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This report has been assembled to address the following milestone due 
March 31, 2017:  

Complete report on the modeling of precipitate processes in irradiated 
reactor pressure vessel steel  

This milestone will focus on the application of cluster dynamics and machine 
learning methods for predicting hardening behavior as a function of alloy 
composition and radiation environment (flux, fluence, and temperature). We will 
integrate known hardening mechanisms and mechanical properties models into 
the cluster dynamics precipitate model and predict precipitation and hardening. 
We will also use machine learning methods on model and experimental 
hardening data to assess the ability of these methods to predict within existing 
data conditions (interpolation) and LWR life-extension conditions 
(extrapolation). The models will be validated and fit against UCSB data, which 
will include IVAR, ATR1, and ATR2 data. This milestone in conjunction with 
milestone M2LW-17OR0402013 of the High Fluence Effect on RPV Steels work 
package will fulfill the 2017 program milestone of "Provide validated model for 
transition temperature shifts in RPV steels". 

This work was done in close collaboration with Professor G. R. Odette and 
his group at the University of California, Santa Barbara. The regular and strong 
interactions between all the participants in this collaboration has been critical to 
the development of this work and the content here represents intellectual 
contributions from the entire team. 
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1. INTRODUCTION 
Reactor pressure vessels (RPVs) are permanent components in light water reactors (LWRs) 

and their irradiation embrittlement is one of the potential barriers to extending the lifetime of 

light water reactors. Therefore, predicting and having insight into the RPVs embrittlement in 

extended life conditions play a critical role in LWRs further licensing. In this report, we use two 

different approaches to model the RPVs embrittlement and gain insight into extended life 

conditions. We have primarily focused on developing a physics-based multiscale model to 

address the process of formation and growth of Cu-rich precipitates (CRPs) and Mn-Ni-Si-rich 

precipitates (MNSPs), which are the main causes of embrittlement in RPVs, under both 

irradiation and aging. We used the kinetic Monte Carlo technique for atomistic simulation, which 

gave us insight into early stages of Cu-Mn-Ni-Si precipitation and its morphological evolution. 

For continuum modeling, first we developed a Cluster Dynamics (CD) model for MNSPs which 

was capable of capturing the MNSPs evolution over the time scale of reactor lifetimes. Then we 

expanded the MNSPs CD model to include the effect of Cu. This model expansion is necessary 

as RPV steels essentially always have some potentially relevant level of Cu. The model of the 

coupling of Cu to MNSPs was informed by the kinetic Monte Carlo simulations. The CD model 

was benchmarked against high flux irradiation experimental data from the literature and UCSB 

and uncertain parameters (e.g. interfacial energy) were fitted to experimental data. The 

predictability of the CD model was tested by comparing the CD results against some new 

experimental data from ATR2 and good agreement was obtained. Then the model was used to 

gain insight into the embrittlement of RPVs under light water reactor (LWR) extended life 

conditions under which no experimental data is available. The CD model (with fitted parameters 

from irradiation experiments) were also validated against aging experimental studies at higher 

temperatures. The good agreement between modeling and experimental aging data supports the 

fidelity of fitted parameters for both irradiation and aging. We have also initiated a machine-

learning-based approach, as opposed to a physics-based approach, to modeling the mechanical 
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response of RPVs. Here we report on preliminary investigations of machine learning for fitting 

and predicting changes in RPV yield stress. 
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2. EXECUTIVE SUMMARY OF MAJOR RESULTS 
 

1. Kinetic Monte Carlo (KMC) simulation established a novel mechanism for precipitate 

growth that can explain the appendage morphology of Cu+MNSPs and may play a role in 

other multicomponent precipitates (see Sec. 4.1.2). 

2. Qualitative and semi-quantitative models for Cu+MNSP evolution were developed which 

allow understanding of key mechanisms governing precipitate evolution and prediction of 

behavior trends under life-extension conditions (see Sec. 4.2). The uncertain parameters 

(e.g. interfacial energies) were fitted using the UCSB experimental data. 

3. Cluster Dynamics (CD) modeling suggested that the alloy Ni content is the dominant 

compositional factor in forming MNSPs, while Mn and Si play lesser roles. The absolute 

threshold for MNSPs formation appears to be ≈ 0.5at.%Ni. The √f of MNSPs at extended 

RPV life fluence of 1024m-2 at 290°C can be fitted to a polynomial of alloy compositions, 

which can be used for quick estimation. The √f versus T follows an approximately linear 

relation (see Sec. 4.2.1).The predictability of the Cu-MNS CD model was tested by using 

the new ATR2 experimental data and very good agreement was achieved (see Sec. 

4.2.2.3).  

4. The Cu-MNS CD model gave two key insights for LWR: 1) for high Cu bearing alloys 

most of available Cu in matrix precipitates out in the first couple of years of operation, 2) 

embrittlement continues to increase in extended life period due to the sluggish 

precipitation of MNS (see Sec. 4.2.2.4.2).  

5. Machine learning using Gaussian Kernel Ridge Regression (GKRR) predicts the change 

in yield stress for compositions and conditions represented within the IVAR/IVAR+ 

database with a root-mean-square error (RMSE) of ~25 MPa. Cross-validation (CV) 

suggests little over-fitting (see Sec. 4.3). 
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3. METHODS 
3.1 Kinetic Monte Carlo Simulations 

3.1.1 The Kinetic Monte Carlo model 
The KMC model is developed based on the framework of the model by Enrique and Bellon 

[1], and directly modified from the code developed by Shu et al. [2], adding multinary simulation 

capability and body-centered cubic (bcc) structural information. 

A bcc rigid lattice is constructed from an N×N×N (N = 64 or 256) rhombohedral crystal with 

periodic boundary conditions. The faces of rhombohedron correspond to }110{   planes of the bcc 

crystal. Atoms migrate by thermally activated jumps, assisted by nearest-neighbor atom-vacancy 

exchanges. A single vacancy is introduced into the system. Nearest-neighbor atomic pair 

interactions ( XYε ) and atom-vacancy interactions ( XVε ) are used to model cohesion and vacancy 

formation energies of the system, and their fitting was discussed in previous reports. Homo-

atomic pair interactions (i.e., interactions between atoms of the same chemistry) are estimated by 

assuming they are related to cohesive energies through 
2

X
coh XX

ZE ε= , where Z is the nearest-

neighbor site coordination number (Z = 8 for bcc structure). Hetero-atomic interactions (i.e., 

interactions between atoms with different chemistry) are defined through the ordering energy as 

2XY XY XX YYω ε ε ε= − − . The value of XYω  determines the shape of the binary X-Y phase diagram. 

Effective atom-defect pair interactions are used to reproduce the values of vacancy defect 

formation energies, defined as 
2

f
XV XV XX

ZE Zε ε= − [3].  

The frequency of the thermal jumps is determined using standard rate theory. The attempt 

frequency is set to be a constant equal to 12 16 10 s−× , similar to the atomic vibration frequency. 

The activation energy is calculated using  

 mig
0

X saddle
a aE E E= + , (1) 

where saddle
aE  is the saddle-point energy. saddle

aE  is calculated using the final-initial-state energy 

(FISE) approximation, 
2

f isaddle
a

E E
E

−
= , where iE and fE are the system total energies before 

and after the jump of the vacancy. The reference activation energy mig
0E is assumed to be 
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dependent on the chemical species of the migrating atom, and the value of mig
0E is taken from 

Ref. [4], by Messina et al. 

 During the simulation, time is incremented using a residence-time algorithm [5]. Since a 

single vacancy is introduced in the simulation cell, a fixed vacancy concentration is unphysically 

imposed. Thus, a rescaling of the KMC time MCt  is needed in order to obtain the physical time t  

that can be directly compared with the experiments. We follow the approach proposed by Nastar 

et al. [6] for the rescaling: 

 
( )
( )

KMC
V

MC irr
V

C Xt t
C X

= , (2) 

where ( )KMC
VC X is the vacancy concentration in phase X, measured in KMC simulation, and 

( )irr
VC X  is the radiation enhanced vacancy concentration in X phase, calculated according to Ref. 

[7]. 

3.1.2 Kinetic Monte Carlo Model Parameterization 

The homo-atomic pair interactions XXε  for determining iE  and fE  are determined from 

measured cohesive energies for bcc phase of the pure element. The hetero-atomic pair 

interactions XYε  are obtained from molar excess free energies ( m
ABG ), calculated by the 

CALPHAD method. Specifically, assuming a regular solution model one can write 

 GAB
m = xAG0

A + xBG0
B + RTxA ln xA + RTxB ln xB + xAxBΩAB , (3) 

where 
2AB A AB
Z N ωΩ = . ABΩ  is available or can be fit from the CALPHAD model for GAB

m  and 

connects the CALPHAD output to the KMC input.  

 In previous milestones, we have described the details of the parameterization involving Fe, 

Mn, Ni and Si. In this milestone, we add Cu in the interactions, which were obtained from Ref. 

[8]. The complete interactions are listed in Table 1. 

Table 1 The interaction parameters used in the simulation (all values are eV). 

ΩAB Cu Mn Ni Si 

Fe 0.458 0.094 0.007 -1.542 

Cu  0.090 0.106 -0.344 
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Mn   -0.465 -0.907 

Ni    -1.850 

 

Table 2. Cohesive energy of primary RPVs elements. [9] 

Element Fe Cu Mn Ni Si 

)(eVEXcho  
-4.28 -3.49 -2.92 -4.34 -4.03 

 

3.2 Cluster Dynamics Simulations 
3.2.1 Simulation Models 

The models described in this section are mainly similar to what we described in the last 

milestone, except we have added a new nucleation mechanism on dislocations.   

3.2.1.1 Basic Cluster Dynamics model 
As described in previous milestones, the CD method [10-13] gives the size distribution of 

clusters by solving a series of ordinary differential equations as follows: 

 
, 

(4) 

where 

 = concentration of clusters containing n atoms at time t. 

