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ABSTRACT 

Nuclear power plants (NPPs) are experiencing significant cost challenges to 

remain competitive with other energy-generation industries. Unlike other 

industries, the cost of operations and maintenance (O&M) activities at an NPP is 

mostly attributed to workforce cost. The NPP industry has therefore resorted to 

automating manually intensive tasks to reduce O&M costs, especially for 

monitoring activities. One monitoring function that is visually demanding and 

can occur frequently in order to meet the requirements of the fire protection 

program in an NPP is fire watch. A fire watch is a worker physically stationed at 

a given location (where normal fire protection measures are challenged) with the 

sole responsibility of observing a given area to ensure a fire is detected and 

mitigated promptly. This effort targets migrating fire watch from a manual model 

to an automated model. An automated visual monitoring approach using machine 

learning was pursued to closely resemble the actual manual visual monitoring 

performed by a fire watch.   

Multiple machine-learning methods were evaluated for automated visual 

recognition of fire; long short-term memory (LSTM) neural networks, coupled to 

a color-based feature-extraction method to extract fire regions, resulted in the 

most accurate results. In addition to developing the method, a training data set for 

fire in industrial environments was developed. Because machine-learning 

methods are sensitive to the training data used, using only industrial fire videos 

were essential. Various sources of publicly available datasets containing scenes 

approximating industrial settings with and without fire were investigated and 

aggregated. They consist of YouTube-8M datasets that were downloaded and 

used to train and validate the neural network modelling approaches used in this 

analysis. Additional video datasets available from previously published literature 

sources and an online repository provided by Yahoo (YFCC100m and FiSmo) 

were also downloaded and aggregated to test the color feature extraction efforts 

and isolate fire regions in a frame.   

The developed method was trained and validated using 1,000 industrial-only 

fire videos extracted from YouTube-8M datasets. After the developed method 

was trained and validated using the YouTube-8M data, it was tested using a set 

of 62 videos, split evenly between fire and no-fire scenarios, from a Yahoo 

videos repository. The accuracy achieved by the developed method was 0% 

missed positives (i.e. fire occurred but not detected) and 8% false positives (i.e. 

system indicates fire though there is no fire). Though smoke was not targeted in 

this effort, the method is expected to perform with similar accuracy for smoke 

detection, assuming a smoke training dataset is developed. The integration of this 

developed method with a suite of fire and smoke detection technologies (being 

researched or sold as products) is planned next to reduce false-positive events. 

Additionally, using a machine-learning method in a process to meet the licensing 

requirement necessitates unboxing the machine learning “black box,” i.e., 

explaining the rationale behind the decision-making and providing extensive 

validation to the regulator of the method’s ability to replace the human fire 

watch. This is also planned for future research. 
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AUTOMATING FIRE WATCH IN INDUSTRIAL 
ENVIRONMENTS THROUGH MACHINE LEARNING-

ENABLED VISUAL MONITORING 

1. INTRODUCTION 

Nuclear power plants (NPPs) are experiencing a significant cost challenge to remain competitive with 

other energy-generation industries. Unlike other industries, the cost of operations and maintenance 

(O&M) activities at an NPP is mostly attributed to workforce cost. The NPP industry has therefore 

resorted to automation to reduce O&M costs, especially for monitoring manually intensive tasks. One 

monitoring function that is visually demanding and can be required frequently in an NPP is fire watch. 

A fire watch ensures fire is detected and mitigated in time. The U.S. Nuclear Regulatory Commission 

(NRC) Regulatory Guide 1.189 defines the fire watch as “Individuals responsible for providing additional 

(e.g., during hot work) or compensatory (e.g., for system impairments) coverage of plant activities or 

areas to detect fires or to identify activities and conditions that present a potential fire hazard. The 

individuals should be trained in identifying conditions or activities that present potential fire hazards, as 

well as in the use of fire extinguishers and the proper fire notification procedures” (U.S. Nuclear 

Regulatory Commission 2009). A person conducting a fire watch (e.g., in Figure 1) could spend hours 

watching a certain equipment, room, or environment. 

 

Figure 1. Fire watch for welding hot work performed in an industrial environment (U.S. Department of 

Labor 2019). 

Fire watch is performed by operators or fire protection staff when work performed on fire protection 

systems prevents those systems from performing their functions, or when there is a fire hazard associated 

with a work activity—i.e., hot work, such as welding. Regulatory Guide 1.189 Section 2.4.C states,  

Successful fire protection requires inspection, testing, and maintenance of the 

fire protection equipment. A test plan that lists the individuals and their 

responsibilities in connection with routine tests and inspections of the fire 

protection systems should be developed. The test plan should contain the types, 

frequency, and detailed procedures for testing. Frequency of testing should be 

based on the code of record for the applicable fire protection system. Procedures 

should also contain instructions on maintaining fire protection during those 

periods when the fire protection system is impaired or during periods of plant 

maintenance (e.g., fire watches).  

Also, Regulatory Guide 1.189 Section 2.2.1 states,  
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Work involving ignition sources such as welding and flame cutting should be 

carried out under closely controlled conditions. Persons performing such work 

should be trained and equipped to prevent and combat fires. In addition, a 

person qualified in performing hot-work fire watch duties should directly monitor 

the work and function as a fire watch. 

Throughout the nuclear power industry level of fire watch performed varies depending on the 

condition of the plant and plant-safety policies and requirements. If the plant is in a condition that results 

in frequent fire-watch needs, then the cost burden may be elevated. Because of advancements in sensor 

technology and increased video and image data capture over recent years, there is a greater potential for 

automating detection of fire or smoke in real time using remote sensing. 

