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ABSTRACT 

Environmental fatigue modeling is a complex problem due to multiple failure modes and 
their intermixing. The failure modes are function of various underlying causes in addition to the 
corrosive effect of reactor coolant environment. Some of the major causes are time-dependence 
of material associated with cyclic loading, load sequence effect associated with random/variable 
amplitude loading, effect of strain amplitude and rates, effect of varying temperature (along both 
temporal and spatial directions) and the effect of mean strain and stress. The nonlinear 
intermixing of failure modes associated with above mentioned causing parameters makes the 
environmental fatigue modeling is a challenging task. Because of this challenge, fatigue is 
traditionally being modeled based on experimental data. However, test based empirical approach 
often requires hundreds of fatigue tests to model the above-mentioned intermixing failure causes 
even for a single material system. The problem is further exaggerated for reactor component 
made from multi-material systems such as made from both carbon and stainless-steel base metals 
and their similar and dissimilar metal welds. With the difficulty of conducting hundreds of 
fatigue tests to capture the above-mentioned intermixing failure causes, fatigue modeling 
approaches often depends on empirical models based on limited available test data such as 
available through ASME code and NUREG 6909. However, these limited test-data-based models 
may not be enough to accurately predict the life of reactor components. Accurate prediction of 
life of reactor component would become a necessity, particularly when the license of the reactors 
to be extended for long-term-operation (LTO) that is for well beyond its original design life of 40 
years.  

The requirement of extending the license of reactor under LTO requires hundreds of fatigue 
tests to be conducted to understand the mechanism associated with the above-mentioned inter-
dependent failure causes. However, conducting large number of fatigue tests is not a feasibility 
due to the cost involved. To address this issues Argonne National Laboratory (ANL) with the 
sponsorship of DOE Light Water Reactor Sustainability (LWRS) program trying to develop a 
hybrid predictive modeling approach. This is based on limited experiment-data, Artificial-
intelligence (AI) – Machine-Learning (ML) - Deep-Learning (DL) based techniques and 
Multiphysics-computational-mechanics based modeling tools. The hybrid approach not-only can 
improve the accuracy of the existing stress analysis and fatigue modeling approach but also can 
reduce the over-dependency on test-based approach. Towards this goal following are some of the 
major contributions based on ANL’s FY-20 environmental fatigue modeling activities: 

1) A cyclic plasticity material model database for 82/182 dissimilar metal weld, which can be 
readily shared with US nuclear industry and regulatory agency on request. 

2) A well validated analytical modeling methodology to perform cycle-by-cycle stress 
prediction under both constant amplitude fatigue loading and variable amplitude fatigue 
loading (with load-sequence effect). 

3) An AI/ML/DL based methodology to predict unmeasurable cyclic strain based on other 
available sensor signals. This type of approach can be used for estimating strain in real 
reactor components from other sensor readings. 

4) An AI/ML based approach to improve the US capability on environmental fatigue testing. 
This is by improving ANL’s existing environmental fatigue testing capacity to conduct 



A Hybrid AI/ML and Computational Mechanics Based Approach for Time-Series State and Fatigue Life Estimation of Nuclear 
Reactor Components 

September 2020 

ANL/LWRS-20/01 ii 

ASME required strain-controlled tests (by controlling strain amplitudes and its rate), while 
not measuring the strain (due to the difficulty of placing an extensometer in a narrow 
autoclave in a PWR-water-test system). 

5) A simulation and experiment based probabilistic modeling methodology for time-series
fatigue state and life estimation of reactor metal such as dissimilar metal weld.
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1  Introduction 

 
In this report we present data and discussion related to a hybrid predictive modeling framework that 

can be used for stress analysis and life estimation of nuclear reactor components under cyclic loading. 
The overall modeling framework is based on limited experiment-data, Artificial-intelligence (AI) – 
Machine-Learning (ML) - Deep-Learning (DL) based techniques and Multiphysics-computational-
mechanics based modeling tools. Some of the related theoretical background and results (of the overall 
modeling framework) are presented in the following sections: 

 

a) Section 2: Brief Theoretical Background of the AI/ML/DL Techniques Used in the Discussed 
Work 
 

b) Section 3: Loading and Environment of Different Experimental Fatigue Test Cases 
 

c) Section 4: AI/ML Guided Seemingly Strain-Controlled Fatigue Test While Actually Not 
Controlling the Strain 

 

d) Section 5: Use of AI-Based Machine Learning and Deep Learning Techniques for Time-Series 
Strain Perdition from Other Sensor Measurements 

 

e) Section 6: A Hybrid AI-TensorFlow and Computational-Mechanics Based Approach for Cyclic 
Material Parameter Prediction 

 

f) Section 7: Analytical Model Based Cyclic Stress Analysis of Different DMW Test Cases under 
Constant and Variable Amplitude Cyclic Loading 

 

g) Section 8: Demonstration of the Use of Cyclic-Plasticity Material Parameters in 3D FE Model of 
a PWR Surge-line Nozzle 

 

h) Section 9: Markov-chain-Monte-Carlo Based Probabilistic-Time-Series State and Fatigue Life 
Estimation of DMW 

 

i) Section 10: Summary 
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2 Brief Theoretical Background of the AI/ML/DL Techniques Used in the Discussed 
Work 

 
In this section, we briefly discuss the theoretical background behind various artificial intelligence 

(AI), machine learning (ML) and deep learning (DL) techniques used in this report. Open source 
libraries such as Scikit-learn [1], TensorFlow [2] and Keras [3] were used for simulating the discussed 
results in this report. Although, these libraries are general purpose and can be used for any predictive 
modeling/simulation applications, in this report we used these libraries for time-series fatigue data 
prediction and optimizing the control input for fatigue test cases. The relevant mathematical background 
only pertinent to the discussed application are briefly discussed below. For more details it is suggested 
to refer to the websites [1-3] of the above-mentioned libraries and related publications such as [4, 5]. 
Previous work related to the specific use of the AI/ML technique for time-series fatigue prediction can 
also be found from [6-16]. 

2.1 Justification Behind Using AI/ML/DL Techniques for Fatigue Modeling 

 
In general, artificial intelligence (AI) techniques are based on set of logic or rules based on which a 

machine works. Machine learning (ML) and deep learning (DL) techniques are type of generic AI 
techniques. However, a generic AI technique may or may not produce desired performance/intelligence 
for a complex nonlinear and unseen problem for which the logic or rules are not previously well defined. 
Whereas, ML algorithms have the ability to learn without explicitly programming the logic or rules 
beforehand. A ML algorithm can decipher the structure of a complex nonlinear model if appropriate 
historical data provided. However, sometime ML algorithm may not give optimal solution due to the 
complexity of the underlying model. In that case, it might require dataset in additional dimensions (e.g. 
measurements from other types of sensor) and/or some previous knowledge of the functional form of the 
underlying model. However, it is not always possible to have dataset in additional dimensions and 
previous knowledge of the functional form of the underlying model. In that case DL algorithm can be 
our rescue. Figure 2.1 shows the schematic showing the difference between AI, ML and DL techniques. 
The DL algorithms are primarily based on multi-layer-perceptron (MLP) based neural network, which 
was developed based on the inspiration from the biological structure and function of the human brain. 
Fatigue data e.g. strain versus stress data are highly nonlinear (e.g. refer to Figure 2.2) and often may not 
be easy to model using conventional physics or mechanics-based approach. The complexity to decipher 
the underlying model structure further exaggerated by cyclic hardening and cycle softening leading to 
time-variation of the above mentioned already complex nonlinear system. Overall it leads to a combined 
nonstationary-nonlinear modeling problem. This type of complex modeling problem is not easy to 
model, only by using physics-based approach. The recent advancement in AI/ML/DL techniques can be 
combined with physics-based approach for modeling complex nonstationary-nonlinear models 
associated with the metal fatigue.  
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Figure 2. 1 Schematic of the difference between of AI, ML and DL techniques. 

 

 
Figure 2. 2 Example strain versus stress hysteresis data for 316SS-508LAS dissimilar metal weld 

subjected to variable amplitude loading. 
 

2.2 Brief Introduction to Multi-Layer Perceptron in Context of Time-Dependent Fatigue Data 
Modeling 

 
The multi-layer-perceptron (MLP) is an artificial neural network technique consisting of at least 3 

layers: one input layer, one output layer and at least one or more hidden or perceptron layers. In an MLP 
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network a set of inputs used to train the model. This is by feeding the inputs to the perceptron layer 
consisting of multiple perceptrons (also known as or node or neurons). Each node/neuron capture a 
linear function along with an activation function. The outputs of the layer passed into next layer as an 
input of the next layer. Figure 2.3 shows the schematic of MLP network. The MLP network can be used 
for modeling time-series fatigue damage. This is by setting a mapping function between the time-
varying or cyclic damage causing inputs (e.g. strain, temperature, etc.) and resulting observed outputs 
(e.g. stress). If we can map the relation between the input-output based on historical fatigue test data, the 
underlying model can be used for predicting unknown outputs for a given/known set of input 
information. Before using an MLP network, it must be first trained that means the underlying model 
structure has to be deciphered. The model training process must be based on historical input-outputs 
data. The training must be done in an iterative step, with each iterative step consisting of two processes: 
forward propagation and backward propagation processes (refer to Figure 2.3). In a forward 
propagation, information feeding process goes from left to right for predicting the output over the entire 
layers with each layer consisting of multiple nodes/neurons. This is based on chosen weight and biased 
parameters. In the backward propagation steps, the training process goes from right to left by calculating 
the partial derivatives of the loss or objective function (L) with respect to different weight and bias 
parameters of different layers consisting of multiple nodes. In this report mean square error (MSE) based 
loss function is used to train the Scikit-learn (section 2.3) and Keras (section 2.4) based time-series 
models. With    and , respectively the true and predicted observation at time   , the MSE 
based loss function can be given as: 

 

                                                    (2.1) 

 
The backward process is to update the previously chosen/calculated weight and bias parameters of 

each layer so that the loss function (which track the error in each iteration) is reduces in the next 
iteration. The eventual aim is to find the global optima of weight and bias parameters. Finding global 
optima sometime is not straight forward, often complexity of the model can lead to local optima trap. 
Figure 2.4 shows the difference between global optima and local optima trap. Time-series fatigue 
modeling can often lead to non-convex function modeling problem associated with local optima trap. 
This is due to nonstationary fatigue damage process associated with cyclic hardening/softening and its 
association with multiple failure/damage modes. A nonstationary damage process can be modeled using 
piecewise time-series modeling which results are discussed in section 5.  
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Figure 2. 3 Schematic of an MLP network with time-varying fatigue damage causing inputs (e.g. strain, 

temperature, etc.) and resulting observed outputs (e.g. stress). 
 
 

 
Figure 2. 4 Schematic showing the difference between global optima and local optima trap. 
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2.3 Use of Scikit-learn-Regression Library for Time-Series Fatigue Data Prediction 

 
The Scikit-learn library [1] was used for predicting time-series strain from other sensor 

measurements. The related results are presented in section 5. The Scikit-learn (also popularly known as 
sklearn) library is a python-based AI/ML library that can used for time-series regression modeling 
problems. In the discussed work (refer to section 5) Scikit-learn based multivariable regression 
technique was used to predict unmeasurable strains in a PWR-water system. In a PWR-water system 
(refer to Figure 3.6), the test specimen is required to be placed in a narrow autoclave in which an 
extensometer cannot be placed to measure strains due to lack of space, wiring problems and due to high-
temperature flow inside the autoclave). This led us to use AI/ML based Scikit-learn/regression technique 
for predicting the time-series strains based on the other sensor measurements. For given set of historical 
data such as from a replica in-air test (refer to Figure 3.5), an input-output mapping function can be 
estimated. Note that in an open in-air test system, strain can be measured by placing an extensometer at 
the gauge section of the specimen. Based on the in-air-test-based mapping function, the time-dependent 
strain in an autoclave environment can be estimated for a given set of time-dependent input variables 
(e.g. sensor readings measured in PWR-water system). For the mentioned multivariate regression 
problem four independent dimensions were considered. Those are time, displacement measurements 
through pull-rod, stress measurements through load-cell, and actuator-displacement measurements 
through LVDT sensors. The time-dependent strain can be expressed in terms of these input dimensions 
( ) and associated model parameters ( ) as follows: 

 
                                   (2.2) 

 
Given the set of historical  and true value of strain   the 
model parameters ( ) can be estimated by optimizing the following loss function: 

 

                                                    (2.3) 

As discussed in section 2.2, a global optimum of  may not be achievable for the entire fatigue life 
requiring piecewise parameter estimation. The piecewise parameter estimation can be done by 
clustering/grouping the entire fatigue life to different sets. The clustering can be done using Scikit-learn 
library-based k-mean clustering technique discussed in section 2.6.  
 

