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ABSTRACT
Assessment and management of aging concrete structures in nuclear power 

plants require a more systematic approach than simple reliance on existing code 
margins of safety. Structural health monitoring of concrete structures aims to 
understand the current health condition of a structure based on heterogeneous 
measurements to produce high-confidence actionable information regarding 
structural integrity that supports operational and maintenance decisions.

This ongoing research project is seeking to develop a probabilistic 
framework for a health diagnosis and prognosis of aging concrete structures in a 
nuclear power plant that is subjected to physical, chemical, environmental, and 
mechanical degradation. The proposed framework consists of four elements:
monitoring, data analytics, uncertainty quantification, and prognosis. This report 
focuses on degradation caused by alkali-silica reaction (ASR). Controlled 
specimens were prepared to develop accelerated ASR degradation. Different 
monitoring techniques (i.e., thermography, digital image correlation, mechanical 
deformation measurements, nonlinear impact resonance acoustic spectroscopy, 
and vibro-acoustic modulation) were used to detect the damage caused by ASR. 
Heterogeneous data from multiple techniques were used for damage diagnosis
and prognosis and quantification of the associated uncertainty using a Bayesian 
network approach. Additionally, the MapReduce technique has been 
demonstrated with synthetic data. This technique can be used in the future to 
handle large amounts of observation data obtained from online monitoring of 
realistic structures.
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EXECUTIVE SUMMARY
One challenge for the current fleet of light water reactors in the United States 

is age-related degradation of their passive assets that include concrete, cables, 
piping, and the reactor pressure vessel. As the current fleet of nuclear power 
plants (NPPs) continues to operate up to 60 years or beyond, it is important to 
understand the current and the future health condition of passive assets under 
different operating conditions that would support operational and maintenance 
decisions. To ensure long-term safe and reliable operation of the current fleet, the 
U.S. Department of Energy’s Office of Nuclear Energy funds the Light Water 
Reactor Sustainability Program to develop the scientific basis for extending 
operation of commercial light water reactors beyond the current license extension 
period.

Among the different passive assets of interest in NPPs, concrete structures 
are investigated in this research project. Reinforced concrete structures found in 
NPPs can be grouped into four categories: (1) primary containment, (2) 
containment internal structures, (3) secondary containments/reactor buildings, 
and (4) spent fuel pool and cooling towers. These concrete structures are affected 
by a variety of degradation mechanisms that are related to chemical, physical, 
and mechanical causes and to irradiation. Age-related degradation of concrete 
results in gradual microstructural changes (e.g., slow hydration, crystallization of 
amorphous constituents, and reactions between cement paste and aggregates). 
Changes over long periods of time must be measured, monitored, and analyzed to 
best support long-term operation and maintenance decisions.

Structural health monitoring of concrete structures aims to understand the 
current health condition of a structure based on the heterogeneous measurements 
for producing high-confidence actionable information regarding structural 
integrity and reliability. To achieve this research objective, Vanderbilt 
University, in collaboration with Idaho National Laboratory and Oak Ridge 
National Laboratory, is developing a probabilistic framework for the health 
monitoring of NPP concrete structures subject to physical, chemical, and 
mechanical degradation. A systematic approach that is proposed to assess and 
manage aging concrete structures requires an integrated framework, including
four elements: (1) monitoring, (2) data analytics, (3) uncertainty quantification,
and (4) prognosis.

A proof-of-concept example of this framework was reported in March 2015,
using a small concrete slab and aggressive freeze-thaw cycling. Effective 
combinations of full-field monitoring techniques and related data analytics and 
diagnosis/prognosis techniques need to be identified for different types of 
concrete structures under different loading and operating conditions. This report 
focuses on degradation caused in concrete by alkali-silica reaction (ASR).
Specimens with ASR degradation are prepared to demonstrate the framework 
using several monitoring techniques at Vanderbilt University’s Laboratory for 
Systems Integrity and Reliability. The measured data are linked to a probabilistic 
framework; the monitoring data are input to a Bayesian network for information 
fusion, uncertainty quantification of a diagnosis result, and prognosis.
Additionally, the MapReduce technique is implemented to handle large amounts
of observation data in order to facilitate implementation of continuous online 
monitoring of realistic NPP structures.
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Some of the outcomes of this proof of concept demonstration are as follows:

1. Small (9 × 5 × 2-in.) and medium (24 × 24 × 6-in.)-sized controlled specimens 
were prepared and cured to produce accelerated ASR degradation.

2. The specimens were investigated using various monitoring techniques: 
thermography, digital image correlation, mechanical deformation 
measurements, nonlinear impact resonance acoustic spectroscopy, and 
vibro-acoustic modulation.

3. Data analytics results from multiple monitoring techniques were used as inputs 
to a Bayesian network for information fusion and uncertainty quantification of 
the diagnosis result.

4. A coupled thermos-hydro-mechanical-chemical model implemented in Abaqus 
in the form of a user-developed subroutine (UMAT) was used for prognosis.

5. The MapReduce technique was implemented and demonstrated to parallelize 
the Markov chain Monte Carlo used for Bayesian updating for uncertainty 
quantification in order to facilitate handling of big data resulting from 
continuous online monitoring of realistic structures.

The methodologies described in this milestone report are focused on concrete 
structural health monitoring measurements, data analytics, and uncertainty
quantified diagnosis, and prognosis. This will support continuous assessment of 
concrete performance. The proof-of-concept demonstration presented in this 
report highlights the significance of each element of the framework and its
integration.

During the next phase of research, monitoring techniques will be refined for 
detection and localization of ASR in a reinforced concrete specimen. The 
uncertainty quantification approaches and integration framework will be 
advanced further to handle large amounts of observation data. The resulting 
comprehensive approach will facilitate development of a quantitative, 
risk-informed framework that would be generalizable for a variety of concrete 
structures.
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A Demonstration of Concrete Structural Health 
Monitoring Framework for Degradation due to Alkali-

Silica Reaction
1. INTRODUCTION

Because many existing nuclear power plants (NPPs) continue to operate beyond their license life, 
plant structures, systems, and components suffer deterioration that affects their structural integrity and 
performance. Health monitoring is an essential technology for ensuring the current and future state of a 
NPP will meet the performance and safety requirements. This project focuses on concrete structures in
NPPs. The concrete structures are grouped into the following four categories: (1) primary containment, (2) 
containment internal structures, (3) secondary containment/reactor buildings, and (4) other structures such 
as used fuel pools, dry storage casks, and cooling towers. These concrete structures are affected by a 
variety of chemical, physical, and mechanical degradation mechanisms such as alkali-silica reaction 
(ASR), chloride penetration, sulfate attack, carbonation, freeze-thaw cycles, shrinkage, and mechanical 
loading (Naus 2007). The age-related deterioration of concrete results in continuing microstructural 
changes (e.g., slow hydration, crystallization of amorphous constituents, and reactions between cement 
paste and aggregates). Therefore, it is important that changes over long periods of time are measured, 
monitored, and analyzed to best support long-term operations and maintenance decisions.

Structural health monitoring (SHM) is required to produce actionable information regarding structural 
integrity that, when conveyed to the decision-maker, enables risk management with respect to structural 
integrity and performance. The methods and technologies employed include assessment of critical 
measurements, monitoring, and analysis of aging concrete structures under different operating conditions. 
In addition to the specific system being monitored, information may also be available for similar or 
nominally identical systems in a fleet, as well as legacy systems. Therefore, Christensen (1990) suggested 
that assessment and management of aging concrete structures in NPPs requires a more systematic 
approach than simple reliance on existing code margins of safety.

Through the Light Water Reactor Sustainability Program, several national laboratories and Vanderbilt 
University have begun research on concrete SHM in accordance with the proposed framework discussed 
Section 1.1. The goal of this research is to enable plant operators to make risk-informed decisions on 
structural integrity, remaining useful life, and performance of concrete structures across the nuclear fleet. 
The long-term research objective of this project is to produce actionable information regarding structural 
integrity that supports operational and maintenance decision making, which is individualized for a given 
structure and its performance goals. In addition, the project supports the research objectives of three 
pathways under the Light Water Reactor Sustainability Program (i.e., the Advanced Information, 
Instrumentation, and Control Systems Technologies Pathway, the Materials Aging and Degradation 
Pathway, and the Risk-Informed Safety Margin Characterization Pathway).

This report presents a demonstration example performed at Vanderbilt University using various
techniques to assess ASR degradation in controlled concrete specimens. The demonstration example 
showcases the effectiveness of the proposed concrete SHM framework. A summary of the initial research 
findings and future research activities are also presented in this report.

1.1 Background
Vanderbilt University, in collaboration with Idaho National Laboratory and Oak Ridge National 

Laboratory personnel, is developing a framework for health diagnosis and prognosis of aging concrete 
structures in NPPs that are subject to physical, chemical, and mechanical degradation 
(Mahadevan et al. 2014; Agarwal and Mahadevan 2014). The proposed framework (shown in Figure 1)
will investigate concrete structure degradation by integrating the following four technical elements: 
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(1) monitoring, (2) data analytics, (3) uncertainty quantification, and (4) prognosis. For details on each 
element of the proposed framework, refer to Mahadevan et al. (2014). The framework will enable plant 
operators to make risk-informed decisions on structural integrity, remaining useful life, and performance 
of the concrete structure.

Figure 1. Elements of concrete structural health monitoring.

1.1.1 Monitoring
This element explores an effective combination of promising SHM techniques for full-field 

multi-physics monitoring of concrete structures. Optical, thermal, acoustic, and radiation-based techniques 
are being investigated for full-field imaging. Examples of these techniques include digital image 
correlation (DIC), infrared imaging, velocimetry, ultrasonic, and x-ray tomography. A particular 
consideration is the linkage of chemical degradation mechanisms to the observed degradation, which 
requires synergy between monitoring and prognosis.

1.1.2 Data Analytics
Information gathered from multiple health monitoring techniques results in a high volume, rate, and 

variety (i.e., heterogeneity) of data. This element leverages big data techniques to store, process, and 
analyze heterogeneous data (i.e., numerical, text, and image) and arrive at effective inference of concrete 
degradation. The data analytics framework can also integrate information from model prediction, 
laboratory experiments, plant experience and inspections, and expert opinion. Data mining, classification 
and clustering, feature extraction and selection, and fault signature analyses with heterogeneous data can 
be orchestrated through a Bayesian network for effective inference.

1.1.3 Uncertainty Quantification
This element quantifies the uncertainty in health diagnosis and prognosis in a manner that facilitates 

risk-management decisions. Sources of natural variability, data uncertainty, and model uncertainty arising 
in both modeling and monitoring activities can be considered and their effects quantified. In addition to 
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measurement and processing errors, data uncertainty due to sparse and imprecise data for some quantities 
and due to large data on other quantities (i.e., data quality, relevance, and scrubbing) can be considered. 
Model uncertainty in multi-physics degradation modeling due to model form assumptions, unknown 
model parameters, and solution approximation errors can be included. Various uncertainty sources do not 
combine in a simple manner, and the Bayesian network offers a systematic approach for comprehensive 
uncertainty quantification in a manner that is informative to the decision-maker for operation, 
maintenance, inspection, and other risk-management activities.

1.1.4 Prognosis
This element leverages modeling of chemical, physical, and mechanical degradation mechanisms 

(such as alkali-aggregate reaction, chloride penetration, sulfate attack, carbonation, freeze-thaw cycles, 
shrinkage, and radiation damage) in order to assist monitoring and risk management decisions. 
Alkali-aggregate reaction is currently receiving prominent attention; however, other appropriate damage 
mechanisms for NPP concrete structures can be included. This element leverages modeling and 
computational advances and combined-physics experiments and integrates multiple models through an 
appropriate simulation framework. This combined model can be used for a prognosis of damage based on 
the present state of damage obtained from the diagnosis result. The uncertainty quantification in the 
diagnosis can be propagated through the prognosis model to quantify uncertainty in the prognosis.

