

INL/EXT-19-55368

Light Water Reactor Sustainability Program

Report for 2.2.1 Task 5: Develop and Document a
State-Based Alarm System for a Nuclear Power

Plant Control Room Using Machine Learning

Jens-Patrick Langstrand, Hoa Nguyen, Robert McDonald

August 2019

U.S. Department of Energy

Office of Nuclear Energy

DISCLAIMER

This information was prepared as an account of work sponsored by an

agency of the U.S. Government. Neither the U.S. Government nor any

agency thereof, nor any of their employees, makes any warranty, expressed

or implied, or assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness, of any information, apparatus, product, or

process disclosed, or represents that its use would not infringe privately

owned rights. References herein to any specific commercial product,

process, or service by trade name, trade mark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation,

or favoring by the U.S. Government or any agency thereof. The views and

opinions of authors expressed herein do not necessarily state or reflect

those of the U.S. Government or any agency thereof.

INL/EXT-19-55368
Revision 0

Light Water Reactor Sustainability Program

Report for 2.2.1 Task 5: Develop and Document a State-Based Alarm
System for a Nuclear Power Plant Control Room Using Machine

Learning

Jens-Patrick Langstrand, Hoa Nguyen, Robert McDonald

August 2019

Idaho National Laboratory
Idaho Falls, Idaho 83415

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

IFE/INL-196543

SOW 14512

Report for 2.2.1 Task 5. Develop
and document a state-based alarm

system for a nuclear power plant
control room using machine

learning

KJELLER HALDEN

Address

Telephone

Telefax

NO-2027 Kjeller, Norway

+47 63 80 60 00

+47 63 81 63 56

NO-1751 Halden, Norway

+47 69 21 22 00

+47 69 21 22 01

Report number Date

IFE/INL-196543-2.2.1 2019-08-09
Report title and subtitle Number of pages

Report 2.2.1 for Task 5:

Develop and document a state-based alarm system for a

nuclear power plant control room using machine learning

19

Project/Contract no. and name

Contract no 196543
Client/Sponsor Organisation and reference

 Idaho National Lab, USA

Abstract

 Name Date Signature

Author(s)
Jens-Patrick Langstrand

Hoa Nguyen

Robert McDonald

2019-08-09

Approved by
Andreas Bye 2019-08-09

HR-e-rapport-e ver 2007-04-24.1

1. Background

Institutt for Energiteknikk (IFE) operates the OECD Halden Reactor Project (HRP).
The organization has extensive experience from more than 20 years of research in
human system interface (HSI) design and operation of nuclear power plant research
simulators in the Halden Man-Machine Laboratory (HAMMLAB).

HAMMLAB serves two main purposes. These comprise the study of human behavior
in interaction with complex process systems and the development, testing, and
evaluation of prototype control centers and their individual systems. The aim of
HAMMLAB is to extend the knowledge of human performance in complex process
environments in order to adapt new technology to the needs of the human operator.
By studying operator performance in HAMMLAB and integrating the knowledge
gained into new designs, operational safety, reliability, efficiency, and productivity
can be improved.

IFE also provides new and innovative technology to customers in the form of
operational task-based displays, large screen displays, innovative eye-tracking
programs, and innovative performance testing methods. IFE also provides expert
support in both nuclear power plant operations and setting up and running
operations-based experiments and workshops.

2. Introduction

Idaho National Laboratory (INL) has contracted IFE to support human factors
research and the development of leading-edge technology to support control room
operators as the U.S. fleet undergoes modernization and digitalization in legacy
plants and control rooms. As the nuclear industry starts to shift to more digital
controls and systems, these upgrades provide more information to the main control
room in the form of digital signals and values, leading to an increase in the number
of alarm points that are provided by the vendors in their digital control systems. New
digital control rooms also shift from control boards that operators stand at, to soft
controls on a computer monitor at a sit-down workstation, and alarm panels to a
single display. This change to a single display has created the problem called alarm
waterfalling, a situation in which the addition of new alarm points causes an overload
of information to the operator during either a plant disturbance or other abnormal
operating conditions. IFE’s goal is to find a workable solution to assist operators in
both handling and understanding incoming alarms during emergency situations
under these waterfall conditions.