2.4 Use of Keras Deep Learning Library for Time-Series Fatigue Data Prediction 

 
The Keras library [3] was used for predicting strain from other sensor measurements and the related 

results are presented in section 5. As mentioned in section 2.1 it may not always possible to predict a 
nonstationary-nonlinear function accurately using a usual AI/ML based technique (such as above 
discussed Scikit-learn based techniques), unless data from all underlying dimensions and/or the 
functional structure of the mapping function is known beforehand. Although for predicting strain from 



A Hybrid AI/ML and Computational Mechanics Based Approach for Time-Series State and Fatigue Life Estimation of Nuclear 
Reactor Components 
September 2020 
 

     ANL/LWRS-20/01 
  

7 

other sensor measurement, we used the above mentioned Scikit-learn based AI/ML library, we tried to 
further improve the accuracy by using deep learning based Keras library. This library is a high-level 
application programming interface (API) and based on the MLP network discussed in section 2.2. The 
high-level API of Keras is based on underlying TensorFlow library [2], which brief discussion follows. 
Figure 2.5 shows the relation between Keras and TensorFlow library. To estimate the mapping function 
between strain and input dimensions (refer to section 2.3),  three perceptron layers with each layer 
having ten neurons (refer to section 2.2) were used. The parameters were optimized using the loss 
function given in Eq. 2.3. The Keras models were tested using both Relu and Sigmoid activation 
functions [2,3].  

 
Figure 2. 5  Schematic showing the relation between Keras and TensorFlow library. 

  

2.5 Use of TensorFlow Library for Cyclic Stress-Strain Curve Prediction 

 
The TensorFlow (TF) library [2] was used for predicting equivalent cyclic stress-strain curve from 

the variable-amplitude test-based stress-strain data. The related results are presented in section 6. The 
TensorFlow library is based on graph-based computation. Compare to Keras library, TF library gives 
flexibility to choose appropriate functional form for faster convergence compared to the higher level 
Keras library.  However, one need to provide appropriate function. We selected hyperbolic tangent 
function to map the underlying strain versus stress data (for example refer to Figure 2.2) measured under 
a single loading block (refer to Figure 3.10). The predicted stress (  of the cyclic-stress-strain 
curve can be represented in terms of the input strain  using the following expression: 

 

                                                    (2.4) 

 
where  and  are the weight and bias parameters (if any), respectively. The resulting equivalent stress-
strain curve can be estimated by optimizing the following loss function:   
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                                                    (2.5) 

The loss or objective function can be optimized by using the gradient tape API within the TF library. 
The gradient tape API library perform the automated partial differentiation of the loss function. 

 

2.6 Use of Scikit-learn Library Based k-Mean Clustering Technique for Optimizing Fatigue-Test 
Control Inputs and Improving Time-Series Fatigue Data Prediction Techniques 

 
The Scikit-learn library [1] based k-mean clustering technique was used for optimizing the inputs for 

pull-rod-displacement-control-based PWR-water fatigue test cases (refer to section 4). The k-mean 
clustering technique was also used for dividing the entire fatigue life to different subdomains for 
piecewise strain prediction (refer to section 5). The k-mean clustering is a method of vector quantization 
used for segregating a given multi-dimensional vector data set in to ‘k’ numbers of cluster. This is by 
choosing initial cluster centers and then optimizing the locations of those cluster centers by optimizing 
the euclidean distance between the cluster centers and the given multi-dimensional ‘n’ data points.  
Figure 2.6 shows an example two-dimensional data sets with four cluster (and cluster center). Whereas, 
a m-dimensional fatigue data set can be represented by the following tensor: 

 
                                          (2.6) 

 
Where,  are individual vector data representing different underlying dimensions with each 
dimension consisting of  time-dependent data. For the discussed fatigue modeling case the 
cycle/time dependent maximum/minimum stress, pull-rod displacement, stress and/or frame actuator 
displacement are used as input dimensions. Assuming there are ‘k’ numbers of cluster, the centroid of 
the individual cluster can be a function of underling input dimensions (or coordinates) and can be 
expressed as: 
 

                                          (2.7) 

 
The euclidean distance between the pth cluster center and different m-dimensional data points can be 
expressed as: 

 
                                        (2.8) 
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The optimal k-mean cluster can be estimated by optimizing the loss or objective function such as sum of 
the square error between individual data points and the iteratively optimized cluster centers. The loss 
function can be given as: 
 

                                                    (2.9) 

 

 
Figure 2. 6 Example two-dimensional data sets with four cluster. 

 

2.7 Markov-Chain-Monte-Carlo Based Probabilistic Fatigue Life Prediction 

 

In our previous work [6] we proposed the use of Markov-Chain-Monte-Carlo (MCMC) techniques 
for probabilistic prediction of time-dependent damage states (such as stress). Then, the probabilistic 
fatigue life can be estimated based on the estimated probabilistic time-series data and given a failure 
criterion. In section 9 we used the MCMC model for probabilistic estimation of the cycle versus 
maximum stress data for DMW test cases. Based on this probabilistic-time-series data and given failure 
criteria (such as ASME 25% load drop criteria) the probabilistic life of DMW test cases was estimated. 
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3 Loading and Environment of Different Experimental Fatigue Test Cases 

 
In this section different fatigue test cases and their purpose are summarized. The related strain 

amplitudes, specimen dimension, material and test environments are presented. According to their use, 
the associated test results are presented and discussed in the succeeding sections. 

 

3.1 Justification for Selecting Strain Amplitudes for Different Fatigue Testing  

 
In our previous report [17], we presented detailed results and discussion associated with 3D finite 

element (FE) model based thermal-mechanical stress analysis of PWR surge-line nozzle and pressurizer-
bottom-head assembly. This model was simulated under design-basis loading (with considering 
corresponding temperature and pressure transients under the entire heat-up, full-power-operation and 
cool-down operations). The model was simulated considering most limiting displacement boundary 
conditions (for details refer to [17]). Below presented Figures 3.1 and 3.2 show some representative 
results (directly taken from [17]) based on which the strain amplitude of 0.6 to 0.65 % are selected for 
majority of the test cases discussed in this report. For example, Figure 3.1 shows the FE simulated total, 
thermal, and mechanical strain (along max. principal direction) at the maximum stress element of the 
DMW region (refer to Figure 3.2) of the surge-line nozzle assembly. From the Figure 3.1 the DMW filer 
weld region experiences a maximum principal thermal, mechanical and total strains of 0.3426 %, 1.0642 
% and 1.4068 %, respectively. From the Figure 3.2, DMW filler weld region experiences lowest thermal 
strain compared to the other regions. Despite of lower thermal strain, the DMW filler weld regions 
experiences a high mechanical and total strain. In a severe limiting (thermal and displacement) boundary 
condition case, a high total and mechanical strain can lead to low cycle fatigue failure of surge-line 
nozzle. Based on the above-mentioned maximum mechanical and total strain range of 1.0642 % and 
1.4068 % respectively, we selected a maximum strain amplitude of either 0.6 or 0.65% for most of the 
discussed test cases. This is in assumption that the developed material model can capture the stress-
strain behavior of surge-line nozzle subjected to thermal-mechanical loading that can create a maximum 
strain range of 1 to 1.4%.  
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Figure 3. 1 FE model (case-1) simulated total, thermal, and mechanical strain (along max. principal 

direction) at the maximum stress element of the DMW-filler: (a) full design-basis cycle, (b) during heat-
up, and (c) during cool-down [17] 

 

 
Figure 3. 2 Maximum principal thermal strain contour plot at 1.3717 days (32.921 hours) from the start 
of the heat-up operation showing the DMW region experiences least thermal strain compared to other 

regions [17]. 
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3.2 Test Specimen and Test Setup  

 
In this report, we present result from fatigue tests either conducted using 316ss pure base metal 

specimens or DMW filler/butter weld specimens. Figure 3.3 shows the cross-section of the weld plates 
(only near the weld region) from which the weld specimens were fabricated. The fatigue tests were 
conducted using the weld specimens. For all test we used hourglass-type specimens, which geometry 
information can be found from Figure 3.4. We used either in-air test system (Figure 3.5) or a PWR-
water-loop test system (Figure 3.6) to conduct the respective in-air or PWR-water environment fatigue 
tests.  

 
Figure 3. 3 Cross-section of the weld plates (only near the weld region) and location of the along-the-

length weld and HAZ specimens. 
 

 
Figure 3. 4 Geometry of hourglass-type specimens. 
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Figure 3. 5 a) Test section with induction heating coil, b) LEPEL induction heating system, and c) close 

view of induction heating coil and specimen and high-temperature extensometer location. 
 

 
Figure 3. 6 Environmental test loop showing different subsystems. 
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3.3 Loading Inputs and Environment for Different Test Cases 

All the tests reported in this report were conducted in an intention to create certain strain amplitudes 
in the gauge area of the test specimen. However, the tests were conducted either controlling the gauge 
area strain or the pull-rod displacement (refer to Figure 3.5). Table 3.1 summarizes the test environment, 
intended strain amplitude, strain rates and the control mode followed for the individual test cases. This 
table also summarizes the purpose of the different test cases in context of the results discussed in this 
report. The input loading for the different test cases are presented through Figure 3.7 to 3.14. Other than 
the AI-guided multistep test cases (ET-F58, ET-F61 and EN-F62), the shown test inputs were repeated 
for the entire fatigue life. For AI-guided multistep test cases the loading inputs were presented for first 
cycle only as an example. However for AI-guided test cases, different set of test inputs were used for 
different groups of cycles. The grouping of cycles was based on cluster analysis results discussed in 
section 4.  

Table 3. 1 Summary of test environment, test inputs and purpose of different fatigue test case. 
 Test ID Materia

l 

Test 

environment 

Test input Purpose in this report 

*LWRS/
ET-F13

316 base 
metal 

In-air, 
300 oC 

Non- 
optimized pull-rod 
displacement 
(max. amp of 
0.1313 mm or 
5.1693 mil) 
control with 
intended max. 
strain amp. 0.5% 
and strain rate of 
0.1%/s 

# Comparison w.r.t AI/ML 
guided pseudo-strain-controlled 
fatigue test (refer to section 4) 

*LWRS/
ET-F49

316 base 
metal 

In-air, 
300 oC 

Improved but not 
optimized pull-rod 

displacement 
control with 

intended max. 
strain amp. 0.65% 
and strain rate of 

0.1%/s 

# Comparison w.r.t AI/ML 
guided pseudo-strain-controlled 
fatigue test (refer to section 4) 

*LWRS/
ET-F54

82/182 
DMW 
(Filler 
weld) 

In-air, 
300 oC 

Non-optimized 
pull-rod 

displacement 
control based on 

FE model of PWR 
SL nozzle under 
design basis load 

(with intended 
max. strain range 

# AI/ML based strain prediction 
validation under non-stationary 
type loading 
(refer to section 5) 
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of 0.91% and 
strain rate of 

0.1%/s) 
LWRS/ 
ET-F57 

82/182 
DMW 
(Filler 
weld) 

In-air, 
300 oC 

Variable amplitude 
(0.1 to 0.65%) 

strain control with 
strain rate of 

0.01% 

# Hybrid AI/ML and solid 
mechanics-based 
material/constitutive model 
development (refer to section 6) 

# Validation of computational 
mechanics-based analytical 
model (refer to section 7) 

# Markov-Chain-Monte-Carlo 
model for probabilistic life 
estimation (refer to section 9) 

LWRS/ 
ET-F58 

316 base 
metal 

In-air, 
300 oC 

AI/ML based 
optimized pull-rod 

displacement 
control with 

intended max. 
strain amp. 0.6% 
and strain rate of 

0.01%/s 

# Validation of AI/ML guided 
pseudo-strain-controlled fatigue 
test (refer to section 4)  

LWRS/ 
ET-F59 

82/182 
DMW 
(Butter 
weld) 

In-air, 
300 oC 

Constant 
amplitude (0.6%) 
strain control with 

strain rate of 
0.01%/s 

# Comparison w.r.t AI/ML 
guided pseudo-strain-controlled 
fatigue test (refer to section 4) 

# Validation of computational 
mechanics-based analytical 
model (refer to section 7) 

LWRS/ 
ET-F60 

82/182 
DMW 
(Filler 
weld) 

In-air, 
300 oC 

Non- optimized 
pull-rod 

displacement 
control with 

intended max. 
strain amp. 0.6% 
and strain rate of 

0.01%/s 

# Comparison w.r.t AI/ML 
guided pseudo-strain-controlled 
fatigue test (refer to section 4) 

# Validation of computational 
mechanics-based analytical 
model (refer to section 7) 

LWRS/ 
ET-F61 

82/182 
DMW 
(Filler 
weld) 

In-air, 
300 oC 

AI/ML based 
optimized pull-rod 

displacement 
control with 

intended max. 

# Validation of AI/ML guided 
pseudo-strain-controlled fatigue 
test (refer to section 4) 

# AI/ML based strain prediction 
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strain amp. 0.6% 
and strain rate of 

0.01%/s 

validation under non-stationary 
type loading 
(refer to section 5) 

# Validation of computational 
mechanics-based analytical 
model (refer to section 7) 

LWRS/ 
EN-F62 

82/182 
DMW 
(Filler 
weld) 

PWR-Water, 
300℃, Water 

chemistry: 
1000 ppm B 
as H3BO3, 2 
ppm Li+ as 
LiOH, 20% 
H2/bal. N2 

cover gas, and 
DO < 5 ppb 

AI/ML based 
optimized pull-rod 

displacement 
control with 

intended max. 
strain amp. 0.6% 
and strain rate of 

0.01%/s 

# AI/ML based strain prediction 
under non-stationary type loading 
and PWR-water environment 
(refer to section 5) 

# PWR water condition Fen 
estimation of 82/182 DMW 

# Markov-Chain-Monte-Carlo 
model for probabilistic life 
estimation of DMW  
(refer to section 9) 

* Tests were conducted in earlier FY and some of the related results can be found from our earlier
publications [17].

