
 

INL/RPT-23-74159
Revision 0

Light Water Reactor Sustainability Program

Explainable Artificial Intelligence
Technology for Predictive

Maintenance

August 2023

U.S. Department of Energy

Office of Nuclear Energy



DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any agency
thereof, nor any of their employees, makes any warranty, expressed or implied,
or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness, of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. References
herein to any specific commercial product, process, or service by trade name,
trade mark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the U.S. Government or any
agency thereof. The views and opinions of authors expressed herein do not nec-
essarily state or reflect those of the U.S. Government or any agency thereof.



INL/RPT-23-74159
Revision 0

Explainable Artificial Intelligence
Technology for Predictive Maintenance

Cody M. Walker

Vivek Agarwal

Nancy J. Lybeck

Linyu Lin

Anna C. Hall

Rachael A. Hill

Sabid Bin Habib

Ronald L. Boring

Torrey J. Mortenson

August 2023

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.lwrs.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy

Light Water Reactor Sustainability Program



Page intentionally left blank

iv



EXECUTIVE SUMMARY

The domestic nuclear power plant fleet has relied on labor-intensive and time-consuming preventive
maintenance programs, thus driving up operation and maintenance costs to achieve high-capacity factors.
Artificial intelligence (AI) and machine learning (ML) can help simplify complex problems such as
diagnosing equipment degradation to enable more effective decision-making. Benefits will be felt
not only within existing analog and digital instrumentation and control, but also work processes, the
integration of people with technologies, and most importantly, the business case. Together, these hold
the promise to make nuclear power more efficient and reduce costs associated with operations and
maintenance. While the AI and ML technologies hold significant promise for the nuclear industry, there
are challenges or barriers to their adoption.

Light Water Reactor Sustainability researchers at Idaho National Laboratory—in collaboration with
Public Service Enterprise Group (PSEG), Nuclear, LLC—completed development and demonstration of
three aspects of AI technologies: performance, explainability, and trustworthiness (represented visually
in Figure A).

Figure A. Aspects of AI technologies essential for decision-making.

The notable contributions captured in the report are:

• Identify barriers to overcome (categorized as historical, technical, economic, stakeholder, regula-
tory, and user acceptance) in adopting these new technologies for the industry to realize the full
benefits of AI/ML capabilities for long-term economic sustainability.

• Present and discuss the inherent trade-off between ML performance (in terms of accuracy) and
explainability, where highly accurate ML methods (such as deep-learning) are the least explainable,
and the most explainable methods (such as decision trees) are the least accurate. The trade-off
between performance and explainability takes into consideration techniques to develop training
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datasets and also concerns around data imbalance. In addition, explainability of AI techniques in
terms of transparency and post-hoc metrics are discussed.

• Demonstrate a user-centric visualization that was developed by taking into consideration inputs
from PSEG, Nuclear LLC, human factors engineering guidelines, and data scientists. This approach
aligns with a human-in-the-loop approach to gain user confidence. The user-centric visualization
presents different levels of information and can be tailored as per user credentials. One of the
salient features of the user-centric visualization is it presents ML methods with explainability
metrics. Battelle Energy Alliance, LLC, holds the user-centric visualization copyright.

• Discuss the trust, but verify framework—a potential approach to building user trust in AI. The
framework discusses trust from the human level to the AI level. The fundamental premise of the
trust but verify framework is derived from an observation of nuclear safety culture (i.e., nuclear
power plant personnel do not rely on a singular source of data to make a decision). This also ties
back to the user-centric visualization that presents different levels of information to achieve both
explainability and trustworthiness of AI.

• Discuss the findings from the Nuclear Plant Instrumentation Control & Human-Machine Interface
Technologies 2023 conference survey that sought feedback from a broader audience about the user-
centric visualization app’s usability and ML trustworthiness. From the responses it was observed
that if the application supplied sufficient information to make the user trust its recommendation,
then the participants would likely be comfortable making decisions based on that, even without
understanding the underlying details of the algorithm.

• Outline the importance of data novelty and the value of new information in evaluating both
explainability and trustworthiness. Novelty detection helps to establish consistency or inconsistency
of the new data with respect to the training data. On the other hand, the value of new information
could be a part of the user-centric visualization recommendation system that requests additional
information be collected to update ML outcomes.

The accomplishments achieved under this research stem from developing innovative solutions that signify
advancements in (1) application of AI/ML in nuclear power plants for predictive maintenance, (2) user-
centric visualization interface, and (3) quantitative and qualitative measures to achieve explainability and
trustworthiness of AI/ML technologies.

The report concludes that the development, implementation, and sustainment of advanced AI-guided
technologies will require many different types of expertise for maintenance and regulation. Deployment
of AI demands bringing together a truly multidisciplinary team of experts to clearly understand broader
societal implications.
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EXPLAINABLE ARTIFICIAL INTELLIGENCE
TECHNOLOGY FOR PREDICTIVE MAINTENANCE

1 INTRODUCTION AND CONTRIBUTIONS

Over the years, the domestic nuclear power plant (NPP) fleet has relied on labor-intensive and time-
consuming preventive maintenance (PM) programs, thus driving up operation and maintenance (O&M)
costs to achieve high-capacity factors [ 1 ]. As part of the PM strategy, plant systems, structures, and compo-
nents undergo manual, labor-intensive periodic maintenance checks such as inspection, testing, calibration,
replacement, and refurbishment, irrespective of their condition. Predictive maintenance (PdM) strategies,
on the other hand, recommend that actions be taken as required by the health condition of the systems,
structures, and components. To achieve a PdM strategy, condition-based monitoring techniques need to be
adopted.

A well-constructed, risk-informed PdM approach (see Figure  1 ) [ 2 ] will take advantage of advancements
in sensors, data analytics, machine learning (ML), artificial intelligence (AI), physics-informed modeling,
and user-centric visualization approaches. PdM strategies utilize plant assets’ current and historical data to
develop diagnostic and prognostic models. Diagnostic models identify the current health status of the plant
assets. If the diagnosis indicates a potential incipient fault, the prognostic model predicts the time to failure
or the remaining useful life, enabling plant personnel to develop a maintenance plan accordingly. These
days, NPPs in the U.S. are focusing on transitioning from PM to PdM strategies, one of the cost-effective
work reduction opportunities for integrated operation for nuclear [ 3 ], in order to achieve long-term economic
sustainability in today’s competitive energy market [ 4 ]. By taking advantage of advancements in sensing,
communications, big data analytics, and ML techniques, domestic NPPs are automating and optimizing a
number of maintenance activities [ 5 ], [ 6 ], [ 7 ] as part of a larger effort of plant modernization [ 8 ].

Figure 1. Research and development for achieving a risk-informed PdM strategy [ 2 ].

AI/ML is one of the technologies that can help simplify complex problems to enable more effective
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decision-making. AI/ML is currently being researched in reactor system design and analysis, nuclear safety
and risk analysis, and more recently, in plant O&M, especially for advanced reactors [  9 ]. Benefits will be felt
not only within existing analog and digital instrumentation and control (I&C), but also work processes, the
integration of people with technology, and most importantly, the business case. Together, these hold promise
to make nuclear power more efficient and reduce costs associated with O&M. While the AI/ML technologies
hold significant promise in the nuclear industry, there are challenges or barriers to their adoption. The
challenges or barriers discussed in Section  2 are expected to meet guiding technical requirements as shown
in Figure  2 . These guiding principles are applicable to the design, development, deployment, and operation
lifecycles of AI/ML technologies. For details, see [ 10 ].

An ongoing research and development project titled Technology-Enabled Risk-informed Maintenance
Strategy (TERMS) under the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS)
Program is addressing some of the technical requirements in collaboration with a nuclear utility, including
scalability, explainability, and trustworthiness. A federated transfer learning approach has been developed to
ensure scalability of AI/ML technologies for risk-informed PdM across plant systems and the nuclear fleet
to meet current and future application-specific requirements [ 11 ,  12 ]. However, the developed scalability
approach doesn’t address the deployment of risk-informed PdM and integration with the plant legacy systems.
Explainability and trustworthiness of AI/ML technologies are still open topics of research and development.
An initial technical basis addressing explainability and trustworthiness for AI/ML technologies using metrics
is presented in [ 10 ].

Figure 2. Design, develop, deploy, and operate AI/ML technology requirements.

The primary objective of the research presented in this report specifically focuses on addressing the
explainability and trustworthiness of AI/ML technologies to advance the technical readiness and acceptability
of these technologies in achieving risk-informed PdM strategy at commercial NPPs. The approach outlined
in this report can be adapted to enhance the acceptability of AI/ML in other nuclear applications with a few
application-specific modifications. The technical approach ensuring wider adoption of AI/ML technologies
presented in this report was developed by Idaho National Laboratory (INL) in collaboration with Public
Service Enterprise Group (PSEG), Nuclear, LLC. To develop the technical approach, the circulating water
system (CWS) at the PSEG-owned plant sites was selected as the identified plant asset. Specifically, the
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issue of waterbox fouling (WBF) in the CWS was diagnosed using different types of CWS data.

This report presents discussion on three aspects of AI technologies, i.e., performance, explainability,
and trustworthiness, as shown in Figure  3 , with specific metrics, a user-centric visualization interface, and
human-in-the-loop evaluation to build user-confidence. The notable contributions (below) captured in the
report, present detailed discussion on each aspects in the following sections of the report.

Figure 3. Aspects of AI technologies essential for decision-making.

• Identify barriers to overcome (categorized as historical, technical, economic, stakeholder, regulatory,
and user acceptance) in adopting these new technologies for the industry to realize the full benefits of
AI/ML capabilities for long-term economic sustainability.

• Present and discuss the inherent trade-off between ML performance (in terms of accuracy) and
explainability, where highly accurate ML methods (such as deep-learning) are the least explainable,
and the most explainable methods (such as decision trees) are the least accurate. The trade-off between
performance and explainability takes into consideration techniques to develop training datasets and also
concerns around data imbalance. In addition, explainability of AI techniques in terms of transparency
and post-hoc metrics are discussed.

• Demonstrate a user-centric visualization that was developed by taking into consideration inputs from
PSEG, Nuclear LLC, human factors engineering guidelines, and data scientists. This approach aligns
with a human-in-the-loop approach to gain user confidence. The user-centric visualization presents
different levels of information and can be tailored as per user credentials. One of the salient features of
the user-centric visualization is it presents ML methods with explainability metrics. Battelle Energy
Alliance, LLC, holds the user-centric visualization copyright.
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• Discuss the trust, but verify framework—a potential approach to building user trust in AI. The
framework discusses trust from the human level to the AI level. The fundamental premise of the trust
but verify framework is derived from an observation of nuclear safety culture (i.e., NPP personnel do not
rely on a singular source of data to make a decision). This also ties back to the user-centric visualization
that presents different levels of information to achieve both explainability and trustworthiness of AI.

• Discuss the findings from the Nuclear Plant Instrumentation Control & Human-Machine Interface
Technologies 2023 conference survey that sought feedback from a broader audience about the user-
centric visualization app’s usability and ML trustworthiness. From the responses it was observed that
if the application supplied sufficient information to make the user trust its recommendation, then the
participants would likely be comfortable making decisions based on that, even without understanding
the underlying details of the algorithm.

• Outline the importance of data novelty and the value of new information in evaluating both explain-
ability and trustworthiness. Novelty detection helps to establish consistency or inconsistency of the
new data with respect to the training data. On the other hand, the value of new information could be a
part of the user-centric visualization recommendation system that requests additional information be
collected to update ML outcomes.

The accomplishments achieved under this research stem from developing innovative solutions that signify
advancements in (1) application of AI/ML in NPPs for PdM, (2) user-centric visualization interface, and (3)
quantitative and qualitative measures to achieve explainability and trustworthiness of AI/ML technologies.

The rest of the report is organized as follows. Section  2 outlines and discusses different barriers
associated with the adoption of AI/ML technologies that need to be addressed to harness full benefits of these
technologies in the nuclear industry. Section  3 describes the CWS and its heterogeneous data with different
fault modes of interest for PSEG-owned NPPs. Section  4 utilizes the CWS data to demonstrate the trade-off
between performance (i.e., accuracy) and explainability of ML methods for WBF condition. Different data
sampling strategies along with unbalanced data are used to evaluate the performance versus explainability
trade-off. Section  5 presents the development of a user-centric visualization application that presents different
levels of information, including diagnosis and prognosis outcomes of ML methods, historical distribution
of data, explainability metrics, and trending of salient measurement parameters. Section  6 discusses the
trust-but-verify approach that is derived from a nuclear safety culture. Finally, conclusions are drawn and a
path forward is presented in Section  7 .

2 BARRIERS TO THE ADOPTION OF ARTIFICIAL INTELLIGENCE AND
MACHINE LEARNING TECHNOLOGIES

Despite the industry’s excellent track record of providing reliable, safe, and clean baseload electricity for
decades, the current business model is unsustainable in today’s fiercely competitive energy market [ 13 ]. This
is because the industry still relies heavily on a large workforce compared to other energy producing utilities
that have applied advanced technologies. Put simply, the survival of NPP operations and maintenance, which
have remained largely unchanged since the 1970s and 1980s when the plants were commissioned, must keep
pace with other energy sectors and, too, harness the dramatic increased efficiencies possible with AI/ML
applications.

However, there exist barriers to adopting these new technologies that must be overcome, especially if the
industry is to realize the full promise of AI/ML capabilities that will result in significantly lower production
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costs. The end-state vision of AI/ML adoption is not just nuclear power sustainability but for the industry to
flourish. This goal is imperative given the U.S. administration’s pledge to decarbonize energy by 2035 [ 14 ].
Thus, identifying, and finding ways to overcome barriers to AI/ML adoption is a critical consideration for
the industry. This chapter provides a review of these barriers.

We begin with historical barriers that stem from U.S. nuclear power’s evolution within the energy
landscape, and major events that changed public perceptions and led to its intense safety culture. We
highlight technical barriers to AI/ML adoption such as the availability of the granular-level data needed
to perform AI, data privacy concerns, and the current lack of AI expert knowledge available at the plants.
Next, we discuss potential business case barriers, not least of all, the cost to modernize in this way, but also
from the perspective of business stakeholders. Strict regulatory enforcements are in place for nuclear power
operations, and we review the 5-year strategic plan for AI readiness recently published by the U.S. Nuclear
Regulatory Commission (NRC). Cybersecurity concerns of AI/ML adoption are highlighted. Last, and most
importantly, we present barriers to AI/ML adoption in nuclear energy at the user level. As a priority, we lay
the importance of User Experience (UX) that includes interface design, explainability, and trust in AI. We
describe human nature’s resistance to change, and the political and ethical expertise that must accompany
AI/ML adoption.

