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ABSTRACT 

The current light-water reactor fleet uses time-based maintenance strategies 

to achieve high-capacity factors. But to make nuclear more competitive in the 

energy market, these reactors could utilize emerging artificial intelligence (AI) 

and cloud computing technologies to enable a cost-effective, predictive 

maintenance strategy. This report examines the capabilities, feasibility, and 

regulatory concerns of cloud computing in relation to meeting nuclear industry 

needs in collaboration with Oak Ridge National Laboratory and Blue Wave AI 

Labs. 

The technical viability of cloud computing was analyzed using data from a 

boiling-water reactor’s safety relief valve. The models were hosted on three 

different systems: a local personal computer, Idaho National Laboratory’s high-

performance computer system, and Microsoft Azure. The data were loaded and 

processed, and two types of models were trained in an A/B fashion. Based on the 

speed at which these actions were completed, it was determined that cloud 

computing affords adequate computing resources. Additionally, the computing 

power can scale with the demanded load. 

To enable cloud computing in the existing fleet, additional sensors, networks, 

and other requirements must be implemented to ensure a smooth transition from 

current maintenance strategies. However, the benefit is that the plants no longer 

need to manage their own servers, software, cybersecurity, and information 

technology support staff for in-house data analytics purpose. Many of these 

features can be offloaded to the cloud provider. A comprehensive analysis was 

completed, revealing the current annual cost of operating to be more expensive 

than using cloud computing resources. 

Currently, the regulatory framework does not explicitly address AI 

applications, but the U.S. Regulatory Commission and other regulatory bodies 

are working to provide guidance to address gaps, rather than implementing new 

regulations to address the use of AI and machine learning. But since many 

nuclear AI applications focus on non-safety-related components (e.g., balance-of-

plant components), they will likely require little or no regulatory restrictions or 

needed approvals. Demonstrating how AI can improve the maintenance and 

operation of these non-safety-related systems seems the likely path forward for 

implementing AI and cloud computing resources inside nuclear power plants. 
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Assessment of Cloud-based Applications Enabling a 
Scalable Risk-informed Predictive Maintenance 

Strategy 

1. INTRODUCTION AND BACKGROUND

Operations and maintenance (O&M) activities are key to ensuring the availability and reliability of 

energy generated by nuclear power plants (NPPs) [1],[2]. O&M costs—including activities such as 

inspection, calibration, testing, and replacement—are among the major non-capital costs that contribute to 

the overall operation costs of NPPs. The three main maintenance strategies for ensuring availability, 

reliability, and safety are: (1) time-based periodic maintenance (referred to as preventive), (2) failure-

based maintenance (referred to as corrective), and (3) condition-based maintenance (referred to as 

predictive). Over the years, the nuclear fleet has relied on time- and failure-based maintenance strategies 

for enabling their structures, systems, and components to achieve high-capacity factors. This has led to 

higher operating costs, presenting the existing fleet of light-water reactors with long-term economic 

sustainability challenges in the current energy market. 

An ongoing R&D project entitled the Technology Enabled Risk-Informed Maintenance Strategy, 

conducted under the U.S. Department of Energy’s Light Water Reactor Sustainability Program, is 

developing a well-constructed, scalable, risk-informed predictive maintenance (PdM) approach [3]. Such 

an approach requires computing resources and the availability of databases at the plant site or remote 

monitoring and diagnostic (M&D) center. Thus, an information technology (IT) team or M&D IT team is 

required at the plant site to ensure that these computing resources and databases are always operating and 

available, have updated hardware and software, and present no cybersecurity concerns. 

In recent years, cloud computing has emerged as a dominant technology by virtue of its low cost, 

ability to host applications on various types of virtual infrastructures, and computing and storage 

adaptability. Cloud computing can be a cost-effective alternative to onsite storage and diagnostics, and 

even for M&D centers. To efficiently utilize signal processing algorithms for fault diagnoses, enhanced 

real-time data-driven machine learning (ML) and artificial intelligence (AI) techniques should be 

employed. Implementing a real-time PdM approach using advanced AI models can reduce costs 

associated with periodic equipment repairs, labor, and unnecessary outages [4]. The NPP industry should 

seek to leverage cloud computing’s elastic processing power and high-availability computing resources 

by advantageously shifting data storage locations away from computers located at plant sites and over to 

cloud servers with integrated security management. Additional savings can be realized via the cloud 

service provider’s pay-as-you-go method, which enables users to pay only for the specific resources 

required for the task at hand. 

Cloud computing refers to utility-based computing resources accessed over the internet. On the cloud 

platform, virtualization techniques permit multiple simulated environments and resources to be generated 

by a single physical hardware system, using a type of software referred to as a hypervisor. The hypervisor 

provides an interface to various resources hosted on physical hardware systems and distributes them 

appropriately to secure environments known as virtual machines (VMs). Services, applications, and 

infrastructure resources on the cloud are available, with resource pooling and rapid elasticity (i.e., 

automatic scaling of dynamic resources), to users on-demand through network access. Subscribing to 

cloud platforms requires licensing agreements/management, security compliance, certificates, and the 

meeting of any regulatory measures required by the cloud provider. The advantages and disadvantages of 

various cloud platforms are discussed in [5]. 

The National Institute of Standards and Technology’s Special Publication 800-145 describes cloud 

computing as “a model for enabling ubiquitous, convenient, on-demand network access to a shared pool 
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of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can 

be rapidly provisioned and released with minimal management effort or service provider interaction” [6]. 

The cloud model in that document consists of five essential characteristics, three service models, and four 

deployment models. For details, see [7]. 

The research presented in this report is an extension of prior research activities performed to develop 

a cloud-based application for enabling a scalable risk-informed PdM strategy at NPPs regarding the 

implementation of digital monitoring at NPPs [6,7]. In the present research, Light Water Reactor 

Sustainability Program researchers at Idaho National Laboratory (INL) collaborated with Oak Ridge 

National Laboratory and Blue Wave AI Labs to demonstrate the technical feasibility of cloud computing 

in solving a safety relief valve (SRV) prognostic problem. Three different resources (i.e., a local desktop, 

INL’s high-performance computing [HPC] system, and Microsoft Azure) were compared in regard to this 

problem. The Oak Ridge National Laboratory research team evaluated the potential regulatory and 

security concerns associated with using cloud computing for nuclear power applications, whereas the 

Blue Wave AI Labs team studied the economic feasibility of enabling NPPs to utilize cloud computing. 

Being already available at INL, the Microsoft Azure cloud platform was utilized in the context of this 

report to assess the technical feasibility of applying cloud computing to the SRV prognostic problem. 

However, the lessons learned are expected to remain relevant for other cloud-based computing 

applications as well, with few differences. The present research takes advantage of the proposed NPP 

cloud-based high-level architecture depicted in Figure 1 [6,7]. This architecture is briefly described 

below; for additional details, see [6,7]. 