3. Current Design

In legacy control rooms, operators might have 20 to 30 alarms to deal with on 12
separate control boards during a reactor trip. The new digital alarm system in the
upgraded control room will display between 150 and 200 alarm points on a single
screen. This overload of information prevents the operators from identifying
abnormal alarms quickly, without having to scroll through the alarm list looking for
abnormalities. One way to tackle this problem would be to create a state-based
alarm system that would recognize plant states, identify alarms that are expected in
those states, and suppress expected alarms from the alarm screen so that

unexpected alarms would be displayed, prioritized, and easily identified by the
operators. This can be done today, but is labor intensive in that an operator or
training instructor would be required to run scenarios and log those alarms to be
suppressed. The hope is that machine learning (ML) can provide an alternative
solution with less manual effort required.

4. Machine Learning for Unexpected Alarm Detection

The creation of traditional state-based alarm systems requires operators or trainers
to manually specify the state conditions for the reactor at each state. The work
described in this report differs in that instead of trying to manually define these
states, researchers at IFE collected data and used ML to learn these states
automatically. To achieve this, these researchers have tried two different approaches
to model the problem using ML: first, Supervised learning, and second, Anomaly
detection.

Supervised learning is employed when clear expected output is commensurate with
a set of input. The use of supervised-learning is intuitive in this case because
process signals can be treated as input and alarm-states as output. It is convenient
as well because no data annotating step is required.

Anomaly detection is useful when accessible data contains predominantly either
positive or negative samples. In this case, the ML model can attempt to learn
positive or negative behavior and thereby detect anomalies when data differing from
the learned behavior are provided. This can also be called Semi-Supervised learning
because only one class or type of data is used during the training of the model.

5. Scope

The core deliverable for this project is a prototype alarm management/filtration
system (AMS) that uses ML to filter expected from unexpected alarms during the
operation of the generic Pressurized Water Reactor (gPWR). This approach to alarm
filtering is novel, and much of the work involved exploration and testing of ML
concepts and techniques to attempt to solve alarm overflow in digital control rooms.

As part of the work package, a workshop was held at INL to facilitate knowledge
transfer. The workflow of collecting data, processing them, and training and
deploying a ML model were addressed. Lessons learned and recommendations of
how to use the ML system were also presented as examples of future steps.

Summary of deliverables:

1. A python script that processes output from IFE Teams Viewer tool into a

format suitable for ML.

2. A trained ML model that can be used to detect anomalies (abnormal alarms).

3. A tool that interfaces with the simulator and processes data in real time to

detect and flag anomalies (abnormal alarms) for the operator.

4. Knowledge transfer through a workshop at INL.

The whole process from collecting data to training and deploying a ML system will be
covered in this report, as will lessons learned.

6. Data collection

In order to train ML models, IFE researchers needed first to collect meaningful data
that capture the nominal behavior of the gPWR. They chose scenarios including full
power and no incidents, full power with reactor trips, full power with malfunctions, to
full power with reactor trip and malfunctions. The reason for choosing these
scenarios was to allow us to focus on testing and iterating our ML models on a
simpler problem, rather than initially spending an inordinate time on scenarios and
complex combinations. Initially, IFE researchers believed they would need to create
a data collection tool for this project; however, it turned out that an IFE-developed
tool called Teams could be repurposed. In interest of time, this option was chosen.

6.1. Collection tool: Teams Viewer

To collect data from the gPWR, IFE researchers used Teams Viewer, a tool
developed by IFE that allows the collection of synchronized sound, video, simulator
signals, and simulator events, as well as having the ability to replay collected data.
For our purposes, only the process, alarm signals, and process events were
important. In total, IFE researchers ran the simulator 11 times with scenarios of
various lengths and complexities. The real-time connection tool described in Section
6.16 could also be extended to function as a data collection tool as an option to the
IFE Teams tool.

6.2. Run Descriptions

Run 1: The simulation began at 100% reactor power with all systems in a normal
configuration. The simulator ran for approximately 1.5 hours with no failures initiated
to collect nominal data.

Run 2: The simulation began at 100% reactor power with all systems in a normal
configuration. The simulator ran for approximately 2 hours with no failures initiated to
collect nominal data.

Run 3: The simulation began at 100% reactor power with all systems in a normal
configuration. The simulator ran for approximately 4 hours with no failures initiated to
collect nominal data.