1.2 Report Layout
The objective of this report is to demonstrate how the four elements of concrete SHM for ASR 

degradation can be connected, using a simple demonstration example. Section 2 discusses preparation of 
specimens with ASR degradation and laboratory experimental set up for the various monitoring 
techniques. Data analysis of the collected monitoring data is presented in Section 3. Section 4 provides
integration of all data analytics results to perform uncertainty quantification. The MapReduce technique 
for handling big data is also demonstrated. In Section 5, the prognosis of future ASR growth using a finite 
element analysis and an ASR gel expansion model is presented. A research summary and future activities 
are discussed in Section 7.

2. EXPERIMENTAL STUDY
This research investigates the monitoring of physical-chemical-mechanical coupled degradation in 

concrete via full-field imaging techniques (i.e., thermal, optical, and vibrational). Effective combinations 
of full-field techniques need to be identified for different types of concrete structures under different 
loading and operating conditions. In this report, monitoring techniques implemented include infrared 
imaging, DIC, mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy
(NIRAS), and vibro-acoustic modulation (VAM). The monitoring techniques are studied with concrete 
samples constructed and cured in the laboratory. The concrete samples are described in the next 
subsection.

2.1 Sample Preparation and Curing
ASR is a slow-developing process that can take several decades to come to fruition. In the laboratory,

aggressive conditions are applied to accelerate this process. Using sodium hydroxide (NaOH) in the mix 
water or placing the cured concrete in an NaOH solution causes an increase in pH. Selecting highly 
reactive siliceous aggregates or glass will provide an available source of silica. Lastly, curing the 
specimens at higher temperatures (i.e., 60°C to 80°C) will accelerate ASR. Using these three factors, ASR 
gel can be produced in the laboratory within several months.

2.1.1 Cement Bricks
In the first batch of bricks, six cement samples were cast, with dimensions of 9 × 5 × 2 in. Glass was 

placed in the six bricks as shown in Figure 2, where the shaded regions represent slices of glass.
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Figure 2. Sketches of A1/A2 (top), B1/B2 (middle), and C1/C2 (bottom), where the shaded region 
represents glass slices.

Figure 3 shows Sample B2 after 2 months of aggressive curing. Cracking and a whitish effluent is 
noticed.

Figure 3. Brick B2 showing whitish effluent (ASR gel).
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After the first batch of specimens, reusable plexiglass molds were created. In the second batch of six 
bricks, aggregates were placed in pockets inside the bricks as they were cast. The aggregates were placed 
in pockets to control the location where ASR would occur. A sketch of the aggregates is shown in Figure 4
and Figure 5 shows brick Number 6 during casting.

Figure 4. Aggregate type and location in the second batch of samples.

Figure 5. Brick Number 6 during casting of the second batch of samples.

In order to accommodate mechanical deformation measurements (discussed later), 1-1/2-in. stainless 
steel pegs were inserted into several of the samples when they were cast. Stainless steel is nonreactive in 
sodium hydroxide. The pegs can be seen during casting in Figure 6.
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Figure 6. Stainless steel pegs being inserted during casting.

2.1.2 Cement Slab
The goal of the small brick samples discussed above was to accelerate the occurrence of ASR and use

the slabs for non-destructive testing. While much can be gained from studying these small samples, 
scaling up the size of the concrete samples will further yield valuable information. With the ultimate 
objective being detection of ASR in real-world structures, it is necessary that a larger slab be constructed 
that more accurately imitates what is seen at NPPs. This larger slab was cast in December 2015 and has 
dimensions of 2 ft × 2 ft × 6 in. Figure 7 shows an image of the slab immediately after the mold was 
removed.

Figure 7. 2-ft × 2-ft × 6-in. cement slab.
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A slab of this size presents challenges in material required for casting, space for curing, 
maneuverability for non-destructive testing, transportation from the casting location to testing facility, and 
for detecting ASR.

2.1.2.1 Pockets of Aggregate. Four types of aggregate are placed in pockets at a depth of 3 in. in 
four quadrants of the slab. The aggregates are placed in pockets instead of being dispersed throughout the 
slab; therefore, the reactivity of each aggregate can be determined independently. Additionally, because
the locations of the pockets of aggregate are known, this information can be used to validate localization 
of ASR from non-destructive testing. The four types of aggregates used are as follows:

Silica – powder from a local ceramic shop

Wells – coarse aggregate from Wells, Maine, provided by Dr. Eric Giannini at the University of 
Alabama

Placitas – coarse aggregate from Placitas, New Mexico, provided by Dr. Eric Giannini

Spratt – coarse aggregate from Spratt quarry in Ontario, Canada, provided by the Ontario Ministry of 
Transportation.

The pockets of aggregate are labeled in Figure 8. All of these aggregates are known to be highly 
reactive.

Figure 8. Pockets of aggregate labeled in a cement slab during pouring.

Significant effort was spent preparing the infrastructure necessary to support, transport, and cure the 
slab. Personnel included two staff engineers, two graduate students, and the principal investigator; the 
setup is designed to support casting, transportation, and curing of multiple slabs. The essential elements of 
the setup are briefly described in the following subsections.

2.1.2.2 Reusable Mold. The mold for the slabs is made of plexiglass. Plexiglass also was used for 
the brick specimens; it produces a smooth surface and can be easily removed after the slab has hardened.
The sides of the mold are supported by aluminum channels that are screwed together and attached with
stainless steel brackets. This allows the mold to be easily disassembled and reassembled. The bottom is 
supported by several sheets of plywood and has runners underneath in order to facilitate lifting from the 
bottom by a forklift. The completed mold prior to casting is shown in Figure 9.
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Figure 9. 2-ft × 2-ft × 6-in. mold.

2.1.2.3 Curing Tub. A stainless steel piece of sheet metal is bent and welded along the seams to 
form a watertight tub with four sides. This tub is used for curing the slab. Figure 10 shows the slab being 
lowered into the tub by a crane located in the casting facility. The slab is resting on the frame. The chains 
are attached to rods that are threaded into the connections on the frame. The wooden plank simply acts as a 
spacer, keeping the chains from collapsing inward and crushing the slab. Inside the tub, metal spacers are 
used to keep the slab at a height above water level during the curing process.

Figure 10. Slab sitting on the frame being lowered into the tub.

The slab is placed in the tub 1 day after it is cast, giving it time to harden. The tub is also used when 
the slab undergoes accelerated curing in the oven at the Laboratory for Systems Integrity and Reliability.
A forklift is used to lift the slab into the oven (Figure 11). The slab is cured above water at 60°C.
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Figure 11. Slab being placed in the oven for accelerated curing.

