
and Dynamic PRA methods. The system considered for the comparison is a
Pressurized Water Reactor (PWR) system for a large break Loss Of Coolant
Accident (LOCA) initiating event. We show how the Dynamic and the ET/FT
models have been built from both a stochastic and accident progression point of
view. Metrics of comparison are based not only on the core damage probability
but also based on the importance values associated to each basic event.

Keywords: Importance Measures, Dynamic PRA, Probabilistic Risk
Assessment

1. Introduction

In the past decades, several numerical simulation codes have been employed
to simulate accident dynamics, e.g., RELAP5-3D [1], MELCOR [2] or MAAP [3].
In order to evaluate the impact of uncertainties into accident dynamics, several
stochastic methodologies have been coupled with these codes. These stochas-5

tic methods range from classical Monte-Carlo and Latin Hypercube sampling
to stochastic polynomial methods. Similar approaches have been introduced
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into the risk and safety community where stochastic methods, e.g., RAVEN [4],
ADAPT [5], MCDET [6] or ADS [7], have been coupled with safety analysis
codes in order to evaluate the safety impact of timing and sequencing of events10

on the accident progression. These approaches are usually called Dynamic PRA
methods [8].

Compared to classical PRA methods, which are based on static Boolean
logic structures (e.g., Event-Trees -ET-, Fault-Trees -FT-), they can determine
risk associated to complex systems with higher resolution since the implicitly15

model timing and sequencing of events on the accident progression. In ET/FT
based methods accident progression is fixed and it is set prior the analysis by
the analyst. Such approximation is even more limiting for accident scenarios
in which tight timing dependencies of events are coupled with plant dynamics
(e.g., recovery actions and human related actions).20

The scope of this paper is to present a comparison between Dynamic and
classical PRA methods. The system considered is a Pressurized Water Rec-
tor (PWR) for a large break Loss Of Coolant Accident (LOCA), LB-LOCA,
initiating event.

The comparison Dynamic and classical PRA methods is based not only on25

the core damage probability but also based on the importance values associated
to each basic event.

In [9] we have presented a set of risk importance measures that can be
employed on a dataset generated by any Dynamic PRA method to rank com-
ponents based on their importance from a safety point of view. Such measures30

have been developed as a natural extension of the ones employed in industry
PRA codes such SAPHIRE [10] or CAFTA [11].

In this paper we employs such metrics extensively in order to quantify such
comparison. The objectives are twofold: the first one is to validate the proposed
metrics over an industry-grade test case and show capabilities of Dynamic PRA35

methods. The second one is to provide guidance on how it is possible to have
classical and dynamic PRA methods compatible with each other. The rationale
behind it is that a Dynamic PRA analysis can be performed for a limited aspect
of the overall system and its result incorporated into a classical PRA results.
Similarly, a classical PRA analysis can be “made dynamic” by adding dynamic40

elements (e.g., quantitative information of timing of events) into it and coupled
with a system simulation code.

2. Test Case

The test case considered in this paper is a 3-loop PWR system of Westing-
house design with a large-dry containment. The initiating event is a LB-LOCA:45

a double-ended guillotine break of one the three hot legs.
Under these accident conditions, the system experiences a sudden sub-cooled

blowdown and primary system pressure drops from about 2200 psi down to the
saturation pressure (about 1000 psi).
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In order to compensate the large loss of coolant inventory into the vessel50

and prevent core damage, two emergency core-cooling systems are employed:
Accumulators and Low-Pressure Injection System (LPIS).

Accumulators are passive components consisting of pressurized water tanks
that are employed at the beginning of the transient and can dump large inven-
tory of sub-cooled water into the vessel.55

The LPIS is activated when primary system pressure falls below 980 psi and
by using pumps large amount of water are transfered from the Reactor Water
Storage Tank (RWST) directly into the vessel.

The large amount of water that leaves the primary system and is collected in
the containment and, thus, its temperature and pressure increases. In order to60

cool it down, Containment Sprays (CSs) are employed. Similarly to the LPIS,
through pumps RWST water is sprayed from the top level of the containment.

Once RWST is empty, both CSs and LPISs switch from injection mode to
recirculation mode: water collected at the base of the containment and through
the sump and is injected back into the vessel (through the LPI) and into the65

containment (through the CSs).

3. Comparison Workflow

The comparison between Classical (using SAPHIRE) and Dynamic PRA
analysis (using RAVEN/RELAP5-3D) has been performed following these steps:

1. Simplify the SAPHIRE FT structure by grouping its basic events into70

macro basic events

2. Perform calculation of the ET-FT model: determine CD probability, prob-
ability of each ET branch and the risk importance of each macro basic
events

3. Consider the SAPHIRE ET for the LLOCA initiating event and model75

the RELAP5-3D accident progression following consistently with the ET
logic.

