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SUMMARY 
In order to reduce operation and maintenance costs, nuclear power plants are 

moving from corrective and periodic maintenance to predictive maintenance 
strategies. Such a transition requires changes in the data that needs to be retrieved 
and the type of decision processes to be employed. Advanced monitoring and data 
analysis technologies are essential for supporting predictive strategies. They can 
in fact provide precise information about health of a component, track its 
degradation trends, and provide an estimate of its expected failure time. With such 
information, maintenance operations for a component can be performed right 
before its expected failure time. This dynamic context of operation and 
maintenance operations requires new methods to analyze data, propagate 
component health information from the component to the system level, and 
optimize plant resources. In this respect, the risk-informed asset management 
project has been tasked with developing and testing this new class of methods for 
a risk analytics toolset. This toolset consists of data analytics tools coupled with 
reliability methods designed to manage plant assets and performances in a 
predictive maintenance context. This report shows the latest improvements on this 
development and the initial testing of our methods on the three main research areas 
that the risk-informed asset management project is focusing on: equipment 
reliability data analytics, system reliability modeling, and plant resource 
optimization methods. We show how the methods developed in these areas can 
support predictive maintenance strategies by identifying the most critical 
components and setting an optimal maintenance schedule based on plant economic 
and operational constraints. 
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Bridging Equipment Reliability Data and Robust 
Decisions in a Plant Operation Context 

 
1. INTRODUCTION 

To reduce operation and maintenance costs, existing nuclear power plants (NPPs) are moving from 
corrective and periodic maintenance to predictive maintenance strategies. While corrective maintenance is 
performed only when the component fails (with high costs due to component replacement and unexpected 
system and plant unavailability, e.g., loss of generation), periodic maintenance is performed at specific time 
intervals based on reliability factors and past operational experience (with high costs due to continuous 
maintenance operations that may not be warranted). 

The transition from periodic or corrective maintenance to predictive performance is designed so that 
maintenance occurs only when the component requires it (e.g., before its imminent failure). This guarantees 
that component availability is maximized and that maintenance costs are minimized. However, these 
benefits require changes in the data that needs to be retrieved and the type of decision processes to be 
employed. Advanced monitoring and data analysis technologies are essential to support predictive 
strategies. They can in fact provide precise information about health of a component, track its degradation 
trends, and provide information of its expected failure time. With such information, maintenance operations 
for a component can be performed right before its expected failure time. This dynamic context of 
maintenance operations (i.e., predictive) requires new methods to analyze data, propagate component health 
information from the component to the system level, and optimize plant resources. 

The risk-informed asset management (RIAM) project has been tasked with developing and testing this 
new class of methods for a risk analytics toolset. This toolset consists of data analytics tools coupled with 
reliability methods designed to manage plant assets and performances in a predictive maintenance context. 
This report shows the latest improvements on this development and initial testing of our methods on the 
three main research areas that the RIAM project is focusing on, see Figure 1: equipment reliability (ER) 
data analytics, system reliability modeling, and plant resources optimization methods. We show how the 
methods developed in these areas can support optimization of predictive maintenance strategies by 
identifying the most critical components and setting an optimal maintenance schedule based on plant 
economic and operational constraints. 

 

1.1 Report Structure 
This report has been structured in three main parts that cover the three areas of research and 

development under the RIAM project. Section 2 presents our model-based approach to analyze ER data 
and its foundational elements. We provide details on how systems engineering models can be used to 
analyze ER data more effectively and extract information from textual data. Section 3 focuses on the 
development and testing of ER data analyses designed extract quantitative information to automatically 
assess component health, identify anomalies, and assess possible causes for such anomalies. Section 4 
expands reliability modeling methods developed in the past years based on the concept of margins. We 
provide some practical examples on how available ER data can be used to assess component margins and 
a detailed description on how a margin-based reliability approach contrasts a classical probability-based 
reliability approach. Lastly, Section 5 provides details on how the results obtained from the margin-based 
approach can identify the most critical component that require maintenance operations. In addition, we 
describe progress in the optimization methods designed to manage plant resources. During Fiscal Year (FY) 
2022, we focused, in particular, on the development and testing of evolutionary methods (i.e., based on 
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genetic algorithms [GAs]) that are part of the Risk Analysis and Virtual ENvironment (RAVEN) software 
platform (Alfonsi et al. 2020). Moreover, we developed few plotting tools designed to assess the 
performance of the employed optimization method and its convergence status. 

 

 

Figure 1. Graphical overview of the RIAM project. 
 

2. A MODEL-BASED APPROACH TO PLANT HEALTH 
MANAGEMENT 

As indicated in detail by Mandelli et al. (2021), ER data can have heterogenous data formats: textual, 
numeric, image, etc. Plant system engineers possess vast knowledge of the system, its component 
dependencies and architecture, and system’s past and current performance. As such, they have many 
methods to interpret ER data, identify the causal links between events, and plan recovery actions. Is it 
possible for a machine to assist a system engineer in performing these tasks more efficiently or more 
accurately? While many computer-assisted methods are available they may not be entirely suitable for the 
task in hand. Currently, data analysis methods are based on machine learning (ML) techniques (Mohri and 
Rostamizadeh 2012) that focus on finding patterns contained in data. While such approaches are valuable 
for some use cases, as shown in (Nassif et al. 2021), not all patterns provide insights about the system. This 
is often translated as: “correlation does not imply causation.” 

Here, we are looking at computational methods designed to support system engineers with the analysis 
of ER data using machine reasoning (rather than ML) methods. Machine reasoning is based on the 
construction of causal relations between data elements. This construction process cannot rely solely on data, 
as it requires models. These models represent specific aspects of the “real world” and are the foundations 
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to perform such causal reasoning. When dealing with ER data, these models need to emulate system 
engineer knowledge about component and system architecture and dependencies. 

 

2.1 Model-Based System Engineering Modeling 
In this project we rely on model-based system engineering (Borky and Bradley 2018) (MBSE) 

representations of systems and components. This representation is based on diagrams designed to set 
dependencies (through links) between the “form” and “function” elements of the considered system and 
component. While several MBSE languages are available to construct such diagrams, e.g., System 
Modeling Language (SysML) (Friedenthal et al. 2008), we chose the Object-Process Methodology (OPM) 
language (Dori and Crawley 2002). An OPM diagram provides an essential description of a component 
from both a form and functional perspectives. Each diagram (refer to the generic diagram shown in Figure 
2) explicitly indicates how the component internal functions (represented as ellipses) act upon operands 
and how the elemental parts (represented by square boxes) support these functions. 

From an ER perspective, monitoring and testing activities generate information about component 
functions (e.g., rpm recorded for an induction motor) and form (e.g., blade corrosion of the centrifugal 
pump) elements. Aging and degradation processes directly alter the form-related elements of the component 
that consequently affect component functional elements (i.e., the functions of Figure 2). Typically, from a 
reliability perspective, component failure modes are described in term of loss of function, and, hence, in 
the OPM diagram, failure modes are only directly linked to the functional elements of the component. 
Lastly, note that maintenance activities (such as component replacement, refurbishment, or reconditioning) 
act on the form elements of components. 

We chose the OPM modeling language based on the following reasons: 

• The OPM language is relatively simple in nature and provides the most basic functionalities 
required to extract causal relations between data elements 

• OPM diagrams are easy to process digitally and to use to generate graph structures 

• A direct link between the OPM model and ER data (of any form, e.g., textual or numeric) along 
with aging and degradation can be uniquely established. 

 

Figure 2. Graphical representation of a generic OPM model. 
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For the scope of this report, the OPM diagram of a component (or a system) represents the key point to 
automatically understand and analyze health data. In particular, it clearly links monitored and recorded data 
with failure modes that might affect component performance and maintenance activities that would restore 
component functionality. We are employing model-based data analysis methods to link component models 
with data rather than using ML methods, which solely rely on available data to perform diagnostic and 
prognostic operations. Note that an OPM diagram extends failure modes and effect analysis tables by 
providing a form and functional description of the considered system in a graphical form. 

An example of an OPM model for a centrifugal pump is provided in Figure 3. This simple 
representation includes the most basic elements found in most OPM models and provides the following 
information: 

• The form element “centrifugal pump” is composed by (through the composition link) four 
elements: shaft, impeller, bearing, and motor. 

• The function “increase fluid pressure” requires the form element “centrifugal pump” (through the 
instrument link). 

• The function “increase fluid pressure” transforms “fluid pressure” from low to high (through the 
transformation link). 

• “Fluid pressure” is an attribute of the form element “fluid” (through the characterization link) that 
pump is affecting. 

 

 

Figure 3. Simplified representation of a centrifugal pump using OPM. 
 

2.2 Causal Reasoning with OPM Models 
This section shows how causal reasoning can be performed using OPM models and available 

monitoring data. For this purpose, we considered the OPM model of a generic centrifugal pump shown in 
Figure 4, which also include the location of specific monitoring data. Given the structure of the OPM model 
and based on the links defined in it, it is now possible to automatically create the graph shown in Figure 5. 
Such a graph explicitly indicates the causal relationship between the monitored physical variables. 
Appendix C provides more detail regarding the construction of a causal relationship between OPM 
elements. 

Given the diagrams shown in Figure 4 and Figure 5, it is possible to perform the following analyses: 

• Precursor analysis: given a set of events (e.g., abnormal behavior), this analysis will identify which 
event triggered all the others (i.e., the precursor), see Section 2.2.1. 

• Cause-effect analysis: given a recorded event (e.g., a single abnormal event or precursor event 
identified above), this analysis will identify the possible cause(s) of such an event and inform on 
current component health conditions, see Section 2.2.2. In an OPM context, the cause(s) will focus 
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on form elements (see also Figure 2). Note that when combined with the previous analysis, this 
process can also inform on the evolution of future occurrences. 

 

 

Figure 4. Pump OPM model and available monitoring data. 
 

 

Figure 5. Causal diagram between monitoring data for the component shown in Figure 4. 
 

2.2.1 Precursor Analysis 
Given the abnormal behavior of multiple monitoring data sources, the precursor is determined by 

looking at the source of the causal path between these data sources. The required information for this 
analysis is contained in the sensors causal diagram (e.g., Figure 5). As an example, if abnormal behaviors 
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are being observed from the Flow meter, Vibration data, and Temperature_1 sensors, the precursor is 
identified as Temperature_1 since it is the source of the causal path between these three sensors, see Figure 
6; in other terms: 

Temperature_1 → Vibration data → Flow meter (1) 

 

 

Figure 6. Given anomalous behaviors detected by the three sensors in the yellow area and provided the 
causal relationship among them (see Figure 5), the precursor can be identified as sensor Temperature_1. 

 

Note that abnormal behaviors can be identified by anomaly detection methods applied to numeric data 
(Nassif et al. 2021) and textual data (see Section 3). Hence, the ability to correctly process both numeric 
and textual data is essential to reconstruct the complete chain of events (assuming actual ER data is 
available). 

In practical settings, it is not uncommon that an anomaly recorded by a sensor might have a 
countereffect to other elements of the same system and component that does not have a direct causal 
relationship. An example is provided in Figure 7 that indicates the time of anomaly detection for the same 
three sensors shown in Figure 6. This timing information is directly employed to refine the causal reasoning 
since cause precedes the effect on a temporal scale. In this scenario, we can obtain the following causal 
relations: 

Vibration → Temperature_1 

Vibration → Water_flow 
(2) 

 

Figure 7. Time of anomaly detection for the three sensors shown in Figure 6. 
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2.2.2 Cause-Effect Analysis 
Given the abnormal behavior of one monitoring data source (e.g., the precursor identified from the 

precursor analysis shown above), the set of candidate causes is identified by looking at the form elements 
that support the monitored function. As an example, if Temperature_1 is reporting anomalous behavior and 
Temperature_1 has also been identified as the precursor (see precursor analysis presented above), the 
possible cause for such an anomaly can be identified in the cooling system (see Figure 8) in either the fan 
exhaust or cooling fan. 

 

Figure 8. Given the identification of Temperature_1 as the sensor closest to the precursor, the candidate 
causes can be identified from the form elements of the component OPM model (see Figure 4) that support 
such function (highlighted in red). 

 

3. ANALYSIS OF ER DATA 
As indicated in Section 1, availability of ER data in an essential element to support decisions designed 

to maximize plant availability. In this respect, NPPs are constantly monitoring the status and performance 
of many systems and components. Hence, a large amount of data is continuously being generated. Table 1 
provides a summary of the types of data available from existing power plants, and for each type, we provide 
the format (e.g., either numeric or textual) for such data and examples. The analysis of numeric ER data 
has been addressed in many works (Xingang et al. 2021) and applied to many operational directions 
including anomaly detection, diagnosis, and prognosis. The analysis of textual data has been investigated 
only recently using ML methods (Young et al. 2018) designed to assess their nature (e.g., safety or non-
safety related). 

In the RIAM project, we aim to solve a different class of problems that requires reasoning rather than 
data learning. We are in fact addressing the analysis of ER data by focusing on: 

• Causal reasoning from numeric and textual data (see Section 3.1) 

• Knowledge extraction from textual data (see Section 3.2) 

The objective of analyzing textual ER data is to automate the extraction of quantitative knowledge from 
textual data and assist system engineers in assessing system health. The concept of “knowledge extraction” 
is very broad, and its definition might vary depending on the application context. From a linguist point of 
view, the development of a paragraph (or a sentence) as part of the text follows several directions, as 
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indicated in Table 2 (Swales and Feak 2012). Table 2 also provides the relevance of each paragraph to an 
actual plant reliability context based on our initial observations from actual plant ER textual data. The list 
indicated in Table 2 is incomplete due to the complex nature and possible structure ramifications of any 
natural language (e.g., English). 

 

Table 1. Component ER data: types, structures, and examples. 

Type Data Structure Examples 

Health data 
Textual 
Numeric 
Images (in some instances) 

Report of component failure 
Shaft vibration data 
Report of heavy corrosion of impeller  

Performance data 
Textual 
Numeric 

Successful startup of component and verification 
of water flow pressure 
Pump power vs. flow curve 

Boundary conditions 
Textual 
Numeric 

Fluid found nearby component 
Environment temperature 

 

Given the observations listed in Table 2, we have focused our attention to three classes of paragraphs 
that are common from ER textual data: 

• Causal relation between events (refer to cause-effect paragraph), see Section 3.1 

• Health status report on a single event (refer to analysis and problem-solution paragraphs), see 
Section 3.2 

• Time-based relationship between events (refer to narration paragraphs), see Section 3.3. 

Before jumping on the actual developed NLP methods, from a linguistic point of view, it is important 
to identify specific terms we use throughout this report: 

• Text: the actual raw content of an incident record (IR) that can be composed of multiple sentences 

• Sentence: the base element of a text that expresses a complete concept, which can be simple (i.e., 
single clause) or complex (i.e., multiple clauses) 

• Clause: a grammatical constituent that consists of a subject and a predicate. 

As mentioned, the goal of our NLP methods is to extract quantitative knowledge from the three classes 
of paragraph listed above. Hence, ML methods based on a supervised or unsupervised algorithm do not 
really suit our scopes since they only provide qualitative information (e.g., which user-specified class a 
sentence belongs to).  

Our approach relies in a small portion on ML methods and is predominantly rule based. More 
specifically, for each of the three classes of paragraphs listed above, our NLP methods are looking within 
each sentence and paragraph at specific keywords, sentence architecture relations, and structures. 

 

3.1 NLP Analysis of Cause-Effect Paragraphs 
A common pattern in textual ER data is a report of multiple events along with a causal relationship 

among them. In its simplest form, this paragraph contains an event (i.e., the cause) that triggered a second 
event (i.e., the effect). However, the structure of this type of paragraph can have different forms. In this 
respect, Figure 9 presents, in graphical form, the main forms of a cause-effect structure: 
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• An event that has been identified as not the cause of another event (i.e., an invalid causal 
association) 

• Multiple causes that trigger a single effect 

• A single cause that triggers multiple effects 

• A causal homeostasis that identifies a chain of events that perpetuates in a continuous loop. 

