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ABSTRACT 
Manual sensor calibration activities in light water reactor (LWR) operations are labor-intensive and 

constitute a significant amount of the high operations and maintenance costs, impeding the economic 
competitiveness of nuclear power. Online monitoring (OLM) of sensor calibrations using advanced data 
analytics and machine learning techniques may help to improve the economics of nuclear power while 
maintaining the safety and reliability of operations by focusing recalibrations on necessary periods. 
However, challenges associated with uncertainties in sensor drift detection and quantification have 
limited the use of OLM in the commercial nuclear power fleet.  

This report describes research leveraging advances in data analytics and machine learning methods to 
address technical challenges in sensor drift detection and uncertainty quantification. Specifically, the 
report presents results using the Auto-Associative Kernel Regression (AAKR) and principal component 
regression (PCR) methods that have been studied over the years, as well as hetero-associative information 
fusion methods using ensemble of trees (EOT) and support-vector machine (SVM) methods proposed 
under this project. These methods are compared using data from laboratory measurements, as well as 
limited data from instrumented irradiation tests. The results indicate the potential for drift detection and 
quantification as a precursor to identifying sensors that are out of calibration. Drift detection and 
quantification is also applied to identify failing sensors. In all cases, the proposed methods appear to 
compare well against existing methods (AAKR and PCR) by several measures. They also appear to be 
more accurate in estimating drifts in sensor measurements, indicating a potential application for early 
detection of deviations in sensor responses. 
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EXECUTIVE SUMMARY 
 

In the operations of light water reactor (LWR) nuclear plants, sensor calibration is a labor-intensive 
activity. Experience shows that most sensors remain within calibration, and a purely time-based, 
prescriptive recalibration of sensors can add unnecessary cost and time to outage schedules. Furthermore, 
unnecessary recalibrations increase the risk of unintended damage to sensors through human error. 

Online monitoring (OLM) of sensor calibrations using advanced data analytics and machine learning 
techniques may help eliminate many of these inefficiencies by focusing recalibration efforts only where 
they are necessary. While OLM has been the subject of multiple research and development efforts over 
the past 25+ years, challenges remain in uncertainty quantification, sensor drift detection, and estimation. 
These issues have limited the use of OLM in the commercial fleet. Recent advances in anomaly detection, 
sensor fusion, and uncertainty quantification methods, along with a focus on improving the economic 
competitiveness of nuclear power, make adoption of OLM more likely. 

The research presented in this report focuses on leveraging advances in data analytics and machine 
learning methods to address technical challenges in sensor drift detection and uncertainty quantification. 
The outcome of this research will (1) advance the state of technology for monitoring tools used in online 
sensor calibration, (2) establish a foundation to implement robust, accurate online sensor calibration at a 
pilot nuclear utility in fiscal year 2020, and (3) help nuclear power plants (NPPs) to minimize 
inefficiencies in preventive maintenance and enhance cost savings. 

The overall objective of this work is to develop a robust methodology to address these issues using 
machine learning and data analytics. The methodology will automatically identify symptoms due to 
sensor and instrument calibration drifts that exceed the specification limits, as well as those indicating 
complete sensor failures. This report focuses on detecting and quantifying sensor drifts caused by 
calibration changes and conditions such as sensing line blockage or leaks (failure modes of pressure 
transmitters) to a limited extent. The primary objective is to generate uncertainty quantification (UQ) 
estimates that are improved by considering the information specific to the underlying NPP systems. 

This report examines existing auto-associative methods and proposes hetero-associative methods for 
building models of the sensor response using measurement data from normal operations. Auto-
Associative Kernel Regression (AAKR) and principal component regression (PCR) methods are 
evaluated, along with information fusion methods developed under this project using ensemble of trees 
(EOT) and support vector machine (SVM) methods. All techniques use available training measurements 
to develop empirical models that implicitly incorporate the relationships between measurements from 
different sensors. AAKR and PCR provide a baseline set of results for comparison to determine 
performance gains from other information fusion methods. Complementary approaches using first-
principles models to inform the relationship between different measurements are not examined in this 
work. 

Available data sets include data from laboratory flow-loops in which sensor drift from calibration 
changes or sensor faults was artificially introduced. Data from instrumented irradiation tests were also 
available but did not have enough ground truth information sensor drifts with magnitudes and durations. 
However, initial analyses appear to indicate the ability to detect deviations from normal sensor behavior 
as indicated by measurements consistent with most redundant sensors. 

Application of the algorithms to these data sets indicates that the proposed methods compare 
favorably against standard OLM algorithms (AAKR and PCR) on accuracy and sensitivity overall. 
Furthermore, the algorithms provide more accurate estimates under large drift conditions. However, these 
results need to be verified using field data sets from NPP operations. Access to such data is being 
obtained and will lead to future work to further advance this technology. 
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In addition to the development of techniques to detect and quantify drift in sensor responses, the 
generalization equations for the predicted model output were developed. These equations are based on 
statistical theory, and they establish that the underlying problem is solvable in principle. The equations 
result in reasonably tight bounds for the data sets considered. Improving the tightness of the error bounds 
requires sharpening the generalization equations by incorporating specific parameters of the underling 
system and those of the EOT and SVM methods. 

Ongoing research includes evaluating additional data sets from test reactors and plant operational 
data. Approaches for using the algorithm outputs for recalibrating the sensor online will be examined 
next. Approaches to address regulatory concerns to accelerate deployment of OLM in the fleet are being 
evaluated under a different research program by other organizations. This project will engage with these 
organizations to better understand technical and regulatory barriers to deployment and will update the 
research plan to address these barriers in the next phase. 
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1. INTRODUCTION 
In the operations of light water reactor (LWR) nuclear power plants (NPPs), time-based, prescriptive-

maintenance activities typically include scheduled maintenance, inspection, calibration, and replacement 
of sensors and transmitters. Sensor calibration is a labor-intensive activity that may not always be 
necessary. Experience indicates that most sensors remain within calibration, and consequently, purely 
time-based, prescriptive recalibration of sensors can add unnecessary cost and time to outage schedules. 
Furthermore, such unnecessary recalibrations increase the risk of unintended damage to sensors through 
human error. 

Online monitoring (OLM) of sensor calibrations using advanced data analytics and machine learning 
techniques may help to eliminate many of these inefficiencies. OLM techniques have been available for 
several years and are the subject of US Nuclear Regulatory Commission (NRC) safety evaluation report 
(SER) [1]. However, no US utility has implemented OLM to date for the purpose of extending the 
calibration-intervals. The only routine implementation of OLM technology for monitoring to extend 
calibration intervals appears to be at the Sizewell B NPP in the United Kingdom [2,3]. 

The NRC identified several questions [1] that should be addressed before OLM is implemented by a 
licensee. These questions cover a broad range of topics, including: 

• Uncertainty quantification (UQ) 

• Single-point monitoring and sensor failure modes 

• Plant-specific applicability 

The research presented in this report focuses on methods to detect and estimate sensor measurement 
drift, as well as analysis of their generalization errors. Sensor drift is characterized by gradual changes in 
sensor measurements while the underlying plant parameters are maintained within normal operational 
ranges. Drift due to calibration changes typically manifests itself gradually in sensor measurements. 
However abrupt sensor response changes can also be caused by factors such as sensor failure or 
electromagnetic interference.  

The overall objective of this effort is to develop a robust methodology to address these issues using 
machine learning and data analytics methods. The method would automatically identify symptoms due to 
sensor and instrument-calibration drift that exceed the allowable specification limits, as well as symptoms 
that indicate sensor failures.  

This report described data analytics techniques, specifically information fusion methods using 
multiple sensor measurements, to estimate sensor drift. Results are presented using Auto-Associative 
Kernel Regression (AAKR) and principal component regression (PCR) that have been studied over the 
years, as well as hetero-associative information fusion methods using ensemble of trees (EOT) and 
support vector machine (SVM) methods that were developed under this project. These new techniques 
use available training measurements to develop empirical models that implicitly incorporate the 
relationships between measurements from different sensors. If the empirical model prediction errors are 
well-bounded by empirical estimates and analytical means, then the models can be applied in an online 
calibration process. The performance of these methods is tested using available test measurements to 
detect and quantify the sensor-drift behavior. Complementary approaches that use first-principles models 
of the process to inform the relationship between different measurements are not examined in this work.  

The outcome of this research will (1) advance the state of technology for monitoring tools used in 
online sensor calibration, (2) establish a foundation for robust and accurate online sensor-calibration 
implementation at a pilot nuclear utility in fiscal year 2020, and (3) help NPPs to minimize inefficiencies 
in the current preventive-maintenance strategy and to enhance cost savings. 
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2. BACKGROUND 
This section provides a brief overview of OLM in the nuclear industry and outlines existing research 

addressing technical gaps. A detailed review of OLM in the nuclear industry is available in the literature 
[4]. 

Analog sensors and transmitters have been used from the early days in the commercial nuclear 
industry for measuring key parameters in the primary and secondary loops (parameters such as 
temperature, flow, level, pressure, and neutron flux) [5]. These sensors provide continuous measurements 
of a quantity within their operating range and, in conjunction with the transmitter electronics, provide a 
standard current output (usually 4–20 mA) for use in subsequent analysis and decision logic. Typically, 
the current signal is sent to a current-to-voltage converter and then to instrument racks for processing, 
recording, and display. Recent advances in measurement technology has led to digital transmitters that 
have an analog front end with microprocessors and other logic circuits. The output of these digital 
transmitters is a digital signal which is used in the subsequent analysis, display, and recording of key 
measurement parameters. 

Safety-related sensors are required to periodically have their calibration checked and adjusted as 
necessary to maintain sensor calibration within a prescribed tolerance [4,6]. Calibration typically involves 
exposing the sensor to one or more known inputs and adjusting the readout so that it matches the known 
value. Current industry practice for maintenance of safety and non-safety sensors requires removal, 
recalibration, and reinstallation of every sensor and its associated channels [7]. Note that sensor 
calibration checks can include the response of the sensor and the response time, although some studies 
indicate the potential to identify response time changes based on the sensor output for specific types of 
sensors [8].  

Sensor aging and degradation leads to changes in calibration that usually manifest themselves as a 
drift in the sensor signal.  In addition, sensors can fail in several modes resulting in changes in the 
measured response or response time; the specific modes depend on the type of sensor and the 
environment in which it is installed and used. Failure modes can include failure of the sensor head alone 
or failure of the instrumentation (e.g., the electronics in racks or cabinets). Damage to the instrumentation 
cabling can also be a problem and will usually result in added noise and, possibly, drift in analog signals. 

While periodic assessments of sensor calibration can detect and correct for sensor aging or failure, 
approaches that continuously monitor sensor response to identify those that are out of calibration are 
attractive from the perspective of reducing the cost of maintenance. These OLM methods often use 
measurements from a reliable set of sensors to build a model. The model is then used for anomaly 
detection. Cross calibration can also be applied to detect drift in a redundant set of sensors such as 
resistance temperature devices (RTDs). Guidance on acceptable application of cross-calibration for RTDs 
is provided in NUREG 0800 BTP 7-13 [9]. 

2.1 Prior Research in OLM 
The motivation for OLM is to avoid recalibration of sensors every 18–24 months. This recalibration 

process is costly, and disconnection/reconnection of sensors for periodic calibration can introduce 
additional errors. OLM is now being considered to extend surveillance frequency. The objective is to 
delay unnecessary functional or calibration checks for sensors and instrumentation beyond the intervals 
specified in the technical specification (TS). If it is possible to delay recalibration without significantly 
increasing risk metrics such as core-damage frequency (CDF) and large early release frequency (LERF), 
maintenance costs would be reduced by allowing plants to defer unnecessary test and maintenance 
actions. 
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Techniques for OLM were developed and tested in the late 1990s, and an Electric Power Research 
Institute (EPRI) topical report was submitted to the NRC for evaluation [10]. The NRC SER on this 
topical report concludes that licensees could use OLM for calibration interval extension as long as several 
requirements are met [1,11]. While US utilities indicated interest in pursuing OLM for calibration interval 
extension [12,13], no license amendment applications have been made by US utilities for OLM use. 

Sizewell B in the United Kingdom adopted OLM to extend intervals between calibrations. They 
applied drift analysis to historical data to demonstrate low drift from the sensors. OLM was applied to 
monitor performance to identify sensor drift during extended intervals. In this type of scenario, the OLM 
approach ensures that any unexpected failures or drift in the measurements can be detected in a 
reasonable time frame. As part of program to extend intervals between calibrations, one in four channels 
undergoes calibration during every outage. This ensures that all channels are calibrated at least once in an 
eight-year cycle [14,15,16]. 

Recent research findings have led to proposals to eliminate response-time testing, relying on TS 
surveillance testing to detect conditions that would affect response time [17]. However, it is not clear how 
extending intervals between calibrations will impact the need to monitor response time. It is possible that 
using OLM to monitor sensor calibration may be applied to monitoring both sensor response and response 
time [18] if the associated uncertainty can be properly characterized. 

2.2 Open Questions and Focus of This Work 
Several questions and considerations need to be answered regarding the use of OLM to extend 

intervals between calibrations. While these issues will not impede NPP licensee implementation, technical 
advances to address these questions may help demonstrate that using OLM for this purpose would result 
in a minimal increase in risk Open questions are presented and discussed below. 

