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ABSTRACT 
The monitoring of plant equipment for failure prediction is one of the key 

contributors to operation and maintenance (O&M) costs for a nuclear power 
plant (NPP) because O&M monitoring depends on labor-intensive activities that 
are required to meet high equipment reliability standards. These activities rely 
primarily on humans for information gathering, condition diagnosis, and 
predictive analysis. Online monitoring aims to automate these activities by 
relying on sensors to replace human information gathering and machine learning 
to replace human analysis and decision making. 

To facilitate automated monitoring, a systematic strategy for anomaly 
detection is needed to optimally use the available sensor data, empirical models, 
and physics-supported models. This strategy is essential to provide credible 
reasoning on why and when an empirical (i.e., purely data-driven) versus hybrid 
(i.e., physics-supported) approach should be used and to determine the ideal mix 
of these two approaches for a defined anomaly detection scope. The extant 
methods usually adopt an ad hoc trial-and-error approach that, in addition to 
being time-consuming and costly, is also highly subjective; it is impacted by the 
background and the skill set of the personnel making the decisions. Thus, such an 
approach cannot guarantee an optimum outcome. This represents the motivation 
of the current research effort, which is focused on devising a scientifically 
supported strategy for the optimum selection of anomaly detection methods. 

This report presents a detailed assessment of the main anomaly detection 
techniques within the empirical or hybrid method streams. Empirical methods 
include pattern, statistical, and causal inference. Hybrid methods include the use 
of physics models to train and test data methods, reduce data dimensionality, 
reduce data-model complexity, augment data, and reduce empirical uncertainty; 
hybrid methods also include the use of data to tune physics models. The listed 
techniques within these two streams represent the vast majority of techniques 
performed for anomaly detection. Using the techniques as outcomes, a strategy 
was developed to enable a systematic decision-making process to lead to one of 
these techniques. The strategy is driven by key decision points related to data 
relevance, simple modeling feasibility, data inference, physics-modeling value, 
data dimensionality, physics knowledge, method of validation, performance, data 
availability and suitability for training and testing, cause-effect, entropy 
inference, and model fitting. Each of these decision points in the strategy is 
explained in detail in this report with examples, along with the scientific basis 
behind the decisions and outcomes in common and simplified terminology. The 
strategy is developed for use by any NPP staff with basic engineering or science 
knowledge. A user-friendly graphical state flow diagram was also developed as a 
visual presentation of the strategy. The strategy was tested and demonstrated 
through two pilot projects for the application of anomaly detection at an NPP. 
Each pilot had two use cases: an initial case in which certain decisions were 
made that resulted in one or more empirical techniques and a revised use case 
where one or more key decisions were modified resulting in using a set of hybrid 
methods. 
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An Applied Strategy for Using Empirical and Hybrid 
Models in Online Monitoring 

1. INTRODUCTION 
The monitoring of plant equipment for failure prediction is one of the key contributors to operation 

and maintenance (O&M) costs for a nuclear power plant (NPP) because O&M monitoring depends on 
labor-intensive activities that are required to meet high equipment reliability standards. These activities 
rely primarily on humans for information gathering tasks (i.e., data collection as in Al Rashdan 2019a), 
condition diagnosis, and predictive analyses. Online monitoring aims to automate these activities by 
relying on sensors to replace human information gathering and machine learning to replace human 
analysis and decision making. The Light Water Reactor Sustainability (LWRS) program launched several 
efforts to target specific applications of information gathering [Al Rashdan 2019b], and recently 
commenced several efforts to automate or support the decision-making process (e.g., Al Rashdan 2018 
and Al Rashdan 2019c). 

In the context of failure prediction and prevention, NPPs have adopted layers of defense and diversity 
as the approach to predict and rectify potentially harmful equipment conditions. Figure 1 identifies the 
time-driven layers of defense to detect a failure, with long-term activities on the left and progressively 
shorter-term activities for failure prevention moving towards the right. Age management represents long-
term monitoring programs aimed towards detecting and mitigating slowly degrading conditions of 
structures, systems, and components (SSCs). Age management functions are performed by system 
engineers, both during the initial procurement of equipment when maintenance schedules are set up and 
on an ongoing basis to maintain equipment life-cycle management plans. In the medium time range, 
surveillances and preventive maintenance are performed to detect and mitigate conditions for those SSCs 
the failure of which results in higher risk to the plant. These activities are performed by System 
Engineering to evaluate system performance, Maintenance to perform service or maintenance on the 
equipment, and Operations to acquire system measurements. 

 

 
Figure 1. The layers of defense in prediction and prevention of equipment failure. 

Overall, System Engineering is responsible for equipment health monitoring both for specific systems 
that fall under the responsibility of individual engineers and for plant-wide monitoring systems that affect 
multiple plant systems. If long- and medium-term activities fail, alarms set with thresholds can detect 
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impending equipment failure. The human-based anomaly detection of plant operators may be the final 
layer of defense before the equipment fails. In terms of diversity, a variety of interdependent methods are 
used by System Engineering, Maintenance, and Operations to monitor and analyze equipment conditions. 
The methods all heavily rely on human decision-making, which represents a key weakness of the current 
monitoring approach, especially when considering the large number of equipment items that must be 
monitored and the need to reduce the workforce in order to remain economically competitive. To address 
this weakness, NPPs leverage recent advances in online monitoring technologies to move towards 
machine-based and automated monitoring for all the phases depicted in Figure 1. 

1.1 Current Monitoring Practices 
Most of the online monitoring solutions offered to plants are presented in the form of system-targeted 

solutions—i.e., they target medium time range detection. Several examples of these systems can be found 
in Al Rashdan 2018. There are also some tools that have been developed recently to advance towards 
equipment-independent monitoring, displaying different levels of success within the nuclear industry. In 
order to provide context for the discussion of anomaly detection in this report, brief descriptions of 
several tools used for anomaly detection at NPPs are included below. Tools used for anomaly detection in 
the nuclear industry include the following: 

1. Setpoints and alarms associated with the plant computer system and other instrumentation and 
controls systems. This is the basic, original anomaly detection method, which sets normal operating 
bands for various data points and alerts operators if a parameter falls outside of the designated bands. 
This method is inexpensive and generally simple to understand and process. However, because 
operating bands are generally established to avoid false alarms and to accommodate routine system 
changes, this type of anomaly detection usually only identifies parameters that are grossly in error and 
is insufficiently sensitive to catch many equipment issues. 

2. Equipment online monitoring solutions. These systems typically include sensors that provide 
continuous equipment data that were not available previously, such as vibration data for rotating 
equipment. These sensors are relatively easy to deploy and can typically provide a large benefit in 
anomaly detection for minimal cost. They are frequently sold with customized software packages to 
analyze data from sensors and provide equipment condition information. Multiple vendors offer 
wireless monitoring systems for NPP equipment, and wireless systems are usually less expensive to 
deploy. 

3. Predictive maintenance. These techniques have been available for many years to monitor industrial 
equipment. Examples of methods used in predictive maintenance are lubricant sampling and analysis, 
thermography measurements and trending, and vibration measurement and analysis. Typically, 
engineers and technicians work together to obtain and analyze predictive maintenance data. 
Historically, these tools have only been able to identify anomalous conditions that develop over 
relatively long time periods because these methods have been performed manually on a periodic basis 
(such as biweekly or monthly) and therefore cannot identify anomalies on shorter time scales. 
However, more advanced online predictive maintenance methods—such as continuous thermography, 
oil sampling, or vibration measurements—are being pursued in some cases. 

4. Thermal performance models. These models form a holistic physics model of the thermodynamic 
cycle of a power plant. Output from thermal performance models can be compared with actual plant 
data to determine potential issues with individual pieces of plant equipment important to the power 
cycle. Thermal performance models can be static (running the model for a given state of a power 
plant) or dynamic (incorporating live plant data to compare to the model on an ongoing basis). 

5. Advanced pattern recognition (APR). This is the common term in the industry for a class of software 
used for anomaly detection. The software uses models that are designed to establish correlations 
among multiple custom-fed data points to predict future values of a given parameter and are often 
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referred to as data-driven models because they do not incorporate any physics models in their 
formulation. Alternative and related terms include empirical anomaly detection methods, data-based 
anomaly detection methods, residual generators, inference methods, and artificial-intelligence-based 
monitoring. When the model-predicted values deviate above a certain threshold from the measured 
values, the measured values are flagged as anomalous. Multiple vendors offer products that include 
APR models, the inner workings of which—i.e., the underlying methods and analysis tools—are 
treated as black boxes. Thus, they remain unknown to the user. 

6. Data validation and reconciliation (DVR). DVR is a software tool that uses physics and data-based 
models to analyze entire power plant systems. The physics-based modeling takes the form of flow 
and energy balances. Actual power plant data are then input to the model and validated with the 
physics. A DVR model can provide confidence values for individual sensors and data parameters in 
the system. 

7. Digital instrumentation and control systems. Many control systems in the nuclear industry (mostly on 
the non-safety side of the plant and increasingly towards nuclear safety systems) have been upgraded 
from the original analog controls to digital systems. While digital control systems do not typically 
include enhanced online monitoring systems explicitly, these upgrades can add instrumentation and 
automated decision making (e.g., Al Rashdan 2019d) which was previously unavailable, and allow 
the digitization of some data that were only available in analog form previously. 

8. Personnel. At the present time in the nuclear industry, monitoring is a largely people-centric process. 
Regardless of which online monitoring tools are used, at some point an actual subject-matter expert 
(SME) must recognize the meaning of plant data and any input from anomaly detection tools. At 
some point in the future, anomaly detection tools will have enough equipment failures in their data 
libraries to be able to diagnose equipment failures on their own. For now, the human element must 
remain involved. In addition, there is a need for personnel being physically present near some 
equipment. Smells, sights, and sounds registered by people who know the equipment can all be 
important parts of monitoring and anomaly detection. Some of the personnel involved most closely 
with equipment monitoring include: 

- System engineers (also known as plant engineers or strategic engineers), who perform regular 
walkdowns of the equipment and are intimately familiar with the operation of the systems and 
individual pieces of equipment. System engineers regularly look at plant data in various forms, 
using different tools to understand the behavior of the systems and equipment. However, system 
engineers are not continuously present at the plant and, therefore, cannot always respond to 
immediate anomalies. 

- Operators, who perform daily rounds of equipment and continuously monitor plant operations. 
While individual operators lack the detailed technical proficiency and familiarity with the 
equipment as compared to system engineers, they have more hands-on experience operating 
equipment and are available continuously to respond to fast-moving equipment anomalies. 

- Maintenance technicians, who provide input to online monitoring programs by providing 
feedback about equipment conditions. In an ideal NPP organizational structure, monitoring 
processes provide input to maintenance work, and maintenance personnel provide input to 
monitoring (by providing equipment condition data back into the data models). 

- SMEs in anomaly detection software, who use software tools to provide important information 
about anomalous conditions to NPP personnel. 

9. Remote monitoring centers. This is an organizational tool to enhance online monitoring efforts at an 
NPP. A remote monitoring center is a centralized repository where plant data from multiple plants are 
collected, and SMEs in anomaly detection use various tools to analyze data and provide anomaly 
detection reports to plant personnel. 
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As described above, there are a variety of tools and interpretive capabilities (hardware, software, 
individual personnel, and organizations) to detect anomalies. This report does not provide a 
comprehensive method for all online monitoring tools but seeks to provide a technical foundation for 
some decision making for which anomaly detection methods to pursue in a given situation. While the 
emphasis of this report is to provide NPP personnel with a method for implementing anomaly detection 
practices in situations where anomaly detection was previously unavailable, the information provided in 
this report can help shed light on existing anomaly detection methods and practices. 

1.2 Value of Intelligent Anomaly Detection 
As industrial systems become more complex, the continuous monitoring of their behavior is also 

becoming increasingly complex. Many NPPs rely, at least in part, on a manual monitoring process to 
analyze data collected from the network of sensors placed throughout the plant. Online monitoring aims 
to automate this process. Online monitoring, simply described, is the use of modern technology methods 
to autonomously and intelligently collect and analyze equipment data to enhance equipment and process 
reliability. Anomaly detection, thoroughly defined in the following sections, is at the heart of online 
monitoring. Indeed, the very purpose of online monitoring is to detect and enable a response to anomalies. 
If there were never equipment anomalies, even due to aging or wear at an NPP (that is, if conditions never 
varied from normal operation), there would be no need for online monitoring. 

Discovery of anomalies or abnormal or unexpected behavior provides the first warning to operators 
that something abnormal is about to take place, thus alerting them to look more closely at the system to 
find the cause of the abnormal behavior. If successful, anomaly detection serves as an effective tool to 
warn operators about the incipient stages of anomalous behavior by extending the early-detection 
window, thus providing ample time before the anomalous condition worsens to the point of causing 
equipment damage. Furthermore, successful anomaly detection allows operators to pinpoint the 
associated causes of the anomaly before the plant-state transitions into undesirable outcomes, such as the 
interruption of service or critical safety-related consequences. 

To achieve the maximum benefits of anomaly detection, monitoring for abnormal behavior requires 
two steps, detection and classification of anomalies. The detection of an anomaly is the recognition that a 
behavior has shifted from normal to abnormal, whereas the classification of an anomaly is the 
identification of its source. It should be noted that not all anomalies result in detrimental impacts to NPP 
equipment. Some anomalous conditions persist for long time scales (years, even) without ever 
manifesting themselves as a problem for equipment operation. Therefore, not all anomalies need to be 
corrected or even completely understood. The process of anomaly classification serves to differentiate 
anomalies that could result in challenges to plant equipment from anomalies that prove harmless. 

The value of automated anomaly detection using data from plant sensors has been recognized in many 
fields including engineering systems [Wang 2009]—e.g., fossil [Raj 2014], oil and gas [Marti 2015], 
wind [Hongshan 2018], nuclear [Al Rashdan 2018 and 2019c], and aerospace [Basora 2019] industries, 
the medical field [Tibshirani 2007, Tarassenko 1995], finance [Aleskerov 1997, Anandakrishnan 2017], 
military applications [Brotherton 2001], cybersecurity intrusion detection [Yeung 2002, Rubin-Delanchy 
2016], etc. In the context of nuclear power, automated anomaly detection enhances equipment failure 
prediction capabilities and reduces the operators’ burden, especially because operators at an NPP are 
responsible for several tasks that can result in the Operations organization becoming the most burdened 
organization in the plant. 

The ability of operators to detect a plant anomaly and react to it depends on their ability to stay aware 
of the plant state and correlate plant conditions to anticipated future states. Plant-state awareness is 
dependent on the level of exposure to plant information because it requires the ability to maximize the 
correlation between the current system state and its anticipated future behavior. An operator cannot 
perceive more than a few levels of depth of plant information, including both physical (e.g., inspections, 
rounds, etc.) and analytical (e.g., plant monitoring and operations) information. In the context of 
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situational awareness, this limits an operator’s perception of the plant to a number of states, referred to as 
operator-awareness states, and can often result in significant plant performance shifts before an action is 
taken. 

While operators acquire limited state-awareness for many power plant systems, system engineers 
employ their extensive knowledge about specific plant systems to build deep, but domain-limited, state-
awareness. This limited awareness includes physics knowledge and is supplemented by data-driven 
models gleaned from experience for the specific system components—e.g., a given pump or valve. 
Figure 2 shows the potential for a plant anomaly to be detected by entering into the domains represented 
by operator states and system engineer recognition. An anomaly growing in a plant process often results 
in states of which the operator is not aware until the anomaly results in a change in one of the operator-
aware states. These shifts can result in economic risks (i.e., equipment failure or outage) but can also 
result in safety risks. It is therefore desirable to develop anomaly detection methods that enhance and 
automate the ability to mitigate the impact of late detection of plant anomalies. Based on a nearly 
continuous presence in the plant, an operator typically maintains the ability to recognize basic anomalous 
conditions before a system engineer. However, for certain anomalies that require a higher level of 
knowledge, the condition may fall outside of operator states but may be identified by the system engineer. 

Additional layers of personnel, systems, or programs that form part of the online monitoring network 
at the NPP (such as predictive maintenance) could be added in the schematic of Figure 2 with their 
appropriate level of knowledge and time-based anticipated response. The important point is that, with the 
voluminous size of physical and analytical data available to operators, system engineers, and other plant 
personnel and the huge number of plant components, it is paramount to develop an automated strategy by 
which the relevant data can be analyzed to maximize the overall plant-state-awareness. As represented in 
Figure 2, a machine learning (ML) system has the potential to encompass all operator and system 
engineer states and expand the capability to detect anomalous conditions. 

 

 
Figure 2. The layers of state awareness and anomaly escalation in the operations of an NPP. 

The most straightforward strategy for anomaly detection is to compare process data with some 
baseline behavior representing the expected normal response [Hwang 2009; Isermann 1984; Qin 2012]. 
The deviation between measured process data and expected response are used as a basis for flagging 
anomalous behavior. Considering the large volume of process data, the approach to process these data is 
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via the use of ML techniques, which can be trained to classify the deviations as anomalous or normal 
disturbances. ML emulates the human learning process by developing several additional states—i.e., 
substates within the states perceived by operators—thereby expanding the typical operator state-
awareness (Figure 2). To achieve that, ML must have access to large training datasets from either prior 
knowledge about plant operation or through a predictive-modeling approach. Prior knowledge is usually 
acquired with experience from actual systems (e.g., plant process data) or other systems that resemble the 
system of interest for the purpose of the knowledge development (e.g., pump performance in one plant 
resembles its performance in another). Alternatively, the predictive approach could rely on physics 
models (including empirical models) of the experience to enable knowledge transfer between one plant 
and another. This knowledge transfer often results in assumptions about system insensitivity to 
unobserved or unmodeled factors (e.g., environmental impacts). 

1.3 What Is an Anomaly? 
Often the question of how to define anomalies arises. Qualitatively, anomalies (as referred to in the 

ML community) imply that an unexpected or rare event has happened, and the concern is that it may lead 
to an unpredictable system trajectory with dire safety- or economic-related consequences. This is different 
from an outlier (as referred to by statisticians), which is often used to describe bad data, rather than bad 
behavior. To transition from a qualitative definition of an anomaly into a method, a well-defined 
mathematical approach is required for both detection and classification of anomalies. Unfortunately, 
making this transition is not straightforward because this qualitative definition of anomalies is somewhat 
vague and, thus, not conducive to concise mathematical representation. This is because the definition does 
not say anything about how to define an unexpected event, much less classify its sources. Is the event 
completely unknown—i.e., never seen before? Has it been seen, but very rarely? Are the event mechanics 
well understood, including its possible precursors? When such a crisp (i.e., deterministic) understanding 
of a phenomenon is not possible, the analysts must resort to the only possible, albeit complex, alternative 
of listing the myriad possible events that can cause anomalies and their possible causes. This turns the 
problem into a mathematical exercise with an unavoidable degree of subjectivity0F

a, rendering it vulnerable 
to false positives (i.e., normal behavior being incorrectly declared as anomalous) and true negatives (true 
anomalies going undetected). The classification step is typically more involved, as it attempts to identify 
the source of the anomaly, which may be in close proximity or away (upstream or downstream) from the 
location of the measured signal. 