4. Construct the PWR logic based on the same macro basic events deter-
mined in Step 1: these macro basic events constitute the stochastic vari-
ables sampled by RAVEN80

5. Perform a dynamic analysis using RAVEN/RELAP5-3D for the system
constructed in Steps 4 and 5, and determine probability of each ET branch
and the risk importance of each macro basic events

6. Compare the results obtained in Steps 3 and 5

Step 1 has been deemed necessary in order to limit the number of unnecessary85

RELAP5-3D simulation runs. The rationale is that each basic event in the set
of FTs are also stochastic variables sampled by RAVEN. If all basic events are
considered (about a hundred) then the sampling strategy would require a very
large number of RELAP5-3D simulation runs. The great majority of these runs
would be identical since the impact of these basic events on accident progression90

is the same.
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Figure 1: Comparison overview.

The main target of this comparison is to identify commonalities and in-
consistencies between Classical and Dynamic PRA methods on the accident
progression level (i.e., at the ET level) while the FT level is modeled in the
same way for both methods.95

4. SAPHIRE Modeling

This section provides an overview of the risk importance measures in SAPHIRE
PRA code [10], the introduction of the classical LB-LOCA PRA model for a
generic 3-loop pressurized water reactor (PWR), the process to simplify the
typical LB-LOCA PRA model as needed, and the importance measure results100

from the reformulated PRA model that could be compared with those from the
corresponding RAVEN/RELAP5 simulation model.

4.1. Risk Importance Measures in SAPHIRE

The SAPHIRE code can calculate the following different basic event im-
portance measures for each basic event of the respective fault tree, accident105

sequence, or end state:

• Fussell-Vesely (FV)

• Risk Increase Ratio (RIR)

• Risk Increase Difference (RID)
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• Risk Reduction Ratio (RRR)110

• Risk Reduction Difference (RRD)

• Birnbaum (B)

• Uncertainty Importance

The most used importance measures are Fussell-Vesely, Risk Increase Ratio,
Risk Reduction Ratio, and Birnbaum. The Fussell-Vesely importance measure
indicates the fraction of the minimal cut set upper bound (or sequence frequency,
core damage frequency) contributed by the cut sets containing the interested
basic event. It is calculated with the following equation:

FV = F (i)/F (x) (1)

where:

• F (x) is the value of all the minimal cut sets evaluated with the basic event115

probabilities at their mean value.

• F (i) is the value of all the minimal cut sets that contain the interested
basic event i.

The Risk Increase Ratio, which is often called Risk Achievement Worth
(RAW), or Risk Increase Difference importance measure indicates the increase
(in relative ratio changes or in actual differences) of the minimal cut set upper
bound (or sequence frequency, core damage frequency) if the interested basic
event always occurred (i.e., the basic event failure probability is 1.0). The risk
increase importance measures are calculated with the following equations:

RAW = F (1)/F (x)RID = F (1)− F (x) (2)

where F (1) is the value of all the minimal cut sets evaluated with the interested
basic event probability set to 1.0.120

The Risk Reduction Ratio, which is often called Risk Reduction Worth
(RRW), or Risk Reduction Difference importance measure indicates the reduc-
tion (in relative ratio changes or in actual differences) of the minimal cut set
upper bound (or sequence frequency, core damage frequency) if the interested
basic event never occurred (i.e., the basic event failure probability is 0.0). The
risk reduction importance measures are calculated with the following equations:

RRW = F (x)/F (0)RRD = F (x)− F (0) (3)

where F (0) is the value of all the minimal cut sets evaluated with the interested
basic event probability set to 0.0. The Birnbaum importance measure is an
indication of the sensitivity of the minimal cut set upper bound (or sequence
frequency, core damage frequency) with respect to the interested basic event. It
is calculated by the following equation:

B = F (1)− F (0) (4)
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Figure 2: LB-LOCA ET

Figure 3: ACC FT

The Uncertainty Importance measure is an indication of the contribution of
the interested basic events uncertainty to the total output uncertainty. This
importance measure is not used in this paper and not discussed in further detail.

4.2. SAPHIRE LB-LOCA Model

Figure 2 shows a typical LB-LOCA event tree that one would find in a125

classical PRA model. The LB-LOCA event tree has three top events: ACC
for accumulator injection, LPI for low pressure safety injection, and LPR-LL
for low pressure safety injection during recirculation phase. Each top event is
modeled in one or more fault trees. Figure 3 and Figure 4 show the fault trees
for ACC and LPI. The LB-LOCA model is quantified with a cutoff value of 1E-130

12. Its core damage frequency (CDF) is 2.04E-8/year. There are 180 minimum
cut sets. Of more than two hundreds basic events in the LB-LOCA model, 60
basic events appear in the 180 minimum cut sets and thus have importance
measures. The reported importance measures include Fussell-Vesely, RAW,
RRW, and Birnbaum. 41 out of the 60 basic events can be regarded as risk135

significant using the ASME/ANS PRA Standard definition, i.e., FV >= 5E−3
or RAW >= 2.