The coefficient s are the rates at which clusters of size n absorb single atoms to grow to 

size n+1, s are the rates at which clusters of size n emit single atoms to shrink to size n-1, 

and ΔG(n) is the formation energy of clusters with n atoms. More details regarding this method 

can be found in Ref. [10-13]. 

For a system containing k precipitating components, the rates of absorption are given by: 

 , (5) 

where 

 = rate at which clusters of size n gain one atom of species i. 

The parameter  accounts for the change in the composition of component i as the cluster 

grows from size n to n+1. It is defined by the following expression: 
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 , (6) 

where 

 = atomic fraction of component i in clusters of size n. 

Here it is assumed that  does not change with n, thus  equals . 

For diffusion-limited growth of the clusters, the absorption rate becomes: 

 , (7) 

 
, 

(8) 

where 

Cβ = total volume concentration of the particles of the different components in the ambient 

phase 

 = molar fraction of the different components in the ambient phase. 

The emission rate is given by: 

 , (9) 

where 

ΔG(n) = formation energy of clusters with n atoms from the matrix, which can be written 

as: 

 , (10) 

where 

gp = free energy per atom of the precipitate phase 

μi = chemical potential of component I in the matrix 

σ(n) = interfacial energy of a cluster of size n. 

With this form, the difference ΔG(n+1)-ΔG(n) reduces to: 

 , (11) 

The chemical potentials can be written as: 

 , (12) 

Where  is the activity coefficient. When the matrix phase is in equilibrium with the 

precipitate phase we have the relationship: 

ν iα = xiα + n
dxiα
dn

ω n,n+1
(+) = 4πcβaαDeff

d n1/ 3

1

Deff
d =

ν iα
2

xiβDii=1

k

∑

ω n+1,n
(−) =ω n,n+1

(+) exp(
ΔG(n +1) − ΔG(n)

kBT
)

ΔG(n) = n(gp − xiμ i) + σ (n)
i
∑

ΔG(n +1) − ΔG(n) = gp − xiμ i + [σ (n +1) − σ (n)]
i
∑
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(13) 

In dilute alloys, the  in Eq. (13) will become constant according to Henry’s law, thus 

according to Eq. (11) - (13), we can obtain 

 , (14) 

Substituting Eq. (14) into Eq. (9), the emission rate can be written as: 

 , 
  

(15) 

where  and  are the solute product and solute product at equilibrium, respectively, 

and they are represented by  and  , respectively. 

The distribution function f(n=1,t) at n=1 is described as: 

 , 
  

(16) 

3.2.1.2 Heterogeneous nucleation 
In our previous milestone, we showed that homogeneous nucleation is inadequate to match the 

experimentally observed MNS precipitates number density in Cu-free alloys and some form of 

in-cascade MNS precipitation is needed. Similarly, Monte Carlo simulations [14] show Cu will 

precipitate in cascade in FeCu binary alloys. In addition to in-cascade precipitation, formation of 

Cu and Cu-MNS precipitates on dislocations have been observed both in experiments [15] and 

simulations [16]. These results suggest the need for both in-cascade and on dislocation 

heterogeneous dislocation in addition to homogeneous nucleation. Heterogeneous nucleation at 

grain boundaries was not considered in the present study because the number of grain boundary 

nucleation sites are much smaller than those associated with cascades and dislocations for RPVs 

and will make a negligible contribution to high-fluence precipitate number densities.   

3.2.1.2.1 Nucleation in cascade 
For nucleation in cascade the precipitates nucleation rate is proportional to cascade production 

per atom  (irradiation term) and ratio of the instantaneous solute product to reference 

solute product,  (thermodynamics term). For simplicity we assume that cascades 

produce only one size precipitates. Therefore, the nucleation rate in cascade is 

f (n = 1,t) = cβ xiβ
xiα

i=1

k

∏
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And  
(17) 

 

where  is cascade cluster production efficiency factor,  is the cascade production cross 

section,  is the neutron flux, and  is the atomic volume, )(tKsp  is instantaneous solute product 

and  reference solute product.    

With the cascade induced nucleation the general equation for cluster dynamics becomes: 

 

 

(18) 

3.2.1.2.2 Nucleation on dislocation 
It is known that dislocations are favorable nucleation sites for second phase precipitation 

because precipitate formation on dislocation releases the excess free energy associated with the 

dislocations [17]. To account the effect of dislocations on nucleation we combine the CD model 

with the theory of heterogeneous nucleation on dislocations that was originally developed by 

Cahn [17]. Considering the effect of dislocation nucleation on CD model the Eq. (10) will be, 

 )()()()( pdisl
i

iip rGnxgnnG Δ++−=Δ ∑ σμ
, 

(19) 

where the last term corresponds to the released excess free energy associated with the nucleation 

of a precipitate on dislocation and can be given as [17], 
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(20) 

where corer  and coreE  are respectively the dislocation core radius and core energy, pr  is the 

precipitate radius, r  is the distance between a point on the precipitate interface and the 

dislocation line, l  is the distance from the center of a precipitate along the dislocation line, and 

μ  is elastic shear modulus.  
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Considering the typical size of Cu-MNS precipitates in RPVs (~2-3 nm) we approximate that 

no precipitate would nucleate within a distance of 3 nm from any evolving precipitate to avoid 

precipitates overlap.  

 

Table 3 Parameters used in CD model of nucleation on dislocation. 

Dislocation core radius ( corer , nm) 0.4 [18] 

Dislocation core energy ( coreE , eV/Å) 0.937 [18] 

Burgers vector (b , nm) 0.248 [19] 

Atomic volume ( aΩ , m3) 1.18×10-29 

Elastic shear modulus ( μ , GPa) 80 [19] 

Dislocation sink strength (dislocation density) ( ρ , m-2) 2×1014 [7] 

 

3.2.1.3 Radiation enhanced diffusion (RED) model 
The radiation enhanced diffusion (RED) model used here is based on that developed by Odette 

et al. [7]. The radiation enhanced diffusion coefficients are expressed as 

 , (21) 

where Dirr is the diffusion coefficient under irradiation, Dv is the diffusion coefficient of 

vacancies, Xv is the vacancy concentration under irradiation, Dth is the solute thermal diffusion 

coefficient of solute under thermal aging condition, and Dsd is the self-diffusion coefficient of Fe 

in the matrix. 

Defect conservation balances, treating vacancy and SIA production, transport and fate, were 

used to establish the steady-state vacancy concentration (Xv) under irradiation, which can be 

expressed from rate theory models as a function of the fraction of vacancies and self-interstitials 

(SIA) that escape recombination and reach fixed dislocation sinks (gs), which is given as: 

 , (22) 

Here,  is irradiation flux, σdpa is the displacement-per-atom (dpa) cross-section, ξ is the 

fraction of vacancies and SIA created per dpa. Assuming that defect recombination occurs as 

vacancies and SIA diffuse freely through the ferrite matrix it can be shown that 
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 , (23) 

 , (24) 

Here, rv is the SIA-vacancy recombination radius, Ωa is the atomic volume, and St is sink 

strength. 

We will assume that the precipitate growth is dominated by vacancy mediated diffusion of 

solutes to the precipitates, so correct modeling of the vacancy concentrations and associated 

RED is critical. Vacancy fates include clustering, annihilation at sinks and recombination with 

SIA. The dominant fixed sinks for vacancies are typically dislocations in RPVs. However, 

UMDs also act as vacancy sinks and can be dominant at very high flux. Furthermore, 

recombination will be greatly enhanced if vacancies are strongly bound to these UMDs. Odette 

et al.[7] have built a model to include the effect of UMD in the recombination-dominated regime 

under very high irradiation flux. This irradiation flux effect can be simply described by adjusting 

gs by a scaling law as  

 , (25) 

Here, r is a reference flux and p is a scaling exponential factor. The effective p starts at 1 in 

the thermal diffusion dominated regime at very low flux; p is 0 in the sink-dominated regime and 

p=0.5 in the recombination-dominated regime. The p again approaches 1 at high flux in the 

UMD sink-dominated regime. We will use this scaling law expression in our model to 

effectively include the effects of UMDs on the vacancy concentrations. 

3.2.2 Parameters for the MNSP Cluster Dynamics model 
All the parameters used in the cluster dynamics model for MNSPs are given in this section, 

and most of them are the same as were reported in the last milestone. The only differences are 

the reference solute product and heterogeneous nucleation generation rate coefficient in Sect. 

3.2.1.2.1. Instead of choosing 0.01 as the reference solute product, 2.4×10-3 is chosen, as a result 

the heterogeneous nucleation generation rate coefficient has been changed to 7.2×10-3 from 0.03, 

so that their ratio stays the same. As can be seen from Eq. (16), the model stays the same as long 

as the ratio between reference solute product and heterogeneous nucleation generation rate 

coefficient doesn’t change. The purpose of this change was so that the reference solute product is 

close to the equilibrium solute product around 290°C (in Table 4), which allows us to interpret 
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the heterogeneous nucleation generation rate coefficient as the number of MNS clusters that will 

be generated per cascaded in the equilibrium state. The equilibrium solute products of the two 

phases studied at different temperatures are obtained from the TCAL2 database [20]. These 

equilibrium solute products at different temperatures are listed in Table 4. Note that the 

equilibrium solute product here for T6 are calculated with composition of 51.1%Ni-33.3%Mn-

15.6%Si, since for the alloys studied here the predicted equilibrium compositions of T6 vary 

over a Ni composition of just 51%-52%. 

Table 4 Equilibrium solute product for each phase at different temperatures 

Temperature (°C) 
Equilibrium solute product (×10-3) 

T3 T6 

280 1.96 2.33 

284 2.12 2.53 

290 2.21 2.56 

300 2.45 2.82 

400 6.26 6.57 

425 7.86 7.95 

 

The thermal diffusion coefficients of Mn, Ni, Si and Fe in ferromagnetic Fe used in this paper 

are summarized in Table 5.  

Table 5 Diffusion coefficients under thermal condition. 

Element D0 (cm2/s) Q (kJ/mol) Reference 

Mn 1.49 234.0 [21] 

Ni 1.4 245.6 [22] 

Si 0.78 231.5 [23] 

Fe 27.5 254.0 [24] 

   

All other parameters are listed in Table 6. Most of them are obtained from two papers [7, 25]. 