Run 4 (Anomaly Test): The simulation began at 100% reactor power with all systems
in a normal configuration. The simulator ran for approximately 5 minutes and initiated
a manual Reactor Trip from 100% and then stabilized the plant by using plant
procedures E-0 and ES-0.1.

Run 5: The simulation began at 100% reactor power with all systems in a normal
configuration. The simulator ran for approximately 30 minutes and initiated a manual
Reactor Trip from 100% and then stabilized the plant by using plant procedures E-0
and ES-0.1

Run 6: The simulation began at 100% reactor power with all systems in a normal
configuration. The simulator ran for approximately 10 minutes and initiated a manual
Reactor Trip from 100% and then stabilized the plant by using plant procedures E-0
and ES-0.1

Run 7: The simulation began at 100% reactor power with all systems in a normal
configuration. The simulator ran for approximately 10 minutes and initiated a manual
Reactor Trip from 100% and then stabilized the plant by using plant procedures E-0
and ES-0.1. Once the plant was stable, IFE researchers inserted two anomalies.

Run 8: The simulation began at 100% reactor power with all systems in a normal
configuration. The simulator ran for approximately 5 minutes and initiated a manual
Reactor Trip from 100% and then stabilized the plant by using plant procedures E-0
and ES-0.1. IFE researchers inserted two anomalies, one at 32:51 simulator run time
and one at 37:10 simulator run time.

Run 9: The simulation began at 100% reactor power with all systems in a normal
configuration. The simulator ran for approximately 10 minutes and initiated a manual
Reactor Trip from 100% and then stabilized the plant by using plant procedures E-0
and ES-0.1. Once the plant was stabilized, approximately 7 or 8 minutes after a trip
of the Condensate pump. Then 10 minutes after stabilization a trip of a Circulation
water pump.

Run 10: The simulation began at 100% reactor power with all systems in a normal
configuration. The simulator ran for approximately 1 minute and initiated a manual
Reactor Trip from 100% and then stabilized the plant by using plant procedures E-0
and ES-0.1. Once the plant was stabilized, inserted a malfunction for FCV-2200A,
but no alarm was generated. After another 3 minutes, inserted a malfunction (tripping
of the A Main Feedwater Pump). While re-establishing let down, received alarm
XN07E03 twice.

Run 11: The simulation began at 100% reactor power with all systems in a normal
configuration. The simulator ran for approximately 10 minutes and initiated a manual
Reactor Trip from 100% and then stabilized the plant by using plant procedures E-0
and ES-0.1. Once the plant was stabilized, inserted malfunction EPS021 (loss of bus
1D2) at 13 minutes and 30 seconds. Inserted malfunction TUB04F Main Turbine
vibration) at the 15 minute mark. Inserted malfunction PR506A (Pressurizer PORV
445A leak actuated by the tripping of the reactor).

6.3. Data Description

The data collected by the Teams Viewer are received in multiple files; only the files
used will be covered here:

• valueInfo.txt: describes the content of the binary file containing all the
simulator process signals. For every signal it contains its id, valid ranges, unit
and lastly a short description.

• values.dat: contains all the process signals collected during a simulator run in
binary format.

• processEvents.txt: contains all the process events with timestamps and
identifications (IDs)—for instance, lamps turning on, valves opening or
closing, and alarms on and off—that occurred during the simulator run.

6.4. Deliverable 1: Data Preprocessing Script

Before using the collected data to train the ML models, the data were preprocessed
into a format that could be used by the ML models. The binary files containing the

collected process signals were parsed into csv and further packed into pickles, which
allows for quicker loading of the data. See Figure 1 for an image with graphs of some
of the process signals collected during this step.

Figure 1. A selection of process signals used to train the ML systems.

The alarm signals were extracted from the process events file, using the timestamps,
signal IDs, and alarm states to convert the events into continuous signals. The
timestamps of both data sources were used to synchronize process signals with
alarm signals.

Figure 2. An example of an alarm signal that was created using the process events. A value

of 0 represents the alarm off; 1 represents the alarm on.