1. Uncertainty quantification in sensor drift estimation. Given the data used to develop OLM 
models, the generalization error associated with model prediction must be quantified. Several 
approaches can be used, including International Society for Automation (ISA) Recommended 
Practice (RP) 67.04.02, “Methodologies for the Determination of Setpoints for Nuclear Safety-
Related Instrumentation,” to characterize the uncertainty in setpoint determination and the uncertainty 
associated with OLM model predictions using future test data (generalization error). However, these 
methods tend to be conservative in their estimates of model prediction error, and the large UQ 
estimates can drive down the operating margins to levels not useful in practice. Tighter, more 
practical uncertainty estimates are needed. The primary objective in addressing this question is to 
generate improved UQ estimates by considering the information specific to the underlying NPP 
systems. Using the data available under normal or known drift conditions, models can be trained to 
detect and estimate sensor drifts. The training error is computed and used as a component of 
generalization error, which depends on the properties and parameters of the method. 

2. Fault detection. Most OLM methods are applied with the NPP operating under steady-state 
conditions and only monitor the current response from the sensor. Detecting drift in sensor responses 
under different operating conditions is a challenge. This is more so when sensor failures occur with 
corresponding changes in the recorded responses. Signatures from sensor data that indicate sensor 
failures need to be identified. While drift in the data is one indication of potential failure, other 
signatures may also help identify the presence of sensor failure. This effort is focused on detecting 
and quantifying sensor drifts caused by calibration changes and other conditions such as sensing line 
blockage or leaks (some failure modes of pressure transmitters) to a limited extent.  
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3. Online recalibration and virtual sensing. These challenges are associated with correcting a detected 
sensor drift online without resorting to manual recalibration. If sensor drift—either incipient or after 
some time—has been detected, a correction factor can be calculated for recalibration so that this 
single-point calibration does not degrade the calibration at other points in the span of the sensor. The 
sensor measurement can also be replaced with a calculated value (analytic or virtual sensor), but the 
generalization error bounds for this calculation must also be quantified as well. The assumption is that 
carrying forward a calculated value results in a biased estimate from the virtual sensor that no longer 
reflects the true state of the reactor, and this divergence changes with time. 

From the questions and considerations presented above, a few key research topic needs are identified: 

• Analysis techniques for detecting sensor drift in real time. These techniques may include feature 
extraction, machine learning, model building, etc., but they be data driven. Ideally, the techniques will 
detect incipient faults. These methods should be characterized in terms of common metrics like 
detection and false-alarm rates and the operating point in the receiver operating curve (ROC)—
metrics often used in established detection theory [19,20]. 

• Analysis techniques for drift detection that exploit the knowledge of sensor failure modes and 
failure physics, including those leading to calibration changes. These techniques are likely to be 
challenging, but they may be needed if other simpler approaches are deemed inadequate. 

• Methodology for online recalibration of a drifted sensor. 
• Analysis techniques to predict drifts that indicate sensor measurements outside their operating 

range. These techniques include the characterization of empirical drift-estimation error based on 
available data and the generalization error that applied to future test dataset using methods such as 
Vapnik-Chervonenkis (VC) theory [21]. 

• UQ techniques that can be integrated into drift detection and estimation, as well as online 
recalibration, virtual sensing, and predictive monitoring. 

The US Department of Energy (DOE) Office of Nuclear Energy (NE) sponsored research into some 
of these questions through other programs. Ongoing research is addressing the development of virtual 
sensors for short-term replacement of data from a failing sensor while that sensor is repaired or 
recalibrated. Other research is evaluating approaches for calibration-interval extension incorporating 
OLM. This study focuses on new algorithms based on advanced data analytics that may be capable of 
providing improved sensor-response estimates and confidence bounds in the sensor estimates for 
unknown future measurements. 

This report focuses on detecting and quantifying sensor drifts caused by calibration changes and 
conditions such as sensing line blockage or leaks (some failure modes of pressure transmitters) to a 
limited extent. The primary objective in addressing this question is to generate UQ estimates that are 
improved by considering the information specific to the underlying NPP systems. Using the data available 
under normal or known drift conditions, models can be trained to detect and estimate sensor drifts. The 
training error is computed and used as a component of generalization error, which depends on the 
properties and parameters of the method. The estimates of drift and the associated generalization error 
bounds could be used as correction terms to measurements and as input to recalibration processes, 
although this is the subject of ongoing research.  

Note that automatically distinguishing between sensor drift and process change is also a challenge. 
This is not addressed in this research. Instead, it is assumed that the operator is knowledgeable about 
expected changes in the process. 
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3. ALGORITHMS FOR ONLINE SENSOR  
DRIFT DETECTION AND ESTIMATION 

3.1 Data Analytics Methods: Overview 
The goal of OLM methods is to enhance the reliability of NPP measurements through improved 

accuracy and increased reliability of the sensors used to monitor key parameters. The literature22,23 
identifies several classes of algorithms that may be applied to OLM. All these techniques rely on 
comparison of measurements against data from baseline conditions (normal or faulted) for drift detection. 
Some approaches use these data directly, while others use features or signatures computed from data. 
However, other OLM techniques use a model to predict the correct plant measurements, with deviations 
from these predictions in the measured data indicating calibration drift. The algorithms themselves may 
rely on data from a single sensor or a redundant sensor set, or they might use measurements from 
different sensor types such as a thermocouple, a resistance temperature detector, or pressure transmitters. 

While physics-based models may be applied to predict the correct plant parameters, challenges 
associated with identifying the model parameters themselves have led to the application of models that 
are induced from historical data. Such data analytics methods use historical data to learn the model 
parameters and then apply these models to predict measurements. 

The focus of this effort is on such model-based OLM methods in which the models are derived using 
one or more data analytics approaches that rely on historical measurements from sensors that operate 
normally and/or that are failing or drifting. Specifically, these approaches estimate the output of a sensor 
by fusing measurements from other sensors and using the difference between a measurement and its 
estimate as a measure of drift or error. This approach is particularly effective for estimating large drift, 
because the drifting sensor is not used in the estimate. A special case consists of redundant sensors that 
measure the same underlying physical quantity, which in principle provide “close” measurements. 

Data analytics methods for OLM must: 
• Enable development of robust models with accurate prediction of plant measurements. While specific 

tolerances on the prediction accuracy are not available, generally, prediction accuracy in excess of 
90% is likely to be necessary to limit false or missed detection. 

• Access historical data. Typically, the volume of data needed for model development will depend on 
the specific algorithm. For drift detection under steady-state operating conditions, the historical data 
must largely come from normal operations. For fault detection and diagnostics, especially if the intent 
is to use methods based on pattern recognition, the data will also need to include examples of likely 
fault conditions. 

• Provide estimates of the uncertainty associated with the model prediction and, if possible, the 
measurement. The level of uncertainty will be a key parameter in setpoint analyses for sensor 
calibration-interval extension. As with accuracy, apparently there is no specific guidance on the 
uncertainty levels or on the confidence bounds. This research targets generalization equations based 
on Vapnik’s theory that bound the prediction error at a specified confidence level for predictions. 

3.2 Candidate Data Analytics Methods 
Of the large number of potential methods applicable to OLM tasks, this study focuses on a subset of 

auto-associative and hetero-associative models. In general, auto-associative models support the processes 
of pattern recognition and completion, whereas hetero-associative models support the processes of paired-
associate learning and sequence generation.24 Auto-associative models use the same data as input and 
output, and they typically maintain fewer parameters than more general models. The models work to 
predict the entire input/output sequence from a smaller sample of the input sequence. For example, given 
the sentence fragment “That’s one small step for a man, a giant _____,” those familiar with Neil 
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Armstrong and US space exploration will complete the quote “That’s one small step for a man, a giant 
leap for mankind.” In this example, the incomplete sentence or subset of the input is sufficient to recreate 
the entire quote or output.  
In the case of OLM, AAKR uses measurements from a group of sensors are used to predict the responses 
from all these sensors, assuming normal sensor operational conditions. Given the need to predict the 
measured data from actual measurements, auto-associative models generally require highly correlated 
variables. Under normal sensor operational conditions, the prediction error can be low if the model 
parameters are properly tuned. Under conditions in which one or more measurements drift, the prediction 
error increases and may be used to detect the presence of a sensor drift. However, the inclusion of drifted 
signals as part of input results in a higher prediction error for the drifted sensor and other sensor 
measurements. Therefore, the performance of auto-associative models is often assessed by auto-
sensitivity and cross-sensitivity metrics which indicate the robustness of the models to the drift or fault. 
Hetero-associative memory recall an associated piece of datum from one category upon presentation of 
data from another category and can be viewed as a generalized version of the auto-associative memory. 
We present information fusion methods that use non-drifted sensors to reconstruct the correct sensor 
signal. 

In both auto- and hetero-associative model-based approaches to OLM, a fundamental aspect is the use 
of information from multiple sensors in the model-prediction process. A key assumption is that 
information-fusion methods in this context use the structure and other information from physical laws of 
parameters of the underlying system for drift and sensor-error estimation. 

3.2.1 Auto-Associative Algorithms for Sensor-health Evaluation 
The AAKR method is considered in this study mainly for its potential in using measurement data to 

infer model parameters, its extensive historical use in OLM in the nuclear industry, and its ability to 
provide prediction error bounds (generalization error bounds). AAKR [25] is a nonparametric, memory-
based modeling technique that takes an input historic-memory vector and a query vector to calculate the 
predicted measurement vector. This method is widely known for its ease of use and its ability to attain a 
high level of prediction accuracy. AAKR relies on statistical relationships between variables to make 
predictions about their true values. For this reason, inputs to the kernel regression model must be well 
correlated to one another. Sensors are grouped based on their linear intercorrelation. Once the groups are 
defined, an AAKR model is trained for each group and used to reconstruct signals of the query vector as 
expected under normal conditions. 

3.2.2 Information Fusion for Drift Detection and Estimation 
The information fusion method, which is based on multiple sensors for drift estimation, was 

developed under this project. The sensors of a power plant measure variables that are typically related to 
each other through the underlying system physics. Such relationships provide regressions with smooth or 
non-smooth but bounded variation properties that are conducive to machine learning analytics [26]. 
Informally, the bounded variation in this case means that discontinuities or non-smooth sections have a 
finite number of finite differences. To be considered conducive, in closed systems such as a primary 
coolant loop, critical trends must be discernable above the sensor noise. For example, in laboratory flow 
loop scenarios that provided the data sets used here (see Section 4.1 for details), the source temperature is 
increased twice during the experiment, starting from ambient temperature. At time 𝑡𝑡 = 900 𝑠𝑠, it is 
increased from ambient temperature to 70°𝐹𝐹 and at time 𝑡𝑡 = 3,600 seconds, it is increased to 90°F. The 
sensor measurements collected at 20 Hz show a corresponding response in two-step increases at 𝑥𝑥 =
18,000 and 𝑥𝑥 = 72,000 (Figure 1) as a result of higher flow rates acting to maintain the loop control 
temperature setpoints. These sensors have different measurement units and ranges:  

i. Differential pressure sensors:  
a. Weed-d1q: 0–850 in. H2O 
b. Foxboro-d3i: 0–50 psi 
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c. Rosemount-d4k: 0–750 in. H2O 
d. Safir-d2r: 0–259 kPa 
e. Weed-d5s: 0–250 in. H2O  

ii. Pressure sensor: Kulite-c1v: 0–100 psi 
 

 
(i) no-drift training dataset: Scenario 10 (ii) drifted Kulite-c1v test dataset: Scenario 14 

Figure 1. Training and test measurements for sensor fusion method for estimation of drift. 

These types of relationships can be exploited to learn a regression fusion function for measurements 
of a chosen sensor as a function of measurements from other sensors. This data can then be used to 
estimate measurements that are “expected” under no error conditions. When a sensor drifts (due to 
calibration shift or sensing line blockage), the difference between its actual measurements and predicted 
regression values provide estimates of the sensor drift that can assist in identifying faulty sensors. 

SVM and EOT methods are chosen to estimate the regression function to capture two different 
properties: smooth and non-smooth functions, respectively. The SVM method is based on nonlinearly 
transforming the feature space X so that it is suitably expanded into regression regions based on Y. The 
result a smooth regression function 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆 from a class 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆 consisting of smooth functions resulting from 
Gaussian kernels. The EOT method is based on boosting a collection of classification trees that are 
customized to fit the training data using the AdaBoost method. The resulting highly non-smooth 
regression function 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸 is from a function class 𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸 consisting of a large collection of decision trees. 
These algorithms are described in more detail in Section 4.2.3 and in the literature [3,27,28,29,30,31,32]. 
3.2.2.1 Support vector machines. SVMs are kernel-based machine learning tools used for 
classification and regression [21]. The SVM concept is based on constructing hyperplanes to linearize a 
classification or regression task and developing support vectors that minimize the error margin. In SVM 
regression, the goal is to find the function 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆 for the input data that has at most 𝜀𝜀 deviation from the 
output data while being as flat as possible. SVM regression tries to approximate all data pairs within a 2𝜀𝜀 
band using 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆 while allowing some slack points beyond the 2𝜀𝜀 band. A constant determines the 
tradeoff between flatness of 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆 and toleration of points beyond 𝜀𝜀. The flatness of the 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆 indicates that 
the weight vector is minimized, and when slack points are included, then the minimization includes the 
weight vector and additional error introduced by the slack points. For nonlinear input data, the input 
vector is mapped into the high-dimensional feature space through some nonlinear mapping to make it 
possible to perform linear regression. 