Throughout, the importance of Human Factors Engineering (HFE) in the development and implemen-
tation of AI/ML solutions is highlighted. While we categorize the barriers under different headings, we
emphasize the overlap and demonstrate their interconnectedness. Figure  4 provides an overview visual of
the ways in which the discussion points in this chapter are reciprocally linked. Thus, overcoming barriers to
AI/ML adoption in nuclear power will require a high degree of integration and coupling of expertise across
multiple domains. No one barrier to adoption should be tackled in isolation, and instead a holistic approach
should be applied.

Figure 4. Reciprocal connectedness of barriers to AI/ML adoption in nuclear power

2.1 Historical Barriers

Historically, NPPs have been slower to adopt digital technologies than other energy utilities, and certainly
slower than non-energy industries such as manufacturing and automotive which have routinely employed
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AI/ML applications for several decades [ 15 ]. The reasons for this slow uptake are manifold, but begin with
U.S. nuclear power’s position within the energy landscape, its safety culture, and its acceptance by society.

U.S. NPPs are among the oldest in the world, with a mean age of 41.6 years. Many of the plants were
commissioned in the 1970s and 1980s, and much of the vintage technology of that era is still used today. The
nuclear power fleet was not originally built to support upgrades. Further, the events of Three Mile Island in
1979 struck fear into the public consciousness which ushered in a culture of extreme caution and intensive
federal oversight [ 16 ]. This, followed by the Chernobyl disaster in 1986, effectively placed a moratorium
on nuclear development for several decades, and the political factors surrounding its advancement and
place in the electricity generation industry have been controversial. Taken together, in comparison to other
energy sectors such as oil, gas and, renewables, the nuclear power industry has historically undergone little
technological innovation [ 13 ], and in instances where it has, the approach has been conservative and delayed.

Figure 5. Three technological epochs in the power sector (reproduced based on a figure in [ 17 ]).

Figure  5 summarizes the technological evolution of the power sector since 1970, highlighting the
transformative role that AI/ML applications will play moving forward. The 1970s–1990s saw a restructuring
of markets and an infrastructure buildout that brought about a drop in research and development. This
era tracked with the introduction of renewable energy sources. The 2000s–2020s ushered in the epoch of
digital transition, including investment in smart technology and deployment of data capture devices. Most
recently, since 2020 we began the automation era boosted by data engineering and AI/ML technologies. The
automating epoch contains new clean energy markets and new business models.

In recent decades nuclear power utilities have been engaging with I&C digitalization and modernization of
the existing fleet to varying degrees. Each upgrade poses significant challenges to the plant including financial
investment and training considerations. Further, most technological advancements attract a regulatory audit
and, in some cases, a license amendment request. Thus, cost concerns, lack of expertise, and regulatory
issues surrounding new technology adoption are not new, and have historically been the industry’s chief
barriers to modernization.

Recent findings by Hall and Joe [ 18 ] suggest that industry’s attitudes toward some of these perceived
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barriers may be declining while others are increasing. The authors asked personnel from utilities and the
nuclear industry, including vendors and researchers about perspectives of control room modernization. They
surveyed individuals in 2012 and again in 2022 to gain insights into whether attitudes had changed over the
course of a decade. Cost remained a primary concern and increased from 2012. However, despite being the
foremost barrier 10 years ago, concerns about the regulatory approval process declined by a whopping 30%
and was among the lowest ranked barriers in 2022 (Figure  6 ). With respect to AI/ML industry adoption,
these findings are promising. Thus, despite historical reservations about NRC-approval there currently exists
a shared sentiment across utilities and research agencies alike that regulatory approval should not pose an
insurmountable barrier to AI/ML adoption in the plants moving forward.

Figure 6. Foremost barriers to control room modernization (Reproduced with permission from [ 18 ])

Taken together, the historical underpinnings of analog equipment, stagnation in development for several
decades, dominant regulatory oversight and events such as Three Mile Island and Chernobyl have led to
the industry being the safest energy generation source and with a strong safety culture. This is a crowning
achievement and one of which the industry can be proud. However, this has also led to slow installation of
technological advancement over the decades, including AI.

2.2 Technical Barriers

There’s a saying within the AI/ML community, “Garbage in, Garbage out” [ 19 ]. Insofar as AI’s primary
functions are for the system to learn knowledge from data, then correctly interpret that knowledge and act
accordingly, the granular-level data necessary to support knowledge learning is a technical barrier that must
be overcome. Here, we parse out issues pertaining to data accessibility, data quantity, and data quality as a
prerequisite for successful AI/ML application in nuclear power.

2.2.1 Data Accessibility

Often, the real-time plant data necessary to perform AI/ML are rarely available. Indeed, many AI/ML
applications are developed with simulated data from high-fidelity models [ 9 ]. Further, should these data be
collected in the first place, gaining access is not a trivial matter because they exist in a closed loop system
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within the plant and are closely guarded. This is a function of significant data privacy and cybersecurity
concerns that NPPs must contend with, and written agreements for AI/ML researchers to access the data can
take several months. Further, algorithm optimization requires continuous availability of real-time data from
plant process systems and other installed sensors. Ideally, this occurs in an uninterrupted manner. Brokering
contracts that provide AI/ML developers with perennial NPP data access will have to be made easier to
realize the technology’s full potential.

Within the evolution of digitized information, the data must be stored in an accessible format. For
example, information stored in portrable document formats is not readily obtainable for use by AI/ML
analytics compared to other digitized formats. Digitization refers to the conversion of analog information
into digital form. An example of this in nuclear power operations is the transformation of paper-based
procedures into computerized procedures conducted on a tablet of some kind. With this new form of
technological infrastructure in place, plants can engage in digitalization, which uses digitized information
to restructure and improve business processes [ 20 ]. Digitalization involves optimizing interactions between
systems, between people, and between systems and people using digital communications. This new format
yields insights and possibilities that would have otherwise been impossible with analog systems. Together
these innovations enable digital transformation; a fundamental change in thinking and the creation of new,
more efficient ways to perform daily operations [ 21 ]. An example of this process of digital transformation is
illustrated in Figure  7 .

Figure 7. Industry pathway to digital transformation (image courtesy of [ 21 ]).

Finally, many plant tasks such as work orders, corrective action reports and others could be optimized by
easy access to textual information stored in text-based documents. However, the vast majority of available
textual information is currently stored as unstructured text, such that keyword searches still require the user
to read the file once located. This process is labor intensive, error-prone, and costly. AI/ML applications
such as Natural Language Processing can locate relevant textual information quickly from vast volumes of
text-based documents and find patterns that are not readily apparent to users who perform a visual search.
The transformation of free text into normalized, structured data can then be fed directly into ML algorithms
that support decision-making during plant operations and maintenance.

2.2.2 Data Quantity

The quantity of data required is a serious consideration. In recent years, many forward-thinking NPPs
have made large investments into digitizing infrastructure by deploying smart sensors and data tracking
devices for information that was either previously manually recorded, or not recorded at all [ 9 ]. For example,
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the risk-informed predictive maintenance application detailed in this report, depending on its application,
will rely on large volumes of data such as motor vibration and temperature, system condenser, and turbine
and vacuum values [ 10 ]. Other recent digital upgrades to I&C have included smart gauges, electronic work
packages, and dynamic instructions [ 22 ]. This has produced new digital data from disparate origins that,
when connected, have made possible the creation of new sources of knowledge. Together, these devices
create a digital environment from data capture that can yield new and valuable insights using AI/ML. Recent
advancements in sensor hardware, cloud-computing, and bandwidth have lowered costs to put these data
capture technologies in place [ 23 ]. However, while some utilities have made great strides updating their
data information infrastructure, there is currently still not enough digitized and relevant plant data available
to feed and validate most high-fidelity AI/ML applications [ 9 ]. Further, NPPs will have to invest in prolific
data capture resources, software engineering, and sophisticated software architecture to meet this demand.

2.2.3 Data Quality

Even with ready access to high quantities of relevant plant data, AI/ML’s ability to function correctly
is also dependent on the quality of that data. Thus, to arrive at quality decisions, there must be clean,
accurate, relevant, reliable, and contextualized data. Data must be recorded faithfully by devices, and errors
corrected before further data processing occurs. Incorrect, mislabeled, and duplicate data values must be
removed, and incomplete or corrupted data must be handled to produce valid information. Further, the
cleaning process must be performed in a consistent manner to ensure data reliability. There must be checks
and balances in place to verify that data cleaning was performed properly, with course-correct mechanisms
in place via feedback loops. Last, the data may need to be transformed into a uniform and contextualized
format, especially across multifield, multidimensional heterogenous datasets from disparate sources [ 9 ].
Taken together, the data engineering and safe data storage that must occur before AI analytics and model
training is not a trivial issue and will require substantial backend investments by the utilities to ensure
suitability. Figure  8 details an example of a big data pipeline process and the developers involved at each
stage. A full discussion of the data processing required for model development pertaining to risk-informed
PdM can be found in [ 24 ].

Figure 8. Data engineering and developer tools for big data (from [ 25 ]).

2.2.4 Level of Required Technical Expertise

The last technical barrier described here relates to the level of required technical expertise, which can be
broadly defined as the level of AI/ML technical maturity that personnel possess within a utility. In parsing
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out technical maturity, skills expertise is implicated in two ways. The first is the existence of expert AI/ML
knowledge and competence. The second is the acquisition of new skills required with AI-augmented and
newly created AI positions.

The existence of expert AI/ML knowledge and competence becomes a barrier to adoption when the plant
lacks employees with the specialized technical background to comprehend the AI/ML model analytics. This
issue is particularly salient in the nuclear industry because O&M decisions often carry significant safety
and financial consequences, as well as legal consequences. NPP operators hold licenses and bear legal
responsibility for plant operations, whether their decisions are AI-guided or not, and so an understanding of
how the algorithm arrives at its conclusions is paramount.

Explainable Artificial Intelligence (XAI) has become an important feature of AI/ML technologies and
is an essential component in earned trust by the human user [ 26 ]. XAI refers to the system’s ability
to communicate or explain how it arrived at its decision or algorithmic output [ 27 ]. Indeed, there exist
consumer laws dictating that algorithmic output must be explainable to users. For example, the Equal Credit
Opportunity Act, passed by the U.S. Congress in 1974 states that any adverse actions against those seeking
credit must be explained, including actions informed by algorithmic decision-making [ 28 ]. However, for
NPP personnel to sufficiently understand a technical explanation based on complex computations performed
upon plant data, this requires a degree of model expertise and extensive background knowledge [ 29 ]. Should
there be a shortage of AI/ML talent in the plant, model training and recruitment will be required in every
department that employs these technologies. A discussion of XAI as it pertains to the nuclear industry is
documented in [ 10 ].

Last, there is no question that the introduction of AI/ML will change the nature of current job functions
and create new, different jobs altogether that will require augmented and new employee skillsets. Indeed, in
a recent report from the World Economic Forum, it is estimated that across the globe, 44% of workers’ skills
will be disrupted in the years leading up to 2027, in part because of AI applications, and 60% will require
additional training [ 30 ]. Analytics, creative thinking, and understanding of how to use AI and big data
were the top-ranking skills training in terms of importance. This is apparent as AI/ML technologies assist
with automation and decision-making in industries ranging from finances, automotive, and manufacturing
[ 15 ]. Human-machine collaborations will become commonplace for most job descriptions including those
in NPPs, and while this will allow job functions to become more streamlined, the original mandate of
the employee will be displaced by something else. With the adoption of AI/ML technologies, the nuclear
industry will have to be cognizant of creating an environment that ensures the correct skillsets are being
developed in personnel.

2.2.5 Governance

AI/ML model training is stochastic in nature which makes verification and validation tasks challenging.
Also, systems using AI/ML models are difficult to audit and certify because of their black-box nature. These
concerns are further challenged by intrinsic biases in AI models such as reproducibility bias, selection bias
(e.g., races, genders, color), and reporting bias (i.e., results that do not reflect the reality). They also appear
to be vulnerable to cybersecurity threats as AI systems can misbehave when untrusted data are given, making
them insecure and unsafe.

While the above mentioned concerns are true for many AI systems, the application of AI in nuclear has
to deal with additional concerns of (1) integration of AI system with NPP legacy systems without disturbing
the intended functionality of the system; (2) expanding current infrastructure at a NPP in terms of sensors,
communication, data repository, computation resources, cyber security, and human resources to effectively
accommodate the new AI systems; and (3) ensuring regulatory compliance.
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While this is not a comprehensive list of concerns related to potential AI/ML applications in nuclear,
they warrant developing and implementing a governance framework. The structure and functionality of the
established framework would be to provide an oversight ensuring concerns associated with the AI/ML system
throughout their lifecycle (i.e., design, develop, deployment, and operation) are monitored and addressed in a
timely manner. The AI governance framework is expected to be based on guiding principles, to be defined by
a collaborative effort of AI/ML developers, cybersecurity experts, information technologists, stakeholders,
regulators, and whoever else required. There are several guiding principles related to AI governance in
literature for consideration. For details, see [ 31 ], [ 32 ], [ 33 ].

2.2.6 Cybersecurity

The success of AI/ML applications in NPPs is predicated on access to readily available, highly inter-
connected electronic data streams from disparate and varied sources. Thus, while AI/ML holds promise
to significantly increase efficiency and lower costs, the shift to digitalized information leaves plants more
vulnerable to cybersecurity breaches. This constitutes a serious safety concern and, by extension, a regula-
tory concern. Cybersecurity within NPPs is at the forefront of discussions surrounding digitalization and
AI/ML, and should be considered during the formative, planning stages of the technology. Smart devices
and intelligent agents generate efficiencies but also increased risk [  34 ]. Keeping digitized nuclear power
assets safe from cyberattacks is a matter of national security [ 35 ]. After a spate of cyber disturbances in the
2000s, the NRC mandated an ordinance that requires NPPs have a cybersecurity plan in place that meets the
Commission’s approval (Title 10 of the Code of Federal Regulations, as outlined in NRC Regulatory Guide
5.71; US NRC, 2009).

Scientists and engineers at INL are at the forefront of cybersecurity research and development for nuclear
power systems that include technological solutions within cyber defense. Importantly, HFE scientists at INL
can examine vulnerabilities in human-AI interactions using the Human Systems Simulation Laboratory
(HSSL), such that the risk-informed PdM outlined in this report can be developed within the existing
framework of a utilities’ NRC-required cyber program. An outline of cyber-related research activities
conducted at the HSSL can be found in [ 18 ].

