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SUMMARY 

Within the Light Water Reactor Sustainability program, the Risk-Informed 
Systems Analysis (RISA) Pathway is performing collaborative research on the 
development and deployment of technologies designed to assist operating nuclear 
power plants (NPPs) to reduce operating costs and improve plant reliability and 
availability. One of the Risk-Informed Systems Analysis research areas is focusing 
on the development of methods and tools designed to optimize plant operations 
(e.g., maintenance and replacement schedules, optimal maintenance postures for 
plant structures, systems, and components) in a manner that is more cost effective 
than current approaches and makes better use of available structures, systems, and 
components health data. The Risk-Informed Asset Management project targets this 
research area by creating a direct bridge between component equipment reliability 
(ER) data and system engineer decision making regarding maintenance activity 
scheduling and component aging management. 

In this respect, one challenge that NPP system engineers are facing is that the 
amount of ER data being continuously generated is not only extremely large but in 
different forms: textual (e.g., condition or maintenance reports) and numeric (e.g., 
generated by monitoring systems). All these data elements provide them with 
valuable insights and information regarding the discovery of anomalous behaviors 
or degradation trends, the identification of the possible causes behind such 
behaviors and trends, and the prediction of their direct consequences. However, 
several challenges have proved to be roadblocks to this process. While some of 
these challenges are technical in nature (i.e., data are often distributed over several 
physical servers or databases), others are conceptual in nature: data elements come 
in different formats (e.g., numeric or textual) and measured values have different 
scales (e.g., vibration spectra and oil temperature). 

The activities performed by the Risk-Informed Asset Management project 
during Fiscal Year 2023 directly tackles the need to simultaneously integrate the 
analysis of ER data in all its forms, numeric and textual. Note that such a task has 
never been performed before due to the complexity of the systems under 
consideration but, most importantly, because of the technical challenges behind 
the harmonization of ER data formats and the lack of adequate computational 
methods to analyze them. Our approach borrows ideas and concepts from the 
medical field where the integration of several data sources is vital to assist medical 
practitioners to perform correct diagnosis and indicate optimal treatments. In our 
view an NPP asset or system is equivalent to a patient in a medical context. The 
main difference is that the complexity of a human body is a magnitude more 
complex when compared to typical assets or systems commonly present in NPPs 
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(e.g., centrifugal pumps, or motor-operated valves). This simplifies our first 
requirement when analyzing heterogenous ER data formats: to put data into 
“context”. Context is here intended as the additional piece of information needed 
by ER data analysis tools to understand what these data elements are referring to, 
that is which kind of knowledge they are generating. In our context, this knowledge 
can be translated into models that capture the form and functional architecture of 
assets and systems, their dependencies, and how they interact. These models 
actually emulate the knowledge that NPP system engineers possess about assets 
and systems; this is their key of success when analyzing ER data, their challenge 
is the ability to handle a large amount of data. 

Here, we employ model-based system engineering (MBSE) models of systems 
and assets to represent and capture their architecture and functional (i.e., cause-
effect) relations. Then, ER data elements are processed by identifying first which 
elements of the developed MBSE elements they are referring to. For numeric ER 
data this task is fairly easy since it is possible to precisely pinpoint what MBSE 
elements the corresponding sensor are observing (e.g., bearing temperature of a 
centrifugal pump). Task is much harder for textual data since the information 
contained in issue or maintenance reports needs to “be understood” by a 
computational tool. Here we called this process “knowledge extraction”. Once 
again, we borrow experience in the medical field where methods to extract 
knowledge from textual data have been developed in the past decade. The missing 
element for us is the availability of a complete dictionary of NPP related concepts 
(in addition to the MBSE models presented earlier) that can put “text into context”. 
In Fiscal Year 2023, such a dictionary has been developed by INL under RISA 
along with all the computational elements required for knowledge extraction. 

Lastly, once numeric and textual ER data elements have been processed and 
“understood”, the last step is the discovery of possible cause-effect relations 
among them. This is performed by observing if a logical connection through the 
MBSE models exists, and if there is a temporal relation among them. The logic 
and temporal are the two main ingredients to perform “machine reasoning” from 
ER data. 

In this report we show in detail how the integration and reasoning from 
numeric and textual ER data elements is performed. First, we present the 
developed library of MBSE models that focus on common NPP systems and assets. 
Then we show the development of computational methods designed to process and 
analyze numeric and textual ER data elements simultaneously. Here, we apply the 
developed computational methods on the circulating water system of an existing 
NPP. Our final considerations provide additional insights on further potential 
applications of these methods to support additional NPP decisions. 
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DEVELOPMENT OF ANALYSIS METHODS THAT 
INTEGRATE NUMERIC AND TEXTUAL 

EQUIPMENT RELIABILITY DATA 
 

1. INTRODUCTION 
In past decades, existing nuclear power plants (NPPs) have been transitioning from corrective and 

periodic maintenance to predictive maintenance strategies to reduce operation and maintenance costs. 
While corrective maintenance is performed only when the asset fails (with high costs due to asset 
replacement and unexpected system and plant unavailability, e.g., loss of generation), periodic maintenance 
is performed at specific time intervals based on reliability factors and past operational experience (with 
high costs due to continuous maintenance operations that may not be warranted). On the other hand, 
predictive (i.e., performance based) maintenance operations are designed to be performed only when the 
asset under consideration requires it. The approach requires advanced prognostic (Okoh, 2001) or health 
management (PHM) techniques (Pecht and Kang, 2019) and this can be achieved by constantly monitoring 
asset status and performances and processing such data (through anomaly detection, diagnostic, and 
prognostic computational algorithms) to identify asset degradation trends and faulty states (Zio, 2013). 

The transition from periodic or corrective maintenance to predictive maintenance (see Figure 1) is 
designed so that maintenance occurs only when the asset requires it (i.e., before its imminent failure). This 
guarantees that asset availability is maximized and operation and maintenance costs are minimized 
(Xingang, 2021). These benefits can be achieved by employing monitoring sensors, automated data 
acquisition systems, data analysis methods, and improved decision processes. When combined together, 
they can provide precise information about the health of an asset, track its degradation trends, and provide 
information of its expected failure time. With such information, maintenance operations can be scheduled 
and performed for each asset only when needed. 

 
Figure 1. Graphical representation of traditional (i.e., periodic) vs. performance based (i.e., only when 
needed) maintenance approaches. 

NPP PHM activities produce a large amount of equipment reliability (ER) data that contain information 
about the status of component, assets, and systems. Such data can come in several forms, such as online 
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monitoring data (e.g., pump vibration data, pump mass flowrate), surveillance and testing data (performed 
by plant operators at regular intervals), condition reports (which typically contain anomalous conditions), 
or maintenance reports (which indicate operations performed to restore component or asset health). All 
these data elements precisely record assets and systems performance and health throughout their lifecycle. 
In addition, such data have the potential to provide insights to system engineers about the presence of 
anomalous behaviors or degradation trends, the possible causes of such behaviors and trends, and identify 
in advance their direct consequences. 

However, several challenges have proven to be roadblocks to reach such potentials. While some are 
technical in nature (i.e., data is often distributed over several physical servers and databases), some others 
are conceptual: data elements have different formats (e.g., numeric, textual) and measured values have 
different scales (e.g., vibration spectra, oil temperature). This report directly tackles the latter roadblock 
and focuses on the integration of numeric and textual data elements to assist plant system engineers analyze 
ER data. 

This task starts by extracting knowledge from textual data using natural language processing (NLP) 
methods and quantifying system, asset, and component health from numeric data. Then we employ model-
based system engineering (MBSE) models of systems and assets to identify their architecture and functional 
(i.e., cause and effect) relations. ER data elements are then associated with a single MBSE entity based on 
their nature. This bonding of MBSE models and ER data elements constitutes the first-of-its-kind 
knowledge graph of a system of an NPP. At this point, data elements are organized in a structured way such 
that system engineers can identify cause-effect patterns between data elements and act accordingly. 

This report is structured as follows: 

• Sections 2–6 provide an overview of the activities performed during Fiscal Year (FY) 2023 in 
terms of the analysis of numeric and textual ER data and their integration in order to assist 
systems engineers on the identification of degraded performance and correlation between 
events. 

• Appendices A and B provide more technical details of this activity in the form of journal papers, 
which will be submitted shortly after the release of this report. 

2. DIGITAL REPRESENTATION OF SYSTEM KNOWLEDGE 
The ability of NPP system engineers to analyze ER data relies on their knowledge about system 

architecture and the physical and logical interdependencies between the assets that are part of such a system. 
Current ER data analysis tools rely only on available data, and they are blind on the actual operating context 
that have generated such data. The term context here refers to the actual physical element being monitored 
and observed, the function(s) supported by such a physical element, and the other elements directly linked 
to it. 

In order to address this limitation, we have developed a set of methods that are based not solely on data 
but also models. The objective of these models is to emulate system engineer knowledge and capture system 
architecture and the physical and logical interdependencies between the assets that are part of such a system. 
Here, we are employing state-of-the-art MBSE methods, which provide several solutions to represent 
systems, assets, and components from both form (i.e., which elements are part of the structures, systems, 
and components) and functional (i.e., how systems and assets interact with each other and which functions 
they support) points of view. These solutions are based on MBSE languages that represent system and asset 
form and functional elements through a set of diagrams. The most commonly used languages are object 
process methodology (OPM) (Dori, 2002), unified modeling language (William, 2004), and systems 
modeling language (Friedenthal, 2008). For the scope of this project, we have chosen the OPM language 
because it provides basic modeling elements we are looking for, and more importantly, it is possible to 
automatically generate digital data structures (i.e., graphs) from OPM diagrams. Each element of an OPM 
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diagram indicates either a function or form element. Links between OPM elements have precise meaning 
(Dori, 2002).  

As an example, Figure 2 shows a simplified OPM model of a centrifugal pump; this diagram indicates 
the existence of form and functional elements (shown using rectangular and ellipsis shapes, respectively). 
The links among them have a precise grammar, and a portion of them are shown in Figure 2: 

• Characterization link identifies an attribute (e.g., pressure) of a form entity (i.e., the fluid operand) 

• Transformation link identifies how a function affects a form entity 

• Transformation link identifies the function that is supported by a form entity 

• Composition link identifies the constituent elements of a form entity. 

During FY23, we have developed a library of MBSE OPM diagrams that cover several light-water 
reactor (LWR) systems, assets, and components, as listed in Table 1. Such a list covers the many relevant 
assets of existing LWRs that are normally under PHM observation. Through these models we can put ER 
data (both textual and numeric) into context and perform machine reasoning (i.e., cause-effect analyses). 

 

 
Figure 2. Simplified OPM model of a centrifugal pump. 

Table 1. List of developed MBSE models. 

LWR Systems LWR Assets and Components 

Reactor building 
Primary system 
Secondary system 
Reactor coolant pump (RCP) 
system 
Reactor pressure Vessel (RPV) 
system 
Pressurizer system 
CWS system 

Pressurizer 
Steam generator 
Centrifugal pump 
Check valve 
Closed feedwater heater 
Motor-operated valve 
Turbine-driven centrifugal pump 
Bearings 

 

3. ANALYSIS OF NUMERIC EQUIPMENT RELIABILITY DATA 
Many NPP assets are continuously monitored (e.g., vibration data, oil temperature, and outlet water 

pressure) via advanced PHM systems in order to identify data trends that may inform system engineers of 
degraded performance or failure of the considered asset. One challenge with complex systems (not only 
nuclear) is the numeric quantification of the health of each asset such that is independent from the type of 
the available data (either condition, diagnostic, or prognostic data). 

Mandelli (2023) describes a valid approach to overcome these challenges using a margin-based 
approach (see Figure 3). Such an approach converts the data generated by condition-assessment, diagnostic, 
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and prognostic systems into margin values that serve as a quantitative measure of asset health. The margin 
value of an asset is not static but changes with time, depending on asset conditions. As an example, if 
degradation due to usage is observed from the monitoring data, the corresponding asset margin value 
decreases. Conversely, if a maintenance operation is performed on that same asset (e.g., restoration of 
centrifugal pump bearings), the asset margin value increases. 

A relevant benefit of a margin approach is that it is possible to effectively propagate margin values 
from the asset level to the system level in order to assess system health using well known reliability models 
(such as reliability block diagrams). From there, it is then possible to identify which elements are more 
critical to guarantee system operation (see Figure 4). With that information, system engineers have an 
analytical approach to prioritize maintenance operations. Such an approach is unique in this respect since 
it harmonizes different numeric ER data sources through the margin definition illustrated in Figure 3. 

 

 
Figure 3. Graphical representation of margin-based actual asset monitoring data. 

 
Figure 4. Graphical presentation of asset margin assessment and propagation from the asset to the system 
level to prioritize maintenance operations. 
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4. ANALYSIS OF TEXTUAL EQUIPMENT RELIABILITY DATA 
In our context, the objective of analyzing textual ER data is to automate the extraction of quantitative 

knowledge from textual data and assist system engineers in assessing system health. The concept of 
“knowledge extraction” is very broad, and its definition might vary depending on the application context. 
In this paper, we have focused our attention on three types of common analysis from ER textual data: health 
evaluation of a reported event, causal relation between events, and temporal relationship between reported 
events.  

The goal of our NLP methods is to extract both qualitative and quantitative knowledge. Hence, machine 
learning (ML) methods based on a supervised or unsupervised algorithm do not really suit our scope since 
they only provide qualitative information (e.g., which user-specified class a sentence belongs to). Our 
approach relies on both ML and rule-based methods. More specifically, for each of the three-analyses listed 
above, our NLP methods are looking within each sentence and paragraph at specific keywords, sentence 
architecture relations, and structures. 

From a general view, our set of methods consists of the following functionalities that cover the actions 
needed to perform ER data analysis: 

• Data preprocessing 

o Abbreviation handling: replace identified abbreviations with the full term 

o Acronym identification: identify the meaning of identified acronyms 

o Spellcheck: automatically correct the misspelled word 

• Entity recognition 

o Temporal attributes identification: identification of dates and time of events 

o Measured quantities identification: identification of numbers and corresponding unit of 
measure obtained from measurement assessments 

o Nuclear keywords identification: identification of nuclear related entities such as 
mechanical, hydraulic components and assets, chemical reactions, and degradation 
mechanisms 

• Knowledge extraction 

o Health status identification: evaluate the nature of the event (e.g., issue report, maintenance 
report) 

o Temporal sequencing of events identification: assess if the report provides a temporal 
relationship between events 

o Cause-effect relations identification: assess if the report provides a causal relationship 
between events 

o Conjecture identification: determine whether the report contains information about future 
prediction (e.g., an event that can occur in the future) or hypothesis about past events (e.g., 
a failure that might have occurred). 

Figure 5 illustrates an example of knowledge extraction from an issue report (IR) where several entities 
have been recognized; from a semantic point of view, a conjecture causal relation between two events has 
been detected: 

(𝐶𝑟𝑎𝑐𝑘𝑠, 𝑝𝑢𝑚𝑝, 𝑠ℎ𝑎𝑓𝑡) 	
!"#$
1⎯3 (𝑝𝑢𝑚𝑝, 𝑓𝑎𝑖𝑙𝑢𝑟𝑒) 
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As a last comment, note that our models do not require any form of training provided past data; rather, they 
can be employed right away assuming the context is similar. 

 
Figure 5. Example of knowledge extraction from an ER textual data element. 

5. CAPTURING CAUSAL RELATIONSHIP BETWEEN EVENTS 
As initially mentioned in Section 1, a causal relationship between events is defined here as the 

combination of their mutual temporal and logical relation. More specifically, by logical relation we imply 
that the occurrence of an event has triggered a series of phenomena which can be either physics based1 or 
digital2. The temporal relation is an additional requirement we impose to avoid that two events that are 
logically related are too far apart from a temporal point of view. 

When dealing with two events detected only by textual ER data elements (or only by numeric ER data 
elements), causal analysis can be performed simply by directly employing MBSE models to check the 
logical and temporal relations. On the other hand, when dealing with the mixed case, numeric and textual 
data elements, slightly different thinking applies from a temporal standpoint. More precisely, we need to 
understand if the occurrence of an event (e.g., reported as an IR) has triggered a change in the numeric 
counterpart or vice versa. Once the NLP knowledge extraction is performed, it is possible to temporally 
characterize it (i.e., define event time of occurrence and its duration, if available). The following step is to 
assess the behavior of the time series prior, after, and during the occurrence of such an event; in our work 
such assessment is performed through a classical two-sample testing algorithm. 