2.2 Non-Destructive Examination Techniques
2.2.1 Infrared Thermography

Infrared thermography maps the thermal load path in a material. In the case of concrete, cracking,
spalling, and delamination all create a discontinuity in the thermal load path. Additionally, rebar and 
tensioning cables can be easily detected due to the difference in thermal conductivity coefficients between 
steel and concrete. Thermography has even been shown to detect debonding between the reinforcing steel 
and concrete. Infrared thermography can be either an active or passive monitoring technique. When heat is 
locally added to the structure to create a temperature gradient, it is referred to as active. If the solar heat is 
used to provide heat to produce the temperature gradient, it is considered passive. Passive infrared 
thermography is preferred because it is less energy intensive. The Electric Power Research Institute 
showed the feasibility of infrared thermography by mapping a 450,000-ft2 dam. During the 2 days that the 
Electric Power Research Institute spent mapping the dam, numerous potential delamination sites were 
identified (Renshaw et al. 2014). Kobayashi and Banthia (2011) combined induction heating with infrared 
thermography to detect corrosion in reinforced concrete. Induction heating uses electromagnetic induction 
to produce an increase in temperature in the rebar. When corrosion is present, it inhibits the diffusion of 
heat from the rebar to the surrounding concrete. Infrared thermography is then used to capture the 
temperature gradient. It was concluded that the temperature rise in corroded rebar is higher than in 
non-corroded rebar, a more-corroded rebar yields a smaller temperature rise on the surface, and the 
technique is more effective with larger bar diameters and smaller cover depths (Kobayashi and Banthia 
2011). The current study is investigating the performance of infrared thermography as a means of
identifying ASR.

2.2.2 Digital Image Correlation
Digital image correlation is an optical non-destructive examination technique that is capable of 

measuring the deformation, displacement, and strain of a structure (Bruck et al. 2012). During NPP routine 
pressure tests on containment vessels, when the internal pressure reaches 60 psi, it might be possible to use 
DIC to determine deformation of the concrete containment. DIC is capable of detecting surface defects 
such as cracks, micro-cracks, and spalling, but is unable to detect any subsurface defects. The primary 
benefit of DIC is in measuring deformation; therefore, its ability to detect changes in the dimensions of the 
slab due to ASR gel expansion is of interest in this study. DIC requires a speckled pattern on the specimen 
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to anchor observations at different time instants. This also presents a problem for the small brick 
specimens that are immersed in NaOH solution or water; the pattern is disturbed and partly dissolved in 
the NaOH solution. However, the slab specimen in Figures 10 and 11 is cured above water; therefore, DIC 
might be applicable.

2.2.3 Mechanical Deformation Measurement
The mechanical deformation measurement is a contact measurement technique. Calipers or an 

extensometer can be used to measure deformation along a linear distance. It is often convenient to glue on 
targets or cast nails into the concrete to provide more repeatable measurement points. In order to capture 
the ASR-induced concrete deformation, the measurement device needs to be accurate to within a few 
hundred microns. Most high-resolution mechanical measurement devices have a relatively short 
measuring span (i.e., 1 foot or less). This makes them ideal for laboratory experiments, but limits their 
applicability in real-world structures without using a significant number of targets glued to the structure.

2.2.4 Non-Linear Impact Resonance Acoustic Spectroscopy
NIRAS is a non-destructive testing technique that uses the vibrational response of a structure to 

classify damage. It was developed at Georgia Tech to detect ASR-induced damage in concrete (Lesnicki 
et al. 2014). NIRAS operates based on the following idea: a linear system has the same natural frequency 
regardless of the amplitude of the excitation force; this is not true for nonlinear systems. In a nonlinear 
system, the resonant frequency will shift depending on the amplitude of the excitation force. Because ASR 
causes micro-cracking within the concrete, which creates nonlinearity, it is believed that NIRAS can be 
used to detect damage in concrete before the cracking is visible on the surface. Because NIRAS is a global 
vibrational response technique (i.e., it measures shifts in resonant frequency), it is better suited for small 
laboratory concrete specimens than large concrete structures. For example, if a large concrete structure had 
a small patch of ASR growth, it is unlikely that NIRAS would be able to detect it is because it will have a
minimal effect on the natural frequency of the structure.

2.2.5 Vibro-Acoustic Modulation
VAM is vibrational-based non-destructive testing that has been successful in detecting nonlinearities 

in various materials (Kim et al. 2014), but has not been used for concrete. We investigated the potential of
using VAM in ASR detection of concrete bricks. VAM works by simultaneously exciting a structure with 
two frequencies of vibration. The low-frequency input is termed the “pump” and the high-frequency input 
is termed the “probe” (Kim et al. 2014). Interaction of the pumping and probing signals indicates the 
presence of nonlinearities in the system. Figure 12 shows a simple beam with a crack.

Figure 12. VAM representation of system response to pumping signal.
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As the pumping signal causes the crack to open and close, the effective cross-sectional area the 
probing signal can travel through changes. Thus, the amplitude of the probing signal is transmitted through 
the beam changes with the phase of the pumping signal. This modulation will produce side bands around 
the probing frequency (Figure 13).

Figure 13. Side bands indicating modulation.

2.3 Non-Destructive Examination Experimental Setup
2.3.1 Infrared Thermography Experimental Setup

For thermography imaging, a FLIR® infrared (IR) camera was used to detect the temperature contours 
on the surface of the concrete slab. These contours were analyzed to detect flaws or defects in the slabs 
that cannot be easily detected by visual inspection. The IR camera has a resolution of 512 × 640 pixels, 
which is a high number for an IR camera, and is placed on a stand approximately 10-ft tall to capture an 
image of the entire concrete specimen. The concrete specimen is placed on a thermal heating blanket. In 
addition, the HEATCON® composite system controller was connected to the thermal blanket and used to 
program a defined thermal cycle that can be repeated as many times as needed for a test. A thermocouple
was placed between the thermal blanket and the concrete sample to measure and monitor the heat applied 
by thermal blanket. For the concrete bricks, the scaled heating cycle is given in Figure 14. Figure 15
shows the thermal blanket during testing of three of the bricks. The bricks were tested in groups of three to 
save time. Because the slab has significantly more mass than the bricks, a longer heating cycle was 
required to raise the temperature (Figure 16).
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Figure 14. The heating blanket’s temperature cycle for the bricks.