 

Table 2. List of paragraph types (Swales and Feak 2012). 

Paragraph Type Description Relevance to ER 
Textual Data 

Exemplification Designed to provide clarification about a topic Low 

Narration Designed to indicate a series of events that 
have occurred High 

Process Designed to develop sequences that describe 
how an activity can be performed Medium 

Description Designed to provide details about the subject Low 

Comparison and contrast Designed to examine similarities and 
dissimilarities between two subjects Low 

Analogy Designed to explain the subject in terms of 
another Low 

Cause-effect Designed to provide a causal relationship 
between two entities High 

Classification and division Designed to describe entities that are part of a 
whole Low 

Definition Designed to set the definition boundaries of 
the subject Low 

Analysis Designed to describe the subject by weighting 
evidence and possible causal links High 

Enumeration Designed to itemize a series of objects Low 

Problem-solution Designed to describe an undesired situation 
and provide a way to restore it High 

 

Our approach is not employing classical NLP methods (Young et al. 2018) based on ML algorithms 
(e.g., through classification methods [Mohri and Rostamizadeh 2012]). Our methods are rule based (Doan 
et al. 2019) since our goal is to extract actual quantitative information from textual data rather than 
“classifying” the nature of the raw text. These rules are based on the identification of: 

• Keywords, such as nouns, verbs, and adverbs, that identify the possibility that the sentence might 
contain a causal relation between the subject(s) and the object(s) contained in that sentence (see 
Table 3) 

• NLP structures (or constructs) composed of multiple words that indicate a casual transition between 
clauses contained in a sentence or between sentences (see Table 4) 

• Relations between sentence subjects and verbs that are designed to reconstruct the node (see Table 
5): cause → effect. 
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Figure 9. Graphical representation of elemental cause-effect structures: direct cause-effect association 
(top left), invalid association (top right), multiple causes and single effect association (center left), 
multiple effects and single cause association (center right), and causal homeostasis. 

 

Table 3. Partial list of keywords that indicate a cause-effect paragraphs. 

Nouns Verbs Adverbs 
Aftereffect 
Aftermath 
Backfire 
Byproduct 
Conclusion 
Consequence 
Counteraction 
Counterbalance 
Countermove  
Effect 

Augment 
Backfire 
Begin 
Bring about 
Build-up 
Cause 
Change 
Combat 
Compensate 
Counter 
Create 
Deactivate 
Decelerate 
Decrease 

Afterwards 
Consequently 
Eventually 
Finally 
Hence 
So 
Subsequently 
Then 
Therefore 
Thus 
Ultimately 
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Table 4. List of structures that indicate a cause-effect paragraphs. 

Structures 
In response to 
Attributed to 
As a result of 
For this reason 
In consequence 
In this way 
In such a way 

 

Table 5. List of relations that indicate a cause-effect paragraphs. 

Relations DAG 
Event_A + “causal verb” (active) + Event_B 

Event_A + “causal verb” (passive) + Event_B 

Event_A + [to be] a “causal noun” + Event_B 

Event_A + [to be] a “effect noun” + Event_B 

The “causal noun” of + Event_A + [to be] + Event_B 

The “effect noun” of + Event_A + [to be] + Event_B 

Clause_A ; + “cause/effect structure” + Clause_B 

“Cause/effect structure” + Clause_A ; + Clause_B 

Clause_A . “Cause/effect structure” + Clause_B 

Event_A + (verb, “causal adverb”) + Event_B 

A à B 

B à A 

A à B 

B à A 

B à A 

A à B 

A à B or B à A 

A à B or B à A 

A à B or B à A 

A à B 

 

3.1.1 Cause-Effect Paragraphs—Compound Sentence 
Here we discuss a case where a single sentence contains multiple clauses (typically two or three) linked 

together by a causal relationship. An example of a compound sentence with a causal relationship between 
two clauses is provided in Figure 10. In that example, note that the causal structure “for that reason” is 
creating a causal relationship between two events contained in two separate clauses. Each clause is then 
processed using the NLP methods presented in Section 3.4. The NLP analysis workflow designed to extract 
the causal relationship between clauses contained in a single sentence is shown in Table 6. In addition, 
Table 6 provides the outcome of each step for the example indicated in Figure 10. 

 

Figure 10. Example of compound sentence containing a causal relationship between two clauses. 
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Table 6. NLP steps to extract a causal relationship between clauses in a single sentence. 

ID Step Example (see Figure 10) 

1 Identify clauses from sentence 
Clause 1 = AC power interruption 
Clause 2 = pump flow halted 

2 
Identify transition keywords (see  
Table 7) 

“for that reason” 

3 Process each clause (see Section 3.3) 
Element_1 = (AC power, degraded) 
Element_2 = (pump flow, degraded) 

4 Create corresponding directed acyclic graph Element_1 → Element_2 

 

Table 7. List of transition keywords that indicate a causal relationship between clauses in a single sentence. 

Structures 

Accordingly 
Consequently 
Hence 
On account of 
So 
As a result 
Due to 
If … then 
Results in 
Therefore 
Since 
Thus 
Because of 
For that reason 
Leads to 
As such 
It follows that 
Thereupon 
Ergo 
Being that 
So that 

 
3.1.2 Cause-Effect Paragraphs—Multiple Sentences 

Here we discuss the case where multiple sentences (which might contain multiple clauses) linked 
together by a causal relationship. An example of text containing a causal relationship between two sentences 
is provided in Figure 11. From that example, note that the causal structure “consequently” is creating a 
causal relationship between two events in two separate sentences. Each sentence is then processed using 
the NLP methods presented in Section 3.2 and Section 3.3. The NLP analysis workflow designed to extract 
a causal relationship between multiple sentences is similar to the one shown in Table 6. 
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Figure 11. Example of text containing a causal relationship between two sentences. 
 

3.2 NLP Analysis of Health Status Reports 
The analysis of a health status report can have different forms. By looking at an initial textual data set, 

we were able to identify three types of health status reports: 

• Qualitative observation: the report provides a qualitative observation (e.g., good, degraded, 
increase, decrease, stable, stop) about an event (see Section 3.2.1). 

• Quantitative observation: the report provides a precise observation (i.e., report on point value or 
delta estimate of a measured variable) of an event (see Section 3.2.2). 

• Conjecture observation: the report provides information about a future prediction or hypothesis 
about past (see Section 3.2.3). 

In addition, we have identified two attributes that might be contained in health status reports that we aim to 
extract from the raw text: temporal (see Section 3.2.4) and location attributes (see Section3.2.5). 

 

3.2.1 Analysis of Qualitative Observations 
A report in this category provides a fairly simple (i.e., qualitative) observation about an event. As 

indicated by Mandelli et al. (2021), the starting point is the creation of a full set of relations. Table 8 provides 
a list of relations that have been identified along with ER related examples. As indicated in Table 8, the set 
of relations are based on specific sets of nouns, adjectives, verbs, and adverbs. Given the nature of these 
observation, each of these grammatical entities (i.e., nouns, adjectives, verbs, and adverbs) can convey a 
qualitative information: positive, negative, or neutral. In this respect, Table 9, Table 10, and Table 11 
provide a subset of grammatical entities for each of the three classes (positive, negative, or neutral). 

 

Table 8. List of sentence relations for qualitative observation. 

Relation Example 
Subj + “status verb” Pump was not functioning 
Subj + “status verb” + “status adjective” Pump performances were acceptable 
Subj + “status verb” + “status adverb” + obj Pump was partially working 
“status adjective” + subj + “status verb”  Unresponsive pump was observed 
“status noun” + “prep” + “status verb”  Deterioration of pump impeller was observed 
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Table 9. Partial list of keywords that indicate negative information. 

Nouns Verbs Adjectives Adverbs 
Breakdown 
Collapse 
Decline 
Deficiency 
Deterioration 
Failing 
Decay 
Downfall 

Disabled 
Reject 
Stop 
Block 
Halt 
Oppose 
Inhibit 
Hinder 

Unacceptable 
Improper 
Inadmissible 
Undesirable 
Unsatisfactory 
Unacceptable 
Unsuitable 
Unwanted 

Inaccurately 
Erroneously 
Wrongly 
Inadequately 
Incompletely 
Partially 
Imperfectly 
 

 

Table 10. Partial list of keywords that indicate positive information. 

Nouns Verbs Adjectives Adverbs 
Accomplishment 
Achievement 
Enhancement 
Progression 
Solution 
 

Enable 
Empower 
Facilitate 
Permit 
Set up 
Endow 
Let 
Make 

Ready 
Fit 
Capable 
Apt 
Available 
Adequate 
Competent 
Proficient 

Accurately 
Nicely 
Perfectly 
Precisely 
Properly 
Rightly 
Accurately 
Appropriately 

 

Table 11. Partial list of keywords that indicate neutral information. 

Nouns Verbs Adjectives 
Analysis 
Assessment 
Diagnosis 
Evaluation 
Exploration 
Investigation 
Probe 
 

Inspect 
Monitor 
Measure 
Witness 
Examine 
Note 
Recognize 
View 
Watch 
 

Acceptable 
Usable 
Attainable 
Consistent 
Constant 
Stable 
Unaffected 
Uninterrupted 
Untouched 
Intact 

 

3.2.2 Analysis of Quantitative Observations 
This kind of reports provides a precise observation (i.e., a measured point value or delta estimate) of a 

measured variable. This observation requires a numeric value followed by its unit; however, it is not unusual 
that the unit might be missing. The structural relations for this kind of report are often simple in nature, and 
the identified relations are listed in Table 12. Note that when referring to delta estimates, verbs and nouns 
convey a qualitative information (positive, negative, or neutral) can be present. 
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Table 12. List of sentence relation for quantitative observation. 

Relation 
[neutral verb] + “quantity value” 

[neutral verb] + “quantity delta value” 

“quantity value” + [neutral noun] 

“quantity delta value” + [neutral noun] 

[negative verb] + “quantity value” 

[negative verb] + “quantity delta value” 

“quantity value” + [negative noun] 

“quantity delta value” + [negative noun] 

[positive verb] + “quantity value” 

[positive verb] + “quantity delta value” 

“quantity value” + [positive noun] 

“quantity delta value” + [positive noun] 

 

3.2.3 Analysis of Conjecture Observations 
This kind of report provides information about future prediction (e.g., an event that can occur in the 

future) or hypothesis about past events (e.g., a failure that might have occurred). In this context, the verb 
tense plays a role in the identification of this kind of report. Future predictions are characterized by present 
and future tense verbs; hypotheses about past events instead are typically characterized by past tense verbs. 
Also, for this kind of reports, we have identified specific keywords (see Table 13) and relations (see Table 
14) that can inform our methods that we are dealing with a conjecture observation. 

 

Table 13. List of keywords that indicate a conjecture observation. 

Keyword 
Expected 
Possible 
Probable 
Feasible 
Plausible 
Presumed 
Hypothetical(ly) 
Likely 
Unlikely 
Potential 
Uncertain 
Anticipated 
Foreseen 
Impending 
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Upcoming 
Brewing 
Looming 
Forthcoming 

 

Table 14. List of relations that indicate a conjecture observation. 

Relation Example 
Subj + “future verb” 
Subj + “conjecture keyword” + “verb” 
Conditional + subj + “verb” + “conjecture keyword” + “verb” 
Subj + “past verb” + hypothesis 

The pump will fail 
The pump is likely to fail 
If the pump overheats, it is expected to fail 
The pump failed because it overheated 

 

3.2.4 Identification of Temporal Attributes 
Temporal attributes indicate time instances when specific event have occurred. Time of occurrence is 

an important factor from a causal point of view since the emergence of an effect is always preceded by its 
cause. Hence, temporal information can be valuable to identify the causal links between recorded events. 
The identification of temporal attributes is being performed by looking at specific prepositions and relations 
that are listed in Table 15 and Table 16, respectively. 

 

Table 15. List of approximations that indicate a temporal attribute. 

Approximation 
About 
Almost 
Nearly 
Roughly 
Approximately 
Nearly 
Around 
Closely 
Circa 
Close 
Like 
More or less 
Plus or minus 
Roughly 

 
3.2.5 Identification of Location Attributes 

Location attributes provide qualitative information where specific events have occurred. While location 
information does not provide additional health information to a system engineer, it might contain clues 
about the health of a specific component when a reported event has occurred near it. As an example, the 
textual report 
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“An oil puddle was found nearby pump MFW-1A.” 

identifies an element (i.e., oil) that is an integral part of the OPM diagram (see Figure 4) of the considered 
component (i.e., MFW-1A pump) located nearby such a pump. Thus, this textual report indicates how the 
oil element is no longer part of the OPM diagram. The same OPM diagram can now be used to infer the 
impact of such an event on pump function. The identification of location attributes is being performed by 
looking at specific prepositions and relations listed in Table 17 and Table 18, respectively. 

 

Table 16. List of relations that indicate a temporal attribute. 

Relations 
[verb] + at + “time instance” 
[verb] + at + [approximation] + “time instance” 
[verb] + for + “time duration” 
[verb] + for + [approximation] + “time duration” 
[noun] + [verb] + “time duration” 
[noun] + [verb] + [approximation] “time duration” 

 

Table 17. List of keywords that indicate a location attribute. 

Proximity Located Above Located Below 
Across from 
Adjacent 
Alongside 
Approaching 
Beside 
Close 
Close by 
Contiguous 
Distant from 
In proximity 
Near 
Nearby 
Neighboring 
Next to 
Receding from 
Remote 
Retreating from 

Above 
Anterior 
Atop 
Beyond 
High 
On top of 
Over 
Overhead 
Upward 

Below 
Beneath 
Bottom 
Deep 
Down 
Down from 
Downward 
Low 
Posterior 
Under 
Underneath 

 
3.3 NLP Analysis of Temporal Relation Between Events 

Another class of textual data that can often be retrieved from NPPs includes IRs that report multiple 
events linked by temporal relations. As also indicated in Section 3.3.4, temporal relations can be both 
quantitative (e.g., an event has occurred two hours after another event) and qualitative (e.g., an event has 
occurred before another event). 
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Table 18. List of relations that indicate a location attribute. 

Relations 
[verb] + “location keyword” + noun 
Subj + “location keyword” + obj 

 

Note that a temporal relation does not necessarily imply a causal relation. In this respect, OPM models 
can reconstruct the causal relationship between events if additional ER data is available. For the scope of 
this report, we are following Moerchen’s process (2009), which lists the major temporal relations between 
events (see Figure 12): 

• Order: sequential occurrence of events 

• Concurrency: (almost) simultaneous occurrence of events from beginning to end 

• Coincidence: temporal intersection of events 

 

Figure 12. Graphical concepts of time-based relations: order, duration, concurrence, and coincidence of 
events (https://archive.siam.org/meetings/sdm11/moerchen.pdf). 
 

Note that event duration (which is also indicated in Figure 12) does not provide information about temporal 
relations between events; instead, as indicated in Section 3.3.4, event duration is here considered a temporal 
attribute. 

As described in Sections 3.2 and 3.3, the analysis of sentences containing temporal relations involves 
identifying specific keywords, relations, and grammatical structures in each sentence. In this respect, Table 
19 and Table 20 provide the identified keywords (i.e., verbs, adjectives, and adverbs) and grammatical 
structures that indicate the order and coincidence of events. 
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Table 19. List of keywords and structures that indicate order of events. 

Keywords 
Structures 

Verbs Adjectives Adverbs 
Antedate 
Follow 
Postdate 
Precede 
Predate 
Succeed 
 

After 
Before 
Consecutive 
Earlier 
Following 
Former 
Later 
Next 
Past 
Precedent 
Previous 
Prior 
Subsequent 
Succeeding 
Successive 

Afterward 
Consecutively 
Consequently 
Directly 
Hereafter 
Later 
Next 
Previously 
Subsequently 
Successively 
Then 
Thenceforth 
Thereafter 
 

Soon after 
After that 
After a while 
 

 

Table 20. List of keywords that indicate the concurrence and coincidence of events. 