An example is shown in Figure 6 where two events (indicated as 𝐸% and E2) are analyzed along with a 
time series 𝑇𝑆 (shown in blue). Events 𝐸% and E2 (provided in textual form) are analyzed to capture the 
nature of the event along with their temporal attributes (i.e., time of occurrence and duration, if available). 
Then, the provided numeric time series is analyzed in order to identify if there is a temporal correlation 
with each event. For 𝐸%, the developed two-sample testing flags the existence of such correlation; for 
example, after the occurrence of 𝐸% the time series behavior changes (which is indicated as 𝐸% → 𝑇𝑆). 
Similarly, we obtain a temporal correlation between 𝐸& and the time series, which is confirmed by the 
behavior of the time series while event 𝐸& is occurring (which is indicated as 𝐸& ↔ 𝑇𝑆). 

 
Figure 6. Identification of the temporal relations between numeric and textual events (adapted from [Luo, 
2014]). 

 
1 Through an exchange of mass, momentum, or energy. 
2 Through an exchange of digital data via a communication system. 
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6. EQUIPMENT RELIABILITY DATA ANALYSIS APPLIED TO 
CIRCULATING WATER SYSTEM 

The developed methods have been tested and applied to the analysis of the circulating water system 
(CWS) of an existing pressurized-water reactor plant (see Figure 7). The CWS is an important non-safety-
related system. As the heat sink for the main steam turbine and associated auxiliaries, the CWS is designed 
to maximize steam power cycle efficiency (Agarwal et al., 2021a; 2021b). A CWS consists of the following 
major equipment: vertical motor-driven circulating pumps (each with an associated fixed trash rack and 
traveling screen at the pump intake to filter out debris and marine life), main condenser, condenser waterbox 
air removal system, and circulating water sampling system. 

 
Figure 7. Plant CWS system with sensors and instrumentation. 

 A large amount of historical data has been collected and employed to track the health profile of the 
system. This dataset consists of a large number of variables of a different nature (e.g., temperature, motor 
current, vibration data). An important observation here is that in some temporal windows, data entries for 
these monitored variables might be missing due to a failure of the monitoring system. By performing a 
separate analysis of the available maintenance logs, it has been possible to identify several faulty states 
throughout the history of the CWS system. 

We applied the methods described in Section 3, 4, and 5, and more specifically, by following these 
steps: 

1. Develop an MBSE model of the CWS system and its major assets. In this case, the centrifugal 
pumps since most of the monitored data were located around these assets. Once linked, we 
obtained a network of MBSE models that capture the form and functional architecture of the 
overall system. Then, we deployed our analysis tools to transform MBSE models into digital 
structures (i.e., graph-based), which will form the skeleton of the knowledge graph (see Section 
2). 

2. Develop margin models for the CWS system given available numeric ER data (see Section 3). 
In our case, we relied on the models that were based on the available condition-based data and 
ML models (Hastie, 2001) developed in collaborations with the plant modernization pathway 
(again under the Light Water Reactor Sustainability Program). Such margin models allow us 
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to detect transitions from healthy conditions to faulty states. These transitions are the elements 
that are relevant to be captured from an ER knowledge point of view. 

3. Apply our NLP knowledge extraction methods to the available set of work orders (WOs) and 
IRs generated from the CWS system. The textual description of the events contained in these 
reports are usually very short single sentences that often contains acronyms and abbreviations. 
Without data cleaning and curation, knowledge extraction would not be possible. Our 
developed methods (see Section 4) were able to clean enough elements required to extract the 
most relevant information. Further development and testing will continue soon. 

4. The digital structures (i.e., graphs) generated from the MBSE models are then populated by: 

a. Assigning textual elements that mention specific MBSE entities to those entities 

b. Assigning abnormal events from the margin analysis to the corresponding MBSE 
entities 

c. Identifying possible causal links between the data elements assigned to the MBSE 
entities; note while this task might appear computationally expensive, due to the large 
amount events, the initial evaluation of the logical relationship among them filters out 
unnecessary temporal evaluations. 

7. CONCLUSIONS 
This report has presented a summary of the activities performed during FY23 regarding the analysis of 

ER data to support system engineers’ decision making. The starting point is the challenges behind the 
analysis of ER due to their large size (i.e., large number of monitored sensors and data recorded over decade 
of operation) and their heterogenous formats (e.g., numeric and textual). Such ER data sources are very 
difficult to analyze manually; however, system engineers have the valuable knowledge to interpret ER data 
elements and identify possible temporal or casual-effect links between them given their knowledge of the 
systems and assets under considerations. Our work focused on development of both models—designed to 
emulate such system engineer’s knowledge in a digital form—and methods to put ER data into context. 

The developed methods have been tested on the CWS system of an existing NPP; the provided data 
consisted of both monitored data and textual data. The analyses of these two classes started separately (i.e., 
knowledge extraction for textual ER data and margin analysis for numeric ER data) while data integration 
is finally completed using the CWS MBSE model as a common data skeleton. From there, our ER analysis 
methods can detect temporal and logical relationships between ER data elements to perform a first-of-its-
kind application “machine reasoning”. 

 The details of our work are presented in the two appendices, while the first focus mainly on the process 
of knowledge extraction from textual data, the second one focuses on the actual integration of numeric and 
textual ER data. These two appendices also present few considerations with the goal of introducing 
additional applications of the developed methods. As an example, the sentence similarity measures are 
proving very effective to identify if a just observed event (reported in textual form) has occurred in the past. 
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Natural Language Processing Toolset for  
Equipment Reliability Data Analysis  

Congjian Wanga, Diego Mandellia, J. Cogliatia 

a Idaho National Laboratory 

ABSTRACT 

Complex engineering systems such as nuclear power plants (NPPs) are generating and 
collecting a large amount of equipment reliability (ER) element data that contain 
information about the status of components, assets, and systems. Some of this information 
is in textual from where, typically, events such as issue reports and maintenance activities 
are described. The analyses of textual data in current NPPs using natural language 
processing methods have grown in the last decade and only recently the potentials of this 
kind of analyses have emerged. So far, applications of natural language processing methods 
have been limited to mostly classification and prediction to identify the nature of the textual 
element (e.g., safety or non-safety relevant). Here we are targeting a more complex 
problem: the automatic generation of knowledge out of a textual element to assist system 
engineers in assessing system health. “Knowledge extraction” is very broad concept, and 
its definition might vary depending on the application context. In our context, knowledge 
extraction means that, out of an ER textual element, we want to identify the systems or 
assets mentioned in it and the type of event described in it (e.g., a component failure or a 
maintenance activity). In addition, we want to identify details such as measured quantities 
and temporal or cause-effect relations between events. This paper describes how ER textual 
data elements are first preprocessed to handle typos, acronyms, and abbreviations and then 
machine learning and rule-based algorithms are employed to identify physical entities (e.g., 
systems, assets, components) and specific phenomena (e.g., failure, degradation). Several 
applications relevant from a NPP ER point of view are presented as well. 

Keywords: natural language processing, knowledge extraction, machine learning 

List of acronyms 

ER equipment reliability 

IR issue report 

LWR light-water reactor 

ML machine learning 

NLP natural language processing 

NPP nuclear power plant 

OPM object-process methodology 

POS part of speech 

PWR pressurized-water reactor 

SSCs structures, systems, and components 

WO work order 
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1 Introduction 

To reduce operation and maintenance costs, existing nuclear power plants (NPPs) are moving from 
corrective and periodic maintenance to predictive maintenance strategies. This transition is designed so that 
maintenance occurs only when component requires it (e.g., before its imminent failure). This guarantees 
that component availability is maximized and that maintenance costs are minimized. However, these 
benefits require changes in the data that need to be retrieved and the type of decision processes to be 
employed. Advanced monitoring and data analysis technologies are essential to support predictive 
strategies. They can in fact provide precise information about the health of a component, track its 
degradation trends, and provide an estimate of its expected failure time. With such information, 
maintenance operations for a component can be performed right before its expected failure time.  

This dynamic context of operations and maintenance operations (i.e., predictive) requires new methods 
to process and analyze equipment reliability (ER) data. A relevant issue is that ER data can have 
heterogenous data formats: textual, numeric, image, etc. The analysis of numeric ER data has been 
addressed in many works (Xingang et al., 2021) and applied to many operational directions, including 
anomaly detection, diagnosis, and prognosis. The analysis of textual data has been investigated only 
recently using machine learning (ML) methods (Young et al., 2018) designed to assess their nature (e.g., 
safety or non-safety related), and there is no unified toolset that system engineers could adopt to analyze 
textual ER data. The information contained in ER data in textual form refers to events such as issue reports 
(IRs) or maintenance activities (or work orders [WOs]) that have been performed. 

This paper primarily focuses on applying NLP methods for ER data analysis to support robust decisions 
in a plant operation context. NPPs are constantly monitoring the status and performance of many systems 
and components. Hence, a large amount of textual data is continuously being generated. The objective of 
analyzing textual ER data is to automate the extraction of quantitative knowledge from textual data and 
assist system engineers in assessing system health. The concept of “knowledge extraction” is very broad, 
and its definition might vary depending on the application context. In this paper, we have focused our 
attention on three types of analysis that are common for ER textual data:  

• Health evaluation of a reported event 

• Causal relation between events 

• Temporal relationship between events 

The goal of our NLP methods is to extract both qualitative and quantitative knowledge. Hence, ML 
methods based on a supervised or unsupervised algorithm do not really suit our scope since they only 
provide qualitative information (e.g., which user-specified class a sentence belongs to). Our approach relies 
on both ML and rule-based methods. More specifically, for each of the three analyses listed above, our NLP 
methods are looking within each sentence and paragraph at specific keywords, sentence architecture 
relations, and structures. To improve the clarity of this paper, the following elements are here defined: 

• Text: the actual raw content of an issue report (IR) that can be composed of multiple sentences 

• Sentence: the base element of a text that expresses a complete concept, which can be simple (i.e., 
single clause) or complex (i.e., multiple clauses) 

• Clause: a grammatical constituent that consists of a subject and a predicate. 

2 Library Overview 

2.1 Software Architecture 

Our software analysis tool provides algorithms and functions for ER data analysis built on the SpaCy 
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library. It follows the ASME NQA-1 quality assurance standard and a procedural programing style, and 
provided pipelines (e.g., functions or modules) are organized as shown in Figure 1. The code is developed 
on top of well-established Python libraries, such as SpaCy, numpy, and Pandas. With the basic NLP 
capabilities provided by SpaCy (dependency parsing, part of speech (POS) tagging, tokenizing), our 
methods focus on extracting health status, cause-effect information, and temporal relationship from ER data 
that can support a robust decision in the plant operation context. 

2.2 Software Functionalities or Capabilities 

From a general view, our set of methods consists of the following functionalities and pipelines that 
cover the actions needed to perform ER data analysis as illustrated in Figure 1: 

• Utilities for text processing, such as removing, replacing, and normalizing of the text 

• Abbreviation handling replaces the abbreviations with their full name 

• Spellcheck automatically correct the misspelled text 

• Acronym identification identifies the meaning for the acronyms 

• Temporal attributes identification 

• Temporal sequencing of events identification 

• Measured quantities identification 

• Nuclear keywords identification 

• Conjecture identification determines whether the clause is conjecture or not 

• Cause-effect relations identification 

• Health status identification 

• Text similarity identification 

• Knowledge graph construction 

 

3 Capabilities 

3.1 Leverage Capabilities from External Libraries 

In this work, we have integrated SpaCy (https://github.com/explosion/spaCy), PySBD 
(https://github.com/nipunsadvilkar/pySBD),  Coreferee (https://github.com/msg-systems/coreferee),  and 
few other libraries for text data analyses. SpaCy is an open-source Python library including tagging, parsing, 
NER, text classification, and more. It features state-of-the-art speeds and provides a variety of linguistic 
annotations to give insights into a text’s grammatical structure. PySBD is a rule-based sentence boundary 
disambiguation Python package, released under the MIT license, to determine sentence boundaries. 
Coreferee is also an open-source Python library, released under the MIT license, to resolve coreferences. 
Table 1 presents a list of analysis steps we employed to process digital text data.  

3.2 Tokenization 

The first step in processing the text is to tokenize it using a SpaCy tokenizer (i.e., segment it into a list 
of words, punctuation, and so on) by applying rules specific to raw text, as illustrated by Figure 2. First, the 
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raw text is split on whitespace characters. Then, the tokenizer processes the text from left to right. On each 
substring, it performs two checks: 

1. Does the substring match a tokenizer exception rule? For example, “don’t” does not contain 
whitespace but should be split into two tokens, “do” and “n’t.” 

2. Can a prefix, suffix, or infix be split off, such as punctuation like commas, periods, hyphens, or 
quotes? 

If there’s a match, the rule is applied, and the tokenizer continues its loop, starting with the newly split 
substrings. This way, the tokenizer can split complex, nested tokens like combinations of abbreviations and 
multiple punctuation marks. 

 
Figure 1. Graphical illustration of the developed NLP analysis tools. 
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Table 1. Leveraged capabilities from external libraries. 

ID NLP Steps NLP Pipeline Note 

1 Tokenization tokenizer (SpaCy) Segmenting text into words, 
punctuations marks, etc. 

2 Sentence segmentation  
pysbdSentenceBoundaries 
(PySBD) 
 

Finding and segmenting individual 
sentences 

3 
POS 
 

tagger (SpaCy)  Assigning word types to tokens, like 
verb or noun 

4 Dependency parsing parser (SpaCy) 
Assigning syntactic dependency labels 
and describing the relations between 
individual tokens, like subject or object 

5 Lemmatization lemmatizer (SpaCy) 
Assigning the base forms of words, 
such as the lemma of “was” is “be” 
and the lemma of “pumps” is “pump” 

6 Similarity  tok2vec (SpaCy) 
Comparing words, text spans, and 
documents and how similar they are to 
each other 

7 Rule-based entity 
recognition entity_ruler (SpaCy) 

Finding sequences of tokens based on 
their texts and linguistic annotations 
and labeling named SSCs 

8 Coreference  Coreferee (Coreferee) 
Resolving coreference situations where 
two or more words within a text refer 
to the same entity 

 

 
Figure 2. Tokenization process: given the provided text, the obtained tokens are highlighted in blue. 
 

3.3 Sentence Segmentation 

The next important step is to determine the sentence boundaries, that is, segment the text into a list of 
sentences. It is a key underlying task for NLP process. In this work, we employ PySBD 
(https://github.com/nipunsadvilkar/pySBD), a rule-based sentence boundary disambiguation Python 
package, to detect the sentence boundaries. We have developed a custom pipeline using PySBD that is used 
with SpaCy to split text into a list of sentences. In general, there are three different approaches to segment 
sentences: 1) rule based, requiring a list of hand-crafted rules, 2) supervised ML, requiring training datasets 
with labels and annotations, and 3) unsupervised ML, requiring distributional statistics derived from raw 
text. We choose the rule-based approach because the errors are interpretable and the rules can be adjusted 
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incrementally. Moreover, the performance can be better than the ML models. For example, PySBD passes 
97.93% of the Golden Rule Set exemplars (a language-specific set of sentence boundary exemplars) for 
English, with an improvement of 25% over the next best open-source Python tool (Sadvilkar and 
Neumann, 2020). 
 

3.4 Part of Speech 

After the correct segmentation of sentences, SpaCy tagger is used to parse each sentence and tag each 
token in the sentence. Both “TAG” and “POS” attributes are generated for each token after the SpaCy 
tagger process. “POS” is the simple universal POS tag, does not include information for any morphological 
features, and only covers the word type (https://universaldependencies.org/u/pos/). The morphology is the 
process by which a root form of a word is modified by adding prefixes or suffixes that specify its 
grammatical function but do not change its POS. These morphological features are added to each token 
after the POS process and can be accessed through token’s “morph” attribute. In addition, the “TAG” 
attribute expresses the POS and some amount of morphological information. For example, the POS 
“VERB” tag is expanded into six “TAG” tags, “VB” (verb, base form), “VBD” (verb, past tense), “VBG” 
(verb, gerund, or present participle), “VBN” (verb, past participle), “VBP” (verb, non-third person singular 
present), and “VBP” (verb,  third person singular present). In this work, we employ these POS and TAG 
tags to determine the description of the SSC health status (conjecture or qualitative observations). 
  