Figure 15. Small bricks on the thermal heating blanket.
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Figure 16. The heating blanket’s temperature cycle for the slab.

2.3.2 Digital Image Correlation Setup
Two high-resolution cameras on a specialized stand and a software package comprise the DIC 

equipment. Before testing, an extensive calibration process is required to inform the software where the 
cameras are in space relative to the concrete samples. This guarantees that deformation measurements in 
all three dimensions will be accurate. The samples also must be prepared before testing. The concrete 
samples were covered in a speckled pattern; therefore, deformation could be detected through DIC. The 
speckled pattern was made by painting the specimens black and using a white spray paint to create the 
randomly placed speckles. A brick with the speckled pattern is shown in Figure 17. DIC calculates
deformation by taking a baseline image and comparing all subsequent images to the baseline. Each image 
is broken up into square facets and the program identifies movement in these facets between images. From 
an experimental standpoint, it is important to realize that there are always ambient vibrations that will 
affect data. We found that our noise floor, due to ambient vibrations when calculating deformation, was 
around 1 to 2 microns. Figure 18 shows output from the DIC software. The team found a limitation in the 
DIC software – each time a sample was moved between images (e.g., because it was returned to the oven 
for continued curing), the software would recalculate the facets. This made it impossible to compare 
images if the sample had been moved. This also makes it impossible to test more than one sample at a 
time. The team is currently looking into ways to solve this limitation.

Figure 17. Brick with speckled pattern.

00.2
0.40.6
0.81

0 5 10 15Sc
al

ed
 T

em
pe

ra
tu

re
 

Time (hrs) 

Heating Cycle 



14

Figure 18. Results from DIC.

2.3.3 Mechanical Deformation Measurements
Calipers are used to take length measurements; comparison of these measurements overtime reveals 

whether any deformation has occurred. The calipers shown in Figure 19 have a maximum length of 1 ft
and a resolution of 0.001 in.

Figure 19. Calipers used for mechanical deformation measurements.

Steel nails were cast into the concrete samples in order to provide a point for taking measurements.
Figure 20 shows the nails being used in taking a measurement.

Figure 20. Measuring the distance between nails on a brick.
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2.3.4 Set Up of Non-Linear Impact Resonance Acoustic Spectroscopy
Impact from a modal hammer is used to excite the samples over a broadband frequency range. We

impact the sample on the top surface at the same location for each hit. The location is arbitrary, but 
avoiding major lines of symmetry improves the response. An accelerometer is used to measure the 
sample’s vibrational response. Accelerometers are also placed on the top surface, avoiding all lines of 
symmetry; however, their locations are not trivial. Because we are interested in capturing the first natural 
frequency of the samples, the accelerometers need to be placed at the ends of the concrete bricks because 
their first mode shape is bending in the long direction. Figure 21 shows the location of impact and 
measurement.

Figure 21. NIRAS test setup.

The bricks are placed on a foam mat, because this represents an unconstrained condition and allows 
for reduced noise in the data. Both the impact force from the hammer and the vibrational response from 
the accelerometers are sent to a data acquisition system, where they can be output into MATLAB for 
further analysis. The vibration response of one of the bricks is shown in Figure 22.

Figure 22. Raw acceleration data from NIRAS.
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2.3.5 Vibro-Acoustic Modulation Setup
The concrete bricks are placed in a simply supported condition for this test. The modal hammer strikes 

the bricks to create an impulsive load that is used as the low frequency “pump.” A piezo-stack actuator 
acts as the high frequency “probe.” A triaxial accelerometer measures the sample’s response. A sampling 
frequency of 51.2 kHz facilitates the high-frequency probe, and a sampling period of 0.1 s resolves 
modulated side bands. Variance impact forces and probing frequency are evaluated. Optimal pumping and 
probing frequencies are system dependent; however, in general, a higher probing-to-pumping ratio is 
preferred.

3. DATA ANALYTICS
3.1 Alkali-Silica Reaction Detection in Brick Samples 

Using Infrared Thermography
The study of small brick samples is reported here. Six samples were used for this study as shown in 

Figure 2 earlier (i.e., A1/A2 – plain cement; B1/B2 – brick containing a glass plate almost throughout; and 
C1/C2 – brick containing three glass slides). The suffixes 1 and 2 indicate curing in water at room 
temperature versus curing in NaOH at 80°C).

The hypothesis is that formation of ASR should change the heat conductivity within the slab.
Therefore, there would be a temperature difference between the water-cured and NaOH-cured slabs at 
each time stamp. The temperature difference between the water-cured data and NaOH-cured data for 
Slab A at each time stamp is selected to be the baseline temperature difference. The corresponding 
temperature differences for Slab B and Slab C are expected to be different from the baseline. Based on the 
baseline Slab A, upper bound and lower bound values (at each time instant) are selected for the 
temperature difference between water-cured data and NaOH-cured data. If the temperature difference is
outside the bounds, then a change in heat conductivity is indicated, implying the formation of ASR. To set 
boundaries, maximum and minimum values of the temperature difference were selected among all pixels 
between the water-cured data and NaOH-cured data for Slab A at each time stamp. The results of this 
analysis are shown in Figure 23, indicating that the entire area of Slab B2 has ASR and parts of Slab C2 
have ASR.

Figure 23. Slab B2 (left) and Slab C2 (right). ASR is indicated by the red areas.
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3.2 Detection Using Nonlinear Impact Resonance Acoustic 
Spectroscopy

Raw acceleration data are converted from the time domain to the frequency domain using the fast 
Fourier transform in MATLAB. From the frequency domain, the first resonant frequency will be 
identified. A shift in resonance frequency of a concrete sample for increasing force input amplitudes will 
be detected, which indicates the system is nonlinear (i.e., there is micro-cracking due to ASR).