NPP site wireless sensor network: The left-hand side of Figure 1 (i.e., “local plant site”) illustrates the 

local NPP site connectivity that supports various network types among sensors and actuators, the Internet 

of Things (IoT) Hub gateway, and VM servers. For local wireless connectivity, a distributed antenna 

system (DAS) long-term evolution (LTE) combines wireless amplifiers and fiber optic cables to distribute 

wireless signals to antennas over a wide frequency range (kHz to GHz). Large volumes of sensor data are 

continuously collected at the plant site and transmitted to the cloud via a Wi-Fi router and the IoT Hub 

gateway point, ensuring a high data transmission rate with bidirectional communication. An edge device 

can be employed to enhance the data processing activities (e.g., data cleaning and feature extraction) prior 

to sending the data to the cloud resources. The VMs and data servers at the plant site are accessed from 

the cloud, using a virtual private network connection in order to maintain data security. Currently, some 

data sources are still recorded periodically by hand, but deployment of new wireless sensors can replace 

these infrequent, route-based measurements with frequent and reliable sensor measurements. Continuous 

collection and monitoring of sensor data, as enabled by wireless sensor monitoring, will ensure that 

equipment remains healthy and continues to cost-effectively operate within the acceptable limits. Thus, 

there is a need to ensure that the wireless network can support these new sensors and their corresponding 

frequency ranges. 
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Figure 1. Proposed high-level architecture of the hybrid cloud [6,7]. 

NPP cloud network: The second aspect of the architecture proposed in Figure 1 encompasses further 

aspects of real-time data processing and analytics, storage, and security management. On the cloud 

platform, a series of applications can, as needed, be integrated into the central IoT Hub infrastructure 

adaptors. Data routing and authentication of all incoming messages from various sensor devices and 

locations is performed by the Event or IoT Hub gateway prior to conducting further data processing and 

AI data analytics. Web applications are also hosted by container and Kubernetes services for real-time 

visualization of archived historical data. 

NPP cloud services: The third aspect of the proposed architecture encompasses the sharing of analysis 

reports and data visualizations via a web browser or portal. M&D reports are also made available to 

authorized plant and technical staff, and administrative management functions are made accessible to 

front-end users. Through services such as Azure, GE Predix, and AVEVA, cloud service providers have 

shown that data can be shared and demanded services provided via secure database servers. 

The remainder of this report is organized as follows. Chapter 2 provides a brief overview of AI and 

some of its challenges. Chapter 3 covers the viability of cloud computing for nuclear PdM applications. 

Chapter 4 overviews the cloud computing economics, and Chapter 5 covers regulatory development 

related to cloud computing. Chapter 6 concludes the report by summarizing the findings and the path 

forward. 
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2. Overview of AI 

Before determining what regulations (and guidance) would be applicable to a system that uses AI to 

make informed decisions, AI and its potential uses must first be understood. 

AI is an umbrella term that refers to any computer algorithm that makes decisions intended to mimic 

or replace those made by humans. AI represents a wide array of computational techniques that enable 

computers and robots to solve complex, seemingly abstract problems previously only solvable through 

human cognition. The term AI encompasses many types of learning, including ML, natural language 

processing, deep learning, and data science [8]. The European Union Aviation Safety Agency defines AI 

as “any technology that appears to emulate the performance of a human.” ML refers to the ability of 

computer systems to improve their performance through exposure to data, without having to follow 

explicitly programmed instructions. Deep learning, a subset of ML, has emerged in recent years as a 

result of the advent of deeper NNs. 

AI’s usefulness lies in its ability to find patterns and recommend actions based on inputs from 

diagnostics, virtual sensors, intelligent control, aging management, preventive maintenance, anomaly 

detection, etc. 

The workflow for an AI system is very straightforward and is comprised of three major components: 

1. Input selection, curation, and data wrangling 

2. AI processing 

3. Output postprocessing. 

As an example, if an AI system were used to identify NPP transients, it would take inputs from plant 

instrumentation and control (I&C) systems, perform analysis and inference, and generate outputs that 

predict the type of transients the plant will experience. Driving the AI system workflow is an AI model 

designed and developed by human developers. 

2.1 Data Processing and Specifications 

Data are central to any data-driven AI system that learns the underlying models that represent input 

variables’ relationships to the desired output. Data can be structured (e.g., relational databases in NPP 

data historians) or unstructured (e.g., event reports, specification documents, and nondestructive testing 

images and files). 

The biggest hurdle in data science is always the data. Models are only ever as good as the data. In 

most cases, the data infrastructure for currently operating NPPs was built before AI or ML had even been 

conceptualized. As a result, the data from operating plants are siloed, incomplete, and filled with errors 

that must be dealt with before a ML model can be developed. About 45% of ML development is spent 

collecting, cleaning, and organizing the data so that they can be used in the model [9]. Often data undergo 

multiple processing steps before they can be used in an AI system, as per International Standards 

Organization [ISO]/International Electrotechnical Commission [IEC] 22989 [10]. 

2.2 Autonomy and Automation 

AI is often applied to systems that can control physical actuators or trigger online actions. When AI 

comes into contact with the everyday world, issues pertaining to autonomy, automation, and human-

machine teaming arise. Autonomy refers to a system’s ability to operate and adapt to changing 

circumstances, without the need for human control. The different levels of autonomy are addressed in 

ORNL/SPR-2023/3072 [10]. 
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2.3 Challenges 

AI applications will produce unique challenges—not only in terms of how it is used, but also from a 

regulatory perspective. Because of the uniqueness of AI characteristics as compared to typical digital I&C 

systems in NPPs, specific considerations must be made for AI: 

• Autonomy – Higher autonomy levels indicate less reliance on human intervention or oversight and 

may therefore require greater regulatory scrutiny of the AI system. 

• Cybersecurity and data security – As more data are generated, the incentives for stealing or modifying 

those data equally increase. The AI models themselves may need to be secured against unauthorized 

access and modification. 

• Trustworthiness – AI applications have generated certain challenges stemming from their high 

complexity and low level of reliability. To address these, licensees must demonstrate the 

trustworthiness of their AI. 

• Transparency – AI, particularly when using deep NNs, operates as a black box. The input and output 

of the system are observable, but the computational process leading from one to the other is difficult 

for humans to comprehend. It is particularly difficult for humans to understand what such a system 

has learned, and thus how it might react to input data that differ from those used during the training 

phase. The lack of transparency and explainability of these systems leads to a fundamental problem of 

predictability. A ML-based system might fail in ways unthinkable to humans, as engineers do not 

fully understand its inner workings. The lack of transparency is problematic from a regulatory 

standpoint, as it complicates the task of identifying the cause of a problem and attributing 

responsibility when something goes wrong. This type of AI may increase regulatory uncertainty. 

• Bias in Decision Making –  ISO/IEC TR 24027:2021, Information technology —AI — Bias can exist 

in AI systems and AI-aided decision-making processes. Measurement techniques and methods for 

assessing bias are described to address and treat bias-related vulnerabilities. All AI system lifecycle 

phases are in scope, including but not limited to data collection, training, continual learning, design, 

testing, evaluation, and use. 

• AI verification and validation (V&V) – As in the application of digital I&C systems for the nuclear 

industry, V&V will play a central role in enabling the use of AI systems. However, because of the 

black-box nature of some AI systems, special considerations must be made in their V&V processes, 

particularly for scenarios in which only a subset of the AI system can be verified, validated, or both. 

 

3. VIABILITY OF CLOUD COMPUTING FOR NUCLEAR 

Cloud computing could generate cost savings by replacing many onsite features (e.g., IT personnel, 

cybersecurity experts, data historians, and onsite diagnostic centers). Many features such as cybersecurity 

and software updates are handled locally, when they could easily be offloaded to external services. 

Microsoft Azure Government cloud has already established expectations for security levels and uptime 

rates, and these expectations are continually updated as needed. 