3.5 Dependency Parsing 

After the correct segmentation of sentences, that SpaCy tagger is used to parse each sentence and tag 
each token in the sentence. Both “TAG” and “POS” attributes are generated for each token after the SpaCy 
tagger process. “POS” is the simple universal POS tag, does not include information for any morphological 
features, and only covers the word type (https://universaldependencies.org/u/pos/). The morphology is the 
process by which a root form of a word is modified by adding prefixes or suffixes that specify its 
grammatical function but do not change its POS. These morphological features are added to each token 
after the POS process and can be accessed through the token’s “morph” attribute. In addition, the “TAG” 
attribute expresses the POS and some amount of morphological information. For example, the POS 
“VERB” tag is expanded into six “TAG” tags, “VB” (verb, base form), “VBD” (verb, past tense), “VBG” 
(verb, gerund, or present participle), “VBN” (verb, past participle), “VBP” (verb, non-third person singular 
present), and “VBP” (verb, third person singular present). In this work, we employ these POS and TAG 
tags to determine the description of the SSC health status (conjecture or qualitative observations). 

 

 

Figure 3. POS tagging and dependency parsing. 
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3.6 Lemmatization 

A lemma is the base form of a token. As an example, the word “fail” is the lemma of “failing,” “fails,” 
and “failed.” Lemmatization is the process of reducing words to their base forms or lemmas. In this study, 
we employ the SpaCy lemmatizer to reduce inflectional forms or derivationally related forms of a word to 
a common base form. In this case, we only need to provide the base forms of keywords that leads to a 
significant reduction in the number of keywords. 
 

3.7 Rule-Based Entity Recognition 

In this work, we can create a set of SSCs either from the U.S. Nuclear Regulatory Commission (NRC) 
reports or NPP engineering models. We utilize the set of SSCs to construct patterns that can be directly 
passed into the SpaCy “entity_ruler” to identify and label the SSCs as recognized entities. The 
“entity_ruler” is a SpaCy pipeline that lets us add named entities, which makes it easy to combine rule-
based and statistical NER for even more powerful pipelines. The “entity_ruler” finds matches in the text 
and labels them using the specified pattern label. If any matches were to overlap, the pattern matching most 
tokens takes priority. If they also happen to be equally long, the match occurring first in the text is chosen.  

Entity patterns are dictionaries with two keys: “label,” specifying the label to assign to the entity if the 
pattern is matched, and “pattern,” the match pattern. The entity ruler accepts two types of patterns: 

• Phrase patterns for exact matches (string) 

{“label”: “SSC”, “pattern”: “pump”} 

• Token patterns with one dictionary describing one token (list) 

{“label”: “SSC”, “pattern”: [{“LOWER”: “pump”}, {“LOWER”: “shaft”}]}. 

The “entity_ruler” can also accept an “id” attribute for each pattern. Using the “id” attribute allows multiple 
patterns to be associated with the same entity. 
 

3.8 Coreference Resolution 

Coreference are situations that often occur in texts where pronouns (e.g., it, they) are used to reference 
elements in the text.  Coreference resolution targets the identification of the actual textual element linked 
to a pronoun. An example is shown in Figure 4, where the pronoun “they” refers to the previously defined 
textual element “cracks.” In our analysis tools we employ Coreferee (https://github.com/msg-
systems/coreferee), an open-source Python library, to resolve coreferences within English texts. It uses a 
mixture of neural network and programmed rules to identify potential coreference mentions. In this work, 
we have developed several custom SpaCy pipelines to make Coreferee work seamlessly with SpaCy, 
which helps us identify causal relations among multiple sentences. 
 

 
Figure 4. Example of coreference resolution. 
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3.9 Spellcheck, Acronym, and Abbreviation Handling 

NPP IRs and WOs are usually short sentences that often contain abbreviations. The presence of 
abbreviations negatively impacts the ability to extract knowledge from such texts. Hence, we have 
developed an NLP pipeline designed to identify abbreviations and replace them with their corresponding 
complete word. The starting point is a library of words abbreviations that have been collected from 
documents available in-line. This library is basically a dictionary that contains the corresponding set of 
words for each identified abbreviation. A challenge here is that a single abbreviation might have multiple 
words associated with it. Similarly, a word might have multiple ways to be reduced. 

Handling abbreviations in each sentence is performed first by identifying misspelled words. Then each 
misspelled word is searched for in the developed library. If an abbreviation in the library matches the 
misspelled word, then it is replaced by the corresponding complete word. If no abbreviation in the library 
is found, then we proceed by searching for the closest one. If multiple words match the obtained 
abbreviation, then the word that best fits the sentence context is chosen.  

Another class of textual elements that are often present in ER textual data are acronyms (e.g., HPI is an 
acronym for the high-pressure injection system), and they typically refer to specific assets or systems of an 
NPP. The handling of such situations has been performed in a similar way as indicated above for 
abbreviations where a library of acronyms using openly available NRC, Electric Power Research Institute, 
and Nuclear Energy Institute documents has been developed.  

After the abbreviation and acronym handler methods are completed, then the remaining misspelled 
words are parsed through our spellchecking methods for a last correction. 

 

 
Figure 5. Example of spellcheck (i.e., word “pmp”), acronym (i.e., HPI), and abbreviation (i.e., “refurb”) 
handling. 
 

3.10 Identification of Temporal Quantities 

Temporal attributes indicate time instances when specific events have occurred. Time of occurrence is 
an important factor from a causal point of view since the emergence of an effect is always preceded by its 
cause. Hence, temporal information can be valuable to identify the possible links between recorded events.  

Temporal quantities might come in different forms; for the scope of this article, we portioned these 
forms into four classes (see Table 2) that specify the occurrence of an event in absolute terms—date or 
time—or in relative terms (i.e., duration or frequency).  

A relevant observation is related that the provided temporal information might contain some 
uncertainty. The handling of this situation was performed by defining a specific list of keywords that 
indicate approximation and their corresponding set of relations based on observed datasets (see Table 3). 
The set of temporal relations that have been developed are shown in Table 4. 

The developed pipelines have been designed to capture temporal quantities for the four forms listed in 
Table 2; in this respect, an example of this identification is shown in Figure 6. 
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Table 2. Examples of date, time, duration, and frequency temporal expression. 

Date Time Duration Frequency 

11/3/2005 
November 3rd 2005 
Yesterday 
Tomorrow 
Thursday 
Last Week 

Friday 
morning 
12:30 a.m.  
3 pm 
12:30 
12:00 am 
20 minutes ago 

10 hours 
last 5 months 
2 days 
2 days 
couple of days 
1988–1992 

every Friday 
every 4 hours 
every month 
twice a year 
thrice a day 

 
Table 3. Portion of the list of approximations that might be associated with a temporal attribute. 

Approximation 

About 
Almost 
Nearly 
Roughly 
Approximately 
Nearly 
Around 
Closely 
Circa 
Close 
Like 
More or less 
Roughly 

Table 4. List of relations that indicate a temporal attribute. 

Relations 
[verb] + [at, on] + “time instance” 
[verb] + [at, on] + [approximation] + “time instance” 
[verb] + for + “time duration” 
[verb] + for + [approximation] + “time duration” 
[noun] + [verb] + “time duration” 
[noun] + [verb] + [approximation] “time duration” 

 

 
Figure 6. Example of identification of temporal attributes. 



 
20 

3.11 Identification of Temporal Sequencing of Events 

Another class of textual data elements that can often be retrieved from NPPs includes IRs that report 
multiple events linked by temporal relations. Temporal relations can be both quantitative (e.g., an event has 
occurred two hours after another event) and qualitative (e.g., an event has occurred before another event). 
Note that a temporal relation does not necessarily imply a causal relation. In this respect, system engineering 
models can be employed to reconstruct the causal relationship between events if additional ER data is 
available. In this research, we are following the work of Moerchen (2012), which lists the major temporal 
relations between events (see Figure 7): 

• Order: sequential occurrence of events 

• Concurrency: (almost) simultaneous occurrence of events from beginning to end 

• Coincidence: temporal intersection of events 

 
Figure 7. Graphical concepts of time-based relations: order, duration, concurrence, and coincidence of 
events (Moerchen, 2012). 

Note that event duration (which is also indicated in Figure 7) does not provide information about 
temporal relations between events; instead, event duration is here considered a temporal attribute. The 
analysis of sentences containing temporal relations involves identifying specific keywords, relations, and 
grammatical structures in each sentence. In this respect, Table 5 and Table 6 provide the identified keywords 
(i.e., verbs, adjectives, and adverbs) and Table 7 and Table 8 provide grammatical structures that indicate 
the order and coincidence of events. 

The example provided in Figure 8, shows how two temporal attributes have been identified which 
indicate a temporal sequence and concurrency of events. 
 
Table 5. List of sample keywords and structures that indicate order of events. 

Keywords 
Structures Verbs Adjectives Adverbs 

Antedate 
Follow 
Postdate 

After 
Before 
Consecutive 

Afterward 
Consecutively 
Consequently 

Soon after 
After that 
After a while 
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Precede 
Predate 
Succeed 
 

Earlier 
Following 
Former 
Later 
Next 
Past 
Precedent 
Previous 
Prior 
Subsequent 
Succeeding 
Successive 

Directly 
Hereafter 
Later 
Next 
Previously 
Subsequently 
Successively 
Then 
Thenceforth 
Thereafter 
 

 

 

Table 6. List of sample keywords that indicate the concurrence and coincidence of events. 

Keywords 
Structures 

Verbs Adjectives Adverbs 
Accompany 
Conform 
Correspond 
Harmonize 
Parallel 

Accompanying 
Attending 
Coexistent 
Concomitant 
Concurrent 
Imminent 
Simultaneous 
Synchronic 
 

When 
Thereupon 
While 
During 
 

At that point 
At that moment 
At that time 
At that instant 
In the end 
On that occasion 
 

 
Table 7. List of relations that indicate the order of events. 

Relations 
Event_1 + [order verb] + Event_2 
Event_1 + [verb] + [adverb] + Event_2 
Event_1 + [verb] + [adjective] + Event_2 

 
Table 8. List of relations that indicate the concurrence and coincidence of events. 

Relations 
Event_1 + [verb] + [adverb] + Event_2 
Event_1 + [verb] + [adjective] + Event_2 
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Figure 8. Example of analysis of sentences containing health status (highlighted in green) and the 
corresponding SSCs (highlighted in blue), temporal entities (highlighted in purple) identified from 
https://www.nrc.gov/docs/ML2320/ML23207A076.pdf. 
 

3.12 Identification of Measured Quantities 

Here we aim to identify a precise observation (i.e., a measured point value or delta estimate) of a 
measured variable. This observation requires a numeric value followed by its unit; however, it is not unusual 
that the unit might be missing. A relevant observation to be made at this point is that, based on the observed 
NPP ER textual, data measured quantities can be specified in a large variety of ways, and not only in the 
classic form “number + unit of measure.” Examples of these possible ways are shown in Table 9. 

Table 9. Example of quantitative observations. 

one half 
three halves 
0.1 
10% 
3 cm 
multiplied by 2 
75–80% 
4:1 ratio 
5th percentile 
within 5th and 95th percentile 
the 3rd quartile 
scored 6 on a 7 point scale 
between three and four 

 

For the scope of our ER applications, we focused on the development of structural relations that are 
listed in Table 10. Note that when referring to delta estimates, verbs and nouns convey that qualitative 
information (positive, negative, or neutral) can be present. In our tool, we are leveraging the existing tool 
quantulum3 (https://github.com/nielstron/quantulum3) and text syntactic structure for measured quantities 
extractions. Quantulum3 could be used to identify all possible numerical values either with or without units, 
while syntactic information will help to disambiguate the units from the actual natural language.   

An example of identification of measured quantities are shown in Figure 9; the textual elements are 
taken from few U.S. nuclear regulatory commission (NRC) licensee event reports (LERs). The quantities 
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that have been correctly identified are highlighted in blue while the one that have not been identified are 
highlighted in red. 

 

Table 10. List of sentence relation for quantitative observation. 

Relation 

[neutral verb] + “quantity value” 
[neutral verb] + “quantity delta value” 
“quantity value” + [neutral noun] 
“quantity delta value” + [neutral noun] 
[negative verb] + “quantity value” 
[negative verb] + “quantity delta value” 
“quantity value” + [negative noun] 
“quantity delta value” + [negative noun] 
[positive verb] + “quantity value” 
[positive verb] + “quantity delta value” 
“quantity value” + [positive noun] 
“quantity delta value” + [positive noun] 

 
 

 
Figure 9. Example of identification of measured quantities from text taken from 
https://www.nrc.gov/reading-rm/doc-collections/event-status/event/2020/index.html. 
 

3.13 Identification of Location Attributes 

Similar to temporal attributes, location attributes provide qualitative information where specific events 
have occurred. While location information does not provide additional health information to a system 
engineer, it might contain clues about the health of a specific component when a reported event has occurred 
near it. As an example, the textual report: 

“An oil puddle was found nearby pump MFW-1A” 
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identifies an element (i.e., oil) that might have a relation to a nearby pump (i.e., MFW-1A pump). Thus, 
this textual report indicates how the oil element is no longer part of the OPM diagram. The identification 
of location attributes is being performed by looking at specific prepositions and relations listed in Table 11 
and Table 12, respectively. 

An example of identification of location attributes are shown in Figure 10; the textual elements are 
taken from few U.S. NRC LERs. Here, the identification of these attributes is very robust. 

 

Table 11. List of sample keywords that indicate a location attribute. 

Proximity Located Above Located Below 
Across from 
Adjacent 
Alongside 
Approaching 
Beside 
Close 
Close by 
Contiguous 
Distant from 
In proximity 
Near 
Nearby 
Neighboring 
Next to 
Receding from 
Remote 
Retreating from 

Above 
Anterior 
Atop 
Beyond 
High 
On top of 
Over 
Overhead 
Upward 

Below 
Beneath 
Bottom 
Deep 
Down 
Down from 
Downward 
Low 
Posterior 
Under 
Underneath 

Table 12. List of relations that indicate a location attribute. 

Relations 
[verb] + “location keyword” + noun 
Subj + “location keyword” + obj 
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Figure 10. Example of identification of location attributes from text taken from 
https://www.nrc.gov/reading-rm/doc-collections/index.html#event. 
 

3.14 Identification of Nuclear Entities 

Similar to the medical field, NLP knowledge extraction methods require the capability to identify 
specific entities. In the nuclear field such entities include system assets and components that can be found 
in any NPP.  Such a library for the nuclear field has been developed in past years using NRC and Electric 
Power Research Institute available textual data. The entities contained in such a library (about 5,000 and 
growing) have been grouped in eight main classes and subsequently divided into groups (mainly for data 
management purposes). In this respect, Table 13 lists the set of classes and groups created so far along with 
a few examples. 

By investigating NPP IR data, we have observed that chemical elements are often reported. Hence, the 
identification of these elements can play a major role into the overall knowledge extraction process. In this 
respect, we are employing the chemnlp library (https://github.com/usnistgov/chemnlp) to identify 
chemical elements and compounds from textual elements.  

An example of application of the developed method is shown in Figure 11 which is reporting an event 
which indicates few entities, systems, and chemical entities in either full or abbreviated form that are 
correctly identified. 

 
Table 13. Class and groups of nuclear-related keywords. 

Class Group Examples 

Mechanical components 

Fasteners 
Rotary elements 
Structural 
Purpose specific 

Anchor bolt, cap screw, latch, pin 
Cam, shaft, gear, pulley 
Beam, column, sleeve, socket 
Filter, manifold, blade 

Non-mechanical 
components 

Electrical/electronic 
Hydraulic/Pneumatic 

Amplifier, relay, buzzer, capacitor 
Coupler, filter, pipe 

Assets Mechanical Engine, vessel 
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Electrical 
Hydraulic/Pneumatic 
Electronic 
I&C 
Nuclear fuel 

AC bus, alternator, generator, transformer 
Pump, valve, condenser, fan 
Computer, tablet, controller 
Digital meter, FPGA, transmitter, sensor 
Fuel rod, control blade 

NPP elements 
Systems 
Architectural 

Feedwater, switchyard, feedwater 
Containment, control room, pump house 

Tools and treatments 
Tools 
Treatments 

Jigsaw, solder gun, tape, crane 
Bolting, riveting, grinding, infrared testing 

Operands 
Electrical 
Hydraulic/Pneumatic 

AC current, electromagnetic 
Compressed air, steam, gasoline, water 

Compounds Materials Plastic, plywood, concrete, polyethylene 

Reactions 
Chemical reaction 
Degradation mechanism 
Failure type 

Combustion, oxidation, evaporation, 
Corrosion, dissolution, fatigue  
Leak, rupture, brittle fracture 

 

 
Figure 11. Example of identification of nuclear entities. 
 

