

INL/EXT-21-64525

Light Water Reactor Sustainability Program

An Adaptable Software Toolkit for
Dynamic Human Reliability Analysis:

Progress Toward HUNTER 2

September 2021

U.S. Department of Energy

Office of Nuclear Energy

DISCLAIMER
This information was prepared as an account of work sponsored by an

agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/EXT-21-64525

An Adaptable Software Toolkit for Dynamic Human
Reliability Analysis: Progress Toward HUNTER 2

Ronald Boring, Thomas Ulrich, Jooyoung Park, Torrey Mortenson, Jeeyea Ahn,
and Roger Lew

September 2021

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy

 ii

This page intentionally left blank.

 iii

ABSTRACT
In response to a review of the technology maturity of risk tools in the U.S.

Department of Energy’s Light Water Reactor Sustainability Project, the Human
Unimodel for Nuclear Technology to Enhance Reliability (HUNTER) framework
is implemented as a standalone software tool to support dynamic human
reliability analysis. This report documents an updated conceptual framework,
called HUNTER 2, that stresses the flexibility, modularity, and scalability of the
software tool to allow adaptability to a wide range of dynamic human risk
modeling scenarios. The conceptual framework is implemented as a Python
executable library. As a proof-of-concept demonstration, base and complex
variants of a steam generator tube rupture scenario are modeled in HUNTER and
validated against empirical data. A unique aspect of the HUNTER software is its
ability to support calculations beyond human error probabilities, such as human
action durations. The report concludes with a discussion of future activities. One
area of considerable focus is ensuring additional scenarios are modeled to
support emerging industry needs for human reliability analysis.

 iv

ACKNOWLEDGEMENTS

The authors wish to thank the Risk-Informed System Analysis (RISA)
Pathway of the U.S. Department of Energy’s Light Water Reactor Sustainability
Program for its support of the research activities presented in this report. In
particular, we thank Svetlana Lawrence, pathway lead for RISA, for her
contributions to shaping the industry focus of the software development; Jong-
Yoon Choi, for his careful review of the original HUNTER and
recommendations for software implementation; and Curtis Smith, director for the
Nuclear Safety and Regulatory Research division at Idaho National Laboratory,
for his championing of dynamic and computation-based human reliability
analysis approaches.

 v

CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. iv

ACRONYMS .. ix

1. INTRODUCTION ... 1
1.1 Project Background .. 1
1.2 Benefits of HUNTER as a Dynamic HRA Framework .. 2
1.3 Report Structure .. 3

2. PREVIOUS HUNTER EFFORTS .. 3
2.1 HUNTER 1 Framework .. 3
2.2 GOMS-HRA ... 4
2.3 SPAR-H Autocalculation ... 6
2.4 Dynamic Dependency ... 7

3. EXPANDED HUNTER FRAMEWORK ... 8
3.1 HUNTER Technology Readiness Level ... 8
3.2 HUNTER’s Adaptable Design Philosophy .. 11
3.3 HUNTER Conceptual Framework ... 14

3.3.1 Overview ... 14
3.3.2 HUNTER Modules .. 15
3.3.3 HUNTER Classes .. 16
3.3.4 Special Considerations .. 17
3.3.5 Relationship Between HUNTER 1 and HUNTER 2 Frameworks 17

4. HUNTER SOFTWARE IMPLEMENTATION DETAILS .. 18
4.1 Background ... 18
4.2 Input Data Structure and Analyst Workflow .. 19
4.3 Modules .. 23

4.3.1 Scheduler Module .. 23
4.3.2 Human Reliability Module .. 23
4.3.3 Environment Module ... 23
4.3.4 Task Module .. 23

5. DEMONSTRATION AND FINDINGS ... 26
5.1 SGTR Scenario ... 26

5.1.1 SGTR Description ... 26
5.1.2 SGTR Procedures .. 28

5.2 Relevant Findings ... 29
5.2.1 International HRA Empirical Study at Halden Reactor Project 29
5.2.2 Task Complexity Score ... 33
5.2.3 Complexity Time Multiplier for TACOM ... 34

5.3 Demonstration SGTR Results .. 34

 vi

5.3.1 Method ... 34
5.3.2 Results of Model Runs .. 38
5.3.3 Discussion .. 43

6. DISCUSSION AND NEXT STEPS ... 43
6.1 Limitations .. 43
6.2 Future Work .. 44

6.2.1 Performance Shaping Factors .. 44
6.2.2 Advanced Programming Interface and Coupling to External Codes 45
6.2.3 Cognitive Modeling ... 47
6.2.4 HEPs .. 48
6.2.5 Automatic Procedure Parsing .. 48
6.2.6 Additional Use Cases .. 48

7. REFERENCES .. 49

 vii

FIGURES
Figure 1. The original HUNTER framework (adapted from Boring et al. 2016). ... 4
Figure 2. GOMS-HRA cognitive model (from Boring, Ulrich, and Rasmussen 2018). 5
Figure 3. Technology readiness levels (from See and Handley 2019). ... 9
Figure 4. Conceptual modules (in black) and classes (in blue) of HUNTER 2. ... 15
Figure 5. Crosswalk of HUNTER 1 to HUNTER 2. ... 18
Figure 6. Region of the HUNTER input file demonstrating the use of dummy coding to represent

additional elements under the same procedure step. ... 20
Figure 7. Procedure substep region of the HUNTER input file. ... 20
Figure 8. Point region of the HUNTER input file denoting names of plant parameters. 21
Figure 9. GOMS-HRA task-level primitives found in HUNTER input file. .. 21
Figure 10. Mapping of the individual, task, and environment modules to the classes in the

HUNTER software implementation. ... 22
Figure 11. Assertion class in HUNTER acting (a) directly as a procedure step and (b) indirectly to

trigger procedure substeps. .. 24
Figure 12. Transition path logic evaluated by the assertion and then stored in the results class. 25
Figure 13. Descriptive feature of steam generator with SGTR. .. 26
Figure 14. Example of generic Level 1 PRA ET for SGTR (adapted from NUREG-2195). 27
Figure 15. Performance time data for HFE-1, -2, and -3 for two SGTR cases for Crews A–N in

the Halden study. ... 31
Figure 16. GOMS-HRA task-level primitive mapping to Procedure EOP-E0. ... 37
Figure 17. Log file depicting showing overall execution of the SGTR model in HUNTER. 38
Figure 18. Log file showing stepwise execution of the SGTR model in HUNTER. 39
Figure 19. Log showing substep execution of the SGTR model in HUNTER. .. 40
Figure 20. Screenshot of data file output generated by the HUNTER Python code. 41
Figure 21. Distribution of times for HUNTER SGTR model runs. .. 42
Figure 22. Extension of the PSF concept from static to dynamic HRA. ... 44

 viii

TABLES
Table 1. Time information for each task-level primitive (from Boring et al. 2016). 5
Table 2. HEP information for each task-level primitive (from Boring and Rasmussen 2016;

Boring, Ulrich, and Rasmussen 2018). ... 6
Table 3. Dynamic functions that affect dependency (from Boring et al. 2016). ... 8
Table 4. Description of TRLs for RISA toolkit (from Choi [2021]). .. 10
Table 5. HUNTER framework technology maturity assessment result (from Choi [2020]). 11
Table 6. HUNTER objectives and modeling considerations. .. 14
Table 7. HFEs defined from the ET of the SGTR scenario. .. 28
Table 8. Mapping of HFEs to Procedures. .. 29
Table 9. HFEs for two SGTR scenarios from the Halden study. .. 30
Table 10. Identified negative driving factors for HFEs in the Halden study. .. 32
Table 11. Measures of TACOM (from Park et al. 2007). ... 33
Table 12. Mean times for SGTR scenario runs for Halden and HUNTER. .. 42

 ix

ACRONYMS

AC actions in control room
AF actions in field
AFW auxiliary feedwater
AHC abstraction hierarchy complexity
AOP abnormal operating procedure
API advanced programming interface
ATWS anticipated transient without scram
CC checking in control room
CD core damage
CF checking in field
CST condensate storage tank
CSV comma separate value
DBA design basis accident
DP decisions with procedures
DW decisions without procedures
EDC engineering decision complexity
EMRALD Event Modeling Risk Assessment using Link Diagrams
EOP emergency operating procedure
EQ equalization
ES emergency supplement
ET event tree
FB feed and bleed
FLEX flexible plant operations
GBWR Generic Boiling Water Reactor
GOMS Goals, Operators, Methods, Selection rules
GPWR Generic Pressurized Water Reactor
HAMMLAB Halden Human-Machine Laboratory
HEP human error probability
HFE human failure event
HPI high-pressure injection
HPR high-pressure recirculation
HRA human reliability analysis
HSI human-system interaction
HSSL Human Systems Simulation Laboratory
HUNTER Human Unimodel for Nulcear Technology to Enhance Reliability
INIT initiator
INL Idaho National Laboratory
IP producing instructions
IR receiving instructions
JSON JavaScript Object Notation
LOB loss of battery
LODG loss of diesel generator
LOOP loss of offsite power
LWR light water reactor
LWRS Light Water Reactor Sustainability
MFW main feedwater
MOOSE Multiphysics Object Oriented Simulation Environment

 x

MSIV main steam isolation valve
MU makeup
NPP nuclear power plant
NRC Nuclear Regulatory Commission
NUREG Nuclear Regulatory Commission Report
OP operating procedure
PORV pressure operated relief valve
PRA probabilistic risk assessment
PSF performance shaping factor
QA quality assurance
RAVEN Risk Analysis Virtual Code Environment
RC retrieve information in control room
RCS reactor coolant system
RELAP Reactor Excursion and Leak Analysis Program
RF retrieve information in field
RF refilling
RHR residual heat removal
RISA Risk Informed System Analysis
RNO response not obtained
RPS reactor protection system
R-TACOM Revised Task Complexity
RWST reactor water storage tank
SC selecting on control boards
SF selecting in field
SG steam generator
SGTR steam generator tube rupture
SHERPA Systematic Human Error Reduction and Prediction Approach
SHR secondary heat removal
SI safety injection
SIC step information complexity
SLC step logic complexity
SPAR-H Standardize Plant Analysis Risk-Human
SSC (1) secondary side cooling OR (2) step size complexity
TACOM Task Complexity
TEJUN Task Engine for Job and User Notification
THERP Technique for Human Error Rate Prediction
TR task structure
TRL Technology Readiness Level
TS task scope
TU task uncertainty
U.S. United States
V&V verification and validation
W wait

 1

AN ADAPTABLE SOFTWARE TOOLKIT FOR DYNAMIC
HUMAN RELIABILITY ANALYSIS: PROGRESS

TOWARD HUNTER 2
1. INTRODUCTION

1.1 Project Background
The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Program was

established to enable the long-term operation of existing domestic nuclear power plants (NPPs). The
viability of the fleet of commercial reactors is enhanced through innovative approaches to improve the
economics of light-water reactors (LWRs). LWRS consists of five research pathways (LWRS 2021):

• Plant Modernization, focused on enabling plant efficiency improvements through long-term
modernization

• Flexible Plant Operation and Generation, focused on enabling diversification through non-
electrical products

• Risk-Informed System Analysis (RISA), focused on developing analysis methods and tools to
optimize safety and economics

• Materials Research, focused on understanding and predicting the behavior of materials

• Physical Security, focused on developing technologies to optimize physical security.

With the exception of the Materials Research pathway, the LWRS pathways have projects that
consider the human contribution to plants. The projects look for ways to achieve efficiencies in plant
staffing while still maintaining the same or better performance, safety, and security of existing plants.
Efficiencies may come in the form of developing tools and processes that allow staff to perform existing
tasking better. For example, creating analytic tools that predict maintenance needs rather than following a
conservative prescriptive maintenance schedule can potentially save the equipment cost of prematurely
replacing equipment while simultaneously lowering the demands on maintenance staff (Agarwal et al.
2021).

Human reliability analysis (HRA) is the study of human error, specifically how to identify sources
and contributors of human error and how to quantify that error (Boring 2009). The RISA pathway
sponsors a number of HRA-related projects that aim to create better tools to support industry risk
assessment needs. One such project is the Human Unimodel for Nuclear Technology to Enhance
Reliability (HUNTER) project (Boring et al. 2016). HUNTER is a framework to support the dynamic
modeling of human error in conjunction with other modeling tools. The name HUNTER is meant as a
counterpart to the various animal modeling tools developed at Idaho National Laboratory (INL), such as
Risk Analysis Virtual Code ENvironment (RAVEN) (Rabiti et al. 2017) and Multiphysics Object-
Oriented Simulation Environment (MOOSE) (Permann et al. 2020). These tool names playfully combine
to become tools like RAVEN-HUNTER or MOOSE-HUNTER.a

The theoretical underpinnings of HUNTER were developed previously (Boring et al. 2016). We refer
to these earliest efforts as HUNTER 1. However, little effort had been devoted to making HUNTER a
software tool that could be integrated into industry efforts. It remained a research framework for dynamic

a While a literal “hunter” is usually antithetical to the longevity of the animals with which it associates, the HUNTER framework
here is meant to complement the capabilities of the animal modeling methods and thereby ensure their long lifespan.

 2

HRA efforts, but these efforts did not combine into a single solution. As the HUNTER project continues,
the main goals are now twofold:

• Create a usable and adaptable standalone software tool

• Develop example applications and use cases to meet industry HRA needs.

This report addresses the first goal, namely the development of the HUNTER software, here naamed
HUNTER 2 to disambiguate it from the earlier efforts. The disparate elements of the HUNTER 1
framework have now been formalized and implemented as an executable Python library. The initial
version is a fully functional proof of concept, but additional refinement is planned in the future toward a
releasable code for industry. These refinements go hand in hand with the planned development of
additional use cases and accident scenario models. This report includes a sample model using the
HUNTER software for a steam generator tube rupture (SGTR) scenario. As additional scenarios are
modeled, new software features and modeling functions will be included to facilitate a greater usability of
HUNTER for a wide range of applications.

1.2 Benefits of HUNTER as a Dynamic HRA Framework
Historically, HRA was developed as a worksheet solution, suitable for supporting static probabilistic

risk assessments (PRAs). Static HRAs and PRAs review a particular snapshot of possible outcomes, but
they do not model a dynamic event progression. The changing event progression—the defining
characteristic of dynamic HRAs and PRAs—allows the modeling of the range of activities and outcomes
as well as the consideration of a variety of what-if scenarios that would prove onerous to perform
manually with static methods. Dynamic HRA can also be used to model scenarios for which there is
minimal operational experience to explore what outcomes may emerge as a result of different human
responses. This capability is especially useful for emerging areas of interest in risk modeling, such as
severe accidents, HRA for human interactions with advanced technologies like digital and automated
human-system interfaces, balance-of-plant activities beyond the main control room that are the main
focus of conventional HRA methods, and specialized areas like flexible equipment use and physical
security modeling. As work on developing sample analyses in HUNTER continues, it is important to
demonstrate the additional risk insights afforded by dynamic modeling that would not be possible with
conventional static methods. An easy-to-use software tool that can help bring new risk insights is
essential for industry as it supports new risk requirements.

An additional benefit of dynamic HRA is that the tool can be used beyond simply producing a
quantitative output of the human error probability (HEP). Dynamic HRA can provide qualitative insights
into the types of activities plant personnel will perform in novel contexts. For example, it might reveal
that certain courses of action elicit a large workload in plant personnel, suggesting the need for alternate,
less mentally demanding pathways to ensure positive outcomes. Dynamic HRA can also provide other
quantitative measures like time-on-task estimates that aren’t readily available in existing static methods.
An illustration of the method producing time estimates instead of HEPs is found in the example analysis
in this report. Additional illustrations of the unique uses of HUNTER’s dynamic modeling will be
explored in future research and development (R&D) activities.

Dynamic HRA—and, by extension, HUNTER—will succeed as risk tools only if they provide true
benefits to the risk analysts who use them. Dynamic HRA offers the potential to provide deeper modeling
fidelity; opportunities for exploring the ranges of human performance; the ability to extrapolate HRA to
new scenarios, technologies, and domains; and the prospect to model output types beyond HEPs.
However, dynamic HRA does not accomplish these advantages over static HRA without costs. Dynamic
HRA can be considerably more complex to set up and model. As such, HUNTER strives to strike a
balance by creating a uniquely simple and adaptable software tool that may be readily used by risk
analysts to model phenomena of interest.

 3

1.3 Report Structure
The remainder of this report is structured as follows:

• Section 2 outlines previous efforts at developing HUNTER and supporting HRA tools

• Section 3 presents an updated conceptual framework for HUNTER to support implementation
as standalone software

• Section 4 discusses the current software implementation of HUNTER

• Section 5 provides background and a demonstration of an SGTR scenario

• Section 6 considers shortcomings and next steps for HUNTER development activities.