3.1 Description of the Problem and Machine Learning Architecture 

To demonstrate the technical feasibility of cloud computing, a SRV prognostic problem was solved 

using three different resources: a local desktop, INL’s HPC system, and Microsoft Azure—all of which 

were compared with each other in terms of ML model accuracy and training time. 

A SRV is a nonpowered component that relieves excess pressure from steam lines or pressure vessels. 

Figure 2 illustrates a three-stage SRV design. During the SRV’s operation, four sensor measurements 

were being recorded: 
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4. One thermocouple (in the second stage) that measured the temperature of the valve body 

5. One downstream thermocouple that measured the temperature of the valve discharge 

6. Two redundant thermocouples in the pilot stage. 

Temperature data are relevant to SRV operation and health. Data from each thermocouple were 

recorded every second throughout a 14-month collection period. After downsampling to once per minute, 

the data totaled 46.12 Mb. 

 

Figure 2. SRV diagram marking the sensor placements [11]. 

The goal of this study was to make forward predictions about each recorded variable. The models 

would then be updated with new information to see how continuously updating the model in an A/B 

fashion could help improve model performance as the system changes over time (see Figure 3). 

In our approach, input data are first sent (either in a continuous or batch fashion) to be preprocessed. 

The preprocessed data are then sent to a pretrained ML model (Model A) for making diagnoses and 

predictions. Model B is a clone of Model A and is continuously updated with new data. Once Model B is 

verified as being stable and performing better than Model A, Model B replaces Model A as the pretrained 

model, and the process of training a new model begins anew. 
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Figure 3. Model A/B testing. 

Two types of ML models were used to make the forward predictions: a classical feed-forward neural 

network (FNN) and long short-term memory (LSTM) network. In FNNs, which are composed of several 

layers (i.e., the input layer, 64 neuron layer, 32 neuron layer, and dense output layer), only forward 

transmission of the data occurs. On the other hand, a LSTM network is a recurrent neural network (NN), 

so certain information is transferred from both the input and output layers. This recurrent nature enables 

long-term dependencies in time series data to be learned [12]. The architecture used in this study 

consisted of five layers (i.e., the input layer, 124 LSTM layer, 64 LSTM layer, 8 LSTM layer, and dense 

output layer). Each model’s initial training entailed a maximum of 10 epochs, with a patience of 3 epochs 

when considering the validation loss. The procedure in this document encompassed several stages, each 

of which was timed: 

1. Loading data 

2. Preprocessing inputs 

3. Training/testing Model A 

4. Training/testing Model B 

We also analyzed how long the data took to upload from the data source to Azure. This data ingress 

measure can determine which would be technically feasible: continuous or batch uploading—an 

important choice in determining which systems (i.e., safety or non-safety-related) could potentially be 

effectively monitored by cloud computing. For the present research, raw SRV data from four .mat files 

(one file per variable) were loaded into an Azure table. 
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Dat was then moved into a singular Pandas DataFrame for preprocessing. Preprocessing consists of 

various steps for conditioning the data before inputting them into ML models, including not-a-number 

(NaN) removal, outlier removal, downsampling, thresholding, smoothing, and standardization. NaN 

removal consists of using interpolation to replace values missing due to sensor or recording errors. Outlier 

removal identifies outliers that are four standard deviations away from the data and replaces them with 

interpolated values. These data are recorded every second, but as temperature data are unlikely to 

significantly change during such a short time interval, the data were downsampled to once per minute to 

significantly reduce the amount of total data required during training. Thresholding was applied to some 

of our signals, such as one in which a long-form, unrealistic value was recorded (such errors are typically 

the result of a sensor fault or connection issue). Thresholding afforded a means of identifying and 

replacing this persistent outlier. A median filter with a rolling window was applied to smooth the signal 

and remove noise throughout the preprocessing. Lastly, the data were standardized to a mean of 0 and a 

standard deviation of 1 for improved ML model performance. 

The cloud computing resource used for this research was Microsoft Azure. However, other cloud 

computing platforms such as Amazon Web Services and Google Cloud Platform offer similar services. 

Within Microsoft Azure, Azure Databricks was used for hosting the data and training the models. Azure 

Databricks is an open analytics platform for creating, deploying, distributing, and maintaining enterprise-

level data, analytics, and AI solutions [13]. It provides several useful features for building data 

engineering workflows, including workflow scheduling, security management, data discovery, 

computational management, ML, and source control with Git. 

In demonstrating the technological viability of cloud computing, the total amount of time to ingress 

the data (in batch fashion, in our case), train the model, evaluate the component state, and egress the 

results is vital in regard to implementation feasibility. The whole process also goes hand-in-hand with 

how much lead time is required when reacting to a diagnosis or prediction made by the ML model. For 

example, if maintenance personnel require 3 days to respond to a damaged motor (e.g., find replacement 

parts and plan and perform the maintenance), the diagnostic model must alert maintenance and diagnostic 

personnel of the required maintenance at least 3 days prior to the occurrence of an incipient fault. Thus, 

the times required to ingress the most recent data, train a model (if needed), evaluate the data, and egress 

the results were recorded alongside the accuracy of the models themselves. 

For comparative results, Azure resources were contrasted to both a local desktop and INL’S HPC 

system (see Table 1 for the specifics). In this case, the Azure resources consisted of a general-purpose 

kernel for making cost-effective calculations. If required by the demand, Azure's computational 

performance can be increased by using more expensive nodes. 

Table 1. Comparison of computing resources. 

 Local HPC (CPU) HPC (GPU) Microsoft Azure 

Processor 

Intel CITM i7-

9700 CPU @ 3.00 

GHz 

2 Intel Xeon 8268 

CPUs @ 2.90 

GHz 

24 cores per CPU 

NVidia Tesla 

V100 32 GPU 

28–112 Gb 

Memory 

8–32 Cores 

Installed RAM 32 Gb 
8 Gb RAM per 

core 
32 GB RAM 14 Gb Memory 
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3.2 Cloud Computing Results 

Microsoft Azure offers flexible resources that can be scaled up or down according to demand. For this 

test, the demand was rather low, as we were training on a single valve with 14 months’ worth of data. 

However, as demand increases when monitoring multiple systems and components, the expense and 

processing power will increase in correlation to the application needs. The Microsoft Azure results, 

shown in Table 2, can be improved by selecting different Azure resources. The resources selected for the 

present research consisted of a cost-effective, general-purpose cluster that featured 14 Gb RAM with 4 

cores per worker (based on 2–8 workers). The worker role inside Azure run applications and service level 

tasks. The number of workers automatically scales based on load. Azure’s pay-as-you-go approach means 

that only the actual amount of computer usage must be paid for, including data storage, networking, and 

data processing. A Databrick Unit (DBU) is a normalized unit of processing power that Azure uses for 

pricing purposes. This particular cluster cost 2–7 DBU/h. To put that into perspective, the cost of data 

storage and training for 10 ML models for the FNN test was about $7 for the entire training process. 

Table 2 shows how quickly each resource was able to load, process, and train the various models. 

Loading was the one area in which Azure seemed to come up short in comparison to the local desktop and 

INL HPC system. The loading process involved uploading to a table, then reading from said table into the 

Pandas DataFrame. This process could perhaps be streamlined using other Azure features such as Azure 

Storage, Azure SQL Database, Azure Cosmos DB, or a combination thereof. Uploading the 1.3Gb of raw 

data into Azure’s table format took 4 minutes and 8 seconds to complete, while converting from the table 

to a Pandas DataFrame took an average of 14.67 seconds. Each resource took roughly the same amount of 

time to preprocess the data, with the local resources performing slightly better (at 34.89 seconds). The 

loading/preprocessing times were identical across all HPC resources, and so are not shown. 