Both data sources were loaded as data frames in a Python notebook script. In total,
there are 655 process signals and 751 alarm signals. Last, the signals required
normalization in order to make the ML training more effective and reduce the amount
of time required to train a model. Without this step, the training would require more
time and might even fail to converge on a good solution. An attempt to use the
specified ranges from the file describing the ranges of each signal to normalize the
values failed, however, because some signals had incorrect ranges specified. As a
result, Min-Max scaling was performed on the available data in order to have data

within a valid, normalized range. Ideally, the predetermined ranges would have been
used to normalize the input data because the ranges cover all possible values the
signals can have. In this way, even if the full range is not represented in the training
data, the model would have access to the full range when working on unseen data.

Because the written script relied on data collected by the IFE-developed Teams
Viewer tool, it would be difficult for INL to directly utilize the script without having
access to that IFE tool. However, one option could be to extend the real-time tool to
also have data-collection capabilities, allowing INL to collect data.

6.5. Machine Learning Modelling

With the data preprocessed and normalized, it was possible to begin ML modelling

using the collected data. The data were divided based on run conditions: the first

three runs were used to train a baseline model that should be able to filter all alarms

that occur during normal 100% power with all systems in normal configuration. The

fourth run introduced a reactor trip and was used as a test of the baseline model; the

model was believed capable of filtering the expected alarms from 100% power and

normal system configuration while flagging all alarms caused by the reactor trip.

Runs five, six, and most of seven were used together with the first three runs to train

the next iteration of models. These runs started with normal operations at 100%

power and had a manual reactor trip occur during the run. The reactor was then, in

each run, stabilized using operator procedures. These data were used to train the

ML models to recognize the alarms caused by reactor trips as expected. The last

part of the seventh run contained two anomalies and was used as a test to see if the

models were able to flag those anomalies. The remaining four runs contained

anomalies during or after reactor trips and were used as anomaly tests.

6.6. Tools and Frameworks

To handle the data preprocessing and preparation, as well as ML, Python was used,

with frameworks such as Pandas, Numpy and Keras. Keras is a widely used ML

framework that provides a higher-level, easier-to-use API for modelling. Keras also

supports multiple popular ML libraries, such as Theano, CNTK, and Tensorflow.

Tensorflow was selected for these tests. Tensorflow is a popular open-source ML

library, developed by Google.

6.7. Supervised Learning Approach

In ML, supervised learning is a task that matches function-mapping input to desired

output. In our case, the idea is to infer the current alarm state from the process

signals.

𝑌 = 𝑓(𝑋) = {
0 𝑖𝑓 𝑎𝑛 𝑎𝑙𝑎𝑟𝑚 𝑖𝑠 𝑂𝑓𝑓
1 𝑖𝑓 𝑎𝑛 𝑎𝑙𝑎𝑟𝑚 𝑖𝑠 𝑂𝑛

X is the input array of process signals. Y is the output array of alarm signals. An

alarm has two states, off or on, and is encoded 0 or 1, respectively.

https://keras.io/
https://www.tensorflow.org/

As the predicted alarm state is compared with the actual state, any differences are

marked as unexpected alarms.

6.8. Data Preparation

Due to limited scenarios on which to gather data, many alarms stayed consistently
off in the dataset or were seldom triggered. It was estimated that only one-fourth of
the dataset contained samples that had at least one alarm on. This led to the
problem of an imbalanced dataset in that most samples were labelled as one class.
In these cases, the algorithm will try to always produce the output as the majority
class and still get a very high accuracy. To counter the imbalanced-data problem,
IFE researchers first used oversampling by tripling samples with at least one alarm
on; second, they avoided using accuracy as a metric for training.

6.9. Modelling

Deep Neural Network (DNN) was selected as the only algorithm to try. One big
advantage of this model over other algorithms is its ability to produce output as an
array. The network architecture is a factor to consider. Because the problem is
relatively simple, a fully connected DNN was attempted. This involved constructing
networks in two ways: first, by increasing the numbers of perceptrons in higher-level
hidden layers and then reducing the numbers to produce the correct output size (i.e.,
a diamond-shaped model); the second method represented the opposite approach, it
first reduced the numbers of perceptrons and then increased them again (producing
an hourglass-shaped model). IFE researchers found that the second architecture
began with lower performance, but it converged more quickly and achieved better
performance overall. Both architectures used drop-out regularization to reduce
overfitting.

6.10. Results

The models were evaluated on a separated set of data that was not included in the
training process. IFE researchers wanted the models to detect as many positive
samples as they could. As the training dataset was imbalanced, accuracy was not
used, but confusion matrices and recalls were chosen as our evaluation metrics.
Figure 3 and Figure 4 show the evaluation for the diamond-shaped and hourglass-
shaped models, respectively. When an alarm is on, the hourglass-shaped model is
more likely to predict it as on.

Figure 3: Confusion matrix and recall for diamond-shaped model

Figure 4. Confusion matrix and recall for hourglass-shaped model

Finally, the predicted and true alarm signals were visualized. Figure 5 illustrates
examples of the visualization. The blue lines show true alarms signals received from
the simulator. The orange lines represent the predicted output received from our
hourglass-shaped model. Note that the failed predicted alarms may be unexpected
alarms that should not be predicted as on (for filtering).

Figure 5. Visualization for three alarm signals: XN09A05, XN12F04 and XN19A06. The blue

lines are true values received from the simulator. The orange lines are predicted values

output from the hourglass-shaped model. The model has learned perfect matching behavior

of signal XN12F04, almost-perfect behavior of signal XN09A05, and has learned to some

degree the behavior of signal XN19A06.

6.11. Anomaly detection Approach

ML can also be used for anomaly detection. While supervised learning requires a
balanced dataset of positive and negative samples, anomaly detection can be
achieved using a biased dataset where only positive or negative samples are used.
By treating the alarm filtering as an anomaly problem, IFE researchers saved time
because only data from the normal state of the plant need be collected. In addition,
there is no need to label the data as nominal or anomalous because all data would
be nominal. Anomaly detection is a suitable technique to use when the bulk of data
are nominal, and only a few examples of anomalies are present. Additionally, if the

difference between anomalies is large, the algorithm will still detect them as
anomalies. Instead of manually defining states, data are collected that describe the
normal behavior of the reactor and attempt to model this behavior in a way that
allows the ML model to learn normal behavior. Therefore, it would be able to
distinguish between nominal and abnormal data in the future. In some ways, this
approach can be thought of as a true state-based system because the algorithm
attempts to learn the whole behavior of a plant operating under nominal conditions.

See Figure 6 for an example of anomaly detection in signal processing. The first
graph shows a signal whose nominal behavior is to oscillate at a regular interval, but
then at the end of the signal, the pattern becomes abnormal. The second graph
shows an anomaly detection system that has learned the nominal behavior of the
signal in the first graph. It outputs 0 when the behavior of the signal is nominal and
spikes when it is abnormal, resulting in spikes corresponding to the parts of the
signal that show abnormal behavior.

Figure 6. These graphs were taken from “Novelty Detection in Time Series Data using Ideas

from Immunology,” by Dipankar Dasgupta and Stephanie Forest.

In this case, anomalies are unexpected alarms that are of interest to the operator. By
running the simulator from shutdown for refueling to full-power mode without
introducing any failures or anomaly conditions, the collected data describe nominal
behavior of the plant. An added benefit of using this approach is that it can detect,
not only anomalous alarms, but also process signals. This information could perhaps
be useful for the operators as well. Anomaly detection does not come without
challenges; for instance, alarms can be nominal in certain plant conditions while also
being anomalous under other plant conditions (i.e., contextual anomalies). Another
problem is that noise can appear as anomalies and result in false positives. Because
the framework was developed and prepared for data collection, training ML models,
and interfacing with the simulator, the scenarios were deliberately kept simple for this
first attempt. With the data collected from the 11 simulator runs, modelling and
training began for the anomaly detector.

6.12. Data Preparation

Convolutional neural network (CNN) and recurrent neural network (RNN) were the
types of neural network building blocks used for the anomaly detection approach.
CNNs have been used to great effect when working with image data, but they have
also been employed successfully with timeseries data. CNNs use primarily
convolutions and pooling layers to produce results. RNNs were specifically made to
handle timeseries data and have a memory component that allows previous input
samples to influence future predictions. For this problem, both types were run
separately as well as in combination into a type called recurrent convolutional neural
network (RCNN).

To prepare data for training of the anomaly detector, it was first necessary to create
generators that sequence data used in training the models. The generators are used
in a way that can be thought of as data augmentation instead of using data in the
sequence in which it was generated. The generators will pick a random starting point
in the data and create a sequence of a specified length from that point. In this way,
the number of valid sequences available for training is increased many times. The
combined data from the process signals and alarm signals were split into 70%
training data, 15% validation data, and 15% test data. These splits were then used
by the generators to randomly sample valid sequences during training. The length of
the generated sequences is a parameter that can affect training results and should
be tuned during training to find a length that gives good results. An input sequence
length of 90 seconds seemed to work well.