A classic example of this problem is shown in Figure 3, showing a scatter plot of two measured 
variables (e.g., flow rate in a pipe and the fluid temperature at the pipe’s exit), x(1) and x(2), at multiple 
operating conditions—e.g., high, intermediate, and low power conditions. The three data clusters 
correspond to the three operating conditions, leaving the red points more difficult to explain. For example, 
Point A is easily judged to be coming from the bottom-left cluster; however, it lies in the low probability 
region of that cluster. Due to the random nature of the measurement process, Point A may be a legitimate 
sample from that cluster distribution, or it may result from anomalous behavior. Subjectivity permeates 
the entire process for detection as well as classification because, for example, the analyst is forced to 
establish a cutoff criterion on how far a point needs to be from a given cluster to be deemed anomalous. 
For example, a point may be deemed anomalous if it lies more than two or three standard deviations away 
from the cluster centroid. Point C may be simple to explain away as a bad data point because it is very far 
from all three clusters, but the situation is more complicated for Point B, which could potentially belong 
to one of the two neighboring clusters. Hence, a quantitative criterion is needed to make these decisions. 

In identifying an anomaly, several subjective decisions are usually made: 

• First is to determine whether the anomaly is to be considered a one-time event with no 
consequence—referred to as an outlier in the statistical community—thus requiring no further action, 

 
a  Subjectivity implies decisions made by the analyst reflecting beliefs or experiences.  
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or the anomaly represents a pattern (a regularity structure, as referred to later in the discussion) 
warranting further analysis. If the former, the outlier is considered to be “bad data” that must be 
removed before analyzing the rest of the data—e.g., Point C from Figure 3 represents possible bad 
data. If the latter, however, the analysis of anomalous data, such as Point C, becomes far more 
problematic as the analyst must decide from which cluster it is drawn in order to determine how to 
classify its source. 

• Second, the choice of the standard deviation or variance of each cluster as a distance measure is an 
important decision by itself, which is commonly employed by the majority of anomaly detection 
techniques. In general, one can analyze the shape of the distribution using more sophisticated 
information-theoretic metrics like entropy (to be discussed later), which offer a greater advantage in 
detecting and classifying the source of anomalies. 

• Third, what is an acceptable number of standard deviations to demarcate the boundaries of normal 
behavior? Different values will lead to different classification results, as is the case with Point C. 

• Fourth, the measure of distance between a red point and a cluster’s centroid is a subjective decision. 
Different distance measures will generally have different results1F

b, thereby leading to different 
classifications. 

• Fifth, a method to select the cluster centroid (i.e., should one use the mean value or the most probable 
value?). 

Each of these decisions has its associated pros and cons, depending on what is decided, and it is 
typically very difficult if not infeasible to test the adequacy of the individual decisions. This forces the 
analysts to rely primarily on experience gleaned over time with a given anomaly detection system taken in 
tandem with all its associated subjective decisions. 

 
Figure 3. Statistical/subjective definition of anomalous behavior. 

1.3.1 Mathematical Decomposition 
From a mathematical perspective, a measured value, xm(t), from the plant can be decomposed into 

explained (i.e., belonging to a pattern consistent with current knowledge of the system) and unexplained 
(i.e., ambiguous) parts using the following form: 

𝑥𝑚(𝑡) = 𝑥𝑝(𝑡) + 𝜀𝑥(𝑡) (1) 

 
b  The Euclidean distance measure—commonly used in mainstream anomaly detection and classification methods, physics-

based, and statistical inference techniques—is often selected due to its mathematical convenience.  
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where xp(t) is the explained part of the signal, representing the best prediction for the true state xt(t) using 
domain knowledge or context-aware system information—i.e., physics models, rule-based models, and 
machine-learned models using historical data—and εx(t)c is the unexplained part of the signal. The model 
may be based on a variety of models, such as thermal performance models that are used to describe the 
overall thermodynamic cycle of the plant, plant simulator models, which generally hybridize both 
physics-based and data-driven models, or a physics-based simulator for operators training. Thus, a key 
paradigm for anomaly detection techniques is the ability to distinguish regular structure, referred to 
hereinafter as the explained part of the signal, from the unexplained part, described probabilistically as a 
random variable with an associated probability density function (PDF). The explained part is viewed as a 
baseline for normal behavior that, when subtracted from the signal, leaves a residual that represents the 
starting point for the analysis of anomalous behavior. This represents the rationale of most anomaly 
detection techniques; hence, it is essential for an anomaly detection method to determine the normal 
(baseline) behavior because it will have an impact on the subsequent algorithms used for anomaly 
detection and classification. For example, depending on the algorithms employed, the explained part may 
or may not contain cause-effect information, thus impacting the classification ability—i.e., the ability to 
regress the anomaly back to its true source. 

Eq. (1) underscores the subjective nature of the signal splitting into a regular, explained structure and 
an unexplained randomness. At a very fundamental level, this problem is underdetermined, meaning that 
the number of equations—here abstractly represented by a single equation 3F—is less than the number of 
unknowns (i.e., it has infinite number of solutions). This is true even when deterministic physics-based 
models are employed to describe xp(t). This is because any model, regardless of its level of sophistication, 
represents an approximation of reality. Modelers have to hedge for their lack of knowledge via a number 
of free parameters, the values of which are determined via a minimization approach (i.e., tuning the model 
to fit the data with minimal error), as described later. In practice, Eq. (1) is rewritten as follows, using a 
number of additional parameters: 

𝑥𝑚(𝑡) = 𝑥𝑝(𝑡, 𝛼) + 𝜀𝑥(𝑡) (2) 

where  represents a number of parameters that come from physics models—e.g., material properties, 
geometry, control parameters, etc.—or are developed empirically (i.e., from the data). This representation 
emphasizes that even if the mathematical form of xp is fixed, this decomposition is fundamentally 
underdetermined, implying that additional information must be provided to render a reproducible (i.e., 
robust) solution. 

1.4 Definition of Key Concepts and Principles 
This section introduces some scientific concepts in the context of anomaly detection that will be used 

throughout this report. 

1.4.1 Probability Density Function 
Probability density function (PDF) is a shape function of a variable for which the values are not 

deterministic (i.e., they vary around a value with a probability for each variation). For example, the one-
minute running average for a given process parameter, e.g., flow rate, may have a Gaussian (i.e., normal) 
distribution. The standard deviation of that PDF may be used as a measure of the unexplained variance for 
this process parameter. The most commonly used PDF in inference analysis (e.g., inferring the explained 
part of the signal) is the Gaussian distribution due to a famous statistical theorem, called the central limit 
theorem (CLT). 

 
c The subscript x emphasizes that the unexplained part is primarily influenced by x, and not by other processes, as implied by 

direct measurements. This will become more apparent when discussing how indirect measurements are used to infer system 
state. 
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1.4.2 Central Limit Theorem 
According to the CLT, when many error sources (with different PDFs—i.e., not necessarily Gaussian) 

combine under a set of moderate statistical assumptions, their aggregated sum becomes increasingly 
similar to a Gaussian distribution as the number of error sources increases4F

d. This is a highly relevant 
theorem to anomaly detection because an anomalous behavior that is recorded initially at a given sensor 
location often results in breaking the normality assumption. This implies that the unexplained variance for 
the respective sensors is expected to deviate from the normal shape due to the anomaly. However, when 
combined with other sources of disturbances from nearby system components, the resulting behavior is 
expected to revert to the Gaussian shape. This means that, if an equipment item is non-instrumented, 
analysis of the PDF of the unexplained errors of nearby sensors may reveal information about the source 
of the anomaly. CLT implies that the farther a sensor is located from the source of the anomaly, the more 
likely that it will have a PDF closer to the normal shape due to the aggregation of many error sources. 
Thus, to be able to detect anomalous behavior associated with non-instrumented equipment, one may rely 
on the analysis of the variance of the unexplained errors of nearby sensors, representing the basis for 
variance inference techniques discussed in Section 2.1.1.3. A rigorous way to do that is via the use of 
entropy. 

1.4.3 Entropy 
Entropy is a sophisticated mathematical principle that has found cross-cutting uses in many scientific 

disciplines. It allows one to quantify variations in the shape of a PDF. Entropy methods do not require 
prior knowledge on the expected shape of the PDF, making them the most powerful approaches for 
detecting the onset of irregularities—i.e., changes in the regular structure xp(t) established before the 
appearance of anomalies. This is especially true when abundant access to historical operational data is 
available. A sudden or gradual change in the entropy of the unexplained errors for a given measured 
variable indicates a change in the regularity pattern captured by the explained part of the signal. The past 
three decades have witnessed a huge surge in the use of entropy-based methods, and many definitions 
have been developed, not only to capture variations in a single variable PDF but also for multiple 
variables [Giffin 2009; Hoyer 2009; Mooij 2016; Daniusis 2012; Hlavackova-Schindler 2007; 
Sgouritsa 2015]. The latter capability implies that one can identify how novelty (anomalous) information 
could transmit between the variables, thereby providing a capability to pinpoint the source of the 
anomaly. 

It is noteworthy to mention that although entropy is a statistical concept, it has not been one of the 
popular subjects in standard statistics textbooks, likely because it is a relatively new concept that first 
appeared in a seminal paper by Claude Shannon [Shannon 1948] that resulted in an independent branch of 
science referred to as information theory. 

1.4.4 Regularity and Randomness 
To understand system behavior, it is necessary to assume that sensor signals have some regular 

structure—i.e., patterns, which can be used to establish a baseline for “normal” behavior—with deviations 
thereof representing “anomalous” behavior. Most state-of-the-art anomaly detection techniques currently 
employed in industrial systems differ in the way the regular structure is described, which directly impacts 
their ability to detect anomalies. Regularity spans a wide range of possibilities, with two distinct 
extremes—one representing complete disorder or randomness, statistically described by PDFs, and the 
other representing complete order, as described by deterministic functions [Mumford 2010]. Information-
theoretic entropy measures provide the most succinct way—per Shannon’s 1948 paper on quantifying the 
storage of information—to describe the degree of regularity versus randomness. A low value for entropy 

 
d  As a rule of thumb, when more than 10 random error sources combine, they become indistinguishable from Gaussian 

distribution.  
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indicates low randomness, with the zero value expressing perfect order—i.e., perfect pattern or regular 
structure—and a maximum value5F

e for pure randomness or maximum variance. 

This situation is depicted in Figure 4, where a regular structure between two variables, y and x, is 
analyzed. In the far-right case, denoted by (c), y is perfectly determined by x, representing the 
deterministic case. This implies that if one knows x, y becomes perfectly known; its PDF (represented by 
what is referred to as a delta function, as shown in Figure 4-c) contains no randomness and, hence, zero 
entropy. In the other extreme, there is no regular structure connecting x and y, implying that y appears6F

f to 
be purely random despite knowledge of the variable x (Figure 4-a), and the associated PDF of y has a 
maximum entropy of 1.0. The intermediate scenario (b) represents all realistic scenarios where the 
modeler is aware of some regular structure (based on experience, physics modeling, etc.); nonetheless, it 
does not offer perfect knowledge about y, leaving some randomness. The PDF has an entropy value that 
reflects the level of identified regularity versus unknown randomness. 

 
Figure 4. Regularity and randomness. 

Mathematically, the PDF of y that takes into account knowledge about x is referred to as p(y|x) to 
distinguish it from p(y), which assumes x unknown, both depicted in Figure 5 for case (b) in Figure 4 of 
intermediate entropy. The p(y), referred to as the marginal 7F

g PDF in statistics, has a wider spread because 
it describes all possible variations of y, whereas p(y|x)—referred to as the conditional PDF—displays only 
the y variations for a given value of x. This distinction is very important because it provides—using the 
entropy denoted by H in Figure 5—a mathematical way to prove the existence of a regularity structure 
between the two variables. 

In fact, it can be shown mathematically that the entropy of p(y|x) will always be smaller than (or at 
most equal to) the entropy of p(y), with the equality indicating that x contains no information about y. In 
practice, other variables could also have an impact on y, but they may not be known and, more 
importantly, may be the source of the anomaly. Without knowing these variables, the reason for the 
spread of the PDF p(y|x) remains unknown; hence, it is described probabilistically as a random variable 8F

h. 
More interestingly, by analyzing both p(y|x) and p(x|y), one could make statements on whether x causes y 
or y causes x, which is key in the context of classifying the source of an observed anomaly. 

 

 
e  Entropy is a non-normalized non-negative quantity; it can be normalized by any user-defined value. For the sake of 

discussion, it is assumed that it is normalized to a maximum value of 1.0, with 1.0 indicating pure randomness.  
f  The use of the word “appears” here denotes that y may indeed have regular structure, but it remains unknown to the observer 

given knowledge about x only. 
g  It marginalizes the impact of all other variables. 
h  Note that the notion of randomness here implies that the source of the variations is unknown to the modeler; it could be 

based on pure randomness, as in random measurement noise, or it could be systematic, originating from other variables. 
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Figure 5. Conditional vs. marginal PDF. 

1.4.5 Residual Minimization 
CLT supports anomaly detection via a process known as residual minimization. Residual 

minimization begins with creating various representations (physics models and mathematical functions) 
to describe the explained part of the signal (assumed regularity structure). With the explained part of the 
signal described, the unexplained part of the signal is then tested for normality. If the unexplained part of 
the signal does not pass the normality test, a different representation is created via a trial-and-error 
process to describe the explained part of the signal. When the unexplained part of the signal passes the 
normality test using hypothesis-testing exercises (such as a Chi-square test), it is then known that the 
assumed regularity structure represents the baseline behavior of the system. 

The residual minimization process, most commonly known as the method of least-squares, as 
published by Gauss and others around the turn of the 19th century, pursues the goal of identifying a 
solution xp(t) that minimizes the Euclidean norm of the unexplained part x(t). To understand this 
principle, the components of a measured signal are replotted in the form of a scatter plot, as shown in 
Figure 6. This plot offers a way to explore the correlations between the signals, as shown in Figure 5. 
This is because if one can find some patterned regular structure 9F between the two signals, a deviation from 
this regular structure could be used to signal the development of anomalous behavior. Each blue point in 
Figure 6 represents a vector pointing from the origin with components representing two measured signals, 

(1)
mx  and (2)

mx , both evaluated at a given instant in time. If the corresponding true system state (i.e., the 
actual state) at a given time t* is denoted by the yellow point, somewhere within the cloud of 
measurements, the green point represents the explained (i.e., predicted) state. 

Clearly, the best scenario is when the green and yellow points coincide, but this is not possible 
because the true state is never known. As mentioned previously, splitting the measured signal—
represented by a vector—per Eq. (1) into an explained and an unexplained part is not possible without 
additional information. Thus, for illustration, a simplified model is employed, represented by the black 45 
degree straight line. This line or model enforces a regular structure—based on some contextual 
knowledge—in which the two predicted components of xp are equal to each other10F

i. A generalized process 
is needed to split each pair of measurements into a vector whose two components are equal—representing 
the explained part—and another vector representing the unexplained errors, the blue dashed line. In least-
squares, or a more generalized form referred to as maximum likelihood estimation, the unexplained part is 
selected to have minimum norm. In Euclidean geometry11F

j, this is simply equivalent to projecting each 

 
i  For example, consider two flow meters measuring flow at two ends of a pipe. Clearly, a better model should be able to 

explain why the two signals are not the same or have suddenly deviated from each other due to an anomaly.  
j  While many methods have been developed with many types of norms, the Euclidean norm is the most celebrated due to the 

relevance of CLT, as will be explained later in the text.  
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measurement vector along the mathematical model for xp(t). The projected value, the green point, 
represents the predicted state. This projection implies that the unexplained part will have the minimum 
value compared to any other oblique projection (as depicted by the purple dotted line). 

 

 
Figure 6. Basic decomposition principle of sensor signals. 

1.4.6 Forms of Data Deviation 
Consider one of the data clusters of the two variables (1)

mx  and (2)
mx introduced earlier in Figure 6, as 

shown in Figure 7. Each variable has a normal set point and a band around it, representing acceptable 
normal variations. If the measurements stretch outside the band, an alarm is sounded alerting the operator 
to possible anomalies. This represents the most basic anomaly detection approach, denoted by point 
anomaly detection, which is not the focus of this report. Instead, we focus on complex anomalies, 
representing complex patterns between the measured sensors. Thus, for the sake of this discussion, it is 
assumed that the most outer circle in each of the subplots represents the set band for normal behavior, 
implying that none of the variations in these subplots would result in sounding the alarm. 

The following discussion references the subplots shown in Figure 7. Subplot (a) represents normal 
operating conditions, also referred to as normal set point, where the sensor readings are well explained by 
the decomposition model in Eq. (1), and the unexplained part has a relatively low spread (i.e., low 
entropy, as defined in Sections 1.4.3 and 1.4.4) indicating good predictions. Let the normal value be 
described by the simple mean value (i.e., average) of the data and the spread by the standard deviation. 
Subplot (b) describes a bias, i.e., a shift in the normal value with a similar spread. Subplot (c) represents a 
shift in the distribution of the data while preserving both the mean and the standard deviation. Subplot (d) 
describes a situation when few data are within the low probability range of the data distribution. Subplot 
(e) highlights a situation in which the distribution of the data remains the same but experiences an 
increase in its standard deviation. Finally, subplot (f) shows both bias and spread of the data—i.e., a 
change in both mean and standard deviation as well as the shape of the distribution. 

The concepts of randomness and regularity, introduced in Section 1.4.4, can be employed to describe 
each of these anomalies. In subplot (b), the data may be decomposed again into an explained part, 
showing a bias from the normal case, and an unexplained part that is expected to provide no new 
information because it has the same distribution as in the normal case (a). Therefore, an anomaly 
detection technique must rely on analyzing variations in the explained or pattern part of the signal to 
detect the anomaly. The observed bias would require a flexible regularity structure (i.e., with additional 
degrees of freedom) to be accurately captured. This implies that variance inference methods would be less 
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suited for this purpose. In applying pattern inference methods, the analyst must decide whether to retune 
the existing model or to increase its degree of flexibility by allowing additional degrees of freedom. The 
latter option is achieved seamlessly, e.g., adding more layers to a deep neural-network structure. 

 
Figure 7. Example analysis of anomalous behavior. 

Statistical methods using residual minimization, as discussed in Section 1.4.5, for the case of 
subplot (c) would not be suited to detect the anomaly because the data distribution has the same standard 
deviation as the normal case, and the explained part also would not detect the anomaly because it has the 
same mean value. In this case, the change in the distribution of the unexplained part of the signal can be 
quantified using variance inference techniques employing entropy, as discussed in Section 1.4.3, which 
can be used as a basis for detecting the presence and identifying the origin of the anomaly. This, however, 
requires an understanding of the cause-and-effect relationship. Subplot (d) describes a typical scenario for 
the use of statistical method hypothesis-testing techniques (e.g., Chi-square test) to discard bad data. If 
too many data are rejected as bad outliers, an update to the model would be necessary. In subplot (e), the 
distribution of the unexplained errors changes its spread and possibly its shape. If the spread is the only 
change, the existing regularity structure or pattern can be used to determine the key contributors via a 
sensitivity analysis. A sensitivity analysis provides a ranking table of the impact of each individual input 
parameter to the observed response variation. If the standard deviation increases, a retuning of the model 
could provide information on which parameter or set of parameters are responsible for the observed 
increase in the spread. If, however, the shape of the PDF changes, then variance inference methods would 
be suited to analyze the anomaly. Finally, in subplot (f), the data experience the most general change in its 
shape, mean, and spread, implying that both the explained and unexplained parts will experience changes 
that should be analyzed for the detection of the anomaly. Existing anomaly detection methods do not 
provide a holistic approach to address this scenario. 