3.15 Identification of Conjectures 

Here we are considering textual elements that contain information about future prediction (e.g., an event 
that can occur in the future) or hypothesis about past events (e.g., a failure that might have occurred). Even 
though the reported event has not occurred (or could happen), this evaluation might be relevant for future 
ER diagnosis (identify possible causes from observed events) or prognostic (identify consequences from 
observed phenomena) purposes.  

In this context, the verb tense plays a role in the identification of this kind of report. Future predictions 
are characterized by present and future tense verbs; hypotheses about past events are typically characterized 
by past tense verbs. Also for these kind of reports, we have identified specific keywords (see Table 14) and 
relations (see Table 15) that can inform our methods that we are dealing with a conjecture observation. 

An example of identification of conjectures about past and future events is shown in Figure 12: the full 
NRC LER 2021-001-00 “Atmospheric Steam Dump Valves Inoperable Due to Relay Failure” has been 
analyzed and Figure 12 reports three identified conjectures. 

On 12/17/98, at 0611 hours, Unit 1 was placed in Hot Standby in order to perform repairs on a lube

oil cooler for Reactor Coolant Pump ( RCP) 1-3. On 12/18/98, during routine inspections of the work

area, a buildup of boric acid was discovered. At 1800 hours on 12/18/98, the source of the boric acid

was determined to be RCS leakage from the lower radial bearing RTD thermowell on RCP 1-3. In

addition, the leakage was determined to be RCS pressure boundary leakage. In accordance with plant

Technical Specifications, preparations are being made to place the Unit in Cold Shutdown. The

magnitude of the leakage is significantly less than 1 gpm.
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Table 14. Examples of keywords that indicate a conjecture observation. 

Keyword 
Expected 
Possible 
Probable 
Feasible 
Plausible 
Presumed 
Hypothetical(ly) 
Likely 
Unlikely 
Potential 
Uncertain 
Anticipated 
Foreseen 
Impending 
Upcoming 
Brewing 
Looming 
Forthcoming 

Table 15. List of relations that indicate a conjecture observation. 

Relation Example 
Subj + “future verb” 
Subj + “conjecture keyword” + “verb” 
Conditional + subj + “verb” + “conjecture keyword” + 
“verb” 
Subj + “past verb” + hypothesis 

The pump will fail 
The pump is likely to fail 
If the pump overheats, it is expected to 
fail 
The pump failed because it overheated 

 
 

Figure 12. Example of identification of conjectures identified from NRC LER 2021-001-00 “Atmospheric 
Steam Dump Valves Inoperable Due to Relay Failure”. 

The capacity of the ASDVs is adequate to prevent lifting of the main steam safety valves following 
a turbine and reactor trip. 
 
Although the steam dump system is arranged for automatic operation, the ASDVs may be 
manually controlled from either control room or engineered safeguards control panels. 
 
This action will appropriately prioritize maintenance for the relay and prevent recurrence of this 
failure. 
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3.16 Identification of Health Status 

The analysis of a health status report can have different forms. By looking at an initial textual data set, 
we were able to identify three types of health status reports: 

• Qualitative observation: the report provides a qualitative observation (e.g., good, degraded, 
increase, decrease, stable, stop) about an event 

• Quantitative observation: the report provides a precise observation (i.e., report on point value or 
delta estimate of a measured variable) of an event (see Section 3.8) 

• Conjecture observation: the report provides information about a future prediction or hypothesis 
about the past (see Section 3.10) 

In addition, we have identified two attributes that might be contained in health status reports we aim to 
extract from the raw text: temporal (see Section 3.5) and location attributes. 

IRs that report a qualitative observation provide a fairly simple (i.e., qualitative) observation about an 
event. Table 16 provides a list of relations that have been identified along with ER related examples. As 
indicated in Table 16, the set of relations are based on specific sets of nouns, adjectives, verbs, and adverbs. 
Given the nature of these observations, each of these grammatical entities (i.e., nouns, adjectives, verbs, 
and adverbs) can convey qualitative information: positive, negative, or neutral. In this respect, Table 17, 
Table 18, and Table 19 provide a subset of grammatical entities for each of the three classes (positive, 
negative, or neutral). 

We applied the developed health identification method to the openly available NRC LER 2021-001-00 
“Atmospheric Steam Dump Valves Inoperable Due to Relay Failure”; in this respect, Table 20 lists a subset 
of health status that have been identified. 

 

Table 16. List of sentence relations for qualitative observation. 

Relation Example 
Subj + “status verb” Pump was not functioning 
Subj + “status verb” + “status adjective” Pump performances were acceptable 
Subj + “status verb” + “status adverb” + obj Pump was partially working 
“status adjective” + subj + “status verb”  Unresponsive pump was observed 
“status noun” + “prep” + “status verb”  Deterioration of pump impeller was observed 

Table 17. Partial list of keywords that indicate negative information. 

Nouns Verbs Adjectives Adverbs 
Breakdown 
Collapse 
Decline 
Deficiency 
Deterioration 
Failing 
Decay 
Downfall 

Disabled 
Reject 
Stop 
Block 
Halt 
Oppose 
Inhibit 
Hinder 

Unacceptable 
Improper 
Inadmissible 
Undesirable 
Unsatisfactory 
Unacceptable 
Unsuitable 
Unwanted 

Inaccurately 
Erroneously 
Wrongly 
Inadequately 
Incompletely 
Partially 
Imperfectly 
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Table 18. Partial list of keywords that indicate positive information. 

Nouns Verbs Adjectives Adverbs 
Accomplishment 
Achievement 
Enhancement 
Progression 
Solution 
 

Enable 
Empower 
Facilitate 
Permit 
Set up 
Endow 
Let 
Make 

Ready 
Fit 
Capable 
Apt 
Available 
Adequate 
Competent 
Proficient 

Accurately 
Nicely 
Perfectly 
Precisely 
Properly 
Rightly 
Accurately 
Appropriately 

Table 19. Partial list of keywords that indicate neutral information. 

Nouns Verbs Adjectives 
Analysis 
Assessment 
Diagnosis 
Evaluation 
Exploration 
Investigation 
Probe 
 

Inspect 
Monitor 
Measure 
Witness 
Examine 
Note 
Recognize 
View 
Watch 
 

Acceptable 
Usable 
Attainable 
Consistent 
Constant 
Stable 
Unaffected 
Uninterrupted 
Untouched 
Intact 

 

Table 20. Examples of identified health status identified from NRC LER 2021-001-00 “Atmospheric Steam 
Dump Valves Inoperable Due to Relay Failure”. 

SSC Entities Status/Health Status 
control room an acrid odor 
steam dump control relay failed 
atmospheric steam dump valves inoperable 
relay replaced 
asdvs service 
control room an acrid odor 
steam dump control relay failed 
atmospheric steam dump valves inoperable 
steam dump and bypass system four automatically actuated asdvs 
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3.17 Identification of Cause-Effect Relations 

A common pattern in textual ER data is a report of multiple events along with a causal relationship 
among them. In its simplest form, this paragraph contains an event (i.e., the cause) that triggered a second 
event (i.e., the effect). However, the structure of this type of paragraph can have different variants (see 
Figure 13): 

• An event that has been identified as not being the cause of another event  

• Multiple causes that trigger a single effect 

• A single cause that triggers multiple effects 

 

                 
Figure 13. Graphical representation of elemental cause-effect structures: direct cause-effect association 
(top left), invalid association (top right), multiple causes and single effect association (center left), 
multiple effects and single cause association (center right), and causal homeostasis. 

 

Here, our methods are not employing ML algorithms (e.g., through classification methods [Mohri and 
Rostamizadeh, 2012]) but they are rule-based (Doan et al., 2019) since our goal is to extract actual 
quantitative information from textual data rather than “classifying” the nature of the raw text. These rules 
are based on the identification of: 

• Keywords, such as nouns, verbs, and adverbs, that identify the possibility that the sentence might 
contain a causal relation between the subject(s) and the object(s) contained in that sentence (see 
Table 21) 

• NLP structures (or constructs) composed of multiple words that indicate a casual transition between 
clauses contained in a sentence or between sentences (see Table 22).  

• Relations between sentence subjects and verbs that are designed to reconstruct the node (see Table 
23). 

We applied the developed cause-effect identification methods to the openly available NRC LER 2021-
001-00 “Atmospheric Steam Dump Valves Inoperable Due to Relay Failure”; in this respect, Figure 14 
presents a subset of three cause-effect relations that have been identified. In particular, for each of the three 
identified relations, Figure 14 shows the original text and details about the relation using the following 
format: 

(cause, status), cause-effect keyword, (effect, status) 

 

Table 21. Partial list of keywords that indicate a cause-effect paragraphs. 

Nouns Verbs Adverbs 
Augment 
Backfire 

Augment 
Backfire 

Afterwards 
Consequently 
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Begin 
Bring about 
Build-up 
Cause 
Change 
Combat 
Compensate 
Counter 
Create 
Deactivate 
Decelerate 
Decrease 

Begin 
Bring about 
Build-up 
Cause 
Change 
Combat 
Compensate 
Counter 
Create 
Deactivate 
Decelerate 
Decrease 

Eventually 
Finally 
Hence 
So 
Subsequently 
Then 
Therefore 
Thus 
Ultimately 

 
Table 22. List of relations that indicate a cause-effect paragraphs. 

Relations DAG 

Event_A + “causal verb” (active) + Event_B 

Event_A + “causal verb” (passive) + Event_B 

Event_A + [to be] a “causal noun” + Event_B 

Event_A + [to be] a “effect noun” + Event_B 

The “causal noun” of + Event_A + [to be] + Event_B 

The “effect noun” of + Event_A + [to be] + Event_B 

Clause_A ; + “cause/effect structure” + Clause_B 

“Cause/effect structure” + Clause_A ; + Clause_B 

Clause_A . “Cause/effect structure” + Clause_B 

Event_A + (verb, “causal adverb”) + Event_B 

A à B 

B à A 

A à B 

B à A 

B à A 

A à B 

A à B or B à A 

A à B or B à A 

A à B or B à A 

A à B 
 
Table 23. List of structures that indicate a cause-effect paragraphs. 

Structures 
In response to 
Attributed to 
As a result of 
For this reason 
In consequence 
In this way 
In such a way 
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Figure 14. Example of identification of cause-effect relations (source: NRC LER 2021-001-00 
“Atmospheric Steam Dump Valves Inoperable Due to Relay Failure”). 
 
3.17.1 Cause-Effect Paragraphs—Compound Sentence 

Here we discuss a case where a single sentence contains multiple clauses (typically two or three) linked 
together by a causal relationship. An example of a compound sentence with a causal relationship between 
two clauses is provided in Figure 15. In that example, note that the causal structure “for that reason” is 
creating a causal relationship between two events contained in two separate clauses. Each clause is then 
processed using the NLP methods presented in Section 3.15. The NLP analysis workflow designed to 
extract the causal relationship between clauses contained in a single sentence is shown in Table 24. In 
addition, Table 24 provides the outcome of each step for the example indicated in Figure 15. 
 

 
Figure 15. Example of compound sentence containing a causal relationship between two clauses. 

 
Table 24. NLP steps to extract a causal relationship between clauses in a single sentence. 

ID Step Example (see Figure 15) 

1 Identify clauses from sentence 
Clause 1 = AC power interruption 
Clause 2 = pump flow halted 

2 
Identify transition keywords (see  
Table 25) 

“for that reason” 

3 Process each clause (see Section 3.3) 
Element_1 = (AC power, degraded) 
Element_2 = (pump flow, degraded) 

4 Create corresponding directed acyclic graph   Element_1 → Element_2 

Investigation revealed that the steam dump control relay had failed, rendering all four atmospheric 
steam dump valves inoperable.

(investigation, ) revealed (steam dump control relay, failed)
(investigation, ) rendering (atmospheric steam dump valves, inoperable)
(steam dump control relay, failed) rendering (atmospheric steam dump valves, inoperable)

The opening of the fuse resulted in loss of power to the im13 scheme, which disabled the 
automatic fast-open function, as well as the manual operation, of the asdvs.

(fuse, the opening) resulted in (im13 scheme, loss of power)

The cause of the sdcr coil failure is overheating due to the age of the relay coil being beyond the 
vendor recommended life for a normally energized relay.

(relay coil, the age) the cause (sdcr coil, the failure)
(relay, a normally energized) the cause (sdcr coil, the failure)
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Table 25. List of transition keywords that indicate a causal relationship between clauses in a single sentence. 

Structures 
Accordingly 
Consequently 
Hence 
On account of 
So 
As a result 
Due to 
If … then 
Results in 
Therefore 
Since 
Thus 
Because of 
For that reason 
Leads to 
As such 
It follows that 
Thereupon 
Ergo 
Being that 
So that 

 
3.17.2 Cause-Effect Paragraphs—Multiple Sentences 

Here we discuss the case where multiple sentences (which might contain multiple clauses) are linked 
together by a causal relationship. An example of text containing a causal relationship between two sentences 
is provided in Figure 16. From that example, note that the causal structure “consequently” is creating a 
causal relationship between two events in two separate sentences. Each sentence is then processed using 
the NLP methods presented in Section 3.15. The NLP analysis workflow designed to extract a causal 
relationship between multiple sentences is similar to the one shown in Table 24. 

 
Figure 16. Example of text containing a causal relationship between two sentences. 

 

4 Identification of Text Similarity 

The words, sentences and documents similarity analyses are part of NLP, and they play a crucial role 
in text analytics, such as text summarization and representation, text categorization, and knowledge 
discovery. There are a wide variety of methodologies that have been proposed during last two decades. 
Mainly, these techniques can be classified into five groups: 1) lexical knowledge base approach, 2) 
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statistical corpus approach (word co-occurrence), 3) machine learning and deep learning approach, 4) 
sentence structure-based approach, and 5) hybrid approach. However, there are several common major 
drawbacks for these approaches: 1) computationally inefficient, 2) lack of automation, and 3) lack of 
adaptability and flexibility.  

In this paper, we are trying to address these drawbacks via developing a tool that can be used generally 
in applications requiring similarity analysis. As shown in Figure 17, we are trying to leverage POS, 
disambiguation, lexical database, domain corpus, word embedding and vector similarity, sentence word 
order, and sentence semantic analysis to calculate sentence similarity. POS is used to parse a sentence and 
tag each word and token with a POS tag and syntactic dependency (DEP) tag. Such information will provide 
syntactic structure information (i.e., negation, conjecture, and syntactic dependency) about the sentence 
that can be used to guide the similarity measuring process.  

 

 
Figure 17. Illustration of sentence similarity calculation. 

 

The disambiguation approach is employed to determine the best sense of the word, especially when 
coupled with specific domain corpus. It will ensure the right meaning of the words (e.g., the right synsets 
of the words in a lexical database) among the sentence for comparison. Then, a predefined word hierarchy 
from a lexical database (i.e., WordNet) is used to compute the word similarity. However, some words are 
not contained in the lexical database since it only connects four types of POS—nouns, verbs, adjectives, 
and adverbs. Moreover, these words are grouped separately and do not have interconnections. For instance, 
nouns and verbs are not interlinked (i.e., the similarity score between “calibration” and “calibrate” is 0.091 
when using WordNet). In this case, machine learning based word embedding is introduced to enhance the 
similarity calculation. For previous example, the similarity score will become 0.715 instead. The next step 
is to compute sentence similarity by leveraging both sentence semantic information and syntactic structure. 
The semantic vectors are constructed using the previously introduced word similarity approach, while the 
syntactic similarity is measured by word order similarity. The following sections further describe each of 
the steps in more details. 
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4.1 Part of Speech for Similarity Analysis 

As mentioned in Section 3.4 and 3.5, POS provides information about word types and morphological 
features, and dependency parsing provides dependency syntactic information between words. Utilizing 
POS and dependency parsing can help to identify the important information, such as NOUN, VERB, ADJ, 
ADV, negation, conjecture, subject, and object, which will be used to compute the sentence syntactic 
similarity.     
 