To analyze the LB-LOCA model under the RAVEN/RELAP5 environment,

6



Figure 4: LPI FT

the number of basic events to be simulated is expected to be reduced to less than
20 in order for successful simulation runs. To compare the results from classical140

PRA with those from simulations, the traditional LB-LOCA model above has to
be simplified significantly (with less than 20 unique basic events) while keep the
PRA model fidelity as much as possible. The following three-stage progressive
process is used in this paper to simplify a traditional PRA model:

• Stage 1, simplify the traditional PRA model by keeping only the cut set145

basic events (the basic events appear at least once in the minimum cut
sets) in the model. All other basic events and subtrees that do not include
any such cut set basic events are removed from the model. The simplified
Stage 1 model should have the same quantification results (CDF, minimum
cut sets, and importance measures) as the original model.150

• Stage 2, further simplify Stage 1 model by keeping only the risk signifi-
cant basic events (FV >= 5E − 3 or RAW >= 2) in the model. Other
non-significant basic events are removed from the model. Stage 2 model
would produce different quantification results (CDF, minimum cut sets,
and importance measures), however, the differences should not be large.155

• Stage 3, simplify Stage 2 model by combining the risk significant basic
events to reduce the total basic event number to the expected level. In
general, the original basic events could be combined into the following
super basic events:

– System/train or inter-system level failure on demand super basic160

events, which may include pump fails to start, valve fails to open,
etc.

7



– System/train or inter-system level failure to run super basic events,
which may include pump fails to run, heat exchanger fails to transfer
heat, containment sump failures, etc.165

– System/train or inter-system level unavailable due to test or mainte-
nance super basic events

– Operator action failure super basic events

– Common cause failure on demand super basic event

– Common cause failure to run super basic event170

This would create new basic events that group and replace the original basic
events and different quantification results with different cut set basic events.
The new basic events are used as inputs to the RAVEN/RELAP5 simulation
model, and the SAPHIRE results can be compared directly with those from the
simulation model. The process is applied to the traditional LB-LOCA model175

as described in the following sections. Due to the relative simplicity of the LB-
LOCA model, Stage 2 of the above process (i.e., removing non risk significant
basic events from the model) is deemed not necessary. The 60 LB-LOCA cut
set basic events are combined into super basic events directly, and the process
is reduced from 3 stages to 2 stages.180

4.2.1. Simplifying LB-LOCA PRA Model Stage 1

In Stage 1 of the simplifying LB-LOCA PRA model process, all basic events
not reside in any of the minimum cut sets/importance measure results are re-
moved from the fault tree logic. All subtrees are also deleted if they include no
cut set basic events. Figure 5 shows an example of such process, in which LPI185

fault tree is simplified to include only the cut set basic event ESF-VCF-CF-
TRNAB and sub-trees RHR-MDPA and RHR-MDPB. All other basic events
(LPI-CKV-CC-001, LPI-CKV-CC-002, LPI-CKV-CF-SUCTN, LPI-MOV-OC-
8809A, and LPI-MOV-OC-8809B) are removed from the logic. Subtree LPI-DIS
is also removed from the logic. Note that LPI-DIS actually includes cut set190

basic events, RCS-CKV-CC-083, RCS-CKV-CC-084, and RCS-CKV-CC-085,
however, these basic events appear in the cut sets from the ACC logic instead of
LPI/LPI-DIS logic. As such, the basic events and the subtree could be removed
with no impact on the quantification results. Other subtrees that are removed
from the logic include AC and DC related subtrees such as ACP-1AA02, DCP-195

PNL1AD11 under the LPR-LL main fault tree.

4.2.2. Simplifying LB-LOCA PRA Model Stage 2

In Stage 2 (or Stage 3 in a three-stage process) of the simplifying LB-LOCA
PRA model process, the 60 cut set basic events retained in Stage 1 model are
combined into the following super basic events:200

• System/train or inter-system level failure on demand super basic events,
which may include pump fails to start, valve fails to open, etc.

8



Figure 5: stage1

• System/train or inter-system level failure to run super basic events, which
may include pump fails to run, heat exchanger fails to transfer heat, con-
tainment sump failures, etc.205

• System/train or inter-system level unavailable due to test or maintenance
super basic events

• Operator action failure super basic events

• Common cause failure on demand super basic event

• Common cause failure to run super basic event210

In ACC fault tree, ACC-CKV-CC-079 and RCS-CKV-CC-083 are grouped into
ACC-CKV-CC-CL1 for Accumulator 1 failure to inject. ACC-CKV-CC-080
and RCS-CKV-CC-084 are grouped into ACC-CKV-CC-CL2 for Accumulator
2 failure. ACC-CKV-CC-081 and RCS-CKV-CC-084 are grouped into ACC-
CKV-CC-CL3 for Accumulator 3 failure. Figure 6 presents the simplified Stage215

2 ACC fault tree. In LPI fault tree (including its subtrees), low pressure in-
jection motor-driven pump A fails to start (LPI-MDP-FS-1A), operator fails
to restore LPI MDP A after test maintenance (LPI-XHE-XR-P1A), and LPI
Train A minimum recirculation valve fails to close (LPI-MOV-OO-F0610) are
grouped into one super basic event, LPI-SYS-DEM-TRNA for LPI Train A fails220

on demand. Super basic event LPI-SYS-CF-DEM (LPI system common cause
failures on demand) consists the following cut set basic events from the original
or Stage 1 model:

• LPI-MDP-CF-START, Both LPI pumps A and B fail from common cause
to start225

• LPI-MOV-CF-F061011, Both LPI minimum circulation valves fail from
common cause to close

• ESF-VCF-CF-TRNAB, Common cause failure of both trains of engineer-
ing safety features (ESF) actuation signals

9



A list of LPI super basic events is provided below:230

• LPI-SYS-DEM-TRNA, LPI Train A fails on demand

• LPI-SYS-DEM-TRNB, LPI Train B fails on demand

• LPI-SYS-RUN-TRNA, LPI Train A fails to run

• LPI-SYS-RUN-TRNB, LPI Train B fails to run

• LPI-SYS-TM-TRNA, LPI Train A unavailable due to test or maintenance235

• LPI-SYS-TM-TRNB, LPI Train B unavailable due to test or maintenance

• LPI-SYS-CF-DEM, LPI system common cause failures on demand

• LPI-SYS-CF-RUN, LPI system common cause failures to run

• NSW-SYS-TM-TRNA, NSW Train A unavailable due to test or mainte-
nance240

• NSW-SYS-TM-TRNB, NSW Train B unavailable due to test or mainte-
nance

• NSW-SYS-CF-DEM, NSW system common cause failures on demand

Note that in order to further reduce the final number of basic events in Stage 2
model to be less than 20, NSW-SYS-TM-TRNA and NSW-SYS-TM-TRNB are245

removed from the model due to their low risk significance. Figure 7 presents the
simplified Stage 2 LPI fault tree. Similarly, LPR-LL fault tree (and its subtrees)
is simplified to include the following new super basic events, as well as some of
the previous LPI super basic events:

• LPR-SYS-DEM-TRNA, LPR Train A fails on demand250

• LPR-SYS-DEM-TRNB, LPR Train B fails on demand

• LPR-SYS-RUN-TRNA, LPR Train A fails to run

• LPR-SYS-RUN-TRNB, LPR Train B fails to run

• LPR-SYS-TM-TRNA, LPR Train A unavailable due to test or mainte-
nance255

• LPR-SYS-TM-TRNB, LPR Train B unavailable due to test or mainte-
nance

• LPR-SYS-CF-DEM, LPR system common cause failures on demand

• LPR-SYS-CF-RUN, LPR system common cause failures to run

• LPR-XHE-XM-ERROR, Operator fails to initiate recirculation or hot leg260

recirculation
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Figure 6: ACC FT stage2

Table 1: Accident Sequence Results for Original and Simplified LB-LOCA Models: CDF

Mode Original Model Stage 1 Model Stage 2 Model
CDF Cut Sets CDF Cut Sets CDF Cut Sets

LLOCA:2 1.82E-08 116 1.82E-08 116 1.82E-08 16
LLOCA:3 2.05E-09 52 2.05E-09 52 2.03E-09 10
LLOCA:4 1.20E-10 12 1.20E-10 12 1.20E-10 6
Total CDF 2.04E-08 180 2.04E-08 180 2.03E-08 32

Figure 8 presents the simplified Stage 2 LPR fault tree. Again, in order to reduce
the final number of basic events in Stage 2 model to be less than 20, LPR-SYS-
RUN-TRNA and LPR-SYS-RUN-TRNB are removed from the model due to
their low risk significance.265

4.3. PRA Model Quantification Results

The simplified Stage 1 and Stage 2 LB-LOCA models are quantified in
SAPHIRE with the same cutoff value of 1E-12. As expected, Stage 1 model
has exactly the same results with the original LB-LOCA model: same CDF
value (2.04E-8/year), same number of minimum cut sets, same number of basic270

events in minimum cut sets, and same risk significant basic events. Stage 2
model has a CDF of 2.03E-8/year (less than 0.5% difference from the original
model). The number of minimum cut sets is reduced from 180 to 32. The num-
ber of cut set basic events is reduced from 60 to 23. Excluding the initiating
event (IE-LB-LOCA) and flag events (LOCA-CL1, LOCA-CL2, and LOCA-275

CL3), 19 basic events in Stage 2 model could be used in the RAVEN/RELAP5
simulation model as the manageable variables. Table 1 presents the quantifi-
cation results for each accident sequence and the total CDF of LB-LOCA in
the original, Stage 1, and Stage 2 models. The conditional core damage proba-
bilities for the sequences are also obtained by quantifying the models with the280

LB-LOCA initiating event frequency is set to 1. Table 2 shows CCDP of acci-
dent sequences in the original, Stage 1, and Stage 2 LB-LOCA models. Table 3
shows the risk importance measure results for Stage 2 LB-LOCA model.
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Figure 7: LPI FT stage2

Figure 8: LPR FT stage2
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Table 2: Accident Sequence Results for Original and Simplified LB-LOCA Models: CCDP

Mode Original Model Stage 1 Model Stage 2 Model
CDF Cut Sets CDF Cut Sets CDF Cut Sets