2. PREVIOUS HUNTER EFFORTS
2.1 HUNTER 1 Framework

The HUNTER framework is a computational HRAb approach to dynamically model human cognition
and actions as well as incorporate these respective elements into a PRA framework (Boring et al. 2016;
Joe et al. 2015). Many researchers (Boring, Joe, and Mandelli 2015; Boring et al. 2014; Coyne and
Mosleh 2018) have emphasized the importance of simulation and human performance modeling in HRA.
The HUNTER framework was developed to overcome some challenges with existing static HRA as well
as to more realistically and accurately evaluate human-induced risks in NPPs. It was also conceived to
offer a simple-to-use modeling approach that builds on well-established static HRA approaches while
adding new dynamic modeling features. During the brief tenure of the HUNTER project, there have been
several efforts to model varieties of human behaviors, produce an error rate over a denominator of
repeated trials, dynamically compute performance shaping factor (PSF) levels to arrive at HEPs for any
given point in time, and present the decision points that operators make while engaging with the plant.

The original HUNTER project was not intended to produce a standalone HRA method but rather a
framework that combines a variety of methods and tools required for dynamic HRA. Figure 1 shows the
original HUNTER framework, here called HUNTER 1. There are two important considerations in this
early model of HUNTER. First, the HUNTER framework was designed to interact with other dynamic
risk analysis tools like RAVEN (Rabiti et al. 2017). Previous HUNTER efforts focused on connecting
HUNTER with RAVEN (Boring et al. 2016). As the HRA counterpart to RAVEN, HUNTER was used to
quantify HEPs for operator actions in a station blackout scenario based on time-dependent plant response
data and operator actions. Second, the existing HUNTER framework has considered three major
concepts—cognitive models, PSFs, and data sources—for analyzing dynamic operator actions. In the
previous HUNTER efforts, the Goals, Operators, Methods, and Selection rules (GOMS) - HRA (Boring
and Rasmussen 2016), the Standardized Plant Analysis Risk-HRA (SPAR-H) autocalculation (Boring,
Rasmussen, Smith, Mandelli, and Ewing 2017), and dynamic dependency (Boring 2015b) approaches
were developed to implement the concepts within the HUNTER framework. These are described in the
next subsections.

b While dynamic HRA is the commonly used term, computational HRA emphasizes that the modeling extends beyond the
temporal dynamics (Joe et al., 2015). Time is only one dimension is the event progression, which may unfold spatially and across
multiple systems. Simulation tools are used to model these phenomena.

 4

Figure 1. The original HUNTER framework (adapted from Boring et al. 2016).

2.2 GOMS-HRA
GOMS-HRA (Boring et al. 2016; Boring and Rasmussen 2016) was developed to provide cognition-

based time and HEP information for the dynamic HRA calculation in the HUNTER framework. It is
theoretically derived from the GOMS method, which has been used to model proceduralized activities
and evaluate user interactions with human-computer interfaces in human factors research (Card, Moran,
and Newell 2018). As a predictive method, the GOMS-HRA is well-equipped to simulate human actions
under specific circumstances in a scenario. The basic approach of GOMS-HRA consists of three steps: (1)
breaking human actions into a series of task-level primitives, (2) allocating time and error values to each
task-level primitive, then (3) predicting human actions or task durations.

In GOMS-HRA, human actions are broken into task-level primitives, consisting of the most elemental
types of human activities. GOMS-HRA uses six types of task-level primitives defined in the Systematic
Human Error Reduction and Prediction Approach (SHERPA; Torres, Nadeau, and Landau 2021). The
following are the SHERPA error types:

• Actions (A)—Performing required physical actions on the control boards (AC) or in the field (AF)

• Checking (C)—Looking for required information on the control boards (CC) or in the field (CF)

• Retrieval (R)—Obtaining required information on the control boards (RC) or in the field (RF)

• Instruction Communication (I)—Producing verbal or written instructions (IP) or receiving verbal
or written instructions (IR)

• Selection (S)—Selecting or setting a value on the control boards (SC) or in the field (SF)

• Decisions (D)—Making a decision based on procedures (DP) or without available procedures
(DW)

This GOMS-HRA taxonomy is captured in a cognitive model, as depicted in Figure 2, with an added
element for time spent in waiting (W).

 5

Figure 2. GOMS-HRA cognitive model (from Boring, Ulrich, and Rasmussen 2018).

Table 1. Time information for each task-level primitive (from Boring et al. 2016).

Task-Level

Primitive

Distribution Mean

(log scale)

Standard

Deviation

(log scale)

5th Percentile 95th

Percentile

AC Lognormal 2.23 1.18 1.32 65.30

CC Lognormal 2.14 0.76 2.44 29.90

DP Exponential 0.02 N/A 2.62 152.80

IP Lognormal 2.46 0.76 3.35 40.70

IR Lognormal 1.92 0.93 1.47 31.80

RC Lognormal 2.11 0.60 3.08 21.90

SC Lognormal 2.93 1.11 3.01 115.60

W Lognormal 2.66 1.26 1.79 113.60

 6

Second, the time and error values are allocated for task-level primitives of human actions analyzed in
the first step. Table 1 and Table 2 summarize the time and HEP information for each task-level primitive.
The time information includes the statistical distribution, mean, standard deviation, 5th and 95th
percentile, which have been derived from the time data collected through experiments using actual
operators and the Human Systems Simulation Laboratory (HSSL) at INL (Joe and Boring 2017). For the
HEP information, these are assumed based on data suggested in the Technique for Human Error Rate
Prediction (THERP; Swain and Guttmann 1983) method.

Table 2. HEP information for each task-level primitive (from Boring and Rasmussen 2016; Boring,
Ulrich, and Rasmussen 2018).

Task-
Level
Primitive

Description Nominal
HEP

THERP
Source

Notes

AC Performing required physical
actions on the control boards

0.001 20-12 (3) Assume well-delineated
controls

AF Performing required physical
actions in the field

0.008 20-13 (4) Assume series of controls

CC Looking for required information
on the control boards

0.001 20-9 (3) Assume well-delineated
indicators

CF Looking for required information
in the field

0.01 20-14 (4) Assume unclear indication

RC Obtaining required information
on the control boards

0.001 20-9 (3) Assume well-delineated
indicators

RF Obtaining required information in
the field

0.01 20-14 (4) Assume unclear indication

IP Producing verbal or written
instructions

0.003 20-5 (1) Assume omit a step

IR Receiving verbal or written
instructions

0.001 20-8 (1) Assume recall one item

SC Selecting or setting a value on the
control boards

0.001 20-12 (9) Assume rotary style control

SF Selecting or setting a value in the
field

0.008 20-13 (4) Assume series of controls

DP Making a decision based on
procedures

0.001 20-3 (4) Assume 30-minute rule

DW Making a decision without
available procedures

0.01 20-1 (4) Assume 30-minute rule

2.3 SPAR-H Autocalculation
The earlier HUNTER work investigated how to adapt the existing static SPAR-H to a dynamic

framework. The SPAR-H Method (Gertman, Blackman, Marble, Byers, and Smith 2005) is an easy-to-
use HRA method developed by INL and published by the U.S. Nuclear Regulatory Commission (U.S.
NRC). The approach focuses on the quantification of HEPs on the basis of PSF multipliers. It has been
widely used by both industry and regulators in its intended area of supporting PRAs for NPPs, but it is
also finding use in other industries, such as oil and gas (Boring 2015a; Rasmussen, Standal, and Laumann

 7

2015). In traditional static HRA approaches like SPAR-H, human actions are manually analyzed by
human reliability analysts using tools like the Electric Power Research Institute’s HRA Calculator (Julius,
Grobbelaar, Spiegel, and Rahn 2005). Specifically, for the HEP calculation, the analysts need to allocate a
nominal HEP (i.e., a default error rate that serves as the starting value for HRA quantification) for a
human failure event (HFE) or a smaller task-unit, rate a variety of PSF levels representing contextual
impacts, and then modify the nominal HEP by applying the multiplier values for PSFs. In contrast, in the
dynamic HRA version, the multiplier is calculated automatically without analyst inputs. In this case, the
Complexity PSF multiplier is derived entirely from plant parameters. In HUNTER, GOMS-HRA
provided the nominal HEPs. The details on the SPAR-H autocalculation approach are well described in
Boring et al. (2017). The basic form of the equation for the Complexity PSF is found below:

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

= 1.26754 × 𝐿𝑂𝑂𝑃 + 1.26753 × 𝐿𝑂𝐷𝐺 + 1.26753 × 𝐿𝑂𝐵
− 0.00025 × 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 0.00507 × 𝑝𝑜𝑤𝑒𝑟 + 1.65116

(1)

where LOOP represents a Boolean (i.e., true or false) variable for loss of offsite power, LODG represents
a Boolean variable for loss of diesel generator, and LOB represents a Boolean variable for loss of battery.
The temperature and power parameters represent plant parameters. The equation is generated dynamically
in response to the evolving scenario and is normalized to the multiplier range found in the static form of
SPAR-H.

2.4 Dynamic Dependency
Dependency analysis in HRA is a method of adjusting the failure probability of a given action by

considering the impact of the action preceding it (Podofillini, Dang, Zio, Baraldi, and Librizzi 2010;
Swain and Guttmann 1983). Normally, dependency increases the overall HEP. Thus, it plays an important
role in reasonably accounting for human actions in the context of PRAs and prevents PRA results from
being estimated too optimistically based on the HRA results. Dependency analysis has been known to
significantly affect the overall result of PRAs. If the results of dependency analyses are inaccurate, they
could prove unconvincing for explaining the human failures in the context of PRA. In other words, risk
metrics such as core damage frequency can be significantly underestimated in cut sets or sequences
containing multiple HFEs if dependency is not considered.

One of the major benefits of transitioning from static to dynamic HRA is that dynamic HRA makes it
possible to model operator actions over time as well as straightforwardly analyze dependencies between
these actions. Existing static HRA methods mostly do not consider human performance changes over time
or during the event progression, nor do they provide a truly dynamic account of human actions (Park,
Boring, and Kim 2019). Accordingly, HRA analysts have mostly performed dependency analysis by
relying on static PRA and HRA information. Dynamic HRA, on the other hand, considers human actions
dynamically and models types of activities and events, even where the human role is not clearly
understood or predicted (i.e., unexampled events such as severe accidents). Furthermore, a dynamic
simulation represents a sequence of operator actions, which make it easier to identify dependency
candidates with contextual impacts. The authors previously considered how to treat the dependency in
dynamic HRA. Representatively, Boring (2015b) conceptually suggested PSF lag and linger effects as an
option to treat dependence between operator actions. PSF lag indicates that the effect of the PSF on
performance does not immediately psychologically or physically appear, while PSF linger means that the
influence of PSFs on previous operator actions is unfinished after the actions, resulting in residual effects
on the next operator actions. Park et al. (2019) and Park and Boring (2020) validated the effects on the
basis of experimental data and applied the concept to the dynamic dependency analysis. Table 3 shows
dependency factors, including lag and linger.

 8

Table 3. Dynamic functions that affect dependency (from Boring et al. 2016).
Dynamic Dependency

Function Effect on PSF Notation

lag A PSF will be slow to change at
the outset of a new effect

𝑃𝑆𝐹(𝑡!"#) = lim
$→$!"#

& 𝑃𝑆𝐹(𝑡)

linger
A PSF will be slow to change at
the termination of an existing

effect
𝑃𝑆𝐹(𝑡!"#) = lim

$→$!"#
" 𝑃𝑆𝐹(𝑡)

memory

General form of lag and linger,
denoting that the effect of the

current PSF is a function of
preceding values for that PSF

𝑃𝑆𝐹(𝑡!"#) = 𝑓(𝑡!)

decay A PSF will settle to its original
state over time 𝑃𝑆𝐹(𝑡) = 𝑃𝑆𝐹(0)					𝑓𝑜𝑟	𝑡 ≫ 𝑡'

3. EXPANDED HUNTER FRAMEWORK
3.1 HUNTER Technology Readiness Level

As described in the previous section, the original HUNTER framework was a useful but disparate
collection of solutions without a common software wrapper to tie it together. Aspects like PSF
autocalculation were linked together for specific demonstrations, but the HUNTER framework remained
primarily a research tool of specialized applications, and it did not present a coherent solution ready for
industry application. This low level of software maturity was noted in a recent review by Choi (2020).
RISA software tools, including HUNTER, are being evaluated according to their capability to support
industry PRA. The criteria for evaluation are identified and discussed below.

Development maturity is captured specifically in terms of Technology Readiness Level (TRL;
Government Accountability Office 2020). TRLs were originally developed and applied by the National
Aeronautics and Space Administration but were later widely adopted by the U.S. Department of Defense
and other agencies. TRLs depict how close to deployment a technology is, with higher numbers (up to
TRL 9 on the scale) representing higher readiness for deployment. TRLs are depicted in Figure 3. A
crosswalk between TRLs and RISA pathway goals is found in Table 4. TRLs are especially useful for
gauging the maturity of research, which starts conceptually but may fail to reach deployment if not
aligned to a systematic development process. High-value technologies should not languish at low TRLs,
and the review of RISA tools identifies tools that would benefit industry through deployment and
prioritizes this process. A goal of the RISA pathway is that tools should be usable for industry
demonstrations, suggesting a TRL 7 or higher. Tools that fall below this TRL should be brought to a
higher TRL. Of course, technology maturation is not an overnight process, and it is not necessarily
possible to leapfrog multiple levels in a short time. Elevating TRLs serves as a goal to drive the
systematic advancement of capabilities and maintain advancement momentum over the necessary
development life cycle.

 9

Figure 3. Technology readiness levels (from See and Handley 2019).

Table 5 summarizes the assessment of the original HUNTER. Only the first three criteria in the

technology maturity assessment could be evaluated in terms of TRLs for HUNTER. These are:

• Development level—deemed of high importance but with a TRL of 3. The technical basis was in
place, but the standalone software was not.

• Use of proven technology—deemed of high importance but with a TRL of 5. The HRA theories
and methods underlying HUNTER were developed and ready for more complete demonstrations.

• PRA capability and applicability—deemed of high important and with a TRL of 7. HUNTER was
designed for HRA and PRA use but needs further demonstrations and refinements.

The remaining criteria were not evaluated in terms of TRL, because information was not readily
available. These included documentation, clear system requirements, easy installation, a graphical user
interface, version control, verification and validation (V&V), quality assurance (QA), a tool web page,
user support, a training program, and a software license. In the effort now to develop HUNTER as a more
technologically mature software tool to support PRA and HRA, these criteria serve as requirements for
future development.

Choi (2020) concluded the evaluation of HUNTER to date with the following concrete
recommendations:

• Immediately develop necessary standalone software

• Review INL's software development guidance to prepare future QA and higher credibility

• Reorganize and review development roadmap to build standalone software

• Develop coupling module for physics-based RISA Toolkit (i.e., RELAP5-3D)

• Create necessary manuals and supporting documents for industrial deployment.

 10

Table 4. Description of TRLs for RISA toolkit (from Choi [2021]).
Level of

Technology
Development

Technology
Readiness

Level
TRL Definition Application to RISA Toolkit

System
Operation

TRL 9 Actual system operated
over the full range of
expected conditions.

The toolkit technology is in its final form and routinely used under the full
range of industrial purpose.

System
Development

TRL 8 Actual system
completed and qualified
through test and
demonstration.

The toolkit has been proven to operate in its final form and under expected
conditions. In almost all cases, this TRL represents the completion of R&D.
Entire planned and proposed V&V of the toolkit is finalized by
developer/user.

TRL 7 Full-scale, similar
(prototypical) system
demonstrated in
relevant environment

Full-scale demonstration of actual/prototypical technology/toolkit in
relevant operation environment. Full-scale experiment and validation are
performed. Development of the toolkit is virtually complete.

Technology
Demonstration

TRL 6 Engineering/pilot-scale,
similar (prototypical)
system validation in
relevant environment

Engineering-scale models or prototypes are tested in a relevant
environment. Experiment and validation in engineering/pilot-scale
environment includes scaling effect testing, which can support operational
system, design. This level represents the completion of technology
development for operational demonstration, and the prototype toolkit is
ready for test. The prototype toolkit will have the capability of performing
all the functions that will be required from an actual operational system.
The operating environment for the testing should closely represent the
actual operating environment. Major difference from TRL 5 is the scale-up
from laboratory to engineering size.