2.3 Business Case

Cost has always been a significant barrier to modernization, but it has become an increasing concern
in the last 10 years [  18 ]. As with other types of technological upgrades, the upfront investment and
ongoing data expertise necessary for the success of AI/ML technologies likely remains a chief barrier to
adoption. Stakeholders must perceive guaranteed long-term benefit in conjunction with a friendly regulatory
environment to offset the initial investment. Further, effectively overcoming this barrier will likely rely
on each of the business stakeholders possessing a clear and unified end-state vision of AI/ML throughout
the plant. Within the industry, there are mixed feelings about whether the perceived development and
implementation costs are worth the benefits [ 9 ]. There are concerns about the timeliness of received benefits,
and the risk-aversive nature of the nuclear power industry likely adds costs to AI/ML adoption

Utilities perceive that each potential AI/ML application must be considered on a case-by-case basis,
and the risk of failure or malfunction and anticipated efficiency improvements over time must be weighed
against future value. However, large scale transformation to a digitized infrastructure is precisely the type
of seamless digital environment that will support plant scale AI/ML deployment and, by extension, realize
the technology’s full potential. Finding solutions to navigate and overcome these competing tensions (i.e.,
case-by-case AI/ML versus scale deployment) is part of the business barrier.
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Critical to the business case is that clear methods must be in place to identify key performance indicators
that measure return on investment. For example, it is currently challenging to capture relevant and credible
cost-savings data from AI/ML implementations in component monitoring, the benefits of which are realized
months or even years down the line. Nonetheless, component monitoring for early fault detection and
predictive maintenance has been identified as one of the key areas of nuclear power that AI/ML technologies
will benefit from the most, allowing for optimization of resource allocation and cost-savings [ 9 ].

2.4 Regulatory Readiness

The nuclear power industry faces stricter regulatory enforcement than most business enterprises, and
any application of AI/ML technologies will require a cooperative and collaborative approach with the U.S.
NRC, the federal oversight agency responsible for ensuring safety requirements are met. To this end, in
their document titled ‘Artificial Intelligence Strategic Plan: Fiscal Years 2023–2027,’ the NRC stated that its
vision is to “continue to keep pace with technological innovations to allow for the safe and secure use of AI
in NRC-regulated activities, when appropriate” (NRC, 2023, p.2-1). In this section, we will also consider
cybersecurity concerns.

2.4.1 NRC Readiness

The introduction of new digital technologies to NPPs, including AI/ML to plant processes, might attract
regulatory oversight. Although AI/ML is currently being explored in the optimization of non-safety systems,
should the upgrade include safety-critical systems, the plant will have to submit an amendment application to
the NRC for approval. Without approval, the plant cannot maintain its license to operate. The NRC’s 5-year
strategic plan for AI is essentially a document outlining the agency’s preparations for readiness to review
licensee submissions that employ AI technologies. This is not an easy task because regulating a rapidly
evolving AI/ML landscape presents novel and unique challenges.

The NRC strategic plan includes five goals:

1. Ensure NRC readiness for regulatory decision-making

2. Establish an organizational framework to review AI applications

3. Strengthen and expand AI partnerships

4. Cultivate an AI-proficient workforce

5. Pursue use cases to build an AI foundation across the NRC.

The first goal is the most important and involves establishing a secure AI/ML decision-making framework
that is up-to-date and that stems from a sound technical basis. This will form the basis of inspection procedures
and oversight policy. The need for flexibility is recognized. Technical AI topic areas that will be present in the
decision-making framework for regulatory approval include bias, security, risk analysis, model maintenance,
and data quality. It will also review XAI, trustworthiness, and ethics of the algorithms-—we discuss these
important considerations in Section 2.5, ’User Barriers,’ below.

Goals 2–5 are in service of this first strategic goal. The second goal relates to the creation of internal
NRC agency coherence across departments in reviewing applications. To accomplish their third goal,
the NRC is calling for regular and early engagement from applicants considering AI/ML, in conjunction
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with partnerships from national and international subject matter experts. The agency has been regularly
conducting AI workshops that engage utilities, industry, intergovernmental entities as well as the public to
discuss data science and AI that is being considered for applications in the nuclear industry. The fourth
goal is to build core AI-competencies in NRC personnel and attract AI talent to the agency who are poised
to perform effective regulatory reviews. Last, the fifth goal is to develop an end state vision of AI from
which NRC-regulated activities can be guided, including refinement of AI policies as feedback from industry
use cases and international expertise becomes available. Taken together, these goals will culminate in AI
technical readiness for regulatory reviews.

On the left-hand side of Figure  9 , taken from the NRC 5-year strategic plan, the pyramid depicts the data
structure that must already be in place before a utility embarks on data science and AI technologies. The
NRC highlights core data competencies already in place stemming from extensive experience regulating the
lower levels of this pyramid. Its strategy with AI will build upon these capabilities. The right-hand side of
Figure  9 demonstrates that machine learning techniques (like predictive maintenance), as the NRC views it,
is a subset of AI with its foundations in data science.

Figure 9. AI hierarchy and relationship with the NRC AI strategic plan.

To this end, the NRC stipulates that notional AI and different degrees of autonomy will require different
levels of regulatory scrutiny. This stems from the fact that some AI applications serve automation, while
others serve autonomy. The difference lies in the level of responsibility the intelligent agent has in decision-
making processes; less human intervention requires greater regulatory scrutiny. These levels are listed
below from Level 0 (100% human decision) to Level 4 (100% machine decision). The risk-informed PdM
innovation outlined in this report would likely be categorized as Level 2 Collaboration whereby algorithms
make recommendations, but these are vetted and the action remains with the human decision-maker. The
level of regulatory scrutiny will also depend on whether the AI/ML affects safety or non-safety plant systems.

• Level 0: AI Not Used

• Level 1: Insight (Human decision-making assisted by a machine)

• Level 2: Collaboration (Human decision-making augmented by a machine)
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• Level 3: Operation (Machine decision-making supervised by a human)

• Level 4: Fully Autonomous (Machine decision-making with no human intervention).

2.5 User Barriers

UX is another important factor to consider in the successful adoption of AI/ML technology within nuclear
power operations and maintenance. Existing plant personnel must be able to observe immediate benefits,
and likeability of the technology plays a big role within user approval. HFE scientists must work closely
with data engineers and plant engineers to ensure that the human-AI interface is designed with sound HFE
principles that result in a product with which the users are apt to engage. Embedded within UX are interface
design, explainability, interpretability and trustworthiness of the AI/ML, all of which are requirements for
user adoption.

2.5.1 User experience

The human-AI interface is the way that personnel interact with AI/ML technologies in order to carry out
their duties. As a basic principle, the interface must use a presentation format that is consistent with the task
functions the user is to perform [ 36 ]. Other design principles include being able to hold the user’s attention,
minimize errors, and afford non-experts an understanding of how the system works. The interface undergoes
early revision in parallel with the AI/ML system design, and the new, improved design is validated through an
iterative process. The U.S. NRC has developed general HFE recommendations for interface review including
physical and functional characteristics that should be present in the information display [ 37 ]. Safety and
usability are the chief priorities.

A rich HFE theoretical literature is devoted to interface design, with specific recommendations made
for process control industries such as nuclear power operations [  38 ]. Ecological interface design uses
cognitive psychology to inform ergonomic visual representations that best serve humans working with
complex sociotechnical systems [ 39 ,  40 ]. Two NRC documents offer guidance on HFE review criteria for
interfaces including design features [ 41 ] and interfaces to automatic systems [  37 ]. Together, the NRC makes
clear that the display must both fulfill the needs of the system and users with safety as a priority.

Important for UX in digital displays is the stylistic elements present because these can impact interface
performance as well as user preference [ 18 ]. Hossain and Zaman [ 42 ] outline fundamental design consider-
ations that together create an inviting environment for the user, and an interface that aids user understanding.
When producing a clear visual understanding of the system’s behavior, the authors urge that the following
factors be taken into consideration:

• Screen layout

• Color

• Graphics and pictures

• Display text

• Value representation

• Alarms and events
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• Navigation and controls

• Page hierarchy

• Operational security.

Some of these features are specific to interfaces used for nuclear operations (e.g., alarms and events,
operational security). However, several features that are relevant to interface design of the ML-based
technology described in this report will be considered briefly. The screen layout should reveal key information
in the sequence that human operators naturally scan any screens ( i.e., from top left to right, then down).
Color should be considered carefully because red typically conveys stop/emergency whereas green conveys
start/safe conditions. Color use must also comport with nuclear power conventions. In terms of graphics,
according to the High Performance Human-Machine Interface Handbook, a good graphic should have a grey
background (and not blue, for example [ 43 ]). Data values representing key system parameters should be
presented graphically and not as text. Taken together, it is important for AI-interface designers to understand
that UX is about human perception as much as data representation.

XAI is another critical component to UX and has been a major topic of discussion surrounding AI/ML
since the 1980s. Just as humans in important decision-making roles are asked to explain their decisions, XAI
serves to hold machines to the same standard, especially when the underlying computations may be opaque
to the user as with highly complex sociotechnical systems such as nuclear power.

Although often used interchangeably in the computer science literature, some scholars of psychology
propose that interpretable AI differs from XAI and that they represent two distinct psychological constructs.
For example, [ 29 ] argues that algorithmic interpretability is whether or not a human can meaningfully
understand the accuracy of the model prediction for the task at hand. In other words, unlike XAI which is
concerned with explaining the process of decision-making, interpretability pertains to the system’s decision-
making accuracy in fulfilling its purpose. The author illustrates the difference between explanations and
interpretations with an example of the “Check Engine” light on a dashboard: the explanation might be
detection of a faulty driving system, but the interpretation for the driver is to take the car to the mechanic.

Users of AI/ML technologies seek both explanations and interpretations simultaneously, and both are
central components of a favorable UX. They are requirements for new systems. Individual differences of
proficiency for target users dictates how much explanatory information the system should provide in parallel
with the algorithmic output. Reference [ 29 ] notes that, whereas humans make decisions based on the simplest
representation available, or the gist—the essential meaning of the model output (interpretation)—AI/ML
models arrive at decisions via methodical programmatic verbatim processes. Thus, highly explainable
algorithms must provide detailed descriptions for the rationale behind the model’s outcome, whereas highly
interpretable algorithms must afford meaningful mental representations that allow the user to understand the
model’s outcome in context, which, in turn, supports high-level decision making.

Further, there is a negative correlation between algorithmic performance and explainability in that users
must weigh the trade-off between model accuracy and an explanation of the model’s decision process [ 44 ]. As
outlined in [ 10 ], an important question within nuclear modernization is the extent to which reactor operators
must grasp completely the underlying control logic and behaviors of AI/ML technologies. Explainability
and interpretability are both difficult to measure [ 26 ]. However, given their importance in user adoption,
AI/ML developers must work closely with HFE scientists to develop applications that optimize UX. A key
aspect of this optimization will be soliciting user feedback in an iterative fashion to improve explainability
and interpretability. Human-centered AI is an approach to AI/ML development with the requirement that
user needs be built into the ML model’s design [ 45 ]. Human interaction is emphasized, along with a user-
centric design that supports cooperation between human user and artificial agents. Altogether, these design
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principles increase human control and trust in the system.

2.5.2 Ethical barriers

In addition to XAI, any lack of transparency surrounding how the algorithm made its determinations, or
any user misunderstanding can contribute to ethical concerns. This stems from fears that unconscious biases
in AI developers made their way into the application. Indeed, while on the one hand AI-guided decision-
making is perceived as more objective than that of humans, any subjectivity or bias from the developer may
have been embedded into the algorithmic learning [ 46 ]. Other ethical risks include users not wanting the
responsibility of applying judgment to AI creations and ambiguity surrounding where responsibility lays
should accidents occur. This is particularly relevant for the nuclear industry because staff also bear legal
responsibility for accidents.

Further industry concerns about privacy and surveillance ethics have been expressed, for example, from
AI-guided technology that tracks plant personnel location (i.e., The Global Positioning System) in real time
or that uses face recognition for permissions (i.e., cameras). Last, the far-reaching consequences of AI are
still not yet known and pose significant ethical and societal concerns for an industry in which errors can
have far-reaching implications. Taken together, the development of AI-guided applications must address
user ethical concerns early in the process to increase trust in the technology. The implementation method
must feature a comprehensive ethical risk mitigation plan. Taking the time to overcome ethical user barriers
to adoption is as important as UX.

2.5.3 Organizational readiness

Another barrier to adoption is organizational resistance to change, which is a function of organizational
readiness. This is, in part, due to the safety and risk-aversive culture of the nuclear power industry described
earlier, which generates a general lack of trust in single sources of information as well as the overall efficacy
of predictive models. Organizational readiness is variable across the industry, with some utilities more
embracive of technological innovations than others.

New AI/ML applications must be developed with, and validated by, current plant personnel. Regulatory
approval is contingent upon a favorable reception from plant operators and those who work closely with
existing systems that the new technology seeks to augment or replace. However, this presents a conflict
because familiarity with legacy technology or earlier plant processes creates a user bias: the perceived
appropriateness of the advanced AI-guided systems is reduced with more experience using the older system
[ 47 ]. Thus, earning the trust of the target user is paramount for engagement. A review of human-centered
AI as a function of willingness to trust the system is provided in [ 10 ].

In addition, the introduction of anything new is by definition a political act, because it causes change.
And, as with most other organizations, the nuclear power industry experiences resistance to that change.
Change causes disruptions at different levels. For a nuclear power operator, who is responsible for maintaining
safe and efficient operations at the plant, the introduction of a different work process may initially result
in errors and perceived or real punitive action against the employee. In addition, learning new systems
takes time, and is cognitively more burdensome than established practice. There exists a tension within
human-AI collaboration in that, despite the known efficiency benefits, a culture of organizational fear might
surround the new technology in that it will ultimately replace human labor. Therefore, a lack of trust in
AI/ML may stem from job loss concerns, and not in the specific application per se. Utilities must strive to
create a culture friendly to innovation, with reassurances that adequate time will be given for training and
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to master the new technology, and that job security is a prerequisite. Moreover, this is compounded by the
fact that technological changes outpace managerial changes at an exponential rate, which in turn revolves at
a faster pace than those in organizational legislation and regulation [ 48 ]. Given their dynamic and necessary
interaction to exploit AI/ML to its full potential, common ground must be found to balance these ingredients
and ensure proper communication.

Figure 10. Worker behavior in the presence of organizational gradients [ 48 ].