Figure 3. 7 Pull-rod-displacement that was applied to ET-F13 (316SS base) specimen until its failure. 
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Figure 3. 8 Improved pull-rod-displacement (and corresponding intended strain amplitude) that was 

applied to ET-F49 (316SS base) specimen until its failure. 

 
Figure 3. 9 Pull-rod displacement (and corresponding intended strain amplitude) that was applied to ET-

F54 (82/182 DMW filler weld) specimen over the entire fatigue life. 
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Figure 3. 10 A single-block of variable amplitude gage-area strain that was applied to ET-F57 (82/182 

DMW filler weld) specimen until its failure. 
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Figure 3. 11 Example first cycle input (out of different inputs applied to different cycles selected based 

on AI/ML based clustering technique) of pull-rod-displacement that was applied to ET-F58 (316SS 
base) specimen. 

 

 
Figure 3. 12 A single-block of constant amplitude gage-area strain that was applied to ET-F59 (82/182 

DMW butter weld) specimen until its failure. 
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Figure 3. 13 Pull-rod-displacement (and corresponding intended strain amplitude) that was applied to 

ET-F60 (82/182 DMW filler weld) specimen until its failure. 
 

 
Figure 3. 14 Example first cycle input (out of different inputs applied to different cycles selected based 
on AI/ML based clustering technique) of pull-rod-displacement that was applied to ET-F61 & EN-F62 

(82/182 DMW filler weld) specimens. 
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4 AI/ML Guided Seemingly Strain-Controlled Fatigue Test While Actually Not 
Controlling the Strain 

 
Low cycle fatigue evaluation technique primarily based on strain-controlled fatigue test data such as 

using strain versus life (ε-N) curves. For generating the ε-N curves, the fatigue test to be conducted 
using strain cycles with constant strain amplitude. This is required for generating ε-N curves under both 
in-air and PWR-water conditions. Although conducting strain-controlled fatigue tests under in-air 
condition is not an issue, since an extensometer can be used for measuring the strains and then those 
strain measurements can be used as feedback (to the test frame controller) to maintain the desired strain 
amplitude and strain rates. However, controlling strain in a PWR water test is a challenge, since an 
extensometer cannot be placed in a narrow autoclave (typically used in a high-temperature-pressure 
PWR-loop). This is due to lack of space inside an autoclave that houses the test specimen. In addition, 
installing a contact-type extensometer in the path of a high-pressure flow can be a challenge. These 
difficulty of using an extensometer in a PWR-water loop led us to use an outside-autoclave displacement 
sensor instead. This is by measuring the displacement of pull-rods (refer to Figure 3.5) and using those 
measurements to control the gauge area strain of a PWR-water specimens. To achieve a desired strain 
amplitude and strain rate the corresponding pull-rod displacement amplitudes and its rates (or equivalent 
time information) need to be fed to the test frame. In earlier ANL conducted fatigue tests the pull-rod 
displacements were chosen based on the strain versus pull-rod data obtained during a tensile test. Like in 
any contestant-amplitude strain-controlled fatigue tests, the input pull-rod-displacements are maintained 
same for the entire fatigue life. Although pull-rod-displacement-control method was used as a solution 
to conduct the desired train-controlled fatigue tests, but question is that can a pull-rod controlled tests 
generate the desired strain.  In our study (based on in-air fatigue tests), we found that a pull-rod-
controlled based fatigue tests can lead to substantially different cyclic strain amplitudes and its rates 
compared to the desired constant cyclic strain amplitudes and its rates. These issues led us to think how 
to improve the pull-rod-displacement-control based tests such that a desired strain amplitude and rates 
can be achievable. For the purpose we used AI/ML based techniques such as Scikit-learn library [1] 
based k-mean clustering technique to improve our pull-rod-control based test method. The theoretical 
background of the k-mean clustering technique is briefly discussed in section 2. The k-mean technique is 
an unsupervised AI/ML technique which segregate the data of inter-dependent field variables (can be 
considered as inter-dependent dimensions in a high-dimensional feature space) to a few groups or 
clusters. For example, in a fatigue tests the cycle-dependent sensor observations can be clustered into 
few groups based on which the test parameter can be selected. This is by assuming each time-series data 
stream as individual dimensions and they are dependent to each other. For example, the cyclic maximum 
and minimum amplitude of gauge strain amplitude (measured through an extensometer), pull-rod 
displacements (measured through a pull-rod displacement sensor), frame actuator displacement 
(measured through test frame LVDT sensor) and stress (measured through frame load cell) are assumed 
inter-dependent and their cyclic variation can be clustered into few groups. Based on this grouping the 
corresponding median fatigue cycle and the corresponding pull-rod-displacement versus strain data (in 
previously conducted pull-rod-displacement controlled in-air test) can be selected to generate the input 
test parameters for the individual clusters. This process can lead to a multi-step fatigue testing approach 
with varying pull-rod-displacement inputs rather than a fixed set of test inputs for the entire fatigue life. 
In the mentioned AI/ML guided test procedure, a set of test inputs were only repeated for the particular 
set of fatigue cycles, which were estimated from the above discussed k-mean clustering technique. Note 
that the test frame controller does not allow feeding thousands of different sets of parameters to achieve 
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the strain amplitudes and rates during entire fatigue domain with thousands of fatigue cycles. Also 
coding different sets of parameters for each and every fatigue cycle is cumbersome and error prone.  
Hence, we believe the above-mentioned AI/ML based clustering technique is a possible solution to 
achieve seemingly strain controlled tests while actually not controlling the strains. To demonstrate the 
approach, we conducted different fatigue tests using both 316SS base metal and DMW filler/butter weld 
specimens (refer to Table 3.1 for detail test conditions) and the corresponding results are discussed 
below. 
 

4.1 316SS Base-Metal Fatigue Test Results 

 

The AI/ML guided tests for 316SS base metal are conducted for ET-F58 in-air test. The test 
parameters are generated based on the cluster analysis of ET-F49 test data. This is by clustering the 
inter-dependent cycle versus maximum and minimum amplitude of gauge strain, pull-rod displacements, 
frame actuator displacement and stress data. Eight inter-dependent time-series data stream or dimensions 
were considered for development of the discussed k-mean clustering model. Figure 4.1 shows only the 
example 2-dimensional dependency between frame maximum actuator displacement and corresponding 
specimen gage area maximum strain. Whereas, Figure 4.2 shows the estimated cycle versus 
corresponding cluster numbers showing how the entire ET-F49 fatigue-test data clustered into only 5 
different groups/clusters based on all the 8 dimensions. Based on this cluster analysis, the test 
parameters for the ET-F58 test case were chosen. Figures 4.3, 4.4 and 4.5 shows the ET-F58 test results 
and their comparison with respect to non-AI/ML-guided test conditions (such as for ET-F13 and ET-F49 
fatigue tests). For example, Figure 4.3 shows the observed cycle versus strain amplitude in different 
fatigue tests conducted using the mentioned 316SS base metal specimens. Whereas, Figure 4.4 shows 
the corresponding observed cycle versus strain rate. Figure 4.5 shows the corresponding observed cycle 
versus max./min stress. From Figure 4.3, the ET-F49 observed strain amplitude substantially reduced to 
0.45% although it was originally intended to achieve a strain amplitude of 0.65%. This is almost a 
reduction of 31%. Similarly, from Figure 4.4 the strain rate for ET-F49 test was reduced to 0.07% 
although it was originally intended to achieve a strain rate of 0.1%/s. This is approximate a strain rate 
drop of 30% from the intended strain rate. Contrary, in the AI/ML guided test case (ET-F58), it can be 
found that the cyclic strain amplitude varies approximately within a range of 0.6 to 0.65 % for majority 
of the fatigue life, while the intended strain amplitude was 0.6%. Similarly, from the Figure 4.4, the 
observed strain rates for ET-F58 specimen broadly follow the intended strain rate of 0.01%/s.  Note that 
strain rate is one of the major parameters that affect the environmental correction factor (Fen). Hence it is 
essential to control the desired strain rates in a PWR-water test case, otherwise the resulting Fen would 
be highly erroneous. 
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Figure 4. 1 A 316SS fatigue-test (ET-F49) based clustered data showing the example 2-dimensional 
dependency between frame maximum actuator displacement and corresponding specimen gage area 
maximum strain. Raw data in an individual cluster (plotted with single color) are reparented by dots 

whereas, the solid circles represent the corresponding cluster center. 
 

 
Figure 4. 2 Cycle versus corresponding cluster numbers showing how the entire ET-F49 fatigue-test data 
clustered into only 5 different groups/clusters based on which the ET-F58 test parameters were chosen. 
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Figure 4. 3 Observed cycle versus strain amplitude in different fatigue tests conducted using 316SS base 

metal specimens. 

 
Figure 4. 4 Observed cycle versus strain rate in different fatigue tests conducted using 316SS base metal 

specimens. 
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Figure 4. 5 Observed cycle versus max./min stress in different fatigue tests conducted using 316SS base 

metal specimens. 
 

4.2 DMW Filler/Butter-Weld Fatigue Test Results 

 

The AI/ML guided test procedure was used for improving the fatigue test of DMW specimens. First 
a usual pull-rod-controlled based in-air test conducted to have the base data for cluster analysis and pull-
rod-displacement versus strain mapping data. For the purpose ET-F60 in-air test was conducted (refer to 
section 3 for test conditions). Using the resulting cycle versus maximum and minimum amplitude of 
gauge strain, pull-rod displacements, frame actuator displacement and stress data, the k-Mean clustering 
(refer to section 2.6) simulation was performed to group the entire fatigue domain to 9 clusters (in 
addition to first cycle).  Figure 4.6 shows ET-F60 test case based clustered data showing the example 2-
dimensional dependency between frame maximum actuator displacement and corresponding specimen 
gage area maximum strain. Figure 4.7 shows the cycle versus corresponding cluster numbers showing 
how the entire ET-F60 fatigue-test data clustered into only 9 different groups/clusters. Based on this 
cluster analysis results, the median cycles of the clustered-cycles were selected to consider the 
corresponding cyclic stroke versus strain data (from ET-F60 test data) for deriving the intermittent 
mapping function between output pull-rod-displacement and the input strain. The mapping functions 
were modeled to predict the output pull-rod-displacement for a given input of strain amplitude and rates. 
Using this mapping function, the intermittent cycle pull-rod-displacements were estimated for the 
corresponding desired strain amplitude and rates. The estimated pull-rod-displacements were coded to 
the test frame controller as input or control parameters. Note that (for both the 316SS and DMW test 
cases) the first cycle data was not included in the cluster analysis. This is due to its specific 
tensile/monotonic behavior associated with its first quarter loading. First cycle was directly mapped 
(between the input strain and the output pull-rod-displacement) and resulting time versus pull-rod-
displacement input were coded to test frame controller for first cycle loading only. Afterward, the 
intermittent time versus pull-rod-displacement input were repeated for the respective clustered cycles. 
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Based on these AI/ML guided test-frame inputs two DMW metal specimens (ET-F61 under 300 oC in-
air conditions and EN-F62 under 300 oC PWR-water conditions) were fatigue tested. Example plot 
showing the time versus pull-rod-displacement input is shown in Figure 3.14. To check the efficacy of 
the AI/ML guided method (in respect to DMW weld specimens) the ET-F61 results are compared 
against the ET-F60 results. For example, Figure 4.8 shows the comparison of observed cycle versus 
strain amplitudes. Whereas as Figure 4.9 shows the corresponding comparison of observed cycle versus 
strain rates. Figure 4.10 shows the corresponding observed cycle versus max./min stress in addition to 
the max./min stress observed in EN-F62 water-loop tests for which strain was not measurable. From the 
Figure 4.8 for the ET-F60 test case the strain amplitude varies substantially from the intended amplitude 
of 0.6%. The lowest achieved amplitude is approximately of 0.42%. This leads to an error of 30%. 
Whereas for AI/ML guided test ET-F61, the strain amplitude falls in a range of 0.6-0.65% during the 
majority of test specimen fatigue life. From the Figure 4.9, the observed strain rate for ET-F60 specimen 
varies monotonically over the fatigue life. It reduces to an approximate value of 0.007 %/s whereas the 
intended strain rate for the test was 0.01%/s. This leads an approximate error of 30%. Whereas from the 
corresponding AI/ML guided in-air test (ET-F61), the observed strain rate broadly varies about desired 
strain rate of 0.01 %/s, during most of the fatigue life. From Figures 4.8 and 4.9 it can be seen that 
during final failure, the specimen experiences asymptotic increase of strain amplitude and strain rate. 
This is due to the final-failure regime related instability which lead to tensile rupture rather than the 
intended fatigue damage. Hence, last few cycle data in context of strain amplitude and strain rate control 
are not relevant.  Figures 4.8 to 4.10 show also the comparison of results for corresponding strain-
controlled test case (ET-F59), which was fatigue tested with strain amplitude and rate of 0.6 % and 
0.01%/s, respectively. 