6.13. Modelling

For a network architecture, an auto-encoder architecture was selected. Auto-
encoders can be used to denoise images, reduce the dimensionality of input data,
and to color greyscale images, to name a few uses. The auto-encoder consists of
three parts: an encoder, a decoder, and code (the encoded representation of the
inputs). To train an auto-encoder, the input data is also used as the desired output
data. The encoder reduces the dimensions of the input data to a predetermined
encoding size, and the decoder then uses the lower representation and recreates the
original inputs as closely as possible. The idea is to use the auto-encoder to learn
features that occur during nominal operations of the plant and predict the expected

nominal behavior from the current plant state. See Figure 7 for a visual example on a
signal auto-encoder. For this approach, the model must learn the connections
between process and alarm signals in order to predict whether an alarm is expected.

Figure 7. An overview image of the auto-encoder architecture (Image of model architecture

borrowed from TowardsDataScience and modified slightly). The input signals are encoded

into a lower dimension in the encoder part of the network. Then the code is decoded as

closely as possible to the original signal.

To train the auto-encoder the datasets described in Section 6.12 were used. The
training datasets are used to continuously train the model for many steps through
many epochs. The validation set is used at the end of every epoch to test how the
model generalizes to unseen data. After the training is complete, the test set is used
to check the actual accuracy of the model using as yet unseen data. Most of the
tested models took between 10 and 30 minutes to train; a bigger dataset with a wider
variety of scenarios is expected to increase the time required.

A trained model can be used to detect unexpected alarms. To do this, the input
signals are provided to the model when it is running inference, and the outputted
expected behavior is deducted from the signals. The result is a difference between
the actual state and the expected state. If the signals have near-zero difference, they
are nominal. However, if the difference is large, an anomaly is present, and the
signal will be flagged as unexpected.

6.14. Results

Scenario: 100% power and normal system configuration

The first test determined whether the model would be able to learn all expected
behavior of the plant during 100% power and normal system configuration. This
model was trained solely on the data collected during this plant condition. The model
was able to learn the nominal behavior of many signals; an example can be seen in
Figure 8.

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

Figure 8. In these two graphs, the true (blue) signal is the signal given as input to the ML

model. The decoded signal from the ML model is an orange line. The difference signal (in

green) is the result of taking the input signal and subtracting the decoded signal. The result

shows a value close to 0, which indicates that there is no anomaly or unexpected behavior for

these signals.

To test the model’s ability to detect unexpected alarms IFE researchers then used
the small dataset collected during a 100% power and normal system configuration
with a manual reactor trip. The alarms caused by the reactor trip should then be
flagged as anomalies by the model, see Figure 9. The model wrongly predicted two
signals and two instances within those signals in the training set and zero signals in
the validation set.

Figure 9. This graph shows an alarm caused by the reactor trip “REACTOR TRIP STEAM

GEN-B LOW-LOW LEVEL.” In this graph, the green difference line spikes up due to the

alarm not being predicted as expected by the model; therefore, the alarm is correctly treated

as an anomaly in this case.

Scenario: 100% power and normal system configuration + manual reactor trip

Next, training was performed using 100% stable data as well as the reactor-trip data
to see whether the model could learn that the alarms related to the reactor trip are
expected. From the reproduced signals, the model performs quite well and can
correctly anticipate many of the alarms resulting from a reactor trip (see Figure 10).
From the alarm signals, the model wrongly predicted six signals and 17 instances
within those signals in the training set and five signals and 3243 instances within
those signals in the validation set. One signal is responsible for 3232 of the
instances “XN11H05” which is “REACTOR TRIP MANUAL (LPPLRTMA)” showing
that the model failed to learn this signal as nominal during a reactor trip.

Figure 10. The first graph shows the “TURBINE AUTOMATIC LOADING STOP

(JPPLSTL)” alarm and the second graph shows the “TURBINE AUTO STOP OIL LOW

PRESS (JRPK109)” alarm. Both alarms are a result of the reactor trip. The model has

learned to expect when the alarms turn on and off from correlating the process signals with

the alarm signals. Some noise exists in the predicted signal, but by setting a good threshold

and using a small-window activation requirement, this noise can be filtered, preventing false

positives.