1.5  Surveys on Methods of Anomaly Detection 
Literature on anomaly detection methods is very diverse and, much like the highly subjective 

definition of anomalies, the literature is presented in a subjective manner, reflecting the authors’ 
backgrounds and their application areas of interest. This work recognizes that many valuable surveys of 
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anomaly detection techniques have been published in the literature; see as examples Hodge 2004; Markou 
2003a; Markou 2003b; Barnett 1984; Rousseeuw 2005; and Beckman 1983. Nevertheless, a major focus 
of these surveys has been on how to automate the detection of simple or single anomalies, referred to as 
point-change anomalies, which are readily identified by experienced operators, and fewer surveys have 
addressed the more complex anomalies that are difficult to detect with the naked eye; see for example 
Chandola 2009 and Agyemang 2006. 

In point-change anomaly detection, the detection step is done via a set-point condition whereby the 
value of a given measured process parameter is declared anomalous if it goes outside a prescribed band 
that sets upper and lower limits on normal operating values. Point-change anomalies describe sudden 
changes—like a sharp increase or decrease, sensor drift, flat-lining, or a shift in vibration frequency—
whereas complex anomalies represent complicated patterns which could be harvested using domain-
specific context-aware data-mining techniques. Complex anomalies represent the focus of this report 
because a great deal of research has already been dedicated to point-change anomalies, which have 
reached an acceptable level of maturity. For complex anomalies, however, the need for contextual 
knowledge about the domain applications has resulted in customized renditions of anomaly detection 
methods. This has led most survey articles to adopt a recipe-based approach for explaining the mechanics 
of various anomaly detection algorithms for complex anomalies. 

For example, in one class of surveys, the authors have drawn some boundaries between the various 
anomaly detection algorithms [Chandola 2009; Hodge 2004; Escalante 2005] to help highlight the 
differences in their theoretical bases. In one of these surveys, the learning strategy is employed to split the 
methods into supervised, unsupervised, and semi-supervised learning. Supervised learning represents one 
extreme for which the analysts have abundant historical data—with some representing normal past 
behavior and other recording past instants of anomalous behavior—which are used to train the anomaly 
detection algorithms. On the other extreme, unsupervised learning is presented with unlabeled data sets 
and is expected to distinguish between normal and anomalous behavior. 

In another survey [Chiang 2001], the boundaries are based on whether guidance from physics 
modeling is employed to identify patterned behavior. Other surveys established boundaries based on the 
implementation details into parametric and non-parametric techniques or the type of data being handled 
into symbolic and non-symbolic techniques [Chandola 2009]. These surveys have successfully exposed 
the implementation details of the various methods and emphasized their pros and cons. However, their 
recipe-based presentation has limited their target audience to methods developers only. To the end-users 
(e.g., systems engineers), the boundaries established by these surveys are blurred by the mathematical 
details, making it less useful to decide on which algorithm to adopt for the particular domain application 
of interest. Other types of surveys have also appeared in the literature that are more targeted towards the 
end-user—e.g., operators and system engineers (see, for example, Pimentel 2014; Dyskin 2018; and 
Thudumu 2020). These surveys discuss the methods only qualitatively and focus more on some of the 
successful applications in the various disciplines. 

From a pure algorithmic viewpoint, anomaly detection research has also been largely fragmented 
across the disciplinary boundaries. For example, generic anomaly detection algorithms have been 
developed in the statistical community as early as the late 19th century [Edgeworth 1887] and matured 
independent of other communities, such as the ML [Escalante 2005], computer science [Aggarwal 2017], 
and artificial intelligence [Hodge 2004] communities. Many more customized anomaly detection 
algorithms have also been developed by engineering practitioners in their respective fields; see, for 
example, Du 2014; He 2005; Kou 2006; Lazarevic 2003; Lee 1998; Li 2002; Lin 2005; MacDonald 2007; 
Manson 2002; Moya 1993; Ye 2001; Odin 2000; and Malhotra 2015. This disciplinal diversity has 
resulted in a large body of literature, focused primarily on success stories and algorithmic implementation 
details. Much less emphasis has been placed on provisions when algorithms fail and how to design 
independent assessments for their performance and value. These surveys also lack a number of issues that 
are critically needed to streamline the adoption of anomaly detection systems for NPP monitoring. 
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The surveys listed herein demonstrate several attempts to classify or categorize methods of anomaly 
detection. However, most of these efforts are too scientific for an NPP to leverage in developing a 
strategy for deployment of online monitoring. This report aims to describe, in a generalized way, what 
level of data and physics model utilization is suitable for deploying a given online monitoring solution. 
Specifically, the report provides an overview in Section 2 of the use of pure data-driven techniques 
(termed empirical methods) and a balanced mix of data-driven and physics-guided methods (termed 
hybrid methods). 
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2. STRATEGY FOR EMPIRICAL VERSUS HYBRID METHODS 
There are generally two main streams for anomaly detection methods. The first stream of methods 

(hereinafter referred to as empirical methods) relies solely on data-driven techniques, and the second 
stream (hereinafter referred to as hybrid methods) incorporates the use of physics in data-driven models. 
With the wide array of methods from these two streams, it is sometimes difficult for practitioners to 
choose the best possible method for a particular application and situation. The recent developments 
presenting various hybridization strategies—attempting to combine the advantages and circumvent the 
limitations of various anomaly detection methods—have made it even more difficult to develop an 
intuitive understanding of the value of different techniques. Thus, the discussion to follow will focus on a 
suitable approach to help classify the state-of-the-art methods for their use in NPP applications. The 
discussion will culminate in describing a tool, a decision-state diagram depicted in Section 2.2, that can 
be used to systematically select appropriate anomaly detection methods for a given situation. To begin, a 
summarized discussion of anomaly detection techniques is included in Section 2.1. 

2.1 Variations of Empirical and Hybrid Methods 
The distinction between the various methods in the empirical and hybrid anomaly detection streams 

can be subjective. Therefore, this section aims to define the methods in each of these two streams in the 
context of the analysis used in this report. 

2.1.1 Empirical Models 
Data-driven techniques, or empirical models, rely exclusively on pure mathematical correlation 

analysis of the data to assess the state of the system by finding the best informative mappings between the 
input and output observations. Empirical methods may be considered the least subjective, by offering a 
great deal of flexibility for the model to adapt to the data patterns and variations12F

k. 

2.1.1.1 Pattern Inference 

Pattern inference methods focus on the ability to delineate the explained part of the signal with less 
regard to the statistical properties—i.e., the shape of the PDF—of the unexplained part of the signal. 
These techniques rely on analyzing the variations in the explained part of the signal in search of features 
that can be learned and correlated with the source of anomalous behavior using ML techniques. They 
employ a mathematical expansion involving functions with high degrees of freedom (e.g., neurons in a 
neural network, as will be explained later) to describe the regular structure (i.e., patterns) in the sensor 
data. Due to a rich mathematical theory, dating back to the 1950s [Kolmogorov 1957], this expansion is 
rigorous and allows the modeling of various levels of data variations to user-defined accuracy. In general, 
these methods are much more effective in detecting anomalies because they do not rely on CLT principles 
(the impact of CLT is explained in detail in Section 2.2.1); instead, they attempt to minimize the 
unexplained errors regardless of their distribution. This is achieved by increasing the degrees of freedom 
(i.e., size of the model) available for the explained part of the signal. The challenge, however, lies in the 
ability to classify the source of the anomaly, as increasing the degrees of freedom can fit the model to 
anomalies, making it difficult to distinguish an anomaly from normal behavior. 

Pattern inference methods are often classified as either supervised or unsupervised learning methods. 
Supervised learning methods construct models for anomaly detection by training on known input-output 
pairs, where the inputs comprise the sensor data and the outputs are labels differentiating normal data 
from anomalous data. In contrast, unsupervised methods are trained with the sensors data only, without 
any labels, forcing them to establish a criterion for distinguishing anomalous behavior. Supervised 

 
k  However, some degree of subjectivity is inevitable—e.g., choice of the data-driven model characteristics, such as the 

topology of the neural network. The impact of this subjectivity is, however, much less than that of physics modeling because 
the former is designed to be agnostic to the data source, while the latter is customized to a given system and its associated 
sensors.  
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methods require many instances of anomalous behavior to be effectively trained, while unsupervised 
methods are challenged by the lack of labels which identify what anomalous behavior looks like. A high-
level overview of several classification techniques and examples of uses of some of these methods are 
listed in Table 1. 

One of the most common approaches for automating pattern inference is via the use of artificial 
neural networks (ANNs), including their various renditions appearing over the past few decades—e.g., 
feed forward neural networks, deep neural networks, convolution neural networks, adversarial neural 
networks, etc. All such network designs employ basic functions, referred to as neurons, which offer high 
degrees of freedom for the network to adapt to the signal variations. Different networks offer different 
arrangements of such neuron functions. With enough neurons, however, the network can be carefully 
tuned to sensor variations, making this type of method capable of being as sensitive as needed to the 
detection of subtle process variations. This represents a key distinction from conventional statistical 
methods employed for outlier detection (explained in the next section), which are insensitive to subtle 
data variations13F

l. This is because statistical outlier methods judge a given data variation to be normal as 
long as it lies within the high probability region of the associated PDF—the PDF describing the 
distribution of historical data. 

Despite their power in adapting to signal variation, the most successful applications of neural 
networks require an upfront cost, focused on preconditioning the input data in a process called feature 
identification. The features may be thought of as compact transformations of the input data to help reduce 
their dimensionality and/or complexity before commencing the training. For example, the use of coarse 
time running averages is one of the most common approaches for reducing data complexity before 
performing data analysis. Extracting the right features is a subjective process and is heavily influenced by 
the analyst choices. The last decade has witnessed a huge surge in so-called deep neural networks, which 
employ complicated multilayered arrays of neurons to reduce the sensitivity of network training to the 
feature-extraction step. With this great power, however, comes the risk of overfitting, which has been 
reported to degrade the performance of the trained network [Ran 2019]. Table 2 shows some common 
neural-network architectures that have been proposed for use in fault diagnosis and prognosis. 

2.1.1.2 Statistical Inference 

Statistical inference focuses on understanding and preserving the statistical properties of the signal, 
with the ability to explain the data taking a secondary role. As discussed in Section 1.4.2, if the 
unaccounted sources of errors are believed to be innumerably high, their aggregated behavior approaches 
the Gaussian limit (i.e., normal behavior) when combined, as assured by the CLT. Due to the limitation of 
the CLT forcing aggregated error sources to look Gaussian, statistical methods are most effective in 
analyzing direct, rather than indirect measurements. The more indirect a sensor measurement is, the less 
likely it contains distinguishing statistical information about the source of an anomaly. For complex 
anomalies based on indirect measurements, statistical methods are less effective because complex 
anomalies introduce variations that extend across multiple sensors with the ranges of variations lying 
within the high probability region of the sensors’ PDFs, thus introducing minimal changes to the 
statistical properties of the PDFs. However, if the anomaly causes a large change in the signal magnitude, 
it would violate the CLT limits and would appear as a sudden change—often referred to as point-change 
anomaly—in the magnitude of the unexplained errors, allowing for a simple set-point approach for 
anomaly detection. This represents the ideal mode for the application of CLT-based statistical 
techniques—i.e., those based on identifying data points that violate the CLT assumptions. Thus, 
explaining subtle variations with statistical inference is very difficult. The true power of these methods 
lies in their strong sensitivity to anomalous sources that are capable of changing the statistical properties 

 
l  This statement is generally true for standard tests like Chi-square, F-test, etc. Recent developments in entropy-

decomposition techniques (as described in Section 2.1.1.3) offer better algorithms capable of detecting variations in the PDF 
shape, which can be related to process change.  
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of the signal (deviating from the normal shape), such as in the case of pump degradation or valve 
misalignment. 

Table 1. Common ML techniques. 
Method Description Example Application 

K-Nearest Neighbor 
(kNN) 

Used to classify data into groups based 
on specified similarity measure. 

Automotive bearing fault 
classification [Baraldi 2016] 

K-Means Cluster Used to classify data into groups by 
minimizing intragroup variance. 

Etch Metal process fault 
diagnosis [Khediri 2012] 

Regression Used to predict a dependent variable 
using a set of independent variables by 
minimizing errors between prediction 
and data. 

Bearing RUL prediction 
[Tayade 2019] 

Support Vector 
Machine (SVM) 

Used for either classification or 
regression. SVM works by dividing data 
(or its transform) into groups using a 
hyperplane. 

Rotating machinery fault 
diagnosis [Zhu 2018] 

Decision Trees (DT) Used for either classification or 
regression. DTs perform hierarchical 
divisions of the data points based on their 
attributes. 

Refrigerant flow system fault 
diagnosis [Li 2018a] 

Self-Organizing Map Used to classify data into groups based 
on similarity of the feature vectors. 

Aircraft engine fault prediction 
[Come 2010] 

 

Table 2. Common ANN architectures. 
Architecture Advantage Example Application 

Feed Forward Network Traditional neural network. Once 
developed, model evaluation is usually 
fast. 

Bearings fault diagnostics 
[Samanta 2003] 

Long Short-Term 
Memory (LSTM) 

Can handle time dependence due to the 
incorporation of memory cells. 

Steam turbine fault prediction 
[Liu 2020] 

Convolution Neural 
Network (CNN) 

Able to combine lower-level features into 
higher-level features without human 
intervention. 

Engine remaining useful life 
prediction [Li 2018b] 

Autoencoder Can be used in pretraining for 
dimensionality reduction, denoising, and 
feature extraction.  

Induction motor fault 
classification [Sun 2016] 

 

2.1.1.3 Causal Inference 

This section explains how variance inference can assist in finding cause-effect relationships, where 
the cause represents the origin of the anomaly (e.g., a failed pump), and the effect, the signal, is measured 
directly or indirectly. To describe variance inference, it is necessary to introduce the concepts of influence 
and inference domain, best described by a qualitative example, as depicted in Figure 8. Consider a pebble, 
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marked by a red cross, that is thrown into a pond, causing rippling waves to spread outward from the 
pebble location. Assuming one has access to the output of the sensors, denoted by solid dots, that are 
capable of measuring the disturbances throughout the pond, the “influence domain” describes the area 
around the pebble location where the sensors register readings that are distinguishable from background 
noise. 

The influence domain, the boundaries of which are marked by the red circle in Figure 8 (a), may be 
thought of as a cause-to-effect mapping, where one knows the cause and is looking for the effect. The 
“inference domain” describes the reverse process, wherein one senses the effect and is looking for the 
source. Assuming a number of sensors register noticeable water-level disturbances, as shown in 
Figure 8 (b), one is tasked to find the possible location of the thrown pebble. The influence domain is 
defined by the physics of the problem and thereby is expected to be deterministic—i.e., determined by the 
location of the pebble and the wave-propagation physics model; hence, the cause-effect relationship is 
implicit in its formulation. The inference domain (the area marked with dashed blue line segments in 
Figure 8 [b]), however, is probabilistic, because it must consider all possible locations for which the 
domain of influence contains the sensor location. If the analyst is only presented with data from the 
sensors—i.e., absent any contextual information about the system—it would not be possible to determine 
the cause-effect relationship. It would, however, be possible to find association rules—via data-driven 
techniques—between the sensors’ readings. With minimal contextual information—for example, the 
analyst understands that the sensors’ readings are measuring an unknown source of disturbance moving 
through a given system where the magnitude of the disturbance is positively correlated with the process-
distance14F

m from the source of the disturbance—they can begin to establish causal directions by comparing 
the magnitude of the sensors’ disturbances. With additional contextual information about the problem 
geometry and the location of the sensors, better estimation of the causal directions may be established 
leading to a better estimation of the pebble location. 

 
Figure 8. Example representations of influence and inference domains. 

Standard statistical techniques do not provide a sense of direction on the relationship between cause 
and effect [Pearl 2009; Climenhaga 2019]. However, variance inference employing the concept of 
entropy and its variants—e.g., transfer entropy, spectral entropy, etc. (see Granger 1981; Schreiber 2000; 
Hlavackova-Schindler 2007; Zaccarelli 2013; Richman 2000; and Javed 2009 for representative examples 
covering basic theory, applications, status, and challenges)—provide the only approach capable of 
providing information about the cause-effect relationship, as will be explained in Section 2.2.1.2. The 

 
m  Process distance describes how closely two sensors are in the data-domain, not the physical space domain. For example, two 

flow meters distanced miles apart could be considered “close” if they are measuring the same flow.  
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idea is to track the unexplained errors, the residual, after the explained part of the model is subtracted 
from the signal, following the flow of information from one sensor to the next. The anomaly changes the 
shape of the PDF of the unexplained errors. This change causes a change in entropy that can be associated 
with the direction of information flow [Liang 2018; Bolt 2018; Griffin 2008]—i.e., from the cause to the 
effect. This process can be repeated as one moves from one sensor to the next as long as the PDF of the 
unexplained errors remains non-Gaussian. 

Despite the vast body of work on entropy methods (see Gencaga 2018; Zaccarelli 2013 and their cited 
references), this strategy is not currently integrated with mainstream anomaly detection monitoring 
systems that are used in the nuclear, fossil, or oil and gas industries. Entropy methods represent a 
component of a much-bigger branch of statistical science called causal inference [Pearl 2000; Mooij 
2009; Zhang 2010; Peters 2014], which attempts to understand cause-effect relationships starting with the 
association rules determined by data-driven techniques. The idea may be discussed as follows: if x is the 
cause of y, features derived from the PDF of x will be present in y, albeit smeared by other sources of 
disturbances. If one erroneously assumes the wrong causal direction (i.e., that y causes x), the change in 
entropy can be used to disprove that assumption. 

2.1.2 Hybrid Methods 
Hybrid methods combine physics models with real operational data collected from the sensors. The 

methods use mathematical models of process physics, inputs and outputs, and performance and 
degradation instigators of the components under study to mathematically describe the system anomaly. 
Physics modeling (in the form of differential, integral, or combined integral-differential equations) is 
employed to describe the explained part of the measurement, xp(t) (from Figure 6)—e.g., conductive heat 
transfer, convective fluid flow, etc. Physics modeling may be viewed as a highly subjective approach to 
modeling the explained part of the signal. The subjectivity here originates from the user’s view about how 
the system works, which may be incorrect, especially when detecting first-of-a-kind anomalies, referred 
to as novelty detection [Pimentel 2014] in the anomaly detection literature. The following sections discuss 
how physics models can assist data-driven models through various forms of hybridization strategies—i.e., 
how to best leverage the data and physics models to achieve a specific objective. In addition, Section 
2.1.2.6 describes how data can be used to tune physics models. 

2.1.2.1 Physics Models to Train and Test Data Methods 

It is instructive to note that empirical models can be more accurate than physics models in data-rich 
domains. What this means is that data-driven models can perform better in terms of state-awareness as 
compared to physics models, when the available data are abundant. Physics models can cause predictions 
to be less accurate than data-driven models for several reasons, including: 

• At a very fundamental level, physics models involve a subjective view of how patterns are established 
among the process variables 

• Physics models rely on several parameters (e.g., material properties, geometry, species 
concentrations, etc.) which are generally uncertain 

• Physics models may miss unanticipated phenomena, causing their predictions to be inconsistent with 
real data, when such phenomena arise. 