Keywords 
Structures 

Verbs Adjectives Adverbs 
Accompany 
Conform 
Correspond 
Harmonize 
Parallel 

Accompanying 
Attending 
Coexistent 
Concomitant 
Concurrent 
Imminent 
Simultaneous 
Synchronic 

When 
Thereupon 
While 
During 
 

At that point 
At that moment 
At that time 
At that instant 
In the end 
On that occasion 
 

 

Table 21. List of relations that indicate the order of events. 

Relations 
Event_1 + [order verb] + Event_2 
Event_1 + [verb] + [adverb] + Event_2 
Event_1 + [verb] + [adjective] + Event_2 

 

Table 22. List of relations that indicate the concurrence and coincidence of events. 

Relations 
Event_1 + [verb] + [adverb] + Event_2 
Event_1 + [verb] + [adjective] + Event_2 
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3.4 Examples of NLP Analysis 
3.4.1 Rule-Based Health Information Extraction 
We employ SSC OPM models (see Section 2.1) to generate a set of object-process language textual 
elements that lists not only all OPM elements but also their relationship. The textual OPM elements can be 
directly used by the Safety, Risk, Reliability Model Library (SR2ML) NLP module to identify these 
elements, that is the rule-based named entity recognition (NER), in the raw IR text. Before the rule-based 
NER process, the SR2ML NLP module performs several syntactic analyses on the raw text, as shown in 
Figure 13. 

 

Figure 13. SR2ML NLP process. 
 

In this research, we have collected a list of typical examples of IR descriptions (see Table 23) to test 
the effectiveness of the SR2ML NLP module. First, a list of SSCs tags is generated from the OPM model 
(see Table 24). These tags are used to formulate a list of patterns directly adopted by the SR2ML NLP 
module. The extracted entities and their health status are highlighted in blue and yellow, respectively, as 
presented in Table 25. In order to have a better illustration of the extracted data, we have presented the pair 
of SSC entities and health statuses in Table 26. As we observed, there are two misidentifications highlighted 
in green. They are easily resolved if we also include the health status keyword (highlighted in red) in the 
health status as illustrated in the following examples: 

 

Pump test failed due to power supply failure. Pump, testà Pump, test failed 

RCP pump 1A was cavitating and vibrating to 
some degree during test. 

Pump, some degree à Pump, vibrating some 
degree 

 

Table 23. Examples for IR textual reports. 

A leak was noticed from the RCP Pump 1A. RCP Pump 1A pressure gauge was found not operating. RCP Pump 
1A pressure gauge was found inoperative. RCP Pump 1A had signs of past leakage. The pump is not 
experiencing enough flow during test. Slight vibrations noticed—likely from pump shaft deflection. Pump flow 
meter was not responding. Rupture of pump bearings caused pump shaft degradation. Rupture of pump bearings 
caused pump shaft degradation and consequent flow reduction. Power supply has been found burnout. Pump test 
failed due to power supply failure. Pump inspection revealed excessive impeller degradation. Pump inspection 
revealed excessive impeller degradation likely due to cavitation. Oil puddle was found in proximity of RCP Pump 
1A. Anomalous vibrations were observed for RCP Pump 1A. Several cracks on the pump shaft were observed; 
they could have caused pump failure within few days. RCP Pump 1A was cavitating and vibrating to some degree 
during the test. This is most likely due to low flow conditions rather than mechanical issues. Cavitation was 
noticed but did not seem severe. The pump shaft vibration appears to be causing the motor to vibrate as well. The 
pump had noise of cavitation, which became faint after OPS bled off the air. Low flow conditions most likely 
causing cavitation. The pump shaft deflection is causing the safety cage to rattle. The pump is not experiencing 
enough flow for the pumps to keep the check valves open during the test. The pump shaft made noise. Vibration 
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seems like it is coming from the pump shaft. Visible pump shaft deflection. Pump bearings appear in acceptable 
condition. The pump made noises—not enough to affect performance. Pump shaft has a slight deflection. 

 

Table 24. OPM elements identified in the IRs of Table 23 from the centrifugal pump OPM model shown 
in Figure 4. 

External low-pressure water flow 
Internal high-velocity water flow 
External high-pressure water flow 
Pump 
Pump bearings 
Pump shaft 
Impeller 
Diffuser 
Housing 
Casing 
Centerline support 
Seal 
Motor 
Pump coupling 
Rotor 
Stator 
Power supply 
Cooling system 
Lubrication pump 
Cooling fan 

 

Table 25. Information extraction by SR2ML NLP module. 

A leak was noticed from the RCP pump 1A. RCP pump 1A pressure gauge was found not operating. RCP pump 
1A pressure gauge was found inoperative. RCP pump 1A had signs of past leakage. The Pump is not 
experiencing enough flow during test. Slight Vibrations is noticed - likely from pump shaft deflection. Pump flow 
meter was not responding. Rupture of pump bearings caused pump shaft degradation. Rupture of pump bearings 
caused pump shaft degradation and consequent flow reduction. Power supply has been found burnout. Pump test 
failed due to power supply failure. Pump inspection revealed excessive impeller degradation. Pump inspection 
revealed excessive impeller degradation likely due to cavitation. Oil puddle was found in proximity of RCP pump 
1A. Anomalous vibrations were observed for RCP pump 1A. Several cracks on pump shaft were observed; they 
could have caused pump failure within few days. RCP pump 1A was cavitating and vibrating to some degree 
during test. This is most likely due to low flow conditions rather than mechanical issues. Cavitation was noticed 
but did not seem severe. The pump shaft vibration appears to be causing the motor to vibrate as well. Pump had 
noise of cavitation which became faint after OPS bled off the air. Low flow conditions most likely causing 
cavitation. The pump shaft deflection is causing the safety cage to rattle. The Pump is not experiencing enough 
flow for the pumps to keep the check valves open during test. Pump shaft made noise. Vibration seems like it is 
coming from the pump shaft. Visible pump shaft deflection. Pump bearings appear in acceptable condition. Pump 
made noises - not enough to affect performance. Pump shaft has a slight deflection. 
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Table 26. Extracted SSC entities and their health status. 

SSC Entities Health Status 

Pump A leak 
Gauge Not operating 
Gauge Inoperative 
Pump Signs of past leakage 
Pump Not enough flow 
Pump shaft Slight vibrations 
Pump Not responding 
Pump bearings Rupture 
Pump shaft Degradation 
Pump bearings Rupture 
Pump shaft Degradation 
Power supply Burnout 
Pump Test 
Pump supply Failure 
Pump Inspection 
Impeller Degradation 
Pump Inspection 
Impeller Degradation 
Pump Oil puddle 
Pump Anomalous vibrations 
Pump shaft Several cracks 
Pump Failure 
Pump Some degree 
Pump shaft Vibration 
Motor Vibrate 
Pump Noise of cavitation 
Pump shaft Deflection 
Pump Not enough flow 
Pump shaft Noise 
Pump shaft Vibration 
Pump shaft Deflection 
Pump bearings Acceptable condition 
Pump Noises 
Pump shaft A slight deflection 

 

3.4.2 Rule-Based Causal Relation Identification 
For the extraction of the causal relationship between SSCs in a sentence, we employ a set of rule 

templates based on specific trigger words and relations (see Section 3.1). Once the SSCs entities and their 
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health status has been identified, we can apply these rules to identify the causal relations. Using the same 
example presented in Table 23, we can identify the following causal relations presented in Table 27 after 
the rule-based NER process (the results are presented in Table 25). There is one causal relation that is not 
captured by SR2ML NLP module because “safety cage” is not listed in the OPM model. This can help us 
to enhance our OPM model. 

 

Table 27. Causal relations identified by SR2ML NLP module. 

Text After Rule-Based NER Identified Causal Relations 
Rupture of pump bearings caused pump shaft 
degradation. 

(pump bearings: Rupture) “caused” (pump shaft: 
degradation) 

Rupture of pump bearings caused pump shaft 
degradation and consequent flow reduction. 

(pump bearings: Rupture) “caused” (pump shaft: 
degradation) 

Pump test failed due to power supply failure.  (Pump: test failed) “due to” (power supply: failure) 
Pump inspection revealed excessive impeller 
degradation.  

(Pump: inspection) “revealed” (impeller: degradation) 

Pump inspection revealed excessive impeller 
degradation likely due to cavitation. 

(Pump: inspection) “revealed” (impeller: degradation) 

Several cracks on pump shaft were observed; they 
could have caused pump failure within few days. 

(pump shaft: Several cracks) “caused” (pump: failure) 

The pump shaft deflection is causing the safety cage to 
rattle. 

None 

 

3.4.3 Coreference Handling 
This process is tasked with finding the expressions that refer to the same entity in the text. This is 

particularly relevant where the text includes several sentences and a reference to an entity is not indicated 
with its proper name but with a pronoun. Through the SR2ML NLP module, we can correctly identify the 
coreferences in the text presented in Table 23 as shown in Table 28. 

 

Table 28. Example of coreference identification. 

Coreference Examples Identified Coreference 
Several cracks on pump shaft were observed; they could 
have caused pump failure within few days. 

(Several cracks, they) 

Vibration seems like it is coming from the pump shaft. (Vibration, it) 
 

3.5 NLP Methods Development 
In this work, we have integrated SpaCy (https://github.com/explosion/spaCy), PySBD 

(https://github.com/nipunsadvilkar/pySBD), and Coreferee (https://github.com/msg-systems/coreferee) 
for text data analyses. SpaCy is an open-source Python library, released under the MIT license1, for 
advanced NLP, including tagging, parsing, NER, text classification, and more. It features state-of-the-art 
speeds and provides a variety of linguistic annotations to give insights into a text’s grammatical structure. 
PySBD is a rule-based sentence boundary disambiguation Python package, released under the MIT 

 
1 https://opensource.org/licenses/MIT  
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license, to determine sentence boundaries. Coreferee is also an open-source Python library, released 
under the MIT license, to resolve coreferences. Table 29 presents a list of analysis steps we employed to 
process digital text data. In the following subsections, we present a more detailed description for each 
analysis step. 

 

Table 29. NLP analysis pipelines. 

ID NLP Steps NLP Pipeline Note 

1 Tokenization tokenizer (SpaCy) Segmenting text into words, punctuations 
marks, etc. 

2 Sentence segmentation  
pysbdSentenceBoundaries 
(PySBD) 
 

Finding and segmenting individual 
sentences 

3 
Part of speech (POS) 
 

tagger (SpaCy)  Assigning word types to tokens, like verb 
or noun 

4 Dependency parsing parser (SpaCy) 
Assigning syntactic dependency labels and 
describing the relations between individual 
tokens, like subject or object 

5 Lemmatization lemmatizer (SpaCy) 
Assigning the base forms of words, such as 
the lemma of “was” is “be” and the lemma 
of “pumps” is “pump” 

6 Similarity  tok2vec (SpaCy) 
Comparing words, text spans, and 
documents and how similar they are to 
each other 

7 Rule-based entity 
recognition 

PhraseMatcher, 
DependencyMatcher, and 
entity_ruler (SpaCy) 

Finding sequences of tokens based on their 
texts and linguistic annotations and 
labeling named SSCs 

8 Merge phrase or merge 
noun chunks mergePhrase (customized) Merging the noun with the words 

describing the noun as a single token  

9 Coreference  
initCoref (customized), 
Coreferee (Coreferee), 
anaphorCoref (customized) 

Resolving coreference situations where 
two or more words within a text refer to 
the same entity 

 

3.5.1 Tokenization 
The first step in processing the text is to tokenize it using a SpaCy tokenizer (i.e., segment it into a list 

of words, punctuation, and so on) by applying rules specific to raw text, as illustrated by Figure 14. First, 
the raw text is split on whitespace characters. Then, the tokenizer processes the text from left to right. On 
each substring, it performs two checks: 

1. Does the substring match a tokenizer exception rule? For example, “don’t” does not contain 
whitespace but should be split into two tokens, “do” and “n’t.” 

2. Can a prefix, suffix, or infix be split off, such as punctuation like commas, periods, hyphens or 
quotes? 

If there’s match, the rule is applied, and the tokenizer continues its loop starting with the newly split 
substrings. This way, tokenizer can split complex, nested tokens like combinations of abbreviations and 
multiple punctuation marks. 
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Figure 14. Tokenization process (source: https://spacy.io/usage/spacy-101). 
 

3.5.2 Sentence Segmentation 
The next important step is to determine the sentence boundaries, that is, segment the text into a list of 

sentences. It is a key underlying task for NLP process. In this work, we employ PySBD 
(https://github.com/nipunsadvilkar/pySBD), a rule-based sentence boundary disambiguation Python 
package, to detect the sentence boundaries. We have developed a custom pipeline using PySBD that is used 
together with SpaCy to split text into a list of sentences. In general, there are three different approaches to 
segment sentences: 1) rule based, requiring a list of hand-crafted rules, 2) supervised ML, requiring training 
datasets with labels and annotations, and 3) unsupervised ML, requiring distributional statistics derived 
from raw text. We choose the rule-based approach because the errors are interpretable and the rules can be 
adjusted incrementally. Moreover, the performance can be better than the ML models. For example, PySBD 
passes 97.93% of the Golden Rule Set exemplars (a language-specific set of sentence boundary exemplars) 
for English, with an improvement of 25% over the next best open-source Python tool (Sadvilkar and 
Neumann 2020). 

 

3.5.3 Part of Speech 
After the correct segmentation of sentences, we used SpaCy tagger to parse each sentence and tag each 

token in the sentence. Both “TAG” and “POS” attributes are generated for each token after the SpaCy 
tagger process. “POS” is the simple universal part-of-speech tag, does not include information for any 
morphological features, and only covers the word type (https://universaldependencies.org/u/pos/). The 
morphology is the process by which a root form of a word is modified by adding prefixes or suffixes that 
specify its grammatical function but do not change its POS. These morphological features are added to each 
token after the POS process and can be accessed through token’s “morph” attribute. In addition, the “TAG” 
attribute expresses the POS and some amount of morphological information. For example, the POS 
“VERB” tag is expanded into six “TAG” tags, “VB” (verb, base form), “VBD” (verb, past tense), “VBG” 
(verb, gerund or present participle), “VBN” (verb, past participle), “VBP” (verb, non-3rd person singular 
present), and “VBP” (verb, 3rd person singular present). In this work, we employ these POS and TAG tags 
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to determine the description of the SSC health status (conjecture or qualitative observations). Table 30 
presents the detailed English POS tags. 

 

Table 30. Part-of-speech tags (source: https://v2.spacy.io/api/annotation). 