Most industrial fire-detection systems are fixed in optimal locations (i.e., usually ceiling mounted) 

and typically detect smoke. These systems are coupled to a decision-making unit, often by a voting 

process through a dedicated safety system. For a fire watch, a temporary mobile setup is needed. Mobile 

smoke detectors can be placed adjacent to the work area. However, they might not be pointed in the 

direction of the fire flames or smoke and, therefore, introduce some uncertainties or delay in their 

detection capability. There are several technologies and concepts more sophisticated than smoke 

detectors—specifically, infrared (IR) or ultraviolet (UV) sensors that can detect fire (AZO Sensors 2017). 

However, such solutions can cause false positives (e.g., system indicates fire though there is no fire) or 

missed positives (e.g., fire not detected), depending on their sensitivity setting. Also, if the fire view is 

obstructed, IR and UV sensors would not detect the fire, because they require direct line of sight. Because 

fire watch is a safety requirement of the nuclear regulator license, these limitations must be overcome to 

present a case for regulators to accept automated solutions as an acceptable replacement for fire 

protection. 

IR cameras—for situations in which visible light is limited or methodologies depending upon visible 

wavelengths are unable to differentiate features because of similar background features—are another type 

of fire-detection technology experiencing growing interest. Although IR cameras are well suited to detect 

heat or flame in low-visible-light conditions, other objects, such as a computer, heater, or light source, can 

result in misclassifications. Conversely, color sensors require constant illumination of targets, and 

changing light conditions or sources may confound classification algorithms. As a result, the ideal 

solution for fire watch would be to combine all these technologies into one decision, producing better 

decision making. In this effort, development of a method to detect smoke or fire from a distance in a 

visual video stream with high fire-detection performance and quantification is desired. An automated 

visual monitoring was pursued to closely resemble the actual manual visual monitoring performed by the 

fire watch.  The resemblance is expected to simplify validation and deployment of the developed solution. 

The outcome of this effort would be one solution to combine with previously described technologies for 

superior overall performance.  

The following sections will describe some recent image-processing and machine-learning methods 

that were developed to visually detect fire or smoke. 
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1.1 Literature Review 

A significant amount of literature is available on detecting fire or smoke in video imagery. From a 

high-level perspective, many approaches incorporate multistage methods using color detection and 

differentiation, image-change detection, image-edge softening (due to the presence of smoke), feature 

extraction, and either a rules-based segmentation approach or a classification model, such as a support 

vector machine (SVM), artificial neural networks (ANNs), etc. Çetin et al. (2013) provide a 

comprehensive review of recent efforts in video-based fire detection (VFD). Many VFD algorithms 

address specific problems, each with its own characteristics, as opposed to a more generalized problem 

resulting in a broad solution. Specific engineering-based criteria and parameters, including whether single 

or multiple sensors are utilized, whether they are active or passive instruments, and their spatial, spectral, 

and temporal resolutions, influence algorithm choice and performance. Although it is possible to model 

fire behavior in video using varying methods, many current systems yield false positives or alarms, 

resulting from changing light conditions, shadows, and other image features. Table 1 shows a breakdown 

of some key parameters. 

Table 1. Parameters impacting model development. 

Parameter Description 

Environment Target area, e.g., indoors or outside 

Detection Space The size of the target area and distance of potential fire targets from the sensor 

Objects Objects within the target area (e.g., people, desk, light source, automobile, etc.) 

Light Source Light consists of artificial or natural sources, or both 

Light Duration Light source and duration vary by time of day, season, etc. 

Sensor Spatial, spectral, and temporal resolutions; stationary or moving 

 

Earlier VFD methods focused on flame detection. Smoke detection in an image has recently gained 

interest because smoke typically spreads faster and represents an opportunity to detect combustion earlier 

(Çetin et al. 2013). VFD methods reviewed in this section can be subsumed into the following sections: 

fire detection using either image-processing or advanced machine-learning methods. This review is 

intended to capture high-level insights from some recent research in both areas. 

1.1.1 Image Processing Methods 

Many VFD techniques focus on fire or smoke color and shape characteristics. Although research in 

this area shows much promise, inconsistencies in the behavior of fire or smoke, background scenes, 

combustion sources, and sensors impede development of generalized solutions. Color detection (based on 

visible wavelengths relative to the human eye) was an early technique employed for fire detection and 

often makes use of sensor red, green, and blue (RGB) channels. These channels are often included in 

modern sensors. Visual sensors are also less costly and more widely available relative to spectrally 

higher-resolution sensors. Rules-based methods can exploit a known relationship among RGB values 

where pixel values of visible channels comprised of flames often exhibit a consistent relationship of 

R > G > B. Smoke-based pixels often exhibit RGB values that are close to each other (Çetin et al. 2013). 

An example of each type of the surveyed methods is listed herein for demonstration. 

A system was demonstrated that uses a Gaussian-smoothed color histogram to classify fire-colored 

(i.e., red-yellow) pixels coupled with temporal-variation detection to determine which pixels were likely 

derived from fire reflectance (Phillips et al. 2002). The paper indicates this approach works in varying 

conditions and is insensitive to camera motion. Borges and Izquierdo (2010) noted the green color band 

can be used to differentiate spatial color variation of flames, and if the standard deviation of the green 

color band exceeds 50 in a typical color video, the region is labeled as a candidate flame region. 
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Approaches such as these rely solely on color signatures and, therefore, can result in false positives when 

objects with similar color patterns as those of flames or smoke are present in scenes. 

Methodologies to detect smoke in video images were successfully employed using spatial wavelet 

transformations of current and background images followed by edge-energy quantification and analysis of 

smoke boundaries using a hidden Markov model (HMM) (Töreyin et al. 2006). 

Motion and flicker analysis have also been of interest relative to VFD as a means of reducing error 

that can occur from dependence upon color signatures alone. Fire flicker has been found to occur near 

10 Hz and is not greatly affected by the combustion material. Good results have been shown when 

attempting to detect flame in video-image data at a frame rate of 24 frames-per-second (fps) by 

combining a Gaussian mixture model to extract moving foreground objects from a still background and 

categorizing moving objects into flame or non-flame regions using a color-filtering algorithm (Chen et al. 