In data-rich domains, data-driven models can be reliably employed to identify those conditions of the 
equipment over space and time that manifest in the form of recurring patterns that can be ascertained with 
great accuracy due to the data abundance. Thus, it may be argued that empirical models are inclusive of 
the physics models in data-rich domains and, more importantly, can account for confounding effects that 
are difficult to capture by physics modeling. On the other hand, as data become scarce, the uncertainty of 
the knowledge derived from data-driven models increases. In this case, an understanding of the system 
processes based on the laws of physics allows the monitoring system to evolve system-state awareness to 
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data-scarce or unknown domains that have not been experienced before. This allows the monitoring 
system to extrapolate the system performance in new states and generate failure precursor signatures. 
These are estimated based on physics-enforced system dynamics or changes in component states. 
Understanding the system change process allows estimation of component behavior leading to an 
anomaly, which is difficult to capture with data-driven models for unanticipated anomalies. 

While there is much effort to forestall malfunctions, not all system or component failures can be 
anticipated. Thus, detection and diagnosis cannot always depend on a priori models of condition. Rather, 
a means to classify such anomalies must be able to indicate there is an anomaly by deviations from some 
expected normal state. This motivated the development of an approach for using process models in 
diagnosis through the development of residual generators based on the physics of the problem 
[Jung 2018]. In this approach, a set of analytic expressions (residuals) are constructed such that their 
outputs are close to zero if there is no fault (or degradation), and nonzero otherwise. Depending on the 
type of the model, nonzero residuals can indicate either an active or a pending failure. These expressions 
take as input sensor and component-state information, and an anomaly (statistically significant nonzero 
output) indicates an abnormal operation of the components. For example, in [Kimmich 2005], simplified 
models are developed for various subsystems comprising an engine, including the intake, injection, 
combustion, and exhaust components. Physics models are based on known fuel-flow path and 
thermodynamics relations governing combustion and heat transfer. Sensor information from the electronic 
control units provides sufficient data to model the normal performance of the engine, and appropriate 
residual generators are constructed for diagnosis and prognosis. 

Sensor noise isolation is another example use of physics modeling to generate failure signatures 
[Zhong 2018]. A typical assumption is that the process and measurement noises are Gaussian and 
independent and that system dynamics are relatively linear within a specified time interval. Under these 
assumptions, classical filtering techniques, such as the Kalman filter, can be used in conjunction with 
residual generators to monitor for deviations that can be indicative of a fault. If the expected trend of the 
process data can be estimated from the time-dependent model, the actual sensor mean value can be 
isolated from possibly noisy data. Different variations of this strategy are possible to improve the 
sensitivity and prognosis lead time [Isermann 2005]. 

Another example is shown in [Saeed 2020], where the RELAP5 model of a pressurized water reactor 
(PWR) is used to generate data points for training a CNN model to alleviate the sparsity of failure data. 
The authors incorporated time-dependent data into an otherwise static model by using a sliding-window 
technique to capture system dynamics. Additionally, network parameters are incrementally updated 
online, which allows the CNN model to identify anomalies outside of the initial training range. For 
instance, although the model is trained at an 100% power level, it can identify anomalies at other levels as 
well. It should be noted that the transients demonstrated in the paper caused relatively large changes in the 
system (e.g., reactor-coolant pump failure, feedwater line break), enabling relatively subtle changes from 
power level changes to be learned by the online training without having them identified as anomalies. 

Reverse engineering of anomaly residuals to find the cause is not always a trivial process. Because 
physics modeling incorporates definitions of cause-effect relationships, anomaly detection systems based 
on experiments or physics models are more effective in classifying the source of anomalies, precluding 
the need for variance inference methods. Thus, when an anomaly appears and causes a sudden change in 
the distribution of the unexplained errors, x(t), the anomaly detection system can automatically retune the 
explained part of the model until the unexplained part becomes normal again. For example, [Jung 2017] 
tested a 4-cylinder internal combustion engine in a laboratory setting to accurately identify faults. A 
model of the process is used to generate residuals for each of the anomalies that are identified. However, 
the possible set of faults are numerous, and a 1-class variant of the SVM classifier (support vector data 
description-SVDD) is used to rank the possible causes for the identified anomaly. Analysis of the 
variations in the explained part could correlate the anomalous behavior to its source using standard 
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sensitivity analysis methods 15F

n. In a scenario in which the cause-effect relationship is already captured by 
the physics model, a standard Bayesian estimation analysis could be used to explain the anomalies 
because all sources of anomalies are already captured in the model. Thus, the inference domain in this 
scenario may be theoretically extended to cover the whole system. This scenario is extremely difficult to 
achieve because it is typically infeasible to build a physics model for the entire system that forecasts all 
sources of anomalous behavior, as mentioned earlier. The model may not account for all aspects of a 
component failure, leading to missed failure behaviors. For example, turbine failure may be caused by a 
cracked bearing or insufficient oil flow, and each will have its own unique failure signature. If these 
signatures were not seen before (not included in the training data of a data-driven method), pre-failure 
anomalies may not be recognized [Liu 2020]. The ambitious approaches of modeling an entire system and 
forecasting all sources of anomalous behavior represent the overarching goal of an ideal implementation 
of the so-called digital-twin technology. Although an ambitious goal empowered by recent advances in 
modeling, simulation, and computing power, digital-twin models will inevitably need augmentation by 
operational data. This is because, regardless of the level of detail a model can contain, it is still based on a 
subjective view of reality and is expected to have numerous sources of uncertainties that need to be 
adjusted for using real data. 

Taken together, modeling of both the process physics and anomaly creation mechanisms enables the 
prediction of the system behavior both under normal and abnormal conditions. It can also be used to test 
the performance of data-driven models in unknown or data-scarce domains as the models enable better 
control of the testing environment, thereby enabling the testing of methods in conditions that cannot be 
replicated in real systems without damaging the equipment. For example, [Farber 2019] developed a 
method to detect a small loss-of-coolant accident (LOCA) before it escalates to major LOCA. Because 
this event cannot be evaluated in the plant, the method leveraged a simulator of the plant (representing a 
physics model of the plant) to create variations of LOCAs in various components of the plant. 

An example of the use of physics modeling to create training and testing data is demonstrated in Pilot 
2 of this report. 

2.1.2.2 Physics Knowledge to Reduce Data Dimensionality 

Physics knowledge is a simple form of physics modeling. For more complex or highly nonlinear 
systems, it may be difficult to have a complete understanding of the process physics. In addition, the use 
of highly dimensional models could present a computational or uncertainty challenge. Instead of 
developing complex systems, it is often possible to use the basic physics principles on which the system 
operates to improve the construction of data-driven models. For these systems, feature selection (i.e., 
preconditioning of the inputs via short-listing, dimensionality reduction, coarsening, etc.) may be 
developed based on evidence collected through operational history and qualitative human experience 
[Slimani 2018]. This encodes the knowledge obtained from qualitative human experiences with the 
system as a basis for model construction; it thereby becomes possible to reduce the data set size to 
relevant data variables. 

For example, it could be desired to estimate the fluid mass flow through a certain section of a turbine 
that has no direct sensor information. It is known from first principles that flow velocity depends on fluid 
density. This information can be used to manually include fluid density as one of the features in a data-
driven model. Feature selection may be performed by inclusion or exclusion. Inclusion means that sensors 
are incrementally added to the analysis as they are deemed important based on physics knowledge. 
Inclusion is a useful technique when a data set is large, and the important sensors are expected to 
represent a small subset. Exclusion implies that the whole data set is considered and sensors are removed 

 
n  Sensitivity analysis is a standard technique in engineering whereby a model of N inputs and M outputs is executed a number 

of times to identify the key contributions of the N inputs to the observed variations in the M outputs. If for example, a 
number of sensors show anomalous behavior, one can employ sensitivity analysis in conjunction with the physics model to 
identify the key inputs causing this behavior. The inputs could be subsystem models or parameters associated therewith.  
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as they are proven nonrelevant. Exclusion is used when the subset of important sensors is expected to 
represent most of the considered data set. For larger or more complex systems, physics knowledge is 
replaced with automatic feature selection (for instance, with autoencoders 16F

o) to reduce system 
dimensionality. 

Examples of situations in which physics knowledge was used to reduce data dimensionality are 
provided in Pilot 1 and Pilot 2 of this report. 

2.1.2.3 Physics Knowledge to Reduce Data Model Complexity 

The physics knowledge-based approach, i.e., expert systems, can also be used to reduce the 
complexity of the data-driven model. It can be used to measure the similarity between the observed 
situation and recorded historical failure events to establish a set of rules that can give indications of 
impending failures. Alarm-threshold setting in the plant is a simple form of this method, but the method 
can also be used for more-sophisticated anomaly detection. For example, in [Hanna 2020], rules encoded 
using answer set programming (ASP) are established to identify stuck power-operated relief valves based 
on observations made during the Three Mile Island accident. A similar application is found in 
[Biagetti 2004]; experts developed a list of performance indicators for important plant components. For 
each component, a predefined set of faults are identified, and the rules are tailored to identify them, 
incorporating trends in the observation to identify creeping (evolving) faults. 

Another form of how physics knowledge can be used in simplifying models is via the use of a DT in 
which all alternatives for causes are considered, given the symptom. DTs break the symptoms into 
possible causes at increasing granularity, leading to a key decision. For example, in [Gelgele 1998], DTs 
are used to diagnose automotive engine faults. The tree is developed by an expert based on logical 
reasoning that was refined through experience working as a mechanic. An advantage of the DT approach 
is that the decision is explainable by examining the branching traversed through the tree. When 
constructing tree-based models for anomaly detection, it is important that all alternatives for causes are 
considered, given the symptom. 

Generally, developing an expert system as a form of simplifying data-driven models for medium or 
large systems is a time-consuming process [Hanna 2020]. For the model to be accurate, all possibilities 
must be incorporated into the model. This entails that the level of domain knowledge encoded must be 
comprehensive. In practice, model development is driven by an expert panel, guided with a formal 
elicitation process. This requires substantial time from the expert and the model-development team and is 
prone to human error. This may mean that in systems with high variability, purely knowledge-based 
models may not be a cost-effective solution because system changes require manually remapping the 
expert panel. 

2.1.2.4 Physics Models to Augment Data 

One of the most common issues when using anomaly detection methods relates to missing or 
irrelevant data, especially in inference methods. Missing data can result from sensor failure in certain 
periods or simply a lack of sensors that are critical to reducing the inference uncertainty. Often, inference 
methods can be used to augment the needed data by generating surrogate data that are statistically 
consistent with the available data. Physics models can also be used to bridge this data gap by running 
simulations representing the scenario with missing data, especially if the models are tuned by the 
available data, as will be described next. In essence, this approach introduces virtually measured data, 
xm(t)—i.e., both parts from Eq. 1. Often, only the deterministic nature of the models is used, resulting in 

 
o  A class of neural networks employed to find the minimum number of features that can be used to reconstruct the data to 

user-defined accuracy. Image compression algorithms may be thought of as an autoencoder. Dimensionality reduction via 
principal component analysis is another example. 
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xm(t) and xp(t) being identical because the unexplained part of the data is not present in the model unless it 
is propagated from the actual data into the model or a Gaussian distribution is assumed. 

Pilot 1 of this report demonstrates an example use of this approach and discusses its limitations. 

2.1.2.5 Physics Models to Reduce Empirical Uncertainty 

In systems with relatively known physics and suitable sensor data, model-based methods can reduce 
uncertainty relative to purely data-driven methods. Reducing uncertainty is associated with explaining the 
unexplained part of the data. It is often assumed that unexplained errors are normally distributed, i.e., they 
follow a Gaussian distribution. To illustrate the hybrid approach with an example, consider the modeling 
of the outlet reactor core temperature. A model for the predicted variable xp(t) may be developed using 
mass and energy conservation principles, considering the heat generation in the core, the coolant flow 
rate, the inlet coolant enthalpy, and a convective heat transfer model. In this model, some of the 
parameters may not be accurately known, such as the heat transfer coefficient, and some simplifying 
assumptions may have been made to facilitate the expedient calculation of xp(t), such as treating the core 
as a point, employing an adiabatic model, etc. In this situation, the minimization approach will find the 
best values for uncertain parameters that minimize the unexplained errors in order to minimize the 
sensitivity of the predicted outlet core temperature to the unexplained errors, hence making this a “robust” 
approach. Note that robustness does not guarantee that xp(t) will be closest to the true value. Instead, it 
provides a mathematical guarantee that the predicted state will be insensitive to the errors committed, 
assuming that these errors are small enough. 

Another approach uses physics modeling to reduce data uncertainty by determining which decision 
contributes most to the quantity of interest—e.g., the classification uncertainty or a sensor’s anomalous 
signal. Identifying the most impactful decisions enables focusing the empirical model on what matters 
most to reduce uncertainty. This contribution analysis can be rendered using many approaches, all of 
which can be traced to the idea of global sensitivity analysis or statistical variance decomposition 
[Saltelli 2008]. In statistics, when multiple variables are employed to estimate a given response, one is 
often interested in estimating the importance of each variable. One way to investigate this is to remove the 
parameter and repeat the estimation procedure and measure the increase in the norm of the unexplained 
errors. The parameter causing the largest increase is the most important. This type of contribution analysis 
appears frequently in many scientific endeavors where the goal is to estimate the impact of various 
decisions (or parameters) on a quantity of interest. 

Pilot 1 of this report demonstrates an example of physics modeling used to reduce empirical 
uncertainty. 

2.1.2.6 Data to Tune a Physics Model 

Because the criteria for an accurate physics model is to be as close as possible to real behavior, as 
measured by the sensors signals, one traditional use of data is for the estimation of model parameters 
[Djeziri 2019]. If a physics model is not fully representative of the modeled system, a set of uncertain 
parameters, α, such as heat transfer coefficients, friction factors, material properties, etc., can be used to 
describe the time-evolution. In this situation, the predicted value will depend on using a parametrized 
model described by 𝑥𝑝(𝑡, 𝛼) (see Eq. 2). Data can be used to tune the parameters of the physics models to 
match the behavior of the data captured to account for the lack of comprehensive model knowledge, 
therefore improving model accuracy. If the data model is not accurate or an error is committed in the 
modeling process, this error is expected to impact the best values for the parameters α and the predicted 
state. Robustness ensures that the model is least sensitive to these α values. Under this strategy, a model is 
developed with unknown parameters. Regression techniques can then be used to fit the parameters to 
minimize the error between the fitted model and the observed data. Care must be taken in the assumption 
of the model form because, by specifying the functional form, the modeler is essentially eliminating all 
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other phenomena that cannot be represented with the model. The use of nonparametric transformations 
[Gyorfi 2006] that can eliminate the assumption in functional forms may alleviate this problem. 

Data can also be used to tune parameters in time for estimating the current state. If, after deployment, 
the model sees states outside the range of the training datasets, the model parameters can be incrementally 
updated online [Saeed 2020] to gradually adapt to plant states that have not been previously seen during 
training. This is usually a feature of the digital twin—i.e., to dynamically update system physics using 
data. Mathematically, if the unexplained part of the model is nonnormal at any point of time, as sought by 
statistical methods, this indicates that the model does not accurately represent the system. To help 
overcome this, the model often contains several uncertain parameters, the values of which can be tweaked 
until the unexplained part of the signals become normal. Thus, the parameter values are selected to 
compensate for the nonnormality of the residual. This results in a biased estimate of the parameters, 
meaning that their values are biased by the errors committed by physics-model approximations, which are 
generally subjective—i.e., largely dependent on the modeler’s viewpoint and familiarity with system 
state. 

As an example, the degradation processes responsible for failures of power transformers depend on 
important transformer components, such as insulation and windings, which are relatively well understood, 
and their failure modes well-characterized [Sica 2015]. The use of data enables accurate approximate 
models to be constructed (e.g., oxidation of oil-immersed paper in the presence of moisture), allowing 
tracking of the degradation of important transformer components (e.g., paper insulation). With an 
understanding of the potential failure modes and performance characteristics of degraded operations, 
failure prediction can be performed in terms of reduced remaining useful life (RUL) or changes in the 
system failure rate. In [Djeziri 2019], the RUL for a metal-oxide silicon field effect transistor is estimated 
by assuming that the degradation follows a Weiner process with unknown drift and variance parameters. 
The maximum likelihood estimation (MLE) method is used to estimate the model parameters from 
existing data, augmented with simulated data. This process is done in an offline setting. The parameters 
are then further updated with online data from actual measurements. 

Data can also be used to update an unexpected change to the model or compensate for lack of fidelity 
in the model. A gradual change might originate from a source that is unaccounted for in the model; 
however, it can be compensated for by adjusting the model parameters. This situation is very common in 
physics models, where one source is inaccurately adjusted to account for another source. For example, a 
gradual increase in an exit-channel coolant temperature could be due to a number of factors, some of them 
already modeled, such as gradual reduction in channel flow due to the buildup of crud. Some are not 
modeled, such as a gradual increase in fuel temperature resulting from radiation damage. In another 
scenario, a sudden or gradual change could be due to the explained part of the model but also due to 
another component in the unexplained part, making it more difficult to identify the best strategy going 
forward. It may be necessary to tune the physics model to account for the unexplained part using data. 

Pilot 1 of this report demonstrates an example of data used to tune a physics model. 

2.2 Decision State Diagram for Empirical and Hybrid Methods 
Section 2.1 introduced various approaches for the use of data and physics that are appropriate for the 

majority of use cases that a plant can face. With the tool kit of techniques as discussed above, the best 
anomaly detection approaches can be selected for a specific monitoring scope on a given process or 
equipment item. A criterion is needed to determine the best course of action for anomaly detection. This 
discussion addresses a gap area in the recent anomaly detection literature, which has primarily focused on 
recipe-based approaches for demonstrating the value of various hybridization approaches. 
Notwithstanding, much less focus has been placed on developing criteria to guide the hybridization 
process and thereby improve the performance of anomaly detection systems—i.e., shifting it from a 
subjective process that is controlled by experience to a systematic process that provides metrics on the 
value of a given physics-based or data-driven model. 
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To make an informed decision—i.e., to move away from an ad hoc trial-and-error approach, a series 
of key tests need to be performed. Most of these tests are trivial and can be performed by simply studying 
the scope, but some require performing some analysis to get to an answer because they are dependent on 
results accuracy or methods performance. To present the decision-making process in a user-friendly 
manner, a decision state diagram is shown in Figure 9. This diagram can be easily coded into a tool with a 
set of YES/NO questions to reach the conclusion on which method from Section 2.1 to use. Table 3 maps 
the empirical and hybrid methods shown in Figure 9, the detailed descriptions of which were provided in 
Section 2.1. In the current section, the discussion focuses on the decision-making points of the strategy 
presented in the decision state diagram. The mapping of the decision points in the figure to the following 
sections is shown in Table 4. While Figure 9 shows a systematic and deterministic process taking the user 
through exactly the steps required to march through the best anomaly detection approach, in reality, 
multiple approaches may be suitable, and the decision state diagram can only be effectively used as a 
guide. This is demonstrated in the discussion of the pilot projects in Section 3, where multiple methods 
were used. Each situation is unique, and each requires consideration and planning (utilizing the strategies 
in this report) to yield successful outcomes in online monitoring efforts. It is anticipated that Figure 9 will 
evolve as anomaly detection methods advance in the coming years. 