The nonlinearity parameter quantifies the severity of damage. It is calculated by simply finding the 
scaled slope of the input force amplitude versus the frequency shift. It has been observed that concrete 
samples with more severe damage will generally have a larger value for the nonlinearity parameter. If a 
sample is in pristine condition, it should have no frequency shift with increasing input force amplitude,
thus a nonlinearity parameter value of 0. Figure 24 and Figure 25 show NIRAS results for one of the small 
bricks that has reactive aggregate and was cured in NaOH. Even though there is no sign of damage on the 
surface of the block, NIRAS was able to detect nonlinearity.

Figure 24. Results from a concrete brick, showing frequency shift with increasing input force amplitude.

Figure 25. Calculation of nonlinearity parameter for the brick specimen.
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NIRAS was also performed on the large slab. It was impacted in each of its four quadrants. Results 
from this test are shown in Figure 26 and Figure 27.

Figure 26. Frequency response of the large slab to impact excitation in four locations.

Figure 27. Resonant frequency shift of the large to increasing impact force.

From the results, it is clear that no damage was detected in the slab after 2 months of accelerated 
curing. There are several possible reasons for this, including the following:

There is no damage in the slab.

Impact force is not large enough because a small modal hammer was used when a modal sledge 
hammer may be more appropriate

There were the limitations of NIRAS in scaling up to large structures.
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3.3 Vibro-Acoustic Modulation
Similar to NIRAS, the resonant frequency is determined in this technique as well. However, in VAM, 

the data are inspected for modulation about the probing frequency. It is this modulation that indicates 
nonlinearity within the system. VAM results for the brick samples (i.e., A2, B2, and C2) are shown in 
Figure 28. Several potential damage indices based on spectrum properties were considered as follows:

Ratio of side band amplitude to probe or pump amplitude

Ratio of side band bandwidth power to probe or pumping power (integral under power spectral 
density)

Percent of total power present in side band power.

Figure 28. VAM results for three concrete bricks.

From the VAM results above, a damage index was calculated. For comparison, NIRAS was also 
performed on these samples.

Strong correlation between the VAM damage index and the NIRAS nonlinearity parameter that is 
given in Table 1indicates there is good promise in using VAM for ASR detection in concrete.

Table 1. Comparison of VAM and NIRAS results.

Sample
Resonant 

Frequency
Probing 

Frequency
Pumping 

Power Ratio

VAM
Damage Index 

(Normalized to A)

NIRAS
Nonlinearity 
Parameter

A2 1,900 Hz 20 kHz 0.0000575 1.00 0.00
B2 2,450 Hz 20 kHz 0.0004819 8.38 1.6929
C2 2,550 Hz 20 kHz 0.000166853 2.90 0.1219
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4. DIAGNOSIS
4.1 Diagnosis

4.1.1 Data Fusion
Because multiple non-destructive examination techniques are exercised above, fusion of data from 

multiple techniques can provide more accurate and reliable information when compared to information 
from each individual technique. Based on the abstraction levels of the available data, there are three types 
of data fusion techniques: (1) pixel level, (2) feature (or characteristic) level, and (3) decision level 
(Castanedo 2013; Hall and Llinas 1997; Kokar and Kim 1993).

4.1.1.1 Pixel Fusion. When data obtained from multiple sensors are commensurate, data can be 
fused in a pixel level. For non-destructive testing data fusion, different combination methods can be 
applied in the pixel level (Gros et al. 1999) such as maximum amplitude, integration, and weighted 
averaging. Bayesian methods can also be used. Because pixel level fusion is only valid for homogeneous 
data, it is more commonly applied in image processing.

4.1.1.2 Feature Fusion. Different features extracted from the raw data can be fused and decisions 
can be made based on the joint feature vector. There are different feature fusion techniques such as neural 
network and Kalman filter. Sometimes the effective fusion part is essentially only concentration of 
vectors.

An example of applying a Kalman filter in the detection of ASR in concrete bar has been reported 
(Quadri and Sidek 2014; Lu et al. 2009; Liu et al. 2001) using multiple sensors. Acoustic, 
electromechanical, optical, and embedded sensors were used to sample data. First, different features for 
different sensors were extracted. To integrate the heterogeneous features, a decentralized Kalman filter 
was applied on the transferred binary data (i.e., positive/negative and high/low). The outcome was a set of 
best features, without redundancy. Then a neural network was trained, with the selected features as inputs 
and expansion as output.

4.1.1.3 Decision Fusion. Decision fusion operates at the level of decision, after obtaining 
individual diagnosis results from each technique. Several popular decision fusion methods available in 
structural health monitoring are voting, Bayesian method, fuzzy logic, and Dempster-Shafer theory. One 
example of a voting method for decision fusion has been reported with ultrasonic structural health 
monitoring via multi-sensor. Four transducers were installed on the specimen and six combinations of 
feature-transducer pairs were formed. Six features (such as normalized mean squared error, drop in 
correlation coefficient, and differential curve length) were sampled. Based on the selected thresholds 
(i.e., different for each different feature and transducer pair), each feature voted “damaged” or undamaged. 
A simple majority vote was used for the overall decision.

4.1.1.4 Bayesian Network. This study applies a Bayesian network for decision-level fusion, 
because it can also be used for uncertainty quantification. Bayesian networks are directed, acyclic,
graphical representations with nodes to represent the random variables and arcs to show the conditional 
dependencies among the nodes. Each arc is associated with a conditional probability relation between the 
parent and child node. In this study, results from three monitoring techniques are merged: (1) IR, NIRAS,
and VAM. Data obtained from IR are images, while data acquired from NIRAS and VAM are signals. 
Because we are performing decision-level fusion, diagnosis results from the techniques will be used 
instead of raw data. NIRAS and VAM detect ASR by evaluating the nonlinearity of the structure, which 
are global methods; while analysis of IR indicates the actual area of ASR. The NIRAS and VAM results 
are used to update the Bayesian network, followed by updating the IR results. is a binary 
variable, which indicates whether the structure has ASR or not. is the ASR area, whose parent node 
is . When is 0, is also 0 with probability 1; when is 1, a probability 
distribution is assumed for the ASR area. is a variable representing the ASR area detected by IR, which 
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is formed by adding an observation error variable to the true area. and are two categorical variables
that represent the ASR detection by NIRAS and VAM. Similar to , there might be observation error 
terms added to them (Figure 29). All priors and conditional probability functions need to be determined or 
assumed according to the analyst’s knowledge of the sample and devices.