2010). However, uncontrolled fires exhibit chaotic tendencies and nonlinear instabilities, making it 

difficult to classify based on flicker patterns alone. Motion-based approaches also represent a significant 

challenge in that models need to be developed for specific sensor frame rates, which can vary widely in 

existing systems. Also, industrial scenes have the potential to include moving objects of varying size, 

shape, color, and movement speed, which introduce potential sources of error. 

1.1.2 Machine-learning Methods 

Recently, machine-learning methodologies based on artificial neural networks (ANNs) have gained 

traction due to advancements and improvements in computing power and the increasing availability of 

training data and deep learning libraries such as TensorFlow (Abadi et al. 2016) for common 

programming languages such as Python (Pedregosa et al. 2011). The advantage of machine learning over 

the previously referenced methods is that these methods do not have to be explicitly programmed with the 

differentiation rules, such as those needed for color feature extraction or motion detection. However, due 

to their supervised learning process, machine-learning methods require large amounts of diverse training 

data to achieve adequate generalization. In order to successfully develop a robust fire- or smoke-detection 

system using machine learning, it is important to account for varying parameters (Table 1) impacting a 

classification model’s development and biases. A few examples of machine-learning methods are listed 

here for demonstration. 

Muhammad et al. (2018) proposed a system using convolutional neural networks (CNNs) (discussed 

in Rawat and Wang 2017) to predict fire occurrences in video-imagery data. Their experimental results 

indicate high classification accuracies, greater than 90%, are achievable. However, the authors 

acknowledged lower accuracies on image datasets dominated by red fire-colored objects and fire-like 

sunlight scenarios. Dunnings and Breckon (2018) demonstrated high classification accuracies by coupling 

a super-pixel localization framework using the K-means clustering algorithm (Achanta et al. 2012) to a 

simplified CNN architecture. However, parametrization of the K-means algorithm used to delineate 

super-pixel boundaries and scene variability could greatly impact classification accuracy and model 

generalization. Also, CNNs lack the ability to incorporate temporal learning (memory) which can 

improve online learners’ ingesting of temporal data streams such as video-based images. This finding was 

verified in this effort. 

Researchers achieved high fire- or smoke-detection accuracies in video-imagery data using deep 

convolutional long-recurrent networks (DCLRNs) combined with optical flow methods, indicating that 

temporal or sequential dynamics within the data can improve model accuracy (Hu et al. 2018). Their 

analysis also indicated DCLRN outperformed a CNN when flame or smoke features were not as dominant 

in the images due to increasing distances between the camera and the target. However, model 

performance was negatively impacted by very slow-moving fires, especially at longer distances from the 

sensor, and dynamic image disturbances such as moving lights. 
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1.1.3 Summary of Literature Findings 

Although many literature resources exist showing varying approaches and outcomes for the 

development of a VFD, significant technical challenges exist to develop a robust system suitable for a 

NPP. Given the potential scene complexity and diversity of industrial power-plant environments, a color-

feature extraction approach based on image processing methods will likely yield many false positives due 

to fire-colored objects passing into scenes. Development of a machine-learning model poses significant 

challenges in that machine-learning methods are sensitive to the training data used and available training 

data containing scenes with and without fire in an environment approximating an NPP are not readily 

available to support model development. Based on the literature review, it was decided to evaluate both 

an image-processing-based method and a machine-learning method and to develop a customized method 

to outperform both. The results of the first two methods evaluation will be used to benchmark the 

performance of the customized method.   

A significant challenge to develop a fire-detection method is the aggregation of suitable datasets with 

which to train, validate, and test methods during development. The following sections provide details on 

the sources of data for method development, validation, and testing. 

2. DATA SOURCES AND PREPARATION 

Unlike other approaches, in which models are developed on known and explicitly defined rules, 

machine-learning algorithms require large, heterogeneous, and labeled datasets for training and validation 

to maximize model accuracy and improve generalization. If suitable data are not available, they must be 

generated. In this case, it was not feasible to set up and film fires in varying industrial scenes 

approximating NPPs. This, in turn, necessitated searching for publicly available datasets containing fire 

imagery and industrial scenes. Sourcing, organizing, and formatting suitable datasets are complex and 

time-consuming endeavors. If data used are not suitable, resultant models will not have the ability to 

generalize a problem, which severely limits their real-world applications. 

In this case, no known dataset exists explicitly to support the fire watch task. During the literature 

review, multiple online repositories were discovered containing video and imagery, some specific to the 

development of a VFD that were utilized to provide video datasets. Extensive efforts were made to 

aggregate suitable data for an industrial setting like that of an NPP. A well-curated dataset was explored 

first. Researchers also elected to compile datasets to demonstrate model robustness and generalization. 

The following sections describe the datasets used in detail. 

2.1 YouTube-8M 

YouTube-8M is a fully curated and validated frame-by-frame dataset of labeled video features that 

have been preprocessed into one-dimensional mathematical vectors for each frame containing 1,024 

features (Abu-El-Haija et al. 2016). YouTube-8M contains unique 3,862 labels encoded as integers 

associated with features and 25 categories. Google has made this dataset publicly available to support the 

advancement of large-scale machine vision applications and model development for a wide variety of 

applications. YouTube-8M features are derived from over 237,000 labeled video segments from over 

5 terabytes of video data. The data are derived from a diverse sampling of existing online content posted 

to YouTube. The original video-data content is not publicly available. Instead, Google has made the 

labeled, encoded feature arrays available for public use to reduce storage needs and maintain privacy. To 

generate this dataset, the following steps were applied: 

• The original videos were decoded at 1-fps for 360 seconds. 