TAG POS Morphology Description 
$ SYM  symbol, currency 
`` PUNCT PunctType=quot PunctSide=ini opening quotation mark 
'' PUNCT PunctType=quot PunctSide=fin closing quotation mark 
, PUNCT PunctType=comm punctuation mark, comma 
-LRB- PUNCT PunctType=brck PunctSide=ini left round bracket 
-RRB- PUNCT PunctType=brck PunctSide=fin right round bracket 
. PUNCT PunctType=peri punctuation mark, sentence closer 
: PUNCT  punctuation mark, colon or ellipsis 
ADD X  email 
AFX ADJ Hyph=yes affix 
CC CCONJ ConjType=comp conjunction, coordinating 
CD NUM NumType=card cardinal number 
DT DET  determiner 
EX PRON AdvType=ex existential there 
FW X Foreign=yes foreign word 
GW X  additional word in multiword expression 
HYPH PUNCT PunctType=dash punctuation mark, hyphen 
IN ADP  conjunction, subordinating or preposition 
JJ ADJ Degree=pos adjective 
JJR ADJ Degree=comp adjective, comparative 
JJS ADJ Degree=sup adjective, superlative 
LS X NumType=ord list item marker 
MD VERB VerbType=mod verb, modal auxiliary 
NFP PUNCT  superfluous punctuation 
NIL X  missing tag 
NN NOUN Number=sing noun, singular or mass 
NNP PROPN NounType=prop Number=sing noun, proper singular 
NNPS PROPN NounType=prop Number=plur noun, proper plural 
NNS NOUN Number=plur noun, plural 
PDT DET  predeterminer 
POS PART Poss=yes possessive ending 
PRP PRON PronType=prs pronoun, personal 
PRP$ DET PronType=prs Poss=yes pronoun, possessive 
RB ADV Degree=pos adverb 
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RBR ADV Degree=comp adverb, comparative 
RBS ADV Degree=sup adverb, superlative 
RP ADP  adverb, particle 
SP SPACE  space 
SYM SYM  symbol 
TO PART PartType=inf VerbForm=inf infinitival “to” 
UH INTJ  interjection 
VB VERB VerbForm=inf verb, base form 
VBD VERB VerbForm=fin Tense=past verb, past tense 

VBG VERB VerbForm=part Tense=pres 
Aspect=prog verb, gerund or present participle 

VBN VERB VerbForm=part Tense=past 
Aspect=perf verb, past participle 

VBP VERB VerbForm=fin Tense=pres verb, non-3rd person singular present 

VBZ VERB VerbForm=fin Tense=pres 
Number=sing Person=three verb, 3rd person singular present 

WDT DET  wh-determiner 
WP PRON  wh-pronoun, personal 
WP$ DET Poss=yes wh-pronoun, possessive 
WRB ADV  wh-adverb 
XX X  unknown 
_SP SPACE   

 

3.5.4 Dependency Parsing 
POS provides information about word types and morphological features, but it does not provide the 

dependency information between words. We employ SpaCy parser to label dependency parsing. Examples 
of dependencies include nominal subject (nsubj), direct object (dobj), indirect object (iobj), etc. The parser 
uses a variant of the non-monotonic arc-eager transition-system described by Honnibal and Johnson (2014). 
The parser uses the terms “head” and “child” to describe the words connected by a single arc in the 
dependency tree. The dependency labels, as listed in Table 31, are used for the arc label, which describes 
the type of syntactic relation that connects the child to head. Figure 15 shows an example with the graphic 
representation of the dependency tree using SpaCy’s built-in displaCy visualizer, where the POS tag is 
placed below each word. In this work, we employ the dependency tree to develop rules for identifying 
SSCs’ health information and causal relationships between SSCs. 

 

 

Figure 15. POS tagging and dependency parsing. 
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Table 31. Syntactic dependency parsing (source: https://v2.spacy.io/api/annotation). 

Label Description 
acl clausal modifier of noun (adjectival clause) 
advcl adverbial clause modifier 
advmod adverbial modifier 
amod adjectival modifier 
appos appositional modifier 
aux auxiliary 
case case marking 
cc coordinating conjunction 
ccomp clausal complement 
clf classifier 
compound compound 
conj conjunct 
cop copula 
csubj clausal subject 
dep unspecified dependency 
det determiner 
discourse discourse element 
dislocated dislocated elements 
expl expletive 
fixed fixed multiword expression 
flat flat multiword expression 
goeswith goes with 
iobj indirect object 
list list 
mark marker 
nmod nominal modifier 
nsubj nominal subject 
nummod numeric modifier 
obj object 
obl oblique nominal 
orphan orphan 
parataxis parataxis 
punct punctuation 
reparandum overridden disfluency 
root root 
vocative vocative 
xcomp open clausal complement 
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3.5.5 Lemmatization 
A lemma is the base form of a token. The lemma of failing, fails, and failed is fail. Lemmatization is 

the process of reducing words to their base forms or lemmas. In this study, we employ the SpaCy 
lemmatizer to reduce inflectional forms or derivationally related forms of a word to a common base form. 
In this case, we only need to provide the base forms of keywords that leads to a significant reduction in the 
number of keywords. 

 

3.5.6 Similarity 
Another tool to reduce the number of keywords is to build a recommendation system utilizing word 

similarity. The similarity is determined by comparing word vectors or “word embeddings.” We employ 
SpaCy tok2vec pipeline and similarity attribute to compute similarity scores for making a prediction of 
how similar the keywords are. 

 

3.5.7 Rule-Based Entity Recognition 
In this work, we employ the OPM model to generate a set of SSCs and their relations. We utilize the 

set of SSCs to construct patterns that can be directly pass into the SpaCy “entity_ruler” to identify and 
label the SSCs as recognized entities. The “entity_ruler” is a SpaCy pipeline that lets us add named entities, 
such as OPM objects and processes, which makes it easy to combine rule-based and statistical NER for 
even more powerful pipelines. The “entity_ruler” will find matches in the text and label them using the 
specified pattern label. If any matches were to overlap, the pattern matching most tokens takes priority. If 
they also happen to be equally long, the match occurring first in the text is chosen. Entity patterns are 
dictionaries with two keys: “label,” specifying the label to assign to the entity if the pattern is matched, and 
“pattern,” the match pattern. The entity ruler accepts two types of patterns: 

• Phrase patterns for exact matches (string) 
{“label”: “SSC”, “pattern”: “pump”} 

• Token patterns with one dictionary describing one token (list) 
{“label”: “SSC”, “pattern”: [{“LOWER”: “pump”}, {“LOWER”: “shaft”}]}. 

The “entity_ruler” can also accept an “id” attribute for each pattern. Using the “id” attribute allows 
multiple patterns to be associated with the same entity. 

 

3.5.8 Merge Phrase 
In order to obtain more informative description about the SSCs’ health status, we have developed a 

custom SpaCy pipeline “mergePhrase.” The purpose of “mergePhrase” is to combine a noun plus the words 
describing the noun, such as “slight vibrations,” “not enough flow,” “past leakage,” or “oil puddle.” 

 

3.5.9 Coreference 
Coreference are situations where two or more words within a text refer to the same entity, such as 

“Several cracks on pump shaft were observed; they could have caused pump failure within few days.” In 
order to better understand the causal relationship among SSCs, resolving coreferences is an important task 
in this work. We employ Coreferee (https://github.com/msg-systems/coreferee), an open-source 
Python library, to resolve coreferences within English texts. It uses a mixture of neural network and 
programmed rules to identify potential coreference mentions. In this work, we have developed several 
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custom SpaCy pipelines to make Coreferee work seamlessly with SpaCy, which helps us identify 
causal relations among multiple sentences. 

 

4. RELIABILITY MODELING 
Two of the challenges of current plant reliability approaches are the ability to integrate plant health data 

and support decision-making. Condition-based data and diagnostic and prognostic information are in fact 
not considered in plant reliability models to inform system engineers on the most critical components. 
Currently, the propagation of quantitative health data from the component to the system level is a challenge 
given the diverse nature and structure of the data. On the other hand, plant reliability methods (which are 
typically based on fault trees or reliability block diagrams) can effectively propagate data from the 
component to the system level, but failure rate or probability values are an approximated integral 
representation of the past industrywide operational experience, which neglects the present component 
health status (e.g., diagnostic and condition-based data) and projection (when available from prognostic 
data). 

Our first claim is that system reliability models should propagate health information from the 
component to the system and plant level in order to provide a quantitative snapshot of system and plant 
health and identify the most critical components. Our second claim is that component health should be 
informed solely by that specific component current and historical performance data and should not be an 
approximated integral representation of the past industrywide operational experience. 

We are directly supporting these two claims by proposing a different approach for performing reliability 
modeling that relies on available component diagnostic, prognostic, and condition-based data to measure 
component health and propagates this information through fault-tree models. The propagation of health 
data from the component to the system level is performed not in terms of probability but in terms of margin, 
where margin is defined as the distance between the present actual status and an undesired event (e.g., 
failure or unacceptable performance). Through a cause-effect lens, while classical reliability models target 
the effect associated with a component performance, a margin-based approach focuses on the cause of an 
undesired component performance (i.e., component health). Hence, thinking of reliability in terms of 
margins implies decision-making based on causal reasoning. We show how fault-tree models can be solved 
using a margin language and how this process can effectively help system engineers identify the most 
critical components. 

 

4.1 Summary of Margin-Based Reliability Modeling 
Current reliability models are based on Boolean logic structures (Lee and McCormick 2011) (e.g., fault 

trees), which describe the deterministic functional relationship between SSCs and human interventions. 
Each basic event (BE) in a reliability model represents a specific elemental occurrence (failure of a 
component, failure to perform an action by the plant operators, recovery of a safety system, etc.), and a 
probability value is associated with each BE, which represents the probability that the BE can occur. 
However, maintenance and surveillance operations are typically not completely integrated into a 
probabilistic risk assessment structure. In addition, a probability value associated with an event is thus an 
integral representation of the past operational experience for such an event, and such value does not 
incorporate information on the present SSC health status (e.g., from diagnostic and condition-based data) 
and health projections (when available from prognostic data) on anticipated changes in SSC condition and 
performance in the near future. 

A possible alternate path can start by redefining the word “reliability” to encompass a broader meaning 
that better reflects the needs of a system health and asset management decision-making process. Rather 
than focusing on how likely an event is to occur (in probabilistic terms), we think in terms of how far this 
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event is from occurring (Mandelli, Wang, and Hess 2021). This new interpretation of risk transforms the 
concept from one that focuses on the probability of occurrence to one that focuses on assessing how far 
away (or close) an SSC is to an unacceptable level of performance or failure. This transformation has the 
advantage that it provides a direct link between the SSC health evaluation process and standard plant 
processes used to manage plant performance (e.g., the plant maintenance and budgeting processes). The 
transformation also places the question into a form that is more familiar and readily understandable to plant 
system engineers and decision makers. When dealing with condition-based data (actual and archived data), 
margin 𝑀4  is defined here as the distance between observed past SSC conditions (e.g., oil temperature, 
vibration spectrum) that lead to failure. 

Consider now two components, 𝐴 and 𝐵. The margin 𝑀4  for both components can be visualized in a 2-
dimensional space, as shown in Figure 16. Starting with brand-new components (i.e., 𝑀4!, 𝑀4" = 1), the 
aging degradation that affects both can be represented by the blue line in Figure 16, which parametrically 
represents the combination of the normalized margins (𝑀4!(𝑡),𝑀4"(𝑡)) as at a point in time t. Note that, if 
no maintenance (whether preventive or corrective) was ever performed on either component, this path 
would move from the coordinates (1,1) for Components 𝐴 and 𝐵 at the beginning of life to the coordinates 
(0,0) where both components had failed. We can identify these regions in Figure 16: the occurrence of both 
events where 𝑀4! = 0 and 𝑀4" = 0 and the occurrence of either event when 𝑀4! = 0 or 𝑀4" = 0. Now we 
can calculate 𝑀4	for the events listed above. This is accomplished by following the margin definition of the 
distance between the actual condition of Components 𝐴 and 𝐵 and 𝑀4  conditions identified by the event 
under consideration (e.g., the occurrence of both or either events): 

𝑀4(𝐴	𝐴𝑁𝐷	𝐵) = 𝑑𝑖𝑠𝑡[(𝑀4!, 𝑀4"), (0,0)] 

𝑀4(𝐴	𝑂𝑅	𝐵) = 𝑚𝑖𝑛?𝑀4!, 𝑀4"@ 
(3) 

The function 𝑑𝑖𝑠𝑡[𝑋, 𝑌] is designed to calculate the Euclidean distance between points 𝑋 and 𝑌. 

Hence, exact solutions can be obtained extremely fast. More precisely, reliability calculations using 𝑀4-
based data can be performed by completing these four steps: 

1. Construct the fault tree (FT); at this point, an FT contains only deterministic information about 
the architecture of the system under consideration (i.e., it simply models how the BEs are related 
to each other from a functional perspective). 

2. Generate the minimal cut sets (MCSs) from the FT; as also indicated in Step 1, an MCS still 
represents the minimal combinations of BEs that lead to the top event. 

3. Assign a margin value 𝑀4	to each BE. 
4. Calculate the margin 𝑀4	of the union of the MCSs. 
As part of system reliability modeling, it is always important to determine the importance of each BE. 

In a probabilistic risk assessment setting, this is performed by relying on risk-importance measures (RIM), 
such as Birnbaum or Fussell-Vesely. Given the different nature of 𝑀4 , it is possible to perform a risk-
importance ranking by relying on a classical sensitivity measure (derivative based) for each BE defined as: 
𝑅𝐼𝑀"# =

$	&'()#)
$	&'("#)

. In other words, 𝑅𝐼𝑀"# indicates how a small variation of 𝑀4(𝐵𝐸) directly affects the 
margin 𝑀4(𝑇𝐸) of the top event TE. 

 

4.2 Notes on Distance Metrics 
Note that, in a setting where margin values decrease as function of time, there is an infinite number of 

ways to move from the actual conditions of Components A and B, that is, the point (𝑀4!, 𝑀4") to the point 
(0,0). However, the upper bound of such a distance is represented by the Manhattan metric, 
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𝑑𝑖𝑠𝑡F𝑀4!, 𝑀4"G = 	𝑀4! +𝑀4", where we note that there is no need to apply the absolute value convention as 
both 𝑀4!, 𝑀4" are by definition positive. On the other hand, the Euclidean metric represents the actual lower 

bound 𝑑𝑖𝑠𝑡F𝑀4!, 𝑀4"G = I𝑀4!
+ +𝑀4"

+. Thus, the metric distance should be selected based on the intended 
analysis, either conservative (Euclidean metric) or optimistic (Manhattan metric). 

 

 

Figure 16. Graphical representation of event occurrences based on a margin framework. 
 

Given these two bounds, which metric should be chosen? This question can be answered by referring 
to how condition-based data are collected. From a practical standpoint, condition-based data are collected 
from plant components on a regular basis (either continuously in time or at prescribed time intervals). 
Hence, at any specific time, we can quantify not only the margins for Components A and B (i.e., 𝑀4!, 𝑀4") 
but also how these margin values change over time (i.e., $	&

'!
$,

, $	&
'"
$,
). The margin value for 𝑀4(𝐴	𝐴𝑁𝐷	𝐵) 

can now be better estimated by considering this new information. 

An example of this process can be visualized with the graphics in Figure 17 where the margin value 
for both components uniformly decreases as a function of time (i.e., $	&

'!
$,

 and $	&
'"
$,

 are constant and do not 
change with time) but where the degradation of Component B occurs at a faster rate than Component A 
(i. e. , $	&

'!
$,

< $	&'"
$,

). In such conditions, the temporal evolution of 𝑀4!	and 𝑀4" is represented by the 
continuous blue line of Figure 17. Starting from Point 𝛼 (where components do not show any degradation, 
that is, brand new or recently refurbished to as good as new condition components), the blue line progresses 
up to actual measured conditions (Point 𝛽). Given the estimate of $	&

'!
$,

 and $	&
'"
$,
, it is now possible to 

estimate the progression of 𝑀4!	and 𝑀4"in the future (i.e., the dashed blue line in Figure 17). This information 
can be used to estimate 𝑀4(𝐴	𝐴𝑁𝐷	𝐵) using base trigonometry rules as the length of the segment 𝛽0PPPP =
𝛽𝛾PPPP + 𝛾0PPP. Note that this estimate of 𝑀4(𝐴	𝐴𝑁𝐷	𝐵) is still bounded by the Euclidean and Manhattan metrics 
but provides a more accurate estimate.  
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Figure 17. Graphical representation of the margin calculation for 𝑀4(𝐴	𝐴𝑁𝐷	𝐵) when considering the 
temporal evolution of 𝑀4!	and 𝑀4". 

 

Lastly, note that all these distance operations can be extended from a 2D to a generic n-dimensional 
space. In this analysis, once Point γ is reached (reflecting the condition where Component B has failed), 
estimating the time required to reach the point where both Component A and B failed now becomes a 1D 
problem, only dependent on the condition of Component A at the time of the Component B failure and the 
rate of degradation of Component A, which was linear in this simple example. It is noteworthy that the 
information used in the margin approach also provides the capability to estimate the time required to reach 
additional failure states that may be of interest for maintenance planning. 