Rasmussen [ 48 ] outlines different organizational pressures within each department and staff member
that interact simultaneously and affect decisions. Figure  10 depicts the presence of strong forces in opposing
directions that, together, likely result in staff migration toward the boundary of acceptable performance.
Management pressure toward efficiency (e.g., advanced technology adoption) is one force which stems from
aggressive market realities—this flows against the gradient toward least effort. The boundary of functionally
acceptable performance opposes the boundary of unacceptable workload. The human workers must achieve
their work objectives within constraints such as nuclear’s safety culture and administrative and functional
restrictions. However, there exists latitude for workload, efficiency, risk of failure, an individual’s joy of
exploration, and adaptability on the part of the worker. The Brownian movement in the center of the figure
represents staff behavior trending toward boundaries in all directions depending on their collisions with strong
currents from all directions. Put simply, beyond individual motivations, where users of AI-guided technology
ultimately lay within workplace boundaries depends on the outcome of the worker ‘effort gradient’ meeting
management’s ‘cost gradient.’
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2.5.4 Individual differences to technology adoption

The technology acceptance model is a framework to examine and understand user perceptions that best
determine technology adoption, as well as longer-term usage [  49 ]. The model is based in psychological
research and attempts to combine principles from the theory of planned behavior and the theory of reasonable
action that together explain users’ behavior toward technology usage. Figure  11 shows the model framework,
in which perceived usefulness of the technology (i.e., enhance job performance) and perceived ease of use
(i.e., free from effort) in combination form a usage attitude, which together form user motivation. Each of
these three are hypothesized to mediate the relationship between system characteristics (external variables
Xs) and actual usage. A plethora of research has used the technology acceptance model and validated the
psychological predictors of adoption. In later versions, attitude was swapped out for behavioral intentions
because it had more explanatory power [ 50 ].

Figure 11. Technology acceptance model (image reproduced from [ 50 ]).

Other psychological variables such as user personality have been shown to increase likelihood of adoption
[ 51 ]. According to [ 9 ] users fall into one of five personality-based groups that predicts how people or an
industry will accept technological innovations. These are:

1. Innovators, who are willing to take risks and are the first ones to adopt an innovation

2. Early adopters, who adopt an innovation slower than innovators but quicker than other groups

3. Early majority, who adopt an innovation significantly after the innovators and early adopters but are
still at or above average overall

4. Late majority, who adopt an innovation after the average time

5. Laggards, who are the last to adopt an innovation.
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In the study, they asked 12 industry personnel in which phase they believed the nuclear power industry to
currently be, with respect to adoption of AI technologies (in 2021). A majority indicated that they believed
the nuclear power industry was early adopters of AI technology. This matches the commonly heard saying
within the industry, in that there is a “race to be second” with new technologies. Typically, demonstrable
and proven benefits must first be observed to move forward with the business case. The second most
endorsed response was that the nuclear industry were innovators. However, some respondents indicated that
there was variability between utilities, with some having used AI/ML for a decade while others are only
getting started. Interestingly, predictive maintenance was named as a focus area. Taken together, individual
and organization differences (personalities) should be considered with the adoption and implementation of
AI/ML technologies in understanding which phase of adoption they may currently be in.

2.6 Summary

In this chapter we reviewed barriers to AI/ML adoption in nuclear power and demonstrate their in-
terconnectedness. Nuclear power exists within a rich and storied history, with shifting public perceptions
and political influences shaping investment in advanced nuclear technologies over the decades. AI-guided
systems can support a better understanding of current plant status and upcoming maintenance requirements.
Accurate, real-time predictions can optimize operator decision-making. AI is ubiquitous in other industries,
including other energy sectors, and a key industry message today is “modernize, or get left behind” [ 52 ].
AI/ML is key to industry survival. The development, implementation, and sustainment of advanced AI-
guided technologies will require many different types of expertise to maintain and regulate properly. These
include technical, business case, regulatory and legal, policy, and HFE expertise, and must not be considered
in isolation. AI demands bringing together a truly multidisciplinary team of experts and, to the best of our
ability, a clear understanding of the broader societal implications.

3 DESCRIPTION OF THE SYSTEM AND FAULT MODES

This section focuses on describing the data and systems used for our research-developed solutions for
some of the aforementioned barriers. The system chosen was a non-safety-related system at the Salem NPP,
namely the CWS. It serves as the heat sink for the main steam turbine and associated auxiliaries. The CWS
is designed to maximize steam power cycle efficiency while minimizing any adverse impact on the Delaware
River [ 53 ]. The CWS consists of the following major equipment:

• Six vertical, motor-driven circulating pumps (or “circulators”), each with an associated trash rack and
traveling screen at the pump intake to remove debris and marine life

• Main condenser (tube side only)

• Condenser waterbox air removal system

• Circulating water sampling system

• Screen wash system

• Necessary piping, valves, and instrumentation/controls to support system operation.

WBF is a common maintenance issue at the PSEG-owned Salem NPPs. Fouling of the waterboxes
typically occurs due to the accumulation of grass/debris in the waterbox, thus resulting in condenser tube
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blockage and reduced circulator water flow. This is a unique and frequent issue as the circulating water pump
(CWP) intake comes directly from the river, resulting in a significant quantity of grass and debris. Primary
symptoms of WBF include:

• Motor current increase (Sometimes seen by motor current decrease, but not often)

• Inlet pressure increase

• Waterbox differential temperature (DT) increase

• Condenser thermal performance loss.

Figure  12 shows a schematic of the CWP and motor, including measurement locations.

Figure 12. Schematic representation of a CWP and motor, along with vibration and temperature measurement
locations.

Plant Site 1 (a two-unit pressurized water reactor) features six circulators at each unit. Schematic
representations of the main condensers for Plant Site 1, Unit 2 are shown in Figure  13 (a). Each pair of
waterboxes is named using the following convention: Unit #, Condenser #A, and Unit #, Condenser #B.
Plant Site 2 (a single-unit boiling water reactor) has four circulators. A schematic representation of the Plant
Site 2 CWS is shown in Figure  13 (b). Several distinct differences can be seen when comparing the CWS
schematics for Plant Sites 1 and 2, including that the water supply to the Plant Site 2 CWS comes from a
cooling tower water basin, not directly from the river; the Plant Site 2 CWS does not have traveling screens,
but each circulator has a single-pump screen to prevent debris transmission to the waterboxes; and the Plant
Site 2 CWS has four circulators feeding six waterboxes via a common header, unlike the Plant Site 1 CWS,
in which each waterbox had its own circulator.

A general functional description of the Plant Site 1 CWS, component integration, and design basis are
found in [ 54 ]. This description is similar for the Plant Site 2 CWS, with minor differences in the integration
as a result of previously highlighted changes in layout.
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(a) Plant Site 1 Unit 2 CWP combination 21A and 21B.

(b) Plant Site 2.
Figure 13. Schematic representation of CWS.

The CWS has a major impact on the unit’s gross load output (i.e., electricity production). There are also
other systems in the plant that impact the unit’s gross load output, but their impacts are minimal and hence
they are not considered in this paper. Based on the number of CWPs operating at a given time, the unit’s
gross load can be labeled as full load, derate, trip, or outage (as shown in Figure  14 ). A derate is a percentage
decrease in gross load due to the unavailability of a specified number of CWPs. A trip is a zero-power state
when more than 50% of the CWPs are unavailable, leading to a forced shutdown. An outage is a planned

21



Figure 14. A sample of data showing the impact of availability of number of circulating water motors on the
gross load.

shutdown when the reactor power is zero for an extended period of time (though usually less than a month)
to complete scheduled fuel cycle maintenance.

The CWS process data for both units at Plant Site 1 are collected once per minute and stored in the plant’s
OSIsoft Process Information system. Due to file size restrictions, the process data for Plant Site 1 used in this
work were downsampled to hourly data from 2009 to 2020. Similarly, the Plant Site 2 process data consist
of hourly measurements spanning from January 1, 2010, to May 18, 2021. Table  1 details CWS-specific
measurement types observed at both Plant Site 1 and 2.

Table 1. CWP-specific measurement types observed at Plant Site 1 and 2 NPPs.
Measurements Plant Site 1 Plant Site 2
Timestamp ✓ ✓

CWP status ✓ ✓

Gross load ✓ ✓

Differential temperature ✓ ✓

Motor current ✓ ×
Motor Stator temperature ✓ ✓

Motor inboard bearing (MIB) temperature ✓ ✓

Motor outboard bearing (MOB) temperature ✓ ✓

Motor vibration (axial, outboard, inboard) ✓ ×

The CWSs at both the plant sites experienced several types of faults in the time span for which the data
were analyzed. These faults, as listed in Table  2 , are infrequent, but the failure to diagnose them in a timely
manner can result in unexpected downtime, derates, or trips, causing a drop in gross load that, in turn, leads
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to foregone revenue (i.e., lost opportunities to generate electricity and revenue) and additional maintenance
costs. Based on the time period encompassing the data for analysis, some fault types resulted in multiple
plant derates and trips (thus impacting plant generation), while others impacted plant generation only once
or not at all.

For these diagnosed faults, relevant CWS process data, vibration sensor data, and work order data
associated with the CWS were used to develop a condition-based monitoring solution. The CWS work order
data [ 2 ] were used to create an approximate timeline of when faults occurred and were corrected, in addition
to a timeline of PM activities. The fault timeline is particularly important for identifying possible fault
features relevant to the fault modes listed in Table  2 . ML models can be used to make such diagnoses based
on fault signatures.

Table 2. CWS faults observed at Plant Site 1 and 2 NPPs.
Faults Plant Site 1 Plant Site 2
WBF ✓ ✓

CWP diffuser ✓ ×
CWP bellmouth ✓ ×
CWP shaft misalignment ✓ ×
Clogging in air intake screens of the CW motors ✓ ×
Moisture and salt contamination of CW motor windings ✓ ×
CW motor oil (bearing oil) level (low) ✓ ✓

Heating, ventilation, and air conditioning × ✓

Inlet and outlet issue × ✓

CWP screen clogging × ✓

CW motor bearing × ✓

This chapter focused on describing the data and systems used throughout the remainder of the report.
Although the primary focus lies with WBF within the CWS, the knowledge gained from applying and
explaining ML methods can be generalized to other systems.

4 EXPLAINABLE ARTIFICIAL INTELLIGENCE APPROACHES TOWARD
TRUSTWORTHINESS

In this chapter, solutions for making ML more explainable and trustworthy are discussed, specifically
as they relate to the CWS system and fault modes outlined in the previous chapter. This includes the ML’s
performance versus explainability trade-off, qualitative metrics to measure this, the value of new information
when making a prediction, and novelty detection for knowing when an ML model may be extrapolating.

4.1 Performance versus Explainability Trade-off

As suggested in literature [ 55 ], there is an inherent tension between ML performance (e.g., predictive
accuracy) and explainability, where the highest-performing methods (like deep learning) are the least ex-
plainable, and the most explainable (like decision trees) are the least accurate. It is further suggested in
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literature [ 56 ] that such a statement is only true when (1) the function to be approximated entails certain
complexity; (2) the data available for study is greatly widespread among the world of suitable values for each
variables; and (3) there is enough data to harness a complex model. Figure  15 shows the synthetic learning
performance versus explainability trade-off for several categories of learning techniques.

Figure 15. Synthetic learning performance versus explainability trade-off for several categories of learning
techniques from [ 55 ].

Meanwhile, the literature [ 57 ] suggests that for cases with well-structured data and features, there is often
no significant difference in performance between more complex classifier (deep learning, boosted decision
trees) and much simpler classifier (logistic regression, decision lists) after preprocessing. The paper [ 57 ]
also argues that the comparisons among different ML methods should not be performed on a static data set
or training process since any formal training process that extracts knowledge from data requires an iterative
process. More iterations lead to a model with better training and more interpretable results. In cases with
more iterations, the accuracy/explainability trade-off is reversed: instead of having less explainability for a
more accurate model, more explainability leads to better overall accuracy.

To test such a hypothesis on performance-explainability trade-off, this section selects six ML methods,
including a Feedforward Neural Network (FNN) model with complex architectures, Extreme Gradient
Boosting (XGBoost) [  58 ] based on gradient boosting algorithms, k-nearest neighbors (KNN), decision tree,
Bayesian classification, and a logistic linear regression model.

Among the faults of interest (Section  3 ) examined for the CWS, only four fault types had multiple
instances that resulted in CWP shutdowns. The multiple occurrences of these faults allow for development
and testing of diagnostic models, strengthening the fault signature. WBF caused numerous instances of CWP
shutdowns. Even though this fault is not a pump or motor fault, it is a system fault that may show symptoms
affecting pump performance. The WBF fault also occurred numerous times, allowing for development and
testing of diagnostic models. Fault types with only a single instance of causing a CWP shutdown provided
limited information for developing a fault signature and training ML. Table  3 lists the number of data instances
for six faults and normal conditions.

As a result, this study focuses on a diagnosis model for WBF. A total number of 220,702 data instances
from plant site 1 are used, including 46,289 instances labeled as WBF and 174,413 instances labeled healthy
conditions. Table  4 lists the number of data instances for all six groups of CWP with healthy and WBF
labels.
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Table 3. Number of data instances for healthy conditions and each fault modes.
Modes Number of data instances
Healthy 174,413
Air intake 855
Bellmouth fail 417
CWP diffuser 502
Misalignment 5,237
WBF 46,286

Table 4. Number of data instances for healthy conditions and each fault mode.
Group number Number of

healthy instances
Number of WBF
instances

1 (CWP11A & CWP11B) 13,455 2,691
2 (CWP12A & CWP12B) 19,120 3,824
3 (CWP13A & CWP13B) 19,120 3,824
4 (CWP21A & CWP21B) 5,825 1,165
5 (CWP22A & CWP22B) 7,250 1,450
6 (CWP23A & CWP23B) 5,795 1,159

The healthy data are about four times as much as WBF data. For each instance, all features listed in
Table  1 (except for motor vibration) are included in the training and testing process. The motor vibration
feature is excluded because vibration sensors were recently deployed and cover a very short time period,
which significantly reduces the number of data instances for training and testing of diagnosis models. In
addition, Week of the Year (WoY), and motor and pump age are added to account for seasonal and long-term
effects respectively.

To evaluate their performance, different combinations of training and testing data are selected, including
stratified random sampling and stratified group-based sampling. The goal is to avoid biases in selecting
either a non-representative or lack of diverse data for performance evaluations [  59 ]. For stratified random
sampling, a fixed percentage of data instances is selected from data instances labeled as WBF and healthy,
respectively. However, simple random sampling strategies are known to have issues in representing minority
subgroups with populations not fully represented in samples [  60 ]. Moreover, the generalization capabilities
of diagnosis models can hardly be evaluated with random sampling strategies. The generalization capabilities
refer to model’s ability to adapt properly to new and previously unseen data [  61 ]. Therefore, the group-based
sampling strategy is utilized to evaluate the model’s performance in predicting unseen data instances from
different CWP groups. For stratified group-based sampling, data instances from different combinations
of groups are used as the training and testing data, respectively. As shown in Figure  13 a, one CWP
combination/group contains two pumps, and there are six groups in total at the Salem plant site.