Table 3. Mapping of Figure 9 methods and subsections of Section 2.1. 
Figure node name Subsection of Section 2.1 describing that method 

Empirical Methods 

Pattern Inference Section 2.1.1.1 

Statistical Inference Section 2.1.1.2 

Causal Inference  Section 2.1.1.3 

Hybrid Methods 

Physics to Create Training and Testing Data  Section 2.1.2.1 

Physics Knowledge to Reduce Dimensionality  Section 2.1.2.2 

Physics Knowledge to Reduce Data Model 
Complexity 

Section 2.1.2.3 

Physics to Augment Missing Data Section 2.1.2.4 

Physics to Reduce Uncertainty  Section 2.1.2.5 

Data to Tune Physics  Section 2.1.2.6 
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Table 4. Mapping of Figure 9 decision points and the following subsections. 
Figure decision-making point name  Subsection describing that decision point 

Direct Sensors? Section 2.2.1 

Small Dataset? Section 2.2.2 

Inference Possible? Section 2.2.3 

Physics Model Return on Investment (ROI)? Section 2.2.4 

High Number of Data Points? Section 2.2.5 

Physics Knowledge? Section 2.2.6 

Explainable Validation? Section 2.2.7 

Performance Acceptable? Section 2.2.8 

Data Available for Training & Testing? Section 2.2.9 

Cause-Effect Needed? Section 2.2.10 

Noise Correlation Possible? Section 2.2.11 

Tunable Model? Section 2.2.12 

 

As shown in Figure 9, multiple outcomes of the decision-making tool lead to the point labeled “Install 
Sensors.” In many online monitoring applications, available data are insufficient for adequate anomaly 
detection, and thus more sensors are required. An important aspect of adding additional sensors is 
determining which sensors should be added to the system to provide the most benefit in anomaly 
detection. As the methods of Section 2.1.2.2 can be used to determine the most important sensors in a 
given situation and thus limit the number of sensors used in a particular model, similar methods can be 
used to ascertain which sensors are needed in a given situation to provide the most benefit in anomaly 
detection. In addition, methods outlined by EPRI (in EPRI 2019 and associated references) can be used to 
determine the best sensors to install. 

Each subsection of Section 2.2 below includes a summary section that is meant to clarify the decision 
points of Figure 9 and provide simple guidance to direct the user to the appropriate answer for a given 
monitoring scope. The summary sections start with a question that is an expanded version of the 
shortened question asked in the decision points of Figure 9. In addition, the subsections provide additional 
explanation to provide helpful background and scientific discussion to contribute to the decision-making 
process. 
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Figure 9. Strategy of empirical and hybrid models introduced in a decision-state diagram. 

2.2.1 Data Relevance to Events of Interest 
2.2.1.1 Summary 

Decision point in Figure 9: Direct Sensors? 

Is there at least one sensor available that directly measures the parameter of interest? For example, for 
anomaly detection of the feedwater flow rate, is there a sensor that directly measures that rate? There may 
be sensors that directly measure, for example, feedwater heater liquid level, but there are no sensors that 
directly measure, for example, bearing wear in condensate pump motors. 
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2.2.1.2 Explanation 

In Figure 10, a hypothetical layout of a system is shown on the left, with the blue points denoting 
sensors. The question marks identify three sensors, A, B, and C, with potentially anomalous indications, 
for example, as signaled by changes in the explained part of the model. The red cross denotes the real 
location of the rare event. The PDFs on the right show the distribution of the unexplained part of the three 
sensors before (i.e., during normal behavior) and after the anomaly is detected. Before the anomaly, the 
unexplained part of the sensors appear to be normal as they aggregate many sources of unexplained 
disturbances, thereby satisfying the CLT conditions. After the anomaly, the PDF of the unexplained errors 
of Sensor A shows the most noticeable deviation from normal behavior, due to its process proximity to 
the location of the initiating rare event, thereby allowing the anomaly detection system to detect the 
deviation from the CLT conditions. As sensors are found downstream from the anomaly, the unexplained 
errors start approaching the Gaussian shape due to the aggregation of other sources of uncertainties. In 
this example, Sensor C’s PDF is essentially normal, whereas Sensor B still shows a shift, albeit small, 
from the normal shape, implying less sensitivity to the anomaly as compared to Sensor A. This implies 
that variance inference methods would be most sensitive to Sensor A data, which exhibits a clear 
violation of the CLT conditions. This is why the question of whether direct sensors (i.e., A and possibly 
B, in this case) exist is a decision-making point in the strategy shown in Figure 9. All sensors, A, B and 
C, can, however, be used with pattern inference techniques that focus primarily on detecting variations in 
the explained part of the signal, following changes in the unexplained errors. 

 
Figure 10. Propagation of anomalous behavior. 

2.2.2 Simple Modeling 
2.2.2.1 Summary 

Decision point in Figure 9: Small Dataset? 

Is the number of discrete sensor indications available in the data set small (typically one to five 
sensors giving the same type of data, such as all temperature or all vibration)? For example, one or a few 
vibration sensors on a pump can be analyzed using statistical methods for deviations, and thus such a 
dataset would be considered to be small. 

2.2.2.2 Explanation 

Because the process of anomaly detection for one or a few sensors can be viewed as fundamentally 
statistical and because statistical methods are most effective for point-change anomalies with direct 
measurements, they are usually applied to small sets of data. For a small set of data, some context-
awareness needs to be available in order to interpret data behavior—e.g., through human evaluation. In 
such a case, the coefficients of a model are tuned in terms that achieve residual minimization (see 
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Section 1.4.5). This approach is inherently empirical, and there is typically no justification (physical or 
mathematical) for choosing a function shape other than attempting to align the model with the data. This 
approach is therefore used for well-behaved or simple functions—e.g., linear or low-order polynomials. 
This limits the degrees of freedom available for the explained part of the signal. 

2.2.3 Data Inference 
2.2.3.1 Summary 

Decision point in Figure 9: Inference Possible? 

Is the available sensor data sufficiently related to the source of potential failure to allow anomalous 
indications to propagate to the sensors? That is, would it be possible to analyze the sensor data to extract 
the conditions of the equipment of interest? Or alternatively, would the data uncertainty block the ability 
to infer the equipment condition? Note that this decision point is subtly different from the question of 
Section 2.2.1 for whether direct sensors exist. For example, temperature sensors in a room do not provide 
direct indication of cooling fan function, but through inference they could provide an indication of a 
cooling fan functioning properly. 

2.2.3.2 Explanation 

In realistic scenarios, the signal often represents indirect measurements about the source of the 
anomaly. This implies that many hidden variables—i.e., unaccounted for in the explained part of the 
model—are potentially impacting the signal, making it possible for the unexplained errors or residuals to 
assume the Gaussian normal shape, even when the noise-to-signal ratio is small, due to the aggregation of 
many sources of errors per the CLT conditions. The aggregation of many sources of errors per the CLT 
would result in several residuals to combine into a wide spread of normal residuals. Complex anomalies 
(in which the anomaly is impacted by other hidden variables before it reaches the sensor) will appear as 
normally distributed after aggregating with the other innumerable sources of errors. Hence, they cannot be 
detected using CLT-based statistical techniques. If the sensor is, on the other hand, correlated to the 
source of the anomaly—e.g., a vibration sensor installed directly to sense pump motor vibrations—then 
the anomaly would cause a change in the shape of the distribution of the unexplained errors, disturbing it 
from the normal shape and thereby allowing variance inference methods to detect the anomaly. 

Process anomalies can be operationally pernicious. A large error can trigger an alarm that indicates 
some large anomaly—i.e., a point-change anomaly. Nevertheless, if an anomaly is too subtle to detect by 
a conventional set-point alarm, it can often go undetected until the initiating fault results in a failure. 
Ferreting out small changes in the data of noisy processes in the presence of plant transients can be 
particularly challenging for humans; automating a method to do this may be even more challenging. To 
illustrate this, Figure 11 provides a typical example of how an inference method would attempt to fit a 
model to the data. All three subplots of Figure 11 show a linear model fit (red line on the left plot) to a 
nonlinear data distribution with varying amounts of deviation from the nominal value, from a small 
deviation in subplot (a) to a significant deviation in subplot (c). In subplot (a), the unexplained part (i.e., 
residuals, shown in the histogram plot on the right side) is non-Gaussian, providing a clear indication that 
the explained part or model is not adequate. In subplot (b), the residuals resemble the Gaussian normal 
shape, even though the model is still linear—i.e., it is uninformed about the source of the anomaly. In 
subplot (c), the residuals errors are essentially indistinguishable from a Gaussian distribution. This 
example shows that for the same data, if the residuals (or unexplained part of the signal) increase 
(Case c), it is almost impossible for the method to detect anomalies. 
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(a) Small residuals spread   

  

(b) Medium residuals spread  

  

(c) Large residuals spread  

Figure 11. Impact of residuals spread on anomalies detection. 
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2.2.4 Physics Modeling Value 
2.2.4.1 Summary 

Decision point in Figure 9: Physics Model Return on Investment (ROI)? 

Is the cost to develop a physics model justified by the anticipated value added to the anomaly 
detection process? Note that there are three locations in Figure 9 with a decision point about the physics 
model ROI. Each of these decision points has slightly different considerations, but each will involve some 
type of cost-benefit analysis to determine whether additional physics modeling would create enough value 
to be worth the investment. The value can be materialized by augmenting missing data, enabling an 
empirical model to be trained and tested, or reducing uncertainty to improve the anomaly detection 
process. 

2.2.4.2 Explanation 

Development of high-fidelity models is an extensive and manual effort that is highly dependent on 
human experience to transform a physical system into an accurate computational model. A key 
consideration when deciding to invest in developing a model is the benefit and cost (i.e., ROI) of model 
development versus installing sensors, deployment, and post-deployment maintenance. Evaluating the 
development cost consideration can inform whether new sensors need to be installed in order to obtain the 
inputs needed. Unlike empirical methods that leverage machines to develop models, the cost of physics-
model development can be high, especially those that are knowledge-based and require extensive expert 
elicitation. However, physics models usually only need to be developed once. Also, models from other 
equipment that generally operate using the same principles can be reused with minor effort. Reusing old 
models can thereby reduce the cost to a certain extent. Models can also have a post-deployment 
maintenance cost, depending on whether the model will be trained online. For systems that are not static 
(e.g., systems with multiple slowly degrading components or large process drifts), online training would 
be required. This, in turn, requires continuous model refining, incurring costs associated with that process. 

Evaluating a physics model benefit depends on its performance. Metrics measuring cost-savings are 
required to assess the system value in both retroactive and proactive senses—i.e., after and before an 
anomaly is detected and classified. An example is listed here for demonstration. A probabilistic risk 
assessment approach may be used to measure the value of a given anomaly detection in both retroactive 
and proactive senses. After the assessments of the model for validation and robustness generate 
probabilistic measures for both detection and classification, indicating three possible scenarios—detection 
with correct classification, detection with incorrect classification, and no detection—these probabilities 
should be combined with cost models to calculate the value of the anomaly detection system in real time. 
A typical value function may be developed as follows: 

𝑉(𝑡) = −[1 − 𝑑(𝑡)] ∑ 𝐶𝑖𝑖  + 𝑑(𝑡)𝑝𝑗(𝑡)𝐶𝑗 − 𝑑(𝑡)[1 − 𝑝𝑗(𝑡)] ∑ 𝐶𝑖𝑖≠𝑗  (3) 

where d(t) refers to the detection probability and pj(t) refers to the probability of the correct classification 
for anomaly source j. When an alarm is sounded declaring the jth anomaly, the Cj parameter measures the 
positive impact on the plant economy resulting from the detection. The d(t) and pj(t) are both updated in 
real-time based on the anomaly detection system, with uncertainties in these values evaluated using the 
validation assessment approach proposed earlier. These uncertainties can be seamlessly propagated to 
estimate confidence in the value function. The first term captures the overall negative impact resulting 
from the no-detection scenario. The second term represents the positive impact resulting from the correct 
classification. The third term measures the negative impact of detection with incorrect classification. The 
cost parameters are to be estimated based on a number of precalculated scenarios, akin to the 
development of design-basis accident scenarios routinely developed in support of plant safety analysis. 
These scenarios can be readily analyzed using the overall plant simulator that is typically employed for 
operators training. 
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Section 2.1.2.5 discusses one approach to incrementally invest in physics models by incrementally 
introducing them to the empirical method to achieve the needed accuracy, i.e., to determine the best 
physics model to capture the explained part of the signal. The decisions may include: a) how to choose 
between empirical-driven and physics-based approaches for updating the explained part of the signal; b) 
how to identify the subsystems model contributing the most to the observed anomaly; c) how to identify 
the models contributing the most to the classification uncertainty; and d) the value of building a high-
fidelity model versus a low-fidelity or data-driven model for a given subsystem, etc. For example, to 
determine whether empirical techniques can be replaced in lieu of physics-based models, each subsystem 
empirical model is replaced by a physics model in a one-at-a-time manner and the classification algorithm 
is re-executed. This approach provides two advantages: it helps prioritize the physics modeling needs 
(especially if they are expensive) and provides a quantitative metric that measures the value of a given 
physics model for improving the accuracy of the classification. Further, by employing active noise 
insertion methods, one can estimate the level of accuracy needed for a new physics model (i.e., should 
one invest in a high, intermediate, or low-fidelity physics model) to improving the accuracy of the 
classification results. If the subsystem physics model is not available, empirical models can be 
constructed with different fidelity to study their impact on the anomaly detection results. If a strong 
sensitivity exists to the employed physics-model technique, the implication is that the given subsystem is 
important to the anomaly detection results and additional expert-based investigation is needed. 

2.2.5 Data Dimensionality 
2.2.5.1 Summary 

Decision point in Figure 9: High Number of Data Points? 

Is the number of data points too large to be analyzed through the available resources and there is a 
need to shortlist the dataset, i.e., to reduce the data dimensionality? For example, if its desired to train a 
method continuously, then it is desired to downselect the sensors list to be analyzable in the time frame 
desired. 

2.2.5.2 Explanation 

The computational power required to train an empirical model is proportional to the number of 
parameters in the model (i.e., the degrees of freedom of the model), the size of the feature space (i.e., the 
number of inputs that are fed into the model, the amount of data, the resolution of the data in space or 
time, the system temporal behavior) and the model architecture (e.g., deep neural-network model versus 
regression model). Generally, deep learning models require more parameters than traditional ML models 
and thus need more processing time. If the application is for a static process, the model may be trained 
only once, and the computing resources are needed only during the initial training. Model evaluation, e.g., 
using the trained model, is usually not computationally expensive and can often be done in real-time. 
However, for dynamic data models where learning is to be continuously performed online, sufficient 
computing power needs to exist even after deployment. This shows that empirical methods are more 
susceptible to data dimensionality. 

High data dimensionality impacts physics-based models as well because each data point needs to be 
modeled, resulting in large models. Physics-based models require significant computing power for large 
applications to give relatively low uncertainty. This is not an issue for medium- to low-fidelity models. 
For example, [Moseler 2000] created a diagnosis model that can run in 8 ms on a 16-bit microcontroller 
to give acceptable fault detection performance using data from four types of sensors. 

Another aspect that needs to be incorporated when considering data dimensionality is the level of data 
preprocessing that is needed by the model. If a given model is sensitive to sensor noise, extensive 
preprocessing may be needed after deployment, which adds to the required computing resources. Thus, if 
computing resources are limited, data dimensionality may need to be reduced. 
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2.2.6 Physics Knowledge 
2.2.6.1 Summary 

Decision point in Figure 9: Physics Knowledge? 

Is the basic knowledge about the physics of the process sufficient to make valid decisions on the 
anomaly detection process without a detailed physics-based model or simulation? Note that there are three 
locations in Figure 9 with a decision point about physics knowledge. These three decision points can be 
broken down to more specific questions that pertain to each decision point as follows: 

• Following “High Number of Data Points?”: Can the sensors that are important to the 
detection of the anomaly be readily identified based on physics knowledge? 

• Following “Explainable Validation?”: Can a series of knowledge-based decisions be used to 
create a rules-encoded process to detect an anomaly? 

• Following “Cause-Effect Needed?”: Can the cause of an anomaly be known based on physics 
knowledge and used to automatically classify the cause of an anomaly without more detailed 
data analysis? 

2.2.6.2 Explanation 

Physics knowledge is the basic understanding of the first principles of a system. In NPPs, as in most 
industrial settings, physics knowledge development and application through physics models are not 
common among plant staff because direct interaction with physics modeling is rare. Instead, physics 
knowledge development in an NPP typically occurs via direct human experience with plant equipment, 
transformation of knowledge from comparable systems, and data-based behavior (i.e., trending). In 
addition, some plant staff interact with physics models for some specific equipment that have been 
developed by vendors. Under common circumstances, the plant staff (e.g., system engineer) has extensive 
experience with the system but may lack thorough knowledge of the detailed physics of the system (that 
is, the underlying equations that drive equipment behavior). 

The development of anomaly detection is dependent on how physics knowledge is leveraged. In its 
simplest form, physics knowledge can be used to reduce the data dimensionality of a system—i.e., to 
shortlist the variables of interest. Physics knowledge can also be used to develop rule-based experience 
models to allow encoding the expected system-state evolution and map the progression to sets of human 
behaviors that operators have made historically to formalize the diagnosis and prognosis of component 
failures. This may be due to the complexity of the system or the system being strongly influenced by 
external factors that may not be known. This enables an anomaly detection system based purely on 
experience (refer to Section 2.1.2.3 for details). 

Physics knowledge can also be used to identify possible cause-effect pathways when they are needed. 
Physics-based methods offer the cause-effect relationship as subjectively determined, which is adequate if 
the sources of anomalies are already known. This is a manual approach and relies heavily on experience. 
Thus, it is difficult to automate. Another form of experience is to leverage historical sensors and events 
data from similar anomalies that occurred and were logged by either manually analyzing the data or 
constructing a supervised-learning-type data-driven classifier. 

2.2.7 Method of Validation 
2.2.7.1 Summary 

Decision point in Figure 9: Explainable Validation? 

Does the anomaly detection scheme for a critical piece of equipment require an explainable validation 
process (that contains the appropriate amount of rigor to meet applicable regulatory needs)? 
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2.2.7.2 Explanation 

For some scopes of online monitoring, in order to enable the validation of a prospective anomaly 
detection system, an approach—similar to the one currently adopted by regulations for an NPP planning 
to use a model for safety-related equipment—is required to validate the model. The approach must also 
include a mapping procedure by which uncertainties in the model predictions are calculated based on the 
available experimental data and their uncertainties. Validation of an anomaly detection system can be 
achieved using independent data from the specific application. If no historical data exist, manufactured 
data may be developed to simulate the emergence of anomalies at different operating conditions (the 
physics approach) or data can be collected from the same dataset (various methods of empirical method 
validation exist) or by testing the methods on other equipment that resembles the equipment deploying the 
method. Anomalies can be manually inserted in both cases, i.e., known anomalies can be introduced and 
employed to update the sensors data in a manner that respects the underlying physics (see Section 
2.1.2.1). These data can then be fed back to the anomaly detection system serving as manufactured—i.e., 
virtual—validation experiments. It is important to note that the last decade has witnessed a huge surge in 
the development of a physics-guided, data-driven hybrid between physics modeling and empirical 
techniques (see examples in An 2015; Parish 2016; Karpatne 2017; Zhu 2019) to support model 
validation [Roy 2010]. Most of these techniques can be adopted in an anomaly detection system to 
provide the required measures of confidence either using real or manufactured data [Roache 2002; 
Stripling 2011]. If the method does not need to be easily explainable—i.e., this is not a key requirement 
for validation—validation can still be performed by empirical methods. 