4.2 Lexical Database 

Lexical databases, such as WordNet, have semantic connections between words, which can be utilized 
to determine their semantic similarity. WordNet is a database of lexical information of words originally 
created by Princeton University. It contains words, their meanings (e.g., synsets) and their semantic 
relationships, which are stored in a hierarchy tree-like structure via linked synsets. Each synset denotes the 
precise meaning of a particular word, and its relative location to other synsets can be used to calculate the 
similarity between them.  

As summarized by Navigli (2019), there are many different methods to compute word similarity using 
WordNet, and sometimes these methods are combined to enhance the similarity calculation. In this work, 
we employ the method proposed by Li (2006) to compute the similarity score between two words and 
synsets, as presented in Eq. (1). This method combines the shortest path distance between synsets and the 
depth of their subsumer (e.g., the relative root node of the compared synsets) in the hierarchy. In other 
words, the similarity score is higher when the synsets are close to each other in the hierarchy, or their 
subsumer locates at the lower layer of the hierarchy. This is because the lower layer has more specific 
features and semantic information, as compared to the upper layer. 

𝑆!(𝑤", 𝑤#) = 𝑓$%&'()(𝑙)	 ⋅ 𝑔*%+()(𝑑) = 𝑒,-$ ⋅ 		
𝑒.* − 𝑒,.*

𝑒.* + 𝑒,.* 	 
(1) 

where 𝛼 ∈ [0,1], 𝛽 ∈ (0, 1] are parameters scaling the contribution of the shortest path length and depth, 
respectively. The optimal values of 𝛼 and 𝛽 are dependent on the knowledge base used and can be 
determined using a set of word pairs with human similarity ratings. For WordNet, the optimal parameters 
for the proposed measure are 𝛼 = 0.2 and 𝛽 = 0.45, as reported by Li (2003). 
 

4.3 Associating Word With the Best Sense (Disambiguation and Domain Specific Corpus) 

A sense represents the precise meaning of given word under specific context. Disambiguation is the 
process to identify the best sense for the word in the context of a statement. Without proper disambiguation, 
errors could be introduced at the early stage of the similarity calculation when using lexical databases. For 
example, in WordNet, synsets are used to denote the senses of the word, and they are linked to each other 
by their explicit semantic relationships. When different synsets are used in calculating word pair similarity, 
their semantic relationship can be drastically different, which can significantly affect the similarity score. 
In this work, we try to disambiguate the word sense by considering the context of the word. One way to do 
it is to take into account the surrounding words since they can provide contextual information. However, 
this may not work for simple or short sentences. In this case, the domain specific corpus can be leveraged 
to disambiguate the word. Once the best senses are identified for the words, the word similarity measure 
from Section 4.2 can be employed.  
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4.4 Word Embedding or Vector 

A word embedding or word vector is typically a numerical vectorization of words or documents. It 
maps words with semantic similarities to have close embedding vectors. Thus, word embedding can be 
utilized to measure semantic similarities utilizing the cosine similarity metric between the embedded 
vectors, especially when WordNet fails in situations such as similarities between words that have different 
POS tags. In this work, word embedding is leveraged to assist the word similarity calculation. Once the 
similarity score from the WordNet similarity calculation is below 0.2 (e.g., the two words are not similar), 
the word embedding similarity calculation will be employed.  
 

4.5 Sentence Similarity 

As proposed by Li (2006), sentence similarity contains semantic and syntactic similarity. Semantic 
similarity is captured via word semantic similarity, as discussed in previous sections, while syntactic 
similarity is measured by word order similarity. Word order similarity is a way to assess sentences similarity 
considering word order. As well described by Li (2006), the semantic vectors and word order vectors are 
constructed, which can be used to compute the sentence similarity. Here we will briefly introduce the 
methods to construct these vectors and recommend the reader refer to Li (2006) for more details.  

Given two sentences, 𝑇! and 𝑇", a joint word set is formed (e.g., 𝑇 = 𝑇! ∪ 𝑇") with all the distinct words 
from 𝑇! and 𝑇". The vectors derived from computing word similarities in (𝑇, 𝑇1) and (𝑇, 𝑇2) are called the 
semantic vectors, denoted by 𝑠! and 𝑠", respectively. Each entry of the semantic vectors corresponds to the 
maximum similarity score between a word in 𝑇 and a word in 𝑇! or 𝑇", so the dimension equals the number 
of words in the joint word set. The semantic similarity between two sentences is defined as the cosine 
coefficient between two vectors: 

𝑆/ =
𝑠" ⋅ 𝑠#

‖𝑠"‖‖𝑠#‖
 (2) 

As proposed by Li (2006), the word order similarity of two sentences is defined as:  

𝑆0 = 1 −
‖𝑟" − 𝑟#‖
‖𝑟" + 𝑟#‖

 (3) 

where the word order vectors 𝑟! and 𝑟" are formed from (𝑇, 𝑇1) and (𝑇, 𝑇2), respectively. For example, for 
each word 𝑤# in 𝑇, the 𝑟! vector with the same length of 𝑇! is formed as follows: if the same word is present 
in 𝑇!, the word index in 𝑇! is used as the value for 𝑟!. Otherwise, the index of the most similar word in 𝑇! 
will be used in 𝑟!. A preset threshold (i.e., 0.4) can also be used to remove spurious word similarities. In 
this case, the entry of 𝑤# in 𝑟! is 0. 

Both semantic and syntactic information (in terms of word order) play a role in measuring the similarity 
of sentences. Thus, the overall sentence similarity is defined by Li (2006) as a combination of:  

𝑆(𝑇", 𝑇#) = 𝛿𝑆/ + (1 − 𝛿)𝑆0 (4) 

where 𝛿 ∈ (0, 1] represents the relative contribution of semantic information to the overall similarity 
computation. 
 

5 Applications 

These examples demonstrate how to preprocess text and identify SSCs and their corresponding health 
statuses, as well as cause-effect relations between SSCs. In general, text preprocessing is performed 
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manually and is very time-consuming. The developed preprocess methods helps to clean it up. In these 
examples, we have collected a list of typical examples of IR descriptions (see Table 26) to test the 
effectiveness of such methods. 

In the first example, the extracted SSC entities and their health status are highlighted in blue and yellow 
in Table 26, respectively. In order to have a better illustration of the extracted data, we have presented the 
pair of SSC entities and health statuses in Table 27. As we observed, there are two misidentifications 
highlighted in green. The first one, (pump, test), can be easily resolved if we also include the health status 
keyword “failed” (highlighted in red) in the health status as marked in Table 26. There are two health status 
options for second one, “found in proximity of rcp” or “oil puddle”. In order to determine the right health 
status for “pump,” we employ the word/phrase/sentence similarity (see Section 4) to compute the similarity 
scores between the SSCs and their potential health statuses. The one with the highest similarity score will 
be selected as the identified health status. In this case, the similarity score between “puddle” and “pump” 
is 0.25 while the similarity score between “proximity” and “pump” is 0.027, thus “puddle” with additional 
information “oil” will be selected as the final health status for “pump.” 

 
Table 26. Example of information extraction. 

A leak was noticed from the RCP pump 1A. RCP pump 1A pressure gauge was found not operating. RCP pump 
1A pressure gauge was found inoperative. RCP pump 1A had signs of past leakage. The Pump is not 
experiencing enough flow during test. Slight Vibrations is noticed - likely from pump shaft deflection. Pump flow 
meter was not responding. Rupture of pump bearings caused pump shaft degradation. Rupture of pump bearings 
caused pump shaft degradation and consequent flow reduction. Power supply has been found burnout. Pump test 
failed due to power supply failure. Pump inspection revealed excessive impeller degradation. Pump inspection 
revealed excessive impeller degradation likely due to cavitation. Oil puddle was found in proximity of RCP pump 
1A. Anomalous vibrations were observed for RCP pump 1A. Several cracks on pump shaft were observed; they 
could have caused pump failure within few days. RCP pump 1A was cavitating and vibrating to some degree 
during test. This is most likely due to low flow conditions rather than mechanical issues. Cavitation was noticed 
but did not seem severe. The pump shaft vibration appears to be causing the motor to vibrate as well. Pump had 
noise of cavitation which became faint after OPS bled off the air. Low flow conditions most likely causing 
cavitation. The pump shaft deflection is causing the safety cage to rattle. The Pump is not experiencing enough 
flow for the pumps to keep the check valves open during test. Pump shaft made noise. Vibration seems like it is 
coming from the pump shaft. Visible pump shaft deflection. Pump bearings appear in acceptable condition. Pump 
made noises - not enough to affect performance. Pump shaft has a slight deflection. 

 
Table 27. Extracted SSC entities and their health status. 

SSC Entities Status/Health Status SSC Entities Status/Health Status 

Pump A leak from rcp Impeller Excessive degradation 

Pump Not gauge operating Pump Found in proximity of rcp 
(Oil puddle) 

Pump Gauge inoperative Pump Anomalous vibrations for 1a 
Pump 1a signs of past leakage Pump shaft Several cracks 

Pump Not enough flow during 
test Pump Failure 

Pump shaft Deflection Pump cavitating 
Pump Not meter responding Pump shaft Vibration 
Pump bearings Rupture Motor Vibrate 
Pump shaft Degradation Pump Noise of cavitation … 
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Pump bearings Rupture Pump shaft Deflection 

Pump shaft Degradation Pump Not enough flow for the 
pumps 

Power supply Burnout Pump shaft Noise 
Pump Test Pump shaft Vibration 
Pump supply Failure Pump shaft Deflection 
Pump Inspection Pump bearings Acceptable condition 
Impeller Excessive degradation Pump Noises 
Pump Inspection Pump shaft A slight deflection 

 
In the second example, the extracted cause-effect relations between SSCs for the text in Table 26 are 

presented in Table 28. We employ a set of rule templates based on specific trigger words and relations (see 
Section 3.17). Once the SSCs entities and their health status has been identified, we can apply these rules 
to identify the cause-effect relations. There is one cause-effect relation that is not captured because “safety 
cage” is not listed as the identified SSC entity. This can help us to enhance our knowledge base about SSCs. 
 
Table 28. Causal relations identified. 

Text After Rule-Based NER Identified Cause-Effect Relations 
Rupture of pump bearings caused pump shaft 
degradation. 

(pump bearings: Rupture) “caused” (pump shaft: 
degradation) 

Rupture of pump bearings caused pump shaft 
degradation and consequent flow reduction. 

(pump bearings: Rupture) “caused” (pump shaft: 
degradation) 

Pump test failed due to power supply failure.  (Pump: test failed) “due to” (power supply: failure) 
Pump inspection revealed excessive impeller 
degradation.  

(Pump: inspection) “revealed” (impeller: degradation) 

Pump inspection revealed excessive impeller 
degradation likely due to cavitation. 

(Pump: inspection) “revealed” (impeller: degradation) 

Several cracks on pump shaft were observed; they 
could have caused pump failure within few days. 

(pump shaft: Several cracks) “caused” (pump: failure) 

The pump shaft deflection is causing the safety cage to 
rattle. 

None 

 

The third example focuses on the identification of coreference. This process is tasked with finding the 
expressions that refer to the same entity in the text. This is particularly relevant where the text includes 
several sentences and a reference to an entity is not indicated with its proper name but with a pronoun. 
Through our methods, we can correctly identify the coreferences in the text presented in Table 26 as shown 
in Table 29. 

 

Table 29. Example of coreference identification. 

Coreference Examples Identified Coreference 
Several cracks on pump shaft were observed; they 
could have caused pump failure within few days. 

(Several cracks, they) 
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Vibration seems like it is coming from the pump 
shaft. 

(Vibration, it) 

 
 

Conjecture means the information provided by the sentence is about future prediction (e.g., an event 
that can occur in the future) or hypothesis about past events (e.g., a failure that might have occurred). In 
this context, the verb tense plays a role in the identification of this kind of report. Future predictions are 
characterized by present and future Table 30 tense verbs; hypotheses about past events are typically 
characterized by past tense verbs. Based on the text provided in Table 26, the sentences with conjecture 
information have been correctly identified and listed in Table 30. 

Table 30. Identified conjecture sentences. 

Pump inspection revealed excessive impeller degradation likely due to cavitation. 
Several cracks on pump shaft were observed; they could have caused pump failure within 
few days. 
Vibration seems like it is coming from the pump shaft. 

 
 
The last example utilizes a manually generated sentence based on an NRC licensee event report to 

demonstrate the capability of the package on a complex sentence. The text is provide in Table 31, while the 
results about health status and cause-effect relations are presented in Table 32 and illustrated in Figure 18. 
In this example, since “investigation” is not among the valid SSC entities and “revealed” is a valid cause-
effect keyword, “investigation” is treated as a potential SSC entity and its cause-effect relations are also 
reported in the outcomes.  
 

Table 31. Sentence based on NRC licensee event report. 

Investigation revealed that the steam dump control relay had failed, rendering all four atmospheric steam 
dump valves inoperable. 

 

Table 32. Identified health status and cause-effect relations for the text listed in Table 31. 

(investigation: -) “revealed” (steam pump control relay: failed) 
(investigation: -) “rendering” (atmospheric steam dump valves: inoperable) 
(steam pump control relay: failed) “rendering” (atmospheric steam dump valves: inoperable) 
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Figure 18. Cause-effect relations for NRC LER example (SSC entity: red cycle, potential entity: blue cycle, 
health status: pink box, cause-effect relation: black arrow, potential cause-effect relation: dashed black 
arrow). 

 
The main impact of the created software package on the community is its combination of different 

methods into one library. Our methods significantly simplify text preprocessing for a variety of NLP tasks 
in ER data analysis. The package provides a Python implementation of rule-based health status extraction, 
cause-effect relation identification, and temporal sequencing of events determination. All algorithms in the 
package are designed to have simple calls with flexible parameters, allowing users with minimal Python 
experience to process ER data and, by simply combining different pipelines, generate knowledge graphs to 
assist system engineers with their maintenance activities. 

6 Conclusions 

This paper has presented an overview of a computational tool designed to extract information from ER 
textual data. This tool is composed of several methods tasked to parse sentences in search-specific text 
entities, such as measured quantities, temporal dates, and system, assets, and component IDs. Then semantic 
analysis tools are designed to capture the semantic meaning of the event(s) described in the provided texts, 
such as health information, cause-effect relations, or temporal sequence of events. An important element 
here is the set of preprocessing tools devised to clear textual elements from acronyms, abbreviations, and 
grammatical errors. Such cleaning methods are essential elements to improve the performance of the 
knowledge extraction methods. 

We have presented few applications that are not limited to the analysis of NPP IRs and WOs. Here, 
even though the nature of the ER textual elements is short, our tools were able to successfully extract the 
semantic meaning and identify the great majority of the specified entities. We have also indicated how our 
sentence similarity measures can be used to parse past outage databases in order to inform the plant outage 
manager of the historic duration required to complete specific activities. The analysis of NRC reports 
provided a few good examples on how our methods were able to capture either cause-effect or temporal 
relations among events. 

The capabilities of developed tools are unique in the nuclear arena, and they are based on the parallel 
development in the medical field. We in fact rely on a few libraries developed for knowledge extraction 
from medical textual data element (e.g., patients medical reports and doctor diagnosis). The extension of 
such methods to a different field (i.e., nuclear) required the development of additional methods and libraries 
to fit new use cases. 
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ABSTRACT 

Nuclear power plants collect large amounts of equipment reliability data elements that 
contain information on the statuses of component, assets, and systems. Such data may take 
the form of online monitoring data (e.g., pump vibration data or pump mass flow rate), data 
from surveillance and testing performed by plant operators at regular intervals, condition 
reports (which typically contain anomalous conditions), and maintenance reports (which 
indicate operations performed to restore component or asset health). All these data 
elements precisely record asset and system performance and health throughout the lifecycle 
of those assets and systems. In addition, such data carry the potential to provide system 
engineers with insights into anomalous behaviors or degradation trends as well as the 
possible causes behind them and to predict their direct consequences. However, several 
challenges have proved to be roadblocks to this process. While some of these challenges 
are technical in nature (i.e., data are often distributed over several physical servers or 
databases), others are conceptual in nature (i.e., data elements come in different formats, 
numeric or textual), and measured values have different scales (e.g., vibration spectra and 
oil temperature). The present study directly tackles the last two issues, focusing on the 
integration of numeric and textual data elements in order to assist plant system engineers 
in analyzing equipment reliability data. This task begins with preprocessing the data by 
extracting knowledge from textual data via natural language processing methods and 
quantifying system, asset, and component health based on numeric data. We then employed 
model-based system engineering (MBSE) models of systems and assets to identify their 
architecture and functional (i.e., cause and effect) relations. These models were translated 
into graph structures in which each element of the graph represents either the “form” of a 
system, asset, and component or their supporting “function.” Data elements were then 
associated with a single MBSE graph element, based on their nature. This bonding of 
MBSE models and data elements constitutes a first-of-its-kind knowledge graph of a 
nuclear power plants system, with data elements being organized in a structured manner 
that enables system engineers to identify cause-effect trends in data elements and carry out 
appropriate actions in response. 
 