Figure 4. 6 A DMW fatigue-test (ET-F60) based clustered data showing the example 2-dimensional 
dependency between frame maximum actuator displacement and corresponding specimen gage area 
maximum strain. Raw data in an individual cluster (plotted with single color) are reparented by dots 

whereas, the solid circles represent the corresponding cluster center. 
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Figure 4. 7 Cycle versus corresponding cluster numbers showing how the entire ET-F60 fatigue-test data 

clustered into only 9 different groups/clusters based on which the ET-F61 and EN-F62 test parameters 
were chosen. 

 

 
Figure 4. 8 Observed cycle versus strain amplitude in different fatigue tests conducted using DMW 

filler/butter metal specimens. 
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Figure 4. 9 Observed cycle versus strain rate in different fatigue tests conducted using DMW filler/butter 

metal specimens. 
 

 
Figure 4. 10 Observed cycle versus max./min stress in different fatigue tests conducted using DMW 

filler/butter metal specimens. 
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4.3 Observed Environmental Correction Factor for DMW Metal 

 
 

Environmental correction factor ( ) needed to be estimated for DMW specimen. This is for 
using S~N curve-based life estimation approach such as using the approach described in NUREG-6909 
[20]. For estimating the , two parallel tests were conducted under in-air and PWR-water environment 
but under similar loading. Considering an in-air life (  ) of 1132 cycles (obtained through in-air ET-
F61 test) and a PWR-water life ( ) of 842 cycles (obtained through PWR-water EN-F62 test), the 
environmental correction factor ( ) for DMW (with strain rate of 0.01 %/s) can be found as:  
 

 =                                                          (4.1) 
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5 Use of AI-Based Machine Learning and Deep Learning Techniques for Time-Series 
Strain Prediction from Other Sensor Measurements 

 
In this section, we discuss artificial intelligence (AI) based machine leaning (ML) and/or deep 

learning techniques (DL) approaches to predict time-series cyclic strain in an inaccessible autoclave. In 
an PWR-water test loop (refer to Figure 3.6), a narrow autoclave is being used to house the test 
specimen. The narrow autoclave along with high-pressure-high-temperature flow of coolant water don’t 
allow to place an extensometer inside the autoclave. This makes difficulty to know how much strain 
being created in the gauge area of specimen. Note that, ASME code requires strain-controlled tests for 
low cycle fatigue assessment of reactor components. However, without measuring how much strain 
imposed on a specimen, it is difficult to ascertain the accuracy of the fatigue tests particularly conducted 
using the above mentioned PWR-water test loop. With the difficulty of measuring strain, we use the 
pull-rod-displacement measurements (refer to Figures 3.5 and 3.6) to control the fatigue test. However, 
controlling pull-rod displacement creates cyclic strain hardening/ softening leading to substantial cyclic 
variation of strains from the original anticipated strain (estimated based on tensile test-based pull-rod-
displacement versus strain mapping function). Cyclic strain not only follows a complex hysteresis 
behavior with respect to applied pull-rod-displacement, but also the overall hysteresis behavior changes 
over time/cycles due to cyclic strain hardening/softening. Without the proper knowledge of generated 
strain in a PWR-water test specimen, it not only creates the difficult to ascertain the accuracy of the 
fatigue tests but also create issue of developing cyclic-plasticity material models which are based on the 
observed cyclic strain versus stress data. In the reported work, we attempted to solve the issue of 
predicting strain in an autoclave environment. This is by using AI based ML and/or DL, techniques such 
as exploring the use of Scikit-learn [1] and Keras [3] libraries. In the discussed results, we used both 
Scikit-learn based multi-variate regression (refer to section 2.3) and Keras based deep learning 
regression (refer to section 2.4) for time-series cyclic strain prediction. The cyclic strain predictions 
were made considering 4 independent dimensions such as time, pull-rod-displacement measurements, 
frame-actuator-displacement measurements and frame-load-cell measurements. This is a type of sensor 
fusion approach, in which multi-dimensional sensor measurements (from different type of sensors) 
combined/fused together to map some features. We also used the Scikit-learn based clustering 
techniques (refer to section 2.6) to cluster/group the entire fatigue life to multiple subdomains. This is to 
piecewise strain prediction for dealing with non-stationarity issues associated with cyclic 
hardening/softening under cyclic loading. First the approach was validated against in-air test data for 
which not only the input dimension data (time, pull-rod-displacement measurements, frame-actuator-
displacement measurements and frame-load-cell measurements) are available but also the output strain 
measurements are available (due to the possibility of using an extensometer to measure the gauge area 
strain). Two cases of validation were made: First using ET-F54  in-air test data, for which the DMW 
specimen was tested under unsymmetrical design-base fatigue loading (refer to section 3), second using 
ET-F61 in-air-test data for which the DMW specimen was tested under symmetrical fatigue loading 
(refer to section 3). Based on the validation results, we found Keras deep learning model (with Relu 
activation function) produces best results and later used for predicting the strain under PWR-water loop 
test case such as of EN-F62 test case. The details of the results are presented below. 
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5.1 Validation case-1: Cyclic Strain Prediction for Fatigue Test Specimen Subjected to ET-F54 
Unsymmetrical Design-Basis Cyclic Loading 

 
The AI/ML/DL learning models were tested from different aspects such as checking the effect of 

input dimensions for example can a single dimension (or input measurements) can be able to predict the 
strain accurately. Also, we checked which AI/ML/DL model and activation functions give best results 
and what are the computational time for each approach. We also tested the efficacy of the piecewise 
modeling approach using k-mean based clustering technique.  The related test results with respect to ET-
F54 loading case were discussed below. Note that the ET-F54 specimen was a DMW filler weld 
specimen and was tested under in-air environment while subjected to unsymmetrical-design-basis cyclic 
loading. The pull-rod-displacement based loading parameters were selected based on the finite element 
model of PWR surge-line nozzle (refer to section 3).  

5.1.1 Study the effect of independent variables on accuracy of strain estimation under unsymmetrical 
design-basis cyclic loading 

 
Part of this study we checked the effect of individual input dimension. For the purpose we used 

Keras deep learning model (refer to section 2.4) with Relu activation function. We only considered first 
50 cycles for the mentioned input-dimension-dependency validation check. Note that we found Keras 
model with Relu activation functions gives the best results which discussion follows. However, when a 
single dimension is used as input, then results are highly inaccurate as can be seen from Figures 5.1 to 
5.4. This led us to use multidimensional inputs such as time, pull-rod-displacement measurements, 
frame-actuator-displacement measurements and frame-load-cell measurements. In all the further 
discussed results in the subsection 5.1 we used the above mentioned 4 input dimensions for the 
equivalent strain prediction.    
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Figure 5. 1 Cyclic strain estimation using the time as the only independent variable. 

 

 
Figure 5. 2 Cyclic strain estimation using displacement of the test-frame actuator as the only 

independent variable. 
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Figure 5. 3 Cyclic strain estimation using the load-cell measurement of the test-frame as the only 

independent variable. 
 

 
 

Figure 5. 4 Cyclic strain estimation using the pull-rod displacement as the only independent variable. 
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5.1.2 Accuracy associated with different types of AI technique under unsymmetrical design-basis 
cyclic loading 

 
As part of this study we checked the accuracy of different AI/ML/DL approach for prediction of 

cyclic strain. We considered first 50 cycles data for checking the model accuracy. The pool of 50 cycle 
data was randomly divided in to training and test data with 70%/30% ratio, which is a usual practice 
while testing AI/ML/DL algorithms. We conducted 100 randomized iterations (for randomly selecting 
the training and test data with 70%/30% ratio. We checked the efficacy of Scikit-learn based multi-
dimensional-linear regression technique and Keras based multi-dimensional DL regression techniques. 
We checked the efficacy of both Sigmoid and Relu activation function for Keras DL models. For all the 
model cases (used for present AI technique accuracy checking), a single-step modeling approach was 
followed. Figures 5.5 to 5.8 show the results from Scikit-learn based model. Whereas Figures 5.9 to 5.12 
and Figures 5.13 to 5.16 show the results from Keras model with Sigmoid and Relu activation functions, 
respectively. Table 5.1 shows the summary of the overall finding that Keras DL model with Relu 
activation function gives best results compared to other two options. However, from the Table 5.1 it can 
be found that Keras model consume more computational time compared to Scikit-learn based model. 
However, it may be worth to use Kreas model since the accurate of strain prediction would help to 
predict the accurate nonlinear shape of the strain versus stress hysterics curves, which will be later used 
for material models. 
 

Table 5. 1 CPU time and accuracy for 100 randomized iterations while predicting strain for first 50 
cycles of ET-F54 test case. 

AI/ML/DL 
Techniques 

Scikit-learn AI/ML 

Library with multi-

dimensional-linear 

and single-step 

regression 

Keras AI/DL library 
with Sigmoid 

activation function 
and multi-

dimensional -single-
step regression 

Keras AI/DL library 
with Relu activation 
function and multi-
dimensional -single-

step regression 

CPU Time (s)  49.2 7609.7 7702.0 

Accuracy: Highest 

MSE observed  

0.00086 0.0008 0.00026 

 

 
 
 
 
 
 
 
 



A Hybrid AI/ML and Computational Mechanics Based Approach for Time-Series State and Fatigue Life Estimation of Nuclear 
Reactor Components 
September 2020 
 

     ANL/LWRS-20/01 
  

35 

5.1.2.1 Cyclic strain estimation using AI/DL based Scikit-learn library  

 

 
Figure 5. 5  Scikit-learn library-based MSE (with respect to different randomized sampling iterations), 

while predicting strain for first 50 cycles of ET-F54 test case. 

 

 
 

Figure 5. 6 Scikit-learn library-based predicted strain (for first 50 cycles of ET-F54 test case) and its 

comparison to corresponding experimental strain. 
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Figure 5. 7 Magnified version of Figure 5.6. 

 

 
 

Figure 5. 8 Scikit-learn library-based predicted strain hysteresis curves (for first 50 cycles of ET-F54 test 

case) and its comparison to corresponding experimental strain hysteresis curves. 
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5.1.2.2 Cyclic strain estimation using AI/DL based Keras library and Sigmoid activation function 

 

 
Figure 5. 9 Keras library and Sigmoid activation-function based MSE (with respect to different 
randomized sampling iterations), while predicting strain for first 50 cycles of ET-F54 test case. 

 

 
Figure 5. 10 Keras library and Sigmoid activation-function based predicted strain (for first 50 cycles of 

ET-F54 test case) and its comparison to corresponding experimental strain. 
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Figure 5. 11 Magnified version of Figure 5.10. 

 

 
Figure 5. 12 Keras library and Sigmoid activation-function based hysteresis curves (for first 50 cycles of 

ET-F54 test case) and its comparison to corresponding experimental strain hysteresis curves. 
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5.1.2.3 Cyclic strain estimation using AI/DL based Keras library and Relu activation function 

 
 

 
Figure 5. 13 Keras library and Relu activation-function based MSE (with respect to different 

randomized sampling iterations), while predicting strain for first 50 cycles of ET-F54 test case. 

 

 
 

Figure 5. 14 Keras library and Relu activation-function based predicted strain (for first 50 cycles of ET-

F54 test case) and its comparison to corresponding experimental strain. 
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Figure 5. 15 Magnified version of Figure 5.14. 

 

 
Figure 5. 16 Keras library and Relu activation-function based hysteresis curves (for first 50 cycles of 

ET-F54 test case) and its comparison to corresponding experimental strain hysteresis curves. 
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5.1.3 Clustering and piecewise strain time-series estimation to deal with non-stationarity associated 
with cyclic hardening under unsymmetrical design-basis cyclic loading 

 

Fatigue data often follows nonstationary probability distribution due to cyclic hardening and 
softening. The cyclic hardening and softening lead to cyclic shifting of mean and variance of target 
observations (here the strain). The varying mean and variance (or standard deviation) can lead to 
erroneous prediction results if a single set of parameters used for modeling the entire fatigue life with 
thousands of fatigue cycles.  To address this issue, we used Scikit-learn based k-mean clustering 
technique (refer to section 2.6) to cluster/group the entire fatigue life to multiple subdomains. Based on 
the individual subdomain parameters we predicted the strain of that subdomain. We used the Kreas DL 
library with Relu activation function to model and predict the time-series strain data for entire fatigue 
life of ET-F54 fatigue case. Below show the related results. For example, Figures 5.17 and 5.18 show 
the variation of mean and standard deviation of cyclic strain. These results show that the whole-life 
fatigue data follows a nonstationary probability distribution.  Figures 5.19 and 5.20 show the related 
results for clustering/grouping the entire fatigue life of ET-F54 specimen into multiple subdomains. 
Figures 5.21 to 5.25 show the corresponding Kreas model predicted results. Note that the mean square 
error (MSE) based prediction accuracy (based on the mean square error estimation) for the entire fatigue 
life was found to be 0.0001. The estimated MSE for the whole-life prediction is even lesser compared to 
the Keras/Relu based 50 cycle case prediction error (MSE of 0.00026, refer to Table 5.1). These results 
show the importance of piecewise prediction through appropriate clustering of the entire fatigue life. 