Four of them, heterogeneous nucleation size and rate coefficient (see Sec. 3.2.1.2) and two 

interfacial energies are fitting parameters. These parameters were fitted to 28 experimental data 

points of precipitate number density, mean radius and volume fraction for alloys under different 

irradiation conditions by mapping a fine grid of the values of these parameters in reasonable 

range, and the optimal set of parameters were obtained for parameter values where the smallest 
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root mean square difference (RMSD) between simulation results and experimental data was 

realized. 

Table 6 Parameters used in calculating radiation enhanced diffusion coefficient and other 
parameters. 

SIA – vacancy recombination radius (rv, nm) 0.57 [7] 

Fraction of vacancies and SIA created per dpa (ξ) 0.4 [7] 

Displacement-per-atom (dpa) cross-section (σdpa, m
2) 1.5×10-25 [7] 

Atomic volume (Ωa, m
3) 1.18×10-29 

Vacancy diffusion coefficient pre-exponential factor (Dv, m
2s-1) 1×10-4 [25] 

Vacancy migration energy ( , eV) 1.3 [25] 

Dislocation sink strength (dislocation density) (ρ, m-2) 2×1014 [7] 

Flux effect scaling exponential factor (p) 0.2 [26] 

Cascade cross section (σCascade, m
2) 2×10-28 [26] 

Reference solute product (  2.4 ×10-3 

Heterogeneous nucleation size (  (FITTED) 60 

Heterogeneous nucleation generation rate coefficient (α) (FITTED) 7.2×10-3 

Interfacial energy of T3 phase (σΤ3, J/m2) (FITTED) 0.190 

Interfacial energy of T6 phase (σΤ6, J/m2) (FITTED) 0.175 

 

3.2.3 Coupling Cu to Mn-Ni-Si precipitation 
Formation of pure Mn-Ni-Si precipitates (MNSPs) in RPV steels is limited to Cu-free or very 

low Cu bearing (Cu<0.06at.%) alloys. However, there exist some level of Cu in major in-service 

RPV steels and its concentration can reach up to 0.25at.% [27]. In the presence of Cu, it is seen 

that MNSPs are usually spatially correlated with Cu-rich precipitates (CRPs) in RPV steels [28-

32]. Note that here we define a CRP as a primarily Cu containing precipitate, but one that also 

includes other solutes (e.g., a Cu core with Mn, Ni and Si atoms coating it). In section 3.2.1, we 

described the general cluster dynamics model for single and multicomponent precipitates 

formation and we parameterize it for MNSPs in Cu-free (Cu<0.06at.%) steels in section 3.2.2. In 

this section, we expand the CD model to treat the precipitation of Cu along with Mn-Ni-Si. The 

coupling of Cu and MNSPs is necessary to fully understand their combined impact on the 

embrittlement of RPV steels 

Ev
m
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Based on KMC results (sections 4.1) and test reactor data [33-35] we know that CRPs will 

form in alloys containing more than ~0.06 at.% Cu. The mechanism for formation of CRPs in the 

presence of MNS is still being explored, but from atom probe observations [36] and our KMC 

simulations, we propose that the mechanism is as follows. In the early stages of irradiation, Cu 

clusters precipitate out, then the Mn, Ni, and Si move toward Cu precipitates and coat the Cu 

precipitates in just a monolayer or so of Mn, Ni, and Si, forming CRPs. The CRPs enrichment in 

these solutes can be understood and modeled within the framework of both classical 

thermodynamics [37] and atomistic simulations [14] (section 3.1). As the irradiation continues 

the Cu depletes in the matrix (due to its very low solubility limit) while Mn-Ni-Si are still 

supersaturated. During the Cu precipitation and after, Mn, Ni, and Si continue to precipitate out 

on the CRP, forming an appendage morphology of a well-developed MNSP, which is discussed 

in detail in section 4.1.      

The above process of coupling Cu and Mn-Ni-Si precipitation is highly complex, and all the 

features could not be readily incorporated into a practical model. Instead, we took an 

approximate approach that built separate Cu and MNS precipitate models, and then coupled them 

in a simple manner that mimicked the essence of the above processes, while simultaneously 

requiring relatively few adjustable parameters (as illustrated schematically in Figure 1). The right 

branch of Figure 1 shows the MNSP model, uses the theoretical approach from Sec. 3.2.1 and 

whose parameters are given in Sec. 3.2.2. The left branch of Figure 1 shows the Cu precipitation 

model. This model uses the same theoretical approach as described in Sec. 3.2.1, although all of 

the formalism for multiple species is simplified to just Cu. The parameters for this model are 

given in Sec. 4.2.2.1. Finally, the coupling of Cu and MNS precipitation is shown schematically 

by the middle branch of Figure 1. This portion is quite new and we describe it in some detail here 

as well as Sec. 4.2.2.1. 

We coupled the Cu and MNSP by assuming that during the Cu nucleation stage any Cu 

precipitate which has 20 atoms (~Cu precipitate critical size) or more has an accompanying 

MNSP that has a size proportional to the Cu precipitate. This effectively co-nucleates a MNSP 

with the Cu precipitate. The MNSP is a distinct precipitate from the Cu precipitate in the model, 

but does not grow independently during the this co-nucleation phase as it is pinned to the Cu 

precipitate size. The ratio of MNSP to Cu precipitate size during this co-nucleation stage is a 

fitting parameter. When the Cu nucleation stops, we decouple the co-nucleation and let the Cu 
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and MNSP grow separately. The Cu growth after this stage is limited due to the significant Cu 

depletion in the matrix, but MNSPs continue to grow, which represents the appendage growth. 

This way of coupling Cu to MNSP is a quite severe approximation and leaves out many features 

of our understanding of the true mechanism of precipitation described above. Perhaps the most 

dramatic feature of the approximation is that we replace the complex process of Mn, Ni, and Si 

segregating to the Cu/Fe interface and then growing as an appendage with a single nucleation 

event of an MNSP separate from the Cu precipitate. This approximation still captures the key 

role of Cu catalyzing the nucleation and growth of MNSPs but greatly simplifies the process in 

ways that may impact the fidelity of the predicted MNSP evolution. The atom probe experiments 

and KMC simulations show that Cu precipitates are coated with Mn, Ni, and Si atoms, which 

means the Cu precipitate is really a CRP, and CRPs will have a different interfacial energy than 

pure Cu precipitates and pure MNSP. Therefore, we considered the interfacial energy of CRPs 

(Cu clusters bigger than 20) to be the average of a Cu and MNSP interfacial energy. We note that 

we tested the sensitivity of the results to this parameter and found very little variation in results 

by shifting this number between Cu interfacial energy to MNSP interfacial energy. At this stage 

we assess the impact of the model approximations by determining to what extent we can model a 

large body of Cu+MNSP evolution data, and the relatively good success we have compared to 

the experimental data (see Sec. 4.2.2) supports that our approach has captured the essential 

elements of the Cu+MNSP coupling..    
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Figure 1. A flowchart of precipitate formation in RPVs in the presence of Cu.    

 

3.3 Machine Learning 

3.3.1 Introduction 
In addition to the physics based methods pursued above, we have also used machine learning 

and data mining to produce a generalizable model for predicting the effect of irradiation on RPV 

hardening. Previously, Castin et al. used artificial neural network (ANN) techniques to model 

hardening based on the RADAMO database (SCK CEN), with a mean predictive error of 45 

MPa; however, they note that there is room for improvement of the extrapolative ability of the 

model, particularly as the principal composition variables ended up being only Cu and Ni 

content, and the elemental compositions in the database did not vary independently.[38] Kemp et 

al. similarly used ANN to model and predict yield stresses based on published irradiated steel 

data taken over a wide-range of temperatures, and had quite large errors in their model. The 

authors noted that the high errors for some dose rate and temperature ranges could be improved 

with additional data; that particular strengths of the model were its generalizability over alloys 

and its ability to give uncertainty estimates, which could then inform selection of additional data 

points for experiment; and that additional modeling approaches which could incorporate known 

physics could be complementary.[39] Our analysis is distinct from previous work in that it is 
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using a very extensive dataset that is more focused on data relevant for RPV steels, including a 

more restricted composition range and temperature range than some of the above studies, and we 

are using a somewhat different set of approaches. 

To complement the previous ANN studies, this model uses a conceptually simpler Gaussian 

Kernel Ridge Regression (GKRR) model, requiring optimization of only two hyperparameters, 

along with physically based and empirically based descriptors taken from literature.[7, 40] The 

reusable model framework builds in the capability to handle unknown high fluence and high flux 

effects: because the model is validated independently on a modeled cluster dynamics dataset, it 

can be reapplied to produce different model forms as more data and descriptors become 

available. Additional data would take the form of more high fluence surveillance and test data 

points. Additional descriptors may be identified and added due to improved high fluence and 

flux understanding. 

3.3.2 Model introduction 
We develop a generalizable machine-learning model using the information available from the 

IVAR database, namely the elemental compositions of Cu, Ni, Mn, Si, P, and C, irradiation 

temperature, flux, and fluence, with hardening in MPa as the response. Flux and fluence are 

combined into any number of effective fluences,[7] each defined by a p-value. 

Gaussian Kernel Ridge Regression (GKRR) implemented through the Python[41] package 

scikit-learn,[42] produces a model from these descriptors. The radial basis function (RBF, or 

Gaussian) kernel determines the distance between feature vectors, and is characterized by 

hyperparameter , where the value of the kernel , where small 

values of  increase the tolerance of what feature vectors are considered similar, and the 

weighting induced by the kernel is smoothed out over a larger area of feature space. Ridge 

regression performs linear regression in the kernel and data space (which will be a non-linear 

function in original space when using a non-linear kernel) and uses the hyperparameter  as the 

coefficient of the L2 norm penalty in the ridge regression. The hyperparameter  can decrease 

the sensitivity of the fit to random error in cases where the descriptors have some 

interdependence, with larger  allowing less sensitivity and penalizing large coefficients.  