3.2.2.2 Ensemble of trees. Regression tree ensemble is a predictive model composed of a 
weighted combination of multiple regression trees. In regression problems, boosting builds a series of 
regression trees in a stepwise fashion and then selects the optimal tree using an arbitrary differentiable 
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loss function. Boosting means that each tree is dependent on prior trees. The algorithm learns by fitting 
the residual of the preceding trees. Thus, the prediction model is an ensemble of weaker prediction 
models. Boosting in a decision tree ensemble tends to improve accuracy with some small risk of reduced 
coverage. 
3.2.2.3 Nonlinear principal component analysis . Principal component analysis (PCA) is a 
popular statistical method for extracting information from measured data. PCA finds axes of significant 
variability in the data by forming linear combinations of variables. Nonlinear principal component 
analysis (NLPCA) is an extension of linear PCA. While PCA identifies linear relationships between 
process variables, NLPCA extracts both linear and nonlinear relationships. NLPCA can be represented by 
two submodels: the mapping model and the demapping model. 

Given a data matrix X, the mapping model computes the nonlinear principal component T, and the 
demapping model computes estimates of the data. NLPCA is used to model normal process behavior, and 
faults are then detected by checking the observed behavior against this model. The proposed work [33] 
used a five-layer neural network NLPCA model. 

3.2.2.4 Principal component regression.  PCA uses an orthogonal transformation to convert a 
set of possibly correlated variables into a set of linearly uncorrelated principal components (PCs). PCA 
provides a way to compress data by reducing the dimensions of predictor variables without much loss of 
information. The original n correlated sensors are projected to a new space, with the n uncorrelated 
variables in the order of the amount of the variance. The PCs are the eigenvectors of the covariance 
matrix of the input matrix, which are proportional to the variance amount. 

Principal component regression (PCR) [34] is a regression method in which the PCs are used as 
inputs instead of original sensors to predict an output sensor. The generated PCs meet the assumption of 
linear regression: that the inputs are uncorrelated. Because most sensors are correlated, PCR provides a 
much smaller input space based on PCs, which reduces the computing cost significantly. 

3.2.2.5 Other regression methods. There are several different types of regressions, each with its 
own strengths and weaknesses. In addition to the methods discussed above, a set of common regression 
methods was evaluated for reference. Those methods include linear regression, k nearest neighbor 
regression, decision tree regression, gradient boosting regression, random forest regression, and ridge 
regression. 

Linear Regression [35] models the relationship between a single input independent variable and an 
output-dependent variable and is completely made of linear variables. In the more general case, 
multivariable linear regression captures the relationship between multiple independent input variables and 
an output-dependent variable. Linear regression assumes normality in variables and fails in the case with 
high collinearity among the feature variables.  
Ridge Regression [36] makes the same assumptions as linear regression, except it does not assume 
normality. In addition, it adds a small squared bias factor to the variables, pulling the variable coefficients 
away from their rigidness and greatly reducing their variance. Decision tree regression is a nonparametric 
supervised learning method that learns from data to approximate a sine curve with a set of if-then-else 
decision rules. The fitness of the model depends on the complexity of the decision tree. k nearest 
neighbor regression uses a weighted average of the k nearest neighbors weighted by the inverse of their 
distance for estimating continuous variables. Choosing the optimal k value is important since the right k 
value reduces the overall noise without overfitting or underfitting for the data. 
Gradient Boosting Regression [37] is an additive ensemble model that consists of three components: a 
loss function to be optimized, a weak learner to make predictions, and an additive model to add weak 
learners to minimize the loss function.  

https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Correlation_and_dependence
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Random Forest Regression [38] is an ensemble machine learning technique that uses multiple decision 
trees and a statistical technique called bagging to reduce high variance and bias. Instead of merely 
averaging the decision trees, it uses random forest of training observations when building trees, and it 
uses random subsets of features when splitting nodes. Combining several decision trees into a single 
model brings the predictions closers to the true value on average. 

All the techniques listed above may be used in either an auto-associative or hetero-associative mode. 
In this study, these techniques are used in a hetero-associative mode, with the goal of predicting the 
output of one or more sensors using information in measurements from other sensors. 

3.2.3 Performance Evaluation Metrics 
Modeling methods for OLM should produce accurate, repeatable, robust results and should provide 

an estimate for uncertainty of the predictions. According to NUREG/CR-6895 [39], the performance of 
auto-associative OLM systems is measured in terms of three metrics: accuracy, auto-sensitivity, and 
cross-sensitivity. This work includes three more metrics—time to detect drift onset, detection rate, and 
false alarm rate—to provide an objective set of metrics for evaluating the performance of these 
algorithms. Based on the differences between auto-associative and hetero-associative models, not all 
metrics will be applicable, and it is unlikely that any single method will outperform in all metrics, as 
optimizing one metric typically degrades another. 

1. Accuracy: Accuracy measures the ability of a method to correctly model and accurately predict the 
sensor measurements. It is characterized by the mean squared error (MSE) between the predictions 
and measurements. The MSE (𝐴𝐴), corresponding to a sensor is given by 

 𝐴𝐴 =
1
𝑁𝑁�

(𝑥𝑥�𝑖𝑖 − 𝑥𝑥𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 (1) 

where 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝚤𝚤�  are the measurement and its prediction, respectively, for observation i, and N is the 
number of observations. For a drifted measurement, the MSE is expected to be high as the model 
predictions are generally of the measurement under non-drifted conditions. The root mean square 
(RMS) error given by the square root of the MSE is also used as an estimate of accuracy in some 
cases. 

2. Sensitivity: This is a measure of the robustness of the models. A robust model is defined as one that 
produces small changes in its output in response to small errors in its inputs. Model sensitivity is 
generally defined as a measure of the change in the prediction of the ith variable (𝑥𝑥𝚤𝚤� ) produced by a 
change in its respective input (𝑥𝑥𝑖𝑖): 

 𝑆𝑆𝑖𝑖 =
Δ𝑥𝑥�𝑖𝑖
Δxi

 (1) 

a. Auto-sensitivity: Auto-sensitivity is a measure of a model’s ability to correctly predict a faulty 
sensor that is included in the input of the model [39]. Auto-sensitivity indicates the degree to 
which the faulty sensor prediction will be impacted by itself. It takes as input a sensor i’s 
prediction with no fault in the input and with a faulted input, 𝑥𝑥𝚤𝚤�  and 𝑥𝑥𝚤𝚤�

𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 respectively, and 
sensor i’s unfaulted-input value and drifted-input value, 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖

𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑. For experimental analysis, 
to calculate auto-sensitivity, artificial drift is introduced by adding a standard deviation to the 
original signal. 

b. Cross-sensitivity: This value measures the effect a drifted or faulty sensor input has on the 
predictions of other sensors [39]. In other words, this value measures the effect that a faulty 
sensor input i has on the predictions of sensor j. 



   
 

10 

3. Time to detect drift onset. This value is defined as the observation point at which the method detected 
drift in the measurement after the onset of drift. 

4. Detection rate. This value is measured by the fraction of time drift that is declared by a method 
during the period the sensor is drifted. 

5. False-alarm rate. This is defined as the fraction of time that a method incorrectly identifies 
measurement drift during the time that the sensor is operating normally. 

In addition to the above metrics, several other measures of performance may be identified, such as 
scalability and computational cost. Scalability is a measure of the ease of scaling of the method from a 
few (tens) to many (hundreds to thousands) sensors and is often measured indirectly through the 
computational cost (time, computing cycles, or memory needed to generate a given number of 
predictions), which may scale nonlinearly with the number of sensors. 

 

4. PRELIMINARY RESULTS 
This section includes the initial results of AAKR, PCR and information fusion methods in terms of 

their performance on testbed datasets and generalization error equations. 

4.1 Datasets 
To investigate data analytics methods for drift detection and estimation for NPPs, two sets of 

measurements were used. The first set was collected using a laboratory-scale flow loop located at 
Analysis and Measurement Services (AMS Corporation, Knoxville, Tennessee) while the second was 
collected during a fuel-irradiation test program conducted in the Advanced Test Reactor at Idaho National 
Laboratory.  

A schematic of the laboratory-scale flow loop is shown in Figure 2. The loop includes a heater, a 
primary loop pump, and a heat exchanger. A chiller is connected to the secondary side of the heat 
exchanger. Figure 2 also indicates the installation location of twelve pressure transmitters, six resistance 
temperature detectors, and an electromagnetic flow meter. The installation of these sensors emulates the 
two main characteristics of sensors in NPPs: redundancy for measuring key parameters and correlated 
data from the sensors. 
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Figure 2. AMS test loop layout [40]. 

 

Twenty scenarios were used to collect measurement datasets using this flow loop [40]: 

• 2 under normal operation (Scenarios 1 and 10: labeled as AMS3 and AMS12); 
• 8 simulated calibration changes (Scenarios 2-9: labeled as AMS4-AMS11), 
• 4 simulating blockages (Scenarios 11-14: labeled as AMS13-AMS16), 
• 3 simulating minor leaks (Scenarios 15-17: labeled as AMS17-AMS19), 
• 2 simulating air voids (Scenarios 18-19: labeled as AMS20-AMS21), and 
• 1 simulating electromagnetic interference (Scenario 20: labeled as AMS22). 

All twenty scenarios of the AMS dataset were collected with the loop operating over three operational 
ranges: low, in which the heater was OFF and the chiller was ON; medium, in which the heater and the 
chiller were both ON; and high, in which the heater was ON while the chiller was OFF. For Scenarios 2–
9, in which simulated calibration changes were introduced, the simulated drift was initiated in a 
Rosemount-d4k differential pressure (DP) sensor, which was one of a redundant set of four DP sensors 
monitoring the pressure drop across the heat exchanger: the pressure difference between hot and cold 
legs. While redundant, these sensors are not identical, and they are complementary in that they have 
different units or ranges. Weed-d1q, Weed-d5s, and Rosemount-d4k measure in units of inches in H2O 
but have different ranges: namely, 0–850, 0–250, and 0–750, respectively. Foxboro-d3i measures in PSI 
units in a range of 0–50, and Safir-d2r measures in units of kPa in a range of 0–259. For other scenarios, 
faults were introduced to affect again Rosemount-d4k (Scenarios 11-13 and 15-19), Kulite-c1v 
(Scenario 14) and Barton-c2u (Scenario 20). In all scenarios, measurements were collected at 20 Hz for a 
period of approximately 85 minutes. 

While these redundant sensors can be identified visually from the layout in Figure 2, a correlation 
analysis between sensors, as shown in Figure 3, also confirms information about the strongest and the 
weakest correlated sensor pairs. This may be useful, as the analyst may not have access to full design 
drawings and the layout of the sensors in a flow loop. 
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The correlation coefficients from the AMS dataset summarized in Figure 3 show a strong correlation 
between the various DP sensors, as well as among the pressure transmitters and the groups of temperature 
sensors. Cross correlations between the different sensor types are also high, with a few exceptions (such 
as between the primary loop RTDs and the pressure transmitters). Additional analysis is needed to 
determine whether the data are correlated with a time lag or if there are other causes for the lack of 
correlation between these sensors. 

Given that the Rosemount-d4k is the drifted sensor, sensors are used that are strongly correlated with 
Rosemount-d4k, such as Weed-d1q, Foxboro-d3i, and Safir-d2r, as shown in Figure 3, to identify the drift 
in the signal pairs. The obvious advantage of this approach is to identify redundancy in measurements and 
to account for the redundancy in detection and prediction calculations. 

The second data set, which is referred to as the AGR dataset in this report, was a subset of data 
collected during the Advanced Gas Reactor (AGR) fuel-irradiation test program conducted in the 
Advanced Test Reactor at Idaho National Laboratory. This subset of the AGR dataset contains 
thermocouple (TC) measurements of graphite in six capsules. Each capsule underwent 12 
irradiation cycles from February 2007 to July 2009. 

 

 
Figure 3. Correlation between AMS test loop sensors. 
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The AGR dataset contains measurements from five TCs in the experiment. Due to failures of the TCs, 
only Capsule 6 has more than three TCs surviving with data recorded and was used in the analysis. The 
analysis focused on the detection of drift and the detection of failures of TCs. Initial results indicated the 
potential for detecting the onset of drift in the TC data using some of the algorithms described earlier; 
however, the information available did not include true state information (i.e., independent information on 
when the TCs began drifting or failed completely). As a result, the analysis of this dataset is ongoing and 
is not reported in this section. Appendix B contains a summary of the analysis to date with additional 
analysis ongoing and planned for reporting in subsequent milestone reports. 

4.2 Initial Results 
This section begins with the AAKR method and establishes it as a baseline and then compares the 

performance with other methods investigated in this research based on the metrics discussed in 
Section 3.2.3. To facilitate readability and establish consistency, the following definitions are provided: 

False alarm: when the model erroneously indicates an error when there is none. 

Missed alarm: a false negative where the model shows no indication of error despite an error being 
present. 

In all methods investigated in this research, the focus to date has been largely on measurement 
prediction. The immediate application is the ability to estimate drift, i.e., demonstrate that the model 
accuracy is high in cases with no measurement drift and that the MSE may be useful as an input for 
detecting the onset of drift. Rudimentary drift detection techniques using pre-determined and likely sub-
optimal thresholds have been applied in some instances, where threshold selection required knowledge of 
the onset of drift in the data. Methods and procedures are being studied for relaxing this requirement and 
performing drift detection without access to this information, and will be reported in follow-on reports.  

4.2.1 Drift Detection and Estimation Using AAKR 
Eight scenarios from the AMS dataset are considered (runs AMS4 through AMS11) with drifted 

sensors to predict drift using the AAKR model. Rosemount-d4k is the drifted sensor in each case. AAKR 
is evaluated using two sets of training data: the first set of inputs consists of measurements from all 
sensors with the goal of predicting all of them, and the second set consists of a highly correlated subset of 
sensors. Figure 3 depicts the correlation between different sensors in the AMS loop. In auto-associative 
models, the outputs mimic the inputs. The input to an AAKR consists of drifted and non-drifted sensors, 
and the output is ideally corrected sensor signal. 