One measure of validation is confidence. The confidence is measured in a probabilistic sense, e.g., 
component X is identified as the source of the anomaly with 90% probability. The probability reflects the 
impact of various sources of disturbances and uncertainty that obscure the search for the true cause-effect 
relationship. It also reflects how effective the anomaly detection algorithms are in minimizing the impact 
of such uncertainties. A well-validated model is expected to provide measures of confidence that are 
acceptable to the end-user over the wide range of operating conditions, including both normal and offset, 
i.e., transient, conditions. For example, if the confidence is high at certain operating conditions but 
degrades significantly at other conditions, such a system would be unreliable. While the confidence may 
be high, the identified anomaly source may be sensitive to the various sources of disturbances. For 
example, if the flowrate in the pipe is slightly changed, will the anomaly detection system change its 
classification results while still reporting the same level of confidence—e.g., declaring that component Y, 
instead of X, is the source of the anomaly—with the same 90% probability? 

Another approach to validation relies on validating the methods rather than the results. This is 
especially useful when complete knowledge of the system is available and feasible and the failure modes 
are known, or when the processes are simple and the system evolution and component degradation 
mechanisms are known in detail. In these cases, explainable anomaly detection methods can be explored. 
Rule-based methods, such as ASP, can provide explainable results of how a cause led to faults (refer to 
Section 2.1.2.3 for details). Rule-based methods are, however, not capable of adapting to new conditions 
without extensive adjustments and the system can end in a start that is outside the range of model 
applicability. Considerations should be given to the stationarity of the system. If the system is not 
stationary, methods that allow online learning (online updating of model parameters) should be 
considered. This is why these methods are strongly dependent on physics knowledge and need to be 
updated in time. 

2.2.8 Performance 
2.2.8.1 Summary 

Decision point in Figure 9: Performance Acceptable? 
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Does the performance of the method (empirical or hybrid) meet the scope requirements? For example, 
is the method accurate, robust, and capable of providing a sufficient lead time to failure? Note that there 
are four locations in Figure 9 with a decision point about acceptable performance. The essential questions 
for each of these points are the same, with the goal of determining whether the anomaly detection system 
is adequate or whether more work is required to meet anomaly detection needs. 

2.2.8.2 Explanation 

The much-referenced quote by George Box, “all models are wrong, but some models are useful,” 
indicates that both empirical and physics-based models are never as good as the actual system. The 
amount of usefulness is dependent on the knowledge or information available to build the model to get it 
to be as close as possible to the actual system. Three metrics of performance are discussed herein: 
accuracy, robustness, and prediction time frame, but others could exist depending on the anomaly 
detection scope requirements. 

Accuracy requirements and tolerance to misdiagnosed events are important considerations. The 
accuracy of models is a subjective measure, depending on the scope of the anomaly detection being 
considered. The impact of the accuracy depends on the requirements of the method used. For example, 
when physics models are used to augment data-driven methods, the accuracy of the physics model may be 
less important. In contrast, in applications like residual generators (discussed in Section 2.1.2.1), the 
accuracy of the model will have a greater impact on the predictive power of the systems [Ran 2019]. 

Robustness is the term preferred by statisticians to denote the ability to reproduce approximately the 
same predictions under all possible unknown disturbances [Huber 2004]. In this context, it means that the 
explained part of the signal is stable and insensitive to the unexplained part (or noise), representing the 
unaccounted for and unknown sources of disturbances, also referred to as uncertainties. Disturbances or 
uncertainties refer to any phenomenon that is not modeled by the analyst, or any assumption about the 
data or the solution methodology that may be incorrect. With regard to robustness, the goal is to ensure 
that the anomaly detection results remain insensitive to these uncertainties or disturbances that are 
irrelevant to the source of the anomaly. 

In anomaly detection, one key goal is to maximize the time between the warning from the model and 
the failure time. If the objective is to avoid cascading failure, a short lead time (hours or days) may be all 
that is needed from the prognosis system (see Figure 1). In contrast, if the objective is to be able to make 
appropriate purchasing and operating decisions on expensive machinery, such as a steam turbine, a lead 
warning time of a few months may be necessary. Unlike prognosis, which use condition monitoring 
models to predict reequipment RUL, anomaly detection is based on the presence of an anomaly, i.e., an 
anomaly must exist to be detected. Therefore, the prediction time performance of the anomaly detection 
process is the time between when the anomaly is conceived and when it is detected. This time is ideally 
much smaller than the duration between the time the anomaly is conceived and the equipment failure. 
Because the time at which the anomaly is conceived is unknown, no discernable correlation between lead 
time and the type of methods can be established. If the time achieved is not suitable, other methods may 
be needed for a given application to find the most suitable ones. 

2.2.9 Data Availability and Suitability for Training & Testing 
2.2.9.1 Summary 

Decision point in Figure 9: Data for Training & Testing? 

Is the available data sufficient and suitable to train an empirical model and test its performance in the 
operating conditions of interest? 
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2.2.9.2 Explanation 

To a large extent, data availability determines the suitability of empirical methods to the scope. The 
ability and the value of detecting anomalies requires an abundance of data to improve in both the 
proactive and retroactive sense—i.e., before and after the anomaly is declared. The availability of data 
from the plant or through physics models is necessary for the training and testing of anomalies detection 
using pattern inference (refer to Section 2.1.1.1) or hybrid methods (refer to Section 2.1.2.1). It is more 
critical when using methods that require large amounts of data to perform well, such as those based on 
deep neural networks. These methods are usually favored when poor-quality data are available because 
these methods allow less effort to be spent on data preprocessing steps, such as feature selection and 
denoising. Data availability can be from generic sources (e.g., industry-wide average data, data from 
similar plants) or specific to the scope of the anomaly detection method. If relevant data are available, 
then it is possible to refine the models (e.g., through transfer-learning techniques) to yield more accurate 
predictions. 

Data can also influence the type of pattern inference methods used. If labeled data are available (i.e., 
data events are logged), it is possible to use supervised learning techniques to identify trends that are 
indicative of impending failures. 

Data quality is key factor for data suitability for the development of an anomaly detection method. 
Empirical methods generally rely on the quality of the data for good performance. This places importance 
on data collection and data preprocessing including data imputation and noise removal and analysis. From 
the viewpoint of collection, it may take some efforts from plant personnel to integrate data from many 
sources, especially if data formats are different. If data are to be collected in the long term, a systematic 
and automated procedure may be developed for data cleanup and fusion. This problem is exacerbated in 
legacy systems where the sensors span different generations and use different technology to store data 
(e.g., modern wireless versus older-generation systems). Automated methods for data preprocessing exist, 
such as feature-reconstruction methods (e.g., auto-encoders) to build high-level features or patterns based 
on the sensor values. 

2.2.10 Cause-Effect 
2.2.10.1 Summary 

Decision point in Figure 9: Cause-Effect Needed? 

Is knowledge about the cause of an anomaly needed? That is, is the detection of the occurrence of an 
anomaly not sufficient? 

2.2.10.2 Explanation 

As explained in Section 2.1.1.1 and Section 2.1.1.3, pattern inference methods rely on identifying 
patterns in the sensors data, which may be viewed as complicated association rules between the sensors 
variations. Though pattern inference methods are extremely sensitive to the detection of subtle variations, 
they will not, however, find the cause of the anomaly—i.e., how to build a cause-effect pathway between 
the anomalous sensor behavior and their initiating event. The implication is that, while it is possible to 
detect the presence of anomalies, it becomes extremely difficult to pinpoint their locations. This is 
because pattern inference methods display superior ability in generating association rules between 
multivariate data; however, they lack the ability to perform causal inference [Pearl 2000; Mooij 2009; 
Zhang 2010; Peters 2014]. In the anomaly detection context, causality implies the ability to regress the 
effect—indirect anomalous sensor measurements—back to the cause: that is, the location of the rare 
event. 

One approach to handle cause-effect is to leverage physics knowledge, as described in Section 
2.1.2.1, if available. If not, then variance inference methods (restricted by the proximity of sensors to 
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event as described next) can be used to extract the cause-effect relationship (refer to Section 2.1.1.3 for 
details) 

2.2.11 Entropy Inference 
2.2.11.1 Summary 

Decision point in Figure 9: Noise Correlation Possible? 

Is there enough noise within the data to create a PDF and evaluate changes of the PDF from the 
sensors as they get closer to the source of the anomaly? 

2.2.11.2 Explanation 

If physics knowledge cannot be used to extract the cause-effect relationship in the data, it is possible 
to quantify the shift in the PDF of the unexplained sensors’ errors using entropy methods (see 
Section 1.4.3 for entropy definition and Section 2.1.1.3 for more details on how this is accomplished). As 
mentioned earlier, the CLT assures that when many sources of randomness aggregate, they quickly turn 
into a Gaussian distribution. The implication is that the resulting distribution will have approximately the 
same entropy as long as its mean and standard deviation are approximately the same. Therefore, entropy 
methods are only effective when one has measurements that are close enough to the source of the 
anomaly from the process-correlation perspective to ensure that the measurements have not been heavily 
contaminated by other sources of randomness, causing the distribution to reach the Gaussian shape. The 
shift in the PDFs of the sensors’ unexplained errors could be strategically used to infer cause-effect 
relationship, thereby improving the ability of data-driven techniques to classify the anomaly sources. In 
summary, the more relevant an indirect measurement to a rare event’s cause, the higher the likelihood that 
the CLT conditions remain unsatisfied, implying that the PDF of the unexplained errors is still 
distinguishable from the normal shape, and can thus be employed to back-trace the location of the rare 
event. 

2.2.12 Model Fitting 
2.2.12.1 Summary 

Decision point in Figure 9: Tunable Model? 

Does the physics model not encompass all the scope physics and need to be tuned to represent some 
unknown properties or parameters? Can the model provide an adequate representation of reality when 
reality refers to the wide range of conditions expected during operation? Is the physics model expected to 
change in time and need to be retuned? That is, are the normal operating conditions over time dynamic 
rather than mostly static? For example, a monitoring method for an aging component might need to be 
adjusted to reflect the aging process in the physics model through some tunable parameters. 

2.2.12.2 Explanation 

A model’s accuracy is directly impacted by how well it represents the real system. Sometimes, it is 
necessary to represent some physics properties or parameters that are unknown with tunable parameters as 
discussed in Section 2.1.2.6. Tunable parameters can also be used to represent the wide range of 
conditions expected during operation using direct comparison of model predictions to measurements. In 
reality, it is infeasible to find all operating conditions in the available data. Nonetheless, it is possible to 
establish a level of confidence for model predictions for the wide range of operating conditions relying 
only on the limited number of available data. This represents the core objective of a dynamic model and 
addresses one of the challenges of anomaly detection systems: the lack of guidance on how to update the 
explained part of the signal when an anomaly emerges. A decision must be made on whether an update to 
the methodology will be biased by the conditions at which the anomaly occurs (e.g., pump degrading at 
lower power conditions with lower flowrate or coolant temperature, lower pressure losses, etc.) This is 
intended to be addressed by the recent digital twin technologies, which contain models that can be 
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adapted by tuning their associated parameters in a dynamic manner. This enables physics models to be 
continuously tuned based on sensor data (details are in Section 2.1.2.6) and, like empirical models, digital 
twins have the ability to retrain as new data are collected, reflecting dynamic system changes.  
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3. STRATEGY USE CASES 
This section aims to leverage the strategy introduced in the report and summarized in Figure 9 in two 

pilot projects with an industrial collaborator. The first project aims to detect anomalies in drywell cooling 
fans ahead of their failure, and the second aims to detect a minor steam leak in the plant’s high pressure 
coolant injection (HPCI) room. 

3.1 Pilot 1: Drywell Cooling Fan 
An NPP drywell environment is a containment structure encompassing the reactor vessel and fluid 

recirculation system of a boiling-water reactor [NRC 2019]. The drywell environment is completely 
enclosed in concrete, consists of a nitrogen gas atmosphere, and captures the leaked thermal energy 
emitted from the reactor vessel. Heat must be continually removed to maintain the structural integrity of 
the drywell containment system during normal plant operation. The designed temperature limit of the 
drywell environment is 135°F and is subject to regulatory statutes [NRC 2011]. 

While the plant operates, four fans driven by electrical motors move the nitrogen gas through heat 
exchangers. The heat exchangers are linked to a closed-loop water circulation system. Together, the fans 
and shell-and-tube heat exchanger coils make up the fan-coil units (FCUs) that are of interest here. The 
four FCUs pull hot nitrogen gas aggregating near the top of the drywell environment and push cooler gas 
upward in a continuous cooling cycle. After the heat is passed from the nitrogen gas environment to the 
closed-loop water circulation system, the heat is transferred to a flow of water captured from a nearby 
river and released to the environment. This system ensures that the probability of contamination to the 
outside environment is kept at an absolute minimum but requires various equipment to facilitate efficient 
air and fluid circulation through the network of heat exchangers. Failure within the system disrupts the 
plant’s ability to shunt heat from the reactor vessel and can lead to unplanned shutdowns, resulting in 
significant economic loss. 

On May 11 and May 26, 2018, two drywell FCUs suffered a significant mechanical failure after 
approximately 18 months of service. Due to the loss of cooling capabilities after the second failure and 
regulatory requirements, the plant was shut down for six days for repairs. The cause of both events was a 
failure of outboard fan bearings that damaged FCU mechanical infrastructure to a point at which each 
FCU was inoperable. Resultant damage included broken fan shafts, damage to support structures, and 
mangled fan wheels and inlet cones after system alignment was lost due to the loss of structural integrity. 

The drywell environment of the NPP is not equipped with sensors tracking motor or bearing health 
indicators. Maintenance activities are based on manufacturer specifications, periodic observations, and 
scheduling guidelines. The system also lacks continuous vibration data, which can be a key metric in 
identifying rotary equipment failure [Al Rashdan 2018]. However, the drywell environment was equipped 
with over 30 sensors tracking temperature, humidity, and fluid flow metrics that are logged on a one-
minute interval by a plant computer equipped with a PI System computer software package. The PI 
System is a common application used by multiple industries to collect, visualize, and analyze process 
stream data. Additional data were also available detailing overall plant power output at a high temporal 
frequency and other features that might be influenced by drywell environmental conditions. This provided 
a rich dataset with which to apply process-anomaly detection methods in relation to the two known FCU 
failure events. 

3.1.1 Initial Strategy Application: An Empirical Approach 
The previous section introduced the scope to target the drywell cooling fan and provided enough 

insight to develop the strategy. The strategy is applied to the scope and is shown in Figure 12. The system 
had no direct sensors, as was explained in the previous section. Tens of thousands of NPP data were 
aggregated and downloaded from the plant monitoring computer PI System, so physics knowledge 
(through discussion with plant staff) was used to shortlist the variables. Table 5 shows the complete list of 
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plant computer data points (DPs) used after being shortlisted. Of the 33 sensors, 21 collect drywell 
environmental data at various spatial locations, and 12 are distributed among each of the four FCUs to 
measure inlet, outlet, and dew-point metrics. Table 5’s environment column shows the specific FCU 
associated with the sensor. The validation did not need to be explainable because this is a support method, 
i.e., it will not be used to take safety decisions. 
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Figure 12. Initial strategy applied to drywell cooling fan anomaly detection. 
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Table 5. NPP sensor data associated with the drywell environment. 
DP ID Description Units Environment 

DP 1 Primary Containment Heat Exchanged KBTU/Hp ALL 

DP 2 Plant Power Output % ALL 

DP 3 Reactor Core Flow MLB/H ALL 

DP 4 FC-R-1A Inlet Air Temperature °F, Dry bulb A 

DP 5 FC-R-1B Inlet Air Temperature °F, Dry bulb B 

DP 6 FC-R-1C Inlet Air Temperature °F, Dry bulb C 

DP 7 FC-R-1D Inlet Air Temperature °F, Dry bulb D 

DP 8 Recirculation Pump A Area Temperature °F, Dry bulb ALL 

DP 9 Recirculation Pump B Area Temperature °F, Dry bulb ALL 

DP 10 FC-R-1A Outlet Air Temperature °F, Dry bulb A 

DP 11 FC-R-1B Outlet Air Temperature °F, Dry bulb B 

DP 12 FC-R-1C Outlet Air Temperature °F, Dry bulb C 

DP 13 FC-R-1D Outlet Air Temperature °F, Dry bulb D 

DP 14 FC-R-1A Inlet Dew Point °F, Dew Point A 

DP 15 FC-R-1A Inlet Dew Point °F, Dew Point B 

DP 16 FC-R-1A Inlet Dew Point °F, Dew Point C 

DP 17 FC-R-1A Inlet Dew Point °F, Dew Point D 

DP 18 Drywell Inlet Supply Temperature °F ALL 

DP 19 Drywell Outlet Temperature °F ALL 

DP 20 Flow Rate to Drywell GPM ALL 

DP 24 Return Air Ring Temperature °F ALL 

DP 25 Return Air Ring Temperature °F ALL 

DP 26 Return Air Ring Temperature °F ALL 

DP 27 Zone 2B Temperature °F ALL 

DP 28 Zone 2B Temperature °F ALL 

DP 29 Zone 2B Temperature °F ALL 

DP 30 Zone 2B Temperature °F ALL 

DP 31 Zone 2B Temperature °F ALL 

DP 32 Zone 2C Temperature °F ALL 

DP 33 Zone 2C Temperature °F ALL 

DP 34 Zone 2C Temperature °F ALL 

DP 35 Zone 2C Temperature °F ALL 

DP 36 Zone 2C Temperature °F ALL 

 
p  KBTU: thousand British Thermal units. 
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The next decision to consider was whether the data are sufficient for training and testing. Figure 13 
shows a schematic diagram of sensor locations and associated DP IDs. To have enough data with which 
to develop exploratory models, the selected data span from December 1, 2016, through May 12, 2019, the 
date just prior to the start of this analysis. This provides data before and after the known FCU mechanical 
failure events. The data were downloaded in comma-separated value (CSV) files formatted as time series 
floating-point values by querying the plant PI System computer software for the specific date ranges for 
each sensor. A total number of 32,349,861 records or instances were aggregated in this effort. 

 
Figure 13. Locations of the selected sensors shown in Table 5.17F

q 

Extensive exploratory analysis was conducted to evaluate data quality and quantify feature metadata 
and statistics. Working in Python 3.6 [Oliphant 2007], which incorporates multiple libraries suited for 
preprocessing, visualizing, and modeling large data sets, initial exploratory efforts focused on the 
development of dynamic visualization functions allowing for the plotting of data of any number of 
sensors over a user-provided temporal range. During the exploratory visual analysis, it was revealed that 
although each sensor data stream was logged at a one-minute resolution, the datetime instances were not 
recorded at the exact same moment. For example, an instance for DP 20 was recorded on 
December 1, 2016, at 00:00:02. However, for that same date, hour, and minute, an instance associated 
with DP 1 was recorded at 00:00:00. Because of this, the data were resampled to an hourly resolution 
based on the mean value during the specific period to achieve temporal alignment. 