TRL 5 Laboratory scale, similar
system validation in
relevant environment

The basis of technology is fully integrated into the toolkit and ready for
larger scale demonstration and validation. This level will include results
from the laboratory scale test, analysis of the differences between the
laboratory and actual operating system/environment, and analysis of
experiments/demonstrations results for actual operating system/
environment application. The major difference between TRL 4 and 5 is the
increase of the toolkit fidelity and environment to the actual application.
Verification is complete and the toolkit development level is close to
prototypical.

Technology
Development

TRL 4 Component and/or
system validation in
laboratory environment

The basis of technology for toolkit is partly integrated and can be applied
for component level demonstration. This is relatively "low fidelity"
compared with the actual level of the toolkit completion. The expected
maturity of this level includes the integrated experiments and validation,
examination of scaling effect and actual application. Verification and
regression test could be included. TRL 4-6 represents the bridge from
scientific research to engineering. TRL 4 is the first step in determining
whether the basic modeling will work in the toolkit.

Research to
Prove

Feasibility

TRL 3 Analytical and
experimental critical
function and/or
characteristic proof of
concept

Actual R&D is started for toolkit development. This includes analytical
studies and laboratory-scale studies to validate the phenomena of separate
technology. This level will have the results of laboratory tests performed to
measure parameters of interest and comparison to analytical predictions
for critical toolkit functions. At TRL 3, actual R&D progresses to experiments
and verifications. Validation could be done for part of the toolkit
development, but system level validation is not yet initiated.

TRL 2 Technology concept
and/or application
formulated

Progressed from TRL 1, technical options may be developed in TRL 2.
However, still no activity was performed to prove assumptions and concept.
Literature studies will outline the toolkit development concept. Most of the
activity in this level is analytical research and paper studies to understand
goal of the R&D. Related experiments and V&V works could be designed
during this level.

Basic
Technology

Research

TRL 1 Basic principles
observed and reported

This is the lowest level of technology readiness. Scientific research begins to
be translated into applied R&D. Available information includes published
research or other references that identify the principles that underline the
technology. No actual R&D started.

 11

Table 5. HUNTER framework technology maturity assessment result (from Choi [2020]).

Requirements Importance Description

Technology
Readiness

Level
(TRL)

Development level High
Technical bases are well studied and developed. However, still
needs to develop standalone software. 3

Use of proven
technology High

Mature theories are used as basis. No information available for code
itself. 5

PRA
capability/applicability High

HUNTER framework is designed for PRA use. Need more
demonstration. 7

Documentation Medium No information N/A

System requirements Low No information N/A

Easy installation Medium No information N/A

Graphic user interface
(GUI) Medium No information N/A

Version control Medium No information N/A

V&V activity/history Medium No information N/A

QA program High No information N/A

Web page High No information N/A

User support High No information N/A

Training program Medium No information N/A

License Medium No information N/A

The first task at hand to satisfy these requirements is to develop HUNTER into a software tool. This
goal is the primary work covered in this report, with details of the software implementation found in
Section 4 and a demonstration analysis reviewed in Section 5. The HUNTER framework was expanded
into a software tool capable of modeling dynamic HRA activities. This process has involved rethinking
some aspects of HUNTER (explained in the next subsection) to allow it to support industry needs more
readily. At the completion of this software development endeavor, future activities will begin to address
the remaining requirements.

3.2 HUNTER’s Adaptable Design Philosophy
As outlined in Section 2, the original HUNTER framework was a collection of various dynamic HRA

tools that were not contained in a single software application. Intrinsic to the earliest conceptualizations of
HUNTER was the idea that some aspects of the modeling could be exchanged for different modules. For
example, while the initial framework focused on making the SPAR-H PSFs dynamic (Boring et al. 2017),
there was an acknowledgement that more comprehensive or nuanced PSF treatments should also be

 12

possible in HUNTER. In other words, while the initial proof-of-concept demonstration may focus on
simplified parts of dynamic HRA, this simplification should not prove the limiting factor of HUNTER,
and there should be opportunities to support more comprehensive modeling.

The details of how HUNTER should accomplish this shift from simplified models when convenient
to detailed models when needed were not previously articulated. With the technology maturity assessment
came the crucial realization that not all models that form HUNTER will have equally high TRLs. There
may be advantages to having some models more at a research side and some ready for deployment.
Further, there is no one-size-fits-all implementation solution. Different analyses will have different
requirements, which will require different models at different TRLs. Therefore, HUNTER must maintain
this inherent consideration of adaptable instantiations for different modeling scenarios.

The process of translating HUNTER from a collection of research models into a standalone,
integrated software tool necessitated the central goal of adaptability. As a result, HUNTER incorporates a
flexible, modular, and scalable software architecture. This trio of concepts refer to the underlying
objectives for HUNTER deployment. The three concepts overlap somewhat but are not fully
interchangeable:

• Flexible—aligns with the ability of the HUNTER software to model a variety of applications.
Most conventional HRA, for example, models reactor operator crews in main control rooms.
This type of HRA is well understood and may not immediately benefit from the added
functionality of dynamic HRA. However, the ability to create a virtual operator model that
can be used for both main control room and balance-of-plant activities gives HUNTER the
plasticity to model a diverse range of scenarios. Importantly, the value of HUNTER for
industry may reside foremost in its ability to model emerging scenarios that are not well
understood or for which there is no modeling precedence in conventional HRA.

• Modular—refers to the notion that parts of HUNTER can be interchanged. Modularity means
that the part of the software code for modeling PSFs, for example, could be exchanged for
another module. The PSF code, currently anchored in SPAR-H, could be switched for a
different methodological treatment of PSFs. The emphasis in HUNTER becomes specifying
how the module will communicate with the rest of the software, while providing fully
functional default modules that can be used for the most common modeling applications.

• Scalable—means functions and features can be added on to the base software. For example, a
cognitive modeling architecture might be added to the basic HUNTER model to influence
decision outcomes during scenario runs. Scalability may mean that more complex modules
may be used for certain analyses to increase modeling fidelity (often at the cost of modeling
efficiency or outcome transparency). Scalability also means that some features may be
excluded. For example, if particular modeling scenarios do not have information to drive
some HUNTER features, these features may be toggled off when needed.

The adaptability objectives of flexibility, modularity, and scalability are influenced by a variety of
modeling considerations. Most notably:

• Knowledge—our understanding of particular phenomena, specifically psychological aspects
of operations in given contexts, will drive how modeling is deployed in HUNTER. Certain
modeling approaches may be well validated (i.e., have higher TRLs), while other modeling
approaches are more theoretical (i.e., are earlier in development and with lower TRLs). The
analyst deploying HUNTER may opt for well-understood models for novel contexts to gain
higher confidence in the results, or they may use less mature modeling for exploratory
purposes to understand the range of possible phenomena rather than the most common course
of action.

 13

• Fidelity—the degree to which the modeling should accurately reflect human performance
may shape how features are instantiated. For example, a severe accident modeling scenario
may need to deploy a higher fidelity decision-making algorithm given the importance of
operator expertise in navigating such contexts. This contrasts with more routine operations,
which closely follow written procedures and may not require the same level of decision-
making by operators. The former may require a sophisticated cognitive modeling architecture
that can weigh goals and tradeoffs. In contrast, the latter may simply deploy a procedural
script for the operator modeling component. Both should be possible in HUNTER (i.e.,
modeling flexibility), but they will affect which modules are selected (i.e., modeling
modularity) and which features are invoked during simulation runs (i.e., modeling
scalability).

• Efficiency—this consideration comprises how quickly the model may be set up and how
quickly simulations may be run. Unless model building is automated by the PRA and other
tools already at the analysts’ disposal, the simulation model must be built for each scenario.
The model development time is driven by constraints, such as the amount of time to complete
the task, which is a direct reflection of the urgency of the analysis. For example, rapid-
response modeling required after an incident may have a much shorter development timeline
than a more routine version update of existing models over a multiyear timeline. This urgency
may drive the need for a simpler model. On the other end of the equation, a simulation that is
part of an extensive, multi-scenario analysis, such as in support of a whole plant PRA, may
focus on the execution time of the model. HFEs in the PRA that are deemed of low risk
significance may not warrant the luxury of waiting for a richly modeled scenario to complete.
Instead, simple and quicker modeling may suffice for such purposes.

• Purpose—specifies how the analysis will be used. While the purpose shapes some of the
other modeling considerations, it is most useful as a concept to define the output of the
analysis. For example, conventionally, HRA is used to calculate HEPs. Individual HEPs may
then be substituted into an overall risk model to see the effect of human performance on the
outcome of an event sequence. As noted in Boring et al. (2018), there remain some
challenges with aligning dynamically calculated HEPs to those produced by static HRA
methods. This stems from the unit of analysis, whereby most static HRA looks at the whole
sequences of actions wrapped as an HFE, while dynamic HRA typically considers actions at
the step or task level. The aggregation from step to HFE is not clearly understood, and
calculated HEPs at the step or task must undergo some further conversion to achieve
comparability with HEPs for HFEs. Further, there remain other outputs that may prove just as
informative to HRA and have not been the purview of conventional HRA methods. For
example, dynamic HRA can calculate time estimates for particular tasks. Often, the criterion
for success or failure is not the overt commission of an error but the timing-out of an activity
expected to be completed in a specific time window. With the exception of some early time
reliability efforts like the time reliability estimation found in the Human Cognitive Reliability
method (Parry et al. 1992), most HRA does not inform how long tasks involving human
performers require. HRA may need this information as an input to the analysis, but most
HRA methods do not provide explicit guidance to estimate time durations. The HUNTER
framework can readily calculate probabilistic estimates of how long tasks take, thus providing
a different type of output and purpose for risk analyses. Additionally, HUNTER has the
ability to provide qualitative outputs, such as the state of dynamically calculated PSFs. Such
analytic outputs could be informative to a hybrid static-dynamic HRA approach, for example,
in which dynamic modeling is used to derive insights on operator performance that are
subsequently used by human analysts to complete the HRA.

A crosswalk of objectives and modeling considerations for HUNTER may be found in Table 6.

 14

Table 6. HUNTER objectives and modeling considerations.

OBJECTIVES
MODELING CONSIDERATIONS

Knowledge Fidelity Efficiency Purpose

Flexibility

Novel modeling
scenarios mean less

knowledge about
performance

outcomes. This may
require generalizing

known models,
incorporating new

modules that
incorporate more

known aspects of the
modeling scenarios, or

developing new
features necessary to
represent modeling

nuances.

Some modeling
contexts need less

fidelity, while others—
particularly risk

significant scenarios—
may require more

detailed fidelity. The
model should adjust

according to the
demands for fidelity.

Some modules may not
be necessary for all

contexts, while richer
modules may be

required for higher
fidelity, and these

modules may be turned
on or off for particular

analyses.

As with fidelity, some
analyses may have

different requirements.
A dynamic HRA that’s
part of a larger PRA

may need to emphasize
computational

efficiency, requiring
simpler models.
Modules may be

optimized for speed
with a reasonable
approximation of

operator performance,
allowing quicker

computation times
when running the

models.

The outputs of the
dynamic modeling may

vary—from
autocalculated HEPs, to

time required by
human personnel, to

the evolution of
performance shaping
factors. HRA may, in

other words, be used
for different purposes,

and the software
should accommodate

these different
purposes.

Modularity

Scalability

3.3 HUNTER Conceptual Framework
3.3.1 Overview

With the inherent adaptability of HUNTER in mind, what are the essential modules of the HUNTER
2 framework? One critique of the trend to build increasingly complex models of human performance in
HRA was leveraged by Galyean (2006). Galyean suggested that most human performance could be
accounted for simply by looking at three factors—the individual, the organization, and the environment.
This delineation of human activities was generally borne out in a review of Galyean (Boring 2010), with
the conclusion that this general framework holds but may need more nuances for predicting the range of
human actions. Only a very crude account of human performance is possible if these three factors alone
are considered. While this three-factor model is useful, human performance may be understood with
greater precision by considering a finer granularity of factors.

Inherent in Galyean’s three-factor model is the idea of the individual and the context (i.e.,
organization and environment). This characterization may however fail to take proper account of the
nature of the task the individual is performing, which provides an additional degree of context. This
refinement of the three-factor model nears the model of constraints to action used in biomechanics
(Newell, van Emmerik, and McDonald 1989). In that model, bodily coordination and control are
influenced by individual, task, and environment factors. The focus of the model of constraints to action is
clearly on physical movement, with constraints being individual physical capabilities of the organism, the
nature of the movement task itself, and environmental influences that impinge or encourage that
movement. Despite its focus on physical movement, the model readily generalizes to all human activities,
including both physical actions and mental endeavors like decision-making. This basic model and its
three factors as shown in Figure 4 serve as the software pillars for the new implementation of HUNTER,
whereby each pillar serves as a module in the architecture. Joining the modules in the figure are classes,
which are depicted in blue. For the present purposes, modules describe bundles of specific instances of
tangible things, while classes are the functions that enable the modules to work. Put another way, modules

 15

represent who (individual), what (task), and where (environment). Classes represent how, why, and when
activities occur within the modules.

This definition differs somewhat from the formal definition of module and class used in many
software programming environments, but it nonetheless captures the fundamental structure of the
conceptual model. The modules and classes described in this section should be seen as describing the
functional nature of the HUNTER framework, while the specific software implementation may
consolidate or expand the specific modules and classes. The net effect remains the same: functionally and
conceptually, the HUNTER framework consists at a high level of these basic elements. Further details on
the actual software implementation follow in Section 4. The functional modules and classes are described
next.

Figure 4. Conceptual modules (in black) and classes (in blue) of HUNTER 2.

3.3.2 HUNTER Modules
The three modules, depicted as corner nodes in black text in Figure 4, are briefly noted at a

conceptual level here. We use the example of a virtual control room operator model for illustration here,
but HUNTER is not limited to only this representation of plant personnel.

• Individual Module—this is the representation of the human performing the activity,
sometimes referred to as a “virtual operator.” It incorporates relevant characteristics of the
individual that impact that individual’s performance. Such factors could be considered
internal PSFs, which are the psychological considerations—like internal stress, experience,
knowledge, and fitness for duty—that the individual brings to the task. These factors may
contribute directly to error rates (e.g., stress causes poor decision-making) or indirectly (e.g.,
performance is slowed when fatigued). The individual module may, when so configured,
include a cognitive model that accounts for crucial aspects of performance like decision-
making.

• Task Module—this is the representation of what activity the human is performing. The human
follows a course of action, whether guided by an operating procedure, a mental schema, or

 16

decision-making according to emergent stimuli and strategic goals. In the simplest form of
the task module, the task is represented by a script that mirrors procedures. The task advances
step by step, responding to a set of if-then queries to plant states. For example, if a high-
priority alarm sounds, the script will direct a specific response by the virtual operator. In a
simple model, the operator’s ability to perform that task may be influenced by factors
contained in the individual and environment modules, but the operator does not deviate from
the script. Of course, actual reactor operators are not merely automata, and they will weigh in
on the suitability of scripts and even improvise when appropriate. A richer model of the task
would include provisions for skill of the craft and acting outside of rote script following. A
yet richer model would incorporate tradeoffs and decision-making, including decision
heuristics indicative of operator expertise.

• Environment Module—this is the representation of the world in which the human is acting. In
this sense, the “world” consists of the systems and tools the human uses. It is the virtual
world counterpart to the virtual operator represented in the individual module. For most NPP
modeling, this world model corresponds to a plant simulation. The environment may often
only encompass the immediate environment and not necessarily consider the broader
environment, such as the natural setting, of the plant if that is not central to the task at hand.
Level 1, 2, and 3 HRAs correspond to modeling scenarios involving design-basis plant
functioning, plant damage, and impacts beyond the plant, respectively (St Germain et al.
2016). The level of the risk modeling determines whether the environment is modeled at the
micro-, meso-, or macrolevel. The environment module considers the external PSFs like the
availability of procedures, the quality of the HMI, and the complexity and difficulty of the
plant conditions. These may be derived from plant parameters provided by the plant
simulation (e.g., Boring et al. 2017).

3.3.3 HUNTER Classes
There are four classes of the HUNTER framework illustrated in blue in Figure 4. They are:

• Input Class—the context is set by the scenario at hand. This is shown in Figure 4 as an input
(i.e.,.i.) into each of the modules, representing the influences that feed into the scenario. A
preprocessor sets the context—the initial configuration for the individual, the task at hand,
and the state of the plant—in which HUNTER operates.

• Scheduler Class—the glue that holds the other modules together. In the figure, this is
signified by the lines of the triangle. It coordinates the interactions between different modules
and also paces the progression of the event. Modules may complete their calculations at
different rates, and the scheduler synchronizes the inputs, outputs, and interdependencies to a
common time scale.