The AMS loop consists of 102,400 observations per sensor. Noting the computational cost for 
training AAKR on the entire set of observations, a smaller subset of 25,600 memory vectors—the first 
1/4th of the total observations—is also considered as training data. The average accuracy (as defined in 
Section 3.2.3) on the training data was 1.87 × 10−4. While this is considered acceptable accuracy, the 
computational effort in terms of memory and computational cost was significant. 

To overcome the limitation of computational resources in training the AAKR model, a representative 
sample of 500, 5,000, 12,800, and 25,600 memory vectors is chosen using the minmax vector ordering 
method presented in NUREG/CR-6895 [39]. The empirical results showed that using 5,000 memory 
vectors presents better accuracy with relatively low computing cost. This subset selection significantly 
reduced the computational need for training AAKR, with only a slight reduction in accuracy at 
4.9 × 10−4. As the computation time is typically dependent on the underlying hardware, execution time 
is not reported, but it will be included in future reports once an objective measurement is determined. 

Given these encouraging results from memory vector subset selection, 5,000 memory vectors are used 
as the training vector length for the AAKR model in subsequent analyses. Other metrics discussed in 
Section 3.2.3, such as sensitivity, were also computed for this model; analysis of these metrics is ongoing. 
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AKR performs best when the process variables present a strong collinearity among themselves. 
Having a choice of all 19 sensors with no strong collinearity reduces the capability of AAKR to satisfy 
the missed alarm and false-alarm rates. Therefore, a set of nine pressure or pressure differential sensors 
were chosen that are highly correlated with the drifted Rosemount-d4k sensor. Sensors having a low 
correlation with Rosemount-d4k sensor or environmental sensors that remain constant throughout the 
operation were excluded. Different combinations of highly correlated sensors were tested as a training 
data to the AAKR. One of the tests included using the training data without the drifted sensor (drift-free 
dataset) to observe whether the prediction performance would improve. A model was chosen that 
presented the lowest root mean square error (RMSE) and high accuracy for drift estimation. The accuracy 
was computed by comparing the estimated and real drift, which is the difference between the drifted 
sensor and the redundant drift-free sensor. 

AAKR performs best when the process variables present a strong collinearity amongst themselves. A 
choice of all 19 sensors, with no strong collinearity, reduces the capability of AAKR to satisfy the missed 
alarm and false-alarm rates. Therefore, we choose a set of nine pressure or pressure differential sensors 
that are highly correlated with the drifted Rosemount-d4k sensor. We excluded those sensors that possess 
a low correlation with Rosemount-d4k sensor or environmental sensors that remain constant throughout 
the operation. We tested different combinations of highly correlated sensors as training data to the 
AAKR. One of the tests included using training data without the drifted data (drift-free dataset) to gauge 
the effectiveness of the model in correcting the signals. We picked the model that presented the lowest 
root mean square error (RMSE) and high accuracy for drift estimation. We computed the accuracy by 
comparing the estimated and real drift, which is the difference between the drifted sensor and the 
redundant drift-free sensor. 

Figure 4 shows the residual between the measured and predicted sensor data for the Rosemount-d4k 
DP sensor in different AMS dataset scenarios. We perform drift detection using a carefully chosen 
threshold. If not done methodically, such a detection approach, as shown in Figure 4, may lead to an 
increase in the false negatives. Therefore, the false alarm and missed alarms rates depend on the selected 
threshold value. Methods for optimal selection of the threshold, for instance, using techniques such as the 
Neyman-Pearson lemma, will be necessary when applied to data where the onset of drift is not known a 
priori. The dataset AMS4 results in a large residual independent of the algorithm used and we are still 
investigating reasons for this. AMS4 through AMS11 are all simulated calibration change experiments 
(see Section 4.1 for dataset descriptions). 
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Figure 4. Predicted drift for differential pressure sensor Rosemount-d4k. 

Input data are normalized before the model is trained to avoid sensors with large values taking higher 
importance. Figure 5 shows the residuals of the nine sensors (only one sensor is drifted) in AMS5 with 
normalization. Comparing Figure 4 and Figure 5, it is evident that the residual is much noisier when data 
are not normalized. This presents a challenge to establish an effective threshold with relatively low 
missed and false alarms. The blue line is the residual of a fault-free sensor, while the red line is the 
residual of a drifted sensor. To balance the missed and false alarms, the threshold selection was in a 
manner for late detection of drift. It may be effective to use denoising or smoothing algorithms to reduce 
excessive noise. However, these algorithms were not used in the predictions in this research and may be 
included in the future. 

 
Figure 5. Residuals of nine sensors in AMS5 with normalization. 
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Residual is defined as the difference between predicted value and the ground truth. Figure 6 shows 
the residual between the drifted Rosemount-d4k sensor and the redundant ground truth, Weed-d1q sensor. 
It also depicts the drift predicted in other Scenarios 7–9 (AMS 9–11). 

 
Figure 6. Difference between predicted drift and ground drift. 

The residual and fault hypotheses of AMS5 using the AAKR model can be seen in Figure 7, which 
demonstrates the detection capabilities. The thresholds were selected to predict the first observed drift 
based on the known start times for drift (thresholds are shown as red dotted lines in Figure 7).  

 
Figure 7. The residual and fault hypothesis of AMS5. 
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4.2.2 Principal Component Regression 
The advantage of using PCR over AAKR is its low computing cost and lower cross-sensitivity. This 

means that if a drifted sensor is included in the generation of the principal components, it does not 
significantly impact the regression results. However, the principal components are highly affected by 
peaks in a signal, so a peak smoothing filter was applied at the points in the signal with parameter 
changes. 

As with the AAKR analysis, the PCR algorithm was evaluated using eight scenarios from the AMS 
dataset (runs AMS4 through AMS11).  All the pressure sensor data are used except for the drifted 
Rosemount-d4k sensor to generate the principal components. The data are normalized, and after 
generating the principal components, it can be observed that choosing two PCs allows us for capture of 
more than 99.9% of the information in the drift-free data. Linear regression is then employed to predict 
the Rosemount-d4k sensor using the principal components. The linear regression result is expressed as 
follows: 

𝑝𝑝𝐷𝐷4𝑘𝑘 = 0.3858𝜐𝜐1− 0.1408𝜐𝜐2     (2) 

where 𝑝𝑝𝐷𝐷4𝑘𝑘 is the pressure reading of the Rosemount-d4k transducer, and 𝜐𝜐1 and 𝜐𝜐2 are the two principal 
components. 

The RMSE of the drift-free test data is 0.0126, and the drifted Rosemount-d4k values of the AMS4-
11 are predicted using linear regression. The residual is computed as the difference between the predicted 
value and the measured values. Figure 8 shows the predicted drift for scenarios AMS4-AMS11 using 
PCR. Comparing Figure 4 and Figure 8, it can be seen that AMS4 has a large residual using both AAKR 
and PCR. This leads to either false alarms or large thresholds that result in missed alarms. 

 
Figure 8. Predicted drift with PCR exclude the drifted sensor. 

As an alternative to seeing the effect of the drifted sensor in training the PCR model, the Rosemount-
d4k drifted sensor was used in the training data. Figure 9 depicts that PCR behaves robustly against the 
drifted sensor, and the predicted drift is still consistent with the model trained with drift-free data. 
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Figure 9. Predicted drift with PCR include the drifted sensor. 

The thresholds are carefully defined for detecting the first observed drift considering the false and 
missing alarms. When thresholds are small, they are sensitive to small drift, which could give early 
detection of drift. However, small thresholds also result in more false alarms because the random noise in 
the residual could intersect with the defined thresholds. From intuition, while early drift detection is 
preferred, it is not essential, because a drifted sensor in its early drift stage does not noticeably impact the 
operation. In contrast, false alarms could be harmful, as they can disturb the operation. Therefore, 
thresholds are selected to tradeoff between false alarms and missed alarms. Ideally, the threshold should 
be large enough to reduce false alarms, but this also results in a relatively large number of missed alarms 
in some datasets. Figure 10 presents the detection results, the detection rate in the mid-range, and the 
false-alarm rate in the low-range of the PCR for scenarios AMS 4–11. The mid-range starts at observation 
18,000, and the high range starts at 72,000. 
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Figure 10. Detection results for AMS5. 

 

Table 1 presents a comparison of performance metrics, which includes three key performance metrics 
for AAKR and PCR: the time at which the first drift was detected, detection rate, and false-alarm rate for 
various datasets. 
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Table 1. Performance matrix of AAKR and PCR. 

Model/Algorithm 
AMS Dataset 

Number 

First 
Observation 

Detected 
(sample number) 

Detection Rate 
(%) 

False-alarm Rate 
(%) 

AAKR Fault-free test data 0 11 02 
AMS4 18000 99.981 1 
AMS5 18018 73.626 0 
AMS6 18025 78.874 0 
AMS7 18035 68.094 0 
AMS8 18020 84.798 0 
AMS9 18048 6.0185 0 
AMS10 18030 86.022 0.12778 
AMS11 18021 69.515 0.20557 

PCR Fault-free test data 0 1 0 
AMS4 18000 99.993 1 
AMS5 30896 71.644 0 
AMS6 18041 80.183 0 
AMS7 18072 67.719 0 
AMS8 18030 85.048 0 
AMS9 18269 0.1185 0 
AMS10 18040 91.894 0.04445 
AMS11 18030 70.754 0.00556 

NOTE: First observation detected: the index of the first true positive alarm. In an ideal situation, the number for this 
application should be 18000. 

1 Detection rate: the fraction of the detected drift/all the drift in the medium range because medium range is the range 
to which the drift is added. In an ideal situation, this number for this application would be 1. 

2 False-alarm rate: the fraction of the false alarms is in the low range because there is no drift in the low range. In an 
ideal situation, the number for this application would be 0. 

 

4.2.3 Drift Estimation by Sensor Fusion Using EOT and SVM 
Calibration drift estimation using EOT and SVM was evaluated using the eight scenarios (AMS4-

AMS11) from the AMS dataset that were used previously for assessing AAKR and PCR algorithms. 
However, additional scenarios (AMS12-AMS16) were also evaluated to determine applicability to drift 
detection, when the measurement drift is due to pressure transmitter faults such as sensing line blockage. 
 

The measurements from sensors Weed-d1q, Weed-d5s, Foxboro-d3i and Safir-d2r are fused using the 
EOT and SVM methods to estimate the output of sensor Rosemount-d4k, and the fusers are trained using 
measurements from Scenario 1. These sensors have different measurement units and ranges, as can be 
seen in Figure 13(a). Weed-d1q, Weed-d5s and Rosemount-d4k measure in units of inches of H2O but 
have different ranges: namely, 0–850, 0–250, and 0–750, respectively. Foxboro-d3i measures in PSI units 
in a range of 0–50, and Safir-d2r measures in units of kPa in a range of 0–259. The measurements of 
Weed-d1q, Weed-d5s, and Rosemount-d4k overlap since they use the same units. Measurements of Safir-
d2r are lower since units are different with lower range, and those of Foxboro-d3i are even lower due to 
different units and lower range. The measurements under Scenario 2 are shown in Figure 13(b), where the 
heater temperature is increased at the same times and by same amount as in Scenario 1. However, 
Rosemount-d4k is subjected to a calibration change that resulted in lowering its measurements compared 
to Weed-d1q, while other measurements remain close to their values in Scenario 1. The difference 
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between the measurements of Weed-d1q and Rosemount-d4k are used as a ground truth estimate of the 
drift in Rosemount-d4k measurements. 

  
(a) training dataset: no drifts (b) test dataset: drifted Rosemount-d4k 

Figure 11. Measurements for training dataset from Scenario 1 and a test dataset from Scenario 2.  

Note that sensors have different units or ranges: Weed-d1q: 0–850 in. H2O; Foxboro-d3i: 0–50 PSI; 
Rosemount-d4k: 0–750 in. H2O; Safir-d2r: 0–259 kPa; and Weed-d5s: 0–250in. H2O. 

 
The performance of hetero-associative regressive information fusion method based on EOT and SVM 

regressions is assessed using RMSE of their sensor drifts estimates for Rosemount-d4k in Scenarios 1–20, 
which are shown in Figure 12. Here, RMSE is expressed as a percent of the largest sensor reading of 
Rosemount-d4k around 200. For both, RMSE is under 2 percent in all scenarios, and EOT achieves lower 
RMSE overall. In the previous sections, AAKR and PCR methods are applied to Scenarios 2–9 (AMS4-
11) that correspond to calibration errors. The EOT and SVM estimators are trained with measurements 
from Scenario 1, and RMSE for this case corresponds to the training error. Measurements from all other 
scenarios are used for testing the drift estimate for the Rosemount-d4k sensor. Scenarios 10, 14, and 20 do 
not involve introducing error into the Rosemount-d4k sensor, and yet their drift estimates have RMSEs 
comparable to other cases, albeit under 2 percent. These RMSE values are of the same order as variations 
in the measurements of the sensors used as input to EOT and SVM fusers. 
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Figure 12. RMS error of sensor drift estimates of EOT and SVM methods. 

For illustrative purposes, the drift estimates for EOT and SVM methods are shown in Figure 15 for 
Scenario 2, in which the RMSE of the latter is higher. The drift estimate from SVM deviates from the true 
drift for most of measurements; in particular, it is less negative. The drift estimate for EOT is more 
accurate for almost all the measurements until the second temperature increase, after which it is less 
negative than the ground truth estimate. 