Moreover, as shown in Table  4 , there are more data instances with healthy status than instances with
WBF, and such a data imbalance is known to affect the performance of ML methods [ 62 ], which thus will
affect the performance explainability trade-off. As a result, this study also investigates data balance issues by
truncating healthy data instances into the same amount, twice, three times, and five times as much as the WBF
instances. Overall, based on different sampling strategies and levels of data unbalance, the performance is
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evaluated by diagnosing testing data labels. The performance of each ML method is compared to determine
if the performance-explainability trade-off is a valid hypothesis. Table  5 summarizes three case studies for
testing the hypothesis.

Table 5. Case studies with different sampling strategies for the testing performance-explainability trade-off
hypothesis.

Sampling Strategies Description
Stratified random sampling For data with healthy and waterbox-fouling labels, 80%

of data instances ( 20,000 data points) are randomly
selected as training data and the rest, 20%, ( 5,000 data
points) is selected as testing data, respectively. For both
training and testing data, there are the same amount
of data instances ( 12,000 data points) with healthy and
WBF labels. Each data instance contains seven features.

Stratified group-based sampling For each group, the number of healthy data is truncated
to the same amount of WBF (as in Table  4 ). For a desig-
nated number of groups, ranging from 1–5, all possible
of combinations of CWP groups, based on Table  4 , are
selected as the training data, while the rest of the groups
are used as the testing data in a cross-validation manner.
Each data instance contains seven features.

Unbalanced data For each group, the number of healthy data is truncated
to one times, two times, three times, and five times
to the WBF. Based on Table  4 , all combinations of 5
groups of CWP are selected as the training data, while
the remaining 1 group is used as the testing data in a
cross-validation manner. Each data instance contains 7
features.

To account for the iterative process in model training, the hyperparameters are sampled for each ML
method. Hyperparameters refer to parameters whose values control the model training/learning process and
determine the values of model parameters that a learning algorithm ends. For each ML method, important
hyperparameters are optimized for minimizing/maximizing a cost function based on the model performance.
The objective is to (1) avoid model errors and biases in setting up the training problems and (2) identify
the uncertainty of ML models in extracting knowledge from the data through an iterative process. Table  6 

lists high-impact hyperparameters of all six models. In this work, 1000 hyperparameters are drawn from the
candidate values using the Tree of Parzen Estimators (TPE). The TPE algorithm uses a truncated Gaussian
mixture model (GMM) [ 63 ] to fit the high-dimension correlations between the hyperparameters and the
model performance. A GMM is a weighted sum of non-parametric component Gaussian densities based
on continuous-valued data vector (i.e., the output of cost function). The sum of weights are required to be
1, and the non-parametric densities will be updated by observations, representing a learning algorithm that
produces a variety of densities over the configuration space [ 64 ].

This work uses recall rates for predicting WBF as the performance measure metrics, and the TPE
algorithm will maximize the expected improvement based on the performance results from sampling histories
for optimizing the hyperparameters drawing from new iterations. Recall rates refer to the fraction of true
WBF instances over all WBF labels that are predicted by ML methods. The goal is to reduce false alarm
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Table 6. List of ML methods and hyperparameters.
ML Methods and Hyperparameters Class for Drawing Candidate Values

Linear Model
Precision of the regression solution uniform distribution: [1e-6, 1e-2]

Regularization strength uniform distribution: [0, 1]
Bayesian Network

Portion of features for variance calculations uniform distribution: [1e-9, 1e-4]
K–Nearest Neighbor

Number of neighbors for majority vote uniform distribution: [1, 10]
Algorithms for nearest neighbor computations brutal force, ball tree, k-dimension tree

Decision Tree
Functions for measuring the quality of split gini, entropy, log loss

Maximum depth of the tree uniform distribution: [1, 20]
Minimum number of samples required to split an internal node uniform distribution: [0.1, 0.5]
Number of features to consider when looking for the best split uniform distribution: [1, 7]

XGBoost
Number of gradient boosted trees uniform distribution: [10, 250]

Maximum tree depth for base learners uniform distribution: [10, 45]
L1 and L2 regularization terms on weights uniform distribution: [0, 1]

FNN
Number of layers uniform distribution: [1, 5]

Number of neurons per layers uniform distribution: [10, 50]
Dropout ratio uniform distribution: [0.01, 0.5]

Validation patience uniform distribution: [5, 20]
Batch size uniform distribution: [100, 1000]

rates and improve economic viability of existing NPP by accurately predicting all WBF instances. For ML
methods that require early stopping, including XGBoost and FNN, 20% data are randomly drawn from the
training data to serve as the validation dataset.

Figure  16 compares the feature distributions from training and testing data based on random sampling,
and very few differences can be visualized. However, as shown in Figure  17 , the feature distributions of
testing data are very different from the distributions of training data. As a result, the performance of the
ML-based diagnosis model based on six different ML methods, including FNN, XGBoost, KNN, decision
tree, Bayesian network, and linear model is affected as shown by the recall rates in predicting the WBF. The
predictions are made on testing data that are selected randomly and based on the groups, respectively.

Figure  18 plots the distribution of model performance in predicting the testing data with random
sampling. Median recall rates are also shown to avoid skewness. Gaussian Bayes and linear ridge classifier
have slightly lower median recall rates than neural network (NN), XGBoost, KNN, or decision tree. Despite
better performance, recall rates of NN and decision tree have larger variance. It suggests that the prediction
results from NN and decision tree are more likely to be affected by hyperparameter selection. Similar trends
in recall rates are observed for all ML methods in predicting the training data.

Figure  19 compares the distribution of model performance with one group selected as the testing data
during the training and testing stages. The performance of KNN in predicting the testing data is lower than
predicting the training data since KNN only stores training data instead of learning and extrapolating from
the data. The variances of all models increase (i.e., the performance is reduced) when they are used to predict
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Figure 16. Comparison of training and testing data distributions with random sampling.

Figure 17. Comparison of training and testing data distributions with random sampling.

unseen data, which are outside the distribution of training data. NN and decision tree tend to have larger
variances than other models.

Table  7 lists the ML model performance measured by recall rates with a different number of groups
compared to the testing data. For each number of groups, all combinations of groups are used as the training
data, while the rest of the groups are used as the testing data. The medians of recall rates are determined
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Figure 18. Comparison of training and testing data distributions with random sampling.

(a) (b)
Figure 19. ML model performance for group-based sampling measured by recall rates in predicting (a)
training data and (b) testing data.

by aggregating testing results from all groups. Again, the goal is to reduce false alarm rates and improve
economic viability of existing NPP by accurately predicting all waterbox-fouling instances, so recall was the
performance metric of choice. No significant differences are observed among testing results with a different
number of groups.

Figure  20 further shows the relationship between number of tunable parameters in a FNN and the median
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Table 7. Median of recall rates with different number of groups as testing.
ML Methods Number of Groups Used as Testing Data

1 2 3 4 5
NN 0.97 0.97 0.96 0.96 0.94
XGBoost 0.97 0.97 0.97 0.97 0.94
KNN 0.81 0.88 0.87 0.86 0.84
Decision Tree 0.98 0.99 0.98 0.98 0.95
Gaussian Bayes 0.94 0.93 0.94 0.95 0.97
Linear Ridge Classifier 0.88 0.81 0.82 0.83 0.81

of recall rates in predicting WBF in the testing data. As an indicator of model complexity, more tunable
parameters in NN suggest more complex and less explainable models. However, no significant improvements
are observed when more complex NN are trained and used for predicting unseen data points outside the
training distributions.

Figure 20. Relationship between number of tunable parameters in NN and the median of recall rates.

Since the performance-explainability trade-off based on the literature is only true when the data are not
well processed and well structured, this study further compares performance of different ML methods with
unbalanced training data. Specifically, the training data with label of ‘healthy’ appear twice as often as points
with ‘WBF’ label. Operational data from one of six groups are used as testing data. Figure  21 shows the
distribution of model performance with healthy data twice as much as WBF data.

Figure  22 further shows the distribution of model performance with healthy data is five times more than
WBF data. Compared to Figure  21 , performance of all models had lower performance levels as the training
data become more unbalanced. Specifically, the median recall rates of the decision tree model drop to 0,
meaning decision trees tend to label all data as healthy. The median recall rates of Gaussian and linear
classifier drop more significantly than neural networks and XGBoost models. Moreover, when data are
very unbalanced, complex models like FNN and XGBoost perform better than Gaussian Bayes and linear
classifier with simple model forms. Table  8 summarizes the median recall rates of all model approaches with
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different degrees of unbalanced training data, which are measured by the relative ratios between the number
of healthy data and WBF data.

Figure 21. Distribution of model performance trained by healthy data twice as WBF data.

Figure 22. Distribution of model performance trained by healthy data five times as WBF data.

In conclusion, this work selects six ML methods, including complex models like FNN and XGBoost
and simple models like Gaussian Bayes and linear classifier. After training each model with operation data
from six groups of PSEG-owned NPP CWPs, the distribution and median of model performance for all ML
methods are similar when the training data are processed and balanced. Such similarities are observed when
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Table 8. Median recall rates of all ML methods with different degrees of data unbalance.
MLmethods Number of healthy data with respect to WBF data

1 2 3 5
NN 0.97 0.96 0.97 0.82
XGBoost 0.97 0.96 0.92 0.80
KNN 0.81 0.91 0.71 0.48
Decision Tree 0.98 0.78 0.66 0.00
Gaussian Bayes 0.94 0.93 0.84 0.63
Linear Ridge Classifier 0.88 0.71 0.80 0.37

testing data are selected randomly or when different numbers of groups are used as testing data. Meanwhile,
to test the impacts of balanced and unbalanced data, this work selected training data with different ratios
in labels. Compared to simple models like Gaussian Bayes and linear classifiers, FNN and XGBoost have
better performance when data with healthy labels that contain the same, twice, three times, and five times as
much as data compared with WBF. As a result, complex models could have better performance than simple
models when data are not well structured or well processed. For well-processed data with balanced data
labels, the performance is comparable with simple or complex models.

4.2 Qualitative Attributes

In addition to a working definition of ML explainability, the essential features of the explanatory
demands of explainable AI need to be investigated to better understand technical and delivery dimensions of
AI explainability. Such an investigation involves making explicit how a particular set of attributes can play
the role of evidence in supporting the conclusion reached by AI/ML models. The process of determining and
assembling attributes should give decision-makers the rationale behind that AI/ML result as if it had been
produced by a reasoning, evidence-based, and inference-making person. This section reviews qualitative
attributes that can be used to support the explainability and thus the confident use of AI/ML tools.

It has been suggested in [  65 ] that explaining an algorithmic model’s decision should make explicit
how the particular set of factors, which affect the outcome of ML models, can play the role of evidence
in supporting the conclusion reached. To build a reasoning process toward this explanation-giving task,
human-scale reasoning and interpreting includes four aspects:

• Logic and techniques in applying the basic principles of validity that lie behind and give form to sound
thinking. The goal is to provide a step-wise application of procedures and rules that comprise the
formal framework of the algorithmic system. Such a goal is supported by evidence from modeling,
approximating, and simplifying the most complex and high dimensional computations.

• Semantics in gaining an understanding of how and why things work the way they do and what they
mean. The goal is to understand the meaning of procedures and rules in terms of their purpose in the
input-output mapping operation of the system. Such a goal is supported by reasoning the relation of
the predictor and response variables.

• Social understanding of practices, beliefs, and intentions in classifying the content of interpersonal
relations, societal norms, and individual objectives.

• Moral justification in making sense of what should be considered right and wrong in everyday activities
and choices.
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In addition to the high-level attributes, it is suggested in [ 56 ] that XAI techniques can be classified into
transparent models and post-hoc explainability. Transparent models convey degrees of explainability by
themselves. Models belonging to this category can be explained in terms of simulatability, decomposability,
and algorithmic transparency.

• Simulatability refers to the ability of a model being simulated or thought about strictly by a human,
hence complexity takes a dominant place in this class.

• Decomposability refers to the ability to explain each of the parts of a model (input, parameter, and
calculation). It can also be considered as intelligibility [ 66 ].

• Algorithmic transparency deals with the ability of the user to understand the process followed by the
model to produce any given output from its input data.

Post-hoc explainability aims to enhance the interpretability of black-box models that are not readily
interpretable by design. Specific techniques include text explanations, visual explanation, local explanations,
explanations by example, explanations by simplification, and feature relevance explanation methods. Based
on this classification, evidence on model explainability for different ML approaches is shown in Table  9 :

Table 9. Evidence about model explainability based on four attributes. Adopted from reference [ 56 ].
Model Model Transparency Post-hoc Analysis

Simulatability Decomposability Algorithmic Trans-
parency

Linear/Logistic
regression

Predictors and interac-
tions among them are
human readable.

Variables are readable,
but the number of inter-
actions and predictors
can be decomposed for
better explanations.

Variables and interac-
tions need to be ana-
lyzed with mathemati-
cal tools and metrics.

Not needed

Bayesian
Model

Statistical relationships
are modeled among
variables and the vari-
ables themselves should
be directly understand-
able by the target audi-
ence.

Statistical relationships
involve many variables,
which must be decom-
posed in marginals for
analysis.

Statistical relationships
cannot be interpreted
even if already decom-
posed, and predictors
need to be analyzed
with mathematical tools
and metrics.

Not needed

Decision Tree Predictors and interac-
tions among them are
human readable.

Rules are readable, and
the number of interac-
tions among variables
do not alter data.

Human readable rules
and a direct understand-
ing of the prediction
process.

Not needed

KNN Predictors and interac-
tions among them are
human readable.

The number of vari-
ables is too large and
needs decomposition
for analysis.

Mathematical tools and
metrics are needed to
analyze the model.

Not needed

XGBoost Predictors and interac-
tions are not readable.

Universal decomposi-
tion techniques are not
available.

Universal tools and
metrics are not avail-
able.

Needed: usually model
simplification, local ex-
planations, or feature
relevance techniques

Multi-layer
neural network

Predictors and interac-
tions are not readable.

Universal decomposi-
tion techniques are not
available.

Universal tools and
metrics are not avail-
able.

Needed: usually model
simplification, local ex-
planations, or feature
relevance techniques

As a result, the explainability of ML methods can be expressed based on qualitative attributes and support-
ing evidence. Figure  23 shows explainability measures supported by qualitative attributes and corresponding
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evidence regarding simulatability, decomposability, algorithm transparency, feature contributions/relevance,
and simple model approximations. Moreover, explainability of simple model approximation can be measured
based on the same structures and corresponding evidence.

Figure 23. Explainability measures supported by qualitative attributes and corresponding evidence.

A user interface can also be built based on the explainability measures, which include evidence of each
attribute mentioned above (as shown in Figure  24 ).

Figure 24. Explainability measures supported by qualitative attributes and corresponding evidence.