 

From experimental IVAR and IVAR+ data provided, we make the following changes:  
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• Removal of alloy LO, which has identical composition and data as alloy LC but was 

annealed for different times than other alloys in the database. 

• Removed duplicate entries (i.e., entries for the same alloy, flux, fluence, and 

temperature), with the lower hardening response removed, leaving the larger hardening 

response. The lower hardening response is typically for an alloy that has been annealed 

for different times than other alloys in the database. 

• Updated the irradiation temperature for alloys CM6, LC, LD, LG, LH, and LI at a flux of 

2.3x1014 n/cm2/sec and a fluence of 1.1x1021 n/cm2 from 290 C to 320 C after 

communication from UCSB (this change is due to the change in temperature recently 

reported for all the so-called ATR1 irradiations).  

 

3.3.3 Model details 
As described above, the available data for regression consists of the elemental compositions of 

Cu, Ni, Mn, Si, P, and C, irradiation temperature, flux, and fluence, with hardening in MPa as the 

response. From this data, the descriptors used for regression are as follows, although the 

regression method described below could be reapplied to different or extended sets of 

descriptors. 

• Atomic percent values of Cu, Ni, Mn, Si, P, and C as reported by the alloy compositions 

in weight percent. Fe is assumed to be the remainder of the weight balance after the six 

elements described above.  

• Irradiation temperature 

• Effective fluence, as calculated from the method in Odette et al.,[7] using a p-value of 

0.2, consistent with Section 3.1 and 3.2. Because the range of effective fluence spans 

several orders of magnitude, this descriptor is considered on a logarithmic scale. 

Each descriptor is normalized linearly over the total set of training and testing data, using the 

formula . In the future, the training data and the testing data may come 

from two different datasets, for example, training on IVAR conditions and testing on LWR 

conditions.  Currently, training and testing data comes solely from the experimental IVAR+ data. 

Hyperparameters  and  are currently optimized through a simple grid search evenly 

distributed over log space, with twenty points each in the range of (-6,0) for alpha and (-1.5 to 
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1.5) for gamma. In the future, a genetic algorithm method may be used to optimize the 

hyperparameters and potentially also the number and value of p-values for effective fluence 

descriptors. 
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4. RESULTS 
4.1 Kinetic Monte Carlo Simulation of Co-precipitation of Cu-MnNiSi 

Precipitates 
4.1.1 Morphological characteristics of Cu-MnNiSi precipitates 

This section describes an APT data set showing the commonly observed Cu+MNSP 

appendage morphology, whose explanation has been the focus of our kinetic Monte Carlo 

simulations. A high-Ni, Cu-bearing steel named LD (0.25 at.% Cu, 1.18% Ni, 1.08% Mn, 0.54% 

Si) was neutron irradiated at ≈ 290 ˚C to fluences (E > 1 MeV) of 6.3×1019 n-cm-2 and 1.4×1020 n-

cm-2 at fluxes of 1.0×1014 n-cm-2s-1 and 3.6×1012 n-cm-2s-1 in the Belgian Reactor 2 (BR2) and the 

US Advanced Test Reactor (ATR), respectively. APT samples were prepared using the focused 

ion beam lift-out method and run in a LEAP 3000X HR at the University of California, Santa 

Barbara. The samples were analyzed at 50K with a pulse fraction of 20% of the standing voltage 

and a 0.3-0.5% detection rate. Data reconstruction and analysis was performed in the Integrated 

Visualization and Analysis (IVAS) software. The plane spacing in either (200) or (110) poles 

was used to scale the reconstructions. The cluster analysis was performed using the cluster 

search tool in the IVAS software with order = 5 and dmax = 0.5-0.6 nm. 
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Figure 2 atom maps from (a) the BR2 irradiation and (b) the ATR irradiation showing Cu atoms 
in green and Mn, Ni and Si atoms as partially transparent to more clearly see the precipitate 
morphology. 

Example atom maps are shown in Figure 2 for the (a) lower fluence BR2 and (b) higher 

fluence ATR conditions. Note that the Mn, Ni and Si atoms were made partially transparent to 

more clearly show the precipitate morphology. The precipitates in the lower fluence BR2 

condition are much more numerous and smaller (N = 9.5x1023 m-3, <r> = 1.1 nm) than in the 

ATR condition (N = 5.7x1023 m-3, <r> = 1.6 nm). Note that the difference in the precipitate N and 

<r> is likely caused by both the lower fluence in the BR2 condition as well as the higher flux. 

The results here are consistent with previous experiments that have shown higher neutron flux 

results in smaller, more numerous precipitates at a given fluence [43]. The BR2 sample shows 

(a)                                 

 

 

 

 

 

(b) 
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precipitates that are predominantly Cu with slight enrichments of Mn, Ni and Si. In addition, a 

core/shell structure can be observed that is consistent with previous studies [8, 44, 45]. At higher 

fluence, the precipitates have almost doubled in size as is seen in Figure 1(b). The precipitated 

Cu is approximately the same as the lower fluence condition, meaning that the precipitate growth 

has primarily been caused by the addition of Mn, Ni and Si atoms. Here, the Mn, Ni and Si no 

longer only form a shell around the Cu core, but also have an almost pure Mn-Ni-Si appendage 

on one side of the CRP. The origin of this precipitate morphology has not previously been 

reported and thus is the focus of modeling in the following sections.  

4.1.2 KMC simulation of the nucleation and growth of the Cu-MnNiSi precipitates 
In the LKMC simulations, a five-component alloy, containing Fe, Cu, Mn, Ni and Si, was 

constructed on a rigid body-centered cubic lattice with a composition that corresponds to the LD 

alloy (see Section. 4.1.1). Atomic interactions are modeled using the pairwise interaction 

energies ijε , i, j = Fe, Cu, Mn, Ni, Si, given in Table 1.  

The parameterization of the LKMC simulation has been validated by simulating post-

irradiation annealing of the MnNiSi phase, and showed impressive agreement with the post-

irradiation annealing results [46], reproducing the observed evolution of volume fraction, vf , 

precipitate number density, N , and mean radius, r . The details have been given in previous 

reports and are not shown again here.   

Figure 3(a) is a snapshot of the LKMC simulation and shows the model reproduced the same 

Cu-MnNiSi appendage morphologies as was observed experimentally (see Figure 2). The Cu 

clusters and MnNiSi phase form co-precipitates, with Cu clusters largely visible at the edge of 

the whole precipitates. A magnified precipitate is shown in Figure 3(b), in which two 

isoconcentration surfaces were constructed to show a clearer boundary of the Cu cluster and the 

Cu-MnNiSi co-precipitate. Figure 3(c) shows a 1-dimensional compositional profile along the 

direction of the arrow. The peaks representing the Cu cluster and the MnNiSi phase can be 

clearly distinguished, showing the asymmetric positioning of the Cu cluster. Note that in the 

simulation, the MnNiSi phase is an ordered B2 structure, in which Ni and Mn occupy two 

sublattices, with Si randomly replacing some Mn atoms. This bcc-based ordering state is 

believed to be probable at the early stage of the precipitation, when the precipitates are coherent 

with the Fe matrix. When the precipitates grow to larger sizes, the structure of MnNiSi phase is 
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likely to transform to that of the G-phase, as characterized by synchrotron-based x-ray diffraction 

[47]. Nevertheless, the precipitate structure predicted by our LKMC simulation captures the fact 

that the ordered MnNiSi precipitate has a lower free energy level compared to the disordered 

counterpart. 

 

Figure 3 (a) a snapshot of the LKMC simulation, showing the microstructure of the simulated 
alloy (b) a magnified Cu-MnNiSi precipitate, with iso-concentration surfaces to clearer show the 
structure of the precipitate (c) a 1-D composition line scan of the precipitate. 

A unique advantage of the LKMC simulation over present experimental characterization 

methods is that it can track one particular precipitate and identify its detailed temporal evolution. 

Figure 4 is a sequence of snapshots of a typical Cu-MnNiSi co-precipitate, showing the temporal 

evolution of the microstructure. At the early stages of formation, seen in Figure 4(a), the 

precipitate has a copper-rich core, with Mn, Ni and Si atoms coating it, the latter of which are 

stabilized by their ability to lower the Cu-Fe interfacial energy [48]. In the early stage of the 

growth regime, see Figure 4(b-c), more Cu, Mn, Ni and Si atoms diffuse to the precipitate. The 

MnNiSi phase preferentially grows on one side of the whole precipitate. At later stages of 

growth, Figure 4(d-e), as the Cu atoms in the matrix deplete, the growth of the Cu-MnNiSi 
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precipitate is mainly driven by incorporating Mn, Ni and Si atoms, forming an ordered B2 phase

as an appendage on the Cu-rich portion. Over time, the simulation evolves to reproduce a

MnNiSi appendage structure that is nearly indistinguishable from that observed in APT 

experiments. 

 

 

Figure 4 Temporal evolution of the Cu-MnNiSi precipitate reproduced by LKMC simulations. 
(a) Formation of a Cu cluster coated by a layer of MnNiSi (b) and (c) nucleation of MnNiSi 
ordered phase on the Cu cluster (d) and (e) further growth of the MnNiSi ordered phase, note that 
the Cu cluster is always on the edge of the whole precipitate. 

To elucidate the mechanism of the asymmetric growth of the MnNiSi phase, detailed analysis 

of the simulated microstructure was performed. First, the trajectory of the center of mass (COM) 

of both the Cu cluster and the whole precipitate is plotted for a typical Cu-MnNiSi precipitate in 

Figure 5(a). The black trajectory, which shows the movement of the COM of the whole 

precipitate, is very short during the growth of the precipitate, indicating an isotropic growth rate 

in all the radial directions. However, the blue trajectory, which tracks the movement of the COM 

of the Cu precipitate, shows a clear absolute displacement toward one direction, away from the 

COM of the whole precipitate. Figure 5(b) shows the distance between COMs of the Cu and the 

whole precipitate along with the radius of the whole precipitate. This demonstrates that as the 

precipitate grows, the COM of the Cu and whole precipitate move further and further apart, 

which would be expected for an appendage growth where Cu is always on the edge of the 

precipitate.  