• Feature extraction, using the publicly available CNN architecture within the Inception Network 

(Szegedy et al. 2015) and maintained by Google, was applied to reduce dataset size (Abu-El-Haija et 

al. 2016). Specifically, the video-image data were passed through the convolution and pooling steps 

to extract image features and reduce data dimensionality. 
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• Data compression, using principle components analysis (PCA, reviewed in Jolliffe and Cadima 2016) 

and whitening were applied to further reduce dimensionality, producing the video features as encoded 

vectors in lieu of original video frames. Whitening (sphering) is a common image-processing step to 

reduce redundancy within the output features so that the output vector contains features that are less 

correlated with each other. 

• The feature values were normalized to 8-bit integer values ranging from 0 to 255, making the final 

encoding as efficient as possible for computational and memory requirements. 

• The data were annotated such that specific features are temporally localized within the video 

segments via human verification. This information is compiled into JavaScript Object Notation 

(JSON) files containing “label” and “title” keys. The label keys are associated with numeric values 

mapped to specific features within the video, and title denotes a unique identifier associated with the 

video. 

A total of 1,000 YouTube-8M datasets were downloaded using an executable script provided by 

Google. However, the data contained scenes with industrially relevant and non-industrially relevant 

categories and labels such as Games, Pets & Animals, Guitars, etc. During examination of the YouTube-

8M video datasets and associated labels, it was also noted the individual video datasets often contained a 

mixture of labels and categories describing varying topical themes. For example, a video segment can 

have both Sports and Science categories with Fire and Juggling labels. Another segment can contain 

several categories (e.g., Autos & Vehicles, Science, Law & Government, etc.) and labels for Fire, 

Factory, Machine, Engine, Emergency, Truck, etc. This diversity within the data made this an appropriate 

dataset with which to train and validate machine-learning models because it would likely improve overall 

model generalization needed for a system monitoring the diverse scenes within an NPP complex. 

However, analysis was needed to filter the data to an appropriate subset to be used to train and validate 

the fire watch method to the point at which it was relevant to an industrial environment. To achieve this, 

specific environments descriptive of industrial settings were sought. Because it was not possible to review 

the native video files, YouTube-8M datasets were selected by identifying terms that could be associated 

with an industrially relevant environment within the associated JSON files. The labels selected were from 

the Business & Industrial category as no fire dataset. The fire label, part of the Science category, was 

selected for the fire dataset. Using these labels, 663 datasets were selected from the original 1,000 

containing fire and no fire scenes of approximately equal proportions relative to industrial facility 

environments. Table 2 shows the final categories and labels of the subset data. 

A typical approach for machine-learning model development is to randomly split a curated and 

labeled dataset into training and validation subsets. In this case, a 70/30 ratio was used where 70% of the 

subset was randomly selected for training, with the remaining 30% reserved for validation. Because the 

YouTube-8M datasets are derived from video segments containing multiple frames, researchers 

partitioned the training and validation data at the video level instead of separating individual frames. This 

was done to prevent overfitting and improve model generalization. To evaluate the diversity of the 

training and validation data, word clouds were produced to ascertain the label and categorical diversity of 

the fire and no-fire subsets. 

Figure 2 shows the word-cloud plots for the training dataset derived from the YouTube-8M data for 

fire (top) and no fire (bottom) classes. The plots show the proportional occurrences of the category terms 

(left) and feature labels (right). The font size of each term is directly proportional to the number of 

occurrences. The word-cloud analysis shows that the feature labels and categories compiled for the 

analysis are diversely associated with other label and video categories. The fire dataset is dominated by 

Fire and, obviously, associated labels such as Fire Engine, which can also appear with the Fire label. The 

label terms commonly associated with industrial environments dominate the no-fire portion of the dataset 

and show significant diversity relative to objects commonly associated with industrial environment, such 

as Machine, Engine, Vehicle, Pump, Construction, etc. The occurrence of labels in both classes indicates 
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the data are well suited to develop a machine-learning model. For example, if a firefighter was only 

limited to scenes with a fire, the model could learn to recognize a firefighter as opposed to learning fire 

features. In that case, it would predict fire anytime it saw a firefighter regardless of whether fire was 

present. The inclusion of a firefighter in both fire and no-fire classes emphasizes model learning on fire 

features. 

 

Table 2. YouTube-8M categories and labels used to develop a VFD. 

Label Label Name Category 

62 Machine Business & Industrial 

208 Heavy equipment Business & Industrial 

270 Tool Business & Industrial 

347 Construction Business & Industrial 

359 Fire Science 

500 Road Business & Industrial 

498 Printing Business & Industrial 

522 Elevator Business & Industrial 

606 Concrete Business & Industrial 

616 Floor Business & Industrial 

750 Glass Business & Industrial 

745 Loader (equipment) Business & Industrial 

780 Crane (machine) Business & Industrial 

798 Metal Business & Industrial 

899 Ceiling Business & Industrial 

962 Rocket Business & Industrial 

1015 Pump Business & Industrial 

1025 Tile Business & Industrial 

1128 Turbine Business & Industrial 

1154 Manufacturing Business & Industrial 

1277 Brick Business & Industrial 

1311 Metalworking Business & Industrial 

1651 Vending machine Business & Industrial 

1673 Wind power Business & Industrial 

1739 Valve Business & Industrial 

2038 Steel Business & Industrial 

2805 Asphalt Business & Industrial 

3062 Heat pump Business & Industrial 
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(a) Fire categories (b) Fire labels 

  

(c) No-fire categories (d) No-fire labels 

Figure 2. A word-cloud plot for the training data derived from the YouTube-8M dataset. 