LLOCA:2 7.29E-03 3560 7.28E-03 173 7.27E-03 16
LLOCA:3 8.30E-04 2853 8.24E-04 61 8.12E-04 11
LLOCA:4 5.06E-05 44 4.80E-05 24 4.80E-05 9
Total CDF 8.17E-03 6457 8.15E-03 258 8.13E-03 36

Name Probability FV RAW Description
IE-LLOCA 2.50 E-6 1.00E+00 4.00E+05 LARGE LOCA

LPR-XHE-XM-ERROR 7.01 E-3 8.63E-01 1.23E+02 OPERATOR FAILS TO INITI-
ATE LOW PRESSURE RECIR-
CULATION OR HOT LEG RE-
CIRCULATION

LPI-SYS-CF-DEM 7.16 E-4 8.82E-02 1.23E+02 LPI SYSTEM COMMON
CAUSE FAILURES ON DE-
MAND (LPI-MDP, LPI-MOV,
ESF)

LPR-SYS-CF-DEM 5.41 E-5 6.67E-03 1.23E+02 LPR SYSTEM COMMON
CAURE FAILURES ON DE-
MAND (LPI-AOV, LPI-MOV,
CSS-MOV)

LPI-SYS-CF-RUN 1.04 E-5 1.29E-03 1.23E+02 LPI SYSTEM COMMON
CAUSE FAILURES TO RUN
(LPI-MDP)

LPR-SYS-CF-RUN 4.27 E-6 5.25E-04 1.23E+02 LPR SYSTEM COMMON
CAURE FAILURES TO RUN
(LPI-HTX, CCW-HTX, CSS-
SMP)

NSW-SYS-CF-DEM 4.00 E-6 4.92E-04 1.23E+02 NSW SYSTEM COMMON
CAUSE FAILURE ON DE-
MAND (NSW-FAN)

ACC-CKV-CC-CL1 2.40 E-5 1.97E-03 6.89E+01 ACCUMLATOR 1 DIS-
CHARGE CKV 079 OR 083
FAILS TO OPEN

ACC-CKV-CC-CL2 2.40 E-5 1.97E-03 6.89E+01 ACCUMLATOR 2 DIS-
CHARGE CKV 080 OR 084
FAILS TO OPEN

ACC-CKV-CC-CL3 2.40 E-5 1.97E-03 6.89E+01 ACCUMLATOR 3 DIS-
CHARGE CKV 081 OR 085
FAILS TO OPEN

Table 3: Basic events with associated probability and RIMs values
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Name Probability FV RAW Description
LPI-SYS-DEM-TRNA 3.50 E-3 9.15E-03 3.57E+00 LPI TRAIN A FAILS ON DE-

MAND (LPI-MDP, LPI-XHE,
LPI-MOV)

LPI-SYS-DEM-TRNB 3.50 E-3 9.15E-03 3.57E+00 LPI TRAIN B FAILS ON DE-
MAND (LPI-MDP, LPI-XHE,
LPI-MOV)

LPR-SYS-DEM-TRNA 4.20 E-3 1.10E-02 3.56E+00 LPR TRAIN A FAILS ON DE-
MAND (LPI-AOV, LPI-MOV,
CSS-OV)

LPR-SYS-DEM-TRNB 4.20 E-3 1.10E-02 3.56E+00 LPR TRAIN B FAILS ON DE-
MAND (LPI-AOV, LPI-MOV,
CSS-OV)

LPI-SYS-RUN-TRNA 5.38 E-4 1.37E-03 3.51E+00 LPI TRAIN A FAILS TO RUN
(LPI-MDP)

LPI-SYS-RUN-TRNB 5.38 E-4 1.37E-03 3.51E+00 LPI TRAIN B FAILS TO RUN
(LPI-MDP)

LPI-SYS-TM-TRNA 8.00 E-3 8.12E-03 2.00E+00 LPI TRAIN A UNAVAILABLE
DUE TO TEST OR MAINTE-
NANCE (LPI-MDP)

LPI-SYS-TM-TRNB 8.00 E-3 8.12E-03 2.00E+00 LPI TRAIN B UNAVAILABLE
DUE TO TEST OR MAINTE-
NANCE (LPI-MDP)

LPR-SYS-TM-TRNA 5.00 E-3 5.07E-03 2.00E+00 LPR TRAIN A UNAVAILABLE
DUE TO TEST OR MAINTE-
NANCE (LPI-HTX)

LPR-SYS-TM-TRNB 5.00 E-3 5.07E-03 2.00E+00 LPR TRAIN B UNAVAILABLE
DUE TO TEST OR MAINTE-
NANCE (LPI-HTX)

Table 3: Basic events with associated probability and RIMs values (continued)
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Figure 9: RELAP5-3D RPV Model.

5. PWR Deterministic Modelling

SAPHIRE code Standardized Plan Analysis Risk (SPAR) used for static285

PRA analysis is based on a generic 3-loops Westinghouse PWR model. Dynamic
PRA calculations were executed by RELAP5-3D/RAVEN, so a RELAP5-3D
system code model for a generic 3-loops Westinghouse PWR has been developed.
The description of this model is reported hereafter.

5.1. RELAP5-3D Model for 3 Loops PWR290

The RELAP5-3D model is based on the so-called INL Generic PWR (IG-
PWR) model used for calculations of different LWRS/RISMC tasks. The RELAP5-
3D input deck is modeling a 2.5 GWth Westinghouse 3-loops PWR, including
the reactor pressure vessel (RPV), the 3 loops and the primary and secondary
sides of the steam generators (SG) (see Figure 9 and Figure 10).295

Four independent channels are used for representing the reactor core. Three
channels model the active core and one channel models the core bypass. Dif-
ferent power values are assigned to the three core channels in order to take
into account the radial power distribution. Passive and active heat structures
simulate the heat transfer between the coolant and fuel, the structures and the300

secondary side of the IGPWR.
Table 4 reports the steady state values obtained for the RELAP5-3D model

and the comparison with reference values, showing that the agreement is good.
For the transient calculation, a horizontal LBLOCA on the cold-leg RPV

nozzle was considered. The break was supposed to happen on the pressurizer305
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Figure 10: RELAP5-3D MCC and SG Model.

Figure 11: RELAP5-3D Core Model.
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Parameter Reference value RELAP5-3D value Deviation (%)
Reactor Power (W) 2,546 2,546 imposed
PRZ Pressure (MPa) 15.5 15.57 imposed

Total RCS Coolant Loop Flowrate (Kg/s) 12,738 12,738 0.0
CL Temperature (K) 555.6 557.3 0.3
HL Temperature (K) 591.8 593.1 0.2

Feed-water Temperature (K) 501.5 501.5 imposed
Steam Flowrate per SG1 (K) 473. 470.1 -0.6
Steam Flowrate per SG2 (K) 473. 470.7 -0.5
Steam Flowrate per SG3 (K) 473. 471.0 -0.4

Steam Pressure at the Outlet Nozzle (MPa) 5.405 5.405 imposed
Liquid Mass per SG (Kg) 41,639 41,640 0.0
Steam Temperature (K) 542 542 0.0

Table 4: RELAP5-3D LBLOCA steady state values.

loop. Several LBLOCA cases were run, including some considered by Westing-
house for LBLOCA spectrum analysis (U.S. NRC 2011):

• 2A, Double-Ended Guillotine Break (DEGB);

• 1A;

• 10 inches diameter;310

• 8 inches diameter;

• 6 inches diameter.

For the LBLOCA DEGB, the total break area was 2x0.383 m2 (2x4.125 ft2),
corresponding to a 0.7 m (27.56 inches) diameter pipe. The RELAP5-3D model
of the break is reported in Figure 12.315

For the other 4 cases, the total break area was:

• case 1A: 0.383 m2 (4.125 ft2), or 0.7 m (27.5 inches) diameter break;

• case 10 inches: 0.0506 m2 (0.545 ft2), or 0.254 m (10 inches) diameter
break;

• case 8 inches: 0.0324 m2 (0.349 ft2), or 0.203 m (8 inches) diameter break;320

• case 6 inches: 0.0182 m2 (0.196 ft2), or 0.152 m (6 inches) diameter break.

The scheme of the break is reported in Figure 5.
The Emergency Core Cooling Injection System (ECCS) model is based on

the information provided by (U.S. NRC 2011), (NRC 2013), (Dominion 2007).
The main characteristics of it are reported in Table 5, Table 6 and Table 7.325

The actuation signals for the ECCS and the containment sprays are reported
in Table 8.
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Figure 12: RELAP5-3D LBLOCA DEGB model scheme.

Figure 13: RELAP5-3D LBLOCA 1A/10-8-6 inches model scheme.

Table 5: RELAP5-3D ECCS main parameters.

ECCS Parameters Value (SI) Value (Imperial)
Accumulator Water Volume [m3 / ft3] 3 x 28.32 3 x 1000
Accumulator Gas Pressure [MPa / psig] 4.00 580
Accumulator Water Temperature [C / F] 40.6 105.0

HPI volumetric flow [m3/s /gpm] 3 x 0.0708 (at 1,767 m) 3 x 150 (at 5,800 ft)
HPI design head [MPa / psi] 17.34 2515.3

LPI volumetric flow [m3/s /gpm] 2 x 1.416 (at 68.6 m) 2 x 3,0007 (at 225 ft)
LPI design head [MPa / psi] 6.728 97.58
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Table 6: RWST main parameters.

Parameters Value (SI) Value (Imperial)
Max Water Volume [m3 / gal] 1514.2 400,000

Required Minimum Water Volume [m3 / gal] 1465.3 387,000
Minimum Water Volume [m3 / gal] 53.0 14,000

Water Temperature [C / F] 7.2 45.0
RWST / Containment sump switch time (s) 150.0

Table 7: Containment main parameters.

Parameters Value (SI) Value (Imperial)
Volume [m3 / ft3] 49,000 1,730,000

Design Pressure [MPa /psig] 0.31 45
Operating Pressure [MPa /psia] 0.062 to 0.071 9 to 10.3
Operating Temperature [C / F] 24 to 52 75 to 125

Containment sprays mass flow [m3/s /gpm] 2 x 0.183 2 x 2900

Table 8: ECCS and Containment Spray actuation signals.

Parameters Value (SI) Value (Imperial)
Low pressure signal in PRZ [MPa/psig] < 12.3 < 1789.7

Low-low pressure signal in PRZ [MPa/psig] < 12.2 < 1775.
High Containment Pressure [MPa/psia] > 0.122 > 17.7

High Steamline Delta Pressure [MPa/psid] > 0.827 > 120.
Spray signal for Containment Pressure [MPa/psig] > 0.172 > 25
Spray OFF for Containment Pressure [MPa/psig] < 0.082 < 12
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The operators and the emergency crew actions were limited to few actions.
The initial ECCS and containment sprays actuations were supposed to be au-
tomatically performed by the reactor protection system.330

6. PWR Stochastic Modeling

In the Dynamic PRA analysis, the stochastic modeling of the PWR system
have been performed for two different cases:

• Case 1: set of RAVEN stochastic variables coincide with the set of macro
basic events defined in Section 4335

• Case 2: set of RAVEN stochastic variables include not only the set of
macro basic events defined in Section 4 but also includes time related
variables. As an example, the failure to run of a component is modeled
quantitatively by sampling not only if such event occurs but the failure
time of such component is actually sampled.340

In Case 1, the PWR models in both Dynamic and classical PRA methods
are identical: there is a one-to-one connection between the stochastic elements
(basic events vs. sampled variables) and accident progression (system simulator
vs. ET) of both methods.

In case 1 the set of macro basic events coincide with the set of stochastic pa-345

rameters sampled by RAVEN. While in SAPHIRE each macro basic event (BEi)
is characterized by probability value (pi), in RAVEN its corresponding stochastic
variable (vi) is modeled through a Bernoulli distribution vi ∼ Bern(pi). From
this analysis we expect very similar results since the capabilities of Dynamic
PRA methods are not exploited. However, this is a first test toward bench-350

marking Dynamic vs. classical PRA methods in order to understand modeling
differences and impact on final results.

7. Dynamic PRA Analysis

The Dynamic PRA analysis have been performed using RAVEN and RELAP5-
3D and employing both desktop and High Performing Computing (HPC) sys-355

tems.
Case 1 has been performed by following these steps:

1. Perform the set of RAVEN/RELAP5-3D calculations. The variables of
interests are the following

• ACC 1: Accumulator 1 failure360

• ACC 2: Accumulator 2 failure

• LPI A: LPI train A failure

• LPI B: LPI train B failure

• LPR A: LPR train A failure
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Figure 14: RAVEN/RELAP5-3D workflow overiew.

• LPR B: LPR train A failure365

Since these variables are discrete in nature (i.e., 0 or 1) we have explored
all possible combinations (using a Grid sampling strategy), i.e., 26 = 64,
by simulating using RELAP5-3D the system response for all 64 cases.

2. Use the data generated in Step 1 to train a ROM. The ROM predict
system outcome (OK or CD) and maximum clad temperature given a370

combination of the six input variables listed above

3. Perform a RAVEN analysis using the ROM determined in Step 2. The set
of input variables are the ones listed in Table 3: the 18 macro basic events
defined also in the SAPHIRE LLOCA ET/FT model. In order to create
a connection between the 18 sampled variables and the 6 input variables375

of the ROM, a set of six RAVEN functions have been introduced in the
analysis so that, for each combination of the 18 sampled variables, the
corresponding combination of the six ROM input variables is determined.
Since the sampled variables are discrete in nature (True or False, 0 or 1),
all possible combinations (i.e., 218 = 262, 144) of the sampled variables380

have been simulated (using a Grid sampling strategy). Note that the
outcome of each combination is determined by evaluating the ROM instead
of RELAP5-3D and, thus, computational time is strongly reduced.

4. Process the data generated in Step 3 and determine CD probability along
with the risk measure for each sampled variable.385
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Figure 15: Detailed workflow of RAVEN/RELAP5-3D analysis.

Figure 16: Data analysis of RAVEN/RELAP5-3D data sets.
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Table 9: Comparison of results: analysis of PCD

SAPHIRE RAVEN
PCD 8.13 E-3 8.24 E-3

8. Comparison of Results

The comparison between the two PRA analyses has been performed on three
different steps by considering:

1. CD probability

2. Probability associated to each accident progression sequence390

3. Importance measure (FV and RAW) associate to each macro basic event

Note how the three steps have an increasing level of detail from coarse (i.e.,
first step) to very fine (i.e., importance measures). This approach allows us
to progressively measure the differences between classical and Dynamic PRA
methods.395

Regarding the first step, the comparison of PCD shows very similar results
as shown in Table 9. Hence, as first conclusion it can be stated that the accident
progression has been modeled in a fairly identical way.

The next analysis step has focused on the set of accident progression se-
quences generated by SAPHIRE in and ET form and the ones generated by400

RAVEN/RELAP5-3D in the form of simulated transients. This has been per-
formed by associating each transient simulated by RAVEN/RELAP5-3D to a
specific branch of the LOCA ET as follows:

• identify the ET branching conditions in the transient temporal evolution
(e.g., successful activation of the accumulator system)405

• determine the successful/unsuccessful outcome of each branching condi-
tion

• identify the ET branch that matches the set of branching condition out-
comes; if not match is found then the ET requires a review (e.g., additional
branches/branching conditions)410

Figure 17 shows a summary of this analysis where, for each ET branch,
the corresponding branch probability has been calculated using SAPHIRE and
RAVEN/RELAP5-3D. The major difference in this analysis is located in the
probability associated to branch 4

8.1. Consistency check SAPHIRE vs. RAVEN-RELAP5-3D models415

Since all the investigated cases were LBLOCA, a combination of ACCs and
LPIS was activated at each RELAP5-3D run. In order to determine if the
acceptance criteria used by the SAPHIRE model were consistent with the ones
derived by RELAP5-3D/RAVEN, several reference LB-LOCA calculations were
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Figure 17: ET branch probabilities comparison.

Figure 18: Histogram of PCT for branch 4 (RAVEN/RELAP5 case)
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Figure 19: Udate ET structure given RAVEN/RELAP5 data.

Table 10: Comparison of results.

BE SAPHIRE RAVEN
FV RAW FV RAW

IE-LLOCA 1. 4.00 E+5 1. 4.00 E+5
LPR-XHE-XM-ERROR 8.63 E-1 123 8.50 121

LPI-SYS-CF-DEM 8.82 E-2 123 8.62 E-2 121
LPR-SYS-CF-DEM 6.67 E-3 123 1.25 E-3 121
LPI-SYS-CF-RUN 1.29 E-3 123 1.25 E-3 121
LPR-SYS-CF-RUN 5.25 E-3 123 1.25 E-3 121
NSW-SYS-CF-DEM 4.92 E-4 123 4.8 E-4 121
ACC-CKV-CC-CL1 1.97 E-3 68.9 0. 1.
ACC-CKV-CC-CL2 1.97 E-3 68.9 0. 1.
ACC-CKV-CC-CL3 1.97 E-3 68.9 0. 1.

LPI-SYS-DEM-TRNA 9.15 E-3 3.57 8.72 E-3 3.48
LPI-SYS-DEM-TRNB 9.15 E-3 3.57 8.72 E-3 3.48
LPR-SYS-DEM-TRNA 1.10 E-2 3.56 1.04 E-2 3.48
LPR-SYS-DEM-TRNB 1.10 E-2 3.56 1.04 E-2 3.48
LPI-SYS-RUN-TRNA 1.37 E-3 3.51 1.33 E-3 3.48
LPI-SYS-RUN-TRNB 1.37 E-3 3.51 1.33 E-3 3.48
LPI-SYS-TM-TRNA 8.12 E-3 2.00 2.0 E-2 3.48
LPI-SYS-TM-TRNB 8.12 E-3 2.00 2.0 E-2 3.48
LPR-SYS-TM-TRNA 5.07 E-3 2.00 1.24 E-2 3.48
LPR-SYS-TM-TRNB 5.07 E-3 2.00 1.24 E-2 3.48
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Table 11: LBLOCA DEGB results

ACCs LPIs 1st PCT (K) 2nd PCT (K) 1st Margin 2nd Margin
0 1 1044.9 1218.8 432.1 258.2
1 1 1044.9 1002.2 432.1 474.8
2 1 1044.9 913.1 432.1 563.9
0 2 1044.9 1084.5 432.1 392.5
1 2 1044.9 958.1 432.1 518.9
2 2 1044.9 904.6 432.1 572.4

Figure 20: LBLOCA DEGB cases. PCT (left), RPV level (right).

performed, changing at each run the actuation time and the availability of the420

ECCS components.
Results from the set of LB-LOCA-DEGB calculations are reported in Ta-

ble 11.
The trend of the RPV water level and the PCT for the transients reported

in Table 6 are show in Figure 20. No core damage conditions (PCT¿2200 F or425

1477 K) were found for the investigated cases.
The trends of the RPV water level and the PCT for the transients are show

in Figure 21. No core damage condition (PCT¿2200 F) was found for the inves-
tigated cases.

The RELAP5-3D analyses demonstrated that the acceptance criterion for430

LBLOCA is the availability of at least one LPIS pump. Instead the SAPHIRE
SPAR model success criterion for LB-LOCA requires the availability of at least
one LPIS pump and one accumulator.
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Figure 21: LBLOCA DEGB cases. PCT (left), RPV level (right).

9. Conclusions

In this paper we have investigated a detailed comparison between Classical435

and Dynamic PRA methods. The considered system has been a 3-loop PWR
under an LB-LOCA initiating event. We have used several metrics to quantify
this comparison ranging from CD probability to event sequence probabilities and
basic event risk importance measures. We have described the process of compar-
ison and how the model data has been shared between the PRA approaches. The440

outcome of the comparison highlighted limitations of classical PRA methods in
terms of modeling accident sequences due to conservative modeling assumptions
and success criteria.
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