(a)                                 (b)                                   (c) 

           (e)                               (d) 
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Figure 5 (a) Movement of the center of mass (COM) of the whole precipitate compared to that of 
the Cu cluster (b) Distance between COMs as the precipitate grows, plotted for the largest 
precipitate in the system. The radius of the whole precipitate is also plotted to show that the 
distance between COMS is directly correlated to size of the Cu-MnNiSi precipitate. 

4.1.3 Discussion on formation mechanism of MNS appendage 

The formation of the MnNiSi appendage structure is somewhat unexpected, in particular 

because it results in the formation of a high-energy Cu/Fe interface. Intuitively one would expect 

a core-shell structure to form, removing the high-energy Cu/Fe interface but having a Cu core 

with a MnNiSi shell with a low MnNiSi/Fe interfacial energy. Thus, it is important to identify 

the thermodynamic and kinetic factors that lead to this morphology. It has been demonstrated 

both experimentally and computationally that in the early stages of Cu precipitation in the high-

Ni alloy, the clusters have a Cu-rich core with the relatively slow-diffusing Mn, Ni and Si atoms 

enriching the Cu/Fe interface and forming a thin coating layer. However, at the later stages of the 

precipitation process, as Cu depletes in the matrix, the MnNiSi phase preferentially grows on one 

side of the Cu core.

To investigate the key factors that control the formation of the MnNiSi appendage 

morphology, both possible thermodynamic and kinetic contributions will be assessed. 

Thermodynamically, three interfacial energies, Fe-Cuγ  ,  Fe-MnNiSiγ  and Cu-MnNiSiγ , are important for 

this precipitation process. As a result of the large driving force for phase separation and faster 

kinetics, Cu precipitates out of the solution rapidly, forming a high density of small Cu clusters. 

If there is sufficient Cu to rapidly form many Cu clusters in the system, heterogeneous nucleation 

of MnNiSi on the Cu clusters generally dominates, and the homogeneous nucleation of MnNiSi 

(a)                                              (b)                           
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phase is insignificant [36]. Mn, Ni and Si atoms slowly diffuse to the preexisting Cu clusters, 

forming a thin layer around the Cu and reducing the Cu/Fe interfacial energy. As the layer 

formed near the interface is just a few atomic layers at most, and since it is driven by reduction 

of the Fe/Cu interfacial energy, it is likely that the Mn, Ni and Si atoms are initially only weekly 

ordered or disordered, which is consistent with what is found from the LKMC model. Assuming 

a disordered MnNiSi layer, the X/MnNiSi (X = Fe, Cu) interfacial energies can be readily 

calculated within the framework of the nearest-neighbor broken-bond (NNBB) model [49] using 

the interactions in Table 1. The calculated interfacial energies are listed in Table 7. 

 

Table 7 Interfacial energies for specific crystallographic orientations, estimated using the 
Nearest-Neighbor Broken-Bond model. 

Interfacial energies for specific 
crystallographic orientations (mJ/m2) 

Cu-Fe Cu-MnNiSi Fe-MnNiSi 

[100] 449 107 115 

[110] 317 76 81 

[111] 518 124 133 

 

The interfacial energies estimated by the NNBB model show that a thin, disordered MnNiSi 

layer on the Cu/Fe interface reduces the total interfacial energy by ~50%. If the MnNiSi layer 

thickens as a disordered structure, the precipitate would grow in an isotropic manner around the 

Cu core, retaining a core-shell structure. However, as suggested by the LKMC simulation, the 

Mn, Ni and Si atoms instead form small ordered MnNiSi nuclei next to the Cu cluster. The 

precipitation process therefore can involve three distinct environments for a solute atom: 

dissolved in the matrix as a monomer, in the disordered coating layer, and in the ordered MnNiSi 

nuclei. The growth pathway of the precipitate depends on the relative energy of the solute atoms 

in the latter two states. For solute atoms, leaving the disordered coating layer will expose the Cu-

Fe interface, thus increasing the total free energy of the system (the “interfacial energy 

contribution”). On the other hand, solute atoms leaving the disordered coating layer to join the 

ordered MnNiSi nuclei will also lower the total free energy of the system, due to the energy 

bonus from ordering (the “ordering energy contribution”). Comparing the two energy 

differences, if the former interfacial energy contribution is larger, exposing the Fe-Cu interface 
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will impose too high an energy penalty, in which case the coating layer would be stable. The 

stable coating layer would have time to rearrange locally to the ordered structure that is 

compatible to the growing front of the ordered nuclei. In this case, Cu cluster would eventually 

be fully covered by the MnNiSi phase, leading to the core-shell structure. If the latter ordering 

energy contribution is larger, it is energetically favorable for solute atoms to diffuse from the 

disordered coating layer to the ordered nuclei, either by surface diffusion or through the Cu core. 

As additional solute atoms diffuse from the matrix to the precipitate, atom transport from the 

coating layer to the ordered nuclei suppresses the symmetric thickening of the layer, leading to 

preferential growth of the ordered MnNiSi nuclei and results in the appendage morphology. We 

hypothesize that the ordering energy contribution dominates over the interfacial energy 

contribution, leading to the appendage structure. 

To test our hypothesis, the LKMC simulation was rerun with an increased Cu-Fe interfacial 

energy, which was achieved by increasing the Cu-Fe interaction parameter ΩCu-Fe from 0.458eV 

to 0.758eV. In this case, the energetic penalty for MnNiSi atoms to leave the coating layer is 

significantly increased, and a more stable coating layer is expected. Figure 6(a) shows a snapshot 

of the simulated microstructure. Most of the Cu clusters are fully covered by the MnNiSi phase, 

forming the classic core-shell structure. In Figure 6(b), the distance between the COMs of the Cu 

cluster and the whole precipitate is plotted, together with the radius of the whole precipitate. It 

shows that as the whole precipitate grows in size, the magnitude of the distance between COMs 

does not increase, but fluctuates slightly above zero. This result confirms that during the growth 

process, the MnNiSi phase grows in an isotropic manner around the Cu cluster. The change in 

morphology from appendage to core-shell structures observed when the interfacial energy 

contribution is increased supports our hypothesis that the appendage structure occurs due to the 

larger size of the ordering vs. interfacial energy contributions.  
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Figure 6 (a) Precipitate morphology for system with increased Cu-Fe interfacial enerngy (b) For 
the new set of parameters, distance between COMs as the precipitate grows, plotted for the 
largest precipitate in the system.  

Another important observation is that, as shown in Figure 5(a), there is an absolute movement 

of the Cu cluster during growth. Given the fact that the lattice sites are conserved in the LKMC 

simulations, an absolute movement of Cu cluster toward one direction must be compensated by a 

net mass flux in the opposite direction, in this case, the flux of Mn, Ni and Si atoms. This 

observation suggests that during the process of the formation of Cu-MnNiSi precipitate, there is 

a diffusion path for Mn, Ni and Si atoms through the Cu clusters, i.e., the Cu clusters do not 

block the Mn, Ni and Si diffusion but serve as diffusion media, similar to the Fe matrix. This is 

an important point, since if the solute atoms would not diffuse through the Cu clusters, the Mn, 

Ni and Si build up and diffusion along the surface might easily cause the formation of the 

ordered MnNiSi phase at different locations along the surface, and potentially lead to Cu clusters 

being fully covered by the ordered MnNiSi phase, forming core-shell structures. 

(a)                                                             (b)            
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Figure 7 Schematics showing the kinetic pathway of the nucleation and growth of the Cu-
MnNiSi co-precipitate. For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article. Green: copper-rich precipitate; blue: Ni atom; red: 
Mn/Si atom; yellow: general representation of the Mn, Ni and Si solutes.  

Based on the above discussion, we can summarize the proposed mechanism of the formation 

of the appendage morphology in Figure 7. For Cu solutes, their low solubility and fast kinetics 

lead to rapid formation of small Cu clusters. A disordered Mn-Ni-Si layer can readily form at the 

Cu/Fe interface to reduce the overall interfacial energy. This segregation of Mn, Ni and Si 

solutes at the Cu/Fe interface then leads to heterogeneous nucleation of the ordered nuclei of 

MnNiSi phase on one side of the Cu cluster. This ordered nuclei is more energetically favorable 

than nearby disordered Mn-Ni-Si and therefore grows via interfacial diffusion, as well as bulk 

diffusion through both the Fe matrix and the Cu cluster. In particular, the solute flux through the 

Cu cluster helps keep the Cu cluster at the edge of the whole precipitate during the process of the 

growth, supporting formation of the appendage morphology observed in both APT and LKMC. 

 

4.2 Cluster Dynamics 
4.2.1 Analysis of the large CD database on Mn-Ni-Si precipitates mole fraction 

In the previous milestone we updated the cluster dynamics model by excluding the outlier 

experimental data at extreme conditions (very-low-solute-composition, very-high-flux and very-

high-fluence) and provided a model that can predict the evolution of MNSPs in low-Cu RPV 

steels under both realistic power reactor and typical experimental high flux conditions. In this 
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milestone, we will model the combined effect on MNSPs mole fraction of a range of RPV alloy 

compositions, irradiation temperatures (T) and fluences (φt) presented as a series of cross plots of 

√f versus a single variable, while holding the other variables constant. This analysis is focused on 

√f as irradiation hardening ( ) and embrittlement ( ) primarily depend of the √f. These 

results were also included in the manuscript we recently submitted to Acta Materialia [50].  

4.2.1.1 Alloy Composition and Fluence Effects 
Figure 8 shows cross plots of the √f versus Ni, over the specified range of Mn and Si at 1023, 

5x1023 and 1024 n·m-2 at 290°C and a flux of 3x1015n·m-2s-1. As mentioned previously, the √f is 

used since it is the primary MNSP characteristic that controls Δσy and ΔT.   

 

Figure 8 The square root of mole fraction (√f) as a function of Ni composition for various Mn 
and Si contents at different fluences. 