Figure 3 shows the resultant word cloud for the validation portion of the datasets, split between fire 

and no-fire and derived from the YouTube-8M data. Like Figure 2, the plots are split between fire (top) 

and no-fire (bottom) classes. The plots show the proportional occurrences (based on font size) of the 

category terms (left) and feature labels (right). The validation data exhibit similar patterns to the training 

data. This indicates the validation dataset was well suited for model validation, because the training and 

validation datasets should be similar for optimal machine-learning analysis. 
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(a) Fire categories (b) Fire labels 

  

(c) No-fire categories (d) No-fire labels 

Figure 3. A word-cloud plot for the validation data derived from the YouTube-8M dataset. 

2.2 YFCC100m and FiSmo 

Although the YouTube-8M dataset was shown to have significant diversity, it consisted of 

preprocessed labeled features encoded as mathematical vectors. The original image data are not available, 

requiring a full dependency upon the curation and labeling schemas. As a result, additional datasets were 

selected that consisted of actual video data that could be viewed by researchers and then processed to 

match the vector encoding of YouTube-8M data. These data were used to further evaluate model 

performance and generalization capabilities by testing the machine-learning models on data completely 

independent of the training and validation data. The Yahoo Flickr Creative Commons 100 Million 

(YFCC100m) dataset was therefore utilized as a source for additional fire videos (Thomee et al. 2015). 
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YFCC100m was compiled from publicly available Yahoo’s Flickr content and houses 100 million 

total image and video records (99.2 million and 0.8 million respectively) in native formats (i.e., .mp4 and 

.jpg) suitable for viewing. Although the dataset is too large to download in its entirety, an index table 

containing a complete list of the unique file IDs and associated user content tags supplied by the content 

provider at the time of upload was downloaded.  

The Fire Smoke (FiSmo) dataset is a compilation of images and videos taken from scenes showing 

emergency situations where fire, smoke, or explosions occur (Cazzolato et al. 2017). This dataset was 

compiled from online video-sharing repositories including Yahoo’s Flickr and Google’s YouTubea. The 

intended purpose is to support ongoing research to apply computational techniques to support video and 

image processing for emergency situations. Figure 4 shows a scene taken from a FiSmo video file 

showing active flames in a scene associated with an industrial setting containing metal structures, pipes, 

valves, and tanks. 

 

Figure 4. A video frame from a FiSmo (Cazzolato et al. 2017) dataset showing a fire in an industrial 

setting. 

The FiSmo video files were well annotated and organized. They contain a total of 81 video datasets. 

However, many of the videos showed similar or identical scene information, which reduces data 

heterogeneity needed to evaluate machine-learning performance. For example, many of the videos 

showed the same set of piping infrastructure from similar viewing angles in multiple videos.  

To improve heterogeneity of the testing dataset, additional YFCC100m videos were identified and 

downloaded. Given the massive size of the YFCC100m dataset, a searching algorithm was developed to 

parse the table records and return video IDs with tags similar to those shown in Table 2.b Then, the IDs 

were randomly subset and used to reference and download the native video files. A total of 391 videos 

were downloaded and evaluated to select diverse, industrially relevant video datasets. After manual 

curation, 62 videos, split equally between fire and no-fire scenarios, but associated with industrial scenes, 

were selected from the downloaded FiSmo and YFCC100m datasets. The videos acquired from FiSmo 

and YFCC100m had a wide variety of variability relative to image resolution, frame rates, and duration. 

Analysis of the videos showed image resolution ranging from 292 × 240 pixels to 1,920 × 1,080 pixels. 

 
a  This is not the YouTube-8M data, but actual YouTube videos. 

b  In its compressed format, the table houses almost 15 Gigabyte (GB) of data, prohibiting the use of desktop software such as 

Excel to open and view the records. Python 3.6 was used instead. 
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Frame rates ranged from 7 to 30 fps, with video duration running from about 5 to 900 seconds. For this 

reason, additional standard video processing methods were developed to transform the video datasets to 

suitable formats for each respective VFD method. Because these video processing methods are unique for 

each method configuration, these details will be provided in the respective method subsections in Section 

3. 

3. METHODS 

Section 1.1 revealed multiple peer-reviewed articles chronicling fire detection in video imagery using 

machine vision and machine learning. Some approaches relied on rules-based classification schemas 

based on pixel-color features. Others utilized ANNs and temporal algorithms to classify fire and no fire 

scenes. For this task, two methods were used and evaluated as baseline classifiers against an advanced 

long short-term memory (LSTM) classifier developed in this effort. 

Figure 5 shows the high-level workflow for each method used. The color-feature classifier 

incorporated a simple pixel-extraction method based on fire-color features to output a binary 

classification of fire or no-fire at frame and video levels on the YFCC100m and FiSmo videos. The CNN 

classifier was trained on the downloaded YouTube-8M dataset. However, the CNN was not tested on the 

YFC100m and FiSmo videos because training and validation results indicated the model could not 

“learn” fire detection using the YouTube-8M data architecture and the selected datasets (as will be 

explained in Section 3.2). The LSTM classifier incorporated an LSTM neural network trained on the 

YouTube-8M dataset. Prior to classification of the YFCC100m and FiSmo video datasets, potential fire 

regions within the frames were identified by the pixel-color features and subset, and then processed to 

match the LSTM mode input configurations for final classification as fire or no fire. 

  

Figure 5. High-level method workflow for the three evaluated methods. 
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3.1 Color Feature Classifier 

The method to extract and classify image features by pixel values is similar to several approaches 

outlined in Section 1.1.1 where pixels are categorized as either flame or no-flame based on color-channel 

thresholds. Pixels with color features matching known flame color are typically expressed as red-yellow, 

with specific attributes relative to image hue, saturation, and other properties. Thus, this method does not 

incorporate training and validation as it is a rules-based approach employing known pixel thresholds. 