Scenario: 100% power and normal system configuration + manual reactor trip +
anomalies

Again, the model can filter many of the expected alarms and flag some anomalies.
To better evaluate the results of the models, more work is required on the scenario-

selection side; specifically, more care should be taken to record unexpected alarm
IDs so that evaluations might more easily be performed offline while training and
testing models.

6.15. Deliverable 2: Trained Machine Learning Models

As part of the tool described in the next section, some of the ML models IFE
researchers trained for testing purposes from both the supervised learning and
anomaly detection approach have been included. There are some steps required to
go from a newly trained model to one that can be deployed and used in an
application:

• First, the model must be exported, either to two files, one describing the
model architecture and one containing the model weight, or to one file
containing both the architecture and the weights.

• Second, the model must be converted from a Keras model (.h5) to a frozen
Tensorflow model (.pb).

o During this step, it is important to find the name of the input and output
layers of the model as these will be required when deploying the model
for inferencing later.

o Information about the model’s input shape is also necessary.

6.16. Deliverable 3: Simulator and Machine Learning Interface Tool

To connect trained models to the simulator so it can receive live data and perform
alarm filtering, a tool in C# was developed that uses ProcSee to communicate with
the simulator (see Figure 11). ProcSee uses a publication and subscription model
that allows it to subscribe to the process signals of interest and receive messages
containing the value of these signals approximately three times per second. Using
the publication module, IFE researchers can publish the output of the ML model to
update an alarm display made for the testing of our system.

Figure 11. A snippet of the simple tool created to communicate between the simulator and

ML models.

The tool allows the user to select the ML model to load and the simulator with which
to connect. To load a model, a json file with the same filename as the ML model file
must also be provided. The json file must contain five values:

1. “friendly_model_name” The name that is used when displaying the model
option in the dropdown box.

2. “input_name” The name of the input layer of the frozen ML model.
3. “output_name” The name of the output layer of the frozen ML model.
4. “nmb_input_signals” The number of signals input to the ML model. This

number is used when preparing the input data structure used when
inferencing with the ML model. Note: this number must match the number of
inputs in the input layer of the model used.

5. “input_sequence_length” The length of the input sequence used when running
model inference. If the value is greater than 1, it will use a time window of that
size when running model inference. Note: this number must match the
sequence length used when during the training of the model.

Once loaded, the data received from the simulator signal subscription are used to
run inference with the loaded ML model. The output produced by the model is then
compared to the original alarm states received from the simulator. If there are
discrepancies, they are considered as unexpected and flagged as such. In addition,
it is possible to change the threshold value used when processing the output of the
ML model during runtime.

After all signals have been processed, a message is constructed and sent to the
simulator with a list of the alarms that have changed state and their new state, as
predicted by the ML model. Once received, this message updates the alarm display
mentioned earlier (see Figure 12). The display was created to facilitate comparison

between the alarm lists. The tool will be made available to INL; however,
modifications might be necessary to connect to INL’s simulator, but ProcSee is
available for use at INL as well. Minor modifications might be necessary to
communicate with INL’s gPWR simulator.

Figure 12. A screenshot of the operator display, showing both alarm lists side by side for

easy comparison. The list on the left contains the original alarm list while the right list shows

the ML-filtered alarm list.

The display developed for showing the alarm lists is very simple and was used only
to test the ML model’s filtering capability. This does not mean that the display is the
best way to visualize the results of the ML system.

6.17. Real-time Test Results

The ninth scenario inserted an inadvertent reactor trip from 100% power. Two
minutes after the trip, a leak from the Reactor Coolant System (RCS) was inserted
into the Component Cooling Water (CCW) system at about 100 GPM.

Models were tested from the supervised and anomaly-detection approaches with
difference decision thresholds, for example 0.5, 0.75 and 0.9. The classification
models immediately produced outputs while the auto-encoder needed 30 seconds to
prepare a time window before it could start producing results. An experienced
operator verified the accuracy of filtered alarms. Models were still limited in the
number of unexpected alarms they could filter. Some alarms were correctly filtered,
some were incorrectly filtered, and some that should have been filtered were not.
Models were adjusted after the testing, but insufficient time was not available to test
again.