Figure 29. Bayesian network for data fusion of IR, NIRAS, and VAM.

4.1.2 Results
A binomial distribution is assumed as the prior of the binary indicator variable , while a

uniform distribution is assumed for damage size when = 1. The observation error of IR is 
assumed as Gaussian distribution, while for the sake of simplicity, there is no observation error for NIRAS 
and VAM. and are assumed as binomial distributions. Notice that the parameter is defined as a 
step function to account for the false alarm ( = 0) probability and sensing accuracy (2 > 0
and > 2) (Figure 30).

Figure 30. Bayesian network being used.
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As explained previously, the network will be updated first by the decisions (results from data analysis) 
of NIRAS and VAM and then by IR results. In the context of the Bayesian network, the results from the 
data analysis are treated like observations. Here we have three observations, one each from NIRAS, VAM, 
and IR (see Table 2).

Table 2. Observations.
Sensor Value Unit

NIRAS True —
VAM True —
IR 10.545

After updating by NIRAS and VAM, the probability of damage increased from 50 to 98.84% 
(Figure 31). Uncertainty regarding the damage area is also narrowed from the uniform distribution (Figure 
32). After observation of IR, the damaged area’s uncertainty is further updated to be a normal distribution, 
with a mean of 9.99 , and standard deviation of 0.99 (Figure 32).

Figure 31. Updated damage indicator.

Figure 32. Damage area updated by NIRAS, VAM, and IR.
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4.2 Big Data Analytics
The above example problem took less than 1 minute to complete the Bayesian updating calculation 

using Markov Chain Monte Carlo (MCMC) sampling. However, under continuous online monitoring of 
real structures, the Bayesian network can become large (with multiple possible damage locations) and the 
number of observations will become very large. Although the data size of decision results to be fused is 
not large, it still qualifies as a big data problem, because MCMC sampling is expensive. Therefore, the 
MapReduce technique is implemented in this section with a view toward realistic applications.

4.2.1 MapReduce
MapReduce is a framework designed for large datasets, which utilizes multiple nodes (i.e., machines) 

for computations (Dean and Ghemawat 2008). MapReduce takes key/value pairs as input and generates 
the other key/value pairs as outputs. As indicated literally, the MapReduce framework can be split into 
two steps: map and reduce, both of which are created by the user. Before applying the MapReduce model, 
the user will need to write the input as the key/value pair. The key/value pair ( 1, 1) will then be fed into 
the map function, which will generate the intermediate key/value pairs ( 2, 2). Then the intermediate 
key/value pairs are passed to the reduce function, which merges together these values to form a possibly 
smaller set of values. The process is shown below, which allows us to handle lists that are too large to fit 
into the memory:

map ( 1, 1) > list ( 2, 2)

reduce ( 2, list ( 2)) > list ( 3).

To implement this framework, a cluster of computers are called nodes. One of them is called the 
master node and the rest are slave nodes. As shown in Figure 33, the master node is in charge of 
communicating with the user program and assigning the tasks to the slave nodes (i.e., workers). First, the 
input files are parsed and split into many pieces (with sizes of 16 to 64MB). The master will identify the 
idle workers and assign each with a map task or reduce task. Then each worker will do its own task and 
when all tasks are completed, the output files will be obtained.

Figure 33. MapReduce execution overview.
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4.2.2 Parallelization of Markov Chain Monte Carlo
The basic idea of the MCMC parallelization (Neiswanger et al., 2013) is to divide observations into M 

splits and each node takes one partition to update the network. The prior of the variable of interest will be 
updating using the equation:( ) ( ) / ( | ) (21)

After all nodes complete their task, all subposterior samples from each node will be combined to 
produce samples for an estimate of the subposterior density product . . . , which is proportional to the 
full data posterior, i.e., . . . ( ) ( | ).

4.2.3 Results
Synthetic data are used here to illustrate the above procedure. The data are generated by sampling 

from (10, 1), with a data size of 10,000. Only five computing nodes are used for the sake of illustration. 
It is found that the efficiency is quite high (Figure 34), without losing accuracy (Figure 35). Notice that 
because the computation time is almost linearly proportional to the data size, the efficiency is stable for 
MCMC parallelization.

Figure 34. Accuracy of parallelization.
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Figure 35. Efficiency of parallelization.

5. PROGNOSIS
5.1 Alkali-Silica Reaction Finite Element Model

After diagnosis is carried out via the Bayesian network, we are able to do the prognosis, based on the 
calibrated ASR area. A finite element model is needed to predict the behavior of the structure in the future. 
We have implemented the ASR expansion model developed by Saouma and Perotti (2006) in Abaqus.

5.1.1 Implementation of Saouma and Perotti’s Model
ASR can first be attributed to a hydrophilic gel due to complex dissolution-precipitation reactions 

between reactive silica in aggregates. Then, in the presence of water in the pores, the gel expands, creating 
an increasing internal pressure in localized regions within the cementitious structure, causing initiation of 
microscopic or even macroscopic cracks. There are two main factors that control the ASR reaction rate: 
(1) temperature, the higher the temperature, the faster ASR occurs and grows (Ulm et al. 2000). This 
kinetic effect of temperature on ASR results from the thermos-activation of the dissolution of reactive 
silica on aggregate-cement interface and the precipitation of gel. (2) Humidity: water plays an important 
solvent role for silica dissolution, intervenes as transport media for diffusion of ions through pore network, 
and is a necessary compound for the formation of various reaction products (gels and other mineral 
precipitates). Therefore, accurate predictions of the effects of ASR on long-term performance and 
response of aged concrete structures require a fully coupled thermo-hydro-mechanical-chemical model. 
Among many ASR-related models developed over the past few decades, a thermodynamically consistent 
coupled thermo-chemo-mechanics model of ASR was developed by Ulm et al. (2000), based on an 
extensive experimental study by Larive (1997). However, it does not include the effect of stress-state on 
the reaction kinetics and volumetric swelling. Farage et al. (2004) further extended Ulm’s model by 
including a smeared cracking approach to model cracking of concrete due to ASR expansion. However, 
only heat conduction was considered and the moisture diffusion was not considered in these coupled 
thermo-chemical-mechanics models. One more serious limitation of this ASR swelling model is that the 
swelling strain is treated isotropically without stress dependency. Saouma and Perotti (2006) presented a 
comprehensive coupled thermo-hydro-mechanical-chemical model for ASR based on Ulm’s model, and 
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considered the effects of stress on the reaction kinetics and anisotropic volumetric expansion induced by 
ASR. The following effects are included in Saouma and Perotti’s model:

1. ASR expansion strain is treated as a full strain tensor, instead of being calculated separately and 
independently for each principal direction.