3.1.1 Method 

For this analysis, it was decided to utilize several equations from multiple literature sources to extract 

image pixels matching with color features matching those of flame (Çelik and Demirel 2009, Thou-Ho et 

al. 2004). Çelik & Demirel, (2009) tested for a set of expected spectral relationships between channels 

derived from the RGB image, including luminance, the distance of the luminance value from red, the 

distance of the luminance value from blue, and saturation for each pixel. If these conditions are met, the 

pixel is considered a fire pixel. A similar approach is used by Thou-Ho et al. (2004), using different rules-

based detection in the RGB feature space. Both approaches were leveraged for flame detection, by which 

the percentage of pixels that are flagged as fire in a video was used to declare the frame as a fire frame. 

The method developed parsed each test video file at a one-second interval. The equations identified in 

the literature where applied as conditions, and every pixel meeting all conditions was classified as a fire 

pixel. Remaining pixels were classifed as no fire. Figure 6 shows a video frame output from the 

algorithm. The image on the left is the native image, and the image on the right shows the binary pixel 

classificaiton output where all pixels classifed as fire are shown in white. In this image, the fire pixels 

make up 1.9% of the total number of image pixels. The video-frame image-classification threshold 

selected was set to 1% of the number of pixels in a frame as fire. A video-based classifcation rule was 

also applied in that any video with greater than 50% of frames classifed as fire was also classifed at a 

video level as fire. 

  

(a) Native image (b) Pixels classified as fire 

Figure 6. Example of pixels classification as fire pixels. 

3.1.2 Results 

The color-feature classifier was tested on the YFCC100m and FiSmo video dataset referenced in 

Section 2.2. The YouTube-8M data of Section 2.1 could not be utilized for color-feature extraction 

because the videos are not provided, as was discussed earlier. Figure 7 contains line plots for every video 

showing the percentage of pixels classified as fire for every frame at a 1-second interval. The results 

indicate that between 0 and 2 percent, there is significant intermingling of pixels classified as fire in both 

fire and no fire videos. This suggested a 1% threshold for fire detection would be suitable. The patterns 

also indicate sometimes dramatic scene-to-scene changes in the pixel classification occur. 
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Figure 7. The percentage of pixels classified as fire for every 1-second frame in the video datasets. 

 Table 3 shows the results of a confusion matrix for the frame-based accuracy metrics. The analysis 

indicates the 1% threshold resulted in only identifying about 60% of actual fire frames. However, the no-

fire classification was more accurate. It is likely that using a lower threshold will improve fire 

classification, but potentially result in increased false-positive error. Determining an optimal 

classification-threshold value (without incurring either high false-positive or false-negative outcomes) is 

difficult. Table 4 shows the results of the video-based classification confusion matrix. As in Table 3, the 

results indicate low detection probability based on the 1% threshold. 

 

Table 3. Frame-based confusion matrix for the color feature classifier. 

  Predicted 

  Fire No-fire 

True Value 
Fire 0.60 0.40 

No-fire 0.03 0.97 

 

Table 4. Video-based confusion matrix for the color feature classifier. 

  Predicted 

  Fire No-fire 

True Value 
Fire 0.61 0.39 

No-fire 0.00 1.00 
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3.2 CNN Classifier 

CNNs are a type of ANN with fully connected layers designed to mimic the natural image-processing 

pathways found in humans. The CNN concept has seen significant utilization and development over the 

past several years as improvements in computer processing power have facilitated widespread use. At a 

base level, CNNs were designed to recognize important features in imagery data through a network of 

convolution and pooling steps producing modified inputs for a densely connected neural network trained 

to deliver a classification as an output. Like other neural networks, CNNs are considered a black-box 

learner in that no rules are explicitly determinative of the classification output. Instead, the model learns 

the mathematical relationships between the input features and output class during training. 

Figure 8 shows an example of the inner workings of a CNN network. An input image array is passed 

into a convolutional moving-window filter (conv2d) coupled with a rectified linear unit activation 

function (ReLU) (conv2d+ReLu). The moving-window filter passes over the input array to produce a new 

array that contains high-level or dominant features such as edges. The ReLU function is then applied to 

increase the non-linearity of the output to further enhance the features. Next, the array is passed to a 

pooling step that comprises another moving window to reduce array dimensions so as to improve model 

efficiency and reduce noise. These steps are repeated to strengthen the feature extraction and further 

reduce dimensionality. 

Next, the convoluted and pooled features are fed into a fully connected network of artificial neurons 

that are connected by weights (black lines in Figure 8) to the output node, which is responsible for 

determining the class output. Finally, the training data and their associated labels (classes) are inputted 

into the model, which used that information to modify the internal weight values to learn the 

mathematical relationship between the input features and the associated classes. During training, as the 

model learns, the weights are continually adjusted to mathematically map the known input features and 

output classes. 

 

Figure 8. An example CNN architecture containing two convolution and pooling segments feeding into a 

densely connected layer for classification (from Google developers 2019). 

3.2.1 Method 

For this task, a CNN was trained and validated on the YouTube-8M dataset referenced in Section 2.1 

to classify video-image data as fire or no-fire. The CNN classifier was set up using functions existing in 

the TensorFlow library. The network was configured to input the YouTube-8M features vectors and apply 

three convolution and pooling steps to extract the important features and reduce dimensionality and noise. 

After that, the modified features were inputted into a fully connected hidden layer connected to an output 

node responsible for the class determination. A 70-30 ratio of training and validation subsets respectively 

was used. 
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After each cycle (epoch) of training, the model was tasked to predict the fire or no-fire classification 

of the validation portion, which was next compared to the actual video fire or no-fire content. As the 

model learned over continual epochs, the validation accuracy was tracked to ensure model training was 

not stopped before the validation converged; otherwise, the model would likely perform poorly, given it 

did not learn all the patterns in the feature data. When validation accuracy failed to improve over two 

consecutive epochs, the training and validation regime was terminated. This was done to prevent the 

model from memorizing the training data, which negatively impacts generalization or the ability to 

predict from new data. 