4.3 Value of New Information

The question of how much information is needed to inform a decision is central to applied ecology.
Information from system or component monitoring is often vital to effective decision making. However,
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many decisions are made based on inadequate information [ 67 ], and monitoring can be costly and time-
consuming. Therefore, it is important to choose monitoring strategies to gather only information that is
necessary to make an effective decision [ 68 ]. The theory of the Value of Information (VoI) is a decision
analytic method for quantifying the benefit of acquiring additional information to support such analyses
[ 69 ]. The theory arises from considering jointly the probabilistic and economic factors that affect decisions.
According to the VoI theory, the expected value E of a given action ai under uncertainty can be calculated
as:

E[V(ai, s)] = ∑
s∈S

V(ai, s) · Ps . (1)

where V(ai, s) is the value of an action for a state s; Ps is the prior probability of a state s; A represents a set
of all possible actions for a given state s; This is the sum of all possible values for action ai for all states s of
the target units, each of which is weighted by its respective probability of the state s being true. As a result,
the best action is to maximize the expected values from Equation  1 :

EVuncertainty = max
ai∈A

Es[V(ai, s)] . (2)

The same equation can also be formulated as a decision problem by introducing a binary decision variable
xi representing whether action ai is implemented:

EVuncertainty = max
xi

|A|

∑
i=1

xiEs[V(ai, s)] . (3)

Monitoring will typically improve upon current information and increase the expected value of the best
management action. Specifically, monitoring will the change decision maker’s belief about the probability
of each state s being true. In VoI, probabilities for each state s being true can be estimated based on each
possible monitoring result using Bayes Theorem [ 70 ]. As a result, the expected value of the best management
action when information from monitoring y can be described as:

EVmonitoring = Emax
ai∈A

E|y[V(ai, s)] . (4)

Accounting for the decision variables xi, the expected value for the best action for each monitoring result
y becomes:

EVmonitoring = max
xy

i

∑
y∈Y

p(y)
|A|

∑
i=1

xy
i ∑

s∈S
V(ai, s)p(s|y) . (5)

where xy
i identifies action ai to implement for each possible monitoring result y, weighted by probability of

obtaining the monitoring results. The expected value of monitoring information, also known as the expected
value of sampling information (EVSI) is the difference between the expected value of the best action after
monitoring and the expected value of the best management action under uncertainty before monitoring:

EVSI = EVmonitoring − EVuncertainty . (6)
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For the maintenance based on diagnosis results, when the diagnosis results are uncertainty, the possible
states, prior probabilities, and expected values from Equation  1 and  2 can be described using a decision tree
as shown in Figure  25 

Figure 25. Decision tree model for maintenance based on diagnosis results. All possible states, prior
probabilities, and expected values are included.

where E refers to evidence from an ML-based diagnosis model, operating histories, user interface, and
additional information from monitoring. S1′ and S2′ are predicted states from the ML-based diagnosis. S1
and S2 are actual states of the component. P(S1′|E) and P(S2′|E) are the diagnosis model’s confidence in
equipment status given the evidence. In this example, S1′ and S1 refer to a healthy CWP, while S2′ and S2
refer to a CWP subject to WBF. As a result, the diagnosis model could suggest a healthy CWP based on
evidence from sensor readings and monitoring activities, and the decision maker could choose a PM strategy
and perform maintenance immediately. Otherwise, they could decide to continue operating the CWP, and
the decision-maker could either do nothing or end up needing to recover from the WBF fault because the
diagnosis model failed to detect fouling. Meanwhile, the diagnosis model could suggest a WBF will happen,
and decision-maker can choose either to follow the PdM strategy or to neglect the warning and continue
operation. If the decision-maker decides to continue operating, they would either have to recover from WBF
or end up not needing any maintenance. For each decision path, costs are assigned for possible maintenance
strategies, including the cost of PM V(PM), cost of recovery V(R), cost of PdM V(PdM), and cost of
no maintenance V(O). This study assumes that (1) the cost of recovery from WBF is the largest and (2)
that the cost of PM is larger than PdM. To demonstrate the VoI concept, this study assigns synthetic values
for all conditional probabilities and cost values (Table  10 ). Compared to scenarios with no new monitoring
information, the new monitoring information improves the confidence from the diagnosis model that the
CWP is in a healthy condition. The differences between the expected value of costs yield 127.1 as the VoI.
In this scenario, new monitoring reduces the expected costs by 15%.

4.4 Data Novelty

Another important aspect of model trustworthiness is whether the current data are consistent with or
close to the training data. Caution must be taken when extrapolating with any model, ML-based or not.
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Table 10. Synthetic values of conditional probability and values of maintenance costs.
No monitoring information New information from

monitoring
P(S1|E): Confidence in healthy diagnosis 40% 80%
P(S1|E): Confidence in WBF diagnosis 60% 20%
P(S2|S1′): Confidence in false negative 20% 10%
P(S1|S1′): Confidence in true negative 80% 90%
P(S2|S2′): Confidence in true positive 80% 95%
P(S1|S2′): Confidence in false positive 20% 5%
V(PM): Cost of PM 500
V(PdM): Cost of PdM 100
V(R): Cost of recovery 1000
V(O): Cost of no maintenance 10
Expected value of costs 824.4 697.3

In general, extrapolation is more acceptable when there are physical reasons to believe the model form is
correct and that it should apply in operating regimes not represented by the training data. Using extrapolation
with purely data-driven models is, in general, a perilous course of action, particularly in situations where
actions—such as issuing a work order—are dictated by the prediction outcomes of classification. There are
multiple ways to identify situations in which the current data significantly deviate from the training data,
including the use of novelty detection, distance metrics, and convex hull analysis. Presenting users with a
visual indication that a current data point is consistent with the training data will boost their confidence in
the model’s output.

Novelty detection is commonly used in ML to determine whether a new data point is an outlier relative to
the training data. Novelty detection is essentially a binary classifier that classifies a new data point as either
consistent or inconsistent with the training data. There are many techniques for novelty detection, which can
be classified into five broad categories: probabilistic, distance-based, reconstruction-based, domain-based,
and information-theoretic [ 71 ]. Similarly, an analysis can be used to determine if the addition of the current
data point to the training data set changes the convex hull for the data set (in two dimensions, the convex hull
of the set is the smallest convex polygon that contains all the points) [ 72 ]. Although these methods provide
an excellent way to identify data that are somehow different than the test data, they do not provide any type
of intuitive explanation for the decision (e.g., Motor inboard bearing (MIB) temperature is too high).

A more intuitive approach leverages distance metrics to calculate how far the current data point lies from
the training dataset. In two dimensions, this could be simplified by presenting a scatter plot showing where
the data point lies relative to the training data. Because ML datasets tend to be multidimensional, distance
metrics are useful for identifying situations where the data point under consideration is outside the training
data range. For numeric data, the most common distance metrics are the Euclidean, Chebyshev, Manhattan,
and Minkowski metrics [ 73 ].

4.4.1 Distance Metrics

The Euclidean distance is perhaps the most ubiquitous distance metric used. Given two data points in
n-dimensional space, x⃗ = (x1, x2, ..., xn) and y⃗ = (y1, y2, ..., yn), the Euclidean distance between x⃗ and y⃗
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is given by:

DE(x⃗, y⃗) =

√
n

∑
i=1

(xi − yi)2 . (7)

The Chebyshev distance calculates the maximum absolute distance along any single coordinate dimen-
sion:

DC(x⃗, y⃗) = max
i

(|xi − yi|) . (8)

The Manhattan distance (commonly referred to as the taxi cab distance) is the sum of the absolute
distance along every coordinate dimension:

DMan(x⃗, y⃗) =
n

∑
i=1

|xi − yi| . (9)

Finally, the Minkowski distance is a generalization of the Euclidean and Manhattan distances:

DMin(x⃗, y⃗) =

(
n

∑
i=1

|xi − yi|p
) 1

p

. (10)

Note that the case of p = 1 represents the Manhattan distance, p = 2 is the Euclidean distance, and p = ∞
is the Chebyshev distance.

Less commonly used is the Mahalanobis distance, which accounts for the distribution of the training
data. Though harder to interpret and calculate, the Mahalanobis distance can be useful when the variables
being measured are highly correlated to each other [ 74 ]. The Mahalanobis distance between two points is
calculated as:

DMah(x⃗, y⃗; Q) =
√
(x⃗ − y⃗)TS−1(x⃗ − y⃗) , (11)

where Q is the probability distribution of the training data and S is the positive definite covariance matrix.

Figure  26 shows two examples of a normalized 2-D data distribution with a binary classification. For
both, a decision boundary was identified by using isolation forests [ 75 ]. Built on decision trees, isolation
forests are unsupervised learning algorithms used to identify anomalies. The new data points are indicated
by the outermost large blue dots. The Euclidean and Chebyshev distances between each new data point and
its closest orange data point (as determined based on the Euclidean distance) are displayed.

Each of the discussed metrics entails its own set of strengths and weaknesses. When the data dimension,
n, is high, the Minkowski distances for p > 1 are less effective [ 76 ]; furthermore, the fractional p values
are non-intuitive. The Mahalanobis distance is heavily influenced by all relationships between variables;
therefore, it sometimes produces non-intuitive distance results. The Chebyshev distance is both simple and
intuitive. In the application area of diagnostics, any one variable being outside the training distribution is
enough to cause problems. However, using the Chebyshev distance to identify the nearest training data point
may not afford sufficient discrimination, particularly when ordinal variables are included. For the remainder
of this report, the Euclidean distance is used to determine the closest point in the training dataset, then the
Chebyshev distance is calculated between the two points. This distance is then compared to the confidence
of the regression algorithm and to the error in prediction.

4.4.2 Example

To demonstrate the benefits of considering the distance between a new data point and the training dataset,
this section presents an example based on the operational data described in Section  3 . A regression model
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Figure 26. Distance measures applied to two different data distributions.

was built using different ML techniques, then evaluated for a dataset of outliers. The confidence of the
regression algorithm, the error in prediction, and the distance from the closest training data point were all
compiled for evaluation.

The dataset used for this example includes 3 1/2 years’ worth of data associated with an NPP feedwater
and condensate system. The specific components being monitored are a condensate pump and its respective
motor. The variable being predicted is the motor stator temperature. The predictor variables for the model
are: the change in temperature across the water intake and output (i.e., delta temperature (DT)), MIB
temperature, Motor outboard bearing (MOB) temperature, motor current, WoY, and pump health status (i.e.,
healthy or faulted). The week-of-the-year variable was used to capture seasonal effects on the variables, as
nominal temperatures tend to vary significantly between summer and winter months. Over the 3 1/2-year
period, several planned and unplanned outages occurred, with most of the unplanned ones due to WBF.

With this dataset, we aimed to explore the relationship among model certainty, distance from the closest
training data point, and prediction error. This is important because, as average temperatures increase
summer after summer [ 77 ], the historical data may not adequately reflect the current reality. Furthermore,
the emergence of new fault modes can also result in data that lie substantially outside the training dataset,
necessitating model extrapolation. The goal of this work is to provide the end user with enough information
to confidently determine when the model should be used, and when additional analysis is required.

Because this exercise focuses on predicting outliers, no effort was made to remove them. The data were
split into training and testing sets, based on the following threshold applied to the DT variable: any data
point with a DT of 15◦F or less was placed in the training data, whereas any data point exceeding 15◦F was
placed in the testing set. This approach was specifically chosen to ensure that every point tested would lay
outside the training set. Figure  27 shows the kernel density estimate of the DT for the entire dataset.

After the data split, the training data were standardized by subtracting the mean of the data and then
dividing by the standard deviation. The testing data were standardized in like fashion, using a mean and
standard deviation that were estimated based on the training data. This was a crucial step for ensuring that
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Figure 27. Kernel density estimate of the DT for the entire dataset.

the distance metrics were not dominated by the variable with the largest magnitude. In Figure  28 , we see
that an isolation forest was able to demonstrate 94% accuracy in predicting which test data points should
be considered outliers. Only data points that were relatively close to the training data were misidentified as
inliers. Figure  28 also gives the Chebyshev distance for each of the 972 test data points, which were colored
by the isolation forest in accordance with their inlier/outlier status—with the x-axis categories indicating
which variable was used to determine the Chebyshev distance.

Figure 28. Chebyshev distance of all test data points and the parameter used to calculate it. Each data point
was colored by isolation forest in accordance with its inlier/outlier status.
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By employing Random Forest (RF) and Support Vector Regression (SVR) algorithms, the training
dataset was used to generate regression models. Each model form considered was initially trained on the
inlier dataset composed of data points featuring DTs of less than 15◦F, then tested on outliers whose DTs
exceeded 15◦F. A confidence interval was generated for each model to evaluate the relationship among model
confidence, prediction error, and distance from the closest training data point.

4.4.3 Random Forest Regression

RF is a type of ML algorithm commonly used for classification or regression, and is based on utilizing
an ensemble of decision trees [ 78 ]. The simplicity of using a single decision tree is offset by its tendency
to overfit the data and its vulnerability to variability and noise. RF overcomes these issues by employing
bagging aggregation to generate many decision trees. Each individual decision tree is built based on a
random sample (with replacement) of the training dataset (i.e., bootstrapping). The RF then aggregates the
outputs from the many decision trees and uses the count to produce a classification, or uses the average to
produce the final regression value. RF is readily available on many software platforms, including Python’s
scikit-learn library. RF is commonly chosen because it is accurate, easy to implement, and has built-in
feature importance metrics thanks to how the decision trees are structured.

For the example dataset, an RF regression model generated 1,000 decision trees, and the 95% confidence
interval for each test data point was generated using Natural Gradient Boosting for Probabilistic Prediction
[ 79 ]. Figure  29a plots the model prediction against the actual data, along with the 95% confidence interval for
the prediction. Recall that each test data point being predicted is an outlier, meaning that model performance
is expected to be low. Due to the standardization applied to each variable, the x- and y-axes represent a
dimensionless z-score (i.e., how far the actual or predicted motor stator temperature lies from the mean of the
training dataset in terms of standard deviation). The different colors indicate the Chebyshev distance between
each data point and its nearest training data point. Figure  29b plots the absolute value of the prediction
error for normalized motor stator temperature against each data point’s Chebyshev distance, along with the
95% confidence interval. Due to the nature of the dataset, which may contain abrupt starts and stops due to
maintenance or outages, certain temperature regions are not well represented.

Figure  29b is summarized in Table  11 . This table shows the percentage of data points whose actual value
lies within the 95% confidence interval for the prediction. The Distance column represents the Cheybyshev
distance ranges. In general, the model makes more accurate predictions when the test points are closer to
the training dataset, as indicated by the positive slope of the best fit trend line in Figure  29b . This is also
demonstrated by the large percentage of close estimates in the 0–5 range in Table  11 , whereas there are fewer
correct estimates in the 15+ range. The increase in close estimates in the 10–15 range is likely due to the
data distribution sampling.