Note that historic information of $	&
'!
$,

 and $	&
'"
$,

 can be used to predict future 𝑀4!	and 𝑀4" evolutions. As 
an example, Figure 18 shows the historic evolution of 𝑀4!	and 𝑀4" and their predicted evolution based on 
the derivative information. The predicted evolution has been calculated by generating a random walk out 
of the distribution of $	&

'!
$,

 and $	&
'"
$,

. The same information can be plotted on the temporal scale, as indicated 

in Figure 19 where, given existing 𝑀4!	and 𝑀4" data, the value of 𝑀4(𝐴	𝐴𝑁𝐷	𝐵) using $	&
'!
$,

 and $	&
'"
$,

 is 
calculated (see the green line). The predicted evolution of 𝑀4(𝐴	𝐴𝑁𝐷	𝐵) can be calculated given the 
predicted evolution of 𝑀4!	and 𝑀4" (see the random walks plotted in red, blue, and purple for 𝑀4!, 𝑀4" and 
𝑀4(𝐴	𝐴𝑁𝐷	𝐵), respectively). 



 

 48 

 

 

Figure 18. Plot of the historic evolution of 𝑀4!	and 𝑀4" and their predicted evolution based on the 
derivative information. 

 

 

Figure 19. Plot of the historical and predicted evolution of 𝑀4! (red line),	𝑀4" (blue line), and 
𝑀4(𝐴	𝐴𝑁𝐷	𝐵) (green and purple line) based on the derivative information. 
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4.3 Margin Operations for AND, OR, KooN, and StandBy Operators 
Section 4.1 has indicated how margin-based reliability approach can be propagated through AND and 

OR operators (see Equation 3). Note that those same expressions can be extended to multiple (i.e., more 
than two) BEs: 

𝑀4(𝐴	𝐴𝑁𝐷	𝐵	𝐴𝑁𝐷	𝐶) = 𝑑𝑖𝑠𝑡[(𝑀4!, 𝑀4" , 𝑀4-), (0,0,0)] 

𝑀4(𝐴	𝑂𝑅	𝐵	𝑂𝑅	𝐵) = 𝑚𝑖𝑛?𝑀4!, 𝑀4" , 𝑀4-@ 
(4) 

From a graphical point of view, the evolution of margin of N BEs can be plotted into an n-dimensional 
space where the same distance-based considerations shown in Section 4.1 still apply. The AND and OR 
operators are the basic elements that can be found in a system reliability model; however, two additional 
operators are typically found: the standby and the K out of N (KooN) operators. 

The standby operator is designed to represent a configuration composed by two components that 
support the same function. At a given time, only one component supports such a function while the second 
one (on standby) is activated when the first fails or is taken out service. This operator is not too dissimilar 
from the AND operator; the main difference is that the margin of a component on standby does not change 
(i.e., there is no degradation) while the operating component is providing the desired function (see Figure 
20). Note that this scenario is identical to the AND operator when the Manhattan distance is used: 

𝑀4(𝐴	STAND-BY	𝐵	) = 𝑀4! +𝑀4" (5) 

 

 

Figure 20. Margin evolution for two components, A and B, in a standby configuration. 
 

The KooN configuration corresponds to a situation where out of 𝑁 components that can support a 
specific function, only 𝐾 (where 𝐾 < 𝑁) of them are actually required. This situation is a convolution of 
both a parallel and series configuration. The margin calculation for this configuration can be deduced by 
following these considerations: 

1. Let’s consider all 𝑅 combinations 𝐶. 	(𝑟 = 1,… , 𝑅) of 𝐾 components out of 𝑁 

2. Each combination 𝐶. 	is redundant in that all combinations are in a parallel configuration 
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3. The margin for each combination 𝐶. is the minimum of the margin of its 𝐾 components, that is, all 
𝐾 components in a configuration are in a series configuration 

4. The minimum margin value of a combination 𝐶. is the lowest margin of the 𝐾 components 

5. The maximum margin value of a combination 𝐶. can be obtained by ranking in ascending order 
the margin of the 𝐾 components and by considering the 𝑁 − 𝐾 + 1 highest 

Hence, margin of a KooN configuration 𝑀4/001 can be obtained by (see Figure 21): 

1. Ranking in ascending order the margin of the 𝑁 components 

2. Picking the first 𝑁 − 𝐾 + 1 components: 𝑀42, … ,𝑀413/42 

3. Calculate 𝑀4/001 using the AND operator: 

𝑀4/001 = 𝑑𝑖𝑠𝑡[(𝑀42, … ,𝑀413/42), (0, … ,0)] (6) 

 

 

Figure 21. Margin calculation for KooN configuration. 
 

Note that a series configuration corresponds to a KooN configuration where 𝐾 = 𝑁 = 2; Equation 6 would 
return the lowest margin, 𝑀42 (see Section 4.1). A parallel configuration of Components A and B 
corresponds to a KooN configuration where 𝐾 = 1 and 𝑁 = 2. In this scenario, Equation 6 would return 
𝑀4(𝐴	𝐴𝑁𝐷	𝐵) = 𝑑𝑖𝑠𝑡F?𝑀4!, 𝑀4"@, (0,0)G (see Section 4.1). 

 

4.4 Integration of ER Data 
This section provides practical examples on how margin values can be estimated from available ER 

data. Given the variety of ER data, we have partitioned these examples into three categories: anomaly 
detection data (see Section 4.4.1), condition-based data (see Section 4.4.2), and prognostic data (see Section 
4.4.3). 

 

4.4.1 Anomaly Detection Data 
Anomaly detection methods (Nassif 2021) are designed to identify unexpected behaviors, that is, 

outside the normal operation boundaries. Hence, they provide binary information about the status and health 
of a particular component (it either works normally or abnormally). In a margin context, an anomaly 
identifies an unexpected behavior (or an unknown failure model) that requires immediate attention. In this 
scenario, the quantification of a margin value from an anomaly detection method can be as follows: 
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𝑀4 = _	1 Component working normally
	0 Component under anomalous behavior (7) 

Note that such an anomaly can be triggered by an internal (e.g., degradation and rupture of an internal 
part) or external (e.g., failure of another component that support a function the monitored component) event. 

The binary nature of the margin definition provided above can be fairly limiting in practical situations. 
Depending on the employed anomaly detection method, it is possible to overcome this limitation by 
adapting the definition of margin on the detection computational engine. Within the RIAM project, we 
employ auto-associative kernel regression (AAKR) (Baraldi et al. 2015) for testing purposes due to its 
robustness and explainability advantages. The AAKR method employs historic measured data under normal 
conditions and validates this data set with currently measured data through a kernel regression (Mohri and 
Rostamizadeh 2012). Based on the observed data (Ξ056378) and currently measured data (Ξ056), the AAKR 
algorithm reconstructs the expected data values (Ξ.98) through a regression: 

Ξ.98 =
∑ 𝑤(𝑛)	Ξ056378(𝑛)1
7:2

∑ 𝑤(𝑛)1
7:2

 
(8) 

where: 

𝑤(𝑛) =
1

√2𝜋ℎ+
𝑒3

;<#$%3	<#$%&'((7)=
)

+>)  
(9) 

Under normal conditions, Ξ.98 should be very similar to Ξ056 (i.e., Ξ056 ≅ Ξ.98). The condition Ξ056 ≠
Ξ.98, indicates anomalous behavior. Under the AAKR context, the same regression method can be 
employed to determine the component margin as follows: 

𝑀4 = 1 −
iΞ056 − Ξ.98i

ℎ
 

(10) 

By using Figure 22 as reference case, note that: 

• If the component is under normal conditions (i.e., kernel regression is located within the component 
normal condition data 	Ξ056378, see the green points in Figure 22), Ξ056 ≅ Ξ.98; hence 𝑀4 = 1 

• If the component is under abnormal conditions, the norm of difference between Ξ056 and Ξ.98can 
be at most ℎ. 
 

4.4.2 Condition-Based Data 
As indicated in Section 4.1, the margin can be calculated as the distance between actual and limiting 

conditions. In practical settings, limiting conditions can be represented by technical specifications specific 
to the component. 

As an example, for induction motors, oil viscosity must be below a specified limiting condition to 
ensure proper motor function. Oil viscosity can significantly change as a function of motor rotation speed. 
Hence, the margin can be calculated as the difference between the specified limiting condition and the 
currently measured oil viscosity. In general terms, given an upper limiting condition 𝑥?-  for a monitored 
variable 𝑥056, the margin 𝑀4  can be defined as: 

𝑀4 =
𝑥?- − 𝑥056

𝑥?- −min(𝑥056)
 (11) 

where min(𝑥056) indicates the minimum allowable value for 𝑥056. 
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Figure 22. Integration of anomaly detection data into margin calculation (AAKR test case). 
 
In a more practical setting, cage winding issues for three-phase induction motors may emerge within 

few years due to premature aging (Stone et al. 2014) and is usually caused by the degradation of the 
electrical insulation in the rotor (if present) and stator windings. In this context, we used current signature 
analysis testing to detect cage winding issues. This is performed by identifying two sideband currents 
centered around frequency 𝑓+: 

𝑓+ = 𝑠	𝑓2 (12) 

where 𝑓2indicates the supply frequency (i.e., 60 Hz) and 𝑠 indicates slip factor. The two sideband currents 
𝑓65 are located at (see Figure 23): 

𝑓65 = 𝑓2 ± 2𝑠𝑓2 (13) 

If significant sideband currents 𝐼@%$ are present (dB difference between current 𝐼@* at 𝑓2 and average 
sideband 𝑓65	height ≤ 45 dB), cage winding breaks are likely to occur. Given this information, the margin 
can be defined with (see Figure 24): 

𝑀4 =
?𝐼@* − 𝐼@%$@ − 45

𝐼@* − 45
 (14) 

For rotating components (e.g., centrifugal pumps), a typical degradation process affects pump 
mechanical seals. The pump vibration signal is constantly monitored using standard accelerometers and 
data for normal and failed conditions (for example see Figure 25) are often available from manufacturers. 
Statistical indicators, such as the root mean square (RMS), of the signal can be measured. Examples of 
RMS analyses observed when seals are degraded beyond their limit for different pump rotation speeds are 
shown by Luo et al. (2021) and in Figure 26. In this context, margin 𝑀4  can be defined as: 
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𝑀4 =
𝑇ABCBD9A − 𝑇056

𝑇ABCBD9A − 𝑇70.CBE
 

(15) 

where 𝑇 represents the RMS value measured under difference conditions: normal, damaged, and observed. 

 

 

Figure 23. Typical current signature analysis where sideband currents 𝐼@%$ are centered around the 
frequency of the supply current. Source: https://irispower.com/learning-centre/relative-merits-off-line-
line-testing-rotating-machine-stator-rotor-windings/. 

 

 

Figure 24. Graphical representation of margin provided measured sideband currents 𝐼@%$. 
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Figure 25. Time domain analysis of vibration signal. Source: Luo et al. (2021). 
 

 

Figure 26. Vibration data for different mass flow rates and margin representation provided actual pump 
conditions. Adapted from Luo et al. (2021). 

 

A more complex scenario can occur when normal and failed data is distributed over multiple variables. 
As an example, Figure 27 shows data for both normal and failed conditions distributed over two monitored 
variables (i.e., 𝑢0 and 𝑦0). This scenario extends the analysis presented in Figure 22 where both normal 
(indicated as Ξ1-) and failed (indicated as Ξ@BFE) data is available. In order to determine the margin, we rely 
on the ML concept of a classifier.  
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Figure 27. Example of scenario where normal and failed conditions (defined over a 2D space) are 
available to determine component margin. 

 

As an example, if the 𝐾 nearest neighbor classifier is employed, we can determine the margin 𝑀4  
associated with actual measured data point 𝑃056 by selecting the 𝐾 closest data points 𝑃G in the Ξ1- ∪ Ξ@BFE 
dataset: 

𝑀4 =
∑ 𝑤(𝑘) ∙ δG/
H:2
∑ 𝑤(k)/
H:2

 
(16) 

where 

δG = _
	1 if 𝑃G is a normal condition data point	(i.e., 𝑃G ∈ Ξ1-)
	0 if 𝑃G is a failed condition data point	(i.e., 𝑃G ∈ Ξ@BFE)

 (17) 

and 

𝑤(k) =
1

𝑑𝑖𝑠𝑡+(𝑃056, 𝑃G)
 (18) 

As a practical example, a common failure mode associated with an induction motor is the failure of ball 
bearings that support shaft rotation. A database for both normal and faulty bearing conditions can be found 
at the Bearing Data Center of Case Western Reserve University2. Researchers there conducted a set of 
experiments inserting bearing faults and collecting vibration data using accelerometers at both the drive 
end (DE) and fan end (FE) of the motor housing. Figure 28 plots the vibration data recorded at the DE and 
FE under normal conditions and when two faults have been inserted (with fault diameters, FD, set to 0.007 
in. and 0.040 in.). 

Note how this data set is structurally different from the one plotted in Figure 27 since the normal 
condition data is actually fully contained within failed data. The approach presented above and described 
by Equations 16–18 can still be applied by preprocessing the data and setting the weight δG = 1 for failed 
data points within the envelop of the baseline (i.e., normal conditions data). 

 
2 Official website: https://engineering.case.edu/bearingdatacenter. 
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Figure 28. Vibration data recorded at the DE and FE under normal conditions and when two faults have 
been inserted (FD set to 0.007 in. and 0.040 in.). Source: https://engineering.case.edu/bearingdatacenter. 

 

4.4.3 Prognostic Data 
For components where a prognostic analysis is available, it is possible to estimate the component’s 

remaining useful life (RUL) when component degradation starts to emerge. Typically, RUL is quantified 
in probabilistic terms where a probabilistic distribution function defined over the time axis 𝑡 is generated, 
𝑅𝑈𝐿~𝑃𝐷𝐹IJ?(𝑡). In such a case, the margin can be estimated using two approaches. The first defines the 
margin as 𝑀 = 1 − 𝐶𝐷𝐹IJ?(𝑡) where 𝐶𝐷𝐹IJ? indicates the cumulative distribution function corresponding 
to 𝑃𝐷𝐹IJ?. The second approach estimates the margin as the distance between the actual component life 
and a point estimate of the RUL distribution (e.g., the 5th percentile). 

A graphical representation of the margins for both approaches is shown in Figure 29 for an estimated 
RUL normally distributed as shown in red. Note that the proposed approach updates the margin value when 
component health is measured and when a better RUL estimation (i.e., less uncertainty associated with 
RUL) is available from the corresponding prognostic model. 

 

4.5 Notes on Common Cause Failures 
In classical reliability modeling, an important element to consider is the notion of component failure 

induced by a common cause, that is, common-cause failures (CCFs). The probabilistic treatment of CCFs 
is a challenge, and several methods have been developed as described by Lee and McCormick (2011). The 
reason behind it is that if a CCF has been identified (e.g., from previous operational experience), the 
assumption of independence between events is no longer valid; this has strong implications when 
probability calculations are performed. As an example, let’s consider two events, A and B, the goal is to 
determine then	𝑃(𝐴	𝑂𝑅	𝐵) = 𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐴	𝐴𝑁𝐷	𝐵) where 𝑃(𝐴	𝐴𝑁𝐷	𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵). If these 
events are independent, 𝑃(𝐴	𝐴𝑁𝐷	𝐵) = 	𝑃(𝐴)	𝑃(𝐵). However, if common causes have been identified, the 
formulation of 𝑃(𝐴	𝐴𝑁𝐷	𝐵) cannot be simplified as 𝑃(𝐴)	𝑃(𝐵) but needs to model the effect of CCFs 
through the term 𝑃(𝐴|𝐵). This implies that 𝑃(𝐴	𝑂𝑅	𝐵) is calculated as 𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐴)	𝑃(𝐵) +
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𝑃(𝐶𝐶𝐹) where 𝑃(𝐴) and 𝑃(𝐵) are quantified by neglecting the contribution due to CCFs and the effect of 
CCFs is isolated in the term 𝑃(𝐶𝐶𝐹). The challenge is the estimation of 𝑃(𝐴) and 𝑃(𝐵) (where CCF effects 
are taken out) along with 𝑃(𝐶𝐶𝐹) from available data such that the effects of common causes are not 
counted twice (in both 𝑃(𝐴) and 𝑃(𝐵)). 