5.1.3.1 Non-stationarity process associated with cyclic hardening 

 

 
Figure 5. 17 Substantial variation of mean of ET-F54 cyclic strains shows that the time-series strain for 

the entire fatigue life follows a nonstationary process. 
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Figure 5. 18 Substantial variation of standard deviation of ET-F54 cyclic strains shows that the time-
series strain for the entire fatigue life follows a nonstationary process. 

 

5.1.3.2 Scikit-learn library-based K-Mean clustering to divide the entire fatigue life to multiple 
subdomains 

 
  

 
Figure 5. 19  ET-F54 clustered data showing the 2-dimensional dependency between frame maximum 

actuator displacement and corresponding specimen gage area maximum strain. Raw data in an 
individual cluster (plotted with a single color) are reparented by dots whereas, the solid circles represent 

the corresponding cluster center. 



A Hybrid AI/ML and Computational Mechanics Based Approach for Time-Series State and Fatigue Life Estimation of Nuclear 
Reactor Components 
September 2020 
 

     ANL/LWRS-20/01 
  

43 

 
 

Figure 5. 20 Cycle versus corresponding cluster numbers showing how the entire ET-F54 fatigue-test 
data clustered into only 10 different groups/clusters.  Piecewise strain prediction models were developed 

for individual clusters to predict the strain for the entire fatigue life of ET-F54 test case. 

5.1.3.3 Piecewise strain prediction for the entire fatigue life of ET-F54 specimen using AI/DL 
based Keras library and Relu activation function  

 

 

Figure 5. 21 Keras library and Relu activation-function based predicted time-series strain (for the entire 

fatigue cycles of ET-F54 test case) and its comparison to corresponding experimental strain. 
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Figure 5. 22 Magnified version of Figure 5.21 showing first few cycles (of ET-F54 test case) prediction 

versus experimental results. 

 
Figure 5. 23 Magnified version of Figure 5.21 showing few half-life cycles (of ET-F54 test case) 

prediction versus experimental results. 
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Figure 5. 24 Magnified version of Figure 5.21 showing few end-life cycles (of ET-F54 test case) 

prediction versus experimental results. 

 
Figure 5. 25 Predicted strain hysteresis curves (for entire fatigue life of ET-F54 test case) and its 

comparison to corresponding experimental strain hysteresis curves. 
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5.2 Validation case-2: Cyclic Strain Estimation for Fatigue Test Specimen Subjected to ET-F61 
Symmetrical Cyclic Loading 

 
Similar as the validation under unsymmetrical design-base loading case, we also checked the 

accuracy of the different AI/ML/DL models for symmetrical cyclic loading case. Note that 
unsymmetrical loading cases are more realistic (as observed in real reactor component). However, 
symmetrical loading cases are widely followed and suggested by ASME to conduct laboratory based 
low-cycle-fatigue testing. So, it is essential, we check the proposed AI/ML/DL based modeling 
techniques for both unsymmetrical and symmetrical loading cases.  For the purpose, we tested the in-air 
test-based ET-F61 (refer to section 3 and 4 for test details) fatigue data. The related results are presented 
below. 

 

5.2.1 Study the effect of independent variables on accuracy of strain estimation under symmetrical 
cyclic loading 

 
The effect of different independent variable (as input dimensions) in the accuracy of the prediction 

results were tested for the ET-F61 symmetrical loading case. For the purpose we used Keras library with 
Relu activation function and first 50 cycle data of ET-F61 DMW specimen. Figures 5.26 to 5.29 show 
the related results. From these figures, similar as for unsymmetrical loading case single input dimension 
produces erroneous prediction results. This led us to use multiple dimensions for more accurate 
prediction. For all the results discussed in the later subsections, we developed the strain prediction 
models considering 4 independent dimensions such as time, pull-rod-displacement measurements, 
frame-actuator-displacement measurements and frame-load-cell measurements. 
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Figure 5. 26 Cyclic strain estimation using the time as the only independent variable. 

 

 
Figure 5. 27 Cyclic strain estimation using displacement of the test-frame actuator as the only 

independent variable. 
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Figure 5. 28 Cyclic strain estimation using the load-cell measurement of the test-frame as the only 

independent variable. 

 

 
Figure 5. 29 Cyclic strain estimation using the pull-rod displacement as the only independent variable. 
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5.2.2 Accuracy associated with different type of AI techniques under symmetrical cyclic loading 

 

Similar as unsymmetrical loading case, we tested the efficacy of different AI/ML/DL techniques for 
symmetrical loading test case: ET-F61. We considered first 50 cycles data for checking the model 
accuracy. The pool of 50 cycle data was randomly divided into training and test data with 70%/30 % 
ratio. We conducted 100 randomized iterations (for randomly selecting training and test data with 
70%/30% ratio. We checked the efficacy of Scikit-learn based multi-dimensional-linear regression 
technique and Keras based multi-dimensional DL regression techniques. We checked the efficacy of 
both Sigmoid and Relu activation function for Keras DL model. For all the model cases (used in this 
AI/ML/DL technique accuracy checking exercise), a single-step modeling approach were followed. 
Figures 5.30 to 5.33 show the Scikit-learn based model results. Whereas, Figures 5.34 to 5.37 and 
Figures 5.38 to 5.41 show the Kreas DL model results with respect to Sigmoid and Relu activation 
function. Table 5.2 shows the overall comparison of CPU time and accuracy for 100 randomized 
iterations while predicting strain for the first 50 cycles of ET-F61 test case. From the table, similar as for 
unsymmetrical loading case the Keras DL model with Relu activation function produced most accurate 
prediction of strain with maximum MSE of 0.0002. From Table 5.2, it can be seen that Scikit-learn 
model produce comparable accuracy compared to the Keras DL model. This is probably due to 
symmetric loading condition with lower nonstationary fatigue data compared to the unsymmetrical 
loading. Based on this results and judgement, we selected Keras DL model with Relu activation function 
for further discussed strain-prediction results.  
 

 
Table 5. 2 CPU time and accuracy for 100 randomized iterations while predicting strain for first 50 

cycles of ET-F61 test case. 
AI/ML/DL 
Techniques 

Scikit-learn AI/ML 

Library with multi-

dimensional linear 

and single-step 

regression 

Keras AI/DL library 
with Sigmoid 

activation function 
and multi-

dimensional -single-
step regression 

Keras AI/DL library 
with Relu activation 
function and multi-
dimensional -single-

step regression 

CPU Time (s) 10.5 6623.32 6651.8 

Accuracy: Highest 

MSE observed 

0.00031 0.00032 0.0002 
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5.2.2.1 Cyclic strain estimation using AI/DL based Scikit-learn library  

 

 
Figure 5. 30 Scikit-learn library-based MSE (with respect to different randomized sampling iterations), 

while predicting strain for first 50 cycles of ET-F61 test case. 

 

 
Figure 5. 31 Scikit-learn library-based predicted strain (for first 50 cycles of ET-F61 test case) and its 

comparison to corresponding experimental strain. 
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Figure 5. 32 Magnified version of Figure 5.31. 

 

 
 

Figure 5. 33 Scikit-learn library-based predicted strain hysteresis curves (for first 50 cycles of ET-F61 

test case) and its comparison to corresponding experimental strain hysteresis curves. 
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5.2.2.2 Cyclic strain estimation using AI/DL based Keras library and Sigmoid activation function 

 

 
Figure 5. 34 Keras library and Sigmoid activation-function based MSE (with respect to different 
randomized sampling iterations), while predicting strain for first 50 cycles of ET-F61 test case. 

 

 
Figure 5. 35 Keras library and Sigmoid activation-function based predicted strain (for first 50 cycles of 

ET-F61 test case) and its comparison to corresponding experimental strain. 
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Figure 5. 36 Magnified version of Figure 5.35. 

 

 
Figure 5. 37 Keras library and Sigmoid activation-function based hysteresis curves (for first 50 cycles of 

ET-F61 test case) and its comparison to corresponding experimental strain hysteresis curves. 
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5.2.2.3 Cyclic strain estimation using AI/DL based Keras library and Relu activation function 

 

 
Figure 5. 38 Keras library and Relu activation-function based MSE (with respect to different 

randomized sampling iterations), while predicting strain for first 50 cycles of ET-F61 test case. 

 

 
Figure 5. 39 Keras library and Relu activation-function based predicted strain (for first 50 cycles of ET-

F61 test case) and its comparison to corresponding experimental strain. 
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Figure 5. 40 Magnified version of Figure 5.39. 

 

 
Figure 5. 41 Keras library and Relu activation-function based hysteresis curves (for first 50 cycles of 

ET-F61 test case) and its comparison to corresponding experimental strain hysteresis curves. 
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5.2.3 Clustering and piecewise strain time-series estimation to deal with non-stationarity associated 
with cyclic hardening under symmetrical cyclic loading 

 

Similar to the unsymmetrical loading case, we used piecewise modeling to reduce the issue 
associated with cyclic hardening/softening and related non-stationarity in fatigue test data. The issue of 
non-stationarity is more prevalence, while dealing with fatigue data for entire fatigue cycles. Non-
stationarity in ET-F61 fatigue test data can be found from the Figure 5.42 and 5.43. To deal with the 
non-stationarity we grouped/clustered the entire ET-F61 fatigue data to multiple subdomains. This is 
through using Scikit-learn based k-mean clustering technique (refer to section 2.6). Figures 5.44 and 
5.45 show the cluster analysis related results. Based on the clustered data set and Keras DL library and 
Relu activation function, different set of model parameters were estimated to model the entire fatigue 
life of ET-F61 specimen. Figures 5.46 to 5.50 shows the related prediction versus experiment results. 
These results show that very accurate prediction of the strain. This is by not only capturing its time/cycle 
dependency but also capturing the shape of the highly nonlinear hysteresis loop. With this confidence, 
we further used the Keras DL library and Relu activation function-based predictive model for strain 
estimation under inaccessible PWR-loop autoclave in the later part of this report. 
 

5.2.3.1 Non-stationarity process associated with cyclic hardening 

 

 
Figure 5. 42 Substantial variation of mean of ET-F61 cyclic strains shows that the time-series strain for 

the entire fatigue life follows a non-stationary process. 
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Figure 5. 43 Variation of standard deviation of ET-F61 cyclic strains shows that the time-series strain 
for the entire fatigue life follows a non-stationary process. 

 

5.2.3.2 Scikit-learn based K-Mean clustering to divide the entire fatigue life to multiple 
subdomains  

 

 
Figure 5. 44 ET-F61 clustered data showing the 2-dimensional dependency between frame maximum 

actuator displacement and corresponding specimen gage area maximum strain. Raw data in an 
individual cluster (plotted with a single color) are reparented by dots whereas, the solid circles represent 

the corresponding cluster center. 
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Figure 5. 45 Cycle versus corresponding cluster numbers showing how the entire ET-F61 fatigue-test 
data clustered into only 10 different groups/clusters.  Piecewise strain prediction models were developed 

for individual clusters to predict the strain for the entire fatigue life of ET-F61 test case. 
 

5.2.3.3 Piecewise strain prediction for the entire fatigue life of ET-F61 specimen using AI/DL 
based Keras library and Relu activation function  

 

 
Figure 5. 46 Keras library and Relu activation-function based predicted time-series strain (for the entire 

fatigue cycles of ET-F61 test case) and its comparison to corresponding experimental strain. 



A Hybrid AI/ML and Computational Mechanics Based Approach for Time-Series State and Fatigue Life Estimation of Nuclear 
Reactor Components 
September 2020 
 

     ANL/LWRS-20/01 
  

59 

 
Figure 5. 47 Magnified version of Figure 5.46 showing first few cycles (of ET-F61 test case) prediction 

versus experimental results. 
 

 
Figure 5. 48 Magnified version of Figure 5.46 showing few half-life cycles (of ET-F61 test case) 

prediction versus experimental results. 
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Figure 5. 49 Magnified version of Figure 5.46 showing few end-life cycles (of ET-F61 test case) 

prediction versus experimental results. 
 