Keywords: Reliability, Natural Language Processing, Data Fusion, Model-Based System 
Engineering 
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List of acronyms 
 
CWS circulating water system 
ER equipment reliability 
IR incident report 
MBSE model-based system engineering 
ML machine learning 
NLP natural language processing 
NPP nuclear power plants 
OPM object-process methodology 
PHM prognostic and health management 
UML Unified Modeling Language 
SysML Systems Modeling Language 
WO work order 

 
1 Introduction 

Complex systems such as nuclear power plants (NPPs) generate large amounts of equipment reliability 
(ER) data regarding the performance of their components and assets. Such data can be used to optimize 
system operation by tracking component and asset degradation and scheduling maintenance operations. In 
an NPP context, ER data typically take different forms depending on the given component or asset and its 
operational setting. For example, online monitoring data (e.g., pump vibration data or pump mass flow rate) 
can provide real-time insights into the degraded performance and possible failure conditions of assets that 
are in continuous operation. Assets that are normally in a standby configuration (e.g., safety-related assets 
only employed under accident or abnormal conditions) regularly undergo surveillance and testing by plant 
operators. Once degradation in a component or asset is identified and deemed detrimental to its function(s), 
it is logged in an incident report (IR) so that maintenance operations can be performed to restore its health. 
The maintenance operations are then logged in maintenance reports or work orders (WOs). Note that these 
ER data elements afford different types of insights into the reliability performance of the given asset. 
Section 2 provides a taxonomy for the aforementioned types of ER data, showing the functional 
relationships among them. 

All ER data elements carry the potential to provide system engineers with insights into anomalous 
behaviors or degradation phenomena and to inform them of the optimal restoration strategy. However, 
several challenges exist as roadblocks to this process. While some of these challenges are technical (e.g., 
data are often distributed over several physical servers or databases), others are conceptual in nature: data 
elements come in different formats (e.g., numeric and textual), and measured values have different scales 
(e.g., vibration spectra and oil temperature). 

The present study directly tackles the last two issues, focusing on the integration of numeric and textual 
data elements in order to aid plant system engineers in analyzing ER data. This task begins with 
preprocessing the ER data. To preprocess textual ER data, we employed knowledge extraction methods 
based on natural language processing (NLP) algorithms (Lane, 2019). Meanwhile, we employed a margin-
based approach to quantify system, asset, and component health based on numeric data. We then employed 
model-based system engineering (MBSE) (Borky, 2018) models of systems and assets to identify their 
architectures and functional relations. These models were translated into graph structures, with each 
element representing either the “form” of a system, asset, and component, or its supporting “function.” The 
ER data elements (both textual and numeric) were then associated with a single MBSE graph entity, based 
on their nature. We then employed logic rules and temporal analysis algorithms to determine whether ER 
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data elements were linked to each other via a cause-effect relation. The resulting knowledge graph reflects 
a structured, complete, and organized architecture for analyzing and visualizing complex ER datasets and 
effectively provides a useful overview of the ER performance of systems and assets. 

In this paper, we show how such a knowledge graph can be constructed using the ER data generated 
from a circulating water system (CWS) of an existing pressurized-water reactor (Agarwal, 2021a). 
Throughout this paper, system indicates a collection of assets designed to carry out a specific function (e.g., 
to generate alternating current power or provide high-pressure injection during a loss-of-coolant accident). 
Asset indicates a system element designed to support the system function (e.g., a diesel generator, motor-
operated valve, or centrifugal pump). Component denotes an asset subelement that is subject to degradation 
and aging and may require maintenance (e.g., a transmission gear in a diesel generator, the drive sleeve of 
a motor-operated valve, or the impeller of a centrifugal pump) to guarantee proper asset operation. 

 
2 Equipment Reliability Data Taxonomy 

As indicated in Section 1, NPP ER data can be heterogenous in nature (e.g., numeric, textual, or image 
data). Understanding and capturing the relationships among ER data elements requires a data categorization 
process. The categorization of each ER data element is not unique and could be context dependent. For the 
scope of this article, we performed such categorization based on a cause-effect lens (see Figure 1). More 
specifically, generic assets can be broken down into two elements: its form (i.e., the actual physical entity) 
and its function1 (i.e., the emergence property [Borky, 2018]).  

 

Figure 1. Taxonomy of ER data presented through a cause-effect lens. 

For example, when considering a centrifugal pump (see Figure 1), the form element consists of all the 
components that make up the considered asset (e.g., motor, stator, shaft, and impeller), and the function 
element indicates its function (i.e., increase fluid pressure). From a reliability standpoint, an asset failure is 
typically defined in terms of a loss of a function. Aging and degradation (e.g., flow-accelerated corrosion) 
directly affects the asset form, potentially having a direct impact on its function (e.g., asset failure). Per 
Figure 1, data associated with either a form or function standpoint can be textual (e.g., WOs) or numeric 
(e.g., environmental temperature). ER data retrieved from the form node are portioned into two groups—

 
1 In many situations, an asset might be supporting multiple functions and might consist of several parts or 

components that either support or do not support each of these functions depending on the asset 
architecture. The proposed discussion can be easily extended to these situations. 
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health monitoring and boundary condition monitoring—and can be either numeric or textual as well. Note 
here that maintenance operations designed to restore the asset’s intended function or form (either by 
replacement refurbishment or restoration) directly impact asset form, which consequently may affect its 
function. The objective of this work is to capture the causal relations between ER numeric and textual data 
elements in order to assist system engineers on the identification of anomalous behaviors.  

 
3 Considered Example: Circulating Water System (CWS) 

3.1 System Description and Available Monitoring Data 

The CWS system of an existing U.S. nuclear plant site was selected as the target for our analysis 
methods. The CWS is an important non-safety-related system. As the heat sink for the main steam turbine 
and associated auxiliaries, the CWS is designed to maximize steam power cycle efficiency (Agarwal, 
2021a; Agarwal, 2021b). A CWS consists of the following major equipment (Agarwal, 2021a; Agarwal, 
2021b): 

• Vertical, motor-driven circulating water pumps (CWPs), each with an associated fixed trash rack 
and traveling screen at the pump intake to filter out debris and marine life 

• Main condenser 

• Condenser waterbox air removal system 

• Circulating water sampling system 

• Screen wash system 

• Necessary piping, valves, and instrumentation and controls to support system operation. 

The selected plant site (a two-unit pressurized-water reactor) features six circulators at each unit. 
Schematic representations of the main condensers for Plant Site Unit 2 are shown in Figure 2. Each pair of 
waterboxes is named using the following convention: Unit #, Condenser #A and Unit #, Condenser #B. In 
this research, the project team focused on optimizing the maintenance strategy for the CWS. To differentiate 
between motor and pump maintenance activities for each circulator, those assets are hereafter referred to 
as the CWP motor and the CWP, respectively. Figure 3 shows different locations on the CWP motor where 
measurements are continuously collected as part of the plant historian. 

The Unit 1 and Unit 2 CWS process data are collected once per minute and stored in the Plant Site 1 
historian system. Due to file size restrictions, the project team received hourly CWS process data for both 
units, from 2009 to 2019. The process data include: 

• Gross load (MWe) 

• River level (ft) 

• Ambient air temperature (°F) 

• CWP inlet river temperature (°F) 

• CWP outlet water temperature (°F) 

• CWP motor status (ON or OFF) 

• CWP motor stator winding temperature (°F) 

• CWP motor inboard-bearing temperature (°F) 

• CWP motor outboard-bearing temperature (°F) 
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• CWP motor current (amps). 

 

 

Figure 2. Plant Site Unit 2 CWP combination of 21A and 21B, with sensors and instrumentation. 

 

Figure 3. Schematic representation of a CWS motor and pump, along with measurement locations. 
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3.2 CWS Textual Data 

WO data is available from plant Asset Suite Enterprise Management System (EMS) in order to make 
informed decisions about the historical maintenance performed NPP assets (including the CWS system). 
Utility information varies in completeness and accuracy across different customers and within individual 
plants. This variation in data quality is related to many factors, including but not limited to the criticality of 
work, age of the EMS, number of switches between different EMSs, site procedures, and a utility’s ability 
to extract data. Typically, NPP personnel lack the time or resources for extracting the proper information 
and performing detailed analytics on their own systems. 

The provided database consists of about 2,000 IR and WO data records related to the CWS system, 
which reports the following data elements: task type, event description, and actual start and completion date 
(if available). A few relevant observations to be highlighted here are: 

• The event description provided in the available set of IRs and WOs are usually very short and not 
well posed from a grammatical standpoint, i.e., they are not following the standard structure: 

Subject + Predicate + Object + Complements 

This poses several challenges since most NLP methods perform much better with well-formed 
sentences. 

• Often words contained in IRs and WOs might contain typos or be reduced in form (i.e., 
abbreviated); as an example “management” abbreviated into “mngmt”. 

• Acronyms and component IDs are often used to indicate specific entities such as systems (e.g., 
ACC to indicate the accumulator system), assets (e.g., the ID “ACC_pump_001A” indicates the 
specific pump 001 of train A of the accumulator system), or context-specific elements (e.g., NDE 
to refer to non-destructive evaluation). 

In this respect, Section 5 provides an overview of methods developed to overcome the challenges listed in 
this section in order to improve the semantic analysis of the provided IRs and WOs. 

 
3.3 CWS Numeric Data 

As indicated by (Agarwal, 2021a), the raw data collected from the CWS system are distributed over 
several data sources and processed by completing the following steps: 

1. Logic/binary data elements are converted into numeric form (e.g., the ON/OFF data element is 
converted into 0/1) 

2. New features are generated (e.g., pump differential temperature [DT], pump age since 
refurbishment) 

3. Pump vibration data are processed through a fast Fourier transform algorithm, and the magnitude 
of the vibration signal for specific frequencies is captured 

4. Based on the system operational history (e.g., maintenance records), data elements are labeled (as 
pertaining to either healthy or faulty state) 

5. Missing data entries are resolved 

6. Data conflicts between the operational history and recorded numerical values are resolved 

7. All data sources are merged into a single time series 
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8. All features of the time are Z-normalized as each feature 𝑥 is transformed into 𝑥" = !"#$%&(!)
)*+_+$-(!)

, 
where the operators 𝑚𝑒𝑎𝑛(𝑥) and 𝑠𝑡𝑑_𝑑𝑒𝑣(𝑥) correspond to mean value and the standard 
deviation of the considered variable 𝑥, respectively. 

The general notation used throughout this paper is that a single observation data element 𝜉./) is 
composed of 𝐿 observed features 𝑥0 	(𝑙 = 1,… , 𝐿) (i.e., 𝜉./) = [𝑥1, . . , 𝑥2]) and the nature of the observed 
variables 𝑥0 can be heterogenous in nature (e.g., temperature, pressure). A series of plots of the preprocessed 
time series for the considered five CWS features is shown in Figure 4. 

An important element here is that portions of the provided numeric data set has been labeled based on 
historic system condition. More specifically, five CWS failure modes have been identified: 

• Waterbox fouling 

• CWP misalignment 

• CWP diffuser failure 

• Bellmouth fail 

• Clogging in air intake screens 

Each of these faults has a distinct signature that can be automatically extracted from the CWS process data 
and vibration data to streamline the diagnosis process. At a minimum, a fault signature is comprised of an 
asset type, fault type, and a set of one or more observable features that may indicate the occurrence of the 
associated fault. Ξ./)"3$%0*34 indicates the portions of the datasets under healthy conditions while 
Ξ./)"56! 	(𝑟 = 1,… , 𝑅) indicates the portions of the datasets under faulty conditions for each of the 
considered five (i.e.,. , 𝑅 = 5) failure modes 𝑟. Such detection capability is also enabled by the availability 
of a portion of the numeric data under healthy conditions (which is indicated as Ξ./)"3$%0*34). It is here 
assumed that in the presence of an asset fault, the actual observed data 𝜉./) can be seen to transition from 
Ξ./)"3$%0*34	to Ξ./)"7%80*4. 

 

4 Digital Representation of Systems and Assets 

From a reliability standpoint, it is vital to identify the causal relationships among ER data, maintenance 
activities, and failure modes. This is typically neglected in the state of practice in current ER data analysis 
methods based on ML methods. This limitation is due to the fact that data are not enough to identify such 
causal relationships. Instead, system models are needed to perform such discovery.  

In this respect, MBSE (Borky, 2018) methods afford several solutions for modelling systems, assets, 
and components from both a form (i.e., which elements are part of the structures, systems, and components) 
and a functional (i.e., how systems and assets interact with each other, and which functions they support) 
standpoint. These solutions are based on MBSE languages that represent system and asset form and 
functional elements via a set of diagrams. The most commonly used languages are Object-Process 
Methodology (OPM) (Dori, 2002), Unified Modelling Language (William, 2004), and Systems Modelling 
Language (Friedenthal, 2008).  

For the scope of this project, we have chosen OPM since it provides the basic modelling elements we 
sought, and because—more importantly—digital data structures (i.e., graphs) can be automatically 
generated from OPM diagrams. Each element of an OPM diagram can be either a function (e.g., an action 
or a transformation) or form (e.g., a physical entity) element. In addition, function and from elements in an 
OPM diagram are connected to each other through a set of links designed to convey precise meanings (Dori, 
2002). The OPM diagram shown in Figure 5 provides a simple representation of a centrifugal pump which 
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includes the most basic elements found in most OPM models that are used in this paper; in detail, this 
diagram provides the following information: 

• The form element “centrifugal pump” is composed by (through the composition link) four 
elements: shaft, impeller, bearing, and motor. 

• The function “increase fluid pressure” requires the form element “centrifugal pump” (through the 
instrument link). 

• The function “increase fluid pressure” transforms “fluid pressure” from low to high (through the 
transformation link). 

• “Fluid pressure” is an attribute of the form element “fluid” (through the characterization link) that 
pump is affecting. 

 

 
Figure 4. Plot of five features of the preprocessed time series. Note that online motor current data are 
available from 2017, whereas process variables are available from 2009. 
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Figure 5. Simplified representation of a centrifugal pump using OPM. 

Figure 6 shows the OPM diagram of the considered CWS (Agarwal, 2021a), which includes assets such 
as trash rakes, waterboxes, and ice barriers. Note that each asset included in the OPM diagram of the CWS 
may be further described by its own, separate OPM diagram. In other words, a network of OPM diagrams 
can be constructed to refine and further detail the architecture of the considered system. For example, in 
the CWS OPM diagram in Figure 6, the centrifugal pumps are indicated as pertaining to a different OPM 
diagram that represents the pump architecture in greater detail. The corresponding OPM diagram for the 
centrifugal pump is shown in Figure 7.  

 

Figure 6. OPM representation of the CWS. Complex assets (e.g., centrifugal pump) are indicated as 
corresponding to another OPM diagram. 
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Figure 7. OPM representation of a CWS centrifugal pump (left) which is indicated as CWP-1 and CWP-2 
in the CWS OPM diagram (see Figure 6). The portion highlighted in red is expanded (right). 

For the scope of the present work, each OPM diagram was translated into a graph structure by using 
the NetworkX2 library, a database for capturing the different types of OPM elements and edge. The 
resulting graph made it possible to query all the textual IDs that describe each form or functional element 
of the diagram. These textual IDs can be employed in our NLP methods to identify and recognize each 
element based on a given set of sentences (see Section 4). More importantly, if multiple textual IDs are 
identified, the directed graph can identify the links between them. Note that such links are implicitly causal 
in nature. In summary, the obtained graph structure is used to accomplish three main objectives: identify 
OPM entities mentioned in ER textual data elements, identify OPM entities that refer to ER numeric data 
elements, and identify logical connections between the ER data elements by determining whether a direct 
causal path exists between the OPM entities associated with each ER data element. 

Note that the OPM diagrams can be used for more than simply putting “text into context” via the NLP 
methods described in Section 5. These diagrams can in fact be employed to identify which OPM elements 
are being monitored by condition-based, diagnostic, and prognostic systems (e.g., pump shaft vibrations or 
the rate of mass flow exiting the pump itself) (see Section 5). 