Clearly Ni has a dominant effect on √f. The effects of Mn and Si are significant but more 

modest than they are for Ni. The absolute MNSP √f is low at 1023 n·m-2, but increases somewhat 

starting at ≈ 1.5at.%Ni. The effect of Ni is much stronger at 5x1023 n·m-2 above ≈ 0.5at.%Ni, and 
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√f again increases rapidly above ≈ 1.5at.%Ni. At 1024 n·m-2 √f increases approximately linearly, 

or with a weak polynomial dependence, between 0.5at.% and 1.6at.%Ni, and at higher Ni the 

increase in √f begins to taper off.  

We also developed a simple polynomial fit for √f as a function of alloy composition at 1024 

n·m-2 and 290°C, which can be used to estimate the mole fraction of precipitates without running 

CD models. For practical purposes the relevant ranges of bulk RPV steel compositions are ≈ 0.6-

1.6at.%Ni, ≈ 0.4-1.2at.%Si and 0.6-2.0at.%Mn. However, the dissolved Mn is lower since this 

solute is also contained in carbides; further, most steels have less ≤ 1.6at.%Mn. Thus a practical 

range of dissolved Mn is ≈ 0.6-1.4at.%. Further, 1.0at.%Ni is the limit in the US surveillance 

database for low Cu steels. Here we focus on the peak extended life fluence of 1024 n·m-2. Within 

this composition range, which is consistent with the formation of T3 (G) and T6 (Γ2) phases, the 

f can be fit by a polynomial in the form 

 , (26) 

Here the Cs are functions of (Mn + Si) where 

C0 = -2.58+2.8587(Mn+Si)-0.80652(Mn+Si)2 

C1 =5.118-5.8233(Mn+Si)+1.6988(Mn+Si)2 

C2 =-2.4783+3.2256(Mn+Si)-0.8823(Mn+Si)2 

Figure 9 compares the CD √f to that predicted by Eq. ( 26 ). The agreement is excellent. This 

systematic behavior can be traced to fact that CD model predicts the formation of stoichiometric 

G and Γ2 phases. The Γ2 phase has almost 1 (Mn + Si) atom for every Ni atom. The G phase has 

≈ 0.81(Mn + Si) atom for every Ni atom. Thus, while the overall effects of Mn and Si on the 

MNSP nucleation and growth at a specified temperature and fluence are more complex, to a first 

approximation they are associated with a varying balance of G and Γ2 phases, that in both cases 

are reasonably represented by Eq. (26). Further, it has been experimentally observed that the 

effects of Mn and Si are individually relatively weak, due to the fact that their sum is typically 

approximately constant and roughly equal to the Ni in the MNSP. That is, if Si is low the MNSP 

is more enriched in Mn and vice versa. Note that non-stoichiometric phase-field effects are not 

captured in the current CD model, although the composition range of the phase-fields of both G 

and Γ2 are quite small. 
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Figure 9 Comparison between fitted and results from CD for different alloy compositions 

However, there is no simple relation between f and Ni for all combinations of composition. For 

example, low values of Mn or Si may be insufficient to form the f of G and Γ2 phases that would 

otherwise be associated with very high Ni. Likewise, excess quantities of Mn and Si would 

remain in solution once the amounts of these solutes needed to form the modeled phases 

exceeded that required for a given Ni content.  

Expressions similar to those in Eq. (26) can be derived from the CD database for other 

temperatures and fluences and compared to a wide variety of experimentally observed trends.  

4.2.1.2 Temperature Effects 
The MNSP f also depends strongly on the irradiation temperature (T). Figure 10 plots √f versus 

T at Ni = 0.6at.%, 1.0at.%, 1.4at.% for 0.6at.%Si and 1.0at.%Mn at fluences of 5x1023 and 

10x1023 n·m-2. Figure 10 a) shows that the absolute √f increases with increasing Ni and 

decreasing T. Figure 10 b) shows the same data normalized to 1 at 290°C. In all cases the √f

versus T follows an approximately linear relation, and overall the trends are qualitatively similar.  
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Figure 10 The effect of temperature on √f  for various alloy Ni contnets with 1.4at.%Mn-0.6%Si 
and two fluences: a) absolute √f; and, b) normalized to 1 at 290°C. 

4.2.2 Precipitation in Cu bearing alloys  
In this section, we parameterize the CD model proposed in section 3.2.3 for Cu+MnNiSi 

precipitates, and compare the modeling results with experimental data obtained from Odette 

group at UC-Santa Barbara. The experimental database contains full microstructural information 

(precipitates size, number density, and volume fraction) of 110 data points for four different 

alloys (LC, LD, LH, LI). Experiments are from IVAR, BR2-TU, and ATR1 irradiations and they 

cover a wide range of neutron flux (from 7x1014 to 2.3x1018 n/m2/s) and temperature (270 to 320 

°C). Microstructural measurement were done by using small angle neutron scattering (SANS) 

except for the highest fluence data from ATR1, which was done by atom probe measurement. 

Table 8 shows the alloys designation and their corresponding nominal composition.  

Table 8. Alloys designation and corresponding nominal composition.   

Alloy Cu (at.%) Ni (at.%) Mn (at.%) Si (at.%) 

LC 0.36 0.81 1.46 0.46 

LD 0.33 1.16 1.37 0.45 
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LH 0.09 0.69 1.38 0.43 

LI 0.17 0.69 1.36 0.47 

  

We note that the actual Cu and Mn remaining in solid solution that is available for radiation 

enhanced precipitation may be less than the measured bulk content, due to pre-precipitation 

during heat treatment performance during RPV fabrication. The maximum Cu and Mn remaining 

in solution after typical heat treatment is about 0.25 and 1.1 at.% respectively, and we therefore 

use these as the bulk composition limits in the modeling.  

Based on the described methodology in section 3.2.3, in copper bearing alloys we have 

nucleation of both pure Cu and MNSPs. We note that the Cu content in all alloys listed in Table 

8 is high enough to form Cu-rich precipitates. However, even if Cu is lower than 0.06at.% (the 

onset of Cu-rich precipitation formation in RPVs [27]), experimental results [51] suggest it can 

still enhance the nucleation of MNSPs. The effect of very low Cu (Cu<0.06at.%) on MNSP 

nucleation needs further investigation and has not yet been treated in detail in the model.  

 

4.2.2.1 Parameters for Cu model 
The precipitation of Cu in Fe was the subject of several modeling studies [52-58]. However, 

most of the previous models were for aging, and therefore they did not have the effect of 

irradiation on Cu precipitate evolution. Furthermore, previous models were generally compared 

to a limited set of experimental data points (e.g. aging at one single temperature for a fixed 

composition), which made them inapplicable across the many systems we are studying here. 

Therefore, we have developed our own model for Cu precipitation under irradiation. However, 

many necessary terms are available from previous models and we used these to guide the present 

model. Important parameters in modeling Cu precipitation are Cu solubility, diffusion 

coefficient, and interfacial energy. We obtain the Cu solubility from Soisson and Fu [58], which 

they determined by a combination of ab initio calculation and fitting to solubility data obtained 

from Fe-Cu aging at 550 and 450 °C [58]. We note that in RPV steels under irradiation the Cu 

precipitates sizes are smaller than 5-6 nm which is the onset of Cu structural transformation from 

BCC to R9 [59]. Therefore, it is important to use the Cu solubility when the equilibrium is 

between BCC Cu and Fe, as was determined in Ref. [58]. The solubility of Cu is modeled by the 

equation 
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where ncSΔ  is the nonconfigurational entropy, )(FeEsolCu  is the formation energy (mixing energy) 

of a substitutional impurity Cu in Fe matrix, Bk  is Boltzmann constant, and T  is the 

temperature. Soisson and Fu [58] found the eVFeEsolCu 545.0)( =  based on ab initio calculations 

and Bnc kS 1=Δ  by fitting to experimental data. 

Another important parameter is the Cu diffusion coefficient. The Cu diffusion coefficient in Fe 

has a wide range of values in the literature, as shown in Figure 11. Due to this uncertainty, we fit 

the Cu diffusion coefficient so that our model predictions match with the experimentally 

measured precipitation incubation fluence shown in Figure 12. The last key parameter is the 

Cu/Fe interfacial energy, which in general depends on the precipitate degree of coherency, 

crystallographic misorientation, elastic misfit strains, and solute segregation. Because of this 

complexity, interfacial energy generally cannot be determined reliably from direct experiment or 

atomistic calculations and it is usually treated as a fitting parameter in precipitation modeling. 

We fit the interfacial energy of Cu so that our model predictions give the minimum root mean 

square difference (RMSD) compared to experimental data for precipitate volume fraction, radius, 

and number density (shown in Figure 13). Note that the radiation enhanced diffusion necessary 

to model Cu precipitate evolution is treated exactly as for the rest of the CD model, as described 

in Sec. 3.2.1.3. 
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Figure 11. Cu diffusion coefficient in the literature [25, 60-67] and the fitted value in this work.  

 

By using only homogeneous Cu nucleation, we were not able to get enough Cu precipitate 

nucleation to match the experiments. Specifically, for low Cu alloys like LI and LH which 

contain 0.17 and 0.09 at.% Cu, we do not see Cu precipitate formation in the fluence ranges for 

which it is seen experimentally. These inconsistencies indicate that Cu should also nucleate 

heterogeneously (similar to MNSPs). We note that the phenomenon of heterogeneous Cu 

nucleation in-cascade has already been reported by KMC modeling [68]. To incorporate the Cu 

in-cascade heterogeneous nucleation in CD, we use the similar formulation as we used for 

MNSPs (sections 3.2.1.2), except we modify the thermodynamic driving force to be that of Cu.  

This approach yields the equation 

 0)(..),( CuCudpaCuhetCuhetCu KtKtnR Ω=−− φσα  (28) 

where Cuα  (n/cascade) is cascade cluster production efficiency factor, dpaσ  is the cross section 

of cascades, φ  is irradiation flux, Ω  is the atomic volume, )(tKCu  is the Cu concentration in 

matrix at time t , an 0
CuK  is the Cu solubility limit, which is equal to 3.6 x 10-5 at T = 290 °C. The 

other fitting parameter (rather than α ) in heterogeneous Cu nucleation is the precipitate size that 
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is created during a cascade. Odette and Wirth’s [68] KMC simulation showed that under 

irradiation Cu precipitates of size 5 to 20 atoms can form in cascades. Therefore, we fit the Cu 

precipitate size in the range of 5 to 20 atoms, again fitting to best match the data in Figure 12. 