 

 

Figure 29. Margin values obtained from the two proposed approaches (green and blue lines) given an 
estimate of component’s RUL (red line). 

 

In a margin-based reliability setting, common causes still play a relevant role since external conditions 
might change the margins of multiple components or a causal relation between component margins might 
be present. However, we will show how the effect of common causes does not pose a challenge in a margin-
based calculation and there is no need to isolate the effects induced by common causes to avoid double 
counting by considering the cause-effect diagram presented in Figure 30. This situation considers two 
components, A and B, with their health affected by two causes (Cause 1 for Component A and Cause 2 for 
Component B). A third cause, the common cause, affect both components. The health of Component A 
(and, hence, also its margin) includes the contribution of Cause 1 and the common cause; similarly, the 
health of Component B includes the contribution of Cause 2 and, again, the effect of the common cause. 
Recall that, when considering the margin for failure of either or both components (by solving 
𝑀(𝐴	𝑂𝑅	𝐵)	and 𝑀(𝐴	𝐴𝑁𝐷	𝐵), respectively, see Section 4.3), the concept of independence has never been 
mentioned. Whether common causes are present or not, the distance operations indicated in Section 4.3 
require a full estimate of the margins 𝑀(𝐴)	and 𝑀(𝐵), which includes the contribution of Cause 1, Cause 2, 
and the common cause. Hence, the effect of common causes must be accounted twice for both 𝑀(𝐴)	and 
𝑀(𝐵). 

 

4.6 Examples of Margin-Based Reliability Calculations 
A margin-based reliability calculation example is indicated here for the system shown in Figure 31 

(Youngblood 2001) composed of seven components, A–G. For each component, an estimation of its RUL 
is provided (see the top plot of Figure 32). The RUL estimation is represented here probabilistically, that 
is, the RUL is represented by a probabilistic distribution function designed to represent the uncertainty 
associated with a RUL estimate (in terms of the RUL mean and variance). In this scenario, we represent 
system reliability in terms of minimal path sets (MPSs) rather than MCSs. A detailed reliability modeling 



 

 58 

of the system shown in Figure 31 is provided in Appendix A. The system margin was calculated by 
considering the MPSs of the system of Figure 31 and applying the margin rules indicated in Section 4.3 
using the following settings: 

• Component RUL margin model: Approach 1 of Figure 29 

• Distance metrics for 𝑀(𝐴	𝐴𝑁𝐷	𝐵): Euclidean 

 

 

Figure 30. Graphical representation of common causes in a margin context. 
 

 

Figure 31. Example of system architecture represented in terms of block diagrams (Youngblood 2001). 
 
The obtained temporal profile of system margin is shown in the bottom plot of Figure 32. From this 

plot, note the following: 

1. Even though component margin is defined in the [0,1] interval, the system margin can be higher 
than one (but still cannot be negative). A system margin greater than one implies that there are 
redundancies that can compensate for component failures. In other terms, when there is more than 
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one single MPS, the system margin is greater than one. At time 𝑡 = 0, there are four MPSs, and the 
margin for each component is set to one, hence the system margin can be calculated as 
√1 + 1 + 1 + 1 = 2.0. 

2. When components are approaching their own RUL, their margin decreases to zero until they are 
considered failed. Hence the number of available MPSs decreases and system margins decreases 
as well to a value equal to the square root of the number of available MPSs. 

3. At time 𝑡 = 8	𝑚𝑜𝑛𝑡ℎ𝑠, Component E fails, and even though Components B and G are working 
properly, there are no available MPSs and, consequently, the system margin value drops to zero. 

The next step is the quantification of the reliability measures (RIM) indicated in Section 4.1. Given the 
component margin values at each time instant and the obtained system margin (see Figure 32), these 
measures were calculated and plotted in Figure 33 for all seven components.  

 

 

Figure 32. Example of margin-based calculations using prognostic data for the system indicated in Figure 
31. For each of the seven components, A–G, a RUL is provided in the top plot and the corresponding 
system margin quantification is indicated in the bottom plot. 
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In order to show the type of information generated by these plots, let’s consider the two regions of these 
plots highlighted in red: 

1. The first region is located at the beginning of the plot where all components have a margin value 
of one (i.e., all components are healthy). However, note that the RIM values are not equal among 
the seven components due to the fact that each component directly supports a different number of 
MPSs. As an example, Component B supports three MPSs (BCD, BEG, BFG) while Component A 
supports one single MPS (A). Hence, improving the margin of Component B is more beneficial at 
the system margin. 

2. The second region is located toward the end of the time axis where only one MPS is available 
(BEG). In this case, Components B and G are still healthy (i.e., their margin is still one) while 
Component E is approaching its RUL. Thus, the importance of Component E is greater than the 
importance of Components B and G. 
 

 

Figure 33. Plot of RIM measures for the seven components of the system of Figure 31 given the provided 
prognostic data (in terms of RUL) indicated in the top plot of Figure 32. 

 

4.7 Links Between Margin and Classical Reliability Approaches 
At this point, it is relevant to present the structural differences between classical reliability models (i.e., 

based on probability of failure) and a margin-based approach. These differences can be described though a 
cause-effect lens, as shown in Figure 34. Classical reliability models focus on the effect node (i.e., to model 
component failure), whereas component reliability data are used to assess the system failure probability. 
Such models are used to monitor plant risk (as currently done by plant risk monitors) and to set “offline” 
decisions, such as setting periodic surveillance and maintenance activities or to set the duration of planned 
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system maintenance outages (either as part of a plant configuration risk management program or a plant 
risk-managed technical specification program). 

Over the past several decades, plants have been moving from a reliance on periodic to more 
comprehensive predictive strategies where the goal is to only perform intrusive maintenance operations 
when needed. Advanced monitoring and data analysis technologies are essential to support predictive 
strategies. This is where margin-based reliability approaches can be applied to support this type of “online” 
decision-making where, based on current condition-based data, component health data are employed to 
assess component and system health (i.e., the focus is now shifted to the cause node of Figure 34). 

As a final remark, note the following: 

• As indicated in Section 4.4, note that the margin value of a component reflects the status of a 
component provided actual monitored data 

• The temporal evolution of a margin value implicitly includes all non-linear behaviors behind 
component degradation  

• Sudden component performance degradation is mirrored by an equivalent step decrease of the 
corresponding margin value 

 

 

Figure 34. Comparison between margin-based and probability of failure-based reliability modeling 
approaches. 

 

4.8 Numerical Comparison Between Margin and Classical Reliability 
Approaches 

This section provides a more concrete bridge between the margin and classical reliability approaches 
in support of the statements provided in Section 4.7. A common ground for these two kinds of reliability 
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approaches can be established if ER data is composed solely of component failure time values. In this 
scenario, we are considering the failure time value for each component to determine the system failure time 
for the most common system configurations (see also Appendix A): series, parallel, standby, and KooN. 

Given the failure rates for the considered components, the corresponding mean time to failure (MTTF) 
values are calculated. Using the set of equations provided in Appendix A, we can determine the system 
failure time of the considered system configurations using a classical reliability theory basis (see the central 
column of Table 32). 

Similarly, component MTTF values can be translated in terms of margins to determine the system 
margin for the considered system configurations using the equations provided in Section 4.3. In this 
situation, a margin is basically the distance between the actual component life and its predicted life (i.e., 
the component’s MTTF). The system margin 𝑀6K6 for considered system configurations are presented in 
the right column of Table 32. 

The goal now is to translate 𝑀6K6 values back into time values and compare them to 𝑇6K6. We expect 
that this comparison process will provide identical outcomes from classical and margin reliability methods. 
At a first look, the mathematical expressions for 𝑇6K6 and 𝑀6K6 for the series, standby, and KooN 
configurations are very similar. Recall that components margin values (e.g., 𝑀2, 𝑀+ in Table 32) are defined 
over the time axis and quantified based on the component MTTF value; hence, the translation from 𝑀6K6 
to system failure time in a margin-based reliability context gives these outcomes: 

• Series: given that 𝑀6K6 is defined over a minimum of two component margins, the system failure 
time derived from the margin calculation corresponds to 𝑚𝑖𝑛(𝑇2, 𝑇+) (see Figure 35). 

• Parallel: in this configuration 𝑀6K6 follows the path shown in Figure 36 where components fail at 
two different time instances while the system fails when the latter failure occurs (i.e.,	
𝑚𝑎𝑥(𝑇2, 𝑇+)). 

• Standby: in this configuration, the sum of two margin values (i.e., 𝑀2 +𝑀+) is translated into the 
sum of the failure time of both components (i.e., 𝑇2 + 𝑇+). Note that, in this configuration, 𝑀6K6 =
𝑀(𝐴	𝐴𝑁𝐷	𝐵) where the L1 norm is used 𝑀6K6 = 𝑀2 +𝑀+ (see Figure 37). 

• KooN: similar to the series configurations, only 𝐾 components with the highest margin values are 
considered (and consequently the highest failure times). The minimum out of this 𝐾 value gives 
the same outcome as 𝑚𝑖𝑛(first	𝐾	highest	𝑇F). 

 

Table 32. Comparison between system failure time 𝑇6K6 and system margin 𝑀6K6 for four system 
configurations. 

Configuration System Failure Time (classical 
reliability—see Appendix A) System Margin (see Section 4.3) 

Series of two 
components 𝑇!"! = 𝑚𝑖𝑛(𝑇#, 𝑇$) 𝑀!"! = 𝑚𝑖𝑛(𝑀#, 𝑀$) 

Parallel of two 
components 𝑇!"! = 𝑚𝑎𝑥(𝑇#, 𝑇$) 𝑀!"! = 𝑑𝑖𝑠𝑡[(0,0), (𝑀#, 𝑀$)] 

Standby 𝑇!"! = 𝑇# + 𝑇$ 𝑀!"! = 𝑀# +𝑀$ 

KooN 𝑇!"! = 𝑚𝑖𝑛(first	𝐾	highest	𝑇%) 𝑀!"! = 𝑚𝑖𝑛(first	𝐾	highest	𝑀%) 
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Figure 35. Evolution of 𝑀6K6 for two components in a series configuration. 

 

Figure 36. Evolution of 𝑀6K6 for two components in a parallel configuration. 
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Figure 37. Evolution of 𝑀6K6 for two components in a standby configuration. 
 

5. DECISION-MAKING 
The scope of this section is to cover the last portion of the RIAM project research area, which covers 

the development of decision-making tools. This area requires information generated by the other two 
research areas (ER data analytics and system reliability modeling) in various forms depending on the 
specific use case. 

5.1 From Margin to Plant Resource Optimization Methods 
As indicated in Section 4, a margin-based reliability modeling approach is able to quantify component 

health given available ER data and provide insights about the most critical components that might 
negatively affect system operation (through the reliability measures described in Section 4.1). The next step 
is to decide which maintenance operations should be performed to guarantee future system operation. This 
step requires an additional piece information regarding the timing aspect associated with a component 
failure. Such an aspect is captured by the concept of urgency, which we have defined as the amount of time 
available between now and when restoration operations need to start to avoid component failure (see Figure 
38). From a practical standpoint, the component urgency estimation requires two time values: 

• Estimated failure time from prognostic data (i.e., through RUL) or from margin calculations (see 
Section 4.4.3 and Figure 29) 

• Time required to restore component health. If the restoration process requires the replacement of 
the component, the time value can include the time to: obtain the new component (procurement 
time), replace the old component, and install the new component. If the restoration process requires 
onsite activities (e.g., chemical treatment of corroded portions of the component), the restoration 
time can include the time to: take the component offline, perform the restoration activity, and take 
the component back online. 
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Figure 38. Graphical representation of urgency given estimated component failure and required 
restoration time. 

 

At this point, we can select the most critical maintenance operations based on their urgency and the 
reliability importance of the components by plotting all operations on an urgency vs. importance plot as 
indicated in Figure 39. Depending on the industrial and decision-making context, this 2D plot can be 
partitioned in multiple regions where the range of each dimension is divided into two or three intervals. The 
selection of the operations that should be performed to guarantee future system operation can be performed 
by choosing the operations in selected partitions of the urgency vs. importance plot. As an example, for the 
case shown in Figure 39, the operations landing in the red, dark orange, and light orange sectors should be 
chosen. 

 

5.2 Summary of Optimization Methods Development 
As mentioned in Section 1, the RIAM project is focusing on developing methods to optimize plant 

resources (e.g., SSC, personnel, and ER activities). These methods can be classified as either sampling 
methods or optimization methods. Sampling methods are mainly designed to propagate data and model 
uncertainties (e.g., investment evaluation). Optimization methods are designed to determine the best 
solution to a problem that satisfies specified constraints that, for example, account for logic (e.g., 
precedence requirements) and limited resources (e.g., stay within a yearly operations and maintenance 
budget). 

 

Figure 39. Selection of the most critical components in an urgency-importance diagram. 
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Depending on the problem to be solved and type of data available, the optimization algorithm to be 
used differs. As an example, the data structure might be either discrete or continuous in nature. In addition, 
the problem under consideration might require a specific data set or, alternatively, a specific model 
(balancing system reliability, availability, and cost) that changes the problem structure depending on the 
considered boundary conditions. Figure 40 shows in a graphical form the algorithms developed within the 
RIAM project for plant resources management. These methods have been classified depending on the data 
structure for key decisions (either discrete or continuous) and the method that the problem requires (i.e., 
data or model based). 

The first class of methods are data-based schedule prioritization and optimization algorithms 
(formulated in both a deterministic and stochastic form). These methods are based on several variants of 
the knapsack problem (simple, multidimensional, and multiple choice). Recently, two additional versions 
of schedule optimization methods were implemented by the RIAM project. The first reformulates the capital 
budgeting problem in a distributionally robust form, which allows the user to rely on data directly rather 
than proposing a probability distribution from the data itself. The second version reformulates the capital 
budgeting by optimizing performance while explicitly accounting for risk measures that limit low-
probability high-cost events. 

Model-based optimization methods are designed to find the maxima or minima of a generic model (i.e., 
an external model), where the response of the model can change throughout the optimization process. In a 
mathematical form, we are dealing with models that can be considered a black box, where it is possible to 
define its input 𝒙	 = 	 [𝑥2, … , 𝑥1]	and output variables	𝒚	 = 	 [𝑦2, … , 𝑦&]. A model-based optimization 
method aims to minimize (or maximize) one element3 of the output variables: 

min
𝒙

𝑦2
𝑠. 𝑡. 𝒙 ∈ Ξ

𝐲 = 𝑭(𝐱)	
𝑮(𝐲) ≤ 0

 (19) 

In our case, 𝑭(𝒙) is a model (e.g., probabilistic risk analysis code, economic model) that determines 𝒚 
given 𝒙 (i.e., 𝒚 = 𝑭(𝒙)). In some of our applications, 𝒙 and 𝒚 are not subject to measurement or observation 
errors (or, more generally, the model does not possess stochastic behavior). Note that we can introduce two 
possible types of constraints: explicit constraints (𝒙 ∈ Ξ) that limit the variable range of the input variables 
and implicit constraints (𝑮(𝐲) ≤ 0), which limit the variable range of output variables. 

While the data-based methods tend to not be computationally expensive with respect to a function 
evaluation, the model-based methods tend to require more computational resources since the model under 
consideration might have to be run a large number of times, and each model evaluation might take a 
considerable amount of time (from minutes to hours) to execute. 

In the past FYs, there were many efforts to develop and test: 1) discrete optimization methods that are 
part of LOGOS4 and 2) model-based evolutionary methods based on GAs. During FY-22, we have focused 
on the testing and performance evaluation of the LOGOS methods and creating of the XSD schema. This 
activity has been performed in collaboration with Quantum Ventura5 as part of the Small Business 
Innovation Research and Small Business Technology Transfer award last year. The XSD schema was 
created to provide a schema for XML documents that are actually used as input files for all LOGOS 
optimization methods. An XSD schema provides information about the structure of an XML file in terms 

 
3 Note that here we are focusing on a single-objective optimization problem; another class of optimization problems involves 
multiple objectives, which involve more than one objective function to be optimized simultaneously. We approach this class of 
optimization problems using a Pareto frontier analysis (see Section 5.2). 
4 LOGOS official GitHub repository: https://github.com/idaholab/LOGOS. 
5 https://www.quantumventura.com/  
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of nodes and attribute that are allowed to be defined in the XML file itself. An XSD schema was developed 
for each discrete optimization method in LOGOS. This allows the developers at Quantum Ventura to create 
a flexible (html based) graphical user interface for the LOGOS optimization methods. 