 

  
(a) drift estimate of EOT method (b) drift estimation of SVM method 

Figure 13. Sensor drift estimates of EOT and SVM methods for Rosemount-d4k differential pressure 
sensor. 

It is instructive to compare the drift estimates of these methods with those based on using the 
residuals of the AAKR method, which is applied to Scenarios 2–9 (AMS4-11) that correspond to 
calibration errors. A summary of RMSEs is shown in Figure 16. For Scenario 2, AAKR has a large error 
since the sensor drift is large, and drifted measurements are used in estimating the drift, as shown in 
Figure 14(a). When Scenario 2 is excluded, RMSEs are comparable among the three, except for 
Scenario 3, and AAKR which has a lower RMSE than EOT in only 3 out of 9 scenarios. 
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(a) Scenarios 2-9 (b) Scenarios 3-9 

Figure 14. RMSE of AAKR, EOT and SVM drift estimates. 

A qualitative characterization of the drift estimates can be gained by the collection of drift estimates 
from the three methods and the ground truth drift estimates shown in Figure 15. For Scenario 2, the 
ground truth drift estimate exceeds 50 towards last third period, which is tracked by both EOT and SVM 
methods, whereas the AAKR residuals lead to much smaller deviations and hence higher RMSEs. 

  

(a) Ground truth drift estimates (b) AAKR drift estimates 

  

(c) SVM drift estimates (d) EOT drift estimates 
Figure 15. Drift estimates of three methods and ground truth estimates. 
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A more detailed look at Scenarios 10–14 (AMS12-16) is considered next. EOT and SVM fusers are 
trained using measurements from Scenario 10 shown in Figure 1(a). In Scenarios 11–14, various types of 
sensing line blockage were introduced into Rosemount-d4k differential pressure sensor and Kulite-c1v 
pressure sensor. In Scenarios 11–13, blocking errors were introduced in hot, cold, and both legs of the 
sensing lines for the DP sensor (Rosemount-d4k), and the measurements in 16 show both positive and 
negative measurement errors, as well as errors in transient and steady-state measurements. In particular, 
measurements from two other DP sensors (Weed-d1q and Weed-d5s) are close to each another, whereas 
measurements of Rosemount-d4k deviate from them in two different ways: specifically, significantly at 
the first temperature shift and somewhat slightly subsequently. In Scenario 5, sensing-line blockage was 
introduced in the cold leg sensing line for Kulite-c1v, and the measurements mostly result in steady-state 
errors, as shown in Figure 16(b). 

 

  
(a) Rosemount-d4k traces: Scenarios 11-13 (b) Kulite-c1v traces: Scenario 14 

Figure 16. Measurement traces under blockage errors: scenarios 11–13 for Rosemount-d4k, and 
scenario 14 for Kulite-c1v. 

 

For SVM and EOT regressions, measurements of Rosemount-d4k and Kulite-c1v constitute the 
dependent variables (in Scenarios 11–13 and 14, respectively) and the independent variable is a 4–
dimensional vector corresponding to measurements of four other DP sensors. Overall, results indicate that 
positive and negative sensor errors are captured by both methods in scenarios ranging from slow and 
small to rapid and large faults. For illustration, drift estimates based on their outputs are shown in 
Figure 17 for Scenario 11 for Rosemount-d4k and in Figure 18 for Scenario 14 for Kulite-c1v. The drift 
in Scenario 11 in Rosemount-d4k is identified by both, and EOT’s estimate is closer during the initial part 
and toward the end of the time period. The drifts in Scenario 14 are subtler and were tracked well by both 
methods in the middle of the experiment, but they were overestimated during the first temperature 
change. The overall trends are better tracked by EOT than by SVM, and both exhibited significant 
variations toward the end as a result of similar variations in the measurements of other sensors used as 
input to regression estimation. 
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(a) EOT drift estimate for Rosemount-d4k (b) SVM drift estimate for Rosemount-d4k 

Figure 17. Drift estimates of EOT and SVM for Rosemount-d4k for Scenario 11. 

 

  
(a) EOT drift estimate for Kulite-c1v (b) SVM drift estimate for Kulite-c1v 

Figure 18. Drift estimates of EOT and SVM for Kulite-c1v for Scenario 14. 

The RMSEs of estimated sensor faults for five scenarios are shown in Figure 19 expressed as a 
percent of the maximum sensor reading, which shows that estimation error of the EOT method is lower 
overall. The estimation error is within 1.44% and 1.63% for EOT and SVM methods, respectively. 
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Figure 19. Root mean square error of EOT and SVM fusers. 

Overall, the dataset featured 20 scenarios. While the method for introducing drifts via calibration 
changes, blockages, and others into the loop may differ from scenario to scenario, the basic method can 
be applied to all scenarios. This can test the robustness of the method, as the different methods should 
affect the measurements in different ways. 

It is worth noting that the analyses discussed above demonstrate the effectiveness of the technique for 
drift estimation. Approaches for detecting the onset of drift from these estimates are being developed and 
will be discussed in future reports. 

4.2.4 Generalization Error Equations for SVM, EOT and AAKR 
Generalization can be considered the most important attribute of evaluating a learned model. In 

statistical learning theory, generalization performance of a learning method relates to its prediction 
capability on a set of unseen samples drawn from the distribution same as that of the training set [41]. 
Assessment of this performance is extremely important in practice, since it guides the choice of learning 
method or model, and gives a measure of the quality of the ultimately chosen model. From a 
mathematical point of view, the process of learning is to find a function 𝑓𝑓(𝒙𝒙) through a training set  
𝕏𝕏 = {(𝒙𝒙𝒊𝒊,𝑡𝑡𝑖𝑖)}𝑖𝑖=1𝑁𝑁 ⊂ ℛ𝑛𝑛 × {0,1}𝑐𝑐 such that 𝑓𝑓(𝒙𝒙) can approximate the objective function 𝐹𝐹(𝒙𝒙) both at 
training cases and unseen cases. The difference between 𝐹𝐹(𝒙𝒙) and 𝑓𝑓(𝒙𝒙) is called generalization error. 

This section presents the generalization error equations that characterize the performance of sensor 
drift estimates on future measurements using the distribution-free machine learning formulation. By using 
smoothness (bounded Lipschitz constant) and non-smoothness (fixed number of finite jumps) properties, 
they guarantee that the generalization error is bounded by a specified parameter—called the precision, 
with probability—called the confidence. The generalization error equations establish that, for these 
methods, the MSE of the drift estimate is bounded by the precision parameter with the probability given 
by the confidence parameter that improves with the size of the training data. 

More generally, these generalization error equations provide critical performance insights into these 
methods:  

1. The existence of these equations in this form shows that the underlying estimation problem is 
solvable in principle by machine learning methods. These equations may not exist for certain 
complex problems, such as estimating the state transition map from chaotic iterates. 

2. The form of a generalization equation provides important qualitative information, which in this 
case shows that increasing sample size and decreasing dimensionality each independently leads to 
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improved confidence. This clear separation is a consequence of the smoothness of underlying 
primary coolant system dynamics. 

3. By using the detailed parameter values, practical confidence levels can be obtained. 
 

The problem of drift estimation can be cast as a regression estimation problem by identifying a drift 
estimation method by its regression estimate 𝑓𝑓. By mapping the sensor measurements to the independent 
variable 𝑋𝑋 and the drift to the dependent variable 𝑌𝑌, we obtain 𝑓𝑓(𝑋𝑋) as an estimate of drift. Here, 𝑋𝑋 and 𝑌𝑌  
are random variables distributes according to PX,Y, which is typically complex and unknown since it 
encompasses various sensing and process errors. For a regression estimate 𝑓𝑓, the expected error is defined 
as 𝐼𝐼(𝑓𝑓) = ∫(𝑓𝑓(𝑋𝑋)−𝑌𝑌)2𝑑𝑑𝑃𝑃𝑋𝑋,𝑌𝑌. Let 𝑓𝑓∗ denote the optimal regression that minimizes the expected error. 
The regression estimate 𝑓𝑓 is computed using a training sample (𝑋𝑋1 ,𝑌𝑌1),(𝑋𝑋2, 𝑌𝑌2),… , (𝑋𝑋𝑙𝑙 ,𝑌𝑌𝑙𝑙), and its 
generalization error equation is expressed as 

 𝑃𝑃𝑌𝑌,𝑋𝑋
𝑙𝑙 �𝐼𝐼��̂�𝑓�− 𝐼𝐼(𝑓𝑓∗) > 𝜖𝜖� < 𝛿𝛿, (3) 

which implies that the error of estimated regression is within precision 𝜺𝜺 of the optimal regression 
function with confidence probability of 𝟏𝟏−𝜹𝜹, irrespective of the underlying joint probability distribution 
𝑷𝑷𝑿𝑿.𝒀𝒀, where 𝜺𝜺 > 𝟎𝟎 and 𝟎𝟎 < 𝜹𝜹 < 𝟏𝟏. A further discussion of the derivation and meaning of generalization 
error equations can be found in Appendix A. The results for the three methods are presented and some 
practical implications of the generalization error equations are briefly discussed here. 

SVM: smoothness property. Smooth regression estimates are generated by several machine learning 
methods, including sigmoidal neural networks, radial basis functions, potential functions, and the SVM 
method with Gaussian kernels. An important subclass of smooth functions are Lipschitz continuous 
functions for which |𝑓𝑓(𝑥𝑥)− 𝑓𝑓(𝑥𝑥 + ∂𝑥𝑥)| ≤ 𝐿𝐿‖𝜕𝜕𝑥𝑥‖, where 𝐿𝐿 is a Lipschitz constant. Differentiable 
functions satisfy this condition, wherein the maximum derivative can be used as 𝐿𝐿. This property, 
combined with the boundedness of domain variables such as pressure, temperature, and the flow rate of 
the coolant system, provide generalization bounds that explicitly show their dependence. We consider a 
generic form of SVM regression given by 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)𝑒𝑒𝑥𝑥𝑝𝑝�−

‖𝑥𝑥𝑖𝑖−𝑥𝑥‖2

2𝜎𝜎2
�+ 𝑏𝑏𝑔𝑔

𝑖𝑖=1  with 𝑔𝑔 Gaussian 
kernels[3] where the parameters are bounded such that  𝛼𝛼𝑖𝑖 ,𝛼𝛼𝑖𝑖∗ ∈ [0, 𝐶𝐶]. The magnitude of the derivative of 
kernel 𝑒𝑒−∑ �𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�

2𝑑𝑑
𝑗𝑗=1  is upper bounded by 1. An estimate for Lipschitz constant 𝐿𝐿 = 1  is obtained for 

𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆. Then the following expression for δ of 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆 is obtained: 

      δ𝑆𝑆𝑆𝑆𝑆𝑆 = 8�32𝐶𝐶
𝜀𝜀
�
2𝑑𝑑
𝑒𝑒−𝜀𝜀2𝑙𝑙/512, (4) 

As derived in Appendix A following the derivation in [26] in which 𝑑𝑑 is the dimension of the hyperplane 
of the SVM regression estimate. In general, increasing 𝑑𝑑 has the effect of reducing the optimal error 
𝐼𝐼(𝑓𝑓∗), but it has a negative effect on generalization property as indicated by above expression. The first 
part expression for δ depends on the SVM parameters 𝑑𝑑 and 𝐶𝐶, and the second part depends on the 
sample size 𝑙𝑙 with opposite effects: increasing the sample size improves the confidence via the 
exponential function, whereas increasing the dimensionality 𝑑𝑑 decreases the confidence again via an 
exponential function. Thus, ensuring high confidence guards against overfitting the training data by 
increasing the dimensionality of SVM regression. 

4.2.4.1 EOT: non-smooth property. Machine learning methods also employ non-smooth 
regression functions such as ensemble tree methods [29] and regression trees [30]. In practice, the 
variables are bounded, and the learned functions have a finite (often small) number of jumps, which leads 
to their bounded finite total variation 𝑉𝑉 <  ∞.30 In this case, the confidence function is given by δ𝐸𝐸𝐸𝐸𝐸𝐸 =
16 �4𝑙𝑙

𝜀𝜀2
�
𝑑𝑑 log2(2𝑒𝑒𝑙𝑙/(𝑑𝑑𝜀𝜀))

𝑒𝑒−ϵ2𝑙𝑙/2048, with the shattering index 𝑑𝑑 = �1 + 128𝑆𝑆
𝜀𝜀
�  derived in Appendix A. Let 
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𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸 be the regression tree estimate consisting of 𝑁𝑁𝐿𝐿 leaves and let 𝐵𝐵 be the upper bound for dependent 
variable 𝑌𝑌, for example, the highest differential pressure. When viewed in terms of function of 𝑋𝑋, each 
leaf corresponds to a region with a variation, at most 2𝐵𝐵. By accounting for all leaves, the total variation 
of 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸 is upper bounded by 2𝐵𝐵𝑁𝑁𝐿𝐿. Then we obtain the following confidence function for 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸: 

 δ𝐸𝐸𝐸𝐸𝐸𝐸 = 16 �
4𝑙𝑙
𝜀𝜀2
�
�1+256𝐵𝐵𝑁𝑁𝐿𝐿𝜀𝜀 � log2(2𝑒𝑒𝑙𝑙/(𝜀𝜀+256𝐵𝐵𝑁𝑁𝐿𝐿))

𝑒𝑒−𝜀𝜀2𝑙𝑙/2048 (5) 

by using 𝑉𝑉 = 2𝐵𝐵𝑁𝑁𝐿𝐿 in the above formula. As in the case of SVM, the effects of properties of EOT 
regression and the sample size can be seen as independent. 

4.2.4.2 AAKR: auto-associative property 
AAKR is a nonparametric model that makes prediction by comparing a query to past input examples. 