Figure 13 shows a screenshot of the operator display, showing an alarm list beside
the filtered alarm list. Figure 14 visualizes a correctly filtered unexpected alarm
named XN10A37. The model predicted it should be off, but in reality, it was on. The
alarm was marked as unexpected. Figure 15, on the other hand, depicts an
incorrectly filtered alarm signal.

Figure 13. Screenshot of a testing scenario with the alarm list from the simulator on the left

and the classification model’s output on the right.

Figure 14. Visualization of a correctly filtered alarm signal XN10A37.

Figure 15. Visualization of an incorrectly filtered alarm signal XN21A04.

6.18. Deliverable 4: Knowledge transfer workshop at INL

A knowledge-transfer workshop was conducted at INL in June 2019. Various INL
staff and three IFE researchers attended the workshop. The workshop was divided
into two sections, one for work with ML at IFE in general, and one specifically for this
project. The second session covered the steps taken in the project up until June,
including data collection, the supervised classification approach, the auto-encoder
anomaly-detection approach, and the simulator integration with trained ML models.

6.19. Initial Conclusions and Continuation in to the Next Year

Because of the necessity to develop and prepare the framework for data collection,
training ML models, and interfacing with the simulator, the scenarios were
deliberately kept simple during this first attempt. Although the results are still limited,
the ML approach for solving the alarm-waterfall problem seems promising. The
project was productive in that it helped researchers gain knowledge, not only on data
modelling, but also on plant data in general. With the framework for collecting data,
training ML models, and real-time testing in place, a future focus on scenario
development, ML modelling, and testing for future work is anticipated.

Performing real-time testing was helpful in generating understanding of the nature of
the problem and clarifying exactly where the focus should be in modelling. This
knowledge allows better preparation during offline modelling and testing before real-
time testing. A recommendation is to record testing scenarios more thoroughly, to
enable work on the models without scheduling time on the simulator and operator
until necessary.

Because INL has an interest in developing state-based alarms for turbines, the next
steps for this study involve IFE focusing the ML-based approach to turbine control
system state-based alarms. Most of this year’s work can be reused for developing a
state-based alarm system for turbine control. In parallel, INL will develop a state-
based alarm system for turbine control using human subject matter experts. IFE and
INL will then compare the state-based alarm system developed using ML to the
state-based alarm system developed by human subject matter experts. This
comparison is a straightforward approach to performing the necessary step of
validating the effectiveness of using ML to develop a state-based alarm system.
Differences in performance will be identified and provided as feedback to the

developers of the ML approach to modify and improve the effectiveness of this
technique. A comparison of the effort required to develop the state-based alarm
systems can also be made. Data can be collected by INL, or via virtual private
network so that Halden can collect data.

6.20. Abbreviations

AMS alarm management/filtration system

CCW Component Cooling Water

CNN convolutional neural network

DNN deep neural network

gPWR generic pressurized water reactor

HAMMLAB Halden Man Machine Laboratory

HRP Halden Reactor Project

HSI human system interface

HSSL Human System Simulation Laboratory

IFE Institutt for Energiteknikk

INL Idaho National Laboratory

ML machine learning

RCNN recurrent convolutional neural network

RCS Reactor Coolant System

RNN recurrent neural network

	1. Background
	2. Introduction
	3. Current Design
	4. Machine Learning for Unexpected Alarm Detection
	5. Scope
	6. Data collection
	6.1. Collection tool: Teams Viewer
	6.2. Run Descriptions
	6.3. Data Description
	6.4. Deliverable 1: Data Preprocessing Script
	6.5. Machine Learning Modelling
	6.6. Tools and Frameworks
	6.7. Supervised Learning Approach
	6.8. Data Preparation
	6.9. Modelling
	6.10. Results
	6.11. Anomaly detection Approach
	6.12. Data Preparation
	6.13. Modelling
	6.14. Results
	6.15. Deliverable 2: Trained Machine Learning Models
	6.16. Deliverable 3: Simulator and Machine Learning Interface Tool
	6.17. Real-time Test Results
	6.18. Deliverable 4: Knowledge transfer workshop at INL
	6.19. Initial Conclusions and Continuation in to the Next Year
	6.20. Abbreviations