Based on patterns observed during the data visualization phase, custom functions were developed to 
evaluate the integrity of the time-series data associated with each sensor by looking for the average 
temporal gap as well as the smallest and largest temporal gaps. Additionally, functions were developed to 
count the number instances for each sensor that logged null, zero, or negative values. Based on the 
descriptive information provided for each sensor, these were deemed invalid values. Custom functions 
were also developed to search individual sensor data for repeating values. Given the high level of 
precision of the recorded data (floating point), it was deemed that the repetition of exact values was 

 
q  The blue outline on the right depicts the outer shell of the drywell environment, and the shapes on the left show the 

individual FCUs. 
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indicative of a sensor logging issue. Total plant power output was also taken into consideration since, in 
most cases, an NPP typically operates at capacity (approximately 100%) to remain economically viable. 
Exploratory analysis showed this feature typically had values greater than 99.0%, with intermittent 
periods of reduced output, indicating it likely would not add feature information useful for modeling. 
However, an additional function was developed to identify all instances where plant power output fell 
below 99%, which was deemed a state change that could impact feature dynamics. 

After an exploratory analysis, suitable modeling features were selected along with known mechanical 
failures, sensor failures, and state changes to use for the classification objective. Finally, the data were 
curated to filter out all instances with zero, null, and negative values and were serialized and saved in a 
Python pickle file format for modeling. 

After data evaluation and preparation deemed the data available and suitable, pattern inference was 
selected as the right approach. The cause-effect relationship was known by the staff; they indicated that if 
a fan degrades, most of these sensors will be impacted because cooling would degrade and temperatures 
would increase. This took the decision-making process to the “performance acceptable?” state. To 
advance from this state, a pattern inference model needs to be developed and evaluated. The following 
section explains the method applied to make this decision. 

3.1.1.1 Empirical Model 

Four ANNs were developed, one for each FCU, using the TensorFlow Python library [Abadi 2016]. 
The advantage of ANNs is that they are capable of learning patterns within features that are not always 
obvious to humans. However, they require suitable amounts of curated and labeled data to support 
training and generalization. A classification approach was not suitable because the data were very 
unbalanced. Out of the tens of thousands of instances in the curated data, only two mechanical failure 
events were known to have occurred a priori along with sensor failures and state changes discovered 
during exploratory data analysis. Instances preceding the failure events indicative of anomalous system 
behavior, if any, were not known. Given that the data were not suitable for a classification approach (i.e., 
anomaly/no anomaly), it was decided to set up regression models to predict each FCU output temperature 
as a healthy baseline. Although well suited for time-series data such as this, LSTM networks were not 
applied in this analysis due to the temporal interruptions resulting from the data-curation processing steps. 
For this analysis, a mean square error (MSE) loss-minimization strategy was used based on the following 
equation: 

𝑀𝑆𝐸 =
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1  (4) 

where �̂�𝑖 represents the predicted value of instance i, 𝑦𝑖 is that actual value, and n represents the number 
of instances. 

For each FCU model, the input features consisted of all shared features, except for DP 2, which 
represents the total power output, and their respective inlet air temperature and dew-point measurements 
and are shown in Table 6. The Shared Features column shows the 22 feature DP IDs derived from NPP 
drywell sensors that are not associated with a specific FCU. The Respective Features column shows the 
two DP IDs for each inlet air temperature and dew-point measurement sensor associated with the specific 
FCU. The predicted output shows the DP ID for the respective FCU outlet air temperature that the ANN 
models were trained to predict. 
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Table 6. Individual model input features and predicted output. 

FCU Shared Features 

Respective 

Features Predicted Output 

A 
DP 1, DP 3, DP 8, DP 9, DP 18, 

DP 19, DP 20, DP 24, DP 25, DP 26, 
DP 27, DP 28, DP 29, DP 30, DP 31, 
DP 32, DP 33, DP 34, DP 35, DP 36 

DP 4, DP 14 DP 10 

B 
DP 1, DP 3, DP 8, DP 9, DP 18, 

DP 19, DP 20, DP 24, DP 25, DP 26, 
DP 27, DP 28, DP 29, DP 30, DP 31, 
DP 32, DP 33, DP 34, DP 35, DP 36 

DP 5, DP 15 DP 11 

C 
DP 1, DP 3, DP 8, DP 9, DP 18, 

DP 19, DP 20, DP 24, DP 25, DP 26, 
DP 27, DP 28, DP 29, DP 30, DP 31, 
DP 32, DP 33, DP 34, DP 35, DP 36 

DP 6, DP 16 DP 12 

D 
DP 1, DP 3, DP 8, DP 9, DP 18, 

DP 19, DP 20, DP 24, DP 25, DP 26, 
DP 27, DP 28, DP 29, DP 30, DP 31, 
DP 32, DP 33, DP 34, DP 35, DP 36 

DP 7, DP 17 DP 13 

 
From the curated data, multiple 10-day windows, consisting of approximately 240 hourly time series 

data points without temporal interruptions, were reserved for model testing for each FCU. This included 
10-day windows immediately preceding known mechanical and sensor failures and randomly selected 10-
day windows from temporal instances associated with assumed normal plant operations. The purpose of 
this testing data structure was to determine whether the models’ predictive capabilities were impacted by 
any subtle changes within the 10-day periods preceding FCU failure events or sensor failures. The 10-day 
duration was selected as it represented an industrially relevant time period where anomaly detection could 
be useful to identify issues prior to a full functional failure. The number of windows reserved for model 
testing was selected to represent about 20% of the total data for each FCU data set, leaving approximately 
80% for model training. Additionally, any testing windows that had an average power output of less than 
99.0% were also flagged as a potential state change. Instances in the training data where plant power 
output fell below 99.0% were excluded to provide the cleanest possible datasets to develop healthy 
baseline predictors. This filter was applied after segregating the testing data. 

To mitigate the varying feature data scales, the training data features were standardized based on the z 
score: 

𝑥′ =
𝑥−µ

𝜎2  (5) 

where the feature mean, µ, is removed from each instance and scaled to the feature variance, σ2, to yield 
𝑥′, the transformed feature value. Features of the validation and testing data were also standardized in this 
way but based on the respective feature’s mean and variance derived from the training data. 

Model structure and parametrization were defined and finalized using exploratory modeling focused 
on minimizing total MSE, while striving to keep the model structure as simple as possible for 
computation efficiency. The ANN models were set up as densely connected multilayer perceptron 
networks with one hidden layer containing 30 nodes connected to a single output layer configured for 
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regression. The hidden layer was configured with a rectified linear unit (ReLU) activation function 
[Glorot 2011] found by: 

𝑓(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

} (6) 

where 𝑓(𝑥) is always positive and x, the neuron input, is not bounded in the positive direction. This 
activation function is commonly used as it converges faster, x does not plateau or saturate in the positive 
direction, and it is sparsely activated as all negative inputs are converted to zero within the network. 

The models were optimized with the Adamax function using learning and decay rates of 0.01 and 
0.001, respectively. Adamax is a variant of Adam, a stochastic-gradient-based optimization method 
favored for its computational efficiency and straightforward implementation based on intuitive hyper-
parameters [Kingma 2014]. The batch size, or number of instances processed before the model is updated, 
was set to 64. 

Validation was incorporated into model training using 10 percent of the training data via random 
selection. The validation MSE was calculated after each training epoch, and a call-back function 
terminated training when the MSE stopped decreasing over two consecutive epochs. This was done to 
prevent model overfitting while achieving suitable MSE and generalization capabilities. 

Classification 

Although the ANNs were configured for regression, the overall classification of “anomalous” or 
“normal” operations of the 10-day testing windows was achieved using a one-tailed F-test, comparing the 
variance of individual testing window prediction residuals of respective FCUs against the variance of the 
FCU’s aggregate prediction residuals of testing windows assumed to be during normal operating 
conditions—i.e., those not preceding known faults or containing instances of a reduced plant power 
output below 99.0%. The F statistic was calculated as follows: 

𝐹 = 
𝜎𝑤

2

𝜎𝐵
2    (7) 

where σw
2  is the variance of the 10-day window residuals and σB

2  is the variance of the aggregate 
prediction residuals of the testing windows known to be derived from normal baseline operating 
conditions. Using a confidence value of 0.95 and a null hypothesis that the variances are equal (F = 1), 
individual testing windows returning a statistically significant critical F value were classified as 
anomalous (by rejecting the null hypothesis) while the remaining testing windows were classified as 
normal. This method was applied based on the assumption that ANN models trained to predict FCU 
output temperatures only with features derived from normal or “healthy” operating instances would yield 
less error during normal or “healthy” operational states. Conversely, model prediction error would 
increase to the point of statistical significance when predicting with features experiencing deviating or 
anomalous patterns not seen during training. For this analysis, it is expected that instances and associated 
features preceding equipment or sensor faults would start to be impacted by degradation effects leading 
up to the actual failure instance that would increase model prediction error. It is also expected that testing 
windows where the average power plant output level fell below 99% would also result in reduced model 
accuracy and, potentially, statistically significant variance in the residuals. 

Visual inspection and exploratory analysis using custom built Python functions of the downloaded 
data revealed occurrences of null and negative values that varied by the specific sensor. For example, 
most sensors had less than 10 total occurrences, but some, such as DP 7 and DP 4, had over 80,000 
occurrences of repeating zero values, suggesting a sensor failure. Other sensors exhibited long periods of 
repeating values, as shown in Figure 14. The figure’s y axis shows FCU B input (DP 5) and output (DP 
11) temperatures from data downloaded from the plant computer for 2018. Starting in early May, DP 11 
suffered a sensor malfunction: it continually logged the exact same value until late September of 2018. 
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The plot also shows a distinctly different pattern in October and November that coincides with a 
scheduled plant showdown. Based on the data, a sensor failure event occurring on May 9, 2018 was 
discovered and flagged as an anomaly. An additional sensor failure event from September 9, 2017 (not 
shown in the figure) was also discovered and flagged as an anomaly, in addition to the known FCU 
equipment failures. 

 
Figure 14. Data logged from two data points from Table 5 for FCU B over one year of operations in 2018. 

Using the curated data, ANN models were then developed and used to make predictions on the test 
data consisting of 10-day windows prior to known failure events and randomly selected 10-day windows 
assumed to be normal operating periods or containing instances of reduced plant power output, signifying 
anomalous behavior. Data preprocessing, preparation, and curation resulted in varying amounts of 
training and testing instances for each FCU and are shown in Table 7. Although it was initially intended 
to split training and testing at an approximate ratio of 80/20, the additional data-curation step to remove 
instances where plant power output fell below 99.0% further decreased the number of training instances. 
However, the level of training data for model development was still deemed sufficient (as shown in 
Table 7). Analysis of the 10-day testing windows revealed FCUs B, C, and D had testing windows where 
the mean power output was below 99.0%. In addition to the known mechanical and sensor failures, these 
windows were labeled as anomalous. 

3.1.1.2 Results 

ANN modeling revealed the respective FCU’s model quickly learned the feature patterns to predict 
FCU outlet temperature values. Figure 15 shows plots of each FCU’s model training and validation 
prediction MSE by epoch. Each model demonstrated a similar sharp decrease in the MSE loss function, 
but some variability in the number of epochs before the call-back function terminated training. Models for 
FCUs A and B trained for over 100 epochs while C and D terminated at between 50 and 100 epochs. 

After model development and training, the models were tasked with predicting FCU outlet 
temperature values for the instances contained in the 10-day testing windows excluded from training. 
Table 8 shows the aggregate root mean square error (RMSE) and variance of residuals for the windows 
labeled “normal” and the aggregate values of all respective FCU testing windows (“normal” and 



 

 48 

“anomalous”). The results show both the model error and variance of the residuals increase noticeably 
when incorporating the known anomalous testing windows. 

Table 7. The 10-day testing windows for each FCU used for model testing. 

FCU 

No. of 
Training 
Instances 

No. of 
Testing 

Windows 
No. of Testing 

Instances 
Train/Test 

Ratio 
No. of Anomalous 

Windows 

No. of 
Normal 

Windows 

A 4,553 9 2,146 68/32 1 (mechanical) 8 

B 11,149 15 3,571 76/24 1 (sensor), 3 (power) 11 

C 12,442 18 4,285 74/26 2 (power) 16 

D 9,143 14 3,342 73/27 1 (mechanical), 1 (sensor), 
1 (power) 11 

 

Table 8. RMSE and variance comparison of aggregate testing results of FCU windows, both with and 
without anomalous windows. 
FCU RMSE (F°) (normal) RMSE (F°) (all) σ2 (normal)   σ2 (all) 

A 0.854 1.100 0.723 1.201 

B 1.403 15.487 1.919 221.551 

C 0.876 2.024 0.745 4.055 

D 0.452 29.701 0.184 822.645 

 

Figure 16 shows bar plots of resultant variance of the residuals for each testing window by FCU. For 
FCU A, the variance of the residuals for the testing window preceding the mechanical failure (Window 1) 
are noticeably higher than the remaining testing windows considered to be normal operating conditions. 
For FCU B, Windows 6, 10, and 11 correspond to reduced plant power output, and the variance of the 
residuals is noticeably higher than the other testing windows. However, Window 1 corresponds to a 
known sensor failure and has a slight variance level along with Windows 4 and 9, which are assumed to 
be normal operating conditions, along with the remaining windows. FCU C did not experience any 
mechanical or known temperature output sensor failures but did have two testing windows with reduced 
power output (Windows 12 and 14). Those windows show a higher variance in the residuals, along with 
several others assumed to be normal operating conditions including Windows 3, 5, 6, 10, and 13. FCU D 
experienced both mechanical and sensor failures (Windows 1 and 2, respectively) along with a reduced 
power output in Window 12, which is reflected in the bar plot. Window 7, assumed to represent normal 
operating conditions, also resulted in a slightly elevated variance of residuals. 

Classification results derived from the one-tailed F-test at a 0.95 confidence threshold for each FCU 
are shown in Table 9 with actual labels for comparison. A value of 1 indicates an anomalous state, and 0 
indicates normal. Overall, the testing windows preceding the known mechanical and sensor failures were 
classified as anomalous, as were the testing windows where the mean power output fell below 99.0%. 
However, a total of 10 testing windows assumed to be normal operating conditions were also classified as 
anomalous, indicating the approach is biased toward false positives. The models and classification 
methods yielded individual accuracies (correct/total) of 0.78, 0.87, 0.72, and 0.93 for FCUs A, B, C, and 
D, respectively. 



 

 49 

 

FCU A 
 

FCU B 

 

FCU C 
 

FCU D 

Figure 15. Respective FCU ANN model training and validation loss summaries. 
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Figure 16. Bar plots of each FCU variance of residuals. 

The overall accuracy of the aggregate FCU classification results was 0.82. The confusion matrix is 
shown in Table 10. It shows the 10 known “anomalous” windows were classified as such, but, out of the 
46 “normal” testing windows, 10 were misclassified as “anomalous”. Using these results, recall and 
precision can be calculated as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑃

𝑇𝑃+𝐹𝑁 
=  

10

10+0
= 1 (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃 
= 10

10+10
= 0.5 (9) 

where TP represents the number of true positives or anomalous testing windows classified as anomalous 
and FN represents the number of false negatives or anomalous testing windows classified as normal. FP 
represents false positives, or the number of normal testing windows classified as anomalous. A recall of 
1.0 indicates this approach is potentially well suited to detecting relevant anomalies. However, the lower 
precision value of 0.5 indicates there is bias toward false positive results. 
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Table 9. The individual classification predictions and labels for each FCU testing window. 
 FCU A FCU B FCU C FCU D 
 Actual Predicted Actual Predicted Actual Predicted Actual Predicted 

1 1 1 1 1 0 0 1 1 
2 0 0 0 0 0 0 1 1 
3 0 1 0 0 0 1 0 0 
4 0 1 0 1 0 0 0 0 
5 0 0 0 0 0 1 0 0 
6 0 0 1 1 0 1 0 0 
7 0 0 0 0 0 0 0 1 
8 0 0 0 0 0 0 0 0 
9 0 0 0 1 0 0 0 0 

10   1 1 0 1 0 0 
11   1 1 0 0 0 0 
12   0 0 1 1 1 1 
13   0 0 0 1 0 0 
14   0 0 1 1 0 0 
15   0 0 0 0   
16     0 0   
17     0 0   
18     0 0   

 

Table 10. Confusion matrix showing aggregate classification results. 
 Predicted anomalous Predicted normal 

True anomalous 10 0 

True normal 10 36 

 
Line plots of predicted and actual FCU hourly outlet air temperatures were developed for the four 10-

day testing windows (see Figure 17) preceding failure events to evaluate whether patterns existed that 
could serve as more specific indicators of equipment failure. Although the additional anomalous testing 
windows showed reduced plant power output, they were not associated with equipment failure events. For 
FCU A, predicted and actual hourly output air temperature values maintained close agreement until about 
2 days before the failure event, when the plot shows the predicted and actual values separating. For FCU 
B, the predicted and actual values show close agreement until about 4 days prior to the sensor failure, 
when a noticeable difference occurs. The predicted and actual values in testing Window 1 preceding the 
FCU D equipment failure showed divergence occurring early in the 10-day window, approximately 7 
days prior to the event. For the second FCU D testing window preceding a sensor failure, the predicted 
and actual values diverge starting about 5 days prior to the sensor failing. 

Visual analysis of predicted and actual data within the 10-day windows preceding known equipment 
or sensor failures indicates the divergent trends are apparent days before failure events. This indicates 
additional methods could be developed to deploy notifications prior to failure events. Additional analysis 
could also be applied to explore varying testing window lengths to reduce the classification error. 
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FCU A Window 1 

 

FCU B Window 1 

 

FCU D Window 1 

 

FCU D Window 2 

Figure 17. Predicted and actual FCU outlet temperature values for 10-day testing windows preceding 
known equipment and sensor failure events. 
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In summary, it is important to note that this methodology yielded results biased towards false 
positives. However, given the high number of false positives, it is possible that unknown anomalous 
behavior was occurring, but not identified, which implies that some of the false positives are actually true 
positives. This could also mean that testing windows, assumed to be for normal operating conditions, 
were actually not. Using this method in a plant could improve precision because it would leverage a staff 
to verify whether the anomaly is correct, given a knowledge of the plant’s process condition, ultimately 
classifying many of the perceived false positives as true positives. In settings where decision makers are 
more concerned about negative outcomes related to equipment failures, there might be a higher tolerance 
for false alarms. However, excessive false alarms could result in interrupted plant output or additional 
costs that outweigh some types of equipment failures. To better understand and mitigate this type of error, 
additional information on plant events would be beneficial. 

3.1.2 Revised Strategy Application: A Hybrid Approach 
Because of some uncertainties in the decisions made in the initial strategy application, the strategy 

was reapplied for the same pilot, but different decisions were made. The revised strategy application is 
shown in Figure 18 with the strategy path shown in blue arrows. In this strategy application, it was 
assumed that inference is not always possible because the data included time periods during which 
sensors malfunctioned and glitched, making it difficult to rely solely upon the plant data to predict 
impending FCU failure. Specifically, the FCU inlet temperature of one of the fans failed for long 
durations before the failure, and it can be argued that this was a key sensor to the anomaly detection 
process. This necessitated using physics to augment missing data. Additionally, it was assumed that the 
performance would not be acceptable using data methods, and a valid ROI exists to develop a model with 
the ultimate objective to reduce uncertainty. This resulted in a physics model to simulate the process. The 
model was tuned by the data to improve its accuracy. 