 

 

Figure 40. Classes of maintenance approaches and their corresponding optimization methods. 
 

5.3 Testing and Development of Evolutionary Methods 
GAs (Eiben and Smith 2003) represent a relevant class of evolutionary optimization methods for both 

continuous and discrete optimization problems. From a high-level perspective, these methods act on a 
population of sampled points ?𝒙, 𝑭(𝒙)@ (rather than focusing on a one-sample-at-a-time mindset), and they 
iteratively combine pairs of points to generate a new generation of points with higher quality. 

The main operators employed by GAs during the optimization process are (see also Figure 41 for the 
main GA workflow): 

• Crossover: the encodings of two chromosomes are mixed to generate two new encodings 

• Mutation: the encoding of a chromosome is altered by randomly changing the value of a single 
element of the chromosome 

• Replacement: the population of chromosomes is updated by removing chromosomes with low 
fitness or high generational age value and keeping chromosomes with high fitness or low 
generational age. 

During FY-22, several unit tests for main GA operator methods, including the ones listed above, have been 
developed in order to improve the robustness of the RAVEN GA optimization class. The same tests are part 
of the normal regression test that needs to be validated for every change of the RAVEN source code as part 
of the RAVEN version control. 

An existing issue about GA optimization is the ability to monitor the performance of the GA 
optimization method. We tackled this issue by developing a series of plots automatically generated by 
RAVEN at the end of the optimization process. These plots graphically represent the evolution of the input 
𝒙 and output variable 𝑭(𝒙). This evolution is captured every time the sample population ?𝒙, 𝑭(𝒙)@ undergos 
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one iteration loop, as shown in Figure 41; we indicate each iteration as batch. Figure 42 shows one generated 
plot for a sample test case where the input space is 4-dimensional, 𝒙 = [𝑎, 𝑏, 𝑐, 𝑑], while the output variable 
is indicated as 𝑎𝑛𝑠 = 𝑭(𝒙). Starting with the initial population, a batch number of 0, generated using 
standard Monte-Carlo sampling, the GA method performs for each iteration/batch the set of operations 
indicated in Figure 41 on such a population. At each iteration, population input variables 𝒙 are computed, 
and the corresponding output values 𝑭(𝒙) are obtained from the employed model. Figure 42 plots the 
evolution of each iteration and batch for the considered input (i.e., 𝒙 = [𝑎, 𝑏, 𝑐, 𝑑]) and output (i.e., 𝑎𝑛𝑠) 
variables. 

 

 

Figure 41. Graphical representation of the main GA workflow. 
 

Another class of developed GA monitoring plots is shown in Figure 43 where the goal is to monitor the 
distribution of the population in the input space 𝒙 as GA operations shown in Figure 41 are performed for 
each batch. This plot captures the population distribution in a parallel coordinate plot where each line 
corresponds to a single chromosome and each like links the values of each dimension of 𝒙 for such 
chromosome. 
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Figure 42. Plot representing the temporal evolution of the population input (i.e., [𝑎, 𝑏, 𝑐, 𝑑]) and output 
(i.e., 𝑎𝑛𝑠) variables. 
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Figure 43. Parallel plot representing population values in the input space (represented by four variables 
ranging from a to d) for different GA iterations (indicated with batch numbers). 

 

6. CONCLUSIONS 
This report has summarized the RIAM research and development activities during FY-22. The RIAM 

project is creating a direct link between ER data and decision-making by focusing on three main areas: ER 
data analysis, reliability modeling, and plant resources optimization. In the past, the nuclear industry started 
addressing deficiencies in these three areas with various degrees of success. In this respect, the RIAM 
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project has chosen a few critical points in these three areas and developed methods and tools to overcome 
these critical points with innovative methods. 

Regarding the analysis of ER data, we have presented a series of methods and models designed to 
analyze ER data with a particular focus on textual data. We have introduced an approach to extract 
quantitative information from ER textual data, such as IRs. Rather than focusing on ML heuristics, the 
system view of the SSC (through an OPM diagram) provides the knowledge required by our data analysis 
methods to extract knowledge from the textual data retrieved by IRs and work orders and identify possible 
causal links again using the SSC OPM diagram. 

Regarding the system digital modeling, we have continued to develop a new way to perform reliability 
modeling. This margin-based method allows for a complete integration of several types of ER data (from 
condition to prognostic data), and it directly supports decisions that plant system engineers make regularly 
throughout the plant lifecycle. As indicated throughout the paper, this approach is not intended to contrast 
classical reliability models. On the other hand, it is designed to support a different kind of reliability 
question and support dynamic decisions rather than static ones (i.e., performance-related). A margin-based 
interpretation of reliability transforms the concept from one that focuses on the probability of occurrence 
to one that focuses on assessing how far away (or close) an SSC is to an unacceptable level of performance 
or failure. This transformation has the advantage that it provides a direct link between the SSC health 
evaluation process and standard plant processes used to manage plant performance (e.g., the plant 
maintenance and budgeting processes). The transformation also places the question into a more familiar 
and readily understandable form for plant system engineers and decision makers (Xingang 2021). When 
dealing with condition-based data (actual and archived data), we define margin as the distance between 
actual SSC observed conditions (e.g., oil temperature, vibration spectrum) and the condition that leads to 
failure (i.e., condition right before failure). Note that margin values change with time. As an example, when 
new component condition data that indicate component degradation are observed, the component margin 
decreases. Similarly, when maintenance operations are performed to such component, its health is restored 
and margin increases. 

 

REFERENCES 
Alfonsi, A., C. Rabiti, D. Mandelli, J. Cogliati, C. Wang, P. W. Talbot, D. P. Maljovec and C. Smith. 2020. 

“RAVEN User Guide.” INL/EXT-18-44465, Idaho National Laboratory. 

Baraldi, P., F. Di Maio, P. Turati, and E. Zio. 2015. “Robust Signal Reconstruction for Condition 
Monitoring of Industrial Components via a Modified Auto Associative Kernel Regression Method.” 
Mechanical Systems and Signal Processing 60–61: 29–44. 
https://doi.org/10.1016/j.ymssp.2014.09.013. 

Borky, J. and T. Bradley. 2018. Effective Model-Based Systems Engineering. Springer. 
https://doi.org/10.1007/978-3-319-95669-5. 

Dori, D. and E. Crawley. 2002. Object-Process Methodology: A Holistic Systems Paradigm. Heidelberg: 
Springer. https://doi.org/10.1007/978-3-642-56209-9. 

Doan, S., E. W. Yang, S. S. Tilak, P. W. Li, D. S. Zisook, and M. Torii. 2019. “Extracting health-related 
causality from twitter messages using natural language processing.” BMC Medical Informatics and 
Decision Making 19(3): 71–8. https://doi.org/10.1186/s12911-019-0785-0. 

Eiben, A. E. and J. E. Smith. 2003. Introduction to Evolutionary Computing (2nd edition). Heidelberg: 
Springer. https://doi.org/10.1007/978-3-662-44874-8. 

Friedenthal, S., A. Moore, R. Steiner, 2008. A Practical Guide to SysML: The Systems Modeling Language. 
Morgan Kaufmann. https://doi.org/10.1016/C2013-0-14457-1. 



 

 72 

Honnibal, M., Johnson, M. 2014. “Joint Incremental Disfluency Detection and Dependency Parsing.” 
Transactions of the Association for Computational Linguistics 2: 131–142. 
https://doi.org/10.1162/tacl_a_00171. 

Lane, H., Hapke, H., and Howard, C. 2019. Natural Language Processing in Action: Understanding, 
Analyzing, and Generating Text with Python. Shelter Island, New York: Manning Publications. 

Lee, J. C. and McCormick, N. J. 2011. Risk and Safety Analysis of Nuclear Systems. John Wiley & Sons, 
Inc. https://www.doi.org/10.1002/9781118043462. 

Luo, Y., Zhang W., Fan Y., Han, Y., Li, W., and Acheaw E. 2021. “Analysis of Vibration Characteristics 
of Centrifugal Pump Mechanical Seal under Wear and Damage Degree.” Vibration and Control of Fluid 
Machinery and Systems 2021. https://doi.org/10.1155/2021/6670741. 

Mandelli, D., C. Wang, J. Cogliati, C. Smith, S. Hess, R. Sugrue, C. Pope, J. Miller, S. Ercanbrack, D. Cole, 
and J. Yurko. 2020. “Integration of Data Analytics with Plant System Health Program. Idaho National 
Laboratory Technical Report.” INL/EXT-20-59928, Idaho National Laboratory. 
https://www.osti.gov/servlets/purl/1691467. 

Mandelli, D., C. Wang, and S. Hess. 2021. “On The Language of Reliability: A System Engineer 
Perspective.” Proceedings of 2021 Probabilistic Safety Assessment (PSA) Conference, Virtual, 
November 7–12, 2021. 

Moerchen, F. 2007. “Unsupervised Pattern Mining from Symbolic Temporal Data.” ACM SIGKDD 
Explorations Newsletter 9(1): 41–55. https://doi.org/10.1145/1294301.1294302. 

Mohri, M., A. Rostamizadeh, and A. Talwalkar. 2012. Foundations of Machine Learning. The MIT Press. 

Nassif, A. B., M. A. Talib, Q. Nasir, and F. M. Dakalbab. 2021. “Machine Learning for Anomaly Detection: 
A Systematic Review.” IEEE Access 9: 78658–78700. 
https://doi.org/10.1109/ACCESS.2021.3083060. 

Pearl, J. 2009. “Causal Inference in Statistics: An Overview.” Statistics Surveys 3: 96–146. 
https://doi.org/10.1214/09-SS057. 

Rausand, M., A. Barros, and A. Hoyland. 2020. System Reliability Theory: Models, Statistical Methods, 
and Applications. John Wiley & Sons, Inc. https://www.doi.org/10.1002/9781119373940. 

Sadvilkar, N. and M. Neumann. 2020. “PySBD: Pragmatic Sentence Boundary Disambiguation.” In 
Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS), Virtual, November 
2020, 110–114. http://dx.doi.org/10.18653/v1/2020.nlposs-1.15. 

Stone, G. C., I. Culbert, E. A. Boulter, and H. Dhirani. 2014. Electrical Insulation for Rotating Machines: 
Design, Evaluation, Aging, Testing and Repair. Second Edition, IEEE Press. 
https://www.doi.org/10.1002/9781118886663. 

Swales, J. M. and C. Feak. 2012. Academic Writing for Graduate Students: Essential Tasks and Skills (3rd 
edition). Ann Arbor, MI: University of Michigan Press. https://doi.org/10.3998/mpub.2173936. 

William, S. 2004. The Object Primer: Agile Model Driven Development with UML 2.0. Cambridge, UK: 
Cambridge University Press. https://doi.org/10.1017/CBO9780511584077. 

Xingang, Z., J. Kim, K. Warns, X. Wang, P. Ramuhalli, S. Cetiner, H. G. Kang, and M. Golay. 2021. 
“Prognostics and Health Management in Nuclear Power Plants: An Updated Method-Centric Review 
with Special Focus on Data-Driven Methods.” Frontiers in Energy Research 9: 696785. 
https://doi.org/10.3389/fenrg.2021.696785. 



 

 73 

Young, T., H. Devamanyu, S. Poria, and E. Cambria. 2018. “Recent Trends in Deep Learning Based Natural 
Language Processing.” IEEE Computational Intelligence Magazine 13(3): 55–75. 
https://doi.org/10.1109/MCI.2018.2840738. 

Youngblood, R.W. 2001. “Risk significance and safety significance.” Reliability Engineering & System 
Safety 73(2): 121–136. https://doi.org/10.1016/S0951-8320(01)00056-4. 

 

 

 

 

  



 

 74 

APPENDIX A: CLASSICAL RELIABILITY MODELING 
The goal of classical reliability theory is to analyze the reliability properties of a system composed of 

several components. This is performed by propagating reliability information, in terms of the probability 
of failure, from the component level to the system level. In more detail, the objective is to determine the 
system’s ability to perform its design function(s) given the failure probability of each component being part 
of the system itself. Component reliability directly measures the ability of a component to perform its 
function and is defined over a time interval. Mathematically speaking, component reliability 𝑅(𝑡) can be 
translated as the probability that the system will fail past the specified time interval, as follows: 

𝑅(𝑡) = 𝑃𝑟(𝑡M > 𝑡) = � 𝑓(𝑡M)	𝑑𝑡′
N

,

 (A.1) 

where 𝑓(𝑡M) indicates the failure probability distribution function. 

Typically, 𝑓(𝑡M) is expressed using an exponential model: 

𝑓(𝑡M)	𝑑𝑡M = 𝜆	𝑑𝑡′	𝑒3O	,+ (A.2) 

which indicates the probability that a component failure occurs in the [𝑡′, 𝑡′ + 𝑑𝑡′] (i.e., the term 𝜆	𝑑𝑡) given 
that the component survived up to 𝑡′ (i.e., the term	𝑒3O	,+). The term 𝜆 is a failure rate and can be used to 
determine the MTTF as: 

𝑀𝑇𝑇𝐹 =
1
𝜆

 (A.3) 

As indicated above, the goal is to assess system reliability; to accomplish this task, we need information 
about the reliability of its components and the architecture of the system itself. System architecture captures 
dependencies and redundancies between components. Typically, the system architecture is modeled using 
block diagrams where the basic configurations are: 

• Series configuration (see Figure 44, top left): blocks in a series configuration are all required to 
operate 

• Parallel configuration (see Figure 44, top right): blocks in a parallel configuration provide 
redundant operation 

• Standby configuration (see Figure 44, bottom left): a block initially provides the desired function 
while the second block provides the function when the first one fails 

• KooN configuration (see Figure 44, bottom right): a special case of parallel configuration where 
out of 𝑁 parallel (i.e., redundant) components, only 𝐾 (where 𝐾 < 𝑁) are required to successfully 
operate. 

Table 33 provides the basic equations to determine system reliability and corresponding MTTF for the 
four configurations we considered (see Figure 44). These equations will be the basis to compare classical 
and margin-based reliability calculations (see Section 4.8). 
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Figure 44. Graphical representation of the most common block configurations: series (top left), parallel 
(top right), standby (bottom left), and KooN (bottom right). 

 

Table 33. Summary of classical reliability calculations for the considered four configurations. 

Configuration Configuration Reliability Configuration MTTF 

Series 𝑅(𝑡) =6𝑅%(𝑡)
&

%'#

 𝑀𝑇𝑇𝐹 =
1

∑ 𝜆&
%'#

 

Parallel 𝑅(𝑡) = 1 −6<1 − 𝑅%(𝑡)=
&

%'#

 𝑀𝑇𝑇𝐹 = #
(
 ∑ <&% =

(*#)!"#

%
&
%'#  

Standby 𝑅(𝑡) = 𝑅#(𝑡) + 𝜆	𝑡	𝑅$(𝑡) 𝑀𝑇𝑇𝐹 = #
(
+ #

(
= $

(
 

KooN 𝑅(𝑡) =>?
𝑁
𝑖 A

&

%',

𝑅(𝑡)%(1 − 𝑅(𝑡))&*% 𝑀𝑇𝑇𝐹 =>?
𝑁
𝑖 A

&

%',

B 𝑅(𝑡)%(1 − 𝑅(𝑡))&*%
-

.
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APPENDIX B: CUT SETS AND PATH SETS 
Common reliability analysis methods are designed to work in the “failure space” where the goal is to 

identify the combination of events that yield adverse consequences. These combinations of events are 
typically represented the MCSs as the logic product of BEs (e.g., failure of components or failure to perform 
recovery actions). 