 
5 Analysis of Textual Data 

IRs and WOs are valuable data sources for tracking asset health histories, identifying health trends, and 
performing root-cause analyses. These data sources, typically obtained as text, are usually available in 
digital repositories. Methods have been developed over the past two decades to enable machine learning 
(ML) models to analyze textual data and classify textual elements based on their nature (e.g., safety-related 
vs. non-safety-related natures). In the context of the present work, we are not interested in solving any type 
of classification problem, but rather in extracting actual knowledge from textual data. This is a harder task, 
as it requires the development of context-dependent models and vocabularies. The medical field is leading 
the way in this area by developing methods to extract knowledge from textual data (e.g., for diagnostic 
purposes or to estimate the performance of specific treatments). 

When applied to the nuclear field, knowledge extraction consists of several tasks, including the 
identification of: 

 
2 Official website: https://networkx.org/  
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• Plant-specific entities, such as systems, assets, and components (e.g., centrifugal pump, 
accumulator system, and pump shaft) 

• Temporal attributes that characterize events (e.g., the occurrence, duration, and order of events) 

• Phenomena (e.g., material degradation or asset functional failure) 

• Causal relations between events. 

This process of knowledge extraction is enabled by a series of data, models, and methods. The 
developed series of methods was designed to identify all the elements listed above, using a mixture of rule-
based and ML algorithms. These methods heavily rely on data dictionaries and plant, system, and asset 
models. Data dictionaries containing a large number of keywords related to the nuclear field were 
partitioned into several classes (e.g., materials, chemical elements and compounds, degradation 
phenomena, and electrical, hydraulic, and mechanical components). 

The ability of system engineers to analyze textual data is enabled by their knowledge of the architectural 
scheme of the components and assets that comprise the system. In simpler terms, they know what physical 
elements comprise a given asset or system, along with their functional relations and dependencies. Without 
such information, knowledge extraction from textual data is very difficult, as putting the text into context 
becomes much harder. For the present study, our methods were designed to check whether OPM entities 
(see Section 4) are mentioned in ER textual data elements. 

In more detail, the textual data elements described in Section 3.2 were processed by performing the 
following steps: 

Step 1: Data preprocessing. Here, we perform a series of data cleaning methods designed to 
improve the clarity of the data elements, including: 

a. Text cleaning (e.g., lower all characters, remove punctuation) 

b. Identify acronyms 

c. Identify and complete abbreviations 

d. Spell checking 

e. Converting numerical words and quantitative named entities into numeric strings 

Step 2: Syntactic analysis. Here, ML methods are used to parse the textual data elements from a 
syntactic point of view. More specifically, each element is first partitioned into sentences and 
then part-of-speech methods (e.g., identifying nouns, verbs, adjectives), dependency parsing 
(i.e., identifying subjects, predicates), and coreference resolution (i.e., identifying textual 
elements referring to pronouns) methods are employed. 

Step 3: Semantic analysis. Here, rule-based methods are employed to identify the following 
elements from each sentence: 

a. Systems, assets, or components that are specific to the considered plant that have 
been modeled though OPM diagrams 

b. Nuclear specific entities and keywords (e.g., degradation phenomena, chemical 
elements and compounds, or generic electric, mechanical, and hydraulic 
components) 

c. Measured quantities (e.g., pump oil temperature) and temporal occurrence of events 
(e.g., date and hour) 

d. The health nature of a reported event 
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e. The temporal or location attributes  

f. Cause-effect relation between events 

g. Conjectures (i.e., events that might have occurred in the past or might occur in the 
future) 

Figure 8 provides an example of knowledge extraction from an ER textual data element. Based on the 
developed libraries, the asset (i.e., pump) and reactions (i.e., cracking and failure) mentioned in the text are 
identified, along with a specific pump OPM entity (i.e., shaft). Furthermore, additional elements are 
captured: the existence of a conjecture and the temporal attribute associated with pump failure. 

 
Figure 8. Example of NLP knowledge extraction from an ER textual data element. 

 
6 Analysis of Numeric Data 

ER data generated in a numeric format are very common in existing NPPs, in which many assets are 
continuously monitored (e.g., vibration data, oil temperature, and outlet water pressure) via advanced 
monitoring and prognostic and health management (PHM) systems in order to identify data trends that may 
inform system engineers of degraded performance or failure of the considered asset. One challenge with 
complex systems (not only nuclear) is quantifying the health of each asset, then propagating the assets’ 
health values to the system level. References (Mandelli 2023a; 2023b) provide a margin-based approach 
that addresses these challenges. Such an approach enables the data generated by condition-assessment, 
diagnostic, and prognostic systems to be converted into margin values that serve as a quantitative measure 
of asset health. 

An asset’s margin value 𝑀 is defined over the [0,1] interval, where 𝑀 = 1 corresponds to a perfectly 
healthy asset (requiring minimal to no maintenance attention) and 𝑀 = 0 corresponds to a faulty asset 
(requiring maintenance attention). Note that margin quantification (see Figure 9) is impacted by the 
availability of monitoring data and can be defined over heterogenous variables, such as pressure, vibration 
spectra, and time. For example, when dealing with condition-based monitoring data (both current and 
archived), margin 𝑀 is defined here as the distance between actual and past conditions (e.g., oil temperature 
and vibration spectrum) that lead to failure. Hence, margin-based reliability modeling provides a unified 
approach to dealing with heterogeneous monitoring data elements. 

The margin value of an asset is not static but changes with time, depending on asset conditions. For 
example, if degradation due to usage is observed from the monitoring data, the corresponding asset margin 
value decreases. Conversely, if a maintenance operation is performed on that same asset (e.g., restoration 
of centrifugal pump bearings), the asset margin value increases. This mindset shift regarding the concept 
of reliability (i.e., margin based instead of probability based) offers the advantage of directly linking the 
asset health evaluation process with standard plant processes for managing plant performance (e.g., plant 
maintenance operations and budgeting processes). The transformation also supports decision-making in a 
form that is more familiar and readily understandable to plant system engineers and decision makers. 

So far, margin has been defined for one single asset; the next step is to quantify the system’s margin 
value after obtaining the margin values of its assets. The propagation of margin values from the asset level 
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to the system level is performed through classical reliability models, such as fault trees (FTs) or reliability 
block diagrams (Lee, 2011), which are solved using different rule sets (Mandelli, 2023a) instead of set 
theory-based operations. 

 
Figure 9. Graphical representation of margin (Mandelli, 2023b). 

For the scope of the present article, we are interested in tracking the health history of an asset (if ER 
data are available, of course) and exploring how reported events (e.g., IRs) might causally relate to health 
trends. The advantage of margin-based approaches is that complex monitoring data generated by condition-
assessment, diagnostic, and prognostic systems can be integrated into a common quantitative health 
measure. 

Here, each numeric data element (i.e., margin temporal profile of a specific monitored variable) can be 
matched to an exact OPM entity. The example taken from (Mandelli, 2023b) and reflected in Figure 11 
shows the margin temporal profile for the CWS waterbox. As indicated by (Agarwal, 2021a) and (Agarwal, 
2021b), the following two ML models were generated to perform health and fault classification: 

• Binary classifier: This module is a XGBoost3 binary classifier. With CWP data, it predicts whether 
the CWP is experiencing normal operation or undergoing any degradation at the pump, motor, or 
system levels. The model is developed by considering time domain features extracted from 
vibration data, along with the features extracted from monitoring data. Features such as motor 
current and vibration data are unavailable prior to September 2017 and October 2019, respectively. 
The missing features are mapped with NaN values. While training and making predictions, the 
XGBoost model discards all features with NaN values. The left portion of Figure 10 shows an 
example prediction generated by the binary classifier model. 

• Diagnostic model: This module is a multiclass classifier. For CWP data, it predicts the type of fault 
a CWP is currently undergoing. The model is developed by considering frequency domain features 
extracted from vibration data, along with the features extracted from PI data. Features such as motor 
current and vibration data are unavailable prior to September 2017 and October 2019, respectively. 
The missing features are mapped with NaN values. While training and making predictions, the 
XGBoost model discards all features with NaN values. The right portion of Figure 10 shows an 
example prediction generated by the diagnostic model. 

 

 
3 Official website: https://xgboost.ai/ 
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Figure 10. Example prediction by the binary classifier model (left image) by the diagnostic model (right 
image). 

In this setting, a supervised ML model (i.e., a classifier) is trained using both the faulty and healthy 
datasets (Ξ./)"7%80*4, Ξ./)"3$%0*34) and is employed to predict, given 𝜉./), the class 𝑜𝑢𝑡 (either faulty or 
healthy) to which 𝜉./) belongs. Such a prediction can be augmented by also determining the probability 
estimate 𝑃𝑟𝑜𝑏+$*$9 associated with the prediction 𝑜𝑢𝑡. If the [0,1] margin interval is divided into two 
equally long segments, we can assign the class “healthy” to the [.5,1] interval and the class “faulty” to the 
[0, .5] interval. Hence, the predicted class 𝑜𝑢𝑡 generated by the ML model determines the margin variability 
interval (either [0, .5] or [.5,1]). The variable 𝑃𝑟𝑜𝑏+$*$9 is essentially a measure of the prediction accuracy. 
More precisely, a high value of 𝑃𝑟𝑜𝑏+$*$9 implies a high degree of accuracy in the prediction; conversely, 
a very low value implies low accuracy. In this context, 𝑃𝑟𝑜𝑏+$*$9 is used to determine the precise margin 
location in the [0, .5] or [.5,1] intervals. A high value of 𝑃𝑟𝑜𝑏+$*$9 would drive the margin toward the 
extremes of the intervals (either 0 or 1), whereas a low value of 𝑃𝑟𝑜𝑏+$*$9 would drive the margin toward 
the common point of the intervals (i.e., 0.5). 

Consequently, provided 𝜉./) and a ML model that can generate both 𝑜𝑢𝑡 and 𝑃𝑟𝑜𝑏+$*$9, a margin 
value can be defined as follows: 

𝑀C𝜉./)D = E
0.5 − :;./"#$#%

<
𝑖𝑓	𝑜𝑢𝑡 = 𝑓𝑎𝑢𝑙𝑡𝑦

0.5 + :;./"#$#%

<
𝑖𝑓	𝑜𝑢𝑡 = ℎ𝑒𝑎𝑙𝑡ℎ𝑦

   (1) 

In this respect, Figure 11 provide a snapshot of the temporal profile of CWS margin associated with the 
waterbox.  

 
Figure 11. Waterbox margin temporal profile, as determined using a trained classifier (Mandelli, 2023b). 



 
57 

7 Causal Analysis Between ER Data Elements 

Once both ER textual and numeric data elements have been processed through the methods described 
in Sections 5 and 6, the next step is to determine the associations between ER data elements. In the context 
of this work, this association has a to be interpreted in a causal sense, i.e., the event reported in one data 
element (the cause) has triggered the event reported in the second data element (the effect). The 
determination of the causal association between two data elements is here performed if both of the following 
conditions hold true: 

• A logical association dictated by either inductive reasoning or physics-based considerations 
between the two events exists (see Section 7.1) 

• The temporal correlation between the two events exists (see Section 7.2) 
 
7.1 Logical Analysis 

Typically, in order to test if the events reported in two ER data elements have a logical association, 
system engineers rely on their knowledge about system functional architecture. As an example, if these two 
events are considered: 

“centrifugal pump is not operating” , “4160V AC power system has failed”  

a system engineer might see a logical association between the two events since the considered centrifugal 
pump requires the 4160V system to operate. 

For the scope of this work, the knowledge about system functional architecture is contained in available 
OPM models described in Section 4 which are translated into graph structures. The logical analysis between 
two events can then be performed by determining if a logical path (inductive reasoning) in the OPM-induced 
graph structures between the nodes “centrifugal pump” and “4160V AC” exists. This path can be visualized 
by looking at the right portion of Figure 7 where the node “4160V AC” directly supports the rotation of 
pump motor and provide rotation to the impeller responsible to provide water flowrate in the discharge 
pipe. The existence of this path confirms that the two events have a logical association. 
 
7.2 Temporal Correlation Analysis 

Sections 5 and 6 presents methods of analyzing numeric and textual ER data elements, and we explained 
how OPM diagrams can be employed to identify possible causal relationships between ER data elements 
(see Section 7.1). The word “possible” is intended to indicate that two events sharing an OPM-based direct 
relation may in fact exist independently from each other. The first step in testing for such dependence is to 
observe their temporal correlation. For the scope of this article, we are interested into identifying the 
existence of a temporal correlation between two events and between an event and a time series. 

Regarding the temporal correlation analysis between two events, we are here considering the generic 
situation where two events (𝐸1 and 𝐸<) are defined over specific time instances: (𝐸1, 𝑡1) and (𝐸<, 𝑡<). 
Without loss of generality, we assume that 𝑡< > 𝑡1. The assessment of temporal correlation between the 
events 𝐸1 and 𝐸< is performed by looking how far, temporally speaking, the two events are. In more detail, 
we define here a temporal correlation index 𝐼*(𝐸1, 𝐸<) between the events 𝐸1 and 𝐸< as follows: 

𝐼*(𝐸1, 𝐸<) = 1 − 𝑒
&($(&$))

+       (2) 

where 𝜏 represents a decay term that filters out events that are far from each other. The temporal correlation 
index 𝐼*(𝐸1, 𝐸<)	provides a quantitative measure of the temporal distance among them: if the events 𝐸1 and 
𝐸< are close to each other, then 𝐼*(𝐸1, 𝐸<) approaches the value of 1. If the events 𝐸1 and 𝐸< are far from 
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each other, then 𝐼*(𝐸1, 𝐸<) approaches the value of 0. The parameter 𝜏 specifies the scale of the temporal 
closeness of the two events. 

Regarding the temporal correlation analysis between events and time series, our work extends that 
presented by (Luo, 2014), in which the temporal correlation between time series and events is formulated 
in terms of a two-sample problem (Gretton, 2006). Our extension includes three relevant items: a 
modification to the testing process structure, a different two-sample testing algorithm, and the handling of 
events defined over an interval (as opposed to a time instant). 

In its original formulation by (Luo, 2014), the temporal correlation was measured between a set of 
identical events and the time series. In the scope of the present work, we often deal with single events (e.g., 
abnormal behavior of an asset) rather than sets of events. The algorithm presented by (Luo, 2014) was based 
on measuring the statistical difference between the portions of the time series pertaining to both before and 
after (indicated as 𝑙=

7;.&* and 𝑙=;$%;, respectively; see the left-hand plot in Figure 12) the occurrence of an 
event (as defined over a temporal instant). Our extension, which enables dealing with events defined over 
a temporal interval (see the right-hand plot in Figure 12) requires the additional time series portion that 
corresponds to the duration of the event itself: 𝑙=+8;.  

 

 
Figure 12. Temporal correlation of a time series with an instantenous (left plot) and interval (right plot) 
event 𝐸. 

The plots in Figure 13 were adapted and modified from (Luo, 2014) and provide an overview of the set 
of cases observable when testing the temporal correlation between time series and events. When indicating 
the time series with 𝑆, we can look at the left-hand plot in Figure 13 and intuitively infer that 𝐸1 → 𝑆, 𝑆 →
𝐸<, 𝐸> → 𝑆, and 𝑆 → 𝐸?. Note that the symbol → here indicates a temporal relationship between an event 
𝐸 and 𝑆 but does not necessarily imply a causal relationship between the two. Similarly, by looking at the 
right-hand plot in Figure 13, we can infer that 𝐸1 → 𝑆, 𝑆 → 𝐸<, 𝑆 → 𝐸>, and 𝐸? → 𝑆. 

We employ the MMD algorithm (Gretton, 2006) to perform such statistical testing. In its original 
definition, let 𝑆1 and 𝑆< be independent random (univariate or multivariate) samples generated from 
unknown distribution 𝐹 and 𝐺, respectively. The hypotheses of the two-sample test can be stated as follows 
(i.e., the null hypothesis 𝐻@ and the alternative hypothesis 𝐻1): 

𝐻@: 𝐹 = 𝐺	

𝐻1: 𝐹 ≠ 𝐺	

This is achieved via the following MMD testing with a particular threshold 𝛼: if the threshold is 
exceeded, then the test rejects the null hypothesis (Gretton, 2006).  A Type I error (true negative) is made 
when 𝐹 = 𝐺 is rejected based on the observed samples, despite the null hypothesis having generated the 
data. Conversely, a Type II error (false negative) occurs when 𝐹 = 𝐺 is accepted despite the underlying 
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distributions being different. The level 𝛼 of a test is an upper bound on the probability of a Type I error: 
this is a design parameter of the test which must set in advance, and it is used to determine the threshold to 
which we compare the test statistic.  