Table 9 shows all the fitting parameters for the Cu part of CD model.  

Table 9. Fitted parameters for Cu part of CD model  

Parameter  Value 

1. )/( 2 smDCu  )91.1exp(1043.1 7

TkB
−× −  

2. Interfacial energy (Cu-Fe) )( 2mJ  0.410 

3. α )/(# cascade  0.06 

4. Heterogeneous Cu precipitate size (# of atoms)   12 

5. The ratio of the number of atoms in MNSP to the 
number of atoms in Cu precipitate 0.4 

6. Cu precipitate size above which create partner MNSP 
(# of atoms) 20 and larger 

 

In summary, we fit the following parameters 1-6 in the Cu model (following the order of Table 

9): (1) Cu Diffusion coefficient, (2) Cu-Fe interfacial energy, (3) number of nucleated Cu 

precipitates per cascade, (4) number of Cu atoms nucleated in each precipitate when nucleated in 

a cascade, (5) the ratio of MNSP to Cu in the partner MSNP growing with the Cu during Cu 

nucleation, (6) the size above which Cu precipitates create partner MNSP. Although we 

mentioned the fitting methods above, here we give a compact summary of the fitting order and 

data used in the fitting.   

Independent of the other parameters we set the minimum number of atoms in Cu precipitates 

which create MNSPs (6) to be 20 atoms as that is close to Cu precipitates critical size. The 

results turn out to be quite insensitive to this value and we tested numbers between 10 to 100 and 

the results did not change significantly.  

We fit the Cu diffusion coefficient (1) so that our model predictions match with the 

experimentally measured precipitation incubation fluence (the fluence before which significant 

precipitates appear) shown in Figure 12. This fit is done first with a reasonable guess for values 

for the parameters (2-5), and then redone again after parameters (2-5) were fit as below, although 
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it is not very sensitive to the values of parameters (2-5). The other remaining parameters (2-5) 

(interfacial energy (2),α (3), Cu precipitate heterogeneous size (4), and the ratio of MNSP size 

to Cu(5)) were then fit simultaneously in order to get minimum root mean squatter difference 

(RMSD) between model and experimental values for volume fraction, radius, and number 

density (data given in Figure 13).  The optimization was done by minimizing an integrated cost 

function which contains a combination of root mean square deviation (RMSD) of the predictions 

from experimental results for mean radius, volume fraction, and number density, as was 

described in detail in a previous milestone from September 30, 2015.  

The fitting ranges considered were as follows: for interfacial energy we explored 0.370 to 

0.420 mJ/m2 (0.4 is the value used in [27]) with mesh size of 0.01; for the cascade induced Cu 

precipitate size we explored the range of 5 to 20 atoms (based on KMC simulation in [68]) with 

an initial coarse mesh size of 5 atoms and then finer mesh of 2 atoms in range of 10 to 15 atoms; 

for α , the initial studies showed that α  should be lower than 0.1. Therefore, we grid the 0-0.1 

space with mesh of 0.03. For the ratio of MNSP size to Cu we first mesh the space of 0 to 1 with 

coarse mesh of 0.5 and then grid the promising domain with mesh of 0.1.    

In Figure 12 we compare the CD model results and experimental data for evolution of 

precipitates in LC, LD, LH, and LI alloys as a function of fluence. In these plots, we run the CD 

code for an average environment condition (1x1016 n/m2/s, 290 °C) to get a smooth average trend 

and run the CD code for all specific experimental data conditions to give the best possible 

comparison.    
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Figure 12. Comparison between CD model and experimental results for evolution of precipitates 
in LC, LD, LH, and LI alloys as a function of fluence. Red line is the CD results for an average 
irradiation condition (1x1016 n/m2/s, 290 °C). Green triangles denoted CD Points are values 
calculated at the exact conditions of the experiments. 

We note that each experimental datum in Figure 12 has its own specific neutron flux (from 

7x1014 to 2.3x1018 n/m2/s) and temperature (from 270 to 320 °C) and these are the ones used in 

the CD model points labeled “CD Points”. To compare the CD and experimental results more 

quantitatively, we plotted the CD predicted vs. actual values of precipitate radius, number 

density, and volume fraction in Figure 13. 
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Figure 13. Comparison between CD and experimental results for precipitates number density, 
radius, and volume fraction. 

From Figure 12 and Figure 13 we can see that, except for the highest fluence data point (which 

corresponds to ATR1 irradiations), the calculation results show a good agreement with the 

experimental results for a wide range of neutron flux (from 7x1014 to 2.3x1018 n/m2/s), 

temperature (from 270 to 320 °C), fluence and composition. While we do not know exactly the 

cause of the CD predicted low number density (and consequently low volume fraction) for ATR1 

data, we note that these data points have the highest neutron flux in data set, which could cause 

some radiation induced precipitation due to radiation induced segregation, which currently is not 

in the model. Similar problems were noted in the model predictions vs. other ATR1 data, as 

discussed in the previous report and in Sec. 4.2.1. 
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4.2.2.2 Model parameters validation 
To further benchmark our Cu precipitation model for a different range of temperatures and 

compositions, we used the Cu parameters found for irradiated data to predict the Cu precipitation 

in Fe1.82at.%Cu0.2C1.38Al2.67Ni1.0Si0.5Mn under aging at 500 °C [69]. The comparison to 

these aging data is relevant as the alloy contains some amount of Mn, Ni, and Si, similar to the 

irradiated alloys being studied here. These elements can form a coating layer around Cu 

precipitates and mimic the similar morphology as we see in our KMC simulations and APT 

experiments of the RPV model alloys. Figure 14 shows the predicted Cu precipitates size and 

number density against experimental data [69]. The very good agreement between CD model 

(based on fitting parameters in Table 9) and experimental data strongly supports the validity of 

the Cu model. We also note that our model for Cu, which was fit to irradiation data on alloys 

with significant concentrations of other impurities, is only valid for other alloys with significant 

impurities. Tests for alloys without impurities (pure Fe-Cu) show significant discrepancies with 

our model predictions (Figure 15).  

 

Figure 14. Comparison between CD model and experimental data [69] of Cu precipitation under 
aging at 500 °C. We note that the CD model parameters used here (Table 9) were obtained from 
fitting to irradiation data and not the data in this figure.  
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Figure 15. Comparison between CD model and experimental data [70-72] of Cu precipitation in 
pure Fe-1.34at.%Cu under aging at 500 °C. The CD parameters used here (Table 9) were 
obtained from fitting to irradiation data. Poor agreement between modeling and experimental 
data compared with good agreement in Figure 14 suggests the dramatic effects of other 
impurities (e.g. Mn, Ni, and Si) on the precipitation of Cu.  

Another benchmark to show that the selected parameters (specifically interfacial energy) in 

Table 9 are in agreement with other experimental observations is to compare our prediction to 

experimental data on the minimum Cu for formation of Cu precipitates. The residual Cu in the 

RPV matrix is higher than equilibrium solubility limit due to excess free energy of precipitate-

matrix interface, which is important for nanometer-size scales (the Gibbs Thompson effect). 

Based on test reactor data the minimum Cu threshold for forming Cu precipitates (these 

precipitates are likely decorated at the interface with other impurities, so we will refer to them as 

Cu-rich precipitates, or CRPs) is between ~ 0.05 and 0.08at.% Cu [33-35], and the EONY model 

uses 0.06at.% Cu as the minimum Cu for formation of CRPs [27]. In Figure 16 we plot the Cu 

fraction in the matrix verses fluence (flux=1x1016 n/m2/s and T= 290 °C) for different Cu levels 

(other elements are set at at.% 0.97Mn0.91Ni0.53Si). Figure 16 shows that for Cu lower than 

0.06at.% the Cu fraction remains constant in the matrix, which indicate that no Cu precipitation 

forms for Cu lower than 0.06at.%, a result in good agreement with test reactor data and EONY 

model. Again, we note that this agreement is for alloys with significant concentrations of 

impurities that segregate to the Cu/Fe interface. 
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Figure 16. The minimum Cu (at.%) for formation CRP in RPV steels based on parameters in 
Table 9 (flux=1x1016 n/m2/s , T= 290 °C, 0.9Mn0.9Ni0.25Si (at.%)).     

4.2.2.3 Model predictability benchmark    
We have recently received some new experimental data from the UCSB ATR2 irradiations 

from the Odette group at UCSB. These data are outside of the experimental database that we 

used to parameterize the model and we use these new data to check the accuracy of the CD 

model. The new ATR2 database include the full microstructural information of Cu-MNS 

precipitates (radius, number density, and volume fraction) of 28 atom probe tips from six 

different alloys (CM6, LC, LD, LG, LH, LI). These alloys were irradiated under the neutron flux 

of 3.64x1016 n/m2/s at 291 °C up to the fluence of 1.39x1024 n/m2. Figure 17 shows a very good 

agreement between CD predictions vs. experimental data. The statistical analysis shows that the 

RMSD for radius, number density, and volume fraction are 0.3 nm, 1.5x1023 m-3, and 0.25 %, 

respectively. We note that the ATR2 experiment was done at fluence of 1.39 x1024 n/m2 which is 

near the steep part of the volume fraction vs. fluence plot for many of these alloys (see Figure 

12). Therefore, a small error in solutes diffusion under irradiation (which is likely due to the 

uncertainty in elements diffusion at ~290 °C and our simple RED model) could lead to a big 

error.  
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Figure 17. Comparison between CD and experimental results (from ATR2 tests) for precipitates 
number density, radius, and volume fraction. 