 
Figure 5. 50 Predicted strain hysteresis curves (for entire fatigue life of ET-F61 test case) and its 

comparison to corresponding experimental strain hysteresis curves. 
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5.3 Prediction Case: Cyclic Strain Prediction for Fatigue Test Specimen Subjected to EN-F62 
Symmetrical Cyclic Loading and under PWR-Coolant-Water Environment 

 
Based on the above discussed two validation cases we found Keras DL library along with Relu 

activation function produce most accurate prediction results. We used the ET-F61 in-air test data (which 
includes all the four input dimension: time, pull-rod-displacement measurements, frame-actuator-
displacement measurements and frame-load-cell measurements and the output/target: gauge strain 
measurements) and the Keras DL library along with Relu activation function to estimate the model 
parameters. The associated model later used for predicting the cyclic strain of EN-F62 fatigue test case. 
Note that for a PWR-water-loop test, strain measurements are not available since an extensometer could 
not be used in a PWR-water test loop. So, with this difficulty of direct strain measurements in a PWR-
water test loop, we can make use of the above discussed AI/ML/DL based models to predict the cyclic 
strains based on the other sensor measurements. We used the known input dimension data (time, pull-
rod-displacement measurements, frame-actuator-displacement measurements and frame-load-cell 
measurements) of EN-F62 to predict the corresponding unknown/unmeasurable cyclic strains. Based on 
the above discussed extensive validation results, we assume the predicted cyclic strain not only 
accurately capture its time-dependency (associated with cyclic hardening/softening), but also captures 
the shape of highly nonlinear hysteresis behavior (associated with path dependency under fatigue 
loading). Figures 5.51 to 5.55 show the related prediction results. Note that in Figures 5.51 to 5.55 it can 
be seen that the experimental strain is zero since there was no strain measurements available for PWR-
water-loop test. However, that doesn’t mean the specimen was not experiencing any strain. In addition, 
from Figures 5.51 to 5.55, it can be seen that the predicted strains are not symmetric about zero. While 
developing the material models, the strain-axis need to be shifted by removing the respective mean 
strain. 

 
Figure 5. 51 Keras library and Relu activation-function based predicted time-series strain for the entire 

fatigue cycles of EN-F62 test case. 
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Figure 5. 52 Magnified version of Figure 5.51 showing strain prediction results for first few cycles of 

EN-F62 test case. 
 

 
Figure 5. 53 Magnified version of 5.51 showing strain prediction results for few half-life cycles of EN-

F62 test case. 
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Figure 5. 54 Magnified version of 5.51 showing strain prediction results for few end-life cycles of EN-

F62 test case. 
 

 
Figure 5. 55 Predicted strain hysteresis curves for entire fatigue life of EN-F62 test case. 
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6 A Hybrid AI-TensorFlow and Computational-Mechanics Based Approach for Cyclic 
Material Parameter Prediction 

 
In this section, we present the results related to AI/ML based technique such as using TensorFlow to 

estimate the cyclic stress strain curves from the cyclic strain versus stress data. Later we used the 
estimated cyclic stress-strain curves and computational-mechanics based constitutive models to predict 
cyclic material model parameters. Note that in previous work [17], we presented the material model 
parameters for DMW, based on the tensile test data. Although the tensile test-based data can be used for 
firsthand FE modeling of reactor components, these data might not capture the cyclic 
hardening/softening of reactor component subjected to cyclic loading. In this FY we tried to develop 
cyclic plasticity material models of DMW, in an anticipation that resulting material model parameters 
can help nuclear reactor industry and regulators for predicting the component stress more accurately. 
However, cycle material model parameters need to be estimated from cyclic stress-strain curves. The 
cyclic stress-strain curves can be estimated based on combined use of stress-strain data obtained from 
different strain-controlled fatigue tests with different strain amplitudes.  However, this approach requires 
multiple fatigue tests to be conducted, which is expensive and time consuming. Rather, we conducted a 
single variable amplitude test (ET-F57), comprising of repeating block loading with each block having 
12 increasing/decreasing strain amplitudes. The resulting block dependent cyclic stress-strain curves was 
used for estimating the corresponding set of material parameters (elastic modulus, offset yield stress, 
kinematic hardening parameters C1, γ1). However, one of the major challenges is how to estimate the 
cyclic stress-strain curve for hundreds of fatigue cycles. For the purpose, we developed an automated 
approach by using AI/ML based TensorFlow library. Once the equivalent cyclic-stress curve estimated, 
we used our previously developed material modeling approach [17] to estimate the associated 
block/cycle/time-dependent material parameters. The detail results related to TensorFlow based cyclic-
stress-strain curve estimation and downstream cyclic-material-parameter estimation are presented below. 
Before presentation of the results, we briefly discuss the theoretical background of the computational-
mechanics-based material modeling approach below.  

 

6.1 Material Model Theoretical Background 

 
The FE modeling of reactor components such as welded nozzles requires a knowledge of material-

hardening parameters. In our earlier work [17], we developed a detailed methodology for estimating 
material models. This approach is based on a Chaboche [18]-type material-hardening model to model 
the stress-strain behavior in elastic regime and regime beyond yield stress. The details of the approach 
are discussed in our earlier work. However, in this subsection we briefly discuss the basic background 
behind the model to familiarize readers with the terminology of different parameters.  
 

The stress state of a component can be expressed through the yield function, which is given as  
 

                                                       (6.1) 
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In Eq. 6.1,   and  are, respectively, the total stress and back stress tensor at the jth instance, whereas 
 is the yield stress. In Eq. 6.1, the back stress   can be estimated using the linear or nonlinear 

mapping function of hardening stress (i.e., ), with respect to the accumulated plastic strain 

( ). The expressions for the linear and nonlinear hardening models are given in Eqs. 6.2 and 
6.3, respectively.  

 
                                                                           (6.2) 

 
                                                             (6.3) 

 
In Eqs. 6.2 and 6.3,  and  are the two material-hardening parameters. These parameters are 
estimated using numerical optimization such that the  norm of the incremental parameters (i.e., 

 ) is less than a chosen tolerance value. Frist the elastic modulus and offset-strain yield 
stress have to be estimated using the equivalent-monotonic stress-strain curve. Then the  and 

parameters have to be estimated based on the plastic portion of the corresponding equivalent-
monotonic stress-strain curve. Once the TensorFlow based cyclic-stress-strain curves were estimated, 
the corresponding up/down-cycle equivalent-monotonic stress-strain curves were estimated. The 
up/down-cycle monotonic stress-strain curves were used for estimating the corresponding set of material 
parameters (elastic modulus, offset yield stress, kinematic hardening parameters C1, γ1). The overall 
process was automatically performed using Python and TensorFlow based material modeling code. The 
estimated material parameters were automatically stored to a SQL based database that can be shared 
with US nuclear industry and regulators such as US-NRC on request. 

 

6.2 Results: Use of TensorFlow to Estimate the Cyclic-Stress-Strain Curves of DMW 

 

The cyclic stress-strain curves of the DMW were estimated using the ET-F57 fatigue test data. 
Before predicting the cyclic material parameters, the cyclic-stress-strain curves were estimated using the 
AI/ML based TensorFlow library and a hyperbolic-tangent based fitting function (refer to section 2.5). 
First the sensor data imported using pandas - Python Data Analysis Library [19] and cleaned before 
passing into TensorFlow based cyclic-stress-strain-curve predictor. Figure 6.1 shows the example of 
repeating one-block (comprising 12 increasing/decreasing cycles) of input strain that was applied to ET-
F57 DMW filler weld specimen. Whereas, Figure 6.2 shows the corresponding observed (output) stress 
history. Figure 6.3 shows the example underlying input-output (or strain versus stress hysteresis) data 
and the corresponding TensorFlow predicted cyclic-stress-strain curve for 1st-block of strain loading. 
Figures 6.4 and 6.5 show the corresponding iteration no. versus estimated bias and loss-function values, 
respectively. Figure 6.6 shows the corresponding estimated up/down-cycle equivalent-monotonic-stress-
strain curve for 1st-block of strain loading. The strain versus stress data of the estimated equivalent-
monotonic-stress-strain curves were used for the estimation of the material parameters, which related 
results follow. 
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Figure 6. 1 Repeating one-block (comprising 12 increasing/decreasing cycles) of input strain that was 

applied to ET-F57 DMW filler weld specimen. 
 

 
Figure 6. 2 Observed (output) first block (comprising 12 increasing/decreasing cycles) of stress in ET-

F57 DMW filler weld specimen. 



A Hybrid AI/ML and Computational Mechanics Based Approach for Time-Series State and Fatigue Life Estimation of Nuclear 
Reactor Components 
September 2020 
 

     ANL/LWRS-20/01 
  

67 

 
Figure 6. 3 Underlying input-output (or strain versus stress hysteresis) data and the corresponding 

TensorFlow predicted equivalent cyclic-stress-strain curve for 1st-block of strain loading. 
 

 
Figure 6. 4 Training iteration no. versus estimated bias for 1st-block of strain loading. 
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Figure 6. 5 Training iteration no. versus estimated loss function for 1st-block of strain loading. 
 

 
 

Figure 6. 6 Estimated up/down-cycle equivalent-monotonic stress-strain curve for 1st-block of strain 
loading. 
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6.3 Results: Use of Computational-Mechanics Based Approach to Estimate Elastic-Plastic Material 
Model Parameters of DMW 

 

Once, the up/down-cycle equivalent-monotonic-stress-strain curves were estimated, those curves 
were used for estimating the respective sets of material parameters (elastic modulus, offset yield stress, 
kinematic hardening parameters C1, γ1). Figure 6.7 shows the example results showing how good/bad 
the linear and nonlinear kinematic hardening (KH) models capture the plastic strain versus back stress 
curve of 1st-block strain loading. Note that a Newton-based optimization algorithm was used for 
optimally estimating the kinematic hardening parameters. Whereas the elastic modulus was estimated by 
least-square fitting of the elastic portion of the combined up/down-cycle equivalent-monotonic-stress-
strain curves. The offset-strain yield strains were estimated automatically by using a tangent/slope 
searching algorithm. Figure 6.8 shows the example iteration no. (in the Newton optimization process) 
versus estimated C1 parameter showing convergence of C1 parameter for 1st-block strain loading. 
Whereas, Figures 6.9 and 6.10 show the corresponding iteration no. (in a Newton optimization process) 
versus estimated γ1 parameter and L2 norm of ΔC1 and Δγ1 showing convergence of estimated 
parameters for 1st-block of strain loading. Similar procedure was followed in an automated loop to 
estimate the material parameters for the individual block loading of ET-F57 data set. Three sets of 
time/block dependent parameters were used either assuming 0.05% or 0.1% or 0.2% offset-strain yield 
stress. A user can use any sets of these parameters but to be consistent. In our analytical modeling cases 
(discussed in section 7), we used 0.05% offset-strain material properties to capture maximum plastic 
regime of the stress-strain curve. Note that capturing more plastic region of stress-strain curve would 
help in more accurate stress analysis results. Figures 6.11 to 6.16 show the 0.05% time/block-dependent 
material model results. The estimated parameters were automatically saved into an easily searchable 
SQL based database. Figure 6.17 shows the snapshot of the database. This database can be shared with 
US nuclear industry and regulatory agency on request. Note, that we have also estimated the material 
parameters with 0.1% and 0.2% offset-strain conditions. Those are also saved into the database.  
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6.3.1 Example estimation of material model parameters for 1st-block 

 
Figure 6. 7 Example results showing how good/bad the linear and nonlinear kinematic hardening (KH) 

models capture the plastic strain versus back stress curve of 1st-block strain loading. 
 

 
Figure 6. 8 Iteration no. (in a Newton optimization process) versus estimated C1 parameter showing 

convergence of C1 parameter for 1st-block strain loading. 
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Figure 6. 9 Iteration no. (in a Newton optimization process) versus estimated γ1 parameter showing 

convergence of γ1 parameter for 1st-block strain loading. 
 

 
Figure 6. 10 Iteration no. (in a Newton optimization process) versus estimated L2 norm of ΔC1 and Δγ1 

showing convergence of estimated parameters for 1st-block strain loading. 
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6.3.2 Estimated material parameters for entire fatigue life and considering 0.05% offset yield limit 

 

 
Figure 6. 11 Evolution of equivalent monotonic stress-strain curves (in red) and the corresponding 

0.05% offset yield line (in green) for the entire ET-F57 fatigue life showing the need of cyclic material 
models. 

 

 
Figure 6. 12 Block no. versus estimated elastic modulus with assumption of 0.05% offset yield limit. 
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Figure 6. 13 Block no. versus estimated offset yield stress with assumption of 0.05% offset yield limit. 

 

 
Figure 6. 14 Block no. versus estimated linear kinematic hardening parameter C1 with assumption of 

0.05% offset yield limit. 
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Figure 6. 15 Block no. versus estimated nonlinear kinematic hardening parameter C1 with assumption of 

0.05% offset yield limit. 
 

 
Figure 6. 16 Block no. versus estimated nonlinear kinematic hardening parameter γ1 with assumption of 

0.05% offset yield limit. 
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6.3.3 Automated material parameter data saving into SQL database 

 

 
Figure 6. 17 Snapshot of the automatically updated SQL based material database. 
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7 Analytical Model Based Cyclic Stress Analysis of Different DMW Test Cases under 
Constant and Variable Amplitude Cyclic Loading 

 
In this section, we present the results related to analytical model based cyclic stress analysis of 

different DMW test cases. The purpose is to validate the cyclic plasticity material models discussed in 
section 6. The discussed analytical model is to capture the yield function given in Eq. 6.1. If the 
analytical model can show that the developed material model and related constitutive relations can 
accurately predict the stress, then the material model can be used for the stress analysis of 3D reactor 
components. The analytical model was tested for experimental test cases with intended strain amplitude 
either equal to or close to 0.6 %. In our earlier work [17], we performed 3D finite element (FE) model 
based thermal-mechanical stress analysis of PWR surge-line nozzle and pressurizer-bottom-head 
assembly. This 3D FE model predicted a limiting strain range of 1 to 1.4% in the DMW region of the 
surge-line nozzle. This leads to a strain amplitude of 0.5 to 0.7 % under most limiting displacement 
boundary conditions. The selection of test case amplitude of 0.6% is motivated from the above-
mentioned 3D stress analysis results of PWR surge-line nozzle. Following test cases (refer to section 3 
for more details) were tested: 

1) ET-F57 DMW specimen subjected to gauge-area-strain-control based variable amplitude strain 
loading. 

2) ET-F59 DMW specimen subjected to gauge-area-strain-control based constant amplitude strain 
loading. 

3) ET-F60 DMW specimen subjected to usual pull-rod-control based constant amplitude 
displacement loading. 

4) ET-F61 DMW specimen subjected to AI-guided and pull-rod-control based constant amplitude 
displacement loading. 

For each of the above-mentioned test cases, the analytical model was tested against both fixed 
tensile-test based properties and the time-dependent material models presented in section 6. While using 
time-dependent material models for all the above test cases we considered time/cycle/block as field 
variable to choose the respective set of material parameters (elastic modulus, yield stress and kinematic 
hardening parameters C1 and γ1). Also, we used 0.05% offset-strain based material parameters for all 
the test cases discussed in this section. The material model parameters were estimated using the data 
from ET-F57 fatigue test as described in section 6. We used the same material model for totally different 
test cases (ET-F59, ET-F60 and ET-F61) in addition to testing the ET-F57 case. This is to check the 
universality of the developed material model. While selecting the material properties for ET-F59, ET-
F60 and ET-F61 test cases we scaled the fatigue cycle of these test cases to match with the ET-F57 
fatigue cycle number. In addition to the scaled-cycle-property based analytical models we also 
developed an accumulated-strain-energy dependent material models for which the time-dependent 
material properties have to be picked based on the accumulated strain energy of the component at a 
given time/cycle/block. However, the accumulated-strain-energy dependent material model was tested 
for the ET-F57 test case only. The other test case will be verified in our future work. As can be seen 
from respective results, for ET-F57 test case we found the accumulated-strain-energy dependent 
material model gives better accuracy compared to the cycle dependent material models. However, the 
accumulated-strain-energy dependent material model need to be further tested. In addition to the fixed-
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tensile-property based analytical model (for ET-F57, ET-F59, ET-F60 and ET-F61 test cases) results, 
the results for the above mentioned four scaled-cycle-property based analytical models (for ET-F57, ET-
F59, ET-F60 and ET-F61 test cases) and one accumulated-strain-energy dependent analytical model (for 
ET-F57 test case) are presented below. From the below shown results, it can be found that the, cyclic-
plasticity based constitutive relation and associated analytical model can predict the cyclic stress not 
only under constant amplitude loading but also under variable amplitude loading with load-sequence 
effect. The results show that conventional tensile-test-based fixed material parameters wrongly predict 
the stress (both amplitude and hysteresis behavior) under cyclic loading. This necessitate the use of 
cyclic plasticity-based models for more accurate life estimation of reactor components. 

7.1 Cyclic Stress Analysis Results for ET-F57 DMW Specimen Subjected to Gauge-area-strain-control 
Based Variable Amplitude Strain Loading 

 

 
Figure 7. 1 Example first 5 blocks ET-F57 input strain loading. 
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Figure 7. 2 Example first 5 blocks ET-F57 observed stress. 

 

 
Figure 7. 3 Block no. versus maximum cyclic strain amplitude (both applied to analytical model and 
experimentally observed during the fatigue test of ET-F57 specimen) to track any anomaly in strain 

loading. 
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7.1.1 Cyclic stress analysis results for ET-F57 specimen using fixed tensile properties 

 

 
Figure 7. 4 Fixed tensile properties based predicted versus experimentally observed cyclic stress for the 

entire fatigue life of ET-F57 test case. 
 

 
Figure 7. 5 Magnified version of Figure 7.4, approximately during the half-life of ET-F57 specimen. 
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Figure 7. 6 Fixed tensile properties based predicted versus experimentally observed max./min stress-
amplitudes for the entire fatigue life of ET-F57 test case (The filtered data is to remove any anomaly 

associated with model prediction). 
 

7.1.2 Cyclic stress analysis results for ET-F57 specimen using variable scaled-cycle-dependent 

material model properties 

 
Figure 7. 7 Cycle-dependent properties based predicted versus experimentally observed cyclic stress for 

the entire fatigue life of ET-F57 test case. 
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Figure 7. 8 Magnified version of Figure 7.7, approximately during the half-life of ET-F57 specimen. 

 
 

 
Figure 7. 9 Cycle-dependent properties based predicted versus experimentally observed max./min stress-

amplitudes for the entire fatigue life of ET-F57 test case. 
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7.2 Cyclic Stress Analysis Results for ET-F59 DMW Specimen Subjected to Gauge-area-strain-

control Based Constant Amplitude Strain Loading 

 

 
Figure 7. 10 Example first 5 cycles ET-F59 input strain loading. 

 

 
Figure 7. 11 Example first 5 cycles ET-F59 observed stress. 
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Figure 7. 12 Cycle no. versus maximum cyclic strain amplitude (both applied to analytical model and 
experimentally observed during the fatigue test of ET-F59 specimen) to track any anomaly in strain 

loading. 
 

7.2.1 Cyclic stress analysis results for ET-F59 specimen using fixed tensile properties 

 

 
Figure 7. 13 Fixed tensile properties based predicted versus experimentally observed cyclic stress for the 

entire fatigue life of ET-F59 test case. 
 



A Hybrid AI/ML and Computational Mechanics Based Approach for Time-Series State and Fatigue Life Estimation of Nuclear Reactor 
Components 
  September 2020 
 

ANL/LWRS-20/01 84 

 
Figure 7. 14 Magnified version of Figure 7.13, approximately during the half-life of ET-F59 specimen. 

 

 
Figure 7. 15 Fixed tensile properties based predicted versus experimentally observed max./min stress-

amplitudes for the entire fatigue life of ET-F59 test case. 
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7.2.2 Cyclic stress analysis results for ET-F59 specimen using variable scaled-cycle-dependent 

material model properties 

 

 
Figure 7. 16 Cycle-dependent properties based predicted versus experimentally observed cyclic stress 

for the entire fatigue life of ET-F59 test case. 
 

 
Figure 7. 17 Magnified version of Figure 7.16, approximately during the half-life of ET-F59 specimen. 
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Figure 7. 18 Cycle-dependent properties based predicted versus experimentally observed max./
min stress-amplitudes for the entire fatigue life of ET-F59 test case. 

7.3 Cyclic Stress Analysis Results for ET-F60 DMW Specimen Subjected to Pull-rod-control Based 

Constant Amplitude Displacement Loading 

Figure 7. 19 Example first 5 cycles ET-F60 input strain loading. 
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Figure 7. 20 Example first 5 cycles ET-F60 observed stress. 

Figure 7. 21 Cycle no. versus maximum strain amplitude (both applied to analytical model and 
experimentally observed during the fatigue test of ET-F60 specimen) to track any anomaly in strain 

loading. 
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7.3.1 Cyclic stress analysis results for ET-F60 specimen using fixed tensile properties 

Figure 7. 22 Fixed tensile properties based predicted versus experimentally observed cyclic stress for the 
entire fatigue life of ET-F60 test case. 

Figure 7. 23 Magnified version of Figure 7.22, approximately during the half-life of ET-F60 specimen. 
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Figure 7. 24 Fixed tensile properties based predicted versus experimentally observed max./min stress-
amplitudes for the entire fatigue life of ET-F60 test case. 

7.3.2 Cyclic stress analysis results for ET-F60 specimen using variable scaled-cycle-dependent 

material model properties 

Figure 7. 25 Cycle-dependent properties based predicted versus experimentally observed cyclic stress 
for the entire fatigue life of ET-F60 test case. 
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Figure 7. 26 Magnified version of Figure 7.25, approximately during the half-life of ET-F60 specimen. 

Figure 7. 27 Cycle-dependent properties based predicted versus experimentally observed max./
min stress-amplitudes for the entire fatigue life of ET-F60 test case. 
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7.4 Cyclic Stress Analysis Results for ET-F61 DMW Specimen Subjected to AI-Guided and Pull-rod-

control Based Variable Amplitude Displacement Loading 

Figure 7. 28 Example first 5 cycles ET-F61 input strain loading. 

Figure 7. 29 Example first 5 cycles ET-F61 observed stress. 
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Figure 7. 30 Cycle no. versus maximum cyclic strain amplitude (both applied to analytical model and 
experimentally observed during the fatigue test of ET-F61 specimen) to track any anomaly in strain 

loading. 

7.4.1 Cyclic stress analysis results for ET-F61 specimen using fixed tensile properties 

Figure 7. 31 Fixed tensile properties based predicted versus experimentally observed cyclic stress for the 
entire fatigue life of ET-F61 test case. 
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Figure 7. 32 Magnified version of Figure 7.31, approximately during the half-life of ET-F61 specimen. 

Figure 7. 33 Fixed tensile properties based predicted versus experimentally observed max./min stress-
amplitudes for the entire fatigue life of ET-F61 test case. 
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7.4.2 Cyclic stress analysis results for ET-F61 specimen using variable cyclic-plasticity material 

model properties 

Figure 7. 34 Cycle-dependent properties based predicted versus experimentally observed cyclic stress 
for the entire fatigue life of ET-F61 test case. 

Figure 7. 35 Magnified version of Figure 7.34, approximately during the half-life of ET-F61 specimen. 
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Figure 7. 36 Cycle-dependent properties based predicted versus experimentally observed max./min 
stress-amplitudes for the entire fatigue life of ET-F61 test case. 

7.5 Cyclic Stress Analysis Results for ET-F57 DMW Specimen Based on Accumulated Strain-energy 

Dependent Material Models 

7.5.1 Accumulated strain-energy dependent material properties 

Figure 7. 37 Accumulated strain-energy versus elastic modulus, estimated based on the ET-F57 test 
data. 
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Figure 7. 38 Accumulated strain-energy versus 0.05% offset yield stress, estimated based on the ET-F57 

test data. 
 

 
Figure 7. 39 Accumulated strain-energy versus nonlinear kinematic hardening parameter C1, estimated 

based on the ET-F57 test data. 
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Figure 7. 40 Accumulated strain-energy versus nonlinear kinematic hardening parameter γ1, estimated 

based on the ET-F57 test data. 
 

7.5.2 Cyclic stress analysis results for ET-F57 specimen using accumulated strain-energy dependent 

material model properties 

 

 
Figure 7. 41 Cycle-dependent properties based predicted versus experimentally observed cyclic stress 

for the entire fatigue life of ET-F57 test case. 
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Figure 7. 42 Magnified version of Figure 7.41, approximately during the half-life of ET-F57 specimen. 

 

 
Figure 7. 43 Cycle-dependent properties based predicted versus experimentally observed max./min 

stress-amplitudes for the entire fatigue life of ET-F57 test case. 
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8 Demonstration of the Use of Cyclic-Plasticity Material Parameters in 3D FE Model 
of a PWR Surge-line Nozzle 

 
In this section, we demonstrate the use of cyclic plasticity material parameters using a commercial 

software such as ABAQUS. Using the estimated material parameters and a 3D finite element model, 
stress analysis was performed for a surge-line nozzle. This was to check how the cyclic plasticity 
material parameters affect the stress analysis results. 
 

8.1 FE Model of PWR Surge-line Nozzle 

 
We used our earlier developed 3D FE model of the PWR surge-line nozzle and pressurizer-bottom-

head assembly to perform the present discussed stress analysis. For details of the model it is suggested to 
refer to our earlier publication [17]. Figure 8.1 shows the partial CAD model of PWR pressure control 
system showing the location of the surge line nozzle. However, we have only considered the portion of 
the surge-line, its nozzle and portion of the pressurizer (that is only considering the bottom head of the 
pressurizer). Figure 8.2 shows the CAD model of the assembly used in the discussed stress analysis 
model. Figure 8.3 shows the cut section of the nozzle assembly showing different material systems. 
Figure 8.4 shows the finite element mesh. As can be seen from Figure 8.3, the assembly consists of 5 
material systems: such as 316SS base metal, 508LAS base metal, 316SS-316SS similar metal weld 
(SMW), 316SS-508LAS dissimilar-metal-weld (DMW) both filler and butter weld regions. This 
requires different material models to accurately perform the stress analysis. In our earlier work [17] we 
developed the tensile test-based material models for all the above mentioned 5 material system. The 
tensile test-based parameters can be used for firsthand stress analysis of a reactor component e.g. of the 
mentioned nozzle. However, as demonstrated in section 7, tensile test based fixed properties do not 
capture the material hardening/softening under cyclic loading. For more accurate stress analysis, we 
need to use cyclic plasticity-based material models. In the present discussed results, we used the cyclic-
plasticity material parameters for DMW filler weld only. Whereas, for other material, tensile test-based 
properties were used. This is for the present demonstration purpose only, to isolate out the effect of 
cyclic-plasticity material model use.  The details of the tensile properties can be found from [17], 
whereas the cyclic plasticity based DMW filler weld properties (which are used in this work) are already 
presented in section 6. Two cases of simulations were performed considering 1st and 68th block (half-
life) properties of DMW filler weld (ET-F57) data. The temperature for the entire nozzle assembly 
assumed an isothermal temperature of 300 oC. This is to be consistent with test temperature of ET-F57 
specimen. However, note that for stress analysis of nozzle assembly under actual temperature varying 
thermal-mechanical loading transients, temperature dependent material models must be used. The ANL 
team develop both the tensile and cyclic material models keeping in mind its direct use by industry. The 
estimated material properties automatically stored into a SQL based database file which can be shared 
with US nuclear industry and regulatory agency on request. The material models can be directly used by 
commercially available software such as ABAQUS with one example shown in Figure 8.5.  
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Figure 8. 1 Partial CAD model of PWR pressure control system showing the location of the surge line 

nozzle. 
 

 
Figure 8. 2 CAD model of surge line nozzle and bottom head of pressurizer. 
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Figure 8. 3 Cut section of the nozzle assembly showing different material systems. 

 
 

 
Figure 8. 4 Cut section of the nozzle assembly finite element mesh. 
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Figure 8. 5 Demonstration showing how the estimated material properties can directly be used in a 

commercially available software such as ABAQUS. 
 

8.2 FE stress analysis results with respect to ET-F57 block-1 and block-68 (half-life) properties 

 
In the discussed demonstration FE models, we used a displacement loading to generate similar strain 

profile as the ET-F57 specimen. The displacement applied at central plane of DMW filler weld region. 
The location and direction of the applied displacement loading can be seen from Figure 8.6. Whereas 
Figure 8.7 shows the applied 1-block of displacement. Figure 8.8 shows the comparison of FE simulated 
cycle versus strain at a typical element of DMW filler weld (of the PWR surge nozzle) subjected to ET-
F57 1st block and 68th block (half-life) material properties. Figures 8.9 and 8.10 show the corresponding 
cycle versus stress and strain versus stress (hysteresis) plots, respectively. Figure 8.11 shows the 
example Von. Mises stress contour of PWR surge-line nozzle at a typical instance of the applied 
variable amplitude displacement, while subjected to ET-F57 half-life (68th block) material properties. 
From Figures 8.8 to 8.10, it can be seen that substantial difference exists in predicted stress-strain results 
between 1st block and 68th block properties-based models, although both models were simulated under 
same displacement loading (Figure 8.7). This is because of multi-axial stress/strain-redistribution which 
is a function input material property. Nevertheless, this demonstration results show that component 
stress analysis results can substantially vary if cyclic-plasticity based property is used. Since it is 
demonstrated that  the all the material properties (e.g. elastic modulus, yield stress, kinematic hardening 
parameters C1 and γ1) substantially vary over fatigue cycles, it may be worth considering those cyclic 
varied properties for more accurate life estimation of reactor components particularly for long-term 
licensing of nuclear reactors. 
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Figure 8. 6 Cut section of nozzle assembly showing the location and direction of the applied variable-

amplitude displacements to simulate variable-amplitude strain at the DMW filler weld. 
 

 
Figure 8. 7 Applied 1-block of displacement at the circular mid-plane of DMW filler region. 
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Figure 8. 8 FE simulated cycle versus strain at a typical element of DMW filler weld (of the PWR surge 

nozzle) subjected to ET-F57 1st block and 68th block (half-life) material properties. 
 

 
Figure 8. 9 FE simulated cycle versus stress at a typical element of DMW filler weld (of the PWR surge 

nozzle) subjected to ET-F57 1st block and 68th block (half-life) material properties. 
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Figure 8. 10 FE simulated stress versus strain at a typical element of DMW filler weld (of the PWR 

surge nozzle) subjected to ET-F57 1st block and 68th block (half-life) material properties. 
 

 
Figure 8. 11 Von. Mises stress (Pascal) contour of PWR surge-line nozzle at a typical instance of the 

applied variable amplitude displacement, while subjected to ET-F57 half-life (68th block) material 
properties. 
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9 Markov-chain-Monte-Carlo Based Probabilistic-Time-Series State and Fatigue Life 
Estimation of DMW 

 
In this section, we present results related to probabilistic life estimation of DMW. Often there exists 

a large scatter in fatigue life data even the underlying tests are conducted using specimen fabricated 
from same material and tested under same loading and environment conditions. The scatter in fatigue 
life is due to scatter in material microstructure, test specimen surface finish and their interactions with 
loading and environmental conditions. The issue of statistical scatter is more severe for welded materials 
due to possible nonhomogeneous laying of weld layers. Hence it is essential to predict the life of a 
welded component both deterministically and probabilistically rather than following only a deterministic 
approach. In this section we present some probabilistic modeling results of DMW (both under in-air and 
PWR water environment). This is by using Markov chain Monte Carlo (MCMC) method, details of 
which can be found from our earlier work [6]. In the present discussed work, we used the MCMC model 
to estimate probabilistic time-series of cycle versus maximum stress amplitudes. From the estimated 
time-series scatter-band, the probabilistic life of the DMW are estimated for a given failure criteria such 
as using the ASME 25% load drop criteria. This type of simulation-based approach may help to reduce 
the over dependence on test-based approach. For example, statistical estimation of metal under a single 
environment and loading spectra might requires tens to hundreds of fatigue tests. Conducting these 
many fatigue tests under different loading and environmental conditions not only is immensely 
expensive but also time consuming. Nevertheless, the purpose of this section is to demonstrate the use of 
MCMC technique for estimating the probabilistic life of DMW under a given load and environmental 
conditions. We used the MCMC approach either using the model simulated data or experimentally 
observed data. As computational techniques for structural analysis improves (for example by capturing 
the cyclic evolution of material states as we demonstrated through analytical model described in section 
7), the MCMC model can directly be based on simulated stress-strain states. However, we demonstrated 
MCMC model results both based on analytical model results and experimental model results. Following 
are the three cases which results are presented below: 

 
1. MCMC model simulation based on ET-F57 analytical model results (i.e. using block versus 

simulated maximum stress data) 

2. MCMC model simulation based on ET-F57 experimentally observed results (i.e. using block 
versus experimentally observed maximum stress data) 

3. MCMC model simulation based on EN-F62 experimentally observed results (i.e. using block 
versus experimentally observed maximum stress data) 

The related example results can be found below from Figures 9.1 to 9.6. Whereas, the Table 9.1 shows 
the summary of the model and experiment data based MCMC simulated probabilistic lives of DMW of 
the above-mentioned cases. From this table the MCMC simulation results based on model (cyclic 
plasticity based analytical model) data, are quite comparable with the MCMC simulation results based 
on experiment data. This shows the promise of a complete model/simulation-based approach to avoid 
over dependency on large-scale test-based programs, which are not only time consuming but also 
immensely expensive (particularly for conducting tens to hundreds of fatigue testing for different 
material under different loading and environmental conditions). From the Table 9.1 it can be found that 
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the DMW specimen (subjected to EN-F62 test case loading amplitude and rate as given in section 3) can 
survive 358 cycles under PWR water environment, without any failure (or zero failure probability). 

 
Table 9. 1 Summary of the model and experiment data based MCMC simulated probabilistic lives of 

DMW under different loading and environmental conditions. 
MCMC 

simulation 
cases 

Load and 
environment 

0% failure 
probability 

life of 
DMW, 

with 
considering 

ASME 
25% load 

drop 
criteria 

Approximate 
50% failure 
probability 

life of DMW, 
with 

considering 
ASME 25% 

load drop 
criteria 

100% 
failure 

probability 
life of 
DMW, 

with 
considering 

ASME 
25% load 

drop 
criteria 

Experimentally 
observed life 

based on single 
specimen test 

ET-F57 
(Based on 

analytically 
predicted 

cycle-
dependent 

max. stress) 

Load: Gauge-area 
strain-controlled 

test (refer to 
Figure 3.10), 
Environment: 
300 oC , in-air. 

118 blocks  
(1416 
cycles) 

124 blocks 
(1488 cycles) 

 

153 blocks 
(1836 
cycles) 

135 blocks 
(1620 cycles) 

ET-F57 
(Based on 

experimentally 
observed 

cycle-
dependent 

max. stress) 

Load: Gauge-area 
strain-controlled 

test (refer to 
Figure 3.10), 
Environment: 
300 oC , in-air. 

98 blocks 
(1176 
cycles) 

116 blocks 
(1392 cycles) 

162 blocks 
(1944 
cycles) 

135 blocks 
(1620 cycles) 

EN-F62 
(Based on 

experimentally 
observed 

cycle-
dependent 

max. stress) 

Load: AI-guided-
pull-rod-

displacement 
control (refer to 
Figure 3.14 and 

section 4), 
Environment: 
300 oC , PWR 

water 

358 cycles 535 cycles 1044 
cycles 

842 cycles 
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9.1 Results: MCMC Model Simulation Based on Data of ET-F57 Analytical Model (with Accumulated 
Strain Energy Dependent Cyclic-Plasticity Material Properties)  

 

 
Figure 9. 1 MCMC estimated loading block versus the scatter-band of the analytically simulated 

maximum stress amplitude of ET-F57 test case. 
 

 
Figure 9. 2 Loading block versus estimated lifetime CDF, estimated based on the scatter-band shown in 

Figure 9.1 and using different load-drop failure criterion. 
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9.2 Results: MCMC Model Simulation Based on ET-F57 In-air Fatigue Test Data 

 

 
Figure 9. 3 MCMC estimated loading block versus the scatter-band of experimentally observed 

maximum stress amplitude of ET-F57 test case. 
 

 
Figure 9. 4 Loading block versus estimated lifetime CDF, estimated based on the scatter-band shown in 

Figure 9.3 and using different load-drop failure criterion. 
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9.3 Results: MCMC Model Simulation Based on EN-F62 PWR-water Fatigue Test Data 

 

 
Figure 9. 5 MCMC estimated loading cycle versus the scatter-band of experimentally observed 

maximum stress amplitude of EN-F62 test case. 
 

 
Figure 9. 6 Loading cycle versus estimated lifetime CDF, estimated based on the scatter-band shown in 

Figure 9.5 and using different load-drop failure criterion. 
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10 Summary  

 
Following are the major conclusions and takeaways from the FY-20 environmental fatigue research 

work conducted at ANL. 
 

10.1 Major Conclusions 

 
a) 82/182 DMW shows significant cyclic hardening/softening behavior under cyclic loading. This 

leads to a significant cyclic variation of material properties such as elastic modulus, offset-strain 
yield stress and kinematic hardening parameters. 

b) A combined use of AI/ML technology (such as of TensorFlow AI/ML library) along with 
computational/solid mechanics-based approach can help to automatically estimate cyclic stress-
strain curves and associated material parameters for hundreds of fatigue cycles.  

c) Cyclic-plasticity based constitutive relation and associated analytical model can predict the 
cyclic stress not only under constant amplitude loading but also under variable amplitude loading 
with load-sequence effect. The results show that conventional tensile-test-based fixed material 
parameters wrongly predict the stress (both amplitude and hysteresis behavior) under cyclic 
loading. This necessitate the use of cyclic plasticity-based models for more accurate life 
estimation of reactor components. 

d) AI/ML/DL technique (such as Scikit-learn and/or Keras libraries) can accurately predict 
unmeasurable time-series (cyclic) sensor signals from other sensor measurements. Out of the 
different approach tested, the Keras library along with Relu activation function and k-mean 
based clustering of the fatigue cycles produces best results both under unsymmetrical (e.g. 
design-basis type) and symmetrical fatigue loading.  

e) AI/ML technique (such as Scikit-learn based k-mean clustering technique) can help optimizing 
the environmental-fatigue testing parameters for controlling the strain amplitude and rates in 
PWR-water-test system, for which direct control of strain (through strain measurements) is not 
possible. 

f) A Markov-Chain-Monte-Carlo based probabilistic approach could be used for probabilistic 
fatigue state and life estimation of DMW. This is based on both model and fatigue test-based 
data. 
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10.2 Major Takeaways 

1) A cyclic plasticity material model database for 82/182 dissimilar metal weld, which can be readily 
shared with US nuclear industry and regulatory agency on request.

2) A well validated analytical modeling methodology to perform cycle-by-cycle stress prediction 
under both constant amplitude fatigue loading and variable amplitude fatigue loading (with load-
sequence effect).

3) An AI/ML/DL based methodology to predict unmeasurable sensor signal (such as predicting time-
series or cyclic strain in an inaccessible autoclave environment) from other sensor signal. This type 
of approach can be used for estimating strain in real reactor components from other sensor 
readings.

4) An AI/ML based approach to improve the US capability on environmental fatigue testing. This is 
by improving ANL’s existing environmental fatigue testing capacity to conduct ASME required 
strain-controlled tests (by controlling strain amplitudes and its rate), while not measuring the strain 
(due to the difficulty of placing an extensometer in a narrow autoclave of a PWR-water-test 
system).

5) A simulation and experiment based probabilistic modeling methodology for time-series fatigue 
state and life estimation of reactor metal such as dissimilar metal weld.
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