3.2.2 Results 

Figure 9 shows the tracked model validation accuracy as the CNN model attempted to learn on the 

YouTube-8M dataset. Training and validation were terminated after 50 epochs as the model could not 

generate any appreciable overall improvement in prediction accuracy on the validation dataset. Overall 

training and validation accuracy only achieved about 50%, which is no better than a baseline guess. This 

pattern indicates the CNN architecture was not suited to learn using the YouTube-8M datasets 

downloaded for this effort. 

 

Figure 9. Accuracy of CNN model. 

The poor performance of the CNN during training and validation was likely due to multiple issues. 

YouTube-8M datasets are made up of features (from the Google feature-extraction process described in 

Section 2.1) which are generated via a network of convolutions and pooling layers. It is possible that 

preprocessing step with the additional convolutions and pooling from the CNN classifier erased the 

features that the model needed to learn the patterns. Also, because videos represent temporal sequences of 

images, a CNN is not set up to learn the temporal patterns of scenes associated with or without fire. 

3.3 LSTM Classifier 

Given that a video comprises a sequence of images collected over time, a time element was 

introduced into the learning process. A third method was evaluated to detect fire using LSTM neural-

network architecture. LSTMs are a type of recurrent neural network (RNN) that does not directly apply 

convolutions or feature extractions to incoming data and are capable of carrying forward temporal 

information or learning over time. First proposed in 1997 (Hochreiter and Schmidhuber 1997), LSTMs 

can learn long-term dependencies given the increased complexity of the network layers (compared to the 

more simplistic network structure of RNNs) and have been applied to YouTube-8M datasets in previous 

analyses with good results (Li et al. 2017). The short-term memory in the LSTM is exhibited through 
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persistent previous information that is used in the current neural network. It also mitigates the vanishing-

gradient problem, which is the networks inability to learn because the updates to the weights within the 

nodes become too small (i.e., insignificant) to alter the output (a process known as fading). The LSTM 

does the mitigation by using a series of gates contained in memory blocks that regulate the flow of 

information. 

3.3.1 Method 

A typical LSTM unit is composed of a cell, an input gate, an output gate, and a forget gate. The cell 

maintains information learned over the input time intervals while the gates are used to regulate the 

sequential or time-based features flowing into and out of the cell. The input gate scales input to the cell 

and behaves as a write operation. The output gate scales output to cells and behaves as a read operation 

when the model accesses cell information. The forget gate scales old cell values and behaves as a reset 

operation. Each of the gates in the LSTM unit behaves as a switch to control read/write operations and 

thus gives the effect of long-term memory to the model. 

For this analysis, an LSTM model was developed using the TensorFlow library. It was configured to 

input 10 YouTube-8M video-frame feature vectors, versus the single frame feature input used in the CNN 

model. This was done to give the model a temporal sequence of 10 seconds because YouTube-8M 

features are derived from videos decoded to 1 fps. The same training and validation approach as the 

methodology described in Section 3.2.2 was applied for LSTM model development. 

In addition to training the LSTM based on the YouTube-8M data, an additional method was 

implemented to modify the 62 test videos from their native video-file format when applied to test the 

LSTM after training and validation. This was performed to extract fire-region pixels from component 

video frames using color feature extraction described in Section 3.1 and generate image subsets 

containing suspect flame pixels. This resulted in a hybrid color-feature extraction and LSTM method. The 

reason for this is that the compressed feature vectors available in the YouTube-8M dataset are likely 

focused on a given labelled object. For example, a feature vector labeled as a car is likely produced from 

a cropped image of a car with little background information. A fire vector likely is derived from a 

cropped image showing only flame colors and structure. Subsetting an image using color-feature 

extraction will generate subset images that better match YouTube-8M training and validation features 

while reducing background complexity that could harm model accuracy. The steps for color feature 

extraction and image subsetting were developed follows: 

• Apply a rules-based binary classification, as described in Section 3.1, to each pixel matching a flame-

color signature. The left of Figure 6 shows a video frame with flames and the resultant output (right) 

of the rules-based classification depicting pixels matching the flame signature as white. 

• A convolution is applied to compute a binary output with extracted locations that have the highest 

number of pixels matching a flame color signature (Figure 10). An arbitrary minimum threshold of 

300 pixels in the region was applied to designate an image section as fire or no fire. This threshold 

was based on exploratory analysis to find an appropriate balance of potential fire pixels and no fire 

pixels in a given region to maximize computational performance and model accuracy. 

• Subset image regions with fire-matching pixels are generated containing pixels matching flame color 

signatures. Figure 11 shows two subset images with fire (left) and another two subset regions with 

color features matching the flame color signature (right). 

The subsets were then preprocessed using 1024 feature extraction, as explained in Section 2.1, to 

generate model input vectors matching YouTube-8M configuration. Since the LSTM was configured for 

10 sequential frames, only video segments with 10 sequential frames generating subsets were passed to 

the 1024 feature extraction and then to the LSTM classifier. 

To support video-level classification, a sliding-window approach was used where each subsequent 

10-second window had a 2-second overlap to cover the entire video. A 2-second overlap prevents the 
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model from having to process excessively redundant information while still having temporal resolution to 

capture high temporal frequency changes that can occur over short periods of time. This keeps any events 

from being lost when windows overlap. When most of the sliding windows are classified as fire, the 

videos were classified as fire. 

 

 

Figure 10. Convolution output of binary classification with pixels count meeting the 300 pixels threshold 

value. 

 

(a) Subset 1 

 

(b) Subset 2 

 

(c) Subset 3 

 

(d) Subset 4 

Figure 11. Subset image outputs with regions dominated by pixels matching a flame color signature. 

3.3.2 Results 

The LSTM model architecture coupled with the color feature extraction image subsetting, and data-

preprocessing methods applied to the testing dataset performed better than the baseline methods 

referenced above. Figure 12 shows the LSTM model accuracy metrics during training and validation with 

the YouTube-8M dataset. Training and validation on the YouTube-8M yielded a validation accuracy of 

98% before accuracy improvements stopped at the 26th epoch. 

When applied to the 62 test videos dataset, the LSTM classifier achieved the highest accuracies at 

both window- and video-levels. At the window-level, it achieved an accuracy of 95% success on fire 

classification, and a 85% accuracy on no-fire classification (Table 5). Only 5% of the frames with fire 

were misclassified as no-fire, versus 15% misclassified as fire when fire was not present in the scene. 

This indicates a slight skew towards false-positive error with even fewer occurrences of false-negative 

error. This is desirable in an industrial setting, because of the consequences of a false negative (i.e. fire 

occurred but was not detected). 

Table 6 shows the confusion matrix of the video-based classification-accuracy metrics for the 

method. The classifier was able to achieve a higher validation accuracy. The model achieved a 100% 
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accuracy for fire classification, coupled with an accuracy of 92% accuracy for the no-fire classification. 

The classifier resulted in no false-negative error and only 8% of videos were classified as false positives. 

 

Figure 12. Accuracy growth of the LSTM neural network. 

Table 5. Window-based confusion matrix for the LSTM classifier. 

  Predicted 

  Fire No Fire 

True Value 
Fire 0.95 0.05 

No Fire 0.15 0.85 

 

Table 6. Video-based confusion matrix for the LSTM classifier. 

  Predicted 

  Fire No Fire 

True Value 
Fire 1.00 0.00 

No Fire 0.08 0.92 

 

4. CONCLUSIONS 

For this analysis, various sources of publicly available datasets containing scenes approximating 

industrial settings with and without fire were investigated and aggregated. They consist of YouTube-8M 

datasets that were downloaded and used to train and validate the neural-network modelling approaches 

used in this analysis. Additional video datasets available from previously published literature sources and 

an online repository provided by Yahoo (YFCC100m and FiSmo) were also downloaded and aggregated 

to test the color feature extraction efforts and isolate fire regions in a frame. 

After data aggregation, two baseline classifiers were evaluated on industrial scenes approximating an 

NPP. The first was comprised of a color-feature extraction classifier using colors of pixels associated with 

fire and thresholding functions found in the literature. This was applied to the YFCC100m and FiSmo 

dataset because the method required the actual video to apply. The second baseline model consisted of a 

CNN classifier trained on the YouTube-8M. Its training and validation results indicated it was not 

suitable for this classification task. Neither method resulted in satisfactory results for the scope of this 

application. 
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A third, temporal method was developed and evaluated incorporating feature-color extraction and a 

data preparation methodology to subset image frames from the video datasets and format them to feed 

into a trained LSTM neural-network classifier. The LSTM classifier was trained with the same YouTube-

8M dataset as the CNN model. The accuracy achieved by this method was 0% missed positives and 8% 

false positives. The overall success of the LSTM classifier is likely derived from the model’s capability to 

account for temporal changes in video-image sequences. It is also likely the image subsetting, to remove 

background variance, resulted in model inputs better suited to the YouTube-8M features with which it 

was trained. The image subsetting also helped mitigate the effect of changing fire locations within a scene 

by providing a zoom-in effect, which helped standardize the test inputs to the training data. This makes 

the developed classifier potentially suitable for a complex environment given the potential everchanging 

variances related to fire size, distance from a camera sensor, image resolution, and background 

complexity. 

5. FUTURE WORK 

Through not targeted in this stage of the research, the method developed is expected to be able to 

detect smoke, assuming a smoke training dataset is developed. However, the YouTube-8M dataset lacks 

labeled smoke features. Hence, additional work would be needed to compile and curate a suitable training 

and validation dataset. Once developed, this can be combined with previous research using a rules-based 

approach (e.g. Chen et al. 2006) to detect and bound potential smoke. 

The method developed can also be equipped on IR fire-detection cameras. IR cameras are used to 

detect fires and can be equipped with machine-learning methods to identify fire features within an IR 

image from noise such as a hot light bulb.  

Because fire watch is a safety requirement for the nuclear regulator license, performance needs to be 

maximized to present the case for regulators to accept such solutions as a replacement for the 

conventional fire watch. As a result, a solution that has relatively low false-positive detection probability 

while maintaining a high fire detection probability is desired. This could benefit from the incorporation of 

multimodal sensors and data fusion. Because varying sensor technologies have specific strengths and 

weaknesses relative to specific tasks, combining designs into multimodal sensors and, potentially, 

ensemble learners could improve detection accuracies while minimizing false-positive rates. Some 

examples of other sensors to fuse into the decision making are 

• A nighttime fire and smoke detection system that incorporates an active laser light projected into the 

field view (Ho 2013). If aerosol particles such as those comprising smoke are accumulating in the air, 

the resulting light-scattering pattern will change over time, resulting in a differing return signal. The 

spectral, diffusing, and scattering characteristics of the return signals can then be classified using an 

SVM classifier. 

• Fire-detection sensors using long-wave infrared (LWIR) light. LWIR is able to pass through smoke 

and detect flame features that would be otherwise obscured in RGB space. In LWIR space, flames 

appear as bright pixel regions that can be combined with known temporal flame-flicker processes to 

support classification (Töreyin et al. 2007). 

Additionally, integrating a machine-learning method into a process to meet a licensing requirement 

necessitates unboxing the machine-learning black box, i.e., explaining the rationale behind the decision 

making and/or providing extensive validation and cases for the regulator of the ability to replace the 

human fire watch. 
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