One clear case where the CD model underestimated precipitation is for LG alloy, which has 

the lowest solutes among all the alloys considered. To study the effect of available solutes in 

alloys on CD accuracy we plotted the summation of all errors (error in radius, number density, 

and volume fraction) vs. total solutes in the alloys. Figure 18 clearly shows that the accuracy of 

CD model increase with solutes increase and we have higher error in low solute alloys. Reducing 

this error is the focus of future work. 
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Figure 18. Correlation between available solutes in alloys and CD predictions error (sum of 
percent errors in number density, radius, and volume fraction) for ATR2 data. CD shows a 
higher error for low solute alloys.  

4.2.2.4 Insights from the model 
4.2.2.4.1 The effects of Cu on Cu-MNS precipitation in RPVs   

As already discussed, Cu has very low solubility limit and high diffusion coefficient 

(compared with Mn, Ni, and Si) in Fe, which leads to very fast precipitation of supersaturated

Cu. On the other hand, atomic interactions between solutes drag Mn-Ni-Si toward Cu 

precipitates. Therefore, Cu works as a catalyst in the formation of MNSPs. Figure 19 shows the 

predicted effect of Cu in formation of second phase precipitates for an alloy with medium solute

content (1.0Mn1.0Ni0.4Si, at.%) under neutron flux of 1x1016 n/m2/s at 290 °C.  

Figure 19 shows the effect of Cu on Cu-MNS precipitation in RPVs. The main effect of Cu is 

on the number density of precipitates, where higher Cu makes the precipitation of Cu-MNS 

faster and more numerous. The volume fraction plot predicts that the presence of 0.3 at.% Cu can 

reduce the fluence required to initiate RPV embrittlement about two orders of magnitude.    
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Figure 19. The effect of Cu on Cu-MNS precipitation in RPVs for a medium solute alloy 
(1.0Mn1.0Ni0.4Si, at.%.) under the flux of 1x1016 n/m2/s at  290 °C.  

4.2.2.4.2 LWR predictions 
In Figure 20 we plot the evolution of precipitate volume fraction and DBTT for a low solute 

0.7Mn0.85Ni0.25Si0.1Cu, medium solute 1.0Mn1.15Ni0.35Si0.2Cu, and high solute 

1.3Mn1.75Ni0.65Si0.3Cu alloy under LWR conditions (3x1014 n/m2/s and 290 °C). We used the 

Russell-Brown model [73] to use the CD predictions of volume fraction and precipitate size to 

predict the yield stress shift, and then a simple linear scaling of temperature shift = 0.68×(yield 

stress shift)[36] to obtain the associated ductile to brittle transition temperature shift. One key 

result that we can get from Figure 20 is a qualitative understanding of the status of current RPVs 

in present reactors. The oldest operating reactor in the USA is less than 50 years old (Oyster 

Creek, Operating since 1969). Therefore, majority of current RPVs are still in the precipitation 
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growth regime, which indicates that the embrittlement data that we have from surveillance are 

lower than what the RPV steels will likely experience under life extension. This result also 

shows that most of the available Cu in the matrix precipitates out within the first couple of years 

of reactor operation and then the sluggish precipitation of MNS contribute over much longer 

periods to the RPV embrittlement.  

 

  

Figure 20. Precipitates volume fraction and ductile-to-brittle transition temperature as a function 
of time for low (0.7Mn0.85Ni0.25Si0.1Cu), medium (1.0Mn1.15Ni0.35Si0.2Cu), and high 
(1.3Mn1.75Ni0.65Si0.3Cu) solute alloys (all values at. %) under LWR conditions (3x1014 n/m2/s 
and 290 °C).   

 

4.3 Machine Learning 
4.3.1 Results 

Cross-validation (CV) assesses the predictive ability of the model and its independence from a 

particular training set. This section assesses the GKRR model using 5-fold CV and Leave-Out-

Percent (LO X%) CV, and compares them to full fitting. For the 5-fold cross-validation, the 

dataset was split into five nominally equal parts, called folds. In a single test, the model was 

trained on the data in four of the five folds, then used to predict the left-out fold, with each fold 

being left out once. The RMSE for each test is given as the average RMSE over all five of the 

fold predictions. For the LO X% tests, in each test, the data was randomly split into a training set 

of (100-X)% of the data and a testing set of the remaining X% of the data. 

Figure 21a shows a full fit RMSE of 17 MPa is for training the model on the complete set of 

IVAR+ experimental data and then predicting the data back according to the input. Figure 21b 
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shows results of best and worst fits for 5-fold CV, and also shows the 5-fold CV RMSE of 20.5

+/- 0.3 MPa averaged over 200 tests. The similarity in fully fitted RMSE and CV RMSE shows 

that the model is not prone to over-fitting. These encouraging results show that the model is 

robust for predicting back IVAR+ data. Future work will involve attempting to predict LWR-

condition data. 

a) 
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b) 

 

Figure 21. (a) Full fitting and (b) 5-fold cross-validation of IVAR+ experimental data using the 
GKRR model. The best and worst CV fits are evaluated out of 200 cross-validation tests. For 
each cross-validation test, the RMSE values from each of the five folds are averaged into a single 
RMSE value. The best CV fit has the lowest fold-average RMSE of the 200 tests, and the worst 
CV fit has the highest fold-average RMSE. The points shown in red or blue are for all five folds 
of each test. 

4.3.2 Additional cross validation 
Figure 22 shows the results of Leave Out (LO) percentage tests, where a fixed percentage of 

the data is randomly selected to be removed from the training set, and that data then becomes the 

testing set. Naturally, LO20% performs better than LO50% and LO80%, as more data is trained 

upon. However, the worst fits for LO50% and LO80% generally involve only a few outliers, and 

even so the RMSE is lower than 50 MPa.   

Figure 23 shows the results of leave-one-out (LOO) cross validation, which has an RMSE and 

appearance comparable to full fitting and 5-fold cross validation. 
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(a) 

 

(b) 

 

(c) 

 

Figure 22. Best (lowest RMSE) and worst (highest RMSE) test predictions out of 200 CV tests 
where (a) 20%, (b) 50%, and (c) 80% of the data was selected by random to be left out of the 
training set.   
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Figure 23. Measured and predicted values for leave-one-out CV.   
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5. SUMMARY OF MAJOR RESULTS 
 

5.1 Kinetic Monte Carlo (KMC) 
• KMC simulations were used to reproduce the formation of the Cu-MnNiSi appendage 

microstructure during co-precipitation. The KMC models provided insights on Cu+Mn-

Ni-Si precipitates (MNSPs) growth to help model their coupled evolution with cluster 

dynamics. 

• Detailed analysis indicates that the ordered MNS nuclei on the Cu/Fe interface provide a 

lower energy state compared to the disordered MNS coating layer on the Cu-rich 

precipitate, leading to unstable coating layer and preferential growth of the ordered phase 

on one side of the Cu core. 

• In addition, there exists a diffusion path for MnNiSi atoms through the Cu core, pushing 

the Cu core to the edge of the Cu-MnNiSi precipitate and creating Cu-core-MnNiSi-

appendage structure.  

5.2 Cluster Dynamics 
5.2.1 Cu-free alloys 

• The alloy Ni content is the dominant compositional factor in forming MNSPs, while Mn 

and Si play lesser roles. The dominant role of Ni is due to the fact the G and Γ2 phases 

respectively contain 1 and 0.8 (Mn + Si) atoms for every Ni atom, respectively.  

• The absolute threshold for MNSPs formation appears to be ≈ 0.5at.%Ni. 

• The √f of MNSPs at extended RPV life fluence of 1024m-2 at 290°C can be fitted to a 

polynomial of alloy compositions, which can be used for quick estimation. 

• The √f versus T follows an approximately linear relation 

5.2.2 Cu bearing alloys 

• Even a small amount of Cu (e.g. 0.09at.%) can dramatically enhance the speed of RPV 

steel embrittlement by catalyzing the formation of MNSPs.  

• The predictive accuracy of the CD model was benchmarked against ATR2 experimental 

data and fairly good agreement was obtained, although percentage errors increase 

significantly as solute fraction is reduced.  
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• The main effect of increasing Cu on MnNiSi precipitates is to initiate their more rapid 

nucleation and increase the precipitates number density. 

• For LWR conditions (3x1014 n/m2/s and 290 °C), unlike Cu-free RPV steels, where the 

major embrittlement starts around 50 years of operation (for medium solute containing 

alloys, i.e. 1.0at.%Mn1.0Ni0.4Si), Cu bearing alloys (Cu>0.1at.%) experience 

embrittlement from very beginning of operation due to rapid Cu precipitate over less than 

one year and then accelerated MnNiSi precipitation.     

5.3 Machine Learning 
• Machine learning using Gaussian Kernel Ridge Regression (GKRR) predicts the change 

in yield stress for compositions and conditions represented within the IVAR/IVAR+ 

database with an RMSE of 17 MPa for a full fit. 

• Cross validation RMSE for 5-fold and leave out 20% data average approximately 20 

MPa. The similar full-fit and cross validation RMSEs suggest little over-fitting.  
• This model will now be explored for its capabilities in predicting LWR condition 

hardening. 
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6. FUTURE WORK 
The main focus of additional work is in improving the CD and machine learning models. The 

main focus of additional CD work will be extending the Cu+MNSP model to lower Cu-bearing 

alloy (lower than 0.06at.% when the CRP will not form), identifying and fixing the source of 

errors in low-solute and intermediate Ni alloys, identifying and fixing the source of errors in very 

high flux ATR1 condition simulations, enhancing the model beyond simple p-scaling for treating 

radiation enhanced diffusion, and refining the model by fitting to both all the available 

microstructural data and to the IVAR hardening database through empirical mechanical property 

models. The machine learning models will be tested and improved by using virtual data of 

hardening vs. flux, fluence, temperature and composition that include both measured conditions, 

e.g., like those in IVAR, and unmeasured LWR conditions. These virtual data sets will be 

generated by models like our CD model and can be used to test the predictive ability of the 

machine learning approaches. Additional work beyond the CD and machine learning models is 

focused on exploring new atom probe experiments on Cu precipitation to better understand flux 

and alloying effects in a pair of simple model alloys. 
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