3.1.2.1 Hybrid Model 

A RELAP5-3D thermal hydraulics model of the NPP FCUs operating under steady-state conditions 
was developed and tuned according to available data, demonstrating how physics can augment data. 
RELAP5-3D is a systems code with which NPPs are familiar and has been used extensively to model 
failure scenarios for the past five decades. The thermal hydraulic model was validated against plant data 
taken from a time period when the plant was operating normally and sensors were functioning reliably. 
RELAP5-3D was run using two different input streams: (1) LSTM-predicted FCU inlet temperatures and 
(2) the actual measured inlet temperature. Simulations were run on an hourly basis from April 1 through 
May 31. FCU D catastrophically failed on May 11 and FCU A failed on May 26. The outlet temperature 
sensor for FCU B malfunctioned from May 9 through the end of the analysis period. Due to these sensor 
and equipment failures, the periods analyzed were abbreviated to avoid including erroneous data in the 
results. 

3.1.2.2 Results 

Figure 19 shows the measured and LSTM-generated nitrogen inlet temperature for each of the four 
FCUs. These values of FCU inlet temperature were used as input to the RELAP5-3D simulations. The 
thermal hydraulic simulation was then run using the model with the LSTM-predicted FCU inlet 
temperatures and the measured FCU inlet temperature provided by the OSI PI system to predict the FCU 
outlet temperature to demonstrate that physics could improve performance. 
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Figure 18. Revised strategy applied to drywell cooling fan anomaly detection. 

Figure 20 compares the FCU outlet temperatures along with the RELAP5-3D simulation results for 
the time period preceding the equipment or sensor failures affecting the various FCUs. When running the 
thermal hydraulic model with the LSTM-predicted FCU inlet temperatures, the predicted FCU outlet 
temperature was closer to the measured FCU outlet temperature than when using the measured FCU inlet 
temperature. The reason for this improvement is attributed to the fact that the LSTM model is trained on 
all available data to predict the FCU inlet temperature, taking into account time-dependent variations in 
temperature due to nonuniformities in the drywell region and fluctuations in heat transfer occurring in the 
shell-and-tube heat exchangers. 
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Figure 19. Predicted and measured nitrogen inlet temperature for each of the four FCUs. 

Overall, the results were found to match the measured data very well during periods when no 
anomaly was occurring. The failure that occurred on May 11 can be clearly seen in the temperature 
profiles for FCUs A and C. Although the FCU outlet temperature predicted using the LSTM-generated 
temperature more closely matched the measured outlet temperatures, the RELAP5-3D predictions 
obtained using the measured FCU inlet temperature exhibited a more noticeable jump in temperature due 
to a failure in one of the other FCUs. The percent mean error between the nitrogen outlet temperature 
calculated by RELAP5-3D using the measured nitrogen inlet temperature versus the LSTM-generated 
inlet temperature is given in Table 11. The error was quantified for time periods when no sensor or 
equipment failures affected the inlet or outlet nitrogen temperature measurement. The RELAP5-3D 
predictions obtained using the LSTM-generated nitrogen inlet temperature show a lower error than the 
predictions obtained using the measured inlet temperature data. This improvement is attributed to the fact 
that the LSTM model uses all available data to predict FCU inlet temperature, taking into account 
variations in temperature due to nonuniformities in the drywell region. 

Thus, a viable approach has been demonstrated to predict the expected FCU outlet temperature. By 
comparing real-time measurements of FCU outlet temperature with predictions, such as those presented 
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here, off-normal operation can be readily detected. For time periods with missing or poor-quality FCU 
inlet temperature measurement data, an LSTM model trained to predict FCU inlet temperature can be 
used as the input to the RELAP5-3D model. 

  

  
 

Figure 20. Predicted and measured nitrogen outlet temperature for each of the four FCUs. 

Table 11. Percent mean error in nitrogen outlet temperature using the measured plant nitrogen inlet 
temperature and the LSTM-generated nitrogen inlet temperature. 

FCU Measured LSTM 
A 4.00 1.00 

B 5.21 1.62 

C 7.35 4.00 
D 6.06 5.16 
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3.2 Pilot 2: High Pressure Coolant Injection System 
The HPCI system consists of safety-related coolant injection equipment that is only operated in 

emergencies to compensate for the loss of coolant in the reactor coolant system. The HPCI pump room 
contains temperature instrumentation that provides input to the plant data system for the purpose of 
detecting steam leaks. However, the normal variability of temperature in the room makes it difficult to 
actually detect minor steam leaks. The temperature sensors feed alarms that trigger only when the HPCI 
room’s temperature exceeds certain high-temperature limits. In 2018, a HPCI valve packing leak at an 
NPP resulted in a plant outage to repair the valve. It was postulated that the leaking valve may have been 
identified and corrected earlier with enhanced anomaly detection methods. The goal of this study was to 
use NPP data to develop methods for detecting leaks from the HPCI system into the HPCI pump room by 
inference methods that utilize existing temperature instrumentation for purposes of anomaly detection. 

3.2.1 Initial Strategy Application: An Empirical Approach 
The strategy for HPCI room temperature anomaly detection is shown in Figure 21 with the strategy 

path shown in blue arrows. While the system has a sensor to measure temperature in the HPCI room, no 
sensors directly measure the presence or absence of one or more steam leaks because steam leaks could 
potentially occur in multiple locations. A large data set (many data points over a relatively long period of 
time) was available for the analysis. Over a dozen individual NPP data points were aggregated and 
downloaded from the plant monitoring computer PI system; then physics knowledge was used to shortlist 
the variables for use in the anomaly detection method. Figure 22 shows a simplified schematic of the 
HPCI room. The reactor is a large thermal bath that transfers heat to its surroundings, including the HPCI 
room, both by heat transfer and by the movement of steam. The outside air temperature affects room 
temperature through seasonal and daily temperature changes and semi-random weather effects. 

Because this anomaly detection method is for plant support and not a qualified method to direct 
actions of plant operators, the method did not need to be rigorously developed to ensure accuracy. The 
data were reduced to three influences on room temperature: contributions as a result of reactor power, 
contributions from the outside atmosphere, and potential heating input from a steam leak in the room. 
Data from the power plant included the actual HPCI room temperature and reactor power as a function of 
time. Outside air temperature was also required and was acquired from the National Centers for 
Environmental Information using a weather station 65 miles from the power plant. 

As with most data processing efforts, the data used in this project had multiple cases of out-of-range 
or missing values. To begin processing the data, the first step was to remove outliers that were statistically 
far from the mean. This included values that were out of the range of what could be reasonably expected; 
such values could be attributed to the sensors being calibrated or turned off for short periods. The second 
step involved replacing the outliers and any other missing points with an average of the nearest values. In 
comparison to the amount of data collected, the outliers and missing points made a very small fraction of 
the total and did not impact the analysis. The last step in the preprocessing phase was to resample data so 
that multiple data sets could be combined and analyzed. Various sensors contained in the plant were 
sampled at a frequency of one sample per minute whereas other sensors were sampled at a frequency of 
one sample per hour. To account for this mismatch in sampling frequency, all sensors were down sampled 
to one sample per hour to avoid the use of a priori temperature estimates between samples. 
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Figure 21. Initial strategy applied to HPCI anomaly detection. 
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Figure 22. Simplified schematic of the HPCI room setup. 

Next in the strategy, pattern inference was applied. Because the physics knowledge exists, the cause-
effect relationship was known, i.e., a steam leak would increase the room temperature. The next step was 
to develop the pattern inference model and generate results for evaluation in the “performance 
acceptable?” step. 

3.2.1.1 Empirical Model 

A neural network was utilized as an empirical method to generate predicted values for HPCI room 
temperature. Two methods were compared to determine the best predictive model: a feedforward neural 
network and an autoregressive neural network. The methods are similar, but an autoregressive method 
uses the output of the previous time step as an input to the current time step, as depicted graphically in 
Figure 23. In both approaches, outside air temperature and reactor power level were used to predict the 
HPCI room temperature. Once HPCI room temperature values were predicted by the models, these values 
were compared to the actual recorded temperatures over a long period of time. Anomaly detection 
methods were then applied to identify significant differences between the predicted and actual values. 

In both the feedforward and autoregressive neural networks, the input to the prediction model was 
simply the reactor power and outside air temperature. Both input variables showed relatively high-
frequency noise; thus, a low-pass filter with a cutoff frequency of 96 hours was applied to both inputs to 
reduce noise. Both the feedforward and autoregressive neural networks captured the general trends in the 
data reasonably well. However, the feedforward method resulted in predictions that did not match as 
accurately near transient evolutions (such as reactor power shutdown and startup) and contained more 
noise in the predictions. Thus, only the autoregressive method was used in the next step of the process: 
utilizing the predicted values with the K-means clustering method to identify anomalous data points. 

A K-means clustering algorithm was used as the anomaly detection method due to the simplicity and 
low dimensionality of the data. Repeating the K-means process while employing different numbers of 
K clusters determined the optimal number of clusters to be five. The optimal number of clusters was 
determined based on a balance between a figure of merit representing average distance from the cluster 
centroid and the percentage of data points that are assigned to anomalous clusters. The features used for 
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the K-means cluster map were the value of the error (difference between the predicted and actual values) 
squared and the derivative of the error (the value of the change in error from one time step to the next) 
squared. 

 
Figure 23. Simple schematic of feedforward and autoregressive neural networks. 

3.2.1.2 Results 

As seen in the cluster plot in Figure 24, the anomalous clusters can be identified as medium error, 
large error, medium derivative of error, or large derivative of error, which correspond to Clusters 2, 5, 4, 
and 3, respectively. The percentages shown in the figure for each cluster represent the portion of data 
points falling within that cluster. 

Figure 25 shows the results of the autoregressive method for anomaly detection. The top plot shows 
the comparison between the actual sensor reading in blue and the temperature prediction from the 
autoregressive method in orange. The bottom plot shows the labeled data points plotted at their respective 
times, with each data point colored according to its assigned cluster. The data from anomalous clusters 
(all but the blue colors) are primarily grouped in time as distinct events. Data from plant outage periods 
are removed from the bottom plot. Overall, the neural-network empirical anomaly detection method 
identified 19 distinct anomalous events. These results are compared with results from a hybrid anomaly 
detection method discussed next. 

3.2.2 Revised Strategy Application: A Hybrid Approach 
An alternative strategy for predicting HPCI room temperature was developed. While the typical path 

shown in Figure 26 does not necessarily require a physics model to create training and testing data, a 
physics model can be used to validate pattern inference methods. Thus, when it is assumed that sufficient 
data for training and testing a model are not available, the decision pathway becomes as shown in 
Figure 26 (with the strategy path shown in blue arrows). The remainder of the decision process matched 
the initial strategy application. 

3.2.2.1 Hybrid Model 

Based on the strategy shown in Figure 26, a physics-based model was also used to predict the HPCI 
room temperature for the purposes of anomaly detection. The physics-based model included a linear-
regression technique using physics-based analytical equations enhanced with plant data. 
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Figure 24: Cluster map for the autoregressive method K-means anomaly detection. 

 
Figure 25. Results of the autoregressive method for anomaly detection.r 

 
r  The top plot shows the actual steam leak sensor data (blue) and the estimated HPCI room temperature generated by the 

recurrent neural network (orange). The bottom plot shows the clustering results as they correspond in time. 
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Figure 26. Revised strategy applied to HPCI anomaly detection. 

Ideally, all thermal contributors to the HPCI room temperature sensor output would be modeled to 
determine exactly what the sensor should read at any given time based on information available from the 
surroundings. However, this method is not possible due to a scarcity of data and limits on resources 
available for modeling the system. Thus, a simplified physics model was developed that only incorporated 
reactor power and outside air temperature as input variables. This simplified physical analysis is shown 
schematically in Figure 22. An additional simplifying assumption was that these variables made an 
impact only in purely linear relationships. With these simplifying assumptions, the equation of state for 
temperature in the HPCI room reduces to: 

𝐶
𝑑 𝑇𝐻𝑃𝐶𝐼

𝑑𝑡
= 𝑈𝐴1(𝑇𝑂𝐴𝑇 − 𝑇𝐻𝑃𝐶𝐼) + 𝑈𝐴2(𝑇𝑅𝑋 − 𝑇𝐻𝑃𝐶𝐼) (10) 
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where THPCI is the HPCI room temperature; TOAT is the outside air temperature (OAT); TRX is the reactor 
average temperature, which is assumed to be linearly related to reactor power; C is the thermal capacity of 
the HPCI room; UA1 is the product of overall heat transfer coefficient U and surface area A from the 
outside to the HPCI room (note that even if the HPCI room is not located physically next to the outside 
atmosphere, the heat transfer equations can still be set up in this way to approximate the overall effect of 
OAT on the HPCI room through its overall influence on the power plant structure); and UA2 is the 
product of the overall heat transfer coefficient U and surface area A from the reactor to the HPCI room. 

With some manipulation of the equation and application of time filtering, the HPCI room regression 
equation becomes: 

𝑇𝐻𝑃𝐶𝐼(𝑡) =  𝑘1�̂�𝑂𝐴𝑇(𝑡) +  𝑘2�̂�𝑅𝑋(𝑡) +  𝑇0 (11) 

where THPCI(t) is the HPCI room temperature as a function of time; k1 is a coefficient to convert OAT to 
HPCI room temperature, with units of °F/°F; �̂�𝑂𝐴𝑇(t) is the OAT as a function of time, filtered (with a 
characteristic time constant of 96 hours) to reduce high-frequency contributions to the signal; k2 is a 
coefficient to convert reactor power to HPCI room temperature, with units of °F/%power; �̂�𝑅𝑋(𝑡) is the 
reactor power as a function of time, again filtered in to reduce high-frequency contributions to the signal; 
and T0 is the temperature offset. Regression analysis was performed on the set of equations for the HPCI 
room temperature as a function of time to determine the optimum values for k1, k2, and T0. 

This model does not necessarily capture all of the various ways that heat flows into and out of the 
HPCI room, and the linear first-order behavior of the effect of OAT and reactor power on the HPCI room 
is not necessarily completely accurate. A more complex and complete physics model could have been 
developed to attempt to describe all of the heat transfer aspects of the space; however, this would have 
required significant effort and additional data that were not available. Because a complete physics model 
was not developed, data were used to determine the necessary coefficients in the physics equation to 
complete the linear regression and enable predicted values to be generated. 

3.2.2.2 Results 

As seen in the cluster plot in Figure 27, the anomalous clusters can be identified as medium error, 
large error, medium derivative of error, or large derivative of error, which correspond to Clusters 5, 3, 4, 
and 2, respectively. The percentages shown in the figure for each cluster represent the portion of data 
points falling within that cluster. Just as with the neural-network model output, most of the data is 
clustered near the origin and is considered to represent nominal operating conditions. Figure 28 shows the 
results of this method for anomaly detection. The top plot shows the comparison between the actual 
sensor reading in blue and the temperature prediction from the physics-based (linear-regression) method 
in orange. The bottom plot shows the labeled data points plotted at their respective times, with each data 
point colored according to its assigned cluster. The data from anomalous clusters (all but the blue points) 
are primarily grouped in time as distinct events. Data from plant outage periods are removed from the 
bottom plot. The hybrid physics-based (linear-regression) anomaly detection method identified 18 distinct 
anomalous events. These results are compared with results from the empirical anomaly detection method 
below. 
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Figure 27. Cluster map for the physics-based linear regression method K-means anomaly detection. 

 
Figure 28. Results of the physics-based linear regression method for19Fanomaly detection.s 

 Overall, both the empirical and hybrid models were able to capture anomalous events that occurred 
in the NPP during the course of the data collection period. Out of 19,775 discrete points in time, a total of 
18 distinct event groupings were identified through both the physics model and the autoregressive neural 
network analysis. The neural network model identified one extra anomalous event. An anomaly count 
comparison between the physics-based linear regression model (i.e., the hybrid model) and the 

 
s  The top plot shows the actual steam leak sensor data (blue) and the estimated HPCI room temperature generated by the 

linear regression model (orange). The bottom plot shows the clustering results as they correspond in time. 
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autoregressive neural network (i.e., the empirical model) is shown in Figure 29, with total data points 
shown on the left and percentages of total data points shown on the right. Both models identified 19,387 
of the same data points as being “normal” behavior. The hybrid method identified 52 additional points as 
normal that the empirical model identified as anomalous. The empirical model identified an additional 15 
data points as normal which the hybrid model identified as anomalous. Both models together identified 
321 of the same anomalous data points. Thus, the models were in agreement for 99.7% of data points. 

 
Figure 29. Comparison between the linear regression model and the neural network model. 

Four of the 18 anomalies identified by both models were confirmed by the NPP staff as actual 
anomalous events. Three of the events (in April of 2017, 2018, and 2019) were yearly surveillance tests in 
which steam flowing through the HPCI room is temporarily halted, resulting in a loss of room heating and 
temperature reduction. One other event identified as anomalous by the models was the March 2018 HPCI 
valve leak event. 

The remaining 14 anomalies identified by both models include multiple events that have similar 
dynamics. Thus, it is likely that these events are additional surveillance tests involving the HPCI system 
that are performed on a routine basis. Anomalous events of most concern that were identified are those for 
which the actual room temperature exceeds the temperatures predicted by the models because these could 
indicate a potential steam leak in the room, leading to an actual room temperature increase that is not 
predicted by the model. There were six such events identified in the data. Another possible explanation 
for these events is a loss of room cooling, possibly due to routine securing of ventilation in the room. 

Because both the empirical and hybrid models performed similarly in identifying anomalous 
conditions, there can be high confidence in the ability of either model to predict future anomalous 
conditions if the models were placed into use at the NPP. Given the simplicity of the methods, there is 
low barrier to application because these methods do not require detailed modeling of the system. By 
incorporating more detailed information about the system and in some cases additional measured 
information, such as heating, ventilation, and air conditioning (HVAC) data and HPCI pump/motor 
operational data, it is expected that the model can be refined to provide better anomaly detection or better 
identification of certain events as normal, depending on the circumstances. 
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4. SUMMARY 
In general, one common observation from the literature is the lack of systematic reasoning on whether 

an empirical (i.e., data) or hybrid (i.e., physics-supported) approach should be used and what subset of 
methods from these two streams would benefit a defined anomaly detection scope. An ad hoc trial-and-
error process is usually followed, by which various methods are applied until a satisfactory solution is 
reached. This is a time-consuming and costly process that often does not yield the best outcome. In 
addition, the main factor that impacts this decision is the expertise of the entity making the decision—i.e., 
their background and skillset. Therefore, different individuals settle on different methods as part of a 
highly subjective process. These factors motivated this research effort into creating a scientifically 
supported strategy on how anomaly detection methods should be selected. This report presents a detailed 
assessment of the main anomaly detection techniques within the empirical and hybrid methods streams. 
The considered variations within these two streams represent the vast majority of techniques utilized for 
anomaly detection. Using the techniques as outcomes, a strategy was developed based on key decision 
points to enable a systematic decision-making process. The strategy is developed for use by any plant 
staff with basic knowledge in engineering and science. Each decision point in the strategy is explained in 
detail in this report, with examples, along with the scientific basis behind the decisions and outcomes in 
common and simplified terminology. A user-friendly, graphical state flow diagram was also developed as 
a visual presentation of the strategy. The strategy was tested and demonstrated through two pilot projects 
for application of anomaly detection at an NPP. Each pilot study had two use cases: (1) an initial case 
where certain decisions were made and (2) a modified use case where one or more key decisions were 
revised. 
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