• Processor Class—the processing that occurs at each step of the task, which is depicted by a
gear in the center of the Figure 4. A step occurs when all modules have completed their
modeling refresh cycle and exchanged information. For example, the environment has
advanced a time step, updating plant parameters, which have been perceived by the virtual
operator (individual), who has responded by activating a virtual switch (task). This task may
be driven by a procedure, which must meet certain requirements to advance. The processor
class determines the point of advancement to the next task. The processor may include logical
assertions, such as actions predicated on conditions met, branching points, and operator
decisions.

• Output Class—the results of each incremental step in the model. Outputs are changes in the
state of the model, which are logged as activities, parameter states, and human performance

 17

logs. The output module records the actual outputs, such as the calculated HEPs that allow
HUNTER to be used as an HRA method.

These classes may be considered the support functions behind driving the model execution. The
classes are collectively referred to tongue-in-cheek as the “Gatherer” classes. The three HUNTER
modules combine with the Gatherer classes to form the HUNTER-Gatherer underpinnings of the
software.

3.3.4 Special Considerations
This conceptual representation is necessarily simplified, and it should be noted that the modules may

employ additional classes and supporting tools to accomplish their functionality. For example, if the
environment module is a full-scope simulator, it needs a software binder or advanced programming
interface (API) to allow communication between the simulator and HUNTER. This API may be quite
different between simulators, but the basic conceptual function remains the same, namely to facilitate the
exchange of information between the environment module and other entities in the HUNTER software.
Alternately, the API may consist of lookup tables of prescripted runs, inputs from physical test loops, or
even dummy values, depending on the needs of the risk model.

The adaptability aspects of HUNTER outlined in Section 3.2 mean that the specific software
implementation for each module or class can be changed depending on the modeling requirements. The
processor class, for example, may have hooks for procedures and decision-making. The default
configuration deployed at this time does not yet incorporate a decision-making subclass. As such, this
function is simply turned off in the software, and modeling assumes rote procedure following. The
HUNTER architecture allows a subclass to be linked and activated as it becomes available and is needed
by the modeling community. Similarly, HUNTER uses a simplified list of PSFs for proof of concept. This
does not prevent a more comprehensive model of PSFs to be inserted as a subclass when one is
developed. This concept of adaptability from simple to complex modeling in HUNTER is accomplished
through turning functions on or off and by allowing the capability to link to more complex modeling tools
as needed.

One of the primary advantages of dynamic HRA comes from the ability to consider the range of
outcomes and trajectories that are possible—something that is difficult and extremely time-consuming to
be performed manually using current static HRA and PRA tools. The range of outcomes is accomplished
by the ability to run each modeled scenario multiple times, covering both the bounds of expected human
performance (i.e., from worst to best performance, and everything in between) and the addition of
uncertainty to the model. Model runs such as Markov Chain Monte Carlo iterations are guided by a
combination of the classes. The scheduler class may track not just individual tasks within a model run but
also overall repeats of model runs. The input class may change conditions slightly (e.g., varying the
effects of certain PSFs) at the restart of each run. The processor class may direct activities along different
branch points to see consequences of different simulated operator actions. Finally, the output class may
log the relevant results from each model run and aggregate them in a meaningful way for understanding
trends, frequencies of particular operational paths, and significant outcomes.

3.3.5 Relationship Between HUNTER 1 and HUNTER 2 Frameworks
Superficially, Figure 4 for HUNTER 2 may seem much more abstracted than Figure 1 for HUNTER

1. In fact, the two approaches are not that different. The framework shown for HUNTER 1 is actually a
specific software architecture, while the framework for HUNTER 2 abstracts out to become a more
generic conceptual model. This change reflects the greater emphasis on adaptability in HUNTER 2 and
the corresponding desire not to lock down the implementations for the modules and classes.

Figure 5 shows the original HUNTER framework from Figure 1 superimposed with the more generic
modules and classes from HUNTER 2. As can be seen, there is a direct mapping of some elements. The
modules, as would be expected, are comprised of multiple sub-elements, while the classes link these

 18

modules functionally. What’s clearly missing from the original HUNTER framework is a way to account
for inputs like setting the initial configuration of the model. The original HUNTER framework in Figure 1
represents more of an architectural snapshot. As such, the need to reflect the states of the model was not
depicted but was implicitly accounted for in the model.

Figure 5. Crosswalk of HUNTER 1 to HUNTER 2.

HUNTER 2, as shown in the figure and documented in this report, is both an extension and

generalization of the original HUNTER framework. The original HUNTER figure remains a useful sketch
of a software implementation of HUNTER, while this section has cast a more conceptual framework. The
next section summarizes the first implementation of this framework as standalone software.

4. HUNTER SOFTWARE IMPLEMENTATION DETAILS
4.1 Background

The HUNTER framework was translated into a simulation application written in the Python
programming language. The simulation code supports the ability to execute scenarios comprised of a set
of procedures. The procedures are predefined as inputs to the application and contain all the necessary
data elements to execute the human tasks based on the simulated nuclear plant state, evaluate the virtual
operator human reliability context, and proceed down the procedure path appropriately. In the interest of
reader understanding, an explanatory description of the HUNTER software implementation begins with
the data input structure and format for the procedure files, since the simulation application is structured
around these data as an input.

 19

4.2 Input Data Structure and Analyst Workflow
The simulation requires a user-defined comma separated value (CSV) file for each of the procedures

used for simulation runs. The CSV format was intentionally selected to provide a non-proprietary data
structure that is widely compatible across software tools. This format shares some similarity to input deck
files for other codes such as RELAP5-3D (Aumiller, Tomlinson, and Bauer 2001). In the current
application version, 1.0.0, the analyst must manually enter procedures, procedures steps, and substeps into
the CSV file. Future iterations of the code are planned to automatically parse procedures to greatly
simplify this process. The analyst must also populate details for the human reliability context and the
virtual plant context for each procedure. Specifically, the analyst can prescriptively drive the procedure
path by specifying plant parameters needed to support procedure logic at branch points. The code also
supports defining multiple possible paths towards different outcomes. With the open-ended procedure
construction, the analyst must select a supporting simulator and define specific parameters associated with
each step that are evaluated at run time to determine the success or failure of a given step. Where external
simulation codes are not available, information may be dummy coded to support HUNTER’s progression
through the procedures. In both the open-ended and dummy mode of procedure execution, the analyst can
also define the human reliability parameters for each step to add the HRA layer onto the procedure
execution. In this simulation mode, the procedure uses the provided context information to calculate an
HEP for each step, which yields a success or failure outcome and can change the course of the simulated
procedure path.

Each row of the input deck represents a procedure step-level item and must have a step number. This
step number is used to group any additional related rows (e.g., all rows tagged as 12 are processed by the
parser as a collection of sub-elements to be grouped within Step 12). As the number of items contained
within a procedure step is variable, adding rows supports the ability to add as many elements as needed
without complex reformatting of the input CSV file.

There is an intermediary process that occurs when launching the HUNTER application. A parser
class, which is a subclass of the scheduler module, converts the CSV input file into a JavaScript Object
Notation (JSON) format that is then directly consumed by the scheduler class. This parser class allows the
analyst to work with the more easily human read and edited CSV file, while the JSON format is much
easier for the application to consume. The CSV file can be edited and viewed as a spreadsheet table,
meaning it has consistent fields mapped across a matrix. In contrast, a JSON file does not populate cells
without information, and only fields that are actively changed are conveyed in the file. Thus, the structure
of a JSON files is much less linear in appearance.

The parser file relies on dummy coding to process each row, or subsequent rows, as a part of a single
procedure step. The input file can be divided into the four nesting levels of step, substep, point, and
primitive as depicted in Figure 6 – Figure 9, respectively.

• Step—refers to the main step activities. In the common format used in procedures for

Westinghouse pressurized-water reactors, there are two columns. The primary tasking occurs in
the left column, meaning the task that is initially completed for that procedure step. There are also
sometimes procedure steps in the right column, called the Response Not Obtained (RNO)
column. If the tasking in the left column cannot be completed, the operator transfers to the RNO
column to complete that tasking.

• Substep—refers to the secondary tasking that is performed within a main procedure step. Often a
procedure step requires multiple substeps by operators to complete the desired tasking. While
steps are numbered, substeps are usually treated alphabetically, Step 1a, 1b, etc., meaning main
Step 1 followed by substeps a and b.

 20

• Point—refers to addresses or names for parameters in external plant simulations. This
information may also be dummy coded if no plant simulation is referenced.

• Primitive—refers to the GOMS-HRA task-level primitives, which the HUNTER code uses to
determine time durations and nominal HEPs for tasks.

Note: Step 9 is highlighted to show the dummy coding used in the parser flag column to denote response obtained and RNO step types.

Figure 6. Region of the HUNTER input file demonstrating the use of dummy coding to represent
additional elements under the same procedure step.

Note: Dummy coding used in the isSubStep parser flag column and the additional subStepId populated with the procedure substep identifier.

Figure 7. Procedure substep region of the HUNTER input file.

 21

To clarify the above, a brief description of nuclear operating procedures helps to understand the
representation of the procedures in the simulation. There are different types of procedures used in an NPP,
but for the modeled scenario, the procedures are emergency operating procedures (EOPs) and abnormal
operating procedures (AOPs). These types of procedures follow a two-column format in which each step
is represented twice in the procedure, once in the left response obtained and once in the right RNO
column. If the logic of the step described in the left column, referred to as the response obtained, is
upheld, the operator moves to the next numerical step of the procedure. If the logic is not upheld, the
operator moves to the right column, RNO, for that step. Furthermore, numerical procedure steps often
include substeps denoted with letters (i.e., a, b).

Figure 8. Point region of the HUNTER input file denoting names of plant parameters.

Figure 9. GOMS-HRA task-level primitives found in HUNTER input file.

 22

Populating any row of these four regions requires adding TRUE to the corresponding parser flag
columns, which are labelled isRno, isSubStep, isPoint, and isPrimitive based on their associated element
type. For example, Figure 6 above shows the left region of the CSV input file for a procedure with the
leftmost column indexing each step as a numerical number. The next column, isRno, is a parser flag
column used to denote if the step is a response obtained or an RNO type of step. Step 9 in the figure,
which is highlighted in orange, demonstrates the dummy coding for a step with a response obtained. The
second row of Step 9 shows an RNO step. The second nesting region, the substep region shown in Figure
7, follows exactly the same organization but for substeps. Step 3 in the figure shows substeps a and b
appearing as two sequential rows. Similar to adding an RNO element, adding substeps requires adding
rows and tagging those rows with the step number. It is possible to combine RNO and substeps.

The third and fourth nesting regions, shown as Figure 8 and Figure 9, depict the point and primitive
fields, respectively. These elements can be nested at the step or substep level. Therefore, any element
added to this row must ensure that the isPoint and isPrimitive parser flag columns are set in addition to
the isSubStep column if the point or primitive should be nested within a substep item.

Figure 10. Mapping of the individual, task, and environment modules to the classes in the HUNTER
software implementation.

 23

4.3 Modules
The code is organized as a Python package with modules. Each module focuses on performing a

subset of the functionality contained within the HUNTER framework. This section describes each module
and the Python classes contained within them. Note that, as previously described, adaptability can come
from switching out modules or creating APIs for the modules to interface with external software. The
modules and their interactions are illustrated in Figure 10.

4.3.1 Scheduler Module
 The scheduler module contains functionality defined through several classes to perform Monte

Carlo based simulations of the task defined through the CSV input files. The scheduler stores analyst-
defined configurations for the overall simulation in a configuration class that is accessible throughout the
simulation to serve as a central data repository for the application. The scheduler class has access to all
the other modules and contains several subclasses itself, most notably the log class that outputs data to
CSV log files.

The log class serves as the historian and performs input/output functions to record each simulation
run in CSV output files. The log class also contains some debugging capabilities to assist analysts in
testing the CSV input files and logging errors in procedure path execution, such as an unclosed procedure
path with no possibility to advance. As the scheduler is executing simulation runs, it is monitoring the
runs to cease any failed runs and move to the next run attempt.

4.3.2 Human Reliability Module
The HRA sampler class contains predefined (not by the analyst) GOMS-HRA (Boring and

Rasmussen 2016) and SPAR-H PSF classes (Gertman et al. 2005). The GOMS-HRA class stores the
identifier, HEP, and time distribution for each GOMS-HRA task-level primitive. The analyst can then
reference any one of the GOMS-HRA task-level primitives simply by adding the identifier to each
procedure step or substep. The PSF class stores the type, level, and multiplier values as defined in SPAR-
H for its eight PSFs and can be used similarly by the analyst, though the PSFs also require setting the
identifier and level for each procedure step or substep. Additionally, the sampler class contains functions
that support random sampling from the time distributions to generate execution times for each step based
on the GOMS-HRA task-level primitive assigned. A more in-depth description of the GOMS-HRA task-
level primitive and SPAR-H PSF classes can be found in the subsequent section on the assertion class.

4.3.3 Environment Module
The environment module primary element is the API class, which contains the code that allows the

scheduler to evaluate plant states for individual parameters defined in the point class. Similar to the
GOMS-HRA task-level primitive and PSF identifier coding scheme for the procedure steps and substeps,
the analyst can define simulator parameters as points. The point class stores the point name, the actual
process value, the upper acceptable, and lower acceptable process values. The API class does not perform
the evaluation itself (which is performed within the task module). It simply polls the plant representative
simulator to determine the value of the parameter at the timepoint when the parameter is needed to
evaluate the procedure step or substep success or failure.

4.3.4 Task Module
 The task module contains the classes that store and manipulate the activity executed during each
simulation run. The task module contains the procedures with their steps, following the two-column
procedure format described in Section 4.2. While comparing the plant state against the logic in the left
response obtained column, if at any time the logic for the substeps is not upheld, the operator moves to
the right column and starts executing the numerical step for RNO from the beginning of the step, even if
there are substeps listed under the main step.

 24

4.3.4.1 Step Class
The step class is the top level object for each procedure step. It is a superclass of the assertion class

that inherits the same properties but adds additional parameters. It stores the procedure step number and
can store a response obtained and RNO typed assertion. At the least, it must contain a response obtained
assertion, but it may also, and typically does, store an RNO assertion as well. The task module executes
the response obtained assertion and, if that is successful, it transitions to the next numerical procedure
step. If the response obtained step fails, the RNO assertion is evaluated. The assertion class is defined in
the following section and represents the core of the simulation.

4.3.4.2 Assertion Class
The assertion class (see Figure 11) is the central element of the entire simulation because it

encapsulates each instance of the dynamic simulation that is evaluated. The assertion class is generically
defined to represent a procedure step in the response obtained left column, RNO right column, or substep.
The assertion class holds all the relevant simulation parameters for procedure logic evaluation at any
given timepoint. Each assertion contains two types of subclasses to store information pertinent to the
human reliability parameters and the plant parameters.

Figure 11. Assertion class in HUNTER acting (a) directly as a procedure step and (b) indirectly to trigger
procedure substeps.

 25

Several subclasses store the human reliability parameters within the assertion class.

• The GOMS-HRA task-level primitives are defined in the primitive subclass. Analysts can
assign multiple primitives to each assertion if necessary, but in practice there should never be
more than two based on our preliminary usage exploration. Ideally the analyst should attempt
to define a single primitive for each assertion, but since an assertion can represent a step or
substep, more complicated steps that do not contain any substeps may require two primitives
to capture the intended tasks. An analyst simply assigns a primitive identifier, such as CC to
denote the “check in the control room” task-level primitive. Each task-level primitive type
has a predefined execution time distribution and HEP associated with it.

• The analyst can account for contexts surrounding the virtual operator with the PSF subclass.
The analyst selects relevant PSFs from SPAR-H and assigns a default level, which has a
corresponding multiplier that will be applied on top of the nominal HEP linked to the GOMS-
HRA task-level for that assertion. Furthermore, the analyst can also switch from the GOMS-
HRA nominal HEP to use the nominal HEPs for diagnosis and action found in SPAR-H.
However, in its current version, the GOMS-HRA task-level primitive must still be populated
by the analyst to provide the timing information for the assertion. The nominal HEPs may be
modified through the simulation run by autocalculated HEPs.

• The assertion class also contains NPP simulator parameters. Each assertion can hold multiple
plant parameter objects defined by the point subclass. Each point object defines a component
referenced in the step. The analyst defines the simulator tag name of the component along
with acceptable limits for the process value required for an affirmative evaluation of the
component’s state.

The primitives and points do not need to be defined for each assertion. The simulation can run in a
dummy mode in which the analyst can define the outcome for each assertion to define a prescribed path
of interest to evaluate. This dummy mode of operation precludes the evaluation of the points within the
simulator to determine the outcome for the step. The intent of this dummy mode is to support examining
the human reliability variables along a prescribed path to examine known scenarios or validate to an
empirically observed scenario.

Figure 12. Transition path logic evaluated by the assertion and then stored in the results class.

 26

4.3.4.3 Results Class
 Each assertion representing a step or substep is evaluated, and the outcome of that evaluation is stored
in the results class. The results class stores the results of the point evaluation based on the state of the
simulator at the time the assertion was evaluated. Additionally, the results of the HRA evaluation—
comprised of the time elapsed for the execution of the step and the HEP—govern whether it was
successful or not. The results also contain the transition information, which controls what step will be
executed next within the task module. This transition can take many forms, as can be seen by the arrow
denoting the transition paths between the procedure steps based on their execution in Figure 12. The
results from each element are output to a CSV data log file and debug log for further analysis.

Figure 13. Descriptive feature of steam generator with SGTR.

5. DEMONSTRATION AND FINDINGS
5.1 SGTR Scenario

5.1.1 SGTR Description
An SGTR is portrayed in Figure 13. An SGTR is one of design-basis accidents (DBAs) in which one

or more heat transfer tubes are broken such that the coolant from the primary side leaks to the secondary
side. In pressurized-water reactors, steam generators form the primary and secondary boundary. They
serve to transfer the heat generated in the primary system to the secondary system. The primary coolant,
which potentially contains radioactive materials, is separated from the secondary side water supply
through the U-tubes of the steam generators, thus preventing radioactive leakage into the environment.
The primary and secondary system boundary can be kept limited to the steam generators during a leak or
rupture if appropriate action is taken by operators in a timely manner. To this end, operators must identify
and isolate the damaged or ruptured steam generator to minimize the possibility of further radiation
leakage. To successfully mitigate the SGTR accident, secondary heat removal and the depressurization of

 27

the reactor coolant system (RCS) are required, and the operation of the high-pressure safety injection
system might also be required.

“Success” in responding to the SGTR scenario is to intervene at the right time to limit the release of
radioactive material and prevent core damage. In this regard, there are generally four main tasks that
operators must perform in SGTR scenarios: identify and isolate the damaged steam generator(s), perform
RCS decompression using steam evacuation or pressurized spray and a pressure operated relief valve
(PORV), terminate safety injection (SI) according to SI termination requirements, and enter into long-
term cooling cycle operation. If cooling using the secondary side is not possible due to the inability to use
the secondary feedwater system and auxiliary feedwater system, the RCS is cooled and depressurized
through a feed and bleed (FB) operation.

From a PRA point of view, events to respond to the initial event can be classified according to its
irreversible branching, which is expressed as headings in an event tree (ET). Figure 14 shows a generic
ET for SGTR. HFEs—referring to those opportunities for humans to disrupt the successful function of the
plant—can be defined from the ET of the SGTR. Possible HFEs can be defined by analyzing the effect of
operator intervention and failure in the event shown in ET. Table 7 shows examples of the possible HFEs,
although specific modeling scenarios and specific plant PRAs may highlight different HFEs than this list.

Figure 14. Example of generic Level 1 PRA ET for SGTR (adapted from NUREG-2195).

The following headings define the top branches for the event tree in Figure 14:

• SGTR-INIT: Initiating event induced SGTR from DBA events

• HPI: High-pressure injection (HPI) systems, both SI pumps and charging pumps, if applicable

• SHR: Secondary heat removal (SHR) system, either main feedwater (MFW) or auxiliary
feedwater (AFW)

• FB: Feed and bleed operation and the supporting relief path

 28

• EQ: Operator actions for equalization of primary and secondary pressure, which involves
depressurization and control of primary pressure

• RWST-MU: Long-term makeup water to the reactor water storage tank (RWST)

• HPR: High-pressure recirculation (HPR) and the associated operator action

• RHR: Operator action to cool down to cold shutdown and align the residual heat removal (RHR)
system

• CST-RF: Operator action based on refilling the condensate storage tank (CST) for long-term
secondary side cooling using the AFW system

Table 7. HFEs defined from the ET of the SGTR scenario.

HFE HFE Description

1 Operator fails to respond with no reactor protection system (RPS) signal present.

2 Operator fails to respond with RPS signal present.

3 Operator fails to start and align SHR system.

4 Operator fails to identify SGTR and implement procedures.

5 Operator fails to isolate faulted steam generator(s).

6 Operator fails to depress RCS via secondary side cooling (SSC).

7 Operator fails to control/terminate SI.

8 Operator fails to initiate FB cooling.

9 Operator fails to refill RWST.

10 Operator fails to start recirculation mode.

11 Operator fails to refill CST.

5.1.2 SGTR Procedures
This section describes procedure steps related to HFEs defined in the SGTR scenario. This study

considered the procedures for GSE Systems’ Generic Pressurized Water Reactor (GPWR) for mapping
the steps into each HFE. Table 8 summarizes the procedure steps per each HFE.

 29

Table 8. Mapping of HFEs to Procedures.

HFE HFE Description Procedure Mapping

1 Operator fails to respond with no

RPS signal present.

Step #1 in EOP E-0, “Reactor Trip or Safety Injection”

Steps in FR-S. 1, “Response to Nuclear Power

Generation/ATWS” 2 Operator fails to respond with RPS

signal present.

3 Operator fails to start and align

SHR system.

Step #17 in EOP E-0, “Reactor Trip or Safety Injection”

4 Operator fails to identify SGTR and

implement procedures.

Step #25 ~ #29 in EOP E-0, “Reactor Trip or Safety

Injection”

5 Operator fails to isolate faulted

steam generators (SGs).

Step #4 ~ #19 in EOP E-3, “Stream Generator Tube

Rupture”

6 Operator fails to depress RCS via

SSC.

Step #29 ~ #35 in EOP E-3, “Stream Generator Tube

Rupture”

7 Operator fails to control/terminate

SI.

Step #75 ~ #76 in EOP E-3, “Stream Generator Tube

Rupture”

8 Operator fails to initiate FB cooling. Steps in FR-S. 1, “Response to Nuclear Power

Generation/ATWS”

9 Operator fails to refill RWST. Foldout in EOP E-3, “Stream Generator Tube Rupture”

Steps in ES 1.3, “Transfer to Cold Leg Recirculation”

10 Operator fails to start recirculation

mode.

Steps in ES 1.3, “Transfer to Cold Leg Recirculation”

11 Operator fails to refill CST. Foldout in EOP E-3, “Stream Generator Tube Rupture”

Steps in OP-137 Section 8.1, “Auxiliary Feedwater

System”

5.2 Relevant Findings
5.2.1 International HRA Empirical Study at Halden Reactor Project

The multilateral international HRA empirical study conducted at Halden Reactor Project (Lois et al.
2011) was designed to arrive at an empirically based understanding of the performance, strengths, and
weaknesses of different HRA methods used to model human responses to accident sequences in PRAs.
The empirical basis was developed through experiments performed at Halden Reactor Project’s Halden
Man-Machine Laboratory research simulator, with 14 licensed crews responding to accident situations
similar to those modeled in PRAs. The study was divided into three phases, each covered in a separate
volume of NUREG/IA-0216:

 30

• Phase 1–the pilot phase consists of developing, testing, and revision the study’s methodology and
experimental design (Lois et al. 2011)

• Phase 2–consists of the comparison of HRA predictions for all human actions corresponding to
SGTR (Bye et al. 2011)

• Phase 3–consists of the comparison of four loss-of-feedwater human actions (Dang et al. 2014).

Across Phases 2 and 3, HRA methods were compared with each other and with the empirical results in
both qualitative and quantitative ways.

For Phase 2, the study included two types of scenarios for SGTR: the SGTR base scenario and the
SGTR complex scenario. The SGTR base scenario consists of a rupture initiated in Steam Generator #1 to
cause nearly immediate alarms of secondary side radiation and other abnormal indications/alarms. These
conditions are not sufficient to cause an immediate automatic scram, but the status of the plant is
degrading due to the rupture. The SGTR complex scenario is a complicated case of the base scenario with
two main differences. The main differences are that the event starts off with a major steamline break with
a nearly coincident SGTR in Steam Generator #1 that will cause an immediate automatic scram (and
expectations that the crew will enter the EOP E-0 procedure for post-reactor-trip actions). The scenario
features the autoclosure (as expected) of the main steam isolation valves in response to the steamline
break along with the failure of any remaining secondary radiation indications (not immediately known nor
expected by the crew) as part of the simulation design. The combination with the steamline break makes it
considerably more difficult for the crew to diagnose the existence of the SGTR, especially in response the
step in the EOP E-0 procedure concerning elevated radiation indications.

The specific HFEs used in the scenario are presented in Table 9. Success criteria for the events are
typically determined by successfully avoiding irreversible changes to the plant state that affect the
likelihood of core damage. To this end, the success criteria were determined on the basis of the
expectations of the trainers for operator response in accordance with their training. The success/failure
criteria included expected time windows for how long an activity was expected to take.

Table 9. HFEs for two SGTR scenarios from the Halden study.

HFE Descriptions Base case Complex case

HFE-1 Failure to identify and isolate the ruptured SG HFE-1A HFE-1B

HFE-2 Failure to cool down the RCS expeditiously HFE-2A HFE-2A

HFE-3 Failure to depressurize the RCS expeditiously HFE-3A HFE-3B

HFE-4 Failure to stop the safety injection (SI) HFE-4A N/A

HFE-5 Failure to give a closing order to the PORV block valve N/A HFE-5B1
HFE-5B2

Overall, most crews successfully performed the required tasks, as would be expected for a well-
trained DBA. The only challenging task proved to be the isolation of the faulted steam generator in the
complex case (see Figure 15). All operators were well trained and very familiar with the base SGTR,

 31

since they participated in a period training program, which has the SGTR scenario trained twice every
year. The complex SGTR scenario featured a compound fault that was not frequently trained.

The HFEs were ranked relative to their difficulty considering crew performance. The ranking process
took into account: the number of “failing” crews and “near misses” for each HFE, the difficulty in
operational terms, and the supplemental information provided to the HRA teams. The derived difficulty
ranking of HFEs is: 5B1 > 1B > 3B > 3A > [1A, 2A, 2B] > 5B2 > 4A. In the case of HFE-2 and -3, the
goal of the tasks is to control the temperature or pressure of the RCS, and as they have characteristics that
change with time, they were greatly affected by the conditions at the start of the performance. When the
automatic protection system was activated, it took more time to fully perform tasks, such as RCS
cooldown due to its effect. In the task of decompressing the RCS, it was also observed that the timing of
terminating the task occurred too early (e.g., ending without sufficiently decompressing the RCS). This is
thought to be because the decompression rate was too fast, and there were several stopping conditions that
had to be stopped or monitored before the decompression was completely achieved. This in turn led to
slight deviations (slightly below) from the success criteria or insufficient performance.

Figure 15. Performance time data for HFE-1, -2, and -3 for two SGTR cases for Crews A–N in the Halden
study.

0

500

1000

1500

2000

2500

3000

HFE-1A HFE-1B HFE-2A HFE-2B HFE-3A HEF-3B

Pe
rf

or
m

an
ce

 T
im

e
(s

ec
on

d)

Defined Human Failure Events (Base: A, Complex: B)

Time Performance Data for HFE-1, -2, and -3 for two SGTRs

A B C
D E F
G H I
J K L
M N criterion

 32

Table 10. Identified negative driving factors for HFEs in the Halden study.
Required Action Base case Complex case
HFE-1
(Faulted SG isolation)

- Execution complexity - Scenario complexity
- Procedural guidance
- Execution complexity
- Adequacy of time
- Work processes

HFE-2
(RCS cooldown)

- Scenario complexity
- Execution complexity
- Procedural guidance
- Team dynamics

- Stress
- Scenario complexity
- Execution complexity
- Team dynamics

HFE-3
(RCS depressurization)

- Stress
- Execution complexity
- Team dynamics

- Stress
- Scenario complexity
- Execution complexity
- Team dynamics

Through the experimental results of the Halden study, the following insights can be obtained. The
Halden study has three identical HFEs for base and complex SGTR scenarios, HFE-1 (faulted steam
generator isolation), HFE-2 (RCS cooldown), and HFE-3 (RCS depressurization). HFE-4 and HFE-5 did
not have corresponding conditions in the base and complex SGTR scenarios. The research team derived
PSFs that negatively affect human performance on each HFE through qualitative analyses (see Table 10).
From those results, complexity (both scenario complexity and execution complexity) acted as a negative
driving factor in all cases.

Since the study used time data as one of the main sources of performance data, it seems that the
relationship between PSFs and time performance can be derived from the results. Figure 15 shows the
performance time of 14 crews for HEF -1, -2, and -3. Since the purpose of HFE-3 is to depressurize the
RCS, crews that did not fully decompress and did not complete were excluded from this figure. In terms
of a PRA analysis, the first HFE has different success criteria of performance time for the base and the
complex scenario, 20 minutes and 25 minutes, respectively. The other HFEs have the same success
criteria of performance time for both base and complex cases. When comparing the operator performance
on HFE-1, it seems the scenario complexity makes the task take longer. For HFE-1, which allows a
longer performance time window for the complex scenario, the average time to perform was 970 seconds
for the base and 1614 seconds for the complex scenario. Half of the crews failed to isolate the faulted
steam generator in the allowed time for the complex scenario, while most crews succeeded for the base
scenario. The combination with another accident initiator (i.e., steamline break in the complex case)
makes the task to identify and isolate the faulted steam generator much more complicated and difficult, as
reflected in the longer time to complete the task.

However, the remaining HFEs showed the opposite effect. The performance time of HFE-2 was
512 seconds and 400 seconds, and HFE-3 took 441 seconds and 350 seconds for the base and the complex
scenarios, respectively. The consecutive actions of RCS cooldown and depressurization take less time in
the complex scenario. Even for tasks with the same high-level goal or success criteria in the base scenario
and complex scenario, there were cases where different means must be used because the given situation is
different (e.g., there were differences because of the operational status of the automatic system or the
available equipment). The results suggest whether the scenario is complex does not affect performance
time the same way for each scenario. In other words, task complexity in the complex case was not always
higher than in the base case, so it is necessary to calculate the task complexity in a given situation. The

 33

operator performance can be affected by various PSFs beyond complexity; therefore, a decomposition
analysis may be required.

Table 11. Measures of TACOM (from Park et al. 2007).

Designation Definition / Meaning
TACOM 𝑇𝐴𝐶𝑂𝑀 = R(𝛼 × 𝑆𝐼𝐶)(+ (𝛽 × 𝑆𝐿𝐶)(+ (𝛾 × 𝑆𝑆𝐶)(+ (𝛿 × 𝐴𝐻𝐶)(+ (𝜀 × 𝐸𝐷𝐶)(

SIC Step information complexity (SIC) represents the complexity due to the amount of
information to be processed by human operators.

SLC Step logic complexity (SLC) represents the complexity due to the execution logic of
prescribed actions to be sequenced by human operators.

SSC Step size complexity (SSC) represents the complexity due to the amount of prescribed
actions to be performed by human operators.

AHC
Abstraction hierarchy complexity (AHC) represents the complexity due to the amount of
system knowledge that is necessary to identify the problem space of the required
operations.

EDC
Engineering decision complexity (EDC) represents the complexity due to the amount of
cognitive resources that is necessary to establish the proper decision criteria of the
required operations.

𝛼, 𝛽, 𝛾, 𝛿, 𝜀 Relative weights for SIC, SLC, SSC, AHC and EDC, respectively.

R-TACOM

𝑅 − 𝑇𝐴𝐶𝑂𝑀 = R𝑤)* × 𝑇𝑆(+𝑤)+ × 𝑇𝑅(+𝑤), × 𝑇𝑈(
																																= R0.621 × 𝑇𝑆(+ 0.239 × 𝑇𝑅(+ 0.140 × 𝑇𝑈(

𝑤ℎ𝑒𝑟𝑒, `	
𝑇𝑆 = 0.716 × 𝑆𝐼𝐶 + 0.284 × 𝑆𝑆𝐶
𝑇𝑅 = 0.891 × 𝑆𝐿𝐶 + 0.109 × 𝐴𝐻𝐶
𝑇𝑈 = 𝐸𝐷𝐶

TS Task scope (TS) represents the breadth, extent, range, or general size of a task.

TR Task structure (TR) indicates whether the sequence and relationships between subtasks
are well-defined or well structured.

TU Task uncertainty (TU) is related to the degree of a predictability or a confidence
associated with a task.

5.2.2 Task Complexity Score
The Task Complexity (TACOM) score, proposed by Park et al. (2002), provides a quantification

method for the complexity of procedural tasks performed by NPP main control room operators (Jung et
al. 2007; Podofillini et al. 2013). The suitability of the measure has been validated by comparing TACOM
scores with two different types of human performance data—response times and subjective workload
scores—showing the number of human errors increases proportionally with an increase in the TACOM
score. The early model of the TACOM score had five sub-measures: step information complexity (SIC),
step logic complexity (SLC), step size complexity (SSC), abstraction hierarchy complexity (AHC), and
engineering decision complexity (EDC). To eliminate the dependency between the sub-measures, the
revised version of TACOM (or R-TACOM) has suggested three sub-measures (Park and Jung, 2007): (1)
task scope (TS), (2) task structure (TR), and (3) task uncertainty (TU). Table 11 shows definitions,
meanings, and relational expressions for each measure and sub-measure of TACOM and R-TACOM. The

 34

authors performed additional analyses using empirical data from the Halden study, and the results are
explained in the next section.

5.2.3 Complexity Time Multiplier for TACOM
As mentioned in Section 5.2.1, the Halden study data do not lend themselves to deriving a simple

multiplier between overall scenario complexity and performance time. The reason is that various parallel
(and seemingly confounding) factors affect human performance, and the complexity of the entire scenario
does not equally affect the complexity of the subdivided tasks (i.e., there is a big difference between
overall complexity and local complexity). However, through a more detailed analysis, the relationship
between PSFs like task complexity and time can be derived. In the simulation analysis result of a study by
Park (2014), the relational expression for execution time (or response time) according to the TACOM
score was derived and presented (Park and Cho 2010). A regression analysis was used for this derivation,
and the relation is as follows:

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑡𝑖𝑚𝑒 = 	1.340 ∙ 𝑒-./01∙)3456 (2)

The TACOM time relational expressions according to the prediction limits of upper 95% and lower

95% are:

𝑇𝑖𝑚𝑒 = 2.918 ∙ 𝑒(-./08∙)3456) 		⋯ (𝑢𝑝𝑝𝑒𝑟	95%	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝑙𝑖𝑚𝑖𝑡) (3)

𝑇𝑖𝑚𝑒 = 0.617 ∙ 𝑒(-./08∙)3456) 		⋯ (𝑙𝑜𝑤𝑒𝑟	95%	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝑙𝑖𝑚𝑖𝑡) (4)

Referring to this result, it seems that the relationship between PSFs (e.g., task complexity) and time as
performance data can be derived. However, the current HUNTER model does not calculate the TACOM
sub-measures, and further work will be required to map TACOM to the parameters like GOMS-HRA
task-level primitives used in HUNTER. As such, it is preferable within HUNTER to derive context-
specific or local complexity-to-time measures when a complexity multiplier is needed.

5.3 Demonstration SGTR Results
5.3.1 Method
5.3.1.1 Scenario

The HUNTER software implementation outlined in Sections 3 and 4 was put into practice for an
SGTR scenario. This demonstration serves as a proof of concept in terms of the method of modeling
human activities and the execution of the software code. SGTR was chosen because it is well documented
in the static HRA literature, as discussed earlier in this section. In addition, INL has experience running
operators through SGTR scenarios in the HSSL. While the HSSL has mostly been used to validate digital
human-system interfaces in support of control room modernization, SGTR was used as a warmup
exercise for those studies involving pressurized-water reactors (Medema et al. 2021). As such, detailed
operator performance data were available to supplement published data and help build the dynamic
model. As noted in Section 2, such data were also previously used to build the times associated with the
task-level primitives in GOMS-HRA (Ulrich et al. 2017a).

The SGTR runs in the HSSL did not include all HFEs associated with SGTR. The SGTR exercise
served as a warmup activity to familiarize operators with the board layouts, align them with the correct
version of the Westinghouse procedures, and ensure proper command-and-control dynamics between the

 35

shift supervisor and the reactor operators. These purposes were accomplished primarily in walking
through the EOP E-0, which involves diagnosing the fault before transitioning to EOP E-3, the
appropriate procedure for SGTR. As such, the SGTR simulator runs involved a period of normal
operations, insertion of the fault, and the crew diagnosing the fault by working through EOP E-0. When a
crew brief was initiated by the shift supervisor to transition to EOP E-3, the SGTR scenario was
terminated.

The scenario modeled for the present purposes corresponds to the first part of HFE-1 found in the
Halden study (Bye et al. 2011) described earlier in this section. The Halden study captured two elements
of HFE-1—first the identification of the faulted steam generator and then its isolation. The first part
corresponds to EOP E-0, while the latter corresponds to EOP E-3.

5.3.1.2 Time Measures
Previous modeling using HUNTER involved using the GOMS-HRA approach in conjunction with

autocalculated PSF multipliers to estimate dynamic HEPs (Ulrich et al. 2017a). However, as noted in
Boring et al. (2018), the conversion of a dynamic time series of HEPs to the more conventional static
HEPs for each HFE is problematic. There remains no definitive way to map or aggregate the dynamically
calculated HEPs. The focus of the current efforts has been on developing the software platform and not on
the mathematical underpinnings of dynamic HEP calculations. The most appropriate ways to use dynamic
HEPs will be further investigated as the project progresses.

The Halden study reveals that HEPs are not only a result of overt errors committed by crews. Overt
errors manifest as wrong paths taken by the operators, incorrect system activations, or the failure to
activate needed systems to support the functions of the plant. Non-overt errors show up as delays in
completing required actions. Some of these present as technical specification violations, which occur
when activities must be completed within a certain amount of time and are not. Others occur as something
being performed more slowly than the normal course of action. This may relate to a subset of activities
required to be compliant with an overall technical specification time limit or more generically to the
thirty-minute rule used at plants to specify how long it should take at most to resolve plant upset
conditions by operators. In the case of the Halden study, the research team codified several time windows
during which particular actions should be completed. If crews failed to complete the actions in the
specified time windows, the performance on the task was treated as an overtime error. Overtime errors
were used in the calculation of HEPs for the Halden study.

Because of the uncertainties of calculating overt error HEPs dynamically and conversely the
prospective value in determining time windows to calculate overtime errors, the model runs presented
here focused on calculating the duration of tasks associated with the SGTR scenario. The time to
complete each task was calculated in HUNTER using the GOMS-HRA timing data for each task-level
primitive. Each task was calculated according to a distribution, resulting in different times for each run
within the uncertainty bounds provided by GOMS-HRA. HUNTER logs time on each procedure step as
well as the overall time to complete the task across each run.

5.3.1.3 Manipulation of Complexity
The HUNTER simulation runs feature two conditions, a base or normal condition and a complex

condition, mirroring the Halden benchmark conditions for the SGTR study. Building on the work done
earlier on PSF autocalculation, we manipulated the complexity PSF in terms of its time effect. The base
condition featured a time multiplier of 1 (i.e., no effect) for complexity, while the complex case featured a
time multiplier to denote the increased complexity. Note that the Halden scenarios actually differed for
the base and complex cases, and it may not be a suitable generalization to treat the differences only in
terms of a single PSF. The differences in scenarios were more prevalent after HFE-1 in the Halden study,
and HFE-1 may arguably be suitably captured by the complexity PSF. This was, in fact, the treatment
provided by several HRA teams when performing the analysis for HFE-1.

 36

For the purposes of illustrating the effects of PSF manipulations for this demonstration in HUNTER,
we ran two scenarios—one base condition with no complexity PSF time multiplier in effect and one
complex condition with the complexity PSF time multiplier in effect. The time multiplier was applied for
each GOMS-HRA primitive, meaning the time distribution for the multiplier affects each calculated step
of the model run individually.

To determine the appropriate multiplier, we reviewed the time data for the Halden study. As
mentioned, there is no consistent timing relationship for SGTR across the base HFEs and the complex
HFEs. HFE-1, which mostly corresponds to what we've modeled in HUNTER, sees the duration 1.664×
slower for the complex vs. base case. HFE-1A (i.e., base SGTR) has a mean time of 970 seconds, whereas
HFE-1B (i.e., complex SGTR) has a mean time of 1614 seconds. The time range is 623–1312 seconds for
the simple case and 1289–1928 seconds for the complex case. The time effect of complexity HFE-1A
may be represented as follows:

𝑡:;<=>?@(ABC#D) = 1.664	𝑡EFG?(ABC#3) (5)

This formula may not prove a universal solution. Recall the problem is that the other HFEs in Halden,

namely HFE-2 and HFE-3, actually see the complex case performing faster than the base case. This can
be explained by the fact that there ended up being less ambiguity over the method of cooldown (HFE-2)
and depressurization (HFE-3) in the complex case. As noted in the description for HFE-2A (i.e., base
SGTR) (Bye et al. 2011):

...3 out of 4 crews which unwillingly activated the steam line protection system (which causes
steamline isolation) used extra time for completion of the task. The unexpected event disrupted their
plan and resulted in minor problems (e.g., discussions, SG PORVs settings) that required extra time
to recover, with the result of approaching or exceeding the allotted time.

In essence, some crews were not actually doing the same task for the base case as the complex case

for HFE-2 and HFE-3. It’s therefore impossible to compare their timing performance directly. HFE-1,
however, remains comparable between the base and complex SGTR in terms of tasks completed, allowing
us to focus on extracting the time multiplier for the complexity PSF for this scenario. This represents
local complexity.

It is important to calibrate the actual activities to arrive at the appropriate effect of complexity on
time. The Halden study’s HFE-1 represents additional activities to those modeled in the HSSL studies and
in HUNTER. Halden’s HFE-1 goes through to steam generator isolation about seven steps into EOP E-3,
whereas the SGTR scenario modeled here stops at identification of the steam generator fault at the point
where the operators transfer from EOP E-0 to E-3. So, the Halden HFE1 scenario has several actions that
are not modeled in the HSSL and HUNTER renditions of the SGTR scenario.

Bye et al. (2011) observes that it took crews about 10 minutes (600 seconds) from the point of
transfer to EOP E-3 to completion of the isolation, which triggers the segue to HFE-2. The report does not
give the exact timeline but notes the range from entering EOP E-3 to completing HFE-1 was
06:15 minutes to 13:27 minutes (375 – 807 seconds) for the base case. In consideration of that, the
average time for crews in the Halden study to reach EOP E-3 was 370 seconds (calculated as 970 seconds
total time for HFE-1 minus 600 seconds in E-3).

Notice that, for the complex case, Bye et al. (2011) state that the crews spent about 12 minutes (720
seconds) on average completing the EOP E-3 activities modeled in HFE-1, with a range of 8:36 minutes
to 17:19 minutes (516 – 1039 seconds). The average time in HFE-1 before transfer to EOP E-3 for the
complex scenario in the Halden study was 894 seconds (calculated as 1614 seconds total time for HFE-1
minus 720 seconds in E-3).

 37

Thus, the time ratio for complex to basic scenarios for the EOP E-0 portion of HFE-1 in the Halden
study is 894:370 seconds, which is 2.416. This ratio may be the preferred local complexity multiplier for
time in EOP E-0:

𝑡:;<=>?@(C-) = 2.416	𝑡EFG?(C-) (6)

5.3.1.4 Model Runs
The HUNTER application was used to simulate a base and complex SGTR scenario. The input deck

was populated for the initial response, AOP-16, and the emergency response, EOP E-0, to identify the
ruptured steam generator. The simulation terminates once the faulted steam generator is identified. The
base and complex scenarios were each run 1,000 times, with timing data calculated using the GOMS-
HRA task-level primitives and adjusted by the complexity PSF timing multiplier for the complex
scenario. The GOMS-HRA primitives were mapped onto the procedure steps and substeps for the AOP-
016 and EOP E-0 (shown in Figure 16). Each of the primitives has an associated time distribution that
was sampled during each of the simulated runs. The simulated runs used logged parameters obtained from
previous runs with actual crews in the HSSL using GSE Systems’ GPWR. Because of the availability of
logged plant and operator data, the runs did not couple to a live data feed from the environment module,
meaning a plant simulation code was not used interactively for the model run.

Figure 16. GOMS-HRA task-level primitive mapping to Procedure EOP-E0.

 38

5.3.2 Results of Model Runs
The results of the SGTR model run in a Monte Carlo simulation in HUNTER takes the form of log

and data files that can then be statistically analyzed.

Note: No procedure, step, or substep level information is reported, but the overall completion times for each simulation run are recorded.

Figure 17. Log file depicting showing overall execution of the SGTR model in HUNTER.

 39

Note: This level of recording captures the execution of each procedure step along with their parent procedure. No substep level information

is reported.

Figure 18. Log file showing stepwise execution of the SGTR model in HUNTER.

 40

Note: This level of recording captures the execution of each procedure step and substep along with their parent procedure. No primitive or point results for each step
or substep are reported.

Figure 19. Log showing substep execution of the SGTR model in HUNTER.

5.3.2.1 Data Output
Running the SGTR model in HUNTER generates several output files that support the further analysis

of the simulation results. Two types of files are output, and the analyst can define the granularity of the
data recording and logging. The analyst can set the output granularity at the simulation, procedure, step,
substep, primitive, and point levels (see Figure 17, 18, and 19 for examples of three different levels of
logging). Depending on the purpose of the analysis, the analyst might require greater resolution in regard
to the times and HEPs calculated for the procedures, steps, and substeps. If the analyst is only interested
in the overall time required for a task, such as in the validation performed here against the Halden SGTR
scenarios, the details of each step and substep are not necessary and the simulation run time can be

 41

reduced by recording and logging only what is of interest. Furthermore, data recording and logging at the
appropriate level also eases analysis as the output data is readily aggregated at the appropriate granularity
by precluding any preprocessing of raw data before performing statistical analyses of interest.

The primary difference between the data and log files is their formatting. The data files are formatted
as CSV files to support their import into analysis tools, such as Excel or statistical software packages. The
log data is in a more human readable format, which serves two purposes. First, it is much easier to view
the execution path and provides valuable context for the quantitative data contained within the data files.
Second, it serves as a debugging tool that allows the analyst to ensure the input files were read properly
and executed as expected.

The data output can also be configured to record the simulation run. An example of data recorded at
the simulation level can be seen in Figure 20, which depicts a portion of the actual data file that was used
to generate the distributions shown in Figure 21. Each simulation run and each procedure within the run is
recorded as a single line of data with various pieces of information, such as the elapsed time taken to
complete that procedure.

Note: The data headings are truncated in this screenshot; however, some key information can be seen. The run number is the leftmost column, the adjacent column

shows the procedure, and the far right column shows the elapsed time for that procedure and run.

Figure 20. Screenshot of data file output generated by the HUNTER Python code.

 42

Note: Blue bars represents histogram plots of model runs, and red lines represent empirical density estimate of the distributions.

Figure 21. Distribution of times for HUNTER SGTR model runs.

Table 12. Mean times for SGTR scenario runs for Halden and HUNTER.

 Mean Time (s)

 Basic Complex

Halden 370 894

HUNTER 391 655 ×1.664 Time
 391 951 ×2.416 Time

 43

5.3.2.2 HUNTER Validation Results
To validate the SGTR model in the HUNTER Python code, three conditions for the SGTR model

were simulated. A base condition consisted of the GOMS-HRA task-level primitives to calculate the time
for each step. Two additional simulations were performed using the 1.664 and 2.416 multipliers from
Equations 5 and 6, representing the respective overall and local added times for complexity derived from
the Halden study. Figure 21 shows the distributions of the generated simulation times for the AOP-016,
EOP E-0, and joint AOP-16 and EOP E-0 procedure portions of the SGTR. Table 12 shows the means of
the simulation runs compared to the empirically measured Halden study completion times for the SGTR
HFE-1 scenario up to entering EOP E-3. The HUNTER simulation closely replicated the total time for
basic scenario. The complex scenario simulated in HUNTER using the time multipliers also approximated
the empirical data from the Halden study. The local complexity time multiplier of 2.416 resulted in a
distribution of completion times most similar to the Halden data than compared to the general complexity
time multiplier of 1.664.

5.3.3 Discussion
The HUNTER simulations demonstrated good agreement in this initial validation. The base scenario

simulation with a mean time of 391 seconds was only 16 seconds longer than the mean of the empirical
data from the Halden study, which represents a 4.3% error in the average HUNTER SGTR model time
estimate. Because the SGTR model in HUNTER was built independently of the Halden study, this is a
promising result and demonstrates that the model of the SGTR scenario built from the GOMS-HRA task-
level primitive timing data is a good approximation for a crew performing the standard SGTR plant
response actions. The simulated complex condition also showed good agreement, with a difference of
57 seconds observed between the 951 seconds mean time for the distributions of simulated completion
times and the mean 894 seconds from the Halden study. The 57 second difference is 6.4% and well within
the bounds of a reasonable approximation.

This difference could also be minimized with a more refined method of complexity estimation. The
time multiplier was applied uniformly across all GOMS-HRA task-level primitives, but a differential or
even dynamically calculated multiplier is needed to be more realistic. Specifically, the complexity in the
Halden study stems from an additional masking indication that requires additional steps for diagnosis. In
the model here, complexity is treated simply as longer executions of the same steps, not as different steps.
Therefore, a more accurate model of the Halden complex scenario should be developed and tested against
the SGTR modeled in the HUNTER simulation to serve as additional validation. The simulation
nonetheless provides promise for HUNTER as a platform for performing dynamic HRA related to time
estimation.

6. DISCUSSION AND NEXT STEPS
6.1 Limitations

The research presented in this report is preliminary. The conceptual framework of HUNTER has been
expanded to provide a more adaptable software architecture, and the software implementation
incorporates many of these key features. But, there remains more development to be done on the modules
and classes. For example, the current implementation uses logged simulator data instead of a simulation
interactively driven by the virtual operator in HUNTER. Additionally, key features like the
autocalculation of PSFs, decision-making, and HEP aggregation are not yet deployed in this early
software version. These features will be expanded considerably prior to release of HUNTER as a
standalone software tool for risk analysis. Likewise, the single scenario modeled—that of an SGTR—is
but a brief demonstration of the types of scenarios that are of interest to industry.

 44

The present version and application of HUNTER must be seen as an early proof of concept, with
more complete development on the envisioned features still in the future. Nonetheless, the initial
deployment of HUNTER and sample scenario run show the promise of the software to support dynamic
HRA modeling needs in the future. Future software development will follow a twofold approach. First,
the deficiencies noted in Section 2—such as a lack of standalone software or documentation—will
continue to be completed to create a vetted and usable tool that supports industry needs. In parallel,
additional features will be deployed. The conclusion of this report in the next section highlights some of
the features that are being planned for future iterations of HUNTER.

6.2 Future Work
6.2.1 Performance Shaping Factors

This project has researched how to model PSFs in the context of dynamic HRA and apply them
within the HUNTER framework. In the HUNTER framework, the PSF module plays a role in reflecting
PSF effects to outputs from GOMS-HRA (e.g., nominal HEPs or time), then providing the modified
values to other HUNTER modules. Accordingly, the PSF module in the HUNTER framework should
have two autocalculation functions: the PSF rating function and the PSF quantification function. The PSF
rating function is responsible for automatically evaluating PSF levels based on information such as
procedure instructions or plant response data from thermal hydraulic codes. How to extract useful
information for PSF ratings using the given information and integrate them into a PSF level selection
within the module is the key point of this function. In the PSF quantification function, the selected PSF
levels are used for estimating final HEPs and time required for operators. This function needs to
sufficiently reflect PSF characteristics that have not been considered in existing static HRA. For example,
dynamic PSFs may be able to be extended so that PSFs affect the PSFs of the sequential human actions.
Recall lag and linger effects from Table 3. Original PSFs in static HRA have only been considered for
quantifying a single HFE as shown in Figure 22, not for carryover effects across HFEs.

Figure 22. Extension of the PSF concept from static to dynamic HRA.

 45

To date, our research team has studied PSFs in dynamic HRA based on the SPAR-H PSFs with the
assumption that PSFs affect the PSFs of the sequential human actions. As a representative static HRA
method, SPAR-H suggests eight PSFs: stress/stressor, available time, work processes, fitness for duty,
complexity, ergonomics/human-system interface (HSI), experience/training, and procedures. In terms of
dynamic HRA, we postulate that the SPAR-H PSFs are classified into two groups: PSF Type A
(dependent PSFs) and PSF Type B (independent PSFs). The former group consists of four PSFs (i.e.,
stress/stressors, fitness for duty, work processes, and available time), which are dominant throughout an
event scenario (or dependent on different HFEs). The latter group includes complexity,
experience/training, ergonomics/HSI, and procedures that are dominant to the specific situation in which
each human action is performed (or independent of different HFEs). For example, the stress level of an
HFE may affect that of a subsequent HFE, while the procedure level of an HFE may not influence that of
a subsequent HFE.

This research requires an ongoing effort on how to develop the PSF rating function and the PSF
quantification function for each PSF in dynamic HRA. In particular, the effects of PSFs, not only on HEP
calculations but also on other measures like time to complete tasks and decision-making outcomes, need
to be modeled. Additionally, interdependencies between PSFs are important to understand and model.
The relationship of PSFs across HFEs will greatly influence the calculated HEPs and will prove an
important consideration in the aggregation of task-level data to HFEs. There is much foundational work to
be done to model and validate the various effects of PSFs on human performance.

6.2.2 Advanced Programming Interface and Coupling to External Codes
A tenet of the HUNTER architecture is adaptability. This adaptability stems from the notion that the

modules can be exchanged with other modules to achieve different goals like increased modeling
efficiency or completeness. In the demonstration presented in Section 5, the environment module used
full-scope simulator logs for particular parameters from previously run SGTR scenarios in the HSSL to
drive the dynamic progression. This approach sufficed for the purposes of a proof-of-concept
demonstration, but it did not fully realize the envisioned coupling of HUNTER to external simulation and
modeling codes. Using presampled parameters does not allow flexible responses, and the model can only
follow a predetermined route for which logged data are available.

HUNTER already supports access to point data (i.e., parameters) in external software codes as
depicted in Figure 4. The HUNTER model knows to look for specific inputs, which correspond to labels
or locations in the appropriate configuration file. For example, a procedure provides opportunities for
operators to look at specific plant parameters and to take control actions. In simulation code, these
parameters are maintained in a database (i.e., the indicators and controls are represented by particular
parameters that may be looked up or changed in the model database). Each step in the operating
procedure that drives HUNTER progress has the opportunity for data inputs and outputs. The specific
mechanism for exchanging data involves an API. A number of APIs are being considered for HUNTER
to allow it a wider variety of modeling interactivity between the virtual plant and the virtual operator.
These APIs include code for data exchanges with the following external software codes:

• GSE System’s GPWR Simulator—this commercially available full-scope simulator, adapted from
the qualified training simulator at a pressurized-water reactor in the U.S., has been used
extensively for control room modernization studies in the HSSL (Medema et al. 2021; Joe and
Boring 2017). INL has previously developed a way for digital control prototypes to communicate
with the simulator, both to read parameters for displays and to set control parameters for changing
plant systems (e.g., starting a pump or closing a valve). GSE Systems provides a custom API
called Gii to allow two-way communication between the plant simulator and outside software.
INL has adapted Gii to work with Microsoft’s .NET platform (for broad compatibility with
Windows software) and with the Python programming language (for cross-code and cross-
platform compatibility). The bridge API will work readily with HUNTER and can allow real-time

 46

operation of the virtual plant by the HUNTER virtual simulator. A related simulator called the
Generic Boiling Water Reactor is also available and could via similar means allow HUNTER to
interface with a full-scope plant model for a boiling-water reactor.

• Rancor Microworld Simulator—this simulator was developed as a simplified form of a full-scope
simulator explicitly for research purposes (Ulrich et al. 2017b). By using fewer parameters and
reduced-order models, Rancor has proven easy to learn and operate while still maintaining
reasonable fidelity to actual plant performance. In fact, its ease of use makes it suitable for use by
student operators, thereby allowing greater access to human-in-the-loop studies than is possible
with full-scope simulators, which require highly skilled and comparatively less available
professional reactor operators. Rancor supports a number of scenarios including SGTR (Park et
al. in press), plus it has been adapted to novel applications like advanced reactors (Boring et al.
2021). Currently, Rancor does not have a true API to support coupling with external software.
However, the development team for Rancor is the same team that is developing the HUNTER
software implementation. As such, creating an API to allow HUNTER to interface with Rancor
would be a minor matter. The simplified nature of Rancor also makes it an ideal testbed for
further proof-of-concept development, given the simpler modeling compared to the complexity of
a full-scope plant model. Additionally, it is possible to pair Rancor and HUNTER in a multi-
threaded faster-than-real-time manner for large-scale modeling efforts.

• RELAP5-3D—the Reactor Excursion and Leak Analysis Program (RELAP; Aumiller,
Tomlinson, and Bauer 2001) is the foundational thermal hydraulic software that drives many full-
scope simulators and supports modeling of advanced phenomena at existing and new NPPs.
RELAP functions based on input decks that set up the model runs. This asynchronous mode of
operation is not directly compatible with the bidirectional synchronous communication desired
for HUNTER. The earlier incarnation of HUNTER used RAVEN (Rabiti et al. 2017) as
middleware to serve as the API, first with the experimental RELAP7 and later with the released
version of RELAP, namely RELAP5-3D. RAVEN used time estimates for tasks as inputs to
RELAP in a Monte Carlo simulation. The limitation of this approach is that human action in an
NPP is predicated by plant states, which are influenced by prior human actions. Plant operations
are necessarily recursive, and it becomes challenging to model complex human-plant interactions
a priori. Thus, the goal of coupling HUNTER with RELAP is to facilitate synchronous coupling,
where human and plant models provide iterative feedback loops that drive the course of actions.
An API between HUNTER and RAVEN may continue to use RAVEN as middleware if suitable;
otherwise, a standalone API will be developed. The advantage of RELAP models to serve as the
external environment module in HUNTER is the ability to customize the plant model and
streamline for particular model applications.

• EMRALD—the Event Modeling Risk Assessment using Linked Diagrams (EMRALD; Prescott,
Smith, and Vang 2018) software is a discrete event simulation software that is easy to configure
because of a graphical layout tool. EMRALD has been used recently to model physical security
(Christian et al. 2020) and flexible plant operations (FLEX; Park et al. 2021), both of which
involved creating custom interfaces to account for HRA. EMRALD does not currently directly
support HRA functions. Rather than create possibly duplicative software tools to incorporate
HRA, the goal is to create an API that allows EMRALD to invoke HUNTER in support of HRA
modeling. While the details of this connection of software codes remain to be determined, it is
likely that EMRALD would subsume the task and environment modules in HUNTER. HUNTER
would benefit from using a tool that already accounts for these modules, while EMRALD would
benefit from the human modeling that can inform human action probabilities, durations, and
decisions on tasks.

 47

The long-term goal is to provide APIs to link HUNTER to all the above software tools and flexibly
incorporate additional software tools that arise. Coupling these software tools will likely require multiple
years. The exact order of linking software tools remains to be determined.

6.2.3 Cognitive Modeling
As stated prior, the HUNTER framework’s adaptability is an important advantage for HRA and PRA

tasking, as the analyst needs only consider the key tasks or functionalities needed to complete the analysis
at hand. One such module is an all-inclusive cognitive architecture or model that can better support the
simulation of realistic and generalizable cognitive performance in human operators. A key concern in the
HRA community going back several decades is the question of how well existing HRA methods truly
represent the cognitive processes of humans and how any deficiencies may impact the analysis
(Dougherty 1990; Rasmussen 1980; Boring 2015b; Hollnagel 2000).

Another challenge facing modern HRA is taking the next step into more dynamic HRA and the
expectation that modern HRA models can handle shifting operational scenarios, such as FLEX, integrated
energy systems, and novel environmental challenges facing nuclear power. The HUNTER framework’s
adaptability positions it well to grapple with these shifts; however, there is a need for something to handle
cognitive task performance simulation of operators in such novel and emergent conditions where training
or proceduralization may play less of a role in assuring high levels of performance. This is where the
addition of a cognitive model pays dividends.

First, the increased modeling and simulation capacity that modern computational resources provide is
extremely helpful in attempting to capture and model something as complex as human cognition. Second,
a focus on a more dynamic and flexible incident progression is critical to any realistic assessment of the
risk of human error. The HUNTER framework will make use of modern computational resources by
integrating a cognitive model of decision-making into the human action process and will connect to an
external simulated environment module such as RELAP5, with bidirectional communication through the
event progression. This enables the physics simulation to provide the relevant environmental variables,
which an operator uses to monitor the plant and make decisions. The need for dynamic models and the
realities of shifting scenarios demonstrate the necessity for more dynamic models that could better
represent the shifting contexts and fluidity of human action and the inclusion of more explicit
psychological considerations. A dynamic plant model benefits little from a fixed or invariant human
model.

The emphasis on a dynamic process is also a key step in creating a method that is more representative
of actual human cognition and performance. Very rarely, if ever, do humans choose a path and march
down it with a fixed and steady purpose. Rather, the more common characterization of human actions in
this sense is the ever changing and adjusting of intention, effort, directionality, and goals. Even in highly
proceduralized activities, there is the need to adapt to changing conditions. Humans are constantly in a
state of flux in a continuously refreshed loop of cognition and environmental state changes. This reality
can be a very difficult simulation challenge. By using a cognitive model connected to a representative
world state simulation, HUNTER can loop through the specific aspects of the circumstances and update
accordingly. This will give HRA teams more insight and information into how the humans are performing
and where the errors are most likely to occur.

Additionally, the role of decision-making has been a difficult aspect to include or even handle within
HRA methods. Decision-making is the source of many human errors of interest to HRA. The inclusion of
a robust cognitive architecture will better capture the key nuances of human decision-making and
highlight any sources of error that may otherwise be missed by traditional static HRA methods.

Initial estimates of the cognitive modeling landscape have suggested that the Instance-Based Learning
Theory (IBLT) shows promise in understanding the types of errors and decisions of greatest concern to
HRA (Gonzalez et al. 2003). Additionally, IBLT has been used with success in various risk-focused

 48

industries (Ben-Asher and Gonzalez 2015; Dutt, Ahn, and Gonzalez 2013; Gonzalez, Vanyukov, and
Martin 2005). It is important to recall that a fully formed HRA method grounded on cognitive modeling
has not yet been put forward. There may be some areas where the choice of IBLT may need to be
adjusted as the models attempt to better capture human errors as they occur, and final predictive values
are derived from those operations. However, the authors argue that this focus on decision-making and
cognition is a positive step forward as the HUNTER framework continues to grow and develop.

6.2.4 HEPs
As discussed in Section 5, the present implementation of HUNTER is primarily concentrated with time-

related measures as a novel area to demonstrate added modeling capabilities in the transition from static to
dynamic HRA. HRA typically focuses on how to estimate reasonable and acceptable HEPs and then
provides them to PRA models (Park, Arigi, and Kim 2019; Park, Jung, and Kim 2020). In GOMS-HRA
(see Table 2), the method provides nominal HEP information but doesn’t tell us how to aggregate the HEPs.
Accordingly, the authors’ previous research (Boring et al. 2018) has suggested an approach to aggregate
autocalculated HEPs from tasks to HFEs in a dynamic HRA implementation. Future research within
HUNTER will address how to aggregate HEPs to allow better fits to industry-standard HFEs as units of
analysis.

6.2.5 Automatic Procedure Parsing
Once the constituent software elements are in place to deploy a full-featured software version of

HUNTER, one of the greatest challenges to modeling remains the effort required to build the input that
drives the task module and schedules the model runs. The majority of the other portions of the HUNTER
software are reusable. PSFs, for example, rely on an underlying software that supports this functionality.
The mapping of PSFs to particular parameters in the environment module is also a task that can be readily
reused once completed the first time. However, each scenario that are run in HUNTER, as embodied in
the task module and driven by procedures, must be custom developed. While the remainder of HUNTER
converges on a reusable library of software modules and classes, the task module ends up being a bespoke
representation that must be customized with each new analysis.

Because the HUNTER task module is driven by procedures, one way to streamline this process would
be to create tools that automate the process of translating the standard written procedure into the subtasks
used to drive the model run forward. Such a tool might read a written procedure and parse the procedure
into individual steps with accompanying assertions (i.e., procedure flow logic), GOMS-HRA task-level
primitives, and inputs and outputs with the environment module. GOMS-HRA already features a mapping
between procedures (i.e., procedure-level primitives) and task-level primitives (Boring et al. 2017) that
could be expanded and automated.

Additional software tools created by the HUNTER development team include the Task Engine for
Job and User Notification (TEJUN) (Lew et al. 2019). TEJUN is a computer-based procedure tool for
interfacing with full-scope simulators. It provides a hybrid solution using a markdown language that
could easily be used by the task module in HUNTER. The markdown language used by TEJUN is
currently created manually by translating paper-based procedures into a taxonomy that can be used for
computer-based procedures. Whether fully automated or partially automated through a tool like TEJUN,
the prospect of having an easier method to map procedures to the HUNTER task module is the key to
being able to use HUNTER easily for new analyses.

6.2.6 Additional Use Cases
The current demonstration only features a single scenario—SGTR. As noted, SGTR is an ideal

scenario for building the proof-of-concept demonstration, because it is well documented in HRA
publications. Additionally, the HUNTER development team has run the SGTR scenario multiple times in
the HSSL and have detailed logs for plant parameters and operator performance available to them. As

 49

such, the modeling assumptions in HUNTER can be calibrated and modeling results can be validated to
empirical findings.

Beyond this initial SGTR scenario, HUNTER is meant as a general-purpose risk software tool that
will support a wide variety of human-centered scenarios. HUNTER must also be seen in the context of
competing with well-established and widely used static HRA methods. These methods already have been
used to model the most common risk scenarios required of PRAs. To truly benefit industry risk analysts,
HUNTER must undertake modeling of two types of scenarios:

• Existing scenarios already modeled in HRAs—these analyses are necessarily duplicative to static
HRA but allow analysts to transfer existing models to a dynamic structure. Additional aspects of
the model such as the time windows may be useful to enhancing existing analyses that are
reconsidered in HUNTER.

• Novel scenarios that have not been covered in HRAs to date—the benefit of HUNTER is in its
ability to model phenomena for which there are no existing analyses and for which static methods
may not be well suited. Emerging topics, as mentioned in Section 1.1, include severe accidents,
advanced technologies like digital and automated human-system interfaces, and plant operations
beyond the main control room. These analyses may be used for exploring phenomena not
understood due to a lack of operational experience. By highlighting human performance areas of
interest, dynamic modeling can serve to screen risk-significant phenomena that would benefit
from empirical validation.

Going forward, HUNTER will seek to ensure the availability of analysis examples and templates that
support industry’s future needs in HRA. Once the initial software implementation of HUNTER is
completed, novel modeling scenarios will also drive the addition of new features.

7. REFERENCES
Agarwal, V., Manjunatha, K.A., Gribok, A.V., Mortenson, T.J., Bao, H., Reese, R., Ulrich, T.A., Boring,

R.L., & Palas, H. (2021). Scalable Technologies Achieving Risk-Informed Condition-Based
Predictive Maintenance Enhancing the Economic Performance of Operating Nuclear Power
Plants, INL/EXT-21-64168. Idaho Falls: Idaho National Laboratory.

Aumiller, D.L., Tomlinson, E.T., & Bauer, R.C. (2001). A coupled RELAP5-3D/CFD methodology with a
proof-of-principle calculation. Nuclear Engineering and Design, 205, 83-90.

Ben-Asher, N., & Gonzalez, C. (2015). Effects of cyber security knowledge on attack detection. Comput.
Human Behav., 48, 51-61.

Boring, R.L. (2009). Human reliability analysis in cognitive engineering. Frontiers of Engineering:
Reports on Leading-Edge Engineering from the 2008 Symposium (pp. 103-110). Washington, DC:
National Academy of Engineering.

Boring, R.L. (2010). How many performance shaping factors are necessary for human reliability
analysis? Proceedings of the 10th International Probabilistic Safety Assessment and Management
Conference.

Boring, R.L. (2015a). Defining human failure events for petroleum applications of human reliability
analysis. Procedia Manufacturing, 3, 1335-1342.

Boring, R.L. (2015b). A dynamic approach to modeling dependence between human failure events.
Proceedings of the 2015 European Safety and Reliability (ESREL) Conference, pp. 2845-2851.

Boring, R.L., Joe, J.C., and Mandelli, D. (2015). Human performance modeling for dynamic human
reliability analysis. Lecture Notes in Computer Science, 9184, 223-234.

Boring, R., Mandelli, D., Rasmussen, M., Herberger, S., Ulrich, T., Groth, K., & Smith, C. (2016).
Integration of Human Reliability Analysis Models into the Simulation-Based Framework for the
Risk-Informed Safety Margin Characterization Toolkit, INL/EXT-16-39015. Idaho Falls: Idaho

 50

National Laboratory.
Boring, R.L., & Rasmussen, M. (2016). GOMS-HRA: A method for treating subtasks in dynamic human

reliability analysis. Risk, Reliability and Safety: Innovating Theory and Practice, Proceedings of
the European Safety and Reliability Conference, pp. 956-963.

Boring, R., Rasmussen, M., Smith, C., Mandelli, D., & Ewing, S. (2017). Dynamicizing the SPAR-H
method: A simplified approach to computation-based human reliability analysis. Proceedings of
the 2017 Probabilistic Safety Assessment Conference, 1024-1031.

Boring, R.L., Rasmussen, M., Ulrich, T., Ewing, S., & Mandelli, D. (2017). Task and procedure level
primitives for modeling human error. Advances in Intelligent Systems and Computing, 589, 30-40.

Boring, R., Rasmussen, M., Ulrich, T., & Lybeck, N. (2018). Aggregation of autocalculated human error
probabilities from tasks to human failure events in a dynamic human reliability analysis.
Proceedings of Probabilistic Safety Assessment and Management.

Boring, R.L., Shirley, R.B., Joe, J.C., Mandelli, D., and Smith, C.L. (2014). Simulation and Non-
Simulation Based Human Reliability Analysis Approaches, INL/EXT-14-33903. Idaho Falls: Idaho
National Laboratory.

Boring, R.L., Ulrich, T.A., Lew, R., & Hall, A. (2021). A microworld framework for advanced control
room design. Proceedings of the 12th Nuclear Plant Instrumentation, Control, and Human-
Machine Interface Technologies (NPIC&HMIT 2021), pp. 14-17.

Boring, R., Ulrich, T., & Rasmussen, M. (2018). Task level errors for human error prediction in GOMS-
HRA. In Safety and Reliability–Safe Societies in a Changing World (pp. 433-439): CRC Press.

Bye, A., Lois, E., Dang, V.N., Parry, G., Forester, J., Massaiu, S., Boring, R., Braarud, P.Ø., Broberg, H.,
Julius, J., Männistö, I., Nelson, P. (2011). International HRA Empirical Study—Phase 2 Report:
Results from Comparing HRA Method Predictions to Simulator Data from SGTR Scenarios,
NUREG/IA-0216, Vol. 2. Washington, DC: U.S. Nuclear Regulatory Commission.

Card, S. K., Moran, T. P., & Newell, A. (2018). The Psychology of Human-Computer Interaction: CRC
Press.

Choi, Y.-J. (2020). Assessment of Verification and Validation Status—EMRALD and HUNTER, INL/EXT-
20-59904. Idaho Falls: Idaho National Laboratory.

Christian, R., Prescott, S.R., Yadav, V., St Germain, S.W., & Weathersby, J. (2020). Integration of FLEX
Equipment and Operator Actions in Plant Force-on-Force Models with Dynamic Risk
Assessment, INL/EXT-20-59510. Idaho Falls: Idaho National Laboratory.

Coyne, K., & Mosleh, A. (2018). Dynamic Probabilistic Risk Assessment Model Validation and
Application—Experience with ADS-IDAC, Version 2.0. In Advanced Concepts in Nuclear
Energy Risk Assessment and Management (pp. 45-85): World Scientific.

Dang, V.N., Forester, J., Boring, R., Broberg, H., Sassaiu, S., Julius, J., Männistö, I., Nelson, P., Lois, E.,
and Bye, A. (2012). International HRA Empirical Study—Phase 3 Report—Results from
Comparing HRA Method Predictions to Simualtor Data on LOFW Scenarios, NUREG/IA-0216,
Vol. 3. Washington, DC: U.S. Nuclear Regulatory Commission.

Dougherty, E. M., Jr. (1990). Human reliability analysis—where shouldst thou turn? Reliab. Eng. Syst.
Saf., 29(3), 283-299.

Dutt, V., Ahn, Y.-S., & Gonzalez, C. (2013). Cyber situation awareness: modeling detection of cyber
attacks with instance-based learning theory. Human. Factors, 55(3), 605-618.

Galyean, W. (2006). Orthogonal PSF taxonomy for human reliability analysis. Proceedings of the 8th
International Conference on Probabilistic Safety Assessment and Management.

Gertman, D., Blackman, H., Marble, J., Byers, J., & Smith, C. (2005). The SPAR-H Human Reliability
Analysis Method, NUREG/CR-6883. Washington, DC: U.S. Nuclear Regulatory Commission.

Gonzalez, C., Lerch, J.F., & Lebiere, C. (2003). Instance-based learning in dynamic decision making.
Cognitive Science, 27(4), 591-635.

Gonzalez, C., Vanyukov, P., & Martin, M.K. (2005). The use of microworlds to study dynamic decision
making. Comput. Human Behav., 21(2), 273-286.

Government Accountability Office. (2020). Technology Readiness Assessment Guide: Best Practices for

 51

Evaluating the Readiness of a Technology for Use in Acquisition Programs and Projects, Report
No. GAO-20-48G. Washington, DC: Government Accountability Office.

Hollnagel, E. (2000). Looking for errors of omission and commission or The Hunting of the Snark
revisited. Reliab. Eng. Syst. Saf., 68(2), 135-145.

Joe, J.C., & Boring, R.L. (2017). Using the Human Systems Simulation Laboratory at Idaho National
Laboratory for safety focused research. Advances in Intelligent Systems and Computing, 495,
193-201.

Joe, J.C., Boring, R.L., Herberger, S., Miyake, T. , Mandelli, D., & Smith, C.L. (2015). Proof-of-Concept
Demonstrations for Computation-Based Human Reliability Analysis: Modeling Operator
Performance During Flooding Scenarios, INL/EXT-15-36741. Idaho Falls: Idaho National
Laboratory.

Julius, J., Grobbelaar, J., Spiegel, D., & Rahn, F. (2005). The EPRI HRA Calculator® User’s Manual,
version 3.0, TR-1008238. Palo Alto: Electric Power Research Institute.

Jung, W., Park, J., Kim, J., & Ha, J. (2007). Analysis of an operators' performance time and its application
to a human reliability analysis in nuclear power plants. IEEE Transactions on Nuclear Science,
54(5), 1801-1811.

Lew, R., Boring, R.L., & Ulrich, T.A. (2019). Task engine for job and user notification (TEJUN): A tool
for prototyping computerized procedures. Proceedings of the 11th Nuclear Plant Instrumentation,
Control and Human-Machine Interface Technologies (NPIC&HMIT 2019), pp. 932-940.

Light Water Reactor Sustainability Program. (2021). Overview and Accomplishments: Sustaining
National Nuclear Interests. Washington, DC: U.S. Department of Energy.

Lois, E., Dang, V.N., Forester, J., Broberg, H., Massaiu, S., Hildebrandt, M., Braarud, P.Ø., Parry, G.,
Julius, J., Boring, R., Männistö, I, and Bye, A. (2009). International HRA Empirical study—
Phase 1 Report, Description of Overall Approach and Pilot Phase Results from Comparing HRA
methods to Simulator Performance Data, NUREG/IA-0216, Vol. 1. Washington, DC: U.S.
Nuclear Regulatory Commission.

Medema, H., Mohon, J., & Boring, R. (2021). Extracting human reliability findings from human factors
studies in the Human Systems Simulation Laboratory. 2021 International Topical Meeting on
Probabilistic Safety Assessment and Analysis (PSA 2021).

Newell, K.M, van Emmerik, R.E.A., & McDonald, P.V. (1989). Biomechanical constraints and action
theory. Human Movement Science, 8, 403-409.

Park, J. (2014). Investigating the TACOM measure as a general tool for quantifying the complexity of
procedure guided tasks. Reliability Engineering & System Safety, 129, 66-75.

Park, J., Arigi, A. M., & Kim, J. (2019). A comparison of the quantification aspects of human reliability
analysis methods in nuclear power plants. Annals of Nuclear Energy, 133, 297-312.

Park, J., & Boring, R. (2020). An approach to dependence assessment in human reliability analysis:
Application of lag and linger effects. Proceedings of the 30th European Safety and Reliability
Conference and the 15th Probabilistic Safety Assessment and Management Conference.

Park, J., Boring, R.L., Kim, J. (2019). An identification of PSF lag and linger effects for dynamic human
reliability analysis: Application of experimental data. IEEE Human-System Interface Conference,
pp. 12-16.

Park, J., Boring, R.L., Ulrich, T.A., Lee, S., Park, B., & Kim, J. (Submitted). A framework to collect
human reliability analysis data for nuclear power plants using a simplified simulator and student
operators. Reliability Engineering and System Safety.

Park, J., & Cho, S. (2010). Investigating the effect of task complexities on the response time of human
operators to perform the emergency tasks of nuclear power plants. Annals of Nuclear Energy,
37(9), 1160-1171.

Park, J., & Jung, W. (2007). A study on the revision of the TACOM measure. IEEE Transactions on
Nuclear Science, 54(6), 2666-2676.

Park, J., Jung, W., Ha, J., & Park, C. (2002). The step complexity measure for emergency operating
procedures: Measure verification. Reliability Engineering & System Safety, 77(1), 45-59.

 52

Park, J., Jung, W., & Kim, J. (2020). Inter-relationships between performance shaping factors for human
reliability analysis of nuclear power plants. Nuclear Engineering and Technology, 52(1), 87-100.

Parry, G.W., Lydell, B.O.Y., Spurgin, A.J., Moieni, P., & Beare, A. (1992). An Approach to the Analysis of
Operator Actions in Probabilistic Risk Assessment, TR-100259. Palo Alto: Electric Power
Research Institute.

Park, J., Ulrich, T.A., Boring, R.L., Zhang, S., Ma, Z., & Zhang, H. (2021). Modeling FLEX human
actions using the EMRALD dynamic risk assessment tool. 2021 International Topical Meeting on
Probabilistic Safety Assessment and Analysis (PSA 2021).

Permann, C.J., Gaston, D.R., Andrš, D., Carlsen, R.W., Kong, F., Lindsay, A.D., Miller, J.M., Peterson,
J.W., Slaughter, A.E., Stonger, R.H., & Martineau, R.C. (2020). MOOSE: Enabling massively
parallel multiphysics simulation. SoftwareX, 11, Article 100430.

Podofillini, L., Dang, V., Zio, E., Baraldi, P., & Librizzi, M. (2010). Using expert models in human
reliability analysis—a dependence assessment method based on fuzzy logic. Risk Analysis: An
International Journal, 30(8), 1277-1297.

Podofillini, L., Park, J., & Dang, V. N. (2013). Measuring the influence of task complexity on human
error probability: an empirical evaluation. Nuclear Engineering and Technology, 45(2), 151-164.

Prescott, S., Smith, C., & Vang, L. (2018). EMRALD, Dynamic PRA for the traditional modeler.
Proceedings of the 14th International Probabilistic Safety Assessment and Management
Conference.

Rabiti, C., Alfonsi, A., Cogliati, J., Mandelli, D., Kinoshita, R., Sen, S.,... Chen, J. (2017). RAVEN User
Manual. Idaho Falls: Idaho National Laboratory.

Rasmussen, J. (1980). Notes on human error analysis andp. In G. Apostolakis, S. Garribba, & G. Volta
(Eds.), Synthesis and Analysis Methods for Safety and Reliability Studies (pp. 357-389). Boston,
MA: Springer.

Rasmussen, M., Standal, M. I., & Laumann, K. (2015). Task complexity as a performance shaping factor:
A review and recommendations in Standardized Plant Analysis Risk-Human Reliability Analysis
(SPAR-H) adaption. Safety Science, 76, 228-238.

See, J. E., & Handley, (2019). History and Current Status of Human Readiness Levels.
https://www.osti.gov/servlets/purl/164594

St Germain, S., Boring, R., Banaseanu, G., Akl, Y., & Xu, M. (2016). Modification to the SPAR-H
method to support HRA for Level 2 PSA. 13th International Conference on Probabilistic Safety
Assessment and Management (PSAM 13), Paper A-112, pp. 1-9.

Swain, A. D., & Guttmann, H. E. (1983). Handbook of Human Reliability Analysis with Emphasis on
Nuclear Power Plant Applications. Final Report, NUREG/CR-1278. Washington, DC: U.S.
Nuclear Regulatory Commission.

Torres, Y., Nadeau, S., & Landau, K. (2021). Application of SHERPA (Systematic Human Error
Reduction and Prediction Approach) as an alternative to predict and prevent human error in
manual assembly. Congress of the 2021 International Ergonomics Association.

Ulrich, T., Boring, R., L., Ewing, S., & Rasmussen, M. (2017a). Operator timing of task level primitives
for use in computation-based human reliability analysis. Advances in Intelligent Systems and
Computing, 589, 41-49.

Ulrich, T. A., Lew, R., Werner, S., & Boring, R. L. (2017b). Rancor: A gamified microworld nuclear
power plant simulation for engineering psychology research and process control applications.
Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 61, 398-402.