Table 2. Comparison of how quickly each computing resource completed certain tasks. 

Cloud Computer Speed Testing (in seconds) 

Test Local HPC (GPU) HPC (CPU) 

HPC (multi-

CPU) Azure 

Loading Data 3.26 ± 0.10 2.87 ± 0.02 N/A N/A 14.67 ± 0.29 

Preprocess 34.89 ± 0.10 37.94 ± 0.02 N/A N/A 38.00 ± 0.29 

Train FNN 1 8.09 ± 2.01 27.57 ± 5.59 7.18 ± 1.97 11.14 ± 2.51 7.12 ± 2.14 

Update FNN 2 0.97 ± 0.06 2.62 ± 0.2 1.04 ± 0.027 — 1.07 ± 0.03 

Train LSTM 1 103.67 89.62 126.68 162.47 96.07 

Update LSTM 2 8.78 7.76 14.5 — 8.72 

 



 

 10 

More interesting results were found while training the FNN and LSTM models, due to the size and 

time span of the SRV data. For training the original FNN (i.e., FNN 1), the quickest times were recorded 

by Azure and the HPC single-unit computer processing unit (CPU), which produced average training 

times of 7.12 and 7.18 seconds, respectively. There was a slight increase in time with the multithreaded 

CPU (due to the overhead of communication between CPUs), and a significant increase when using a 

graphics processing unit (GPU). The GPU is slower than the CPU in this situation, as it can be quite 

computationally expensive to call the GPU, copy the data to it, perform the calculation/training, and 

retrieve the data. When the operation has few parameters—as in our case, featuring just four predictor 

variables—the overhead of calling the GPU kernel outweighs the benefits. As the input matrix increases 

in size (as is the case when training the LSTM), we see the benefit of using a GPU over a CPU. The 

LSTM is a recurrent NN, meaning that current predictions rely on past predictions in a recurrent fashion. 

Due to this recurrent nature, multithreading CPUs are not expected to speed up the process, as there is no 

way to process the training in parallel and thus the increased training time is due to the overhead of 

communication between multiple CPUs for no real gain. The HPC GPU was the fastest at training the 

LSTM models, as the aforementioned recurrent nature enabled more calculations, which the GPU excels 

at handling. When updating Model 1 with Test 1 data to create Model 2, each model used 4 epochs. Each 

resource and model type saw a substantial speed increase when working with a pretrained model on a 

smaller dataset. 

Table 3 shows the performance of each model. For the SRV problem, the LSTM results were 

comparable to the FNN results, perhaps due to the size or (lack of) complexity of the SRV data. However, 

in each case, Model 1 performed better during Test A than during Test B, most likely because of the 

temporal proximity of training data to the testing data (with closer being better). Figure 4 shows where the 

splits for the training, validation, Test 1, and Test 2 data reside, as well as giving the LSTM models’ 

predictions. A large seasonal component is reflected in one of the temperature variables, as seen in Figure 

4. 

Table 3. Comparison of how well each model did at making forward predictions about the SRV variables. 

A/B Model Testing 

Test FNN (RMSE) LSTM (RMSE) 

Model 1 Test A 1.361 ± 0.679 1.411 

Model 1 Test B 2.559 ± 1.264 2.792 

Model 2 Test B 0.593 ± 0.300 0.504 
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Figure 4. This SRV variable reflects a large seasonal component. 

To better illustrate model performance, Figure 5 focuses solely on the testing portion of the data. 

LSTM 1 degrades in performance over time. There is very little error at around time step 31,000; 

however, a bias slowly forms. When LSTM 1 is updated with the data from Test 1 so as to create LSTM 

2, the extent of the bias is mitigated. This shows the importance of continually updating models by using 

the most recently measured data, as relationships within the system may change over time. 

 

Figure 5. Models were used to predict future values of the variable. Updating the model with more recent 

data improved its performance. 
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From a technological perspective, the Azure resources compare favorably with other existing 

resources. The advantages lay in the scalability of Azure resources and the pay-as-you-go strategy. Once 

an initial pretrained model is created, it can be continually updated to ensure accuracy as plant systems 

age and degrade. Transfer learning is an additional potential benefit if multiple utilities move to the same 

cloud service. At the moment, transfer learning is not a viable solution for improving models, as plants 

locally host data and are concerned with maintaining their privacy. If all their data are located on the 

cloud, there may arise an opportunity to anonymize the data for joint collaboration or even create a 

federated learning model by developing siloed models and aggregating those into a master model to 

improve model performance across the nuclear fleet. 

4. CLOUD COMPUTING ECONOMICS 

To analyze the financial implications of moving non-safety-related data and PdM applications to the 

cloud, we must first determine the baseline (or present) cost of hosting the data at the utility’s IT 

infrastructure. Here, the components of this cost will be the IT staff, infrastructure, physical computers, 
network equipment, software acquisition and maintenance or subscription costs, back-up costs, and long-

term storage costs. There is also considerable manual overhead in terms of physically reading many of the 

sensors, as well as inherent inefficiency in gathering data for maintenance analyses and activities. All 

these costs will be included the base case. For the target architecture, a new set of wireless sensors will be 

purchased. Those costs will be included as well. 

Cloud costs were determined based on recent tests by Blue Wave AI Labs on the AWS GovCloud. 

The costs for Azure are assumed to be similar. The costs of hosting and periodic training on the data will 

be included, though the costs associated with the initial model creation will not, as that is expected to 

occur offline. 

Network costs will be calculated by comparing DAS implementations for the plant side against 

Mobile Private Network (MPN) costs. MPNs are inherently cheaper and more flexible than DAS 

networks, thanks to the advent of a new spectrum not controlled by the traditional carriers. Specifically, 

the Citizens Broadband Radio Service (CBRS), which is the unlicensed spectrum in the United States that 

can be leveraged for private 4G or 5G 4G LTE networks, consists of 150 MHz of spectrum in the 

3.5 GHz band. For the MPN case, not only are the initial costs lower, but very expensive mobile charges 

are avoided as a result of there being no direct bulk connectivity to the wireless carrier. 

4.1 Plant Side 

For plant-side PdM (see Table 4), the largest driver of current base-case expense is IT staff. IT staff 

numbers are assumed for three shifts. The next biggest expense stems from various inefficiencies in 

collecting and analyzing data. Many sensor readings must be taken manually by staff who physically walk 

the facility, record readings, and enter them into the maintenance computers. However, this is not their 

only responsibility, so only a fraction of their time—and thus expense—is put toward the annual cost. 
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Table 4. Current base costs for PdM. 