However, from a system engineer perspective we are interested to work in “success space” where the 
objective is to identify combination of events that guarantee system operation. These new combinations of 
events are represented by the MPSs of the system under consideration. In formulating a safety case for a 
facility, it is beneficial to do a “prevention analysis” in order to identify the combinations of success paths 
that (together) provide needed levels of functional reliability, required redundancy, and required diversity. 
In addition, if something goes wrong, and we need to compensate for it lest we lose the function, it is useful 
to understand what success paths remain available and which of them are more reliable than the others. 

Given a defined systema architecture, MCSs and MPSs are complementary objects: while MCSs are 
generated from Boolean structures, such as FTs, where the top event is defined as a “system failure,” MPSs 
are generated from the FT having top event defined as “NOT system failure.” In addition, while each MCS 
guarantees system to fail, each MPS guarantees system to operate successfully. In mathematical terms, this 
can be represented as: 

𝑆𝑦𝑠𝑡𝑒𝑚	𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑂𝑅(𝑀𝐶𝑆2, … ,𝑀𝐶𝑆1) (B.1) 

𝑆𝑦𝑠𝑡𝑒𝑚	𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑂𝑅(𝑀𝑃𝑆2, … ,𝑀𝑃𝑆&) (B.2) 

As an example, let’s consider the system shown in Figure 31 composed of seven components, A–G. 
The determination of the MCSs corresponding to the system of Figure 31 can be performed by generating 
the corresponding FT: 

𝑆𝑦𝑠𝑡𝑒𝑚	𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝐴	(𝐵	𝑂𝑅	(𝐶	𝑂𝑅	𝐷)	(𝐸	𝐹	𝑂𝑅	𝐺) =	
= 𝐴	𝐵 + 𝐴	𝐶	𝐸	𝐹 + 𝐴	𝐶	𝐺 + 𝐴	𝐷	𝐸	𝐹 + 𝐴	𝐷	𝐺 (B.3) 

The set of MPS can be obtained by solving: /(𝑆𝑦𝑠𝑡𝑒𝑚	𝑓𝑎𝑖𝑙𝑢𝑟𝑒) = 𝑁𝑂𝑇(𝑆𝑦𝑠𝑡𝑒𝑚	𝑓𝑎𝑖𝑙𝑢𝑟𝑒). The lists 
of corresponding MPSs and MPSs is indicated in Table 34. 

 

Table 34. Lists of MCSs and MPS for the system shown in Figure 31. 

# MCS  # MPS 
1 A B  1 /A 
2 A D G  2 /B /C /D 
3 A C G  3 /B /E /G 
4 A D E F  4 /B /F /G 
5 A C E F    
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APPENDIX C: OPM MODELING 
This appendix is presenting the basic elements found in OPM diagrams. In this respect, these elements 
are listed in Table 35 along with their semantic description. These elements are widely used in the 
RIAM project, as indicated in the OPM diagrams of the MFW system (see Appendix D). Table 36 
provides basic OPM diagrams that link objects with processes. Note that Table 36 also provides a 
description of the causal nature of the each OPM diagram. This causal interpretation is the basis for the 
causal reasoning process shown in Section 2.2 when dealing with ER data. 

 

Table 35. Basic elements of OPM (adapted from Dori and Crawley [2002]). 

OPM Elements Name Description 

 

Object Object A is a tangible entity that exists 

 

Object with states Object A has two states: State 1 and 2 

 

Process Process B transforms an object 

 Aggregation link Link designed to decompose an object into 
its basic elements 

 
Exhibition link Link designed to define attributes of an 

object 

 
Procedural 
transforming link 

Link designed to indicate a transportation 
activity between a process and an object  

 

Procedural enabling 
links 

Link designed to represent objects that 
support a process 
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Table 36. Causal relations from OPM diagrams. 

OPM Diagram Description Causal Relation 

 

Object A is composed by 
Objects B and C 

An abnormal behavior of A can be 
caused by either B or C 

 
Process B yields Object A An abnormal status of A can be 

caused by B 

 
Process B consumes Object A An abnormal behavior of B can be 

caused by A  

 
 Process B affects Object A 

An abnormal behavior of B can be 
caused by A. 
An abnormal status of A can be 
caused by B 

 

B is changing state of A from 
State 1 to State 2 

An abnormal transition from State 1 
to State 2 of A can be caused by B 

 
Process B requires Object A An abnormal behavior of B can be 

caused by A 

 
Object A handles Process B An abnormal behavior of B can be 

caused by A 
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APPENDIX D: MFW OPM MODELS 
This appendix contains the OPM models of several components of a pressurized-water reactor (PWR) 

MFW system, as shown in Figure 45: 

• General schematics of a MFW PWR system (see Figure 46) 
• Centrifugal pump (see Figure 4) 
• Turbine-driven pump (see Figure 47) 
• Motor-operated valve (see Figure 48) 
• Shaft bearings (see Figure 49) 
• Feedwater heater (see Figure 50) 
• Deaerator (see Figure 51) 

 

Figure 45. Schematics of a PWR MFW system (source: www.nuclear-power.com). 
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Figure 46. OPM model of MFW system. 

 

Figure 47. OPM model of a turbine-driven pump. 



 

 81 

 

Figure 48. OPM model of a motor-operated valve. 

 

Figure 49. OPM model of a shaft bearings. 
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Figure 50. OPM model of a feedwater heater. 

 

Figure 51. OPM model of a deaerator. 
 

  



 

 83 

APPENDIX E: MFW SYSTEM RELIABILITY DATA 
 

Feedwater pumps 

a. Outages due to oil system problems: 41% of the cases 
• Hydraulic control oil system: oil pump failure, dirty oil, governor, control, steam flow/feed 

mismatch, and low steam generator level trip. Outages occurred when contaminants (paint, 
rust, dirt, etc.) entered the control system and blocked small control orifices or blocked the 
seats of ball check valves causing improper closure. These blockages cause the speed controller 
to overspeed due to increased control pressure when control is transferred from the governor 
valve positioner to the governor. The outages are thought to be caused by the present design in 
which the hydraulic control oil and lubrication oil use the same reservoir. 

• Oil line leaks: caused by wear and aging of connecting hoses. 
• Miscellaneous Turbine Driven Feedwater Pump Oil Problems: include leaking gaskets and 

valves. These outages are caused by wear and aging during normal operation. 
b. Outages due to Bearing Problems: 10% of this type were prevalent in 20% of the stations. Vibration, 

and repair or replacement of bearings usually attributable to bearing wear. The cause of bearing 
wear or degradation is normally a lack of sufficient lubrication or particles in the lube oil or bearing. 
Either of the above will cause accelerated wear of bearings. 
• Repair or Replacement: No specific reasons for the repairs or replacement were reported. 

Bearing wear and vibration are the usual causes. 
• Outages due to Vibration: The causes stated were improper clearance, wear, misalignment, 

unbalance and vibration. 
c. Outages Due to Steam Leaks: The cause is attributed to the wear of gaskets due to normal expansion 

and contraction of joints. 
d. Outages Due to the Pump Driver: 

• Outages due to the turbine driver: The cause was damage to the blades resulting in vibration. 
• Outages Due to the Motor Driver: The cause was due to electrical problems 

e. Outages Due to Impeller Failure: 4% of the cases. Causes include foreign objects lodged in the 
impeller. These foreign objects were pieces of equipment from failed parts of upstream equipment. 

f. Outages Due to Casing Failure: 3%. Due to porous welds that contained slag inclusions and sand 
and gas cavities in the castings. The cause of these failures was attributed to poor castings and loose 
specification. 

g. Outages Due to Miscellaneous Reasons: 6%, include faulty valves, cracked couplings, shaft failure, 
etc. 

h. Outages Without Identifiable Causes: 19%, not enough information. 

Feedwater valves. Many Steam Generator Level trips at low powers and at other power levels were 
reported but with unreported causes. Failure to control these valves (manual control) is considered the 
predominant of causes. Automatic control at low power would thus help the operator for better start up and 
low power operation. The control valve trim should be matched to the type of feedpump. In addition, the 
valve stroke has a definite impact on level control and stability. The valve stroke should be as long as 
possible (approximately 90%) over the operating range of 0 to 100% power. The longer stroke allows better 
control, i.e., more stability, at lower power levels. 

Main condenser. Condenser tube leaks. Causes are tube vibration, jet impingement, corrosion/erosion and 
impingement plate failure. Vibration has been handled by "staking" the tubes or lacing them together. Jet 
impingement has been dealt with by the replacement of impingement plates; impingement plate failure has 
been reduced by insuring better workmanship and adding stronger supports. Corrosion/erosion has been 
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dealt with by changing materials mainly from admiralty to Cu-Ni combinations, stainless steel, or titanium. 
However, condenser tube leaks continue to occur and cause more down time each year. 

Many solids and organic material are transported from the cooling water source into the condenser water 
box and tubes. This results in tube blockage and corrosion due to inadequate tube water flow. This in turn 
results in tube leakage due to corrosion and thermal shocking, especially when the turbine is opened up for 
maintenance. These corrosion products eventually end up in the condenser hotwell and are transported into 
the feedwater cycle unless adequately cleaned prior to startup. Feedwater cycle problems and steam 
generator problems are in part attributable to this crud transport. 

A condenser tube leak means a drop in boiler pH. For many units, control of the boiler pH is the primary 
determinant of whether or not the contamination is severe enough to take the unit off line. Obviously, if the 
boiler pH cannot be controlled, and particularly if the pH drops below 8, the unit must come off line 
immediately. 

Steam passing through the turbine (preferably sampled at the reheat steam sample station after 
attemperation) should contain less than 2 ppb of sodium and have a cation conductivity of less than 0.2 
microsiemens/cm. Some utilities have chosen to monitor for chloride in the boiler water directly. 

Feedwater heaters. Leaky feedwater heater tubes were attributed to 0.19 outage events per plant year and 
0.04 percent average annual plant unavailability for the 192.4 years of PWR plant experience. Feedwater 
heater tube leaks occur either at the tube-to-tubesheet joints or due to failure of the tube itself, similar to 
main condenser problems. Degradation of joints may occur due to corrosion, erosion, tube vibration, 
thermal shock, chemistry changes or improper operation. 

a. Tube-to-Tubesheet Joint Leakage: Fabrication issue.  
b. Tube Vibration: causes deterioration of tube-to-tubesheet joints, mechanical abrasion of tubes 

rubbing against baffle and support plates, and tube fatigue. Vibration may be due to various design 
considerations (high velocities, inadequate tube supports, pressure fluctuations, localized high 
velocity steam jets, etc.), unanticipated transients or improper operation such as exceeding design 
parameters. Resonant vibration is extremely detrimental to tube failure. 

c. Thermal shock: Tubes and tube-to-tubesheet joints can be overstressed if subjected to large or 
frequent thermal shocks. 

d. Corrosion and Erosion: Contributing factors include tube entrance effects and local high velocities 
from manufacturing defects or deformations within the tubes, the presence of foreign materials and 
improper operation resulting from chemistry changes. 

e. Material degradation 

Turbine 

a. Blade failures: 1.6% average unavailability contribution per plant year, 0.04 scrams per plant year 
and 0.10 shutdowns per plant year at fifteen of forty plants. The average shutdown duration from 
blade problems was 1343.3 hours (56 days). 
Most failures occur in the low pressure turbine. The root causes of these blade failures were: erosion 
due to moisture produced in the turbine, inadequate Moisture Separator Reheater (MSR) 
performance, reliability feedwater system corrosion products which are carried over, corrosion 
from improper feedwater chemistry control, underfrequency operation and overstress. Turbine 
blade erosion is a function of water droplet size, steam quality, steam density, rotating blade speed, 
and inherent turbine and blade design features. If the variables can be controlled to an acceptable 
level, blade erosion can be limited. Mineral deposits on the blades can be limited by feedwater 
chemistry control and functional MSRs. 
Improvements which can reduce or eliminate low pressure turbine blade failures are: 
• Maintain feedwater chemistry within specification and provide for 100% demineralization of 

the condensate when required. 



 

 85 

• Improve MSR performance and reliability. 
• Limit low frequency operation.  
• Provide temperature, pressure and vibration monitoring of turbine and MSR for load 

equalization among LP turbines and turbine stages. 
• Limit turbine and main steam valve testing. 

b. Bearing failures: Turbine bearing failures rank next in the total outage. Causes are: dirty oil, 
blocked oil passage, emulsification, improper cooling of lube oil, bearing vibration. These 
problems can be minimized by increasing the frequency of the oil system to identify the onset of 
dirt or emulsification build up, and by routine inspection of temperature and pressure gauges in the 
oil system. Long term solutions include the use of larger orifices in the lubrication system and 
improved lube oil filtration. Early detection through vibration and acoustic monitoring techniques 
can enhance the likelihood of corrective action prior to bearing failure. 

c. Steam leaks: root causes include the following: erosion, impingement, uneven heating, and 
improper joint and gasket sealing. Minor steam leaks (early stages of large leaks) can be temporarily 
repaired using a sealant or patch and minimize the number of non-welded joints. 

d. Vibration and Imbalance: Causes of turbine vibration and imbalance are: shaft and rotor distortion, 
uneven blade erosion, mineral deposits on blades, improper clearance tolerances, misalignment, 
internal mechanical looseness, foundation and case distortion, internal rubbing, uneven bearing 
wear and a bowed rotor. 

b. Degradation causes imbalance, which leads to vibrations. Vibration and acoustic monitoring 
programs could enhance the capability of detecting premature secondary problems and their 
locations. Temperature and pressure diagnostic monitoring of the steam systems and turbine could 
also aid in root cause determination and corrective action prior to mature problems. Proximity 
detectors could also monitor turbine alignment. 

Moisture Separator Reheater (MSR). Over seventy percent of the outages were caused by tube leakage. 
The remaining outages were caused by problems with baffle plates, demisters, separators, handholes and 
high water level trips. The root causes of tube leakage are similar to other heat exchanger problems, thermal 
fatigue, vibration, corrosion and erosions. Factors which contribute to thermal fatigue, vibration erosion 
and corrosion are:  

• crud deposition on interior and exterior reheater tube surfaces as well as separator surfaces 
• inadequate tube bundle drainage 
• condensation in tubes 
• condensate subcooling of tubes 
• temperature gradients between tubes and tubesheet 
• non-uniform steam flow 
• control and intercept valve testing 
• vibration overstress 
• use of materials not compatible with the service 
• feedwater chemistry control problems 

Turbine Control, Stop and Intercept Valves 

a. Valve Malfunctions: The problems include valves not opening, valves not closing, valves sticking, 
valve failures, and spurious valve closures 

b. Valve Repair or Replacement: due to leaks and include some stem and disc replacements. Causes 
can be attributed to valve wear, some beyond repair. 

c. Valve Modifications and Miscellaneous Reasons: modifications required by the manufacturer, and 
due to auxiliary equipment such as servomotor and relay failure. 

Main Steam Isolation Valves. Nearly 65 percent of the significant MSIV outage events referenced in the 
data base resulted as automatic scrams. Auto scrams are caused by inadvertent closures which lead to steam 
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generator high pressure trips. Auto scrams account for only one-half of the overall MSIV related 
unavailability hours, thus the data supports the premise that inadvertent closures rather than repairs are the 
most important aspect of MSIV unavailability to address. 

Component supports. hydraulic shock suppressors, more commonly referred to as snubbers. The basic 
cause for the incidents is the loss of hydraulic fluid which leads to a loss of function of safety related 
snubbers. The loss of hydraulic fluid can be directly attributed to seal failures or potential seal failure on 
100% of the recorded incidents. The causes of the seal failures are: 

a. Broken accumulator springs which have caused seal surface scoring and subsequent leak paths 
(46.6% of incidents). 

b. Seal material incompatibility (26.6%) which lead to adverse reactions to silicon hydraulic fluids 
leading to seal degradation and leakage. 

c. Improper installation of snubbers during which seals were damaged (26.8%) leading to the 
remaining seal leakage problems. 

 