Past input examples form the memory vector, and they are the parameters of the prediction step together 
with the bandwidth of the Gaussian kernel. To maintain the AAKR as a Lipschitz continuous function, 
the kernel bandwidth needs to be a priori fixed. With this form, memory-vector parameters can be used to 
find the Lipschitz constant. Memory-vector parameters are bounded by 𝑋𝑋 ∈ [0,1]. The distance matrix 
also can be bound with the memory vector, which helps to determine the Lipschitz constant. The 
Lipschitz constant for AAKR is obtained as follows: 

 L =
4 + h2

h2nme−
2p
h2

 (6) 

Then the following confidence function for 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is obtained as derived in Appendix A: 

 δAAKR = 8�
128 + 32h2

εh2nme−
2p
h2
�

nmp

e−ε2l/512 (7) 

Again, as in the case of SVM, the effects of properties of AAKR solution and the sample size can be 
seen as independent. 

4.3 Discussion 
Table 2 summarizes the advantages and disadvantages of investigated algorithms. If the algorithm can 

be used as an auto-associative model, a group of features is selected as both inputs and outputs. Therefore, 
within the group, no subselection is needed. This provides an advantage for scalability. If the method is 
robust when a drifting or faulty sensor is included in the inputs, then the accuracy of the prediction is 
high. If the method has low computing cost, it benefits for scalability and near real-time detection. 

Table 2. Summary of the advantages and disadvantages of the algorithms investigated. 
Method Auto-associative? Robustness Training cost Inference cost 

AAKR Yes Medium Medium Medium 
PCR Yes High Low Medium 
EOT No High Medium Low 
SVM No High Medium to High Low 
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5. CONCLUSIONS 
Online monitoring (OLM) has the potential for assisting in calibration-interval extension in 

commercial NPPs and directly helping reduce the overall operations and maintenance costs. The history 
of OLM in NPP applications has pointed to the need for addressing key questions related to accuracy and 
setpoint uncertainty before the technology can be deployed in TS applications. Alternative approaches to 
deploying OLM for performance monitoring may be possible; here again the need is to address accuracy 
of sensor drift detection due to aging or sensor faults. 

Advances in data analytics provide a potential pathway towards addressing these concerns. Several 
algorithms are available that may be adapted for this purpose, including PCR, SVM, and EOT. In most 
scenarios, these algorithms may be used to fuse information from multiple sensors to estimate (model 
prediction) the output of one or more sensors. While such a data-driven approach has limitations, 
especially in generalization of the model outputs to test data, it also has the advantage of speed and can 
embed unique operational characteristics and relationships between measurements at different locations 
of the specific plant. By contrast, OLM methods that use physics-based models require model tuning to 
capture such individualized behavior, which may be a challenge. For the data-driven methods discussed in 
this report, generalization error bounds may also be calculated theoretically and provide an upper bound 
on the uncertainty. 

The algorithms were evaluated using existing datasets from a laboratory-scale flow loop with 
simulated sensor faults and sensor drift. The algorithms were compared against a standard OLM 
algorithm—AAKR—on several counts: accuracy, sensitivity, and detection performance. The algorithms 
tested in this study appeared to compare favorably against AAKR on this dataset, though additional 
evaluations against plant operational data are needed to fully characterize the performance of these 
algorithms. Ongoing research includes evaluating additional datasets, using data from test reactors and 
plant operational data. 

Approaches for using the algorithm outputs for recalibrating the sensor online will be examined next. 
Methods for accelerating the deployment of OLM in the fleet are being evaluated under a different 
research program by other organizations; this project will engage with these organizations to better 
understand barriers to deployment and update the research plan to address these barriers in the next phase 
of research. 
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Appendix A 
 

Generalization Theory and Application to Data 
Analytics Methods 

The generic problem of learning is finding a relationship between two variables that are related with a 
joint probability distribution 𝑃𝑃𝑥𝑥,𝑦𝑦. These variables can be vectors with dimension 𝑑𝑑 in real vector space 
and can be expressed as 𝑋𝑋 ∈ ℝ𝑑𝑑 and 𝑌𝑌 ∈ ℝ𝑑𝑑. The joint probability distribution is not known for most of 
the cases; therefore, 𝑋𝑋 is approximated to 𝑌𝑌 with an estimate function 𝑓𝑓. In regression problems, 𝑓𝑓 is a 
regression function such that 𝑓𝑓(𝑋𝑋) is an estimate of observations 𝑌𝑌. The 𝑓𝑓 is a subset of hypothesis space, 
ℱ and hypothesis space is the set of all possible functions that can return 𝑋𝑋→ 𝑌𝑌. 

A good estimate function should have low error, and it can be quantified by the expected error. The 
expected error measures the loss averaged over the unknown distribution and can be calculated with 
Equation (8)(9). A good estimate function should have small expected cost 

 𝐼𝐼(𝑓𝑓) = ∫𝐶𝐶(𝑓𝑓(𝑋𝑋),𝑌𝑌)𝑑𝑑𝑃𝑃𝑋𝑋,𝑌𝑌, (8) 

where 𝐶𝐶 is the cost function, the measure of how good the approximation is and what is the cost of 
approximating 𝑋𝑋 to 𝑌𝑌. For regression problems, two most used cost functions are square loss, 
(𝑓𝑓(𝑋𝑋)−𝑌𝑌)2 and absolute value loss, |𝑓𝑓(𝑋𝑋)−𝑦𝑦| . In hypothesis space, there is an expected best function 
𝑓𝑓∗ that minimizes the expected error. However, since 𝑃𝑃𝑋𝑋,𝑌𝑌  is not known for most of the cases, 𝑓𝑓∗ cannot 
be computed precisely. 

Regression algorithms are applicable to samples with finite size. For an 𝑙𝑙-sample dataset or a training 
set, 𝑆𝑆 = {(𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑙𝑙,𝑦𝑦𝑙𝑙)} consists of 𝑛𝑛 samples drawn independent and identically from the 𝑃𝑃𝑥𝑥,𝑦𝑦. A 
learning algorithm is an algorithm that takes the dataset and selects an estimate function from the 
hypothesis space. The error of estimate function on dataset is quantified by the empirical error and can be 
calculated with Equation (9). In hypothesis space, there is a suitable function 𝑓𝑓 that minimizes the 
empirical error and 𝑓𝑓 can be calculated for a dataset. 

 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒(𝑓𝑓) = 1
𝑙𝑙
∑ 𝐶𝐶(𝑓𝑓(𝑋𝑋𝑖𝑖),𝑌𝑌𝑖𝑖)𝑙𝑙
𝑖𝑖=1 . (9) 

A natural requirement for f is distribution independent generalization which implies that as the 
amount of training data increases, the training error for the solution must converge to the expected error. 
A solution is predictive if it satisfies the condition of Equation (10), and this means that when the dataset 
is large, the empirical error is a good proxy for the expected error: 

 ∀P  lim
n→∞

�I(f)− Iemp(f)� = 0. (10) 

It is practically impossible to draw infinite samples; therefore, the empirical error will be different 
from the expected error. The empirical error is minimized by 𝑓𝑓, and it is important to assess how 𝑓𝑓 is 
close to 𝑓𝑓∗ for a finite dataset. Vapnik’s generalization theory ensures that the expected error of 𝑓𝑓 is 
within 𝜀𝜀 of the expected error of 𝑓𝑓∗ with probability of 1 −𝛿𝛿, irrespective of the 𝑃𝑃𝑋𝑋,𝑌𝑌, where 𝛿𝛿 is the 
confidence parameter. This condition can be expressed by Equation (11): 

 𝑃𝑃𝑌𝑌,𝑋𝑋
𝑙𝑙 �𝐼𝐼��̂�𝑓�− 𝐼𝐼(𝑓𝑓∗) > 𝜖𝜖� < 𝛿𝛿𝑆𝑆(𝑭𝑭𝑆𝑆,𝜖𝜖, 𝑙𝑙). (11) 
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The error in the square bracket, 𝐼𝐼�𝑓𝑓� − 𝐼𝐼(𝑓𝑓∗), is called the generalization gap. In these scenarios, 
minimization of empirical error is not assured, and hence following version of Equation (11) is used, as 
given by 

 PY,X
l �I�f̂�− I(f ∗) > ϵ+ ϵ�� < δM� (𝐅𝐅M ,ϵ,ϵ�, l), (12) 

where 𝜖𝜖̂ is the training error associated with computing 𝑓𝑓. In this case, for Rosemount-d4k using EOT, we 
have 𝑓𝑓 = 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸,  𝐹𝐹𝑆𝑆 =  𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸 and 𝜖𝜖̂ = 0.3947, and using SVM, we have 𝑓𝑓 = 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆, 𝐹𝐹𝑆𝑆 = 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆, and 𝜖𝜖̂ =
2.48. To simplify presentation, we estimate 𝛿𝛿𝑆𝑆(. ) as a function of 𝜖𝜖, 𝑙𝑙 and properties of 𝐹𝐹𝑆𝑆  based on 
smoothness and non-smoothness properties. 

Deriving a generalization bound for Equation (12) and relating error parameter to confidence 
parameter is an important step in assessment of machine-learning algorithms. If an algorithm has a 
theoretical generalization bound, it can be regarded as a proof that the algorithm is predictive, and the 
generalization error can be related to the sample size of the dataset. The generalization equation in 
Equation (14) is expressed in the following generic form for machine-learning method 𝑀𝑀, 

 PY,X
l �𝐼𝐼�𝑓𝑓�− 𝐼𝐼(𝑓𝑓∗) > 𝜖𝜖� < GM(𝑭𝑭𝑆𝑆,ϵ, l)e−gM(ϵ,l), (13) 

where the functions 𝐺𝐺𝑆𝑆(𝐹𝐹,𝜖𝜖 , 𝑙𝑙), and 𝑔𝑔𝑆𝑆(𝜖𝜖, 𝑙𝑙) are obtained based on the specific properties of the method. 
Note that the method-specific function can and does change with different implementations of the same 
method. In the derivation of the bounds, it is important to understand the specific implementation of the 
method employed in your analysis. Typically, 𝑔𝑔(𝜖𝜖 , 𝑙𝑙) increases in 𝑙𝑙, often linearly, and 𝐺𝐺𝑆𝑆(𝐹𝐹,𝜖𝜖, 𝑙𝑙) is 
either fixed or increases more slowly than exponentially; consequently, the right-hand term decreases in 𝑙𝑙 
and can be made to match a specified value for 𝛿𝛿𝑆𝑆 for a large enough sample size. Under this condition, 
the generalization error is bounded as 𝐼𝐼�𝑓𝑓� < 𝐼𝐼(𝑓𝑓∗) +  𝜖𝜖 with probability 1 −𝛿𝛿𝑆𝑆. 

In order to find the confidence parameter in generalization equation, we adopted Rao’s method26. 
Equation (14)(15) has the following form: 

 𝑃𝑃𝑌𝑌,𝑋𝑋
𝑙𝑙 �𝐼𝐼��̂�𝑓�− 𝐼𝐼(𝑓𝑓∗) > 𝜖𝜖� < 8𝑁𝑁∞(𝜀𝜀 32⁄ ,𝑭𝑭𝑆𝑆)𝑒𝑒−𝜀𝜀2𝑙𝑙/512. (14) 

𝑁𝑁∞ is called the covering number, which represents the minimum number of spherical balls of radius 
𝜀𝜀 needed to cover the set 𝑭𝑭. In order to calculate the covering number, the Lipschitz property can be used. 
Lipschitz continuous functions are functions that have a limited growth rate. If a function satisfies the 
Lipschitz property, then there exists a constant such that every pair of points of this function is connected 
with a line that has a smaller slope than this constant. This constant is called the Lipschitz constant and is 
denoted by L. Considering that 𝑓𝑓 can get values within the bounds of weights, using this with the 
Lipschitz constant provides a cover size estimate and can be used as the covering number. Covering 
numbers for SVM and AAKR are calculated using this property. For an estimate function 𝑓𝑓𝑤𝑤 ∈ 𝑭𝑭𝑊𝑊 where 
𝑤𝑤 ∈ [−𝑊𝑊,𝑊𝑊]𝑑𝑑, the Lipschitz property can be written as follows, 

 |𝑓𝑓𝑢𝑢(𝑥𝑥)−𝑓𝑓𝑣𝑣(𝑥𝑥)| ≤ 𝐿𝐿‖𝑢𝑢 − 𝑣𝑣‖∞, (15) 

where 𝑢𝑢 and 𝑣𝑣 are two different weights with 𝑢𝑢, 𝑣𝑣 ∈ [−𝑊𝑊,𝑊𝑊]𝑑𝑑 and ‖𝑢𝑢 − 𝑣𝑣‖∞ = max
𝑖𝑖=1,…,𝑑𝑑

|𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖|. For a 

uniform grid size of (2𝑊𝑊/𝜀𝜀)𝑑𝑑, there exists 𝑤𝑤1 in the cover that satisfies the condition ‖𝑤𝑤 −𝑤𝑤1‖∞ ≤ 𝜀𝜀. 
Using the Lipschitz property, we have �𝑓𝑓𝑤𝑤(𝑥𝑥)−𝑓𝑓𝑤𝑤1(𝑥𝑥)� ≤ 𝐿𝐿𝜀𝜀 for all 𝑥𝑥. Therefore, the covering number 
for this case is given by 

 𝑁𝑁∞(𝜀𝜀,𝑭𝑭𝑊𝑊)≤ (2𝐿𝐿𝑊𝑊/𝜀𝜀)𝑑𝑑. (16) 



   
 