 

 
Figure 13. Use cases considered for evaluating the temporal correlation of a time series with a set of 
instantenous (left plot) and interval (right plot) events. 

When dealing with time series, let’s consider two time series 𝑆1 and 𝑆<, MMD testing is performed via 
comparing 𝑀𝑀𝐷8<(𝑆1, 𝑆<) to bootstrap random permutations of 𝑀𝑀𝐷 kernels of 𝑆1 and 𝑆<. If 𝑆1 and 𝑆< are 
generated from different distributions (the null hypothesis got rejected), then the probability of 
𝑀𝑀𝐷8<(𝑆1, 𝑆<) value in the 𝑀𝑀𝐷8< distribution (see Figure 14) generated by bootstrap random permutations 
is lower than a significant level 𝛼, i.e.,  

𝑃(𝑀𝑀𝐷8< > 𝑀𝑀𝐷8<(𝑆1, 𝑆<)) < 𝛼 

 

 
Figure 14. Histogram of 𝑀𝑀𝐷8< generated by comparing samples generated by a normal (mean=0, standard 
deviation=1) and Laplace distribution (location=0, scale=1). 

Bootstrap Random
Permutations
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Without a loss of generality, let us consider an event	𝐸—defined over either a time instant (𝐸, 𝑡=) or 
time interval (𝐸, 𝑡= , ∆𝑡=)—and a time series 𝑆 (either univariate or multivariate). An identification of the 
temporal relation between 𝐸 and 𝑆 is presented in detail in Algorithms 1 and 2. Both algorithms operate by 
comparing the statistical distribution 𝑙=

7;.&* and 𝑙=;$%; against 𝑆. In more detail, this is performed by 
randomly sampling portions of 𝑆 that have same duration of 𝑙=

7;.&* and 𝑙=;$%;. Such set of portions of 𝑆 is 
indicated as 𝛩. 

Given a time series 𝑆, and a randomly sampled sub-series 𝛩 from 𝑆 denoted as 𝛩 = (𝑆1, … , 𝑆&, … , 𝑆A), 
where each sub-series 𝑆& has the same length of 𝑘. Assume 𝑆 only contains two states, i.e., normal with 
value of 0 and anomaly with value of 1 with probabilities 𝑝@ and 𝑝1, respectively. We assume 𝑝1 ≪ 𝑝@. For 
any sub-series 𝑆= with the length of 𝑘,  𝑆= belongs to the anomaly state, if and only if the accept ratio (i.e., 
the ration between the number of sub-series 𝑆& are similar to 𝑆= based on previous MMD testing over the 
total number of sub-series of Θ) is below 𝑝1. The null hypothesis, i.e., 𝑆= are generated from the normal 
states of 𝑆, is rejected in this case. In other words, there is a temporal correlation between 𝑆= and the 
anomaly state of 𝑆. As an example, the MMD testing of 𝑙=

7;.&* vs. Θ and 𝑙=;$%; vs. Θ is shown in Figure 15. 
 

 
Algorithm 1: Identification of the temporal relation between event and 
time series—time instant case  
Input: Event (𝐸, 𝑡=), time series 𝑆 = (𝑠1, 𝑠<, … , 𝑠#) 
Output: Temporal correlation flag 𝑅, direction 𝐷 

1. Initialize 𝛩 
2. Determine 𝑙=

7;.&*, 𝑙=;$%; from 𝑡= 
3. Test 𝑇C𝛩, 𝑙=

7;.&*D, and	𝑇(𝛩, 𝑙=;$%;) 
• Results are denoted as: 𝐷7 , 𝐷; 

4. Test 𝑇C𝛩, 𝑙=
7;.&* ∪ 𝑙=;$%;D 

• Result is denoted as 𝐷7; 
5. Test 𝑇C𝑙=;$%; , 𝑙=

7;.&*D 
• Result is denoted as 𝑑7; 

6. If 𝐷7; = 𝐹𝑎𝑙𝑠𝑒 : 
• Return 𝑅 = 𝐹𝑎𝑙𝑠𝑒 

7. If 𝐷; = 𝑇𝑟𝑢𝑒	&	𝐷7 = 𝐹𝑎𝑙𝑠𝑒: #E1 
• Return 𝑅 = 𝑇𝑟𝑢𝑒 and 𝐷 = 𝐸 → 𝑆 

8. If 𝐷; = 𝐹𝑎𝑙𝑠𝑒	&	𝐷7 = 𝑇𝑟𝑢𝑒: #E4 
• Return 𝑅 = 𝑇𝑟𝑢𝑒 and 𝐷 = 𝑆 → 𝐸 

9. If 𝐷; = 𝑇𝑟𝑢𝑒	&	𝐷7 = 𝑇𝑟𝑢𝑒: #E2 and E3 
• Return 𝑅 = 𝑇𝑟𝑢𝑒  
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Algorithm 2: Identification of the temporal relation between event and 
time series—time interval case 
Input: Event (𝐸, 𝑡= , ∆𝑡=), time series 𝑆 = (𝑠1, 𝑠<, … , 𝑠#) 
Output: Temporal correlation flag 𝑅, direction 𝐷 

1. Initialize 𝛩 
2. Determine 𝑙=

7;.&*, 𝑙=;$%;, 𝑙=+8; from 𝑡= and, ∆𝑡= 
3. Test 𝑇C𝛩, 𝑙=

7;.&*D, 𝑇(𝛩, 𝑙=;$%;), and 𝑇C𝛩, 𝑙=+8;D 
• Results are denoted as: 𝐷7 , 𝐷;, 𝐷+8; 

4. Test 𝑇C𝛩, 𝑙=
7;.&* ∪ 𝑙=+8; ∪ 𝑙=;$%;D 

• Result is denoted as 𝐷7+; 
5. Test 𝑇C𝑙=+8; , 𝑙=

7;.&*D 
• Result is denoted as 𝑑7+ 

6. Test 𝑇C𝑙=+8; , 𝑙=;$%;D 
• Result is denoted as 𝑑+; 

7. If 𝐷7+; = 𝐹𝑎𝑙𝑠𝑒	or	𝐷+8; = 𝐹𝑎𝑙𝑠𝑒: 
• Return 𝑅 = 𝐹𝑎𝑙𝑠𝑒 

8. If	𝐷7 = 𝐹𝑎𝑙𝑠𝑒	&	𝐷; = 𝑇𝑟𝑢𝑒: #E1 
• Return 𝑅 = 𝑇𝑟𝑢𝑒 and 𝐷 = 𝐸 → 𝑆 

9. elif	𝐷7 = 𝑇𝑟𝑢𝑒	&	𝐷; = 𝐹𝑎𝑙𝑠𝑒: #E2 
• Return 𝑅 = 𝑇𝑟𝑢𝑒 and 𝐷 = 𝑆 → 𝐸 

10. elif	𝐷7 = 𝑇𝑟𝑢𝑒	&	𝐷; = 𝑇𝑟𝑢𝑒: #E3 
• Return 𝑅 = 𝑇𝑟𝑢𝑒 and 𝐷 = 𝑆 → 𝐸 

11. elif	𝐷7 = 𝐹𝑎𝑙𝑠𝑒	&	𝐷; = 𝐹𝑎𝑙𝑠𝑒: #E4 
• Return 𝑅 = 𝑇𝑟𝑢𝑒	and	𝐷 = 𝐸 → 𝑆 

 
 

 

Figure 15. MMD testing of event 𝐸1 shown in the left plot of Figure 13. The left plot shows 𝑙=
7;.&* vs. Θ, 

the null hypothesis defined in the previous paragraph is accepted since p value is greater than the significant 
level value. The right plot shows 𝑙=;$%; vs. Θ, the null hypothesis previously defined is rejected since p value 
is smaller than the significant level value.  



 
62 

Table 1. Examples of temporal correlation analysis based on MMD testing for the events 𝐸1, 𝐸<, 𝐸>, and 
𝐸? shown in Figure 13. 𝐸B is similar to 𝐸? with 7s temporal shift. 𝐸C, 𝐸D , 𝐸E  are specified at location 900s, 
500s, 200s respectively.  

 𝑙!
"#$%&	𝑣𝑠.		Θ 𝑙!#'(#	𝑣𝑠.		Θ 𝑙!

"#$%&	𝑣𝑠.		𝑙!#'(# 𝑙!
"#$%& ∪ 𝑙!#'(#	𝑣𝑠.		Θ Temporal 

correlation p value 𝐻) p value 𝐻) p value 𝐻) p value 𝐻) 
𝐸* vs. S 0.732 True 0.004 False 0.01 False 0.012 False E à S 
𝐸+ vs. S 0.012 False 0.052 False 0.01 False 0.02 False S à E 
𝐸, vs. S 0.042 False 0.006 False 0.01 False 0.01 False S à E 
𝐸- vs. S 0.004 False 0.758 True 0.01 False 0.016 False S à E 
𝐸. vs. S 0.008 False 0.048 False 0.01 False 0.004 False S à E 
𝐸/ vs. S 0.726 True 0.728 True 0.63 True 0.72 True False 
𝐸0 vs. S 0.734 True 0.722 True 0.59 True 0.71 True False 
𝐸1 vs. S 0.706 True 0.712 True 0.75 True 0.678 True False 

 
Lastly, note that the reported time of occurrence of an event is assumed to reflect the actual temporal 

occurrence of that event. More specifically, the reported occurrence of an event (e.g., sudden bearing failure 
of a pump) is logged when the event is first observed; however, the actual event may have occurred prior 
to the logged date (i.e., a temporal delay may exist between the actual and observed occurrence of an event). 
In such situations, the analysis of the temporal correlation between events and time series may be biased 
by such delays.  

 
7.3 CWS Testing 

An initial testing of Algorithm 1 and Algorithm 2 has been performed on the textual (see Section 4) 
and numeric (see Section 5) datasets available for the CWS. This testing was set up by initially considering 
true positive (i.e., a temporal correlation exists) and true negative (i.e., a temporal correlation does not exist) 
cases. As a reminder, the numeric data described in Section 5 contains not only the temporal profile of 
several monitor variables, but it also provides information on how those variables are distributed under both 
healthy (i.e., Ξ./)"3$%0*34) and failed conditions (i.e., Ξ./)"7%80*4) for each of the considered failure 
modes. In this respect, Figure 16 shows the box plot of four considered features for the considered healthy 
and faulty states. These variables were chosen based on their coverage of all healthy and faulty states. Note 
that the structure of box plots shifts between healthy and faulty states; in fact, Figure 16 provides a visual 
comparison between healthy and faulty states by looking at the distribution of a single feature at a time. 
Such information is precious since the training set 𝛩 required by both Algorithm 1 and Algorithm 2 can be 
generated by considering only Ξ./)"3$%0*34, and as a consequence, the detection performance improves. 

The training set 𝛩 was constructed by considering Ξ./)"3$%0*34  and it consisted of 2,000 time series 
characterized by a common length of 24 hours. Then, we applied Algorithm 1 to test the temporal 
correlation between a known bellmouth failure event and the provided monitored data.  
 
8 Knowledge Graph Construction 

Provided the set of processed ER data elements—either textual (see Section 5) or numeric (see 
Section 6)—we aim to organize each element into a graph structure that captures the health indications of 
the CWS, and the possible cause-effect relations (logical and temporal) identified in Section 7. The 
proposed data structure employs the architecture of the system described by its corresponding set of OPM 
diagram(s).  
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Figure 16. Box plots of four of the considered features (DT, motor stator temperature, motor inboard-
bearing, and motor outboard-bearing temperatures) for healthy and failure states. 

 
As indicated in Section 4 the provided OPM diagrams for the considered CWS system and assets are 

first translated into a digital graph structure and then linked together. OPM entities are represented as nodes 
in the graph while the directed links intrinsically represent a causal/logical relation between two nodes. Our 
approach begins with the OPM graph structure of the system and assets under consideration (see Section 
4) then it progresses according to the following steps: 

1. Associate an ER textual data element with an OPM entity. This step heavily relies on the NLP 
knowledge extraction method presented in Section 5. In particular, the methods designed to identify 
the OPM entities from the ER textual data element generate a list of identified entities4. This allows 
us to associate each textual element to a specific OPM entity. If multiple OPM entities have been 
identified, then the same textual element is associated to the identified entities.  

2. Associate each numeric time series to a specific OPM entity. Provided the margin analysis 
described in Section 6, identify portions of the time series that describe a degradation or abnormal 
behavior. 

3. Identify the causal relationships between data elements; if both temporal (i.e., the coexist in the 
same temporal window) and logical (i.e., there is a logical path in the OPM graph structure) 
relations are verified, then create a causal link between the two data elements (see Section 7): 

i. Identify the causal relationships between textual data elements processed in Step 1 

ii. Identify the causal relationships between numeric data elements processed in Step 2 

iii. Identify the causal relationships between textual data elements processed in Step 1 and the 
numeric data elements processed in Step 2 

 
4 Given the short length of the available IRs or WOs, normally one single OPM entity is mentioned. 
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The resulting relational analysis takes the form of a graph structure reflecting the links between the data 
elements associated with a particular OPM entity. Again, the actual skeleton of the graph structure is 
directly derived from the OPM diagram of the system and assets under consideration. Note that the obtained 
graph structure is composed by: 

• Nodes that represent either OPM entities or ER data elements (numeric or textual) 

• Edges between nodes that can be of three types: 

o Logical/causal relations between OPM entities 

o Associations between ER data elements and OPM entities 

o Causal relations between ER data elements 

 

8.1 CWS Knowledge Graph 

As indicated in Section 8, the starting point is the construction of the graphs from the OPM diagrams. 
In this respect, Figure 17 and Figure 18 show the graph structures of the CWS system and the centrifugal 
pump that has been directly generated from the provided OPM diagrams. Note that the graph nodes can 
reflect different data types (form or function), and the same applies to edges. 

The available ER dataset for the considered CWS was collected over the past 14 years. Regarding Step 
1 indicated in Section 8, knowledge extraction methods presented in Section 5 were employed to analyze 
all WOs and IRs, enabling us to identify the nature of textual and OPM entities associated with them. In 
this respect, Figure 19 provide a histogram of the OPM entities that are mentioned in the provided dataset. 
As an example, Figure 20 shows some elements that are associated with the “waterbox” node indicated in 
the left portion of Figure 17. 

 

Figure 17. Obtained CWS data graph structure. 

Regarding Step 2 indicated in Section 8, we applied the margin analysis originally performed in 
(Mandelli, 2023b) given the available ER numeric time series. From such margin analysis, we were able to 
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retrieve failure events; as an example, Figure 21 shows the temporal profile of the margin associated with 
the CWP motor air intake failure where an actual event highlighted in green has been identified.  

 

 
Figure 18. Obtained centrifugal pump data graph structure. 

 

 
Figure 19. Distribution of OPM entities mentioned in the CWS textual dataset. 
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Figure 20. Processed IRs and WOs associated with the OPM entity “waterbox.” 

 

 
 
Figure 21. Temporal profile of the margin associated with the CWP motor air intake failure mode. 
 
9 Conclusion 

This paper presented a series of methods and algorithms for extracting knowledge from ER data for 
diagnostic and data management purposes. One main feature of these methods is that they are not based 
solely on data but are in fact model based. In other words, they also rely on MBSE (OPM) models designed 
to capture—from a functional point of view—the architecture of the systems and assets under consideration. 
The main purpose of such models is to digitally emulate system engineers’ knowledge of system and asset 
architecture and to identify dependencies among systems, assets, and components. Provided these models, 
analyses of textual and numeric ER data can be performed by first identifying the OPM model elements to 
which the ER data elements are referring. The causal relationships between ER data elements are then 
identified by checking for any temporal or logical dependencies. The last step is to organize the available 
ER data elements into a graph structure (i.e., a knowledge graph). In the present work, the OPM model 
structure served as the skeleton of the graph, with the ER data elements being matched to specific OPM 
entities. In addition, if both a logical and temporal relationship are identified between two ER data elements, 
a direct link between them is created. The resulting graph provides a structured, complete, and organized 
architecture for analyzing and visualizing complex ER datasets to provide an overview of the ER 
performance of systems and assets. 
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