4.4.4 Support Vector Regression

SVR is a type of powerful supervised ML algorithm used for predicting values. In general, SVR uses
a kernel function to transform the data to a higher dimension, then generates a decision boundary (i.e.,
hyperplane) that is used to predict a continuous parameter. The closest data points on either side of the
hyperplane are the support vectors. Most multivariate regression models simply generate a hyperplane that
minimizes the error between the real and the predicted value, but SVR generates a hyperplane that minimizes
the error between the real and the predicted value only for the subset of data that exceed the threshold distance
(ϵ) from the hyperplane. The kernel function transform makes hyperplane optimization more efficient. The
kernel functions can be selected to accommodate nonlinear relationships. Common kernel functions include

41



(a) (b)
Figure 29. RF results: (a) predicted versus actual values (after standardization) for a set of outliers; (b)
prediction error versus Chebyshev distance from the nearest training data point (after standardization) for a
set of outliers.

linear, radial basis, and polynomial functions.

To gauge the certainty of the SVR model, a modified bagging approach was utilized. A hundred models
were generated based on a random selection from three regularization parameters (C ∈ [0.5, 1, 2]), three
epsilon values (ϵ ∈ [0.05, 0.1, 0.2])), and a random sample (with replacement) of training data that is equal
in size to one-third of the entire set of training data. For each test data point, the average of these 100 models
was taken to be the predicted value, and the standard deviation was used to calculate the 95% confidence
interval. Examples using each of the aforementioned types of kernel functions are given here.

The linear kernel is simply the dot product of the two points. It can be used when a linear model
adequately represents the response variable:

KLinear(x⃗, y⃗) = x⃗Ty⃗. (12)

SVR with a linear kernel was used to generate a model and the corresponding 95% confidence interval
for the predictions. For the test dataset, Figure  30a shows the predicted versus the actual data points, along
with the confidence interval of one standard deviation. The color of each data point indicates its Chebyshev
distance from the closest training data point. Figure  30b plots the absolute value of the prediction error,
along with the confidence interval, against each data point’s Chebyshev distance. Figure  30b is summarized
in Table  11 . It is interesting to note that in this example the linear SVR generally overpredicts motor stator
temperature for the test data set. Overall, the linear SVR model behaves similarly to the RF model, with
slightly fewer test data points lying within the 95% confidence bounds at all Chebyshev distance ranges.

For degree d, the polynomial kernel function is defined as:

Kpoly(x⃗, y⃗) = (x⃗Ty⃗ + c)d , (13)

where c ≥ 0 is a kernel parameter. When c = 0, the kernel is homogeneous.

The results of the homogeneous SVR polynomial predictions, as shown in Figure  31 and Table  11 ,
suggest that the polynomial kernel does not handle outliers well. The confidence intervals of the furthest
data points are too broad to be of any use. This is not entirely surprising, as even with only one predictor,
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(a) (b)
Figure 30. Linear SVR results: (a) predicted versus actual values (after standardization) for a set of
outliers; (b) absolute prediction error versus Chebyshev distance from the nearest training data point (after
standardization) for a set of outliers.

(a) (b)
Figure 31. Polynomial SVR results: (a) predicted versus actual values (after standardization) for a set of
outliers; (b) absolute prediction error versus Chebyshev distance from the nearest training data point (after
standardization) for a set of outliers.

a polynomial that fits beautifully within the training data may behave poorly for extrapolation, due to the
presence of local minimum or maximum points.

The radial basis function kernel is one of the most widely used kernels, thanks to its resemblance to the
Gaussian distribution. It is defined as:

KRBF(x⃗, y⃗) = exp
(−D2

E(x⃗, y⃗)
2l2

)
, (14)

where the parameter l represents the length scale for the kernel. The radial basis kernel function is an
infinite-dimensional version of the polynomial kernel.

The results generated using the radial basis kernel, as shown in Figure  32 and Table  11 , reveal some
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(a) (b)
Figure 32. RBF SVR results: (a) predicted versus actual values (after standardization) for a set of outliers; (b)
absolute prediction error versus Chebyshev distance from the nearest training data point (after standardization)
for a set of outliers.

interesting behavior. The model seems to return a default value for the data points farthest from the training
data, resulting in a horizontal lineup of data points, along with relatively small 95% confidence bounds (see
Figure  32a ). This is a case in which the distance information may provide end users with valuable feedback
regarding the fact that the model results may be inaccurate due to extrapolation.

Table 11. Percent of the actual values that are within the 95% confidence interval of the prediction.
Distance RF SVR linear SVR polynomial SVR RBF

0–5 0.429 0.352 0.525 0.178
5–10 0.105 0.047 0.989 0.142

10–15 0.250 0.120 1.000 0.076
15+ 0.040 0.120 1.000 0.000

The purpose of this example was to demonstrate that quantifying the distance between a data point of
interest and the closest data point in the training dataset equips end users with useful contextual information.
When the considered data point was sufficiently far from the nearest training data point, all models performed
poorly, and most were overconfident in their results. Thus, merely knowing the confidence of the model
is not sufficient evidence to support making a decision based on model results. This issue is particularly
important in high consequence industries such as the nuclear industry, where explainability and trust are
critical to enable broad adoption of AI/ML technologies.

Taken together, this chapter outlined how employing the metric of data novelty should improve model
trustworthiness by declaring if the current data are consistent with or close to the training data. Caution must
be taken when extrapolating with any model as poor or unexpected performance may occur. By incorporating
data novelty into the ML output presentation, a guardrail has been added to notify the user that although the
model confidence may be high, it does not have enough evidence within the training data to back up that
conclusion. An example of how to present machine-learning outcomes is given in the following chapter.
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5 USER-CENTRIC VISUALIZATION

One of the goals for this project was to develop a user-friendly application to put ML capabilities into
the hands of maintenance and diagnostics (M&D) operators. Although these operators are knowledgeable in
plant parameters and processes, they may not be as familiar with ML techniques and how these algorithms
arrive at a certain diagnosis based on a set of features. M&D operators will not blindly follow a ML model’s
recommendation. To build trust with the M&D operator, the model should be as transparent and explainable
as possible. This section of the report covers the development of the M&D app as well as the design choices
that were made to further increase usability.

The application consists of three tabs which group relevant features together. The Diagnostics tabs, shown
in Figure  33 , contains the most features. All of these features serve to aid the operator in understanding
what the ML diagnosis was and evidence that supports that conclusion. The Trends tab, shown in Figure  34 ,
shows each of the signals being monitored and provides an estimate of that feature into the near future with
95% confidence. This prediction horizon (number of hours into the future) can be selected by the user. The
final tab is the Help tab which contains a help menu that explains every acronym, feature, and model.

Figure 33. Front page of the M&D operator-version of the application.

The diagnostic tab contains seven areas:

1. User Selection

2. Current Plant Parameters

3. ML Outcomes

4. Current Feature Trending

5. Variables to Compare

45



Figure 34. Trends tab showing the prediction of each of the measured features.

6. Feature Importance and Comparison

7. Historical Context.

The area 1, labeled as the “User Selection,” allows the operator to choose the models, variables, and
plots they would like to see in a singular location. Currently, ‘Which dataset to use’ allows the user to
select between different test cases to see how the ML models respond to different scenarios. In real use
cases, this feature could be slightly altered to allow the user to examine other pumps or components of
interest. ‘Type of Diagnostic Model’ currently allows the user to select between using RF and support vector
machine for diagnosing potential faults in the system. Additional diagnostic models can be added easily as
each of the subsequent explanation models are post-hoc methods which means they are not integrated into
the model itself, but rather used on a pre-trained model. ‘Compare or Explain’ allows the user to compare
multiple features, as seen in Figure  35 , or explain how the model reached its diagnosis using either Local
Interpretable Model-agnostic Explanations (LIME) or Shapley Additive Explanations (SHAP). Explanation
on the underpinnings of LIME and SHAP can be found at [  80 ] and [ 81 ], respectively. ‘Which Variable to
Investigate’ allows the user to focus on one variable more intently and this changes areas 4 and 7 in Figure

 33 .

Area 2 contains the current plant parameters. This allows the operators to assess all features in one
place, which can allow for an at-a-glance check. This also aids in the trust-but-verify aspect of the app as
the operator may be more familiar with the plant parameters than the ML.

Area 3 contains all ML outcomes. This includes the diagnosis (healthy, WBF, diffuser faults, etc.), the
ML confidence in this decision, as well as novelty detection (discussed more in Section  4.3 ). Extra space is
given in this section to accommodate for more ML outcomes such as estimated-time-to-failure or other ML
recommendations.

Area 4 contains a figure of the current variable of interest. The title lists the model used to make the
24-hour ahead prediction, Autoregressive Integrated Moving Average (ARIMA), the variable’s name, and
the variable’s location inside the data historian. The blue line represents the recorded data that will be
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Figure 35. This figure is included in the M&D operator-version of the application and allows the operator to
compare multi-signals on the same plot. This is useful to see how or if features are trending similarly.

updated in either a continuous or batch-like manner while the red section represents the 95% confidence of
the predicted variable as it is calculated for the upcoming 24-hour period.

Area 5 allows the user to compare multiple features on the same plot. Each variable is given a left
and right checkbox. By checking the left box, the variable is plotted and the left axis is scaled accordingly.
By checking the right box, the variable is plotted and the right axis is scaled accordingly. This allows for
variables of differing magnitudes to be compared side-by-side to quickly see how or if they are trending
together. In Figure  35 , the MIB temperature and motor stator temperature are both plotted. Although their
temperatures are roughly 100 degrees separated, it can easily be seen that they are trending similarly. This
section also contains a Threshold checkbox. This plots the failure thresholds, as determined by guidance, for
each of the selected variables. This helps to put into perspective whether the component is nearing failure
based on a single variable.

Area 6 contains the Feature Importance and Comparison figures. By default, the multi-feature com-
parison figure is shown, as requested by an M&D operator. When a user wants to learn why the model is
behaving the way it is, they can select ’Compare’ to show the post-hoc feature importance metrics of either
LIME or SHAP. This figure then list the most important variables at the top, based on how important that
variable was to the ML model’s diagnosis. In Figure  33 , the most important variable for the WBF diagnosis
was DT. With LIME, the figure also explains why is it is contributing to that diagnosis based on certain
ranges. DT is seen to be abnormally high by being greater than 14.59, while the motor current is within an
acceptable range between 46.52 and 258.61 amps.

Area 7 shows the historical context of the selected feature. This context is shown via a kernel density
estimate which shows the distribution of the data used to train the model. In Figure  33 , the current DT is
sitting on the right side of the distribution so it can be seen that this temperature is relatively high in its
historical context.
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The overall goal of this application is to give M&D operators an additional tool, not to replace the
operator. By including things such as explainability metrics, historical context, model confidences, and
predictions into the near future, this tool should be able to build trust with the operator so that they would
feel comfortable making recommendations based on its conclusions. If the operator did not trust the model’s
conclusion, there are various ways that the operator could perform an independent analysis through the either
the Trends tab, historical context, or the multi-feature comparison tool.

6 TRUSTWORTHINESS

This section covers human interactions with the user-centric visualization to determine if the explain-
ability metrics and app presentation was adequate. This section also describes the trust, but verify approach
and how that approach can aid with AI adoption. It ends with a proposed study to measure this approach in
future research.

6.1 Human Factors Evaluations

To elicit feedback from a wider audience to improve the app further, a reduced version of the app,
shown in Figure  36 , was created and shown at the Nuclear Plant Instrumentation Control & Human-Machine
Interface Technologies (NPIC&HMIT) 2023 conference. Since this new audience has a different set of skills
to the intended M&D operators and would be less familiar with the plant processes and parameters, the
NPIC-version of the app focused on the explainability aspects while reducing the amount of plant-specific
features and overall usability. This more focused app was shown, explained, and used as a reference for
the survey shown in Figure  37 . Questions 2–5 of the survey were used to solicit feedback to test the main
hypothesis: the app contained sufficient explainability that the users would trust the algorithm.

Figure 36. Front page of the NPIC application. This app has been tailored and focused for a diverse
conference audience.
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Figure 37. Survey given at the 2023 NPIC conference to gain feedback on the app development.

Given the diverse audience expected at NPIC, question 1 was used to determine how much experience
each participant had with ML. Figure  38 shows the breakdown of the 32 survey responses received at NPIC
by level of expertise with ML. Only two participants indicated they had no experience with ML. A total of
19 respondents fit into the novice and intermediate groups, while 11 fit into the advanced and expert groups.
The team hypothesized that there would be an interaction between familiarity and trust in that the level of
familiarity with ML would influence the level of trust in the ML recommendations. However, this was not
the case. The distributions of the responses based on level of expertise were similar to each other, indicating
level of familiarity did not have a strong influence on whether the user would trust the recommendations
based on the information displayed.

Question two explored the hypothesis that the application displayed enough information (i.e., machine
learning confidence, feature trending, historical context, and feature importance) for the user to trust the
model’s recommendation. The responses seen in Figure  39 show that the hypothesis was supported. Five
total participants expressed a neutral opinion, 23 agreed, and four strongly agreed. The distributions of the
responses based on level of expertise are similar to each other, indicating level of expertise did not have a
strong influence on whether the user would trust the recommendations based on the information displayed.

Question three focused on ascertaining if the explainability figure (labeled as the feature importance
panel in Figure  36 ) helped the user feel comfortable with the ML recommendation. The responses seen
in Figure  40 show that none of the participants disagreed, four total participants had a neutral opinion, 21
agreed, and seven strongly agreed that the explainability figure increased user trust.

Question four asked participants to indicate how comfortable they would be making decisions based
on ML algorithms without fully understanding the underlying algorithms. The responses seen in Figure  41 

show that none of the participants strongly disagreed, nine disagreed, 12 were neutral, nine agreed, and only
two strongly agreed. Interestingly, the two participants who strongly agreed were both experts in ML.
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Figure 38. Survey respondents’ ML familiarity.

Figure 39. Responses to Question two on whether the app conveyed enough information.

Figure 40. Responses to Question three on whether the app conveyed enough information.
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Figure 41. Responses to Question four on whether participants are comfortable without knowing how the
underlying algorithm works.

The last question was focused on whether the participants would trust the ML outcome when it contradicts
with their own conclusions. The responses seen in Figure  42 show that two participants strongly disagreed,
seven participants disagreed, 16 were neutral, five agreed, and two strongly agreed that they would trust the
ML algorithm over their own conclusions. The distributions of the responses by level of expertise show that
the advanced and expert users had the largest range of responses, and their responses were fairly evenly split
amongst the five categories. Additionally, one respondent indicated that the first time such a discrepancy
occurred, they would dig into the data more deeply to verify the ML output was indeed correct. They would
then be more willing in the future to accept the ML output.