Hardware 

Number 

of Items 

Saved Item Cost Total Cost Annual Costs Monthly Costs Assumptions 

Servers 18 $4,500.00 $81,000.00 $16,200.00 $1,350.00 
Replaced 

every 5 years 

Network 

Elements 

(e.g., routers) 

30 $800.00 $24,000.00 $4,800.00 $400.00 
Replaced 

every 5 years 

Software 

Commercial 

Software 

Base 

Cost 
$200,000.00 $200,000.00 $30,000.00 $2,500.00 

Maintenance 

contracts 

Purpose-built 

Software 

Base 

Cost 
$500,000.00 $500,000.00 $75,000.00 $6,250.00 

Contract 

programming 

IT Support 

Staff Average 

Salary 

17 $150,000.00 $2,550,000.00 $2,550,000.00 $212,500.00 — 

Offsite 

Backup 
— — — $3,600.00 $300.00 — 

Cybersecurity — — — $20,000.00 $1,666.67 — 

Operational 

Staff 
35 $150,000.00 $5,250,000.00 $262,500.00 $21,875.00 

Fraction of 

their time 

Manual 

Sensor 

Reading 

8 $85,000.00 $680,000.00 $680,000.00 $56,666.67 

Headcount for 

manual sensor 

reading/ 

recording 

Facilities Costs 

Electricity — — — $300,000.00 $25,000.00 
Yearly cost of 

electricity 

Total — — — $3,942,100 $328,508 — 

 

The following section covers the estimated plant-side upgrades to enable cloud connectivity. This 

includes any onsite servers or wiring necessary to enable seamless connectivity, but also includes any new 

sensors or wireless technologies needed to enable wireless sensor monitoring. This section computes the 

costs of purchasing new sensors to implement total wireless data gathering. It also compares the cost and 

efficacy of DAS networks as opposed to CBRS-based private mobile networks. 

4.1.1 Wireless Sensors 

Wireless sensors are making rapid advances. They have both wireless and Bluetooth connectivity, and 

can be implemented independent of a wireless carrier, significantly reducing connectivity fees. Some 

have onboard processing to generate an alarm whenever sensors detect abnormal behavior, as determined 

by simple classification software constantly running on the processor. As data accumulates, it generates a 

“normal-not-normal” model. Additionally, it transmits all collected data to the cloud. These devices 

measure a host of elements such as temperature and acceleration. They are priced similarly to other 

wireless sensors but have the added capability of onboard processing and programmability. A range of 

sensors were surveyed in [7] for improving monitoring through an entire plant system, as shown in Table 

5. These sensors include a high-grade category reserved for reactor-related sensors that require specific 

grading and hardening. This type of sensor is not required through the entire plant. For this report, the 
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sensors will be for the balance of plant are assumed to be low/mid-grade. These sensors cost about $500 

each and could easily be run through the commercial dedication process. Assuming that approximately 

600 sensors are required and get replaced after 5 years, the annualized cost over the sensors’ lifetimes 

would be approximately $136,000.00 per year (see Table 5. Fixed costs for a range of wireless sensors 

[14,15]. 

Sensor Grade 

Number of 

sensors Price per unit Subtotal 

Acquisition Annualized 

Over Lifetime 

Low grade 70 $300 $21,000 $42,000 

Low/mid 120 $500 $60,000 $96,000 

Mid-range 220 $800 $176,000 $242,000 

Mid/high 120 $1,200 $144,000 $180,000 

High grade 70 $2,500 $175,000 $196,000 

Total 600 - $576,000 $756,000 

 

Table 6). Ongoing maintenance of sensors, including the resetting of components and the replacement 

of batteries and devices, is estimated at half of one salary. 

Table 5. Fixed costs for a range of wireless sensors [14,15]. 

Sensor Grade 

Number of 

sensors Price per unit Subtotal 

Acquisition Annualized 

Over Lifetime 

Low grade 70 $300 $21,000 $42,000 

Low/mid 120 $500 $60,000 $96,000 

Mid-range 220 $800 $176,000 $242,000 

Mid/high 120 $1,200 $144,000 $180,000 

High grade 70 $2,500 $175,000 $196,000 

Total 600 - $576,000 $756,000 

 

Table 6. Wireless sensor costs. 

Item Acquisition Costs 

Acquisition Annualized Over 

Lifetime 

Sensors (600) $300,000.00 $60,000.00 

Annual Maintenance (0.5 head 

count) 
N/A $76,000.00 

Total $300,000.00 $136,000.00 

 

4.1.2 Network Aggregation Equipment 

Signals from wireless sensors will have to be aggregated, formatted, and transmitted to the cloud, 

where the information will then be parsed and stored in the appropriate locations in the PdM database. 

Some wireless sensors can connect directly to the wireless network without requiring significant 

processing. We will take a conservative approach in which sensor data may be aggregated in different 

locations, and in which several routers are required to ingest the sensor data and forward them to the DAS 

or private mobile network. Maintenance is estimated at 10% of the acquisition cost. Per Table 7, the total 

cost for network aggregation equipment and maintenance is approximately $15,000.00 per year. 
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Table 7. Network aggregation equipment costs. 

Item Acquisition Cost Annualized Cost 

Network Aggregation Equipment $50,000.00 $10,000.00 

Maintenance Cost N/A $5,000.00 

Total $50,000.00 $15,000.00 

 

4.1.3 In-building Network 

Some type of wireless network must be installed to provide access points for receiving wireless data 

from sensors. 

 

Figure 6. Example of a DAS network. 

Figure 6 shows the entire network, with a DAS used as the networking system. The DAS must 

connect to a mobile carrier network so that the data can be transferred from the nuclear facility to the 

cloud via the carrier’s mobile network. The currently implemented DAS consumes a great deal of power, 

whereas newer-generation DASs are far less power hungry. Some are even server-based and software 

configurable. Table 8 shows the typical annualized cost for a DAS to be approximately 

$222,628 per year. 

Table 8. Estimated costs for a DAS system. 

 Acquisition Cost Annualized Cost Assumption 

DAS $1,031,480.00 $103,148.00 10-Year life 

Installation $100,000.00 $10,000.00 — 

Maintenance Cost N/A $103,480.00 10% of Acquisition 

Carrier Charges N/A $6,000.00 
100 mb/sec connection at 

$500/month 

Total $1,131,480.00 $222,628.00 — 

 

4.1.4 Mobile Private Network 

Figure 7 shows the base architecture for a MPN. This particular implementation is from LEMKO, a 

network equipment provider whose system is presently being trialed at the Dresden nuclear plant. 
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Figure 7. Example of an MPN, using LEMKO as the network equipment provider. 

The base architecture provides a full LTE network that can aggregate traffic and, via the internet, 

send data to the cloud. The MPNs are typically 4G LTE, due to 4G LTE being solid, well-tested, and 

cheaper than alternatives such as 5G. Typical MPN network installations cost $100,000–$500,000, so a 

mid-price point of $250,000 will be used for the in-building network below. 

4.2 Cloud Side 

This section covers cloud-side expenses. There are three types of loads on the cloud: hosting costs, 

retraining costs, and storage costs. 

Hosting costs encompass the cost of storing and hosting applications on the cloud. This load consists 

of using trained applications that are run at user request. Blue Wave AI Labs has extensive experience in 

hosting and supporting applications on the cloud. Generally, the cost is under $275 per month per 

application, but for added conservatism a cost of $500/month was used instead (see Table 9). The hosting 

costs are estimated to total $150,000 annually. 

Table 9. Estimated hosting costs. 

 Number of Applications $/month Total/month Annual Cost 

Model Hosting Cost 25 $500.00 $12,500.00 $150,000.00 

 

Retraining costs are accrued by periodically retraining ML models when new data become available. 