34 

Generalization of SVM 
For the dataset {(𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑙𝑙,𝑦𝑦𝑙𝑙)}, the goal of SVM regression is finding the function 𝑓𝑓(𝑥𝑥) that for 

each input data 𝑥𝑥𝑖𝑖, has at most 𝜀𝜀 deviation from the output data 𝑦𝑦𝑖𝑖. The input space with dimension 𝑑𝑑 is 
denoted by 𝑋𝑋 ∈ ℝ𝑑𝑑. The estimate function is given in Equation 18, where 𝑤𝑤 ∈ ℝ𝑑𝑑 is the weight with 
dimension 𝑑𝑑, and 𝑏𝑏 ∈ ℝ is the bias that is a scalar number. The SVM algorithm aims to minimize the 
norm ‖𝑤𝑤‖2 subject to |𝑦𝑦𝑖𝑖 − 〈𝑤𝑤, 𝑥𝑥𝑖𝑖〉 − 𝑏𝑏| ≤ 𝜀𝜀: 

 𝑓𝑓(𝑥𝑥) = 〈𝑤𝑤,𝑥𝑥〉 + 𝑏𝑏. (17) 

However, within the distribution of data, there will be pairs (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) which reside beyond the 𝜀𝜀 band. 
These points are called slack points and are represented with 𝜉𝜉. Slack points are added to the 
minimization process with a parameter 𝐶𝐶 which determines the tradeoff between flatness of 𝑓𝑓 and 
toleration of points beyond 𝜀𝜀. The new minimization problem now considers the slack points and 
represented with Equation (18): 

 1
2
‖𝑤𝑤‖2 + 𝐶𝐶∑ (𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖∗)𝑙𝑙

𝑖𝑖=1 . (18) 

It has been shown that such a minimization problem can be solved with dual formulation. The 
constructed Lagrange function has saddle points with respect to dual variables in the solution. The 
Lagrange function is given by, 

 

𝐿𝐿 ≔
1
2
‖𝑤𝑤‖2 + 𝐶𝐶�(𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖∗)

𝑙𝑙

𝑖𝑖=1

−�(𝜂𝜂𝑖𝑖𝜉𝜉𝑖𝑖 + 𝜂𝜂𝑖𝑖∗𝜉𝜉𝑖𝑖∗)
𝑙𝑙

𝑖𝑖=1

−�𝛼𝛼𝑖𝑖(𝜀𝜀 + 𝜉𝜉𝑖𝑖 + 〈𝑤𝑤, 𝑥𝑥𝑖𝑖〉+ 𝑏𝑏 − 𝑦𝑦𝑖𝑖)
𝑙𝑙

𝑖𝑖=1

−�𝛼𝛼𝑖𝑖∗(𝜀𝜀+ 𝜉𝜉𝑖𝑖∗ + 𝑦𝑦𝑖𝑖 − 〈𝑤𝑤,𝑥𝑥𝑖𝑖〉 − 𝑏𝑏)
𝑙𝑙

𝑖𝑖=1

 

(19) 

where 𝛼𝛼𝑖𝑖 ,𝛼𝛼𝑖𝑖∗,𝜂𝜂𝑖𝑖 ,𝑎𝑎𝑛𝑛𝑑𝑑 𝜂𝜂𝑖𝑖∗ are Lagrange multipliers. If we apply saddle-point condition, the partial 
derivatives of 𝐿𝐿 with respect to primal variables are set to zero. The form of the dual-optimization 
problem is now given by Equation (20). It must be noted here that the summation of (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) over 𝑙𝑙 is 
subject to 0, and the Lagrange multipliers can take values between zero and 𝐶𝐶, 𝛼𝛼𝑖𝑖 ,𝛼𝛼𝑖𝑖∗ ∈ [0, 𝐶𝐶]. 

 −1
2
∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)𝑙𝑙
𝑖𝑖,𝑗𝑗=1 �𝑎𝑎𝑗𝑗 − 𝑎𝑎𝑗𝑗∗�〈𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗〉 − 𝜀𝜀 ∑ (𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑖𝑖∗)𝑙𝑙

𝑖𝑖=1 +∑ 𝑦𝑦𝑖𝑖(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)𝑙𝑙
𝑖𝑖=1 . (20) 

After implicit nonlinear mapping with kernels, the support vector expansion is given in Equation (21). A 
common kernel is Gaussian radial basis function kernel which is given in Equation (22). 

 𝑤𝑤 = ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)Φ(𝑥𝑥𝑖𝑖)𝑙𝑙
𝑖𝑖=1 , 𝑡𝑡ℎ𝑢𝑢𝑠𝑠 𝑓𝑓(𝑥𝑥) = ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)𝑘𝑘(𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗) + 𝑏𝑏𝑙𝑙

𝑖𝑖,𝑗𝑗=1 , (21) 

 𝑘𝑘(𝑥𝑥𝑖𝑖 ,𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑝𝑝 �−‖𝑥𝑥𝑖𝑖−𝑥𝑥‖2

2𝜎𝜎2
�. (22) 

All the steps of SVM regression can be written in a single function given by Equation (23). The 
kernel bandwidth, 𝜎𝜎, is a priori fixed, and the learning problem deals with computing a suitable 𝑤𝑤, which 
is finding the 𝛼𝛼𝑖𝑖  and 𝛼𝛼𝑖𝑖∗; therefore, the weight vector has a dimension of 2𝑑𝑑. The hypothesis space then 
can be written as ℱ𝑊𝑊,𝜎𝜎 = �𝑓𝑓𝑤𝑤,𝜎𝜎:𝑤𝑤 ∈ [0,𝐶𝐶]2𝑑𝑑�, and an estimate function 𝑓𝑓 is chosen from the hypothesis 
space. 
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 𝑓𝑓𝑤𝑤,𝜎𝜎(𝑥𝑥) = ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)𝑒𝑒𝑥𝑥𝑝𝑝 �−‖𝑥𝑥𝑖𝑖−𝑥𝑥‖2

2𝜎𝜎2
� + 𝑏𝑏𝑙𝑙

𝑖𝑖=1 . (23) 

In order to find the Lipschitz constant, we need to find bounds of the partial derivatives of 𝑓𝑓𝑤𝑤,𝜎𝜎 with 
respect to 𝑤𝑤. The partial derivatives and their bounds are given by 

 

 
𝜕𝜕𝑓𝑓𝑤𝑤,𝜎𝜎
𝜕𝜕𝛼𝛼𝑖𝑖

= 𝑒𝑒𝑥𝑥𝑝𝑝�−
‖𝑥𝑥𝑖𝑖 − 𝑥𝑥‖2

2𝜎𝜎2
� ≤ 1 

(24) 

 𝜕𝜕𝑑𝑑𝑤𝑤,𝜎𝜎
𝜕𝜕𝛼𝛼𝑖𝑖∗

= �𝑒𝑒𝑥𝑥𝑝𝑝 �− ‖𝑥𝑥𝑖𝑖−𝑥𝑥‖2

2𝜎𝜎2
�� ≤ 1. 

The bounds on partial derivatives show that the Lipschitz constant equals 1 since the exponential term 
is always less than 1, independent of the input value. This implies that a uniform grid of size (𝐶𝐶/𝜀𝜀)2𝑑𝑑 
satisfies the Lipschitz property. Therefore, the covering number for SVM is given by 

 𝑁𝑁∞�𝜀𝜀,ℱ𝑊𝑊,𝜎𝜎� ≤ (𝐶𝐶/𝜀𝜀)2𝑑𝑑. (25) 

Implementing the covering number for SVM into Equation (12) gives us the generalization equation 
for SVM, 

 𝑃𝑃𝑋𝑋[𝐼𝐼(𝑓𝑓𝑤𝑤�)− 𝐼𝐼(𝑓𝑓𝑤𝑤∗) > 𝜀𝜀] ≤ 8�
32𝐶𝐶
𝜀𝜀
�
2𝑑𝑑

 𝑒𝑒−𝜀𝜀2𝑙𝑙/512 (26) 

 

Generalization of EOT 
EOT is a predictive model which uses combination of multiple regression trees with associated 

weights. A regression tree is a tree-shaped structure to represent a recursive partition. The end nodes of 
the trees are called leaves, and they represent the partition of the model which applies in that node only. 
The tree starts with the root node, and branching is done by asking a sequence of questions about the 
features. The branches are answers to the previous questions, and the next question to ask depends on the 
answers on that branch. 

Since the EOT is a non-smooth method, the Lipschitz property cannot be used to find covering 
numbers. Instead, a covering-number estimate based on total variation37 is used. For a function set of 𝑭𝑭 
with having total variation at most V, the fat shattering number is given by 

 𝑓𝑓𝑎𝑎𝑡𝑡𝑭𝑭(𝛾𝛾) = 1 + � 𝑆𝑆
2𝛾𝛾
�. (27) 

The shattering means that a function 𝑓𝑓 can shatter a set of points if, for every possible training set, 
there exists a value of 𝑓𝑓 that gets no training error. For a function set of 𝑭𝑭 and sample set 𝑆𝑆 =
{𝑥𝑥1,𝑥𝑥2,… ,𝑥𝑥𝑙𝑙}, 𝑆𝑆 is 𝛾𝛾 − 𝑠𝑠ℎ𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒𝑎𝑎𝑒𝑒𝑑𝑑  by 𝑭𝑭 if there exits real numbers 𝑎𝑎1 ,𝑎𝑎2 , … ,𝑎𝑎𝑙𝑙 and a function 𝑓𝑓𝑏𝑏 in 𝑭𝑭 that 
satisfies 𝑓𝑓𝑏𝑏(𝑥𝑥𝑖𝑖) ≥ 𝑎𝑎𝑖𝑖 + 𝛾𝛾 if 𝑏𝑏𝑖𝑖 = 1 and 𝑓𝑓𝑏𝑏(𝑥𝑥𝑖𝑖)≤ 𝑎𝑎𝑖𝑖 − 𝛾𝛾 if 𝑏𝑏𝑖𝑖 = 0 for all samples. Then 𝑓𝑓𝑎𝑎𝑡𝑡𝑭𝑭(𝛾𝛾), the 
𝛾𝛾-fat-shattering dimension of 𝑭𝑭, is the largest set 𝛾𝛾-shattered by 𝑭𝑭, where 𝛾𝛾 is the width of shattering. 

A hypothesis class 𝑭𝑭 is a set of real functions from a domain 𝑋𝑋 to the bounded interval of [0,𝑊𝑊]. The 
complexity of 𝑭𝑭 is given by the growth function, and growth function with its bounds are given by 
Equation (30). The first inequality follows from the Binomial Theorem, and the second inequality follows 
from Euler’s inequality. 𝑑𝑑 is the fat-shattering number of 𝑭𝑭 with a width of 𝜀𝜀/4, 𝑑𝑑 = 𝑓𝑓𝑎𝑎𝑡𝑡𝑭𝑭(𝜀𝜀/4) 
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 𝑦𝑦 = ��𝑙𝑙
𝑖𝑖
� �2𝐵𝐵

𝜀𝜀
�
𝑖𝑖𝑑𝑑

𝑖𝑖=1

< �2𝐵𝐵
𝜀𝜀
�
𝑑𝑑
��𝑙𝑙

𝑖𝑖
�

𝑑𝑑

𝑖𝑖=1

< �2𝐵𝐵
𝜀𝜀
�
𝑑𝑑
�𝑒𝑒𝑙𝑙
𝑑𝑑
�
𝑑𝑑

 (28) 

The Vapnik-Chervonenkis dimension (or VC-dimension) of 𝑭𝑭 is the size of the largest shattered 
subset of 𝑋𝑋. Equivalently, VC-dimension of 𝑭𝑭 is the largest value of 𝑙𝑙 for which the growth function 
equals to 2𝑙𝑙. Then the covering number for EOT can be expressed by the domain of samples with grid 
size of 4𝑊𝑊2/𝜀𝜀2 within the VC-dimension. The covering number for EOT with VC-dimension bounds is 
given by 

 𝑁𝑁∞(𝜀𝜀,𝑭𝑭,𝑙𝑙) < 2�4𝑙𝑙𝑊𝑊
2

𝜀𝜀2
�
𝑑𝑑 log2(2𝑒𝑒𝑊𝑊𝑙𝑙/𝑑𝑑𝜀𝜀)

. (29) 

We can now use the covering number of EOT with the Equation (14), but it must be noted here that 
𝜀𝜀 = 𝜀𝜀′/2 because of the nature of branching of the leaf node. Then the generalization equation for EOT 
with 𝑑𝑑 = (1 + 128𝑉𝑉/𝜀𝜀) is given by 

 𝑃𝑃𝑌𝑌,𝑋𝑋
𝑙𝑙 �𝐼𝐼��̂�𝑓�− 𝐼𝐼(𝑓𝑓∗) > 𝜖𝜖� < 16 �4𝑙𝑙𝑊𝑊

2

𝜀𝜀2
�
𝑑𝑑 log2(2𝑒𝑒𝑊𝑊𝑙𝑙/(𝑑𝑑𝜀𝜀))

𝑒𝑒−𝜀𝜀2𝑙𝑙/2048. (30) 

 

Generalization of AAKR 
In AAKR, the empirical model is developed using memory vectors. A memory matrix contains the 

memory vectors and is represented by 𝑿𝑿, where 𝑋𝑋𝑖𝑖,𝑗𝑗 is the 𝑖𝑖th observation of the 𝑗𝑗th variable. For 𝑛𝑛𝑒𝑒 
memory vectors and 𝑝𝑝 process variables, the memory matrix is given by, 

 𝑿𝑿 =

⎣
⎢
⎢
⎢
⎡ 𝑋𝑋1,1 𝑋𝑋1,2 … 𝑋𝑋1,𝑒𝑒

𝑋𝑋2,1 𝑋𝑋2,2 … 𝑋𝑋2,𝑒𝑒
⋮

𝑋𝑋𝑛𝑛𝑚𝑚,1

⋮
𝑋𝑋𝑛𝑛𝑚𝑚,2

⋱
…

⋮
𝑋𝑋𝑛𝑛𝑚𝑚,𝑒𝑒⎦

⎥
⎥
⎥
⎤
  

A query vector is the vector which is approximated by the AAKR and represented by 1 × 𝑝𝑝 matrix 𝒙𝒙. 