Figure 42. Responses to Question five on whether participants would trust the ML recommendations over
their own if it contradicted them.

A correlation analysis was performed on the answers to questions 2–5. Moderately positive correlations
of 0.6034 and 0.572 were seen between the responses to questions 2 and 4, and to questions 4 and 5,
respectively. Contextually, this is perhaps common sense. If the application supplies sufficient information
to make the user trust its recommendation, then they would likely be comfortable making decisions, even
without understanding the details of the algorithm. Additionally, if the user is comfortable making decisions
based on the ML algorithm, even without understanding the details of the algorithm, then they might be
more likely to trust an ML conclusion that conflicts with their own.

However, this survey had a limited number of respondents and likely did not contain the app’s targeted
final user (i.e., M&D operators). In the future, more responses from the target user group will be obtained
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through additional surveys and testing. Overall, the conference responses indicate a positive response to the
app and trust in the ML technology.

6.2 Trustworthiness for Artificial Intelligence

Reference [  82 ] presents three levels of trust from human level to AI level. Each level is briefly discussed
here.

1. Human level: In general, trust is perceived as a relationship between two or more entities bounded by
certain expected principles, facts, or contract. In this level, one entity is trustor and another entity is trustee.
The relationship between trustor and trustee is established and maintained as certain contracts outlining
terms and conditions based on association between them.

2. Computer level: In computers, trust applies to hardware and software systems (trustee) as well as their
interaction with humans (trustor) and the physical world. It is understood that both hardware and software
systems are subject to different threats. Therefore, trust at computer level is governed by certain properties
that include reliability, safety, security, privacy, availability, and usability. Some literature also suggests trust
at the computer level can be established via a formal verification process [ 83 ].

3. AI level: Similar to human and computer trusts, the trust in AI (trustee) is based on beliefs
or perceptions of its trustworthiness by the user (trustor) which in its current form is function of how it is
perceived by the user in terms of technical trustworthiness characteristics [  84 ]. For instance, the Organization
for Economic Cooperation and Development promotes five principles to ensure trustworthy AI:

1. Inclusive growth, sustainable development, and well-being

2. Human-centered values and fairness

3. Transparency and explainability

4. Robustness, security and safety

5. Accountability.

Additional principles have been proposed such as trustworthiness [ 83 ], acceptance [ 85 ], predictability,
and performance [ 86 ].

By identifying properties or measures of trustworthiness, there is a potential to benchmark how well
AI/ML solutions compare to one another. Tidjon and Khomh [ 82 ] reviewed a significant number of articles
associated with trust in the context of AI-based systems to understand what it means for an AI system to
be trustworthy and to identify actions that need to be undertaken to ensure AI systems are trustworthy.
They identified 12 trustworthy properties: transparency, privacy, fairness, security, safety, responsibility,
accountability, explainability, well-being, human rights, inclusiveness, and sustainability that are widely
adopted in establishing trustworthiness of an AI-based system. For details on each property, see [ 82 ].

For the nuclear industry to adopt AI-based systems, trustworthy principles across all the three levels
—from human to AI—needs to be established. The following ”trust but verify” study focuses on the AI level
of trust.
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6.3 Trust but Verify Approach

A previous effort [ 10 ] followed a human factors engineering design and evaluation process for a single
iteration of the explainable AI/ML interface from which the following lessons learned were detailed:

• Although integrating automated technologies within process control industries has shown a reduction
in human error and an improvement in labor-intensive work systems [  87 ], an essential but occasionally
overlooked factor that directly impacts the success of automation integration is the ability and willing-
ness of NPP personnel to rely on these technologies. Therefore, the absence of a framework for how
to increase human reliance on automation will directly limit the benefits of incorporating automation
in the first place.

• Future research could embrace the influence of nuclear safety culture by developing a study wherein
AI/ML models are used as an additional source of data that has the potential to increase decision
making capabilities.

• There is an abundance of opportunity to incorporate automated technologies such as AI/ML models
into the nuclear industry but identifying how these models are interpreted and relied on by humans
is essential to realize the full intended benefits of automation integration. Further research is needed
to fully understand this concept, and lessons learned from this work as well as influences of nuclear
safety culture should be reflected.

The “trust, but verify” concept is derived from an observation of nuclear safety culture (i.e., NPP
personnel do not rely on a singular source of data to make a decision) and how that might limit the
effectiveness of integrating new technologies such as ML models. The purpose of integrating ML models is
to automate tedious and labor-intensive work to simplify and streamline NPP personnel task load. However,
forcing NPP personnel to adopt a new decision-making model that is contradictory to the general safety
culture will likely lead to a rejection of the models themselves. Therefore, accepting the idea that NPP
personnel rely on the ability to evaluate multiple sources of information to make a decision provides the
opportunity to leverage their existing decision-making model without limiting the effectiveness of ML model
integration.

This concept was also demonstrated within the preliminary interface evaluation [ 10 ]. One of the key
takeaways was that participants used the WBF model as an additional source of decision-making data as
opposed to a singular source. In other words, they were more likely to “trust” the model once they had the
opportunity to “verify” additional information included in the interface. Therefore, researchers set out to
develop a study that more closely aligns with the concept of “trust but verify.”

For the purposes of this study, “trust but verify” is defined as a participant’s process to make a decision.
This includes participants exhibiting both trust (i.e., adhering to the model’s recommendation) and verify
(i.e., evaluate additional sources of information) behaviors to be considered.

6.3.1 Future Study: “Do ML Models Improve Decision-Making Capabilities?”

For the purposes of this proposed study, “do ML models improve decision-making capabilities” is
defined as a participant’s process to make a decision. This study differs from the preliminary evaluation
concerning the interface design feature for the model recommendation in an important way that is relevant
for measuring the decision-making process. Instead of including a confidence interval (e.g., low, medium, or
high) combined with a “waterbox” or “healthy” status, the model recommendation is simplified to include an
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action of “delay maintenance” or “perform maintenance.” This change is based on the lesson learned from
the previous study of further simplifying what action the model is recommending. This way, any potential
confusion concerning participants misinterpreting the model’s recommendation (i.e., confidence interval
combined with status) is eliminated.

The proposed structure for this study is a within-subjects comparative analysis (Figure  43 ). The indepen-
dent variable is the presence of the ML model recommendation which includes two categories: an interface
with the model recommendation present and an interface without the model recommendation (see Figure

 44 ). Otherwise, the interfaces and the backend ML are identical. All participants will be presented with both
Condition A (interface with model) scenarios and Condition B (interface without model) scenarios with a
combined total of 12 scenarios, and then asked to make a decision (i.e., to perform or delay maintenance).
The order of treatment presentation will be counterbalanced to control for any learning effects.

Figure 43. Proposed study structure.

Each scenario across both conditions will include a WBF maintenance prompt: to perform maintenance
or to delay it, with the independent variable being the inclusion or exclusion of the recommendation. The
WBF scenarios and associated parameters will be identified with the help of subject matter experts/utility
stakeholders. The goal is to provide decision scenarios that participants would be able to discern on
their own (i.e., to perform or delay maintenance) however, participants may take a lot of time or wrongly
recommend/delay maintenance. The primary purpose of integrating AI/ML is to improve speed and decision
reliability. Therefore, WBF parameters should not be straightforward enough that participants will not solely
rely on the model to make a decision (i.e., they will still verify additional information) but will instead seek
additional decision-making data, hence “do ML models improve decision-making capabilities.”

In Figure  44 , examples of both interface conditions are shown. On the left side is condition A (in-
terface WITH model recommendation) and on the right side is condition B (interface WITHOUT model
recommendation. The green oval on the bottom right of each interface highlights the location of the in-
terface that displays the model recommendation location (note that condition B does not include a model
recommendation as part of the study structure).
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(a)

(b)
Figure 44. Interface with (a) model recommendation and (b) without model recommendation.

The primary dependent variable is the level of confidence participants have that their decision is correct
(i.e., decision to delay or perform maintenance). If participants’ confidence is higher when completing
scenarios with the model recommendation compared to scenarios without the model recommendation, it can
be reasonably interpreted that ML models improved a participant’s decision-making capabilities. Following
each scenario, participants will be asked to rate their confidence on a sliding scale of one (i.e., not at all
confident) to ten (i.e., completely confident). Additionally, experimental data concerning scenario duration
(i.e., speed) of participants will be captured. Performance metrics concerning accuracy (i.e., whether or not
the participant action to delay or perform maintenance was correct) will also be collected. Each metric will
accumulate to an overall decision-making score. The main hypotheses to be tested are listed as follows:
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• Participants will record higher confidence in their decision-making capabilities during “with model”
scenarios compared to “without model” scenarios.

• Participants will record faster speed in their decision-making capabilities during “with model” scenar-
ios compared to “without model” scenarios.

• Participants will record better accuracy in their decision-making capabilities during “with model”
scenarios compared to “without model” scenarios.

These hypotheses are based on the researchers’ observation that although ML models will not be used
as a singular source of decision- making data, they will be used as an additional source of decision-making
data which will heed stronger confidence in their overall decision accuracy.

If the listed hypotheses are confirmed, it will demonstrate that ML models increase the confidence level
of NPP personnel decisions. It will also validate the observation that ML models should be integrated in a
way that reinforces the current decision-making process of NPP personnel.

This study could also pave the way for future research that evaluates how to best display model recom-
mendations to NPP personnel. For example, NPP personnel working the same job have varying degrees of
expertise conducting the manual processes that ML models would automate. An additional hypothesis would
be that less familiar (i.e., newer to this type of work) participants will display the highest level of confidence
(compared to other participants) within “with model” scenarios. It is assumed that less experienced partici-
pants will be more likely to rely on ML models to make a decision and would benefit from design features
that support this level of reliance such as model recommendations and varying degrees of explainability and
transparency. Future studies can evaluate this hypothesis by collecting demographic data concerning years
of experience.

7 SUMMARY AND PATH FORWARD

This report examined the potential of AI and ML technologies in the nuclear industry to enhance decision-
making, reduce O&M costs, and increase the efficiency of NPPs. The report identifies various barriers to the
adoption of AI and ML in the industry, including technical, economic, readiness, and stakeholder challenges.
To address these barriers, the report proposes solutions focused on improving the explainability of ML
models to build trust among end users.

The trade-off between ML performance (accuracy) and explainability is discussed, with highly accurate
methods like deep learning being less explainable, while more explainable methods like linear ridge classifier
may sacrifice some accuracy. The report emphasizes the importance of data novelty and the value of new
information in assessing explainability and trustworthiness. Novelty detection helps determine how new data
aligns with the existing training data, while the value of new information could contribute to recommendation
systems as additional collected information would strengthen the confidence of machine learning outcomes.

This report described the development of a copyrighted user-centric visualization aligned with the
human-in-the-loop approach. This visualization presents different levels of information and can be tailored
to individual user credentials to instill user confidence in ML methods. It includes explainability metrics for
the presented ML models. Feedback from 32 users with varying ML expertise supports the hypothesis that
the app’s explainability fosters user trust in the algorithm.

The trust, but verify framework was proposed as a potential approach to establish user trust in AI.
Inspired by nuclear safety culture, which relies on multiple data sources for decision-making, this framework
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involved building trust from the human level to the AI level. The user-centric visualization plays a critical
role in achieving both explainability and trustworthiness of AI.

However, there are still other barriers that need to be addressed for adoption of AI/ML in nuclear,
namely regulatory and stakeholder readiness. As new and innovative solutions are created to solve technical
challenges, these solutions need to be introduced with the NRC’s approval and stakeholder usage in mind.
The NRC does have a 5-year strategic plan for AI which outlines the agency’s preparations for readiness to
review licensee submissions that employ AI technologies. It’s recommended to engage with the NRC early
and often. The developed solutions must also consider the human-in-the-loop and consider their technical
background or provide ways of making the solutions more explainable. The stakeholders will also need to
hire or train staff as technology continues to improve and become more incorporated into everyday plant
tasks.
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Explainable Artificial Intelligence Technology 
for Predictive Maintenance 
Context of the Study 
U.S. nuclear power plants have high operation and maintenance costs which make them noncompetitive in many 
energy markets. By leveraging artificial intelligence (AI) and machine learning (ML) these costs can be reduced, 
thus modernizing the process and improving their economics and reliability. However, to use AI/ML in nuclear 
power plants, it must be clear how and why the ML models reach their outcomes. This work focused on improving 
trust between operator and machine, one of the key aspects to improving the likelihood of nuclear power plants 
adopting AI/ML. 

Current Barriers to Adopting Machine Learning 
Several challenges to AI/ML technologies can 
be categorized (Figure 1) as historical, 
technical, business, regulatory and nuclear 
plant stakeholder readiness, and end-user 
acceptance / experience. Historical barriers 
encompass things such as instrumentation & 
control digitalization and modernization as well 
as nuclear safety events which have worked to 
limit the speed of technological advancement. 
Technological barriers include concerns of data 
quality, governance around the use of AI/ML, 
and cybersecurity. Regulatory readiness is the 
regulator trying to keep pace with the speed of 
technological innovations to allow for safe and 
secure use of AI. Stakeholders (nuclear plant 
owners, operators, and customers) readiness 
concerns the skills and knowledge required for 
plant personnel to successfully use AI. 

Research-developed solutions 

This research presents solutions on three aspects of AI technologies, i.e., performance, explainability, and 
trustworthiness (Figure 2) with specific metrics, user-centric visualization, and human-in-the-loop evaluation 
to build user confidence. 

Explainable artificial intelligence approaches to improve human-machine trust. 
To trust and use an ML model, operators need to know how and why it works. However, there is a trade-off 
between how well a model may perform and how readily explainable it is to the user. This trade-off has been 
explained in both qualitative and quantitative terms. Also, as new data arrive, they can be used to update the ML 
outcome and decision-making. 

Figure 1. Reciprocal connectedness of barriers to AI/ML adoption in 
nuclear power. 
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Trustworthiness 
A copyrighted application has been created to put AI/ML tools into the hands of maintenance and diagnostic 
personnel. These users are assumed to have little to no ML experience, so the app has been tailored in such a 
way to explain how and why the ML model reached its conclusions. It also explains the historical context of the 
data and allows the user to arrive at their own conclusions, so they can keep a trust, but verify approach to plant 
monitoring. 

User-centric visualization 
AI/ML cannot be adopted without the human 
(called the “human-in-the-loop”) who makes the 
ultimate decision on whether to schedule or 
perform a task, as shown in the research here, or 
perform another task. The developed application 
was tested with a large group of conference 
attendees to ascertain how the application 
appealed to a general audience of people with 
varying levels of ML experience. Overall, the app 
was received well, and their feedback will lead to 
improved versions of the app in the future. 
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Figure 2. Aspects of AI technologies essential for decision-making. 
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