This can be somewhat expensive. Retraining can potentially be performed by the application owner on 

other platforms; however, there are good reasons to do the retraining on the cloud. For example, the data 

already reside on the cloud, and maintaining export control requirements and security is more 

straightforward on the cloud. Three applications of differing complexity were retrained and the costs 

summarized in Table 10. It is assumed that 50 pieces of equipment will need to be supported. The average 

yearly cost to update and maintain models is $28,152 ± $5,080. 

Table 10. Estimating costs for retraining and maintaining models with the most recent data. 

Model Maintenance Cost Per Hour 

Number of 

Hours Cost 

Pieces of 

Equipment Total Cost 

App1 Retrain + Analysis $3.67 8 $29.38 50 $1,468.80 

App1–Debug - Models $3.67 10 $36.72 50 $1,836.00 

App1 Experiments $3.67 25 $91.80 50 $4,590.00 

Total Retrain — — — — $7,894.80 

App2 Experiments $3.67 100 — 50 $18,360.00 
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Model Maintenance Cost Per Hour 

Number of 

Hours Cost 

Pieces of 

Equipment Total Cost 

App 2 Retrain + Analysis $3.67 12 $44.06 50 $2,203.20 

App2 New Site $3.67 20 $73.44 50 $3,672.00 

Total Retrain — — — — $24,235.20 

App3 Master Models $3.67 40 $146.88 50 $7,344.00 

App3 Finetune + Analysis $3.67 10 $36.72 50 $1,836.00 

App3 From Scratch Models $3.67 15 $55.08 50 $2,754.00 

App3–Debug - Models $3.67 20 $73.44 50 $3,672.00 

App3 Experiments $3.67 200 $734.40 50 $36,720.00 

Total Retrain — — — — $52,326.00 

 — — — Average $28,152.00 

 

Storage Costs. Storage costs are relatively inexpensive and easy to calculate. Quotes from cloud 

providers come to $527 per year for 500 GB. 

4.2.1 Direct Cloud Costs 

Table 11 shows the total direct cloud costs of hosting and maintaining 25 applications along with 

their associated data. We assume model retraining is done on the cloud, but not model development. The 

cost of data storage may be underestimated, as a great deal of historical data could potentially be brought 

over to the cloud in addition to the data associated with each application. We also assume that it takes 10 

IT personnel to provide continual upkeep and completes the model retrainings. 

Table 11. Estimated direct cloud costs. 

Direct Cloud Costs Cost Number of Applications Total 

Storage of 500 Gb/year $567.00 25 $ 14,175.00 

Total Model Retraining $28,152.00 25 $703,800.00 

Application Hosting $6,000.00 25 $150,000.00 

IT Personnel  $150,000.00 10 $1,500,000.00 

— — Total $2,367,975.00 

 

4.2.2 Total Cloud Costs 

The total cost of using the cloud to host maintenance data and PdM applications is calculated by 

combining the direct costs with the cost of installing the proper equipment in the facility in order to 

collect and transport the data to the cloud (see Table 12). This includes the sensor costs, data aggregation 

equipment, and in-building network. In addition to the costs already discussed will be a one-time labor 

cost for moving data and applications to the cloud. Experiments by Blue Wave AI Labs show it takes 10–

15 staff days to move a single application. Including cleanup of the site facilities, we assumed 

approximately 5 staff years to perform the transition at a one-time cost of $600,000. 
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Table 12. Total cloud installation costs. 

Total Cloud Costs Initial Costs Annual Costs 

Sensors $300,000.00 $136.00 

In-building Network $1,131,480.00 $176,278.00 

Network Aggregation Equipment $50,000.00 $15,000.00 

Installation and Cloud Set-up $600,000.00 $60,000.00 

Total $2,081,480.00 $251,414.00 

 

The finalized cost comparison in Table 13 shows that using cloud resources is economically viable. 

After the initial capital costs of about $2 million, there is an annual savings of around $1.3 million. These 

savings are primarily through the reduction of the staff require to manually check the sensors and IT 

personnel required to maintain the cyber security. These savings do not consider any savings that could 

potentially occur with the deployment of additional sensors as they add to the overall situational 

awareness of the system. 

Table 13. Cost comparison of current onsite costs vs. cloud implementation. 

Cost Comparison Current Onsite Cost Cloud Cost 

Installation Cost N/A   $2,081,480.00 

Annualized Cost $3,942,100.00 $2,619,389.00 

 

5. REGULATORY REQUIREMENTS FOR AI 

Regardless of how data are stored and shared, licensees must still be able to protect safety-related and 

important-to-safety functions. To do so, licensees must analyze digital computer and communication 

systems/networks, identify which assets require protection against cyberattacks, and establish, implement, 

and maintain a cybersecurity program for protecting those assets. The regulatory requirements for a 

cloud-based server are addressed in INL/RPT-22-70543 [7]. 

AI is transforming many fields, and the nuclear industry is eager to expand its use and capabilities. 

Though recent advances in AI have enabled many more possibilities, how it is used, its autonomy, and the 

needed regulatory perspective on its uses will slow its migration into the nuclear arena [16]. This review 

identifies the regulatory requirements related to using AI for evaluating data stored on cloud servers. As 

some technical aspects of AI are still evolving, and the regulatory framework for nuclear regulators has 

not yet been established, this report instead focuses on how AI could be used to evaluate data stored on a 

cloud-based server. 

In terms of regulating AI applications in the United States, the NRC is still mostly in an information-

collection phase, seeking input from stakeholders and holding workshops to better understand the 

technology and its potential nuclear applications [17,18].  

When considering AI as applied to NPP O&M, three specific challenges arise in regard to licensing 

and regulatory activities [19,20]: 

1. Quality/optimum input data. Data in digital form may be insufficient to employ ML and AI 

algorithms, and poor-quality data may lead to false output relationships or large uncertainties. Both 

data quality and data sufficiency are equally required. 
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2. Identification and selection of appropriate AI algorithms. The specific application will lead to a short 

list of suitable algorithms, and selecting the appropriate one will depend on factors such as the desired 

performance, size, and complexity of the training data; the scalability of the algorithm; and 

deployment and business case criteria (software implementation, legacy solutions, cost, etc.). 

Eliminating bias—or proving that this approach is systematic and fits the specific application—is a 

significant challenge. 

3. Explainability of the AI algorithms. Explaining the performance of the algorithms is equally 

important, with the analyst or regulator being able to clearly recognize from the output whether the 

model predictions are more accurate than random chance, or if a human could achieve better results. 

5.1 Regulatory Framework Outside the Nuclear Industry 

Both the United States and European Union have identified a need to ensure better conditions for AI 

development and use. While the European Union has proposed a regulatory framework for this purpose 

[21,22], the United States has laid out policy considerations that should guide regulatory and non-

regulatory approaches to AI developed and deployed outside the federal government. Of relevance to 

nuclear power regulations is the fact that the Federal Aviation Administration and National Highway 

Traffic Safety Administration are working to establish nimble and flexible frameworks that ensure safety 

while encouraging innovation. Thus, this approach implements a risk/benefit assessment to the regulation 

of AI-enabled products by assessing the reduction in risk that could result with AI, alongside those 

aspects of risk it might increase. 

On a national scale, the National Science and Technology Council’s Committee on Technology 

determined that long-term concerns over super-intelligent general AI should have little impact on current 

policy [2016] [23]. The National Science and Technology Council assessed policy requirements for self-

driving vehicles, drones, etc., and the consensus of the commenters, as part of the White House Future of 

Artificial Intelligence Initiative, was that broad regulation of AI research or practices would be 

inadvisable at this time. 