 𝒙𝒙 = [𝑥𝑥1 𝑥𝑥2 …    𝑥𝑥𝑒𝑒]  

The first step is calculating the distance between the query vector and each of the memory vectors. A 
Euclidean distance is given by 

 

 𝑑𝑑𝑖𝑖(𝑋𝑋𝑖𝑖 ,𝑥𝑥) = ��𝑋𝑋𝑖𝑖,1− 𝑥𝑥1�
2

+ �𝑋𝑋𝑖𝑖,2− 𝑥𝑥2�
2

+⋯+ �𝑋𝑋𝑖𝑖,𝑒𝑒 − 𝑥𝑥𝑒𝑒�
2
. (31) 

The calculation is repeated for each of the 𝑛𝑛𝑒𝑒 memory vectors for a single query vector. The distance 
matrix 𝒅𝒅 has a dimension 𝑛𝑛𝑒𝑒 × 1 with the following form. 

 𝒅𝒅 = �

𝑑𝑑1
𝑑𝑑2
⋮

𝑑𝑑𝑛𝑛𝑚𝑚

�  

The next step is calculating weights by evaluating the Gaussian Kernel with bandwidth ℎ by 
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 𝑤𝑤 = 1
√2𝜋𝜋ℎ2

𝑒𝑒
−𝑑𝑑2

ℎ2� . (32) 

The weight matrix 𝒘𝒘 with dimension 𝑛𝑛𝑒𝑒 × 1 with the following form: 

 𝒘𝒘 = �

𝑤𝑤1
𝑤𝑤2
⋮

𝑤𝑤𝑛𝑛𝑚𝑚

�  

Then, the final step is combining weights with memory vectors to make predictions: 

 𝑥𝑥� =
∑ (𝑤𝑤𝑖𝑖 𝑋𝑋𝑖𝑖)
𝑛𝑛𝑚𝑚
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖
𝑛𝑛𝑚𝑚
𝑖𝑖=1

. (33) 

All the steps in AAKR can be written with a single function which approximates 𝑥𝑥 to 𝑥𝑥�. 

 𝑥𝑥𝚥𝚥� = 𝑓𝑓�𝑥𝑥𝑗𝑗�=

∑ � 1
�2𝜋𝜋ℎ2

𝑒𝑒
− 1
ℎ2
��∑ �𝑋𝑋𝑖𝑖,𝑘𝑘−𝑥𝑥𝑘𝑘�

2𝑝𝑝
𝑘𝑘=1 �

2

𝑋𝑋𝑖𝑖 ,𝑗𝑗�
𝑛𝑛𝑚𝑚
𝑖𝑖=1

∑ 1
�2𝜋𝜋ℎ2

𝑒𝑒
− 1
ℎ2
��∑ �𝑋𝑋𝑖𝑖,𝑘𝑘−𝑥𝑥𝑘𝑘�

2𝑝𝑝
𝑘𝑘=1 �

2

𝑛𝑛𝑚𝑚
𝑖𝑖=1

. (34) 

For the ease of the calculations, it is possible to define a weight function 𝜎𝜎 by 

 𝜎𝜎𝑖𝑖(𝑥𝑥) = 𝑒𝑒−
1
ℎ2
‖𝑋𝑋𝑖𝑖−𝑥𝑥‖2. (35) 

The single function of AAKR can be expressed in terms of weight function: 

 𝑥𝑥𝚥𝚥� = 𝑓𝑓�𝑥𝑥𝑗𝑗�=
∑ �𝜎𝜎𝑖𝑖(𝑥𝑥) 𝑋𝑋𝑖𝑖,𝑗𝑗�
𝑛𝑛𝑚𝑚
𝑖𝑖=1
∑ 𝜎𝜎𝑖𝑖(𝑥𝑥)𝑛𝑛𝑚𝑚
𝑖𝑖=1

 (36) 

The bandwidth needs to be a priori fixed; otherwise, the weight function is not Lipschitz continuous. 
Derivatives of 𝜎𝜎 with respect to 𝑋𝑋 and ℎ approach to ∞ as ℎ → 0; therefore, there is no bound to function 
growth, and a generalization error cannot be established. For a fixed ℎ, however, it is possible to derive 
generalization equations for AAKR. In this case, the parameter vector 𝑤𝑤 = �𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛𝑚𝑚𝑒𝑒� consisting 
of memory-vector parameters 𝑋𝑋1,1, … , 𝑋𝑋1,𝑒𝑒 , …𝑋𝑋𝑛𝑛𝑚𝑚,1, … ,𝑋𝑋𝑛𝑛𝑚𝑚,𝑒𝑒. The hypothesis space then can be written 
as ℱ𝑊𝑊,ℎ = �𝑓𝑓𝑤𝑤,ℎ:𝑤𝑤 ∈ [0,1]𝑛𝑛𝑚𝑚𝑒𝑒� and an estimate function 𝑓𝑓 is chosen from the hypothesis space. 

In order to find the covering number of AAKR, we first need to calculate the Lipschitz constant. The 
weight function is bounded by 1 which means independent of 𝑋𝑋 values, the weight function is always less 
than 1. This allow us to bound derivative of weight function with respect to parameters of 𝑋𝑋. 

 
𝜕𝜕𝜎𝜎𝑖𝑖
𝜕𝜕𝑋𝑋𝑖𝑖,𝑗𝑗

= 𝜎𝜎𝑖𝑖(𝑥𝑥)−2
ℎ2

�𝑋𝑋𝑖𝑖,𝑗𝑗 − 𝑥𝑥𝑗𝑗�≤
2
ℎ2 (37) 

The next step is finding the derivative of estimate function with respect to parameters of 𝑋𝑋. For ease 
of calculations, estimate function can be written without the sum to take derivatives: 

 𝑓𝑓𝑤𝑤 = 𝜎𝜎𝑖𝑖 (𝑥𝑥) 𝑋𝑋𝑖𝑖,𝑗𝑗+𝐶𝐶1
𝜎𝜎𝑖𝑖(𝑥𝑥)+𝐶𝐶2

, (38) 
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where the coefficients are 𝐶𝐶1 = ∑ 𝜎𝜎𝑛𝑛(𝑥𝑥) 𝑋𝑋𝑛𝑛,𝑗𝑗
𝑛𝑛𝑚𝑚
𝑛𝑛≠𝑖𝑖  and  𝐶𝐶2 = ∑ 𝜎𝜎𝑛𝑛(𝑥𝑥) 𝑛𝑛𝑚𝑚

𝑛𝑛≠𝑖𝑖 . The Lipschitz constant can be 
found by taking derivative of 𝜎𝜎 with respect to 𝑋𝑋𝑖𝑖,𝑗𝑗 and using interval arithmetics: 

 𝜕𝜕𝑑𝑑𝑤𝑤
𝜕𝜕𝑋𝑋𝑖𝑖,𝑗𝑗

=
�𝜕𝜕𝜎𝜎𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑋𝑋𝑖𝑖,𝑗𝑗

𝑋𝑋𝑖𝑖,𝑗𝑗+𝜎𝜎𝑖𝑖(𝑥𝑥)�(𝜎𝜎𝑖𝑖(𝑥𝑥)+𝐶𝐶2)−𝜕𝜕𝜎𝜎𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑋𝑋𝑖𝑖,𝑗𝑗

�𝜎𝜎𝑖𝑖(𝑥𝑥) 𝑋𝑋𝑖𝑖,𝑗𝑗+𝐶𝐶1�

(𝜎𝜎𝑖𝑖(𝑥𝑥)+𝐶𝐶2)2 ≤ 4+ℎ2

ℎ2𝐴𝐴2𝑛𝑛𝑚𝑚
. (39) 

It must be noted here that, in theory, as 𝑑𝑑 approaches ∞, the weight function goes to 0, which 
restrains the Lipschitz property. However, 𝑑𝑑 is bounded by the memory vector; therefore, the weight 
function has a lower limit 𝐴𝐴 and can be expressed as 𝜎𝜎 ∈ [𝐴𝐴, 1]. We can find 𝐴𝐴 by using the bound of 𝑑𝑑. 
Note that Equation 29 gives a bound to 𝑑𝑑, and the bound can be expressed as 𝑑𝑑 ≤ �𝑝𝑝. Then lower limit 

of weight function can be expressed as 𝜎𝜎𝑖𝑖(𝑥𝑥) ≥ 𝐴𝐴 = 𝑒𝑒−
𝑝𝑝
ℎ2. Then the Lipschitz constant for AAKR can be 

calculated by 

 𝑘𝑘𝑤𝑤 ≤
4+ℎ2

ℎ2𝑛𝑛𝑚𝑚𝑒𝑒
−2𝑝𝑝
ℎ2

. (40) 

A uniform grid-cover size of (1 𝜀𝜀⁄ )𝑛𝑛𝑚𝑚𝑒𝑒 satisfies the Lipschitz property; therefore, the covering 
number can be written as 𝑁𝑁∞(𝜀𝜀,ℱ𝑊𝑊) ≤ (𝑘𝑘𝑤𝑤 𝜀𝜀⁄ )𝑛𝑛𝑚𝑚𝑒𝑒. Then the covering number for AAKR is given by 

 𝑁𝑁∞(𝜀𝜀,ℱ𝑊𝑊) ≤ � 4+ℎ2

𝜀𝜀ℎ2𝑛𝑛𝑚𝑚𝑒𝑒
−2𝑝𝑝
ℎ2
�
𝑛𝑛𝑚𝑚𝑒𝑒

. (41) 

Implementing the covering number for AAKR gives us the generalization equation for AAKR: 

 𝑃𝑃𝑋𝑋[𝐼𝐼(𝑓𝑓𝑤𝑤�)− 𝐼𝐼(𝑓𝑓𝑤𝑤∗) > 𝜀𝜀] ≤ 8� 128+32ℎ2

𝜀𝜀ℎ2𝑛𝑛𝑚𝑚𝑒𝑒
−2𝑝𝑝
ℎ2
�
𝑛𝑛𝑚𝑚𝑒𝑒

 𝑒𝑒−𝜀𝜀2𝑙𝑙/512. (42) 
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Appendix B 
 

AGR Thermocouple Data Analysis Using AAKR 
This appendix describes the use AAKR analysis on measured data from the AGR fuel-irradiation test 

program conducted in the Advanced Test Reactor at Idaho National Laboratory. The AGR data set 
contains thermocouple (TC) measurement of graphite in six capsules. TCs work under very-high-
temperature condition, which makes failure common. Each capsule underwent 12 irradiation cycles from 
February 2007 to July 2009. 

The available data set contains measurements from five TCs in the experiment. Because these five 
measurements are highly correlated, AAKR can be applied to detect sensor drift. Due to the TCs’ failures, 
only Capsule 6 has ≥3 TCs surviving with data recorded. Because AAKR requires at least 3 variables, 
only Capsule 6 (with its five surviving TCs) was analyzed by AAKR. 

The AAKR average auto-sensitive is 0.4012 and cross sensitive is 0.3926. To reduce the missing 
alarms and false alarms, sequential probability ration test (SPRT) and alarm consolidation are applied to 
the residuals obtained from AAKR. SPRT was developed by Wald  in 1947 as a statistical test of whether 
a measurement is more likely from a normal operation, H0, or from an abnormal operation (whether due 
to drift or fault), H1. The advantage of SPRT is it requires few numbers of samples to determine an 
anomaly. 

The fault hypotheses from SPRT are consolidated by removing spurious alarms with a percentage 
check technique. This technique determines that the signal is a fault when two of five successive 
observations exceed the threshold. Figure B-1, through Figure B-5 show the fault hypothesis results for 
TC 1–5, respectively. The blank region background is the region with missing values where no analysis is 
conducted. X axis shows the observation index, and Y axis shows the fault hypothesis, where 0 indicates 
normal operation, and 1 indicates abnormal mode. The yellow and green backgrounds show different 
Advanced Test Reactor (ATR) cycles, the details of which are given as Table B-1:  
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Figure B-1. Fault hypothesis for TC1 of Capsule 6. 

 
Figure B-2. Fault hypothesis for TC2 of Capsule 6. 
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Figure B-3. Fault hypothesis for TC3 of Capsule 6. 

 
Figure B-4. Fault hypothesis for TC4 of Capsule 6. 
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Figure B-5. Fault hypothesis for TC5 of Capsule 6. 

Table B-1. ATR cycle details for TC 1–5. 
ATR Cycle Start Date 
139A 10 Feb 2007 
139B 21 Apr 2007 
140A 29 Sep 2007 
140B 1 Dec 2007 
141A 26 Jan 2008 
142A 8 Mar 2008 
142B 21 Jun 2008 
143A 30 Aug 2008 
143B 6 Dec 2008 
144A 20 Feb 2009 
144B 25 Apr 2009 
145A 4 Jul 2009 

 
The results suggest that the drift/degradation starts from around the middle of cycle 141 A for TC1 

and TC2, and late in cycle 142A for TC3-5. 
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