2. ASR reaction rate is temperature dependent and relative humidity is also crucial.

3. ASR reaction can be retarded by compressive stress within concrete structures.

4. ASR expansion is redistributed into other less-constrained principal directions.

5. Both high compressive or tensile stress states inhibit ASR expansion due to the formation of micro 
and macro-cracks that absorb the expanding gel.

6. A triaxial compressive stress state reduces expansion.

7. ASR reaction extent will lead to a reduction in both tensile strength and elastic modulus.

This model is implemented in this report, with Abaqus finite element analysis. Although during the 
diagnosis, the ASR area was detected with uncertainty quantified, we only illustrate the prognosis use of 
the damaged area here (Figure 36). The prognosis model is demonstrated with the C2 brick. The 
dimensions of the specimen are 9 x 5 x 2 in., with all four sides unconstrained. The 3,520 (= 11 x 20 x 16) 
elements were used in the finite element model (Figure 37). All material parameters and ASR-related 
parameters are listed in Table 3.

Figure 36. ASR detection in C2 (red: ASR).
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Figure 37. Finite element mesh of C2 brick.

Table 3. General parameters of the ASR model.

The basic idea is to map the ASR detection results by assigning ASR extent ( ) to be 1 for the element 
in the corresponding location. To be more realistic, a linearly decrease of for the neighboring elements 
are assigned, with an interval of 0.25. The assigning plan is shown schematically in Figure 38. The glass is 
known in the middle of the brick, with an average thickness of 1/16 in. Therefore, the mentioned ASR 
extent assigning pattern is applied to elements in the middle layer of the model (in the z direction).
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Figure 38. Model initial condition for prognosis (above: full model view; below: cut view).

Based on the initial conditions shows in Figure 38, the future ASR extent is predicted by simulation. 
The status of the specimen at four future time instants (i.e., = 60 , = 120 , = 180 ,
and = 240 ) are shown in Figure 39. It can be easily observed that ASR is growing along time. 
Also notice that at = 240 , the entire structure is highly developed with ASR ( > 0.8). Figure 40
shows the time history of ASR growth for the selected element (highlighted in Figure 39 (a)). 
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(a) ASR extent @ t = 60 days (b) ASR extent @ t = 120 days

(c) ASR extent @ t = 180 days (d) ASR extent @ t = 240 days
Figure 39. Future prediction of ASR growth (half model).

Figure 40. Time history of ASR extent.
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6. SUMMARY AND FUTURE WORK
This report presented a simple demonstration problem to illustrate the integration of four elements of 

the proposed SHM framework for ASR degradation monitoring of concrete structures. The demonstration 
problem considered small cement specimens without and with ASR degradation and possible techniques 
in each of the four elements of the framework and their integration. Effective combinations of monitoring 
techniques, data analytics, and diagnosis/prognosis were illustrated.

1. Experimental study:

Specimens of two sizes were cast to develop accelerated ASR degradation: (1) small bricks 
(9 × 5 × 2 in.) and (2) medium slab (24 × 24 × 6 in.)

Various siliceous materials (such as glass, silica powder, and reactive aggregates) were used to 
prepare different sets of samples; an NaOH solution was used in the concrete mix or in the curing 
solution to raise the pH level

DIC and mechanical deformation measurements using calipers were used to measure changes in 
the dimensions of the specimens

IR, NIRAS, and VAM techniques were used to diagnose the damage.
2. Data analytics:

Themographic images of the specimens collected using the FLIR® IR camera, vibration data from 
NIRAS, and VAM were analyzed to diagnose ASR degradation

The diagnosis results were then used as inputs for the Bayesian network and prognosis model.
3. Uncertainty quantification and big data implementation:

Information from multiple techniques were fused using a Bayesian network

Uncertainties in the damage area were quantified

A MapReduce technique for handling big data was demonstrated with synthetic data.
4. Prognosis:

A coupled thermo-hydro-mechanical-chemical model for ASR degradation has been implemented 
in Abaqus through a user subroutine (UMAT)

Prognosis of ASR degradation is performed based on the current state of degradation obtained 
from diagnosis.

Future work will focus on the following tasks during the next year:

1. Preparation of a slab specimens with reinforcement and subjected to aggressive curing to produce 
ASR.

2. Study of smaller brick specimens with different control conditions to isolate the most critical 
component responsible for rapid growth of ASR gel.

3. Refinement of non-destructive examination techniques for larger specimens and specimens with 
reinforcement.

4. Localization and quantification of the damage and exploration of embedded sensors (e.g., pressure, 
temperature, strain, and chemical).
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5. Application of a dynamic Bayesian network approach to diagnosis and prognosis to track evolution 
over time.

6. Fusion of heterogeneous data in the presence of large amounts of observation data and use of 
MapReduce for dynamic Bayesian network parallelization.

7. Refinement of the prognosis model to account for reinforcement (contact problem is a challenge), 
smeared crack (convergence could be a problem), moisture, and heat transfer in a more realistic way.

8. Application of the diagnosis/prognosis framework to other small samples available at the University 
of Alabama.

9. Coordination with ongoing research activities at the University of Tennessee, Knoxville and Oak 
Ridge National Laboratory to construct and monitor a large mock-up. In particular, explore the 
application of DIC.

10. Overall, this research focuses on data analysis and development of uncertainty-quantified diagnostic 
and prognostics models that will support continuous assessment of concrete performance. The 
resulting comprehensive approach will facilitate development of a quantitative, risk-informed 
framework that could be generalized for a variety of concrete structures and could be adapted for other
passive structures. Future work will investigate the methods illustrated in this report to realistic 
structures and damage scenarios.
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