The consensus seems to be that new regulations may not be needed, and that the solution is perhaps to 

develop guidance documents that encompass AI. 

5.1.1 Activities Related to AI 

Standards Development Organizations and industry are moving forward with AI guidelines. Many of 

their efforts have focused on the ethics of AI, and many companies and governments are working to 

create definitions, policies, and regulations around these ethics.  

To provide a means of compliance for certifying AI in safety-critical aeronautical systems, SAE 

International reviewed existing standards and performed a gap analysis to understand how and why 

existing standards cannot be reliably used [24]. Among the main gaps identified, requirements 

traceability, mapping of ML model functions and parameters between aerospace engineering concerns, 

and the application or lack of verification methods suitable for datasets raised many concerns. The 

identified gaps highlight the fact that a data-driven paradigm for AI may not be adequately addressed by 

existing standards. The SAE committee noted that: 

“Extending this licensing procedure [of training and extensive testing for pilots 
and air traffic control] to autonomous software would lead to an analogous 

system of gained trust. Certification would be eventually attained through 
extensive, though not comprehensive, demonstration of knowledge and skill by 

the advanced software systems.” 
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OMB M-21-06 [Nov. 2020] [25] lays out policy considerations that should guide regulatory and 

nonregulatory approaches to AI applications developed and deployed outside the federal government. 

Although federal agencies currently use AI in many different ways to perform their missions, government 

use of AI is outside the scope of this memorandum. Though this memorandum uses the AI definition that 

was recently codified in statute, it focuses on “narrow” (i.e., weak) AI, which extends beyond advanced 

conventional computing in order to learn and perform domain-specific or specialized tasks by extracting 

information from datasets or other structured/unstructured sources of information. The memorandum 

states the following: 

“When developing regulatory and non-regulatory approaches, agencies should 

pursue performance-based and flexible approaches that are technology neutral 

and that do not impose mandates on companies that would harm innovation. 
Rigid, design-based regulations that attempt to prescribe the technical 

specifications of AI applications will in most cases be impractical and 

ineffective.” 

5.1.2 Examples of Use Cases 

Automated vehicles (e.g., self-driving cars) and AI-equipped unmanned aircraft systems are currently 

relevant examples of the regulatory challenges presented by AI-enabled products. To evolve the relevant 

regulations, the U.S. Department of Transportation is using an approach based on building up expertise 

within the department, creating safe spaces and test beds for experimentation, and working with industry 

and civil society to evolve performance-based regulations that will enable more uses as evidence of safe 

operation accumulates. 

For the interested reader, ISO/IEC TR 24030:2021 [26] provides a collection of use cases of AI 

applications in a variety of domains. In total, 132 AI use cases were submitted by experts between July 

2018 and the end of November 2019.  

5.2 Regulatory Framework in the Nuclear Industry 

The current regulatory framework for nuclear energy in the United States focuses on the use of 

defense-in-depth measures to provide reasonable assurance of safety. Generally, such measures include 

periodic inspection and testing of safety-significant components, with preventive maintenance being 

performed on a time-based schedule to ensure component operability. AI can be used to maintain the 

same level of safety while optimizing preventive maintenance schedules. 

The deployment of AI technology may require additional considerations and requirements (e.g., 

specific documentary evidence of performance and specific forms of technical data) prior to its 

acceptance for safety-significant components. Use of AI technologies on balance-of-plant components or 

components not considered safety significant will likely require little or no regulatory restrictions or 

needed approvals. 

The United States is not alone in establishing a regulatory framework for the technical aspects of AI. 

An IEC working group on AI stated that “the regulatory framework from nuclear regulators is not yet 

established,” and recognized that uses in safety-related applications will require further guidance from a 

regulatory perspective [27]. 

Any regulatory requirements and associated guidance will depend on how the AI is used. Although 

NPP operation was a primary driver behind the nuclear industry’s leveraging of AI, the broader nuclear 

scientific and professional community rapidly adopted AI, as well. AI is now used in reactor design, fuel 

optimization, intelligent control, preventive maintenance, aging management, nondestructive testing, 

physical protection, cybersecurity, and many other related fields. 

Regulatory treatment of AI will depend not only on whether it is used to support safety systems but 

also on its embedded functionality. The functional roles for AI can be grouped into the following main 
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categories, which are generally consistent with NRC characterizations of the various automation levels: 

(1) non-control functionality (advisory), (2) control functionality (shared), and (3) communications 

functionality (generally advisory). 

• In the non-control functionality category, the AI’s role would be to provide information or advice to 

the operator, but not to directly affect the plant or its operation. The main issues involve the quality, 

correctness, and fidelity of the information provided to the operator (i.e., the trustworthiness of the 

data) and the potential risk to plant safety as a result of deploying and relying on these techniques. 

Thus, a review might address whether proper performance, determination of uncertainty, and 

transparency of the basis for the information have been demonstrated. Consequently, the depth of the 

review would depend on the impact of erroneous or uncertain performance on safety and human 

reliability. 

• Regarding the control functionality, the degree to which responsibility for actions is shared between 

the operator and the AI must be considered. This could range from the boundaries of manual control, 

with the AI advising onexpected responses to potential control actions, to autonomous control using 

an embedded AI for predictive control and/or automatic adaptation. The extreme end of autonomy is 

not anticipated as a near-term application for AI. The range of control functionality introduced to AI 

would lead to more rigorous regulatory review and a greater need for evidence of the system’s safety 

impact. Plants with high degrees of passive safety are seemingly good candidates for implementing 

AI. 

• Regarding the communications functionality, the level of regulatory review would depend on the 

safety significance of the data being transmitted. If vital communication of safety-related data is 

involved, the communications functionality afforded by the AI would necessarily be subject to safety 

or safety-related review. This would include independence, isolation, reliability, fault-

tolerance/accommodation, etc. If the communications functionality is solely advisory or nonvital, the 

review would be similar to that for other non-control functionalities. 

5.2.1 General Requirements for I&C 

The regulatory framework determined by the NRC is intended to protect public health and safety. The 

NRC’s mission is to ensure safe use of radioactive materials for beneficial civilian purposes, while still 

protecting people and the environment. The NRC regulates commercial NPPs and other uses of nuclear 

materials through licensing, inspection, and enforcement of its requirements. At a high level, no system 

malfunction or failure can prevent/block a safety action or initiate a challenge to that system. 

At the highest conceptual level, I&C systems in NPPs can be categorized as either safety (protection) 
or non-safety (control) systems. If the AI is to provide a protection system function, it must meet the 

requirements of a safety system. The control system objectives are to maintain the controlled variables 

within the prescribed operating ranges, and the effects of operation or failure of these control systems are 

bounded by the accident analyses in Chapter 15 of the safety analysis report [28]. 

Relevant regulatory criteria for an I&C system using AI will vary depending on its use. For a 

cloud-based system, the AI is not expected to provide any control functions, but simply to provide data to 

users. 

5.2.2 Regulatory Requirements for AI 

Identifying the regulations that might apply to AI (based on its application) may enable a 

determination as to whether existing regulations are sufficient and can be adapted or considered to 

accommodate AIs for advanced reactors, or whether new regulations and guidance are needed. 

A cloud-based AI data storage system would use AI to identify patterns and recommend actions, 

based on inputs from diagnostics, virtual sensors, intelligent control, aging management, preventive 

maintenance, anomaly detection, etc. This type of tool would not provide any control capabilities. 
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Largely, the AI tools can be broadly grouped into two categories: anomaly detection and ML. 

Anomaly detection monitors live data or computed results to identify instances of data that are 

inconsistent with the previously defined statistical norm. Such tools can warn operators and designers of 

anomalies otherwise imperceptible to human observers. In practice, anomalies are often data spikes that 

reflect significant deviations from the expected values [29]. Actuation of an alarm when an anomaly is 

significant enough puts the operator (and plant) in a reactive state. Use of AI, noting the changes in state, 

would allow operators to be proactive. 

In principle, ML is akin to human learning in that the software (human) is taught to detect a pattern. 

An algorithm is given data, then allowed to train itself to find patterns in those data. Many different 

algorithms are used for AI. Westinghouse recently developed a tool that evaluates over 10 regression-

based AI algorithms to find trends in the data and then select the optimal algorithm based on data-driven 

modeling validation metrics [29]. These functional patterns can then augment anomaly detection, as well 

as prognosticate future behavior, based on the historical (or simulated) data. These types of predictive 

capabilities are very useful in determining the remaining useful life of a component or structure, the long-

term behavior of a system (maintenance related), and pathways for system optimization. 

As noted, the NRC issued its strategic plan for AI in NUREG-2261 [30]. This plan encompasses five 

goals: (1) ensure NRC readiness for regulatory decision making, (2) establish an organizational 

framework for reviewing AI applications, (3) strengthen and expand AI partnerships, (4) cultivate an 

AI-proficient workforce, and (5) pursue use cases to build an AI foundation across the NRC. The overall 

goal of this strategic plan is to ensure continued staff readiness to review and evaluate AI applications 

effectively and efficiently. 

Several methods for reaping the benefits of PdM and condition monitoring are currently in use [31], 

including clustering algorithms for anomaly detection and Gaussian approaches for correcting instrument 

error based on adjacent or physically redundant data. Within this same scope, Metroscope employs a 

Bayesian method to find root causes by leveraging physics models, expert knowledge, and operating 

experience. In addition, autocorrelation methods are also being explored for nondestructive examination 

applications. 

6. SUMMARY AND CONCLUSION 

During the cost comparison, certain assumptions were made to make the analysis as conservative as 

possible. Most notably, the DAS implementation assumed for the in-building network is considerably 

more expensive that the 4G LTE MPN. In the nuclear industry, MPN is becoming the preferred network 

type, thanks to its cost and flexibility advantages. This is evidenced by the implementation of the 

LEMKO 4G LTE network at the Dresden plant. 

The cloud offers other advantages besides cost. First, due to the virtual nature of the hosting 

hardware, capacity can be “flexed up” as needed. As shown in this document, Microsoft Azure offers 

competitive tools that can scale with load. Additionally, back-up is transparent. Moreover, the 

cybersecurity resources of Microsoft or Amazon are brought to bear. Individual plants in the base case are 

responsible for their own cybersecurity, whereas plants using cloud services can lean on the cloud 

provider for security measures. 

AI is being implemented throughout industry and its usage in NPPs will increase. The current 

regulatory framework does not explicitly address AI or autonomous control, but if AI is applied to nuclear 

operations such as communicating with a system at a plant, it must meet the requirements of a digital I&C 

system. Currently, all use of AI at NPPs is focused on non-safety related applications. Cloud-based data 

storage would be concerned with using the data to find patterns and to recommend actions based on 
inputs from diagnostics, virtual sensors, intelligent control, aging management, preventive maintenance, 

anomaly detection, etc. Such use is similar to existing narrow AI applications such as language 

translation, self-driving vehicles, image recognition, virtual assistants, self-driving cars, AI-powered web 
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searches, recommendation engines, and intelligent spam filters. For this type of use case, no new 

regulations or guidance would be necessary. The NRC and other regulatory bodies are working to provide 

to address gaps, rather than introducing new regulations to address the use of AI and ML. This approach 

seems the best way to encourage development without adding regulatory uncertainty. However, the use of 

AI technologies on balance-of-plant components or components not considered safety significant will 

likely require little or no regulatory restrictions or needed approvals. Demonstrating how AI can improve 

the maintenance and operation of these non-safety-related systems seems the likely path forward for 

implementing AI and cloud computing resources inside NPPs. 
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Brief ing Paper  

Author :  V ivek Agarwal   
Cody Walker  
September  30,  2023 

Assessment of Cloud-based Applications 

Enabling a Scalable Risk-informed Predictive 

Maintenance Strategy  

Context of the Study 

United States nuclear power plants are facing long-term economic sustainability challenges in the current energy 

market. The plants are looking to transition from a time consuming and cost prohibitive preventive maintenance 

strategy to a technology driven predictive maintenance strategy to achieve operational efficiency and cost 

savings. In recent years, cloud computing has emerged as a dominant technology by virtue of its low cost, hosting 

capabilities, performing machine learning, and computing and storage adaptability. Cloud computing refers to 

utility-based computing resources accessed over the internet. Cloud computing may serve as a cost-effective 

alternative to alleviate plants from developing onsite storage, computing, and analytics capabilities and resources. 

and diagnostics, and even for maintenance and diagnostics centers. In addition, cloud computing support 

collaborative learning and deployment across the fleet. A potential strategy for connecting local sensors at a plant 

to cloud services can be seen in Figure 1. 

 

 

Figure 1. Proposed high-level architecture of the hybrid cloud. 
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Viability of Cloud Computing for Nuclear 

To access if cloud computing had the required speed and computing power, tests were performed to compare its 

performance with a local desktop and high-performance computer resources. A test case to understand the health 

state of a safety relief valve was selected. Several models to predict the future states of a safety relief valve were 

trained and tested with each resource. Cloud computing had equivalent results to the other resources with little to 

no latency issues. For monitoring scenarios with more than one component being accessed, cloud computing 

resources can be scaled to match the computing demands. Each model was updated as new information was 

received which showed that updating models with the most recent data led to more accurate models. In terms of 

speed, latency, and computing capabilities, cloud computing resources are acceptable. 

Cloud Computing Economics 

To enable cloud computing in the existing fleet of light-water reactors, additional sensors, networks, and 

other requirements must be implemented to ensure a smooth transition from current maintenance strategies. 

This leads to a large upfront cost to enable online monitoring via cloud computing. The cost-savings benefit 

is that the plants no longer need to manage their own servers, software, cybersecurity, and information 

technology support staff for in-house data analytics purposes. Many of these features can be offloaded to 

the cloud provider. With the addition of more sensors, there will also be a decrease in the number of man-

hours used to manually check or read sensors and components. A comprehensive analysis was completed, 

revealing the current annual cost of operating to be more expensive than using online monitoring enabled 

with cloud computing resources. 

Regulatory Requirements for Artificial Intelligence (AI) 

Currently, the regulatory framework does not explicitly address AI applications, but the U.S. Nuclear Regulatory 

Commission and other regulatory bodies are working to provide guidance to address gaps, rather than 

implementing new regulations to address the use of AI and machine learning. But since many nuclear AI 

applications focus on non-safety-related components (e.g., balance-of-plant components), they will likely require 

little or no regulatory restrictions or needed approvals. Demonstrating how AI can improve the maintenance and 

operation of these non-safety-related systems seems the likely path forward for implementing AI and cloud 

computing resources inside nuclear power plants. 
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