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SUMMARY 

The Pacific Northwest National Laboratory (PNNL) is investigating diffusion limited oxidation 
(DLO) in nuclear cables through carefully controlled accelerated aging of cable materials and advanced 
characterization of aged specimens.  The DLO knowledge gap raises the concern that extrapolation of 
short-term cable material accelerated aging results may overestimate long-term, in-service performance if 
short-term aging is performed under DLO conditions.  Accelerated aging that is too rapid, either using 
high temperatures or high gamma dose rates, can underpredict damage through a phenomenon in which 
rapid oxidation forms a protective layer around the exposed material, preventing the interior of the 
material from aging. This contrasts with the homogeneous aging that is thought to occur in materials 
during long-term service aging.  Accelerated laboratory aging to predict long-term performance thus 
needs to account for the difference in degradation mechanism that can occur above certain aging intensity 
thresholds.  This work seeks to experimentally determine the thresholds for thermal aging (temperature) 
and gamma irradiation aging (dose rate) at which DLO is significant for the most common nuclear cable 
insulation materials from the most common cable manufactures of relevance to plant operation beyond 
sixty years.  Cross-linked polyethylene (XLPE) and ethylene-propylene rubber (EPR) insulation materials 
from the most significant suppliers have been secured.  Accelerated aging at temperatures and dose rates 
bounding the expected DLO thresholds for each material is underway.  Sophisticated surface analysis 
techniques including Fourier transform infrared spectroscopy (FTIR) microscopy, nanoindentation, and 
time-of-flight secondary ion mass spectrometry (ToF-SIMS) are being applied to cross-sections of aged 
insulation to image and quantify the heterogenous aging signature of DLO in each material.  The results 
of this study will provide a basis for understanding the impact of DLO in historic qualification activities 
for cables currently being considered for operation up to 80 years in subsequent license renewal. 
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1. INTRODUCTION 

Diffusion limited oxidation (DLO) has been identified in the EMDA (NRC 2014) as one of the key 
knowledge gaps related to confidence in long term operation of cable systems beyond 60 years.  The 
Pacific Northwest National Laboratory (PNNL) is investigating DLO in nuclear cables through carefully 
controlled accelerated aging of cable materials and advanced characterization of aged specimens.  DLO is 
used here to describe the phenomena in which rapid aging of the surface of a polymer material can 
effectively protect the interior of material from thermo-oxidation by reducing oxygen permittivity of the 
aged surface.  This effect has the potential to cause underestimation of long-term aging under relatively 
mild service conditions based on short-term accelerated aging results.  Prior research (e.g. Clough 1985) 
has identified evidence for DLO in several polymer materials and provided a theoretical framework to 
estimate DLO based on factors including sample thickness, oxygen permeation rate through the material, 
and oxygen consumption rate in the aging material.  This work seeks to address the DLO knowledge gap 
by assessing the importance of DLO in long term operation cable aging management.  Selected examples 
of the most commonly used low-voltage cable insulation materials from the most common cable 
manufacturers are being studied to empirically determine the conditions at which DLO may be observed 
in the cable materials.  This report describes the materials currently being investigated, the aging 
conditions being explored for those materials, and the characterization methods being applied to identify 
and quantify the presence and extent of DLO in the key materials.  The results of this study will provide a 
basis for understanding the impact of DLO in historic qualification activities for cables currently being 
considered for operation up to 80 years in subsequent license renewal. 

Diffusion limited oxidation (DLO) has been identified as a potential concern in electrical cable 
qualification methodology that could overestimate predicted service life based on laboratory accelerated 
aging. This highlighted knowledge gap for nuclear power plant (NPP) operation beyond 60 years is being 
addressed through investigation of the necessary conditions for and effects of DLO in select cable 
materials during laboratory aging from both extreme gamma radiation dose rates (>100Gy/h) and extreme 
aging temperatures (>130°C). This work seeks to address the DLO knowledge gap by assessing the 
importance of DLO in long term operation cable aging management. 

Exposure of a polymer sample to extreme oxidizing conditions such as high temperatures or high 
gamma dose rates in air can quickly oxidize sample surfaces thus lowering oxygen permeation through 
the surface into the interior of the sample and inhibiting oxidative degradation of the sample interior as 
shown in Figure 1.  This phenomenon may serve a protective role in application of polymers in extreme 
conditions, but can obfuscate degradation prediction at milder conditions at which the protective action 
does not occur from harsh condition accelerated aging performance during which it does occur as 
illustrated in Figure 2.   A specific objective of this effort is to determine the temperature and gamma dose 
rate thresholds at which DLO become significant for selected materials. 

 

 

Figure 1. Inhomogeneous aging (Left), possible during rapid laboratory aging (e.g. 180ºC for 3 days), can 
lead to over-prediction of resistance to heat effects compared to homogeneous aging (e.g. 120ºC for 60 
days) (Right), as would occur in long term service. 
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Figure 2. For properties such as elongation-at-break that average over the sample cross-section, DLO can 
effectively inhibit aging and could lead to overprediction of service life based only on short-term 
laboratory aging. 

2. MATERIALS 

The vast majority (95%) of electrical cables in NPPs in the United States are insulated either with 
cross-linked polyethylene (XLPE) or ethylene-propylene rubber (EPR).  Manufacturers of the most 
common cables, listed in Table 1, include The Rockbestos Company; The Okonite Company; Boston 
Insulated Wire & Cable Company; Kerite Company; Anaconda Company; Brand Rex, Inc.; Samuel 
Moore Company; and Raychem Corporation. 

 
Cable Manufacturer Insulation Fraction of plants surveyed  
Rockbestos Firewall III XLPE 58% 
Anaconda Y Flame-Guard FR EPR 33% 
Brand-Rex XLPE 28% 
Okonite FMR EPR 25% 
Kerite HTK [EPR-like] 24% 
Raychem Flametrol XLPE 22% 
Samuel Moore Dekoron Dekorad EPDM 18% 
BIW Bostrad 7E EPR 18% 

Table 1. Occurrence of cable insulation types in plant constructed before 1978 [4] 
 

The materials used in this study are listed below and pictured in Figures 3 through 12.  Each specimen 
set consists of three 100 mm long straws, insulation with conductor removed, and one of either 50- or 
100-mm long insulation with conductor intact. A clamp with unique identification is attached to each 
specimen and a paper clip is attached to each clamp.  During aging the specimens are hung freely from 
wire racks using the clips. 
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Service Life 

Does artificial accelerated 
aging predict longer life 
than would occur under 

natural long-term aging? 

DLO No-DLO 
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Anaconda Flame-Guard FR-EP EPR 

• PNNL ID: AE21 
• Color: white 
• Jacket label: ANACONDA-Y 4/C #16 

FLAME-GUARD FR-EP 600V, 1-STQ-
16 w/#18 Drain copper, Green 

• Year of manufacture: 1985 
 

Figure 3. Anaconda EPR (AE21) specimen set 

 
 

BIW Bostrad 7E EPR-CSPE        
(EPR insulation with chlorosulfonated 
polyethylene individual jacket) 

• PNNL ID: BE15 
• Color: Black 
• Jacket label: BIW CABLE SYSTEMS, 

INC. BOSTRAD 7E 16 AWG ITSP 
EPR-CSPE INS/CSPE JKT 600V INST 
(1983) 

• Year of manufacture: 1983 
 

Figure 4. BIW EPR/CSPE (BE15) specimen set 

 

 
Kerite HTK 

• PNNL ID: KH31 
• Color: Brown, labeled “WHITE” 
• Year of manufacture: 1971 

 

Figure 5. Kerite HTK (KH31) specimen set 
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Okonite FMR EPR 

• PNNL ID: OE34 
• Color: Black, labeled “2 - WHITE” 
• Jacket label: OKONITE 4 3/C 14 AWG 

CU OKONITE FMR (EP)CSPE 600V 
18C 1998 

• Year of manufacture: 1998 

 

Figure 6. Okonite EPR (OE34) specimen set 

 

 

Rockbestos XLPE 

• PNNL ID: RX39 
• Color: Black 
• Jacket label: 2/C 16 AWG 

ROCKBESTOS® 600V B/M NO. NK-
35A Year of manufacture: 1993 

 

Figure 7. Rockbestos XLPE (RX39) specimen set 

 

 

RSCC Firewall® III XLPE 

• PNNL ID: RX82 
• Color: White 
• Jacket label: 2/C 16 AWG COPPER 

RSCC 600V 90 DEG C WET OR DRY 
FIREWALL® III SUN RES DIR BUR 
OIL RES II NEC TYPE TC (UL) 
FRXLPE SHIELDED CSPE I46-0021 

• Year of manufacture: 2015  

Figure 8. RSCC XLPE (RX82) specimen set 
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Samuel Moore Dekoron® EPDM 

• PNNL ID: SE79 
• Color: White 
• Jacket label: DEKORON® 2/C 16 AWG 

600V SAMUEL MOORE GROUP, 
AURORA, OHIO  

 

Figure 9. Samuel Moore EPDM (SE79) specimen 
set 

 
 

Brand-Rex Ultrol FR XLPE 

• PNNL ID: XX28 
• Color: White 
• Jacket label: BRAND-REX ULTROL 

INSTRUMENTATION CABLE 600V 1 
SHIELDED PR #16 AWG 23XXX 

• Year of manufacture: 1986 

 

Figure 10. Brand-Rex XLPE (XX28) specimen set 

 

 
 

Brand-Rex XLPE 

• PNNL ID: XX50 
• Color: White, labeled “2 - TWO” 
• Jacket label: BRAND-REX XLP/CU 

POWER & CONTROL CABLE 3/C #10 
600V SUN RES XHHW TYPE TC (UL) 

 

Figure 11. Brand-Rex XLPE (XX50) specimen set 
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3. ACCLERATED AGING 

3.1 THERMAL AGING 

Sample sets including insulation straws with conductor removed and insulation with conductor intact 
are hung from racks in mechanical convection, circulating air ovens at specified temperatures and 
exposure times. Aging temperatures being evaluated include 165, 150 ,136, and 121ºC.  

3.2 RADIATION AGING 

To investigate gamma dose rate thresholds for DLO sample sets are hung at room temperature at a 
series of distances from the Co-60 source in High Exposure Facility at PNNL. Dose rates being evaluated 
include 1900 Gy/h, 300 Gy/h, 190 Gy/h, and 100Gy/h. 

 

4. CHARACTERIZATION 

The key signature of DLO focused on here is heterogeneous aging across the thickness of the sample.  
The assumption is that oxidative aging that occurs over long periods of time will be consistent through the 
sample thickness because oxygen will have time to diffuse throughout the sample and be locally 
replenished as it is consumed in the degradation reaction.  Rapid aging creates a kinetic barrier on the 
sample surface that prevents oxidative aging in the sample interior of over the short time of accelerated 
aging under harsh conditions.  The sign and measure of DLO then is the degree of inhomogeneity and the 
shape of the aging gradient across the sample cross-section as schematically seen in Figure 12. 

 

 

Figure 12. Schematic insulated conductor cross-sections illustrating unaged cable (Left), homogeneously 
aged cable (no DLO) (Center), and heterogeneously aged cable exhibiting DLO (Right). 

The central techniques being pursued at PNNL to track and quantify heterogeneous aging in cable 
insulation cross-sections include: 

• Fourier transform infrared spectroscopy (FTIR) microscopy, 
• Nanoindention, including dynamic mechanical analysis mode, and 
• Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). 

 
Also available are atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), 

scanning electron microscopy (SEM), and Raman microscopy. 

PNNL has an active collaboration with the University of Bologna, Iowa State University, and the 
European Commission Joint Research Centre (EC-JRC) under the DOE International Nuclear Energy 
Research Initiative (I-NERI) entitled “Advanced Electrical Methods for Cable Lifetime Management”.  
One of the tasks of the I-NERI includes the EC-JRC study DLO using similar techniques. 

Sample insulation cross-sections for FTIR microscopy representing a series of exposure times at a 
given temperature are represented by a schematic in Figure 13 and a photo in Figure 14. 
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Figure 13. Cable insulation straw cross-sections less than a few millimeters thick for imaging. 

 

 

Figure 14. Photo of glass slide containing cross-sections of XX28 XLPE cable aged at 165ºC. 

Nanoindentation requires a flat surface to study.  Short cable insulation segments with or without metal 
conductor are potted in an epoxy puck to facilitate polishing to flat and clean surface as illustrated in 
Figure 15. 

   

       

Figure 15. Schematic of epoxy puck containing cable insulation segments for nanoindentation imaging. 

Specimens for ToF-SIMS (and XPS) also require a very flat surface, but the presence of carbon from 
the potting epoxy can interfere with carbon content measurements in the insulation.  The epoxy resin can 
also be problematic for practical use in the high vacuum environment of the ToF-SIMS.  Securing of 
cable insulation straws for cutting flat or insulated conductor for polishing flat as illustrated in Figure 16 
is accomplished using metal clamps in preparation for ToF-SIMS imaging of heterogeneous aging. 

 

      

Figure 16. Top view (Left) and side view (Right) of a series of insulated conductors clamped for polishing 
in preparation for ToF-SIMS (or XPS) imaging. 
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5. CONCLUSION 

 
DLO is a potential concern for environmentally qualified cables regarding operation beyond sixty 

years.  If qualification tests were performed under conditions in which DLO was significant, the amount 
of aging present in cables from the short-term acceleration aging prior to design basis event testing may 
have underestimated what would be present in cables that have aged in service over forty years.  PNNL is 
experimentally determining the extent of DLO as function of aging temperature and dose rate to 
determine condition thresholds for DLO.  Results of this study will be used to inform scrutiny of cable 
qualification for the selected cable materials in the context of expected cable performance beyond sixty 
years. 
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