Idaho National Laboratory

THE

Exelon. Nuclear

Reducing Error / Increasing Efficiency: New Models for Nuclear Plant Outages

2011 SECOND WORKSHOP ON U.S. NUCLEAR POWER PLANT LIFE EXTENSION AND DEVELOPMENT February 24, 2011

Keith Moser Innovation Manager Exelon Corporation

Greg Weatherby Human Factors/Operations Researcher Idaho National Laboratory

The Need for Efficient and Sustainable Nuclear Power

- The National Energy Policy Act of 2005 authorized the Nuclear Energy Systems Support Program supporting R&D activities addressing reliability, availability, productivity, component aging, safety, and security of existing nuclear power plants.
- Most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If these plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the addition of new nuclear generating capacity.

 Nuclear Electricity Generating Capacity

Light Water Reactor Sustainability Program (LWRS)

- The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the Department of Energy (DOE), performed in close collaboration with industry R&D programs, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants.
- One of the Pilot Programs is the rethinking of how Outage Control Centers and Work Execution Centers communicate with each other during refueling outages.
- Particularly in the areas of:
 - Safety
 - Schedule Adherence
 - Risk of Revenue loss

External Factors that Influenced Performance

The Burning Platform that Drove Exelon's Improved Performance - Deregulation

U.S. Nuclear Outage Average

Exelon Outage Average (Byron)

Drivers For More Efficient Outages

- Exelon and other nuclear utilities use paper processes and analog technology to control work management.
- Competition from natural gas, renewables and the economic downturn limit the investment that nuclear power utilities can invest in modernization.
- Outage Cost (Time, People, Error)
- Enhanced safety in outages and plant operations
- Improved Human Performance
- Reduced Radiation Exposure
- Useful Technologies exist that are not being deployed to enhance performance

"Real-Time Truth"*

- A survey of Outage managers from around the country revealed that of all the things they need, they need "Real-Time Truth"
- Real Time Truth is:
 - Accurate, information in real time concerning plant status and configuration,
 - Dependable information concerning the status of maintenance and upgrade progress at the work package level,
 - Timely notice of emerging issues,
 - Knowing the location of and having ability to contact key people
 - Predictable dose information on the workforce

Strategies

- Team with INL, Exelon, EPRI, Halden Research Reactor (Norway), and equipment/technology suppliers to produce a cutting edge OCC.
- Using Human Factors, Human Performance, Six-Sigma techniques, and outage experience, determine what information is needed to perform an efficient outage. (What, When, How evaluation)
- Use a phased approach to develop a base technology/display, then refine and upgrade the system as new capabilities and technologies are needed.

Phase One: Information Gathering and Prototype Development,

Deploy working prototype Outage Control Center and

Work Execution Center

Phase Two: Develop and Pilot Electronic Work Processes

Phase Three: Develop and Pilot Wireless Rad Monitoring System

Phase Four: Develop and Pilot Communication and Tracking

Phase Five: Develop Emergency Operating Capabilities for TSC

What is Possible?

- OCC (Collaborative Work Area)
 - Large-scale Touch Screen Technology Fast, Natural Means of interfacing)
 - 3D modeling, feeds, and real-time proximity/locating of personnel
 - Emerging issue management (Mobile / reconfigurable work stations, Real-time feeds)
 - Shift-change statusing / preparation
- OCC / Field Interface
 - Remote Hand Held Tools for Electronic Procedure Use
 - Exact job status (% complete v. predicted or reported)
 - Staging of QA / Safety personnel at procedure hold points
 - Predictable time estimation for job completion ("on-deck" teams)
 - Visual reference for workers / management (Remote Team Problem Solving)
 - Bar-code scanning for tools, calibration, training
 - Real-time Dosimetry (Personnel dose / dose remaining)
 - FME Tracking (Visual Verification)
- Other Capabilities
 - Integrated with Warehouse / Supply Chain functions
 - Lessons Learned /training for task development, critiques, and task modification.

Where Are We Going From Here?

- Currently gathering information from Exelon Outage managers and processes.
 - INL Staff to participate in the Byron Refueling Outage
- Installing a state-of-the-art OCC layout at Byron Station.
 - 2 Smart Board in the OCC
 - 4 Hitachi Star Boards OCC
 - 1 Smart Board in the WEC

daho National Laboratory

- 1 Smart Board in the Refueling Floor War Room
- 1 Smart Board in the Engineering War Room
- Bridget Software to tie them all together
- Reviewing technologies and "best-practice" processes from partners and other sources worldwide.
- OCC/WEC prototype up and running (with limited capabilities) at INL and Byron by March 8, 2011.
- Additional Phases of work to be worked through 2013

Phase 1 Smart Boards

SMART Board[™] 6052i interactive display

Example SOM Overview Board

Example WEC/OCC Communication Tool

