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EXECUTIVE SUMMARY 
This report documents activities performed by Idaho National Laboratory 

(INL) during fiscal year (FY) 2023 for the U.S. Department of Energy (DOE) 
Light Water Reactor Sustainability (LWRS) Program, Risk Informed Systems 
Analysis (RISA) Pathway, Digital Instrumentation and Control (DI&C) Risk 
Assessment project. In FY 2019, the RISA Pathway initiated a project to develop 
a risk assessment strategy for delivering a technical basis to support effective and 
secure DI&C technologies for digital upgrades/designs. A risk-informed 
framework was proposed for this strategy, which aims to (1) provide a best-
estimate, risk-informed capability to quantitatively estimate the safety margin 
obtained from plant modernization, especially from safety-related DI&C systems, 
(2) support and supplement existing risk-informed DI&C design guides by 
providing quantitative risk information and evidence, (3) offer a capability of 
design architecture evaluation of various DI&C systems, (4) assure the long-term 
safety and reliability of safety-related DI&C systems, and (5) reduce uncertainty 
in costs, and support the deployment of DI&C systems in the nuclear power 
plants (NPPs). 

To achieve these technical goals, the proposed framework in this project 
provides a means to address relevant technical issues by: (1) defining a risk-
informed analysis process for the DI&C upgrade that integrates hazard analysis, 
reliability analysis, and consequence analysis, (2) applying risk-informed tools to 
address common cause failures (CCFs) and quantify corresponding failure 
probabilities for DI&C technologies, particularly software CCFs, (3) evaluating 
the impact of digital failures at the component level, system level, and plant 
level, and (4) providing insights and suggestions on designs to manage the risks, 
thus to support the development and deployment of advanced DI&C technologies 
in NPPs. 

Adding diversity within a system or components is the primary means to 
eliminate and mitigate CCFs, but diversity also increases system complexity and 
may not address all sources of systematic failures. Optimization of diversity and 
redundancy applications for the safety-critical DI&C systems remains a 
challenge. To deal with the technical issues in addressing potential software 
CCFs in safety-related DI&C systems of NPPs and supporting relevant design 
optimization, the proposed framework provides: 

• A best-estimate, risk-informed capability to address new technical digital 
issues quantitatively, focusing on software CCFs in safety-related DI&C 
systems of NPPs 

• A common and a modularized platform for DI&C designers, software 
developers, cybersecurity analysts, and plant engineers to predict and prevent 
risk in the early design stage of DI&C systems 

• Technical bases and risk-informed insights to assist users in addressing the 
risk-informed alternatives for evaluating CCFs in safety-related DI&C 
systems of NPPs 

• A risk-informed tool that offers a capability of design architecture evaluation 
of various DI&C systems to support system design decisions in diversity and 
redundancy applications. 
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The research and development efforts of this project in FY 2023 are focused 
on refining current methods on software CCF modeling and estimation and 
exploring additional innovative approaches to risk assessment of DI&C systems 
to enable a more comprehensive and complete assessment of various safety-
related DI&C design architectures. 

The primary audience of this report is DI&C designers, engineers, and 
probabilistic risk assessment practitioners. This includes stakeholders, such as the 
nuclear utilities and regulators who consider the deployment and upgrade of 
DI&C systems, DI&C software developers and reviewers, and cybersecurity 
specialists. 

It should be noted that all the analyses are performed for the demonstration 
of the methodology, not for the evaluation of an actual digital control system. 
Results are obtained based on limited design information and testing data. 
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AN INTEGRATED FRAMEWORK FOR RISK 
ASSESSMENT OF SAFETY-RELATED DIGITAL 

INSTRUMENTATION AND CONTROL SYSTEMS IN 
NUCLEAR POWER PLANTS: METHODOLOGY 

REFINEMENT AND EXPLORATION 
1. INTRODUCTION 

This report documents the activities performed by Idaho National Laboratory (INL) during fiscal year 
(FY) 2023 for the U.S. Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) 
Program, Risk Informed Systems Analysis (RISA) Pathway, Digital Instrumentation and Control (DI&C) 
Risk Assessment project [1], [2], [3], [4], [5]. The LWRS program, sponsored by the U.S. DOE and 
coordinated through a variety of mechanisms and interactions with industry, vendors, suppliers, 
regulatory agencies, and other industry research and development (R&D) organizations, conducts 
research to develop technologies and other solutions to improve economics and reliability, sustain safety, 
and extend the operation of nation’s fleet of nuclear power plants (NPPs). The LWRS program has two 
objectives to maintain the long-term operations of the existing fleet: (1) to provide science- and 
technology-based solutions to industry to implement technology to exceed the performance of the current 
business model and (2) to manage the aging of systems, structures, and components (SSCs) so NPP 
lifetime can be extended, and the plants can continue to operate safely, efficiently, and economically. 

As one of the LWRS program’s R&D pathways, the RISA Pathway aims to support decision-making 
related to economics, reliability, and safety providing integrated plant systems analysis solutions through 
collaborative demonstrations to enhance economic competitiveness of the operating fleet. The goal of the 
RISA Pathway is to conduct R&D to optimize safety margins and minimize uncertainties to achieve 
economic efficiencies while maintaining high levels of safety. This is accomplished in two ways: (1) by 
providing scientific basis to better represent safety margins and factors that contribute to cost and safety; 
and (2) by developing new technologies that reduce operating costs. 

One of the research efforts under the RISA Pathway is the DI&C Risk Assessment project, which was 
initiated in FY 2019 to develop a risk assessment strategy for delivering a strong technical basis to 
support effective, licensable, and secure DI&C technologies for digital upgrades and designs [1]. As 
shown in Figure 1, an integrated risk assessment framework for the DI&C systems was proposed for this 
strategy which aims to: 

• Provide a best-estimate, risk informed capability to quantitatively and accurately estimate the safety 
margin obtained from plant modernization, especially for the safety-related DI&C systems 

• Support and supplement existing advanced risk informed DI&C design guides by providing 
quantitative risk information and evidence 

• Offer a capability of design architecture evaluation of various DI&C systems to support system 
design decisions and diversity and redundancy applications 

• Assure the long-term safety and reliability of safety-related DI&C systems 

• Reduce uncertainty in costs and support integration of DI&C systems at NPPs. 
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Figure 1. Schematic of the proposed risk assessment framework for safety-critical DI&C systems. 

The proposed risk assessment framework for DI&C systems is shown in Figure 2. In this framework, 
a redundancy-guided systems-theoretic method for hazard analysis (RESHA) was developed for safety-
related DI&C systems to support I&C designers and engineers to address both hardware and software 
common cause failures (CCFs) and qualitatively analyze their effects on system availability [6] [7]. It also 
provides a technical basis for implementing reliability and consequence analyses of unexpected software 
failures and supporting the optimization of defense-in-depth applications in a cost-efficient way. RESHA 
integrates systems-theoretic process analysis (STPA) [8], fault tree analysis (FTA), and hazards and 
consequence analysis for digital systems (HAZCADS) [9] methodologies to effectively identify software 
CCFs in complex systems with multiple levels of redundancy. More specifically, STPA is reframed in a 
redundancy-guided way, such as (1) depicting a redundant and diverse system via a detailed 
representation; (2) refining different redundancy levels based on the structure of DI&C systems; 
(3) constructing a redundancy-guided multilayer control structure; and (4) identifying potential CCFs in 
different redundancy levels. This approach has been demonstrated and applied for the hazard analysis of a 
four-division digital RTS [6] and a four-division digital ESFAS [7].  

The second part in risk analysis is the reliability analysis which includes tasks of (1) quantifying the 
probability of basic events of the integrated fault tree (FT) from the hazard analysis; (2) estimating the 
probability of consequences resulting from digital system failures. In the proposed framework, two 
methods have been developed: the Bayesian and human-reliability-analysis-aided method for the 
reliability analysis of software (BAHAMAS) [10] and orthogonal-defect classification (ODC) for 
assessing software reliability (ORCAS) [11]. BAHAMAS is applicable in situations with limited data 
conditions (e.g., early stage of system development), and ORCAS is applicable for analyses when 
significant amount of data is available (e.g., a fully developed system that underwent verification and 
validation or a system with significant length of operating experience). 

Finally, the consequence analysis is conducted to quantitatively evaluate the impact of digital failures 
on plant overall risks by assessing affected behaviors and responses. Some digital-based failures may 
initiate an event or scenario that was not analyzed before (e.g., a failure mode only applicable to a digital 
system), which could challenge plant safety. Uncertainty and sensitivity analyses are performed to 
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evaluate the safety and risk significance of target components and subsystems to DI&C system reliability 
and plant safety [12]. 

 
Figure 2. The flexible and modularized structure of the proposed risk assessment framework for safety-
related DI&C systems. 

This project’s research efforts from FY 2019 through FY 2022 were focused on methodology 
development and demonstration of the proposed framework. In FY 2023, the framework reached a point 
for a technical peer review and stakeholder feedback. Peer review activities included coordinating the 
reviews performed by a group of industry stakeholders, documenting the peer review feedback, and 
providing resolutions and responses to the peer review comments. Comments from technical peer 
reviewers and the resolutions and responses to these comments are outlined in the peer review report [13] 
published in March 2023. Besides, collaborations with the nuclear industry have been initiated to support 
the reliability and risk assessment of their DI&C systems by using the proposed framework. Complete 
analysis and results have been documented in [14].  

This report outlines R&D focused on refining current methods on software CCF modeling and 
estimation and exploring additional innovative approaches to risk assessment of DI&C systems to enable 
a more comprehensive and complete assessment of various safety-related DI&C design architectures. The 
remaining sections of the report are organized as follows: Section 2 describes the methodology refinement 
of the proposed framework and methods based on feedback during the collaboration with the industrial 
partners and the comments from the technical peer review. Section 3 evaluates the feasibility of current 
methods on cross-system CCF analysis between a representative four-division digital RTS and ESFAS. 
Section 4 proposes an innovative approach on the risk assessment of human-system-interface (HSI) by 
integrating RESHA and human reliability analysis (HRA) methods. Section 5 investigates the use of a 
dynamic probabilistic risk assessment (PRA) approach on evaluating the impacts of software CCFs to 
plant safety. Section 6 presents a novel method for evaluating the model agnostic reliability of potential 
machine learning (ML) models integrated in DI&C systems. Section 7 summarizes results of the R&D 
performed in collaboration with the Pressurized Water Reactor Owners Group (PWROG) in FY 2023 
focused on the risk evaluation of a DI&C safety actuation system in use at a nuclear utility. Section 8 
outlines conclusions and future work of this project. Appendixes A, B and C respectively document the 
application guides of RESHA, ORCAS and BAHAMAS. 
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2. METHODOLOGY REFINEMENT AND IMPROVEMENT 
This section describes the methodology refinement of the proposed framework and methods based on 

feedback from the collaboration with the industrial partners and the comments from the technical peer 
review. Methodology improvement will be continued in the next fiscal year. Sections 2.1 and 2.2 describe 
the new methodology of the RESHA, BAHAMAS, ORCAS, and CCF modeling approach for software 
CCF analysis. Section 2.3 presents an approach to modeling postulated software CCFs of diverse DI&C 
systems using these methods. 

2.1 Redundancy-guided System-theoretic Hazard Analysis 
The RESHA method is an FTA-based method that incorporates STPA to identify the potential 

hazards and failures of DI&C systems. Reference [15] illustrates the concepts of Type I and Type II 
interactions: Type I, the interactions of a DI&C system (and/or its components) with a controlled process 
(e.g., NPPs), and Type II, the interactions of a DI&C system (and/or its components) with itself and/or 
other digital systems and components. Software should not be analyzed in isolation from the digital 
system. In addition to the inner failures of software, failures in Type II interactions should be considered 
in the risk analysis of a DI&C system.  

RESHA incorporates the concepts from FTA, STPA, HAZCADS, and CCF modeling to support 
hazard analysis. STPA is reframed in a redundancy-guided way to address CCF concerns in highly 
redundant DI&C systems. The main outcomes of RESHA are (1) the identification of critical failures, 
including CCFs, in the DI&C design; (2) an integrated FT including both hardware and software failures, 
both independent failures and CCFs; and (3) hazard preventive strategies. The acceptance criterion of risk 
evaluation for the RESHA is: “is the function of digital system still available even with the identified 
potential digital failures?” In other words, are there any critical failures or failure combinations existing in 
the system that may lead to the DI&C system completely losing its function? A seven-step process, 
shown in [4], illustrates the workflow of RESHA in the proposed framework for the hazard analysis of 
DI&C systems, especially for software CCF analysis of highly redundant safety-related DI&C systems. 

Compared with the RESHA workflow described in [4] and [5], the major revisions from this year 
research include: 

• Added the identification of unsafe information flows (UIFs) in Step 3 with unsafe control actions 
(UCAs) based on redundancy-guided application of STPA. UIFs are defined as failures in the 
feedback pathway of the control structure, whereas an UCA is a failure in the controller pathway. 
They are considered one class of casual factors for UCAs under the STPA methodology. 

• Detailed CCF identification in Step 5 to better serve CCF analysis efforts. The previous version 
of RESHA provides a discussion on CCFs and the importance of identifying software-based 
coupling factors, but the identification of coupling mechanisms, which is a vital part of CCF 
analysis, was not fully discussed. To address this, Step 5 shown in Figure 1 has been modified. 
The purpose of Step 5 is to identify potential CCFs and add them to the FT. Digital systems, 
particularly those employed for safety, contain multiple layers of redundancy. Redundant 
components may share common hardware and software features making them susceptible to 
CCFs. Based on the redundancy-guided nature of RESHA, the first task of Step 5 is to identify 
the redundant (or functionally redundant in the case of diversity) components, or elements of the 
software system. From this point on, the selection of coupling mechanisms can identify potential 
subgroups that may fail together. 

The new workflow of RESHA is shown in Figure 3, more details and descriptions can be found in A  
Appendix A. 
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Figure 3. Workflow of the RESHA in the proposed framework for the hazard analysis of DI&C systems 
(derived from [4]).  

2.2 Multiscale Quantitative Reliability Analysis 
The goal of the multiscale quantitative reliability analysis is to estimate the DI&C system reliability 

values by evaluating the DI&C systems FT obtained in the hazard analysis and provide estimated 
reliability values as inputs for a subsequent consequence analysis. For the reliability analysis of large-
scale DI&C systems, a small-scale analysis of software reliability in DI&C systems are also included in 
the reliability analysis workflow. Figure 4 illustrates the framework of the multiscale reliability analysis 
of DI&C system. 

The first step to any good reliability analysis for a DI&C system is the adequate collection and 
evaluation of design and requirement documentation. The required target documents, based on IEEE-
guided software development life cycle, include but are not limited to the software requirement 
specifications, the software design description, and the software test documentation. These documents are 
necessary to determine whether design and test failure data are available to conduct detailed and highly 
relevant reliability analysis. The overall adequacy of the system design is dependent on the experience of 
the team and may lead to data-rich and sparse scenarios. It is recognized that for many engineering 
software projects, from both experienced and inexperienced teams, availability of design documentation 
to support reliability analyses may vary from rich to sparse. A solution is provided for each case in terms 
of the ORCAS or BAHAMAS methodology: BAHAMAS for data-limited conditions and ORCAS for 
data-rich analysis. 

BAHAMAS was developed for conditions with limited testing/operational data or for reliability 
estimations of software in early development stage. It can provide a rough estimation of failure 
probabilities to support the design of software and target DI&C systems even when data is very limited. 
Instead of relying on testing data, BAHAMAS assumes software failures can be traced to human errors in 
the software development life cycle (SDLC) and modeled with HRA. In BAHAMAS, a Bayesian belief 
network (BBN) is developed to provide a means of combining disparate causal factors and fault sources 
in the system, and HRA is applied to quantify the potential root human errors during SDLC.  
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In contrast to BAHAMAS, ORCAS applies a white-box software invasive testing and modeling 
strategy to trace and identify the software defects that can potentially lead to software failures. The 
approach is a root-cause analysis methodology originating from the ODC approach. ODC is used to 
semantically (and systematically) classify the identified defects into disjoint software causality groups. A 
correlation table between causality groups and observable failures can thus be established linking root 
cause defects to potential software failure modes. The failure data collected from testing strategies is also 
combined with software reliability growth models and linear reliability models to quantify the software 
failure probability of specific UCAs.  

After the reliability analysis of software, a modified beta-factor model (BFM) is applied for the 
modeling and estimation of software and hardware CCFs, the hardware failure probabilities are based on 
existing failure database or PRA models. Finally, when all the basic events of integrated FT are 
calculated, the failure probability of entire DI&C system can be estimated using FTA tools. 

 
Figure 4. The workflow of multiscale quantitative reliability analysis in the proposed framework. 

Compared with the methodology described in [4] and [5], the workflow of multiscale quantitative 
reliability analysis keeps the same in the new version. The methodology of BAHAMAS, ORCAS, and 
CCF modeling approach have been refined and improved. 

For BAHAMAS: 

• BAHAMAS consists of two different types of root nodes—the review nodes, and the stage defect 
nodes. The use of these nodes has been clarified in the new version. 

◦ New equations were given to evaluate the SDLC stage defect nodes.  
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◦ The evaluation of review nodes was clarified. 

• Review quality plays an important role in the removal of software defects. For this work, review 
quality is considered a function trigger coverage and the number of reviews performed. Trigger 
coverage effectively considers the types of review activities that have been performed during the 
software development. While review number considers the impact of multiple independent 
reviews. Future work may incorporate other concepts. This work has introduced new equations to 
provide a clearer evaluation of the review number and trigger coverage metrics.  

• A new workflow was provided to express guidance for the application of BAHAMAS under two 
pathways.  

◦ BAHAMAS application for the estimation software failure probability. 

◦ BAHAMAS application for estimation of software CCF probability including that of diverse 
system designs. New equations were developed to support diverse CCF modeling within the 
LWRS-developed framework. Given this development, BAHAMAS was considered for 
supporting the evaluation of diverse CCFs. 

For ORCAS: 

• Based on reviewer feedback, provided additional methodology description on how to conduct the 
analysis for meaningful results. Methodology for the requirements traceability matrix and trigger 
coverage assessment (part of the ORCAS process) were inadequately described.  

• Retabulated the data related to the correlation table to fix the inconsistencies pointed out by 
industry reviewers. The inconsistencies were related to Excel algorithmic issues and have been 
resolved.  

• Provided the description on how to conduct supplementary testing via automated combinatorial 
testing. The original implementation was unclear as to how the combinatorial testing should be 
conducted to achieve relevant dataset coverage. Guidance on boundary analysis is developed to 
constrain and improve test set construction for supplementary testing. 

For CCF modeling approach: 

• Refined the methodology of CCF modeling to allow consideration of diverse CCFs. A key 
concept is the idea that diverse software may have shared, common, or otherwise overlapping 
attributes. Some methods, such as BAHAMAS, may offer a means of directly estimating 
theoretical CCF vulnerability as measured by common aspects of the software requirements or 
other aspects of the software development life cycle. The new methodology is demonstrated in 
subsequent sections. 

• Investigated the identification of sub-factors for improving the CCF modeling parameters 
employed by the CCF models of the LWRS-developed framework. One of the large challenges 
faced by the industry is the limited historical data for CCF especially in safety systems. 
Consequently, implicit modeling techniques that can incorporate qualitative and design related 
aspects, especially in the absence of operational data, are an important avenue for research. 
Industry collaboration and feedback led to the identification of several concepts that may provide 
pathways for more realistic software CCF modeling parameters. It was determined that defensive 
features such as built-in online software monitoring, alarms, watchdogs, and other such features 
may mitigate or eliminate some postulated CCFs.  

More details and descriptions of the new version of ORCAS and BAHAMAS can be found 
respectively in Appendix B and C. 
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Methodology description and case study of the modified CCF modeling approach for diverse DI&C 
systems are provided in the next section. 

2.3 An Approach to Modeling Postulated Software Common Cause 
Failures of Diverse Digital Instrumentation and Control Systems 

Redundancy is a well-known strategy for maximizing reliability of safety-related systems; however, 
CCFs have the potential to defeat redundancy. As a means of protection, diversity may be employed to 
ensure the same function as a redundant system but by alternative technologies, methodologies, or 
techniques [16]. Despite its application for analog I&C systems, the effectiveness of diversity for DI&C 
systems remains a topic of concern. The use of digital technologies may increase the potential for CCF 
vulnerabilities due to failures in design specifications and system interactions [17]. Salako and Strigini 
provide a mathematical-based investigation of diversity and indicate scenarios where removing 
commonalities can be beneficial, damaging or have an uncertain effect [18]. Knight and Leveson have 
indicated that independently developed software may not necessarily fail independently [19]. Perfectly 
isolated development may be unlikely given the commonality of coding education and references [18]. 
Huang et al. indicate empirical studies, like [19], suggest programmers may be prone to common or 
similar errors [20]. Huang et al. use this to justify their research of the links between software diversity 
and human error diversity via personality traits, performance levels, cognitive styles, and, more recently, 
cognitive mechanisms [21]. This section proposes an approach to modeling CCF that is tailored for 
redundant architectures. Given the potential for common defects within multiversion software, the goal is 
to provide an approach for modeling potential CCFs of diverse software configurations in DI&C systems. 

2.3.1 Technical Background 
A CCF is the occurrence of two or more failure events due to the simultaneous occurrence of a shared 

failure cause and a coupling mechanism [22]. In our previous work, we introduced an approach for 
modeling CCFs within DI&C systems [4]. That work assumed purely redundant configurations of 
components. Here we provide a brief overview of the CCF methodology and the associated challenge of 
modeling potential CCFs of diverse components. 

The LWRS-developed framework consists of an approach for CCF modeling that incorporates the 
modified beta factor (MBF) method [23, 24]. Our approach emphasizes the identification of software-
centric coupling mechanisms necessary for simultaneous failures of redundant software components. For 
the purposes of analysis any group of components that share similarities via coupling mechanisms may 
have a vulnerability to CCF and can be considered a CCCG. One of the key aspects of the MBF method is 
how it accounts for asymmetry in coupling mechanisms that are used when defining CCCGs [24]. 
Additionally, while most models rely on operational data as the basis for estimating CCF parameters to 
model CCFs, ours does not. Instead, model parameters are generated by qualitative details found in the 
software’s own development and design plans. This provides a means to overcome certain modeling 
challenges including limited data [24].  

The general process of CCF modeling within the LWRS-developed framework requires analysts to 
(1) identify the CCCGs, (2) define model parameters for each CCCG, and (3) evaluate the CCFs for each 
CCCG. Our approach is based on the MBF method for CCF; consequently, CCF is given as a portion of 
total failure probability, which must be evaluated separately. Identification of the CCCGs is based on 
software-centric coupling mechanisms (e.g., shared software code, shared requirements, and languages). 
When software components have been grouped into 𝑁 groups by common attributes, the next step is to 
define model parameters for each CCCG (i.e., 𝐶𝐶𝐶𝐺𝑛). Each CCCG is assigned a beta factor (𝛽𝑛) that 
represents the contribution of that CCCG to the total failure probability (𝑄𝑇). Total failure probability is 
represented as the summation of independent (𝑄𝐼) and common failure (𝑄𝐶𝐶𝐹) probability. 𝑄𝐶𝐶𝐹 is 
separated into contributions dependent upon the number of CCCGs. The equations, as employed within 
our previous work [24], are shown below: 
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𝑄𝐶𝐶𝐹 = 𝑃(𝐶𝐶𝐶𝐺1) + 𝑃(𝐶𝐶𝐶𝐺2) + ⋯𝑃(𝐶𝐶𝐶𝐺𝑁) (1) 

𝑃(𝐶𝐶𝐶𝐺𝑛) =  (𝛽𝑛)𝑄𝑡 (2) 

𝑄𝐼 = (1 − 𝛽𝑡)𝑄𝑡 = [1 − ∑(𝛽𝑛)

𝑁

1

]𝑄𝑡 (3) 

The MBF method is intended for use with redundant configurations. The introduction of diversity 
creates modeling challenges. Diversity leads to complications with traditional parametric-based modeling. 
Consider the redundant configuration shown in Figure 5. Two components, A and B, have been 
determined to share a CCCG and are susceptible to a CCF. In this scenario, component A is more reliable 
than component B (perhaps due to the difference in manufacturers); the failure probability for A (𝑄𝐴) is 
lower than the 𝑄𝐵. This difference in reliability presents a challenge for CCF modeling. The failure 
probabilities for A and B are given by Equations (4) and (5). 

𝑄𝐴 = 𝑄𝐴𝐼
+ 𝑄𝐶𝐶𝐹𝐴𝐵

 (4) 

𝑄𝐵 = 𝑄𝐵𝐼
+ 𝑄𝐶𝐶𝐹𝐴𝐵

 (5) 
 

 
Figure 5. Simple fault tree example. 

Traditional CCF modeling assumes 𝑄𝐴 = 𝑄𝐵 = 𝑄𝑇, also known as a symmetry assumption. The 
resulting CCF for A&B (i.e., 𝑄𝐶𝐶𝐹𝐴𝐵

) is given by Equation (2). A complication arises for the diverse case 
𝑄𝐴 ≠ 𝑄𝐵; it becomes necessary to select an appropriate 𝑄𝑇. Consider the scenario when 𝑄𝐴 < 𝑄𝐵, the 
value of 𝛽 is fixed for the CCCG of A&B, and performance data are unavailable to directly measure 
𝑄𝐶𝐶𝐹𝐴𝐵

. The following are options for selecting 𝑄𝑇 [25]: 

1. The larger of the values. This is considered a conservative option by Brand [25]. It will predict a 
larger CCF value than for Option 2. However, it should be easily recognized that there is a 
potential logical inconsistency especially as 𝛽 approaches 1.  

2. The smaller of the values. This is supported by the Frechet-Hoeffding upper bound on joint 
probability distributions [26]. It considers the extreme case in which the entirety of failure events 
that lead to A fit within the events that lead to B (i.e., 𝑄𝐴 < 𝑄𝐵) corresponding to 𝛽 = 1; for such 
case, it should not be possible for 𝑄𝐶𝐶𝐹𝐴𝐵

 to exceed 𝑄𝐴.  

3. The geometric mean. The geometric mean is presented as an option in by Brand [25]. Huage et al. 
indicate that this approach is preferred and adequate for rates or probabilities that are of the same 
magnitude [27]. 

Use of any option requires consideration of its impact. For example, Option 1 may lead to logical 
inconsistencies that are bounded by the Frechet-Hoeffding upper bound on joint distributions. Despite 
being considered as a preferred approach, Option 3 should be checked against Option 2. In all cases, there 
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is still a complication for selecting the correct and meaningful representative parameter (e.g., beta) for the 
CCCG. Given these challenges, it is proposed to find an alternative approach that better represents the 
relationship between the components of the CCCG. The next section discusses our approach for CCF 
modeling of diverse software configurations. 

2.3.2 Methodology 
2.3.2.1 Overview 

Rather than rely on Options 1–3 given in the previous section, a direct estimation is proposed to 
identify a group’s potential CCF. Options 1–3 provide ways of combining or approximating total failures 
without the consideration of the common aspects that are shared between the CCCG. A new approach 
introduces a variable to directly represent the similarity within the CCCG regardless of any asymmetry in 
their total failure probabilities. Our previous work relied on Equations (1) and (2) to define failure 
probability of a component due to common causes; we are now proposing to rely on the alternative shown 
below: 
 

𝑄𝐶𝐶𝐹𝑛
= 𝑓(𝑄𝐶𝐶𝑛

) (6) 

𝑄𝐶𝐶𝑛
represents the theoretical CCF probability for the CCCG based on the similarity that is shared 

between the components of the CCCG (e.g., identical software requirements). Defenses may exist that 
prevent the CCFs from dominating the failure space for the system and otherwise reduce the CCF of the 
CCCG. To account for defenses, 𝜙𝑛 is incorporated with Equation (6) producing Equation (7).  

𝑄𝐶𝐶𝐹𝑛
= 𝜙𝑛𝑄𝐶𝐶𝑛

 (7) 

Note that 𝜙𝑛 plays role similar 𝛽𝑛 in Equation (2). The difference being that 𝛽𝑛 fundamentally 
represents a fractional percentage of CCFs over the total failures, while 𝜙𝑛 represents the defense that a 
CCCG has against CCF. When 𝜙𝑛 = 1, the level of defense is poor, and 𝑄𝐶𝐶𝐹𝑛

 is equivalent to the 
theoretical failure probability 𝑄𝐶𝐶𝑛

. The variable 𝑄𝐶𝐶𝑛
 considers the designed commonality of the 

components of the CCCG, while the defense factor, 𝜙𝑛, considers the qualitative and designed features 
that act as defensive measures to a CCF of the CCCG. Implementing 𝑄𝐶𝐶𝑛

 to the model necessitates 
slightly different equations than those given previously. The resulting equations are shown below. 

𝑄𝐶𝐶𝐹 = 𝑄𝐶𝐶𝐹1
+ 𝑄𝐶𝐶𝐹2

+ ⋯𝑄𝐶𝐶𝐹𝑁
 (8) 

𝑄𝐶𝐶𝐹𝑛
= 𝑃(𝐶𝐶𝐶𝐺𝑛) =  𝜙𝑛𝑄𝐶𝐶𝑛

   (9) 

𝑄𝐼 = 𝑄𝑇 − 𝑄𝐶𝐶𝐹 (10) 

𝑄𝑇 = ∑𝜙𝑛𝑄𝐶𝐶𝑛

𝑁

1

+ 𝑄𝐼 (11) 

The challenge for this new approach is defining 𝜙𝑛 and𝑄𝐶𝐶𝑛
. In contrast to the traditional method of 

parameter estimation (i.e., reliance on historical data), 𝜙𝑛 will be solved with qualitative information. The 
process is defining model parameters based on defensive qualitative attributes and is discussed in [5]. 
Software failure consists of two parts, the existence of a defect and an activation scenario [17]. 𝑄𝐶𝐶𝑛

 
defines the common or shared aspects of failure between the CCCG. Thus, a method is needed that can 
define the shared defects or activation scenarios that make up software failure. In the next section, we 
propose a method to define 𝑄𝐶𝐶𝑛

 specifically in terms of shared defects. 
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2.3.2.2 A Method to Define 𝑸𝑪𝑪   
BAHAMAS was developed for the conditions when testing or operational data are limited, such as 

for reliability estimations of software in early development stages [10]. BAHAMAS was created by 
considering the principle of mechanisms of software failure. It has been said that software does not fail, at 
least in the same way that hardware can [28] [29]. Instead, software performs exactly how it has been 
designed to perform; any unwanted action or behavior (i.e., a failure) is due to a fault within the code that 
has been activated based on certain inputs or operational conditions. Software failure occurs by the 
activation of latent defects (e.g., deficiencies from coding errors, installation errors, maintenance errors, 
setpoint changes, and requirements errors) which are known to be caused by human errors in the SDLC 
[17]. BAHAMAS relies on this understanding to assess software reliability. Instead of relying on testing 
data, BAHAMAS employs a BBN to map the causes of software failures to specific defect types, defined 
by ODC [30], that can be traced to human errors in the SDLC. In turn, the human errors can be modeled 
with HRA [10]. By combining details of a specific SDLC, the BBN can provide an estimation of the 
existence of defects within that software. These in turn are used to find the software failure probability. 
The general format of the BBN is shown in Figure 6.  

 
Figure 6. General structure of the BBN used within BAHAMAS. 

In our previous work, we investigated CCF of redundant components that share the same software 
[4]. For a CCF, there must be (1) a failure involving multiple components and (2) a common cause that is 
made “shareable” by the existence of some coupling mechanism. The shared cause for software must 
include a common “active” defect or fault. A CCF can occur when multiple components share copies of 
the same software and can be influenced by the same activation scenario. The only difference between the 
CCF and individual failure for the identical components is that a shared defect is activated in a single 
software vs. in the multiple redundant software components. BAHAMAS provides the indication of total 
failure probability for a software by estimating the existence of defects. Meanwhile, it is the system 
configuration that determines whether a CCF or independent failure can occur. In other words, if there is 
no redundant software, then there is no potential for CCF, and the BAHAMAS estimation failure 
represents independent failure only. Because BAHAMAS provides an indication of the remaining defects 
within a software, when that software is used redundantly, BAHAMAS provides a direct indication of the 
common defects that exist between redundant software components. As an example, consider CCCG of 
two redundant components that share identical software. The estimate of software failure probability 
provided by BAHAMAS is equivalent for both components: 
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𝑄𝑆𝑤1 = 𝑄𝐴𝑡𝑜𝑡𝑎𝑙
= 𝑄𝐵𝑡𝑜𝑡𝑎𝑙

 (12) 

By tracking the shared aspects of the SDLC, which happens to be 100% identical for A and B, 
BAHAMAS has provided an indication of 𝑄𝐶𝐶. Barring any exterior defenses against CCF, the total failure 
value predicted by BAHAMAS is equivalent to the theoretical CCF of the CCCG.  

𝑄𝑆𝑤1 = 𝑄𝐶𝐶 (13) 

BAHAMAS provides an implied representation of the common defects that exist for CCCG, where 
these defects can be traced to human errors during the SDLC. It is hypothesized, that diverse software 
may share defects due to common human errors during their respective SDLC activities, resulting in a set 
of defects that are common and can lead to common failure of diverse software. Software defects found 
within Software A are given as a function of the SDLC of A, while the software defects found within 
Software B are given as a function for the SDLC of B. The defects that are shared within Software A and 
Software B are due to common human errors within both SDLC-A and SDLC-B. Applying BAHAMAS 
for the common aspects between SDLC-A and SDLC-B provides a direct indication of the 𝑄𝐶𝐶 term. 

This work emphasizes the necessary aspects for structuring BAHAMAS to find 𝑄𝐶𝐶 term. Additional 
details of the BAHAMAS can be found in [10]. BAHAMAS works by identifying the details of the 
SDLC to construct a BBN like the one in Figure 6, the root nodes are quantified, and then the BBN is 
solved for the failure of interest. There are two types of root nodes—the nodes for stage review quality 
and the nodes for stage defects. The defect nodes are a function of human error probability (HEP) for 
each critical activity of the SDLC stage. The review quality nodes are a function of the average number of 
reviews performed and the trigger coverage for each of the critical activities evaluated. For practical 
applications, the output from BAHAMAS can be considered a function of HEP, review number, and 
trigger coverage. The subsequent paragraphs detail how these should be determined for the evaluation of 
𝑄𝐶𝐶. 

The process for defining defect nodes requires that critical activities of the SDLC stage be evaluated 
for human errors. Each SDLC stage has multiple activities consisting of multiple tasks. Each of these 
activities may introduce errors to the software. HRA is applied to determine the HEP of each critical task 
(T), the union of which provides an indication of the probability of defects for each stage; see Equation 
(14) below. To find 𝑄𝐶𝐶 term for the diverse CCCG, only the common tasks should be assessed; thus, 
only a subset of T will be evaluated (i.e., 𝑇𝑐𝑐). Additionally, the 𝐻𝐸𝑃 from Equation (14) should be 
replaced by 𝐻𝐸𝑃𝑚𝑖𝑛, corresponding to the smaller evaluated HEP of the task shared by the diverse 
CCCG. The result of this change is shown in Equation (15). As an example, given a task that is shared by 
software-1 and software-2, the maximum overlap of the HEPs will be given by the smaller of the two. 
This follows the discussion in [26] concerning the upper bound on joint probability distributions. 

𝑃(𝑆𝑡𝑎𝑔𝑒 𝐷𝑒𝑓𝑒𝑐𝑡𝑠) = ∑ (𝐻𝐸𝑃)𝑖

𝑇

𝑖=1
 (14) 

𝑃𝑐𝑐(𝑆𝑡𝑎𝑔𝑒 𝐷𝑒𝑓𝑒𝑐𝑡𝑠) = ∑ (𝐻𝐸𝑃𝑚𝑖𝑛)𝑖 
𝑇𝑐𝑐

𝑖=1
 (15) 

The SDLC stage review quality nodes shown in Figure 6. These nodes are evaluated based on the 
average number of reviews and trigger coverage that occurs during independent review of the SDLC 
activities. Triggers are introduced and discussed in [4]. The trigger coverage (𝑇𝐶) is determined from the 
average of each task-level trigger coverage (𝑡𝑐) which is the percent of relevant triggers that have been 
covered for a task of a particular SDLC stage; see Equation (16) below. Trigger coverage for the diverse 
CCCG (𝑇𝐶𝑐𝑐) is given by Equation (17) and depends on the subset of tasks that are shared by the CCCG.  
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𝑇𝐶 = 
1

𝑇
∑ (𝑡𝑐)𝑖

𝑇

𝑖=1
 (16) 

𝑇𝐶𝑐𝑐 = 
1

𝑇
∑ (𝑡𝑐𝑐𝑐)𝑖

𝑇𝑐𝑐

𝑖=1
 (17) 

Within Equation (17), the task-level trigger coverage is defined as a function of the set of triggers 
investigated ({𝑡𝑟}𝑖,𝑖𝑛𝑣) by the CCCG out of the total relevant set of triggers ({𝑡𝑟}𝑖,𝑡𝑜𝑡) that are applicable 
to a particular task. Equation (18) provides the relationship between {𝑡𝑟𝑐𝑐}𝑖 and {𝑡𝑟}𝑖.𝑠, where {𝑡𝑟𝑐𝑐}𝑖 is 
the set of relevant triggers to the CCCG, and {𝑡𝑟}𝑖,𝑠 is the set covered by the SDLC of software s. The 
index, 𝐾, is the total number of diverse software implementations used by the CCCG. Equation (19) gives 
the task-level trigger coverage for the diverse CCCG.  

{𝑡𝑟𝑐𝑐}𝑖 = {{𝑡𝑟}𝑖,1 ∪ {𝑡𝑟}𝑖,2 …∪ {𝑡𝑟}𝑖,𝐾} (18) 

(𝑡𝑐𝑐𝑐)𝑖 =
𝑠𝑖𝑧𝑒 𝑜𝑓 {𝑡𝑟𝑐𝑐}𝑖,𝑖𝑛𝑣

𝑠𝑖𝑧𝑒 𝑜𝑓 {𝑡𝑟𝑐𝑐}𝑖,𝑡𝑜𝑡
 (19) 

The average number of reviews for a particular stage is defined by Equation (20), where r is the 
number of independent reviews performed for a specific task. For the diverse CCCGs, only the common 
or shared tasks should be assessed; thus, a subset of T is employed to determine R. The result is 
Equation (21), where 𝑟𝑐𝑐 represents a weighted average number of reviews for the CCCG. Equation (22) 
is given to show how 𝑟𝑐𝑐 is defined for each task where 𝑟𝑖,𝑗,𝑠 is the number of reviews performed during 
the SDLC of software s, for task i, that involved trigger j of the {𝑡𝑟}𝑖,𝑠. Note 𝐽𝑖 corresponds to the size of 
{𝑡𝑟}𝑖,𝑠. 

𝑅 = 
1

𝑇
∑ 𝑟𝑖

𝑇

𝑖=1
 (20) 

𝑅𝑐𝑐 = 
1

𝑇
∑ (𝑟𝑐𝑐)𝑖

𝑇𝑐𝑐

𝑖=1
 (21) 

(𝑟𝑐𝑐)𝑖  =  
1

𝑠𝑖𝑧𝑒 𝑜𝑓 {𝑡𝑟}𝑖,𝑡𝑜𝑡
∑ 𝑚𝑎𝑥(𝑟𝑖,𝑗,𝑠)𝑠=1

𝐾

𝐽𝑖

𝑗=1

 (22) 

 

2.3.3 Case Study 
This section details a simplified case study.  The case study provides an example of our approach for 

modeling CCFs for systems containing diverse software. The case study is applied to the system shown in 
Figure 7. The figure has three redundant divisions, each with two redundant processors. Each processor 
must perform a single critical function. The system requires at least one successful critical function from 
2 out of 3 (2oo3) divisions for successful operation. The developers chose two diverse software versions 
to prevent a CCF of all six processors and ensure system reliability. 
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Figure 7. Case study control system. 

The following are assumptions for the case study: 

• The blue (software-1) and red (software-2) processors in Figure 7 are assumed to be diverse 

• Software-1 is developed and maintained by a separate manufacturer and team than software-2 

• There is no hardware diversity 

• The SDLC for both diverse software implementations contain overlapped activities and tasks 

• The HEPs necessary to define SDLC stage defects have been assumed 

• All stages found within a particular SDLC have the same trigger coverage and review number 

• The values for CCF model subfactors have been assumed based on expert judgment. 

The process for modeling CCF consists of three steps: (1) identify the CCCGs, (2) define model 
parameters for each CCCG, and (3) evaluate the CCFs for each CCCG. Step 3 requires an evaluation of 
𝑄𝑐𝑐 which will be determined by BAHAMAS. For Step 1, the failure of interest is defined as P-A1 fails to 
provide critical function when it is needed during operation. It is assumed to be a failure-on-demand 
scenario. Step 2 requires that the CCCGs be identified and that model parameters for those CCCGs be 
defined. The process for identifying software-specific CCCGs and assigning model parameters was 
introduced in [4] and [24], though some modification is still needed for quantifying the parameters of 
diverse configurations. The CCCGs are defined by the coupling mechanisms shown in Table 1, where the 
score for each CCCG defense factor (i.e., model parameter) is also shown. In Step 3, the evaluation of the 
CCFs requires that 𝑄𝑇 or 𝑄𝑐𝑐𝑛

 be defined for each CCCG. For this case study, 𝑄𝑐𝑐𝑛
 is the combination of 

software-1 and software-2, found in CCCGs 1–3 and 6 from Table 1.  

Table 1. CCCGs, coupling mechanisms, and CCF model parameters. 
CCCGs Coupling Mechanisms  𝜙𝑛 

1 BPs in Division A  Division A Specific Inputs 0.639 

2 BPs in Division B Division B Specific Inputs 0.639 

3 BPs in Division C Division C Specific Inputs 0.639 

4 SW1 BPs  Software-1 SDLC, Software-1 Maintenance Team 0.483 

5 SW2 BPs  Software-2 SDLC, Software-2 Maintenance Team 0.483 

6 All BPs Software Requirements, Function, partially shared SDLC practices 0.605 
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The evaluation of 𝑄𝑐𝑐𝑛
 is found by employing BAHAMAS. Software-1 has 76.4% trigger coverage 

and an average of three reviews per task. Software 2 has 84% trigger coverage and an average of 2.5 
reviews per task. Equations from previous sections were used to define the common aspects necessary to 
evaluate BAHAMAS for 𝑄𝑐𝑐𝑛

. The common or shared SDLC has 93.8% trigger coverage and an average 
of 2.675 reviews per task. 𝑄𝑇, and 𝑄𝑐𝑐𝑛

 are shown in Table 2 along with the probability of SDLC stage 
defects. 

Table 2. Probabilities for SDLC stage defects, 𝑸𝑻, and 𝑸𝒄𝒄 for each software. 
Stages Software 1  Software 2  Common  

Concept  0.13 0.15 0.09 

Design 0.25 0.28 0.18 

Implementation 0.33 0.36 0.26 

Testing 0.27 0.25 0.19 

I&M 0.11 0.12 0.07 

UCA-A 𝑄𝑇  = 3.556E-5 𝑄𝑇  = 8.137E-5 𝑄𝑐𝑐  = 1.077E-5 

 

The defense factors and the values for 𝑄𝑐𝑐𝑛
 and 𝑄𝑇 are used to define the software CCF values for 

each of the CCCGs identified in Table 2. Specifically, Equations (8–12) are used to find the desired CCF 
and independent failure values. These can then be used as part of a PRA. The results for software 
component P-A1 are shown in Table 3. For this assessment, an FTA was conducted separately and 
indicated a top event probability of 6.517E-6. This result is dominated by the CCF of CCCG-6 which 
represents a CCF of all processors shown in the system. Additionally, the developers’ choice to use 
diverse software did not eliminate the threat of CCFs to system reliability. The case study demonstrates 
how, due to shared aspects of the SDLC, potential CCFs of diverse software can be identified and 
quantified.  

Table 3. Result table for software processor A1. 
CCCGs CCF 𝑄𝑐𝑐𝑛

 or 𝑄𝑇  or 𝑄𝐼  𝜙𝑛 

1 BPs in Division A  6.882E-6 1.077E-5 0.639 

4 SW1 BPs  1.718E-5 3.556E-5 0.483 

6 All BPs 6.516E-6 1.077E-5 0.605 

N/A P-A1 Ind. N/A 4.987E-6 N/A 

 

2.3.4 Discussion 
This section introduces a modification to the CCF approach employed by the LWRS-developed 

framework to increase its capabilities for modeling CCFs of diverse DI&C systems. The CCF model was 
adjusted by the introduction of 𝑄𝑐𝑐, and the defense factor, 𝜙. 𝑄𝑐𝑐, represents the common parts of 
diverse software and is therefore used to represent the theoretical commonality and that leads to CCF, 
while 𝜙 represents the how well defended a CCCG is against CCF. This 𝑄𝑐𝑐 term provides a direct model 
of the commonality between functionally redundant software elements, even diverse elements. This work 
proposed BAHAMAS to evaluate 𝑄𝑐𝑐 given BAHAMAS has the capability to directly consider 
commonality of components. A simple case study was shown to demonstrate the approach to modeling 
potential CCFs of diverse components. Future work will include methodology development and 
improvement in addition to demonstrations on more detailed and complex analyses.  
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3. PRELIMINARY STUDY OF CROSS-SYSTEM COMMON CAUSE 
FAILURES  

This section evaluates the feasibility of current methods on cross-system CCF analysis between a 
representative four-division digital RTS and ESFAS. Section 3.1 introduces the background and 
motivation of this research effort. Section 3.2 provides more details about the target systems in case 
studies. Section 3.3 introduces the application of BAHAMAS and CCF modeling approach to support the 
risk analysis of systems described in Section 3.2. Section 3 ends with a discussion in Section 3.4. 

3.1 Motivation 
DI&C system can integrate discrete and separate systems into a single system. The integrated system 

may share resources including communication channels, power supplies, as well as multifunction displays 
and controls. It allows for the implementation of new designs using a limited number of components, cost 
reduction, and upgrading of existing analog systems into DI&C system. However, highly integrated 
DI&C systems can increase vulnerabilities related to CCF, leading to increased costs and design 
complexity. Lungmen in Taiwan combines the functions of reactor shutdown and isolating the reactor 
system within the reactor protection system (RPS) [31]. Similarly, at plants such as Sizewell in United 
Kingdom, Ulchin in South Korea, and Dukovany in Czech Republic, the plant protection system (PPS) or 
digital RPS manages both of reactor trip functions and engineered safety feature (ESF) [31]. Although the 
subsystems are designed with functional diversity, and independent and diverse systems, such as the 
diverse protection system, are provided to implement defense-in-depth, the analysts should identify 
potential CCFs. 

Diversity serves as a tool to prevent CCFs by providing various ways to accomplish intended 
function. There is design diversity, functional diversity, equipment diversity (equipment 
manufacturer/logic processing equipment diversity), software diversity (logic diversity), human diversity 
(life cycle diversity), and signal diversity [31]. Among these, software diversity evaluates diversity based 
on different algorithms, logic, program architecture, timing and/or order of execution, operating systems, 
and computer languages. ORNL/TM-2013/563 evaluates diversity based on diverse inputs for data 
diversity, separate developments, diverse development teams, diverse requirements or specifications for 
design diversity, and functional diversity [32]. 

In digital systems, the task of comprehensively testing software proves to be elusive, while accurately 
predicting the failure modes of a software is also challenging. Additionally, the assumption of 
independent failure for independently produced digital components warrants further discussion. Even 
with different manufacturers, programmers, programming languages, and algorithms, there may be CCFs 
due to similarities in application nature and difficulties experienced by individual programmers [33]. For 
instance, in 1990, despite being developed by different companies using different programming 
languages, mathematical programs (MACSYMA, Maple, Mathematica, and Reduce) produced the same 
incorrect result [33]. Moreover, two programs that may seem distinct can still perform the same function. 
For this reason, verifying diversity among algorithms of software is generally impossible. Consequently, 
DI&C systems are deemed susceptible to CCF in cases of identical system designs and identical copies of 
software in redundant divisions or integrated and interconnected systems. Previous studies have 
considered coupling factors for software, including common external operational conditions (e.g., shared 
inputs), shared software development life cycles, shared human interactions (e.g., shared users and 
installation/maintenance teams), and common requirements [5]. 

In this section, a comprehensive evaluation of cross-system CCF is conducted by examining various 
coupling factors. These coupling factors include software requirements (such as SDLC, software 
language, and software algorithms), human interactions (involving maintenance teams and plans), input 
similarity, and potential functional similarities. It is noteworthy that similar requirements, even with 
equivalent programmers, programming languages, and algorithms, might result in varying functions being 
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performed. A case is the utilization of local coincidence logic (LCL) in both RTS and ESFAS. While their 
logical processes might be similar to certain specifications, differences arise in terms of setpoints and 
objectives for functions such as reactor trip actuation and ESF signal actuation. Consequently, such 
distinctions are classified as separate functional requirements, despite similarities in design diversity. 

3.2 System Description 
In this study, RTS initiates a reactor scram automatically or manually to rapidly reduce reactivity. 

ESF provides mitigation systems such as a core cooling system and containment system to prevent and 
mitigate accidents. Each system consists of four divisions, with two bistable processors (BPs) and two 
LCL racks per division. Within each LCL rack, there are four LCL processors. Signals from independent 
sensors in each division are transmitted to a BP, while trip signals produced by BPs are conveyed to 
LCLs. The LCL processors perform two-out-of-four voting on trip signals received from multiple 
redundant divisions. The RTS and ESFAS share the same BPs, and two of the four LCL processors 
generate reactor trip signals for selective relays, while the remaining two LCL processors produce ESF 
actuation signals, transmitted to the engineered safety features-component control system (ESF-CCS). 

This study further analyzes cases involving LCL processors that share inputs and utilize similar 
coincidence logic since the prior study [5] has encompassed a case study involving BP. The baseline 
configuration employs one common software for each LCL processor. While there might be some 
differences in certain functionalities between RTS and ESFAS, the baseline configuration assumes that 
LCL processors perform the same function of two-out-of-four voting logic in both RTS and ESFAS. 
Figure 8 and Figure 9 represent the baseline configuration for RTS and ESFAS.  

The diverse configuration is further analyzed to assess the impact of diversity on the extent of CCF 
across the system. In this configuration, two distinct software applications are utilized within the LCL 
processors. Software-1 is implemented in Division A&C, while Software-2 is used in Division B&D. The 
diverse configuration for RTS and ESFAS is illustrated in Figure 10 and Figure 11. 

A sensitivity analysis is conducted using the second baseline configuration. Within this configuration, 
a functional requirement is isolated from design diversity and treated as one of the coupling factors. 
Despite the significant resemblance between LCL processors developed by the same programmer, 
utilizing common programming language and similar SDLC, distinctions in logic trip setpoints or the 
types of the trip signal, whether it triggers a reactor trip or an ESF actuation signal, are assumed to 
differentiate the functional requirement.  

In an extension of the analysis, the second diverse configuration is explored, which presumed that the 
LCL processors in RTS and ESFAS were equipped with entirely separate software applications from the 
design phase. This specific configuration is visually illustrated in Figure 12 and Figure 13. 
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Figure 8. Baseline four-division digital RTS (LCL processors have identical software). 
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Figure 9. Baseline four-division digital ESFAS (LCL processors have identical software). 
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Figure 10. Diverse configuration four-division digital RTS (Orange components show Software-1 in 
Division A&C. Black components show Software-2 in Division B&D). 
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Figure 11. Diverse configuration four-division digital ESFAS (Orange components show Software-1 in 
Division A&C. Black components show Software-2 in Division B&D). 
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Figure 12. The second diverse configuration four-division digital RTS (Orange components show 
Software-1 in RTS). 
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Figure 13. The second diverse configuration four-division digital ESFAS (Black components show 
Software-2 in ESFAS). 

3.3 Case Studies for Cross-system Software Common Cause Failure 
This section provides a description of quantifying the CCF of LCL processors across RTS and ESF. 

Beginning with a comprehensive understanding of each system, the next step involves identifying the 
coupling factors (or mechanisms) that can share or interconnect RTS and ESFAS. Distinct coupling 
factors serve as the basis for constructing CCCGs and beta factors are assigned to each CCCG. This is 
then followed by the calculation of CCF. This quantification approach follows the previous research [5]. 

3.3.1 Baseline Configuration #1 
The baseline configuration #1 for this analysis is outlined as follows: 

1. The hardware is identical for all LCL processors. 

2. The software of LCL processors for RTS is the same as for ESF. 

3. All component failure probabilities are identical to the baseline RTS and ESF. 

4. Software is evaluated with BAHAMAS to provide 𝑄𝑆𝑤1 = 2.077𝐸 − 4. 

5. Certain details of the system that would be common knowledge for a real system had to be 
assumed for this hypothetical design. These assumptions make it possible to assign subfactor 
scores. 
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a. It is assumed that the software employed within the LCL processors is purpose-built. 

b. The LCL processors only perform two-out-of-four votes from the BP trip signals. 

c. It is assumed that the software is a new design with little operational experience (less than 10 
years). 

d. The manufacturer recognized and performed a PRA analysis for the CCF of all RTS LCL 
processors. 

e. The manufacturer recognized and performed a PRA analysis for the CCF of all ESF LCL 
processors. 

f. The manufacturer did not recognize a cross system CCF as a threat. 

g. There are redundant LCL processors in both RTS and ESF. No diversity is used. 

h. The interaction of operators with software is guided by checklists, and interaction is minimal. 

i. Maintenance team interactions with the software are guided by procedures that include 
testing and checking of actions.  

j. The maintenance team has regular safety training, safety-oriented work culture, and 
specialized education. Specialized education indicates they have detailed training and 
education related to the specific components/software of software. 

k. Access to the LCL processors software is strictly controlled. Each division is located in its 
own secured room where only authorized and trained personnel are allowed access. There are 
multiple software systems besides the RTS and ESF within each division-specific room. 

l. LCL processors in RTS and ESF are tested separately. 

In the baseline configuration, the CCCG is identified through coupling factors such as software 
requirements, human interaction, and common inputs. It is assumed that the software for the LCL 
processors in both RTS and ESFAS performs identical function of two-out-of-four voting, implying the 
use of identical software. Common inputs are received from BP, and the same maintenance team and plan 
are assumed. Accordingly, the CCCG for the baseline configuration can be distinguished in Table 4. 

Table 4. CCCG for the LCL processors in the baseline configuration #1. 

CCCG 
Components Coupling Factors 

(or Mechanisms)  RTS ESFAS 
CCCG 1 All LCL 

processors 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 

A1, A3 
A2, A4 
B1, B3 
B2, B4 
C1, C3 
C2, C4 
D1, D3 
D2, D4 

A2, A4 
A1, A3 
B2, B4 
B1, B3 
C2, C4 
C1, C3 
D2, D4 
D1, D3 

Similar software requirements and 
function, the same maintenance 
team/plan, common inputs 

 

In the next step, subfactors are scored to assess the extent to which each CCCG defends against CCF. 
These subfactors comprise input similarity, understanding, analysis, man-machine interface (MMI), safety 
culture and training, control, and testing (detailed descriptions of these subfactors are available in prior 
report [5]). Given that all LCL processors share common inputs from BP, the input similarity for the 32 
LCL processors within the CCCG is scored as grade A. In terms of understanding, the design of the 
CCCG is not novel for purpose-built LCL processors, and their limited experience leads to grade D. 
Additionally, it is important to note that the developers and analysts may not have taken into 



 

 39 

consideration all LCL processors in both RTS and ESF together. However, they have implemented 
redundant LCL processors, which has led to grade B in the analysis. MMI is scored as grade D due to 
minimal operator/user interaction and control being guided by checklists, along with maintenance 
adhering to a test and checking process. Safety culture and training receive grade D based on assumptions 
of regular safety training, safety-oriented culture, and specialized education. Control is scored as grade D 
because the LCL processors have limited access granted only to authorized personnel in the secure 
physical location. RTS and ESF are assumed to be tested separately, leading to grade A for testing since 
testing is not conducted for both systems concurrently. Based on these considerations, the subfactors are 
assessed as shown in Table 5, and the result of the CCF analysis is shown in Table 6. 

Table 5. Subfactor scores for the baseline configuration #1. 
Baseline Configuration #1 

Subfactors CCCG 1 
Input Similarity A 
Understanding D 
Analysis B 
MMI D 
Safety Culture and Training D 
Control D 
Testing A 
Defense factor 0.494 
CCF 1.027E-04 

 
Table 6. CCF results for LCL processors of the baseline configuration #1. 

Baseline Configuration #1 
Component IND CCCG 1 Total 

LCL processor 1.050E-04 1.027E-04 2.077E-04 
 

3.3.2 Diverse Configuration #1 
The diverse configuration #1 is depicted through Figure 10 and Figure 11, encompassing the 

utilization of two different software applications. All other assumptions are identical with that of the 
baseline configuration as follows: 

1. The hardware is identical for all LCL processors. 

2. Software-1 and Software-2 are diverse. Software-1 is applied to LCL processors of both RTS and 
ESF within Division A & C, and Software-2 is applied to LCL processors of both RTS and ESF 
within Division B & D. 

3. Software failure probabilities of LCL processors within Division A&C are identical to the 
baseline RTS and ESF, except for the LCL processors found within Division B&D.  

4. Software-1 is evaluated with BAHAMAS to provide 𝑄𝑆𝑤1 = 2.077𝐸 − 4. 

5. As this is a preliminary work, we did not have design information for Software-2; therefore, its 
attributes had to be assumed. In this case, the 𝑄𝑆𝑤2 = 1.75𝑄𝑆𝑤1 = 3.635𝐸 − 4.  

6. Certain details of the system that would be common knowledge for a real system had to be 
assumed for this hypothetical design. These assumptions make it possible to assign subfactor 
scores.  

a. It is assumed that the software employed within the LCL processors is purpose-built. 

b. The LCL processors only perform two-out-of-four votes from the BP trip signals. 
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c. It is assumed that the software is a new design with little operational experience (less than 
10 years). 

d. The manufacturer recognized and performed a PRA analysis for the CCF of all RTS LCL 
processors. 

e. The manufacturer recognized and performed a PRA analysis for the CCF of all ESF LCL 
processors. 

f. The manufacturer did not recognize a cross system CCF as a threat. 

g. There are redundant LCL processors in both RTS and ESF. 

h. The interactions of operators with Software-1 and Software-2 are guided by checklists and 
interaction is minimal. 

i. Maintenance Team interactions with the Software-1 and the Software-2 are guided by 
procedures that include testing and checking of actions. 

j. Maintenance Team-1 has regular safety training, safety-oriented work culture, and 
specialized education. Specialized education indicates they have detailed training and 
education related to the specific components/software of Software-1. 

k. Maintenance Team-2 has infrequent safety training and general education related to the 
specific components/software of Software-2. 

l. Access to the LCL processors software is strictly controlled. Each division is located in its 
own secured room where only authorized and trained personnel are allowed access. There are 
multiple software systems besides the RTS and ESF within each division-specific room. 

m. All LCL processors in both RTS and ESFAS are tested concurrently. 

Table 7 shows the CCCGs for the LCL processors in the diverse configuration #1. CCCG 1 is 
grouped because of the coupling factor involving shared SDLC and common input although it 
encompasses two distinct software applications. CCCG 2 consists of LCL processors utilizing Software-
1, and a maintenance team and plan are assumed. On the other hand, CCCG 3 includes LCL processors 
employing Software-2, and another maintenance team and plan are assumed. These CCCGs based on 
distinct software, and maintenance team and plan contribute to a comprehensive analysis of cross-system 
software CCF. 

Table 7. CCCGs for the LCL processors in the diverse configuration #1. 

CCCG 
Components Coupling Factors 

(or Mechanisms)  RTS ESF 
CCCG 1 All LCL 

processors 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 

A1, A3 
A2, A4 
B1, B3 
B2, B4 
C1, C3 
C2, C4 
D1, D3 
D2, D4 

A2, A4 
A1, A3 
B2, B4 
B1, B3 
C2, C4 
C1, C3 
D2, D4 
D1, D3 

Similar software requirements 
(shared SDLC), common inputs 

CCCG 2 LCL 
processors in 
Division A &C 

LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 

A1, A3 
A2, A4 
C1, C3 
C2, C4 

A2, A4 
A1, A3 
C2, C4 
C1, C3 

SDLC Software-1, Maintenance 
Team/Plan 1, common inputs 

CCCG 3 LCL 
processors in 
Division B&D 

LCL processor R1 
LCL processor R2 
LCL processor R1 

B1, B3 
B2, B4 
D1, D3 

B2, B4 
B1, B3 
D2, D4 

SDLC Software-2, Maintenance 
Team/Plan 2, common inputs 
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LCL processor R2 D2, D4 D1, D3 
 

CCCG 1 exhibits diversity through different software applications, leading to grade C in subfactor 
“Analysis”. CCCG 2 and CCCG 3 employ identical software, resulting in grade B due to the 
incorporation of general redundancy. Evaluations of subfactor “Safety culture and training” depend on the 
maintenance team/plan, resulting in grade D and C, respectively. Other subfactors generally align with the 
baseline configuration. 

Table 8. Subfactor scores for the diverse configuration #1. 
Diverse Configuration #1 

Subfactors CCCG 1 CCCG 2 CCCG 3 
Input Similarity A A A 
Understanding D D D 
Analysis C B B 
MMI D D D 
Safety Culture and Training D D C 
Control D D D 
Testing A A A 
Defense factor 0.479 0.494 0.497 
CCF 4.973E-05 1.027E-04 1.805E-04 

 
The calculation of CCF in this study is based on the approach previously proposed and involves the 

implementation of the BAHAMAS method. A detailed description of this approach can be found in [5]. 
The common failure of Software-1 (𝑄𝑆𝑊1) is assumed as 2.077𝐸 − 04 by the BAHAMAS method, and 
the common failure of Software-2 (𝑄𝑆𝑊2) is assumed as 3.635𝐸 − 04. Additionally, the assumption of 
𝑄CCn = 0.5𝑄𝑆𝑊1 = 1.038𝐸 − 04 is adopted, which represents theoretical common failure for the CCCG 
that contains both Software-1 and Software-2. 

Table 9. CCF results for LCL processors of the diverse configuration #1. 
CCF Diverse Configuration #1 

Component IND CCCG 1 CCCG 2 Total 
LCL processor in 

Division A&C 5.531E-05 4.973E-05 1.027E-04 2.077E-04 

Component IND CCCG 1 CCCG 3 Total 
LCL processor in 

Division B&D 1.332E-04 4.973E-05 1.805E-04 3.635E-04 

 

3.3.3 Baseline Configuration #2 
In the baseline configuration #2, the functional requirements of the LCL processors are differentiated 

between RTS and ESF, even though the software possesses the same general requirements. This 
configuration assumes that the first baseline configuration remains consistent, but CCCGs are additionally 
segregated due to functional requirements. For example, LCL software for RTS has RTS function, while 
LCL software for ESF has ESF function. Table 10 to Table 12 provide a comprehensive overview of the 
baseline configuration #2, encompassing details regarding the CCCGs, subfactor scores, and the resulting 
CCF analysis outcomes. 
 
Table 10. CCCGs for the LCL processors in the baseline configuration #2. 

CCCG 
Components Coupling Factors 

(or Mechanisms)  RTS ESF 
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CCCG 1 All LCL 
processors 

LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 

A1, A3 
A2, A4 
B1, B3 
B2, B4 
C1, C3 
C2, C4 
D1, D3 
D2, D4 

A2, A4 
A1, A3 
B2, B4 
B1, B3 
C2, C4 
C1, C3 
D2, D4 
D1, D3 

Similar software design 
requirements (shared SDLC), the 
same maintenance team/plan, 
common inputs 

CCCG 2 LCL 
processors in 
RTS 

LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 

A1, A3 
A2, A4 
C1, C3 
C2, C4 
B1, B3 
B2, B4 
D1, D3 
D2, D4 

 RTS function requirement 

CCCG 3 LCL 
processors in 
ESF 

LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 

 A2, A4 
A1, A3 
C2, C4 
C1, C3 
B2, B4 
B1, B3 
D2, D4 
D1, D3 

ESF function requirement 

 
Table 11. Subfactor scores for the baseline configuration #2. 

Baseline Configuration #2 
Subfactors CCCG 1 CCCG 2 CCCG 3 

Input Similarity A A A 
Understanding C D D 
Analysis B C C 
MMI D D D 
Safety Culture and Training D D D 
Control D D D 
Testing A C C 
Defense Factor 0.497 0.326 0.326 
CCF 1.032E-04 6.774E-05 6.774E-05 

 
Table 12. CCF results for LCL processors of the baseline configuration #2. 

CCF Baseline Configuration #2 
Component IND CCCG 1 CCCG 2 Total 

LCL processor in 
RTS 3.673E-05 1.032E-04 6.774E-05 2.077E-04 

Component IND CCCG 1 CCCG 3 Total 
LCL processor in 

ESF 3.673E-05 1.032E-04 6.774E-05 2.077E-04 

 

3.3.4 Diverse Configuration #2 
The diverse configuration #2, which is derived from the baseline configuration #2, assumes the 

deployment of Software-1 in RTS and Software-2 in ESF. Table 13 to Table 15 provide a detailed 
representation of the CCCGs, subfactor scores, and the calculated CCF. 
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Table 13. CCCGs for the LCL processors in the diverse configuration #2 from the baseline configuration 
#2. 

CCCG 
Components Coupling Factors 

(or Mechanisms)  RTS ESF 
CCCG 1 All LCL 

processors 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 

A1, A3 
A2, A4 
B1, B3 
B2, B4 
C1, C3 
C2, C4 
D1, D3 
D2, D4 

A2, A4 
A1, A3 
B2, B4 
B1, B3 
C2, C4 
C1, C3 
D2, D4 
D1, D3 

Similar software design 
requirements (shared SDLC), 
common inputs 

CCCG 2 LCL 
processors in 
RTS 

LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 

A1, A3 
A2, A4 
C1, C3 
C2, C4 
B1, B3 
B2, B4 
D1, D3 
D2, D4 

 SDLC Software-1, Maintenance 
Team/Plan 1, RTS function 
requirement, common inputs 

CCCG 3 LCL 
processors in 
ESF 

LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 
LCL processor R1 
LCL processor R2 

 A2, A4 
A1, A3 
C2, C4 
C1, C3 
B2, B4 
B1, B3 
D2, D4 
D1, D3 

SDLC Software-2, Maintenance 
Team/Plan 2, ESF function 
requirement, common inputs  

 
Table 14. Subfactor scores for the diverse configuration #2 from the baseline configuration #2. 

Diverse Configuration #2 
Subfactors CCCG 1 CCCG 2 CCCG 3 

Input Similarity A A A 
Understanding C D D 
Analysis C C C 
MMI D D D 
Safety Culture and Training D D C 
Control D D D 
Testing A C C 
Defense Factor 0.482 0.326 0.329 
CCF 5.002E-05 6.774E-05 1.194E-04 

 
Table 15. CCF results for LCL processors of the diverse configuration #2 from the baseline configuration 
#2. 

CCF Diverse Configuration #2 
Component IND CCCG 1 CCCG 2 Total 

LCL processors of RTS 8.994E-05 5.002E-05 6.774E-05 2.077E-04 
Component IND CCCG 1 CCCG 3 Total 

LCL processors of ESF 1.941E-05 5.002E-05 1.194E-04 3.635E-04 
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3.4 Discussion 
This section performs a preliminary study on potential cross-system software CCFs in a four-division 

representative RTS and ESFAS. These systems incorporate a variety of redundant and diverse software 
designs. 

Baseline configuration #1 ad #2 assumes no software diversity, while Diverse configuration #1 
introduces division-level software diversity in LCL processors (e.g., LCL processors in Division A&C 
with software #1 and LCL processors in Division B&D with software #2). Diverse configuration #2, on 
the other hand, incorporates system-level software diversity in the LCL processors (e.g., LCL processors 
in RTS with software #1 and LCL processors in ESFAS with software #2). 

 CCCGs are identified based on commonality in LCL processor inputs and software designs. Table 16 
provides a comparison of the CCF results for LCL processors in RTS Division &C from four case studies. 
The results demonstrate that the implementation of software diversity significantly reduces the probability 
of cross-system software CCFs from 1E-4 to 1E-5. Such CCFs, if they occur, could lead to failures in 
both RTS and ESFAS when critical functions like reactor trip and safety features need activation. In 
future studies, we will evaluate how cross-system CCFs and diversity implementations can impact the 
probabilities of failure in RTS and ESFAS, as well as overall plant safety during various accident 
scenarios. 

Table 16. Comparisons of CCF results for LCL processors in RTS Division &C from four case studies. 
Baseline Configuration #1 

CCCG 1 
(All LCL processors) 

CCCG 2 
(LCL processor in Division A&C) IND Total 

1.027E-04 NA 1.050E-04 2.077E-04 
Diverse Configuration #1 

CCCG 1 
(All LCL processors) 

CCCG 2 
(LCL processor in Division A&C) IND Total 

4.973E-05 1.027E-04 5.531E-05 2.077E-04 
Baseline Configuration #2 

CCCG 1 
(All LCL processors) 

CCCG 2 
(LCL processors in RTS) IND Total 

1.032E-04 6.774E-05 3.673E-05 2.077E-04 
Baseline Configuration #2 

CCCG 1 
(All LCL processors) 

CCCG 2 
(LCL processors in RTS) IND Total 

5.002E-05 6.774E-05 8.994E-05 2.077E-04 
 

Identifying coupling factors that lead to CCFs across systems can be challenging. Even when 
different programming languages, algorithms, and approaches are used, the potential for CCF remains. 
There are unpredictable failure modes and spurious operations, and their impacts on other systems can 
emerge, sometimes leading to cascading effects. The software of interconnected system means that 
failures can spread through different parts of the system, but pinpointing the exact causes and predicting 
their effects can be difficult. Despite efforts to ensure diversity, the intricate interactions within software 
and between systems can still result in unexpected CCFs. 

In the context of “Awareness” term in the subfactor of “Analysis”, it's important to differentiate 
between redundant features that are specifically designed as a defense against cross-system CCF and 
those that are implemented for other reasons, such as preventing different types of CCFs. If there is no 
evidence of a deliberate implementation of redundancy as a countermeasure against cross-system CCF, it 
would not be appropriate to credit or consider these redundancies in the assessment of cross-system CCF. 
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Future work should address this by providing guidelines and recommendations for addressing cross-
system concerns in a systematic and deliberate manner. 

Identifying and understanding data communication also plays a crucial role in identifying 
interconnected systems. It may significantly influence “Feedback” within the subfactor “Analysis”. 
Gaining insights into how data flows and is exchanged between different components and systems holds 
the potential to enhance the overall understanding of interconnected systems, including potential CCFs. 

The further development and improvement of the proposed approach will be carried on in FY-24.  
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4. ADVANCED HUMAN-SYSTEM INTERFACE RISK ANALYSIS 
BASED ON REDUNDANCY-GUIDED SYSTEMS-THEORETIC 
HAZARD ANALYSIS AND HUMAN RELIABILITY ANALYSIS  

This section proposes an innovative approach on the risk assessment of HSI by integrating RESHA 
and HRA methods. Section 4.1 introduces the technical background of this work. Section 4.2 reviews 
how the risk of HSI is evaluated in HRA. Section 4.3 proposes an approach to HSI risk evaluation within 
DI&C Systems, which is demonstrated in Section 4.4.  

4.1 Introduction 
In PRA, the HSI design has been mainly considered and evaluated in terms of HRA [34, 35]. HSIs 

play an important role in enabling operators to communicate with the NPP side (e.g., getting the 
information required to understand an NPP’s status or perform necessary actions for responding to a 
given operational context). In HRA, it has been assumed that good/poor HSIs decrease/increase HEPs. 
This notion is based on the performance-shaping factor (PSF) concept, which highlights error contributors 
and adjusts nominal HEPs in respect to PSFs such as stress, HSI, or task complexity.  

  The application of digital technology is a recent trend in the design of NPP main control rooms 
(MCRs). Newly constructed NPPs in various countries around the globe (e.g., the APR1400 in Korea 
[36], AP1000 in the United States [37], and EPR-1600 in France [38]) adopt fully digitalized and 
computerized MCRs. Digital MCRs possess characteristics that distinguish them from conventional (i.e., 
analog) MCRs. These traits include increased automation and the use of computer-based HSIs and/or 
intelligent operator aids. Many researchers believe these new features carry the potential to improve both 
human performance and nuclear safety. However, the current PSF-based HRA approach may be 
insufficient for specifically reflecting the risk carried by digital HSIs that present (or summarize) the 
information flow of DI&C systems.  

  This study proposes a method of specifically evaluating HSIs for DI&C systems, based on RESHA 
and HRA. RESHA, a method for analyzing DI&C systems with redundancy features, was technically 
developed based on the STPA method [8]. RESHA identifies the hazards and failure modes of digital 
systems and provides a foundation for quantification efforts such as reliability and consequences analyses. 
In this study, we first investigated how HSIs are evaluated in HRA methods because HSIs have been 
mainly considered in HRA. To better evaluate HSIs for DI&C systems, we extended the existing HSI 
evaluation process in HRA by enlarging the HSI evaluation coverage and HRA event tree (ET). Then, 
feasibility of the approach was identified based on the APR1400 DI&C systems and a RTS of the GPWR 
PRA model. 

4.2 Traditional HSI Evaluation using HRA 
As mentioned above, HSIs have been mainly evaluated in the context of HRA. Table 17 summarizes 

the various HSI-related PSFs, as well as the capabilities of four different HRA methods to properly 
evaluate these PSFs. These four methods are the Standardized Plant Analysis Risk-HRA (SPAR-H) [35], 
Cause-based Decision Tree (CBDT) [39], Cognitive Reliability and Error Analysis Method (CREAM) 
[40], and Integrated Human Event Analysis System for Event and Condition Assessment (IDHEAS-ECA) 
[41]. In HRA, practitioners review the HSIs required for human actions, determine their PSF levels, then 
use them to estimate the final HEPs.  

The current HSI evaluation process using HRA faces challenges on two key fronts. Firstly, the 
existing HRA methods are effective at assessing how a well-executed HSI impacts the likelihood of 
human errors. However, they fall short in determining whether an analog HSI surpasses a digital one or 
which of two distinct digital HSIs is superior. This limitation can result in inconsistent HRA outcomes 
when evaluating the significance of different HSI designs. 
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Secondly, in traditional PRA models, the event of “failure of manual control via HSIs” typically 
combines HSI system failures with operator errors (i.e., HEPs) estimated through HRA. This approach 
does not adequately consider the influence of HSI hardware or software malfunctions on the 
quantification of HEPs. In reality, certain critical tasks performed by humans may carry a higher risk of 
errors or even guaranteed failure due to HSI degradation. Nonetheless, this critical aspect is often 
overlooked in existing HRA methodologies. Consequently, there is a pressing need for a novel HRA 
approach for HSI evaluation that considers the impact of HSI degradation on the accurate quantification 
of HEPs. 

Table 17 Summary of how HSI-related PSFs are handled in four different HRA methods.  
HRA Method PSF PSF Level 

SPAR-H [35]  Ergonomics/HSI Missing/misleading 

Poor 

Nominal 

Good 

Insufficient information 

CBDT [39] Indicator available in 
control room 

Yes 

No 

Accuracy of control 
room indicator 

Yes 

No 

Front vs. back panel Front 

Back 

Alarmed vs. not 
alarmed  

Alarmed 

Not alarmed 

Indicator easy to 
locate 

Easy 

Not easy 

Good/bad indicator Good 

Bad 

CREAM [40] Adequacy of HSI and 
operational support 

Supportive 

Adequate 

Tolerable 

Inappropriate 

IDHEAS-ECA 
[41] 

HSI No impact 

Indicator is similar to other nearby sources of information 

No sign or indication of any technical difference from adjacent 
sources (meters, indicators) 

Information regarding a given task is spatially distributed, 
unorganized, or cannot be accessed in simultaneous fashion 

Unintuitive or unconventional indications 
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Poor salience of the target (indicators, alarms, alerts) out of the 
crowded background 

Inconsistent formats, units, symbols, or tables 

Inconsistent interpretation of displays 

Similarity in elements 

Poor functional localization 

Ergonomic deficits 

Labeling of the controls is confusing or does not agree with the 
document nomenclature 

Controls lack labels or indications 

Controls provide inadequate or ambiguous feedback  

Confusion in action maneuver states 

Unclear functional allocation 

 

4.3 Methodology 
To handle the two issues introduced above and to specifically evaluate HSIs by reflecting the specific 

structures and characteristics of DI&C systems, this study enlarges the scope of the existing HSI 
evaluation process in the manner illustrated in Figure 14.  

The approach suggested in the present study considers the HSI back-end hardware (I&C components 
supporting the back-end software functions), HSI back-end software (system, structure, logics, and data), 
HSI front-end hardware (visual and controllable parts) and HSI front-end software (human factors 
design), whereas the current HSI evaluation process concentrates solely on the relationship between the 
front-end software and human performance. By conducting a comprehensive evaluation that involves 
detailed modeling of both back-end and front-end aspects, this approach assesses the potential risks 
associated with digital HSIs themselves as well as the interactions between humans and these HSIs.  

 
Figure 14. Extension of HSI Evaluation Process via the Suggested Approach. 

As this approach alters the way HSIs are evaluated, the present study suggests that the existing HRA 
quantification method should be updated. In the existing HRA ET representing the HEP quantification 
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(see Figure 15), it is assumed that all HSIs are well executed as designed. A human failure event is 
subdivided into various tasks, with the final HEP being computed by summing the HEPs for these tasks.  

On the other hand, Figure 16 illustrates an extended HRA ET designed specifically for modeling 
HSIs. It distinguishes between two distinct scenarios: (1) situations where HSIs function optimally, 
aligning with the existing HRA approach, assuming that HSIs provide operators with accurate 
information. (2) marked by HSI degradation due to software or hardware failures, HSIs may supply 
erroneous information or fail to provide adequate information to operators. 

From the extended HRA ET shown in Figure 16, we defined an equation representing the final HEP 
consisting of the HEP given the HSI hardware and software function well and the HEP given HSI 
hardware and software are degraded as shown in Equation (23) below.  

𝐻𝐸𝑃𝑓𝑖𝑛𝑎𝑙 = 𝑃𝐻𝑆𝐼_𝐷𝑒𝑔𝑟𝑎𝑑𝑒𝑑 × 𝐻𝐸𝑃𝐻𝑆𝐼_𝐷𝑒𝑔𝑟𝑎𝑑𝑒𝑑 + (1 − 𝑃𝐻𝑆𝐼𝐷𝑒𝑔𝑟𝑎𝑑𝑒𝑑
) × 𝐻𝐸𝑃𝐻𝑆𝐼_𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (23) 

The proposed method consists of three steps to evaluate HSIs for DI&C systems. First, the HSI 
degradation probability is estimated via RESHA, which offers a structured way of modeling 
hardware/software failure in DI&C systems. RESHA’s outputted summaries of HSI conditions are 
generated as FTs (i.e., HSI FTs). The quantitative values in the FTs come from [4]. Second, the HEP 
under HSI degradation is quantified by HRA methods. The suggested approach employs the IDHEAS-
ECA method since they provide relatively specific guidance for analyzing the quality of HSIs. The last 
step is integrating the equation and the probabilities into PRA models.  

 
Figure 15. A HRA ET Representing Estimation of HEPs in Current HRA. 
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Figure 16. A HRA Event Tree Extended for Specifically Modeling HSIs. 

4.4 Case Study 
To test the feasibility of the method, we used the APR1400 DI&C systems prepared for the design 

certification application to U.S. NRC [42] and a RTS FT of the GPWR PRA model. From the RTS FT, an 
operator action failing to respond with RPS signal present is assumed as the action affected by four DI&C 
systems in APR1400 (i.e., qualified indication and alarm system [QIAS]-P, QIAS-N, information 
processing system [IPS], and core protection calculator system [CPCS]). These DI&C systems contribute 
to calculate important values and provide all the necessary information in HSIs needed for performing 
human actions. If wrong information is given to operators due to the HSI degradation, operators may not 
be able to trip the reactor at the right time. 

4.4.1 Step #1 – Development of HSI FT-based on RESHA 
This section mainly explores how we developed an HSI FT. The HSI FT includes degraded HSI 

conditions affecting the human action of initiating a manual reactor trip. Upon completing review, the 
APR1400 DI&C system [42] was used to develop the HSI FT, in combination with RESHA. Within the 
APR1400 DI&C system, those systems of greatest relevance to the human action (i.e., QIAS-P, CPCS, 
IPS, and QIAS-N) were specifically modeled in the HSI FT. Figure 17 shows the piping and 
instrumentation diagrams for QIAS-P, CPCS, IPS, and QIAS-N. The details of these diagrams were 
assumed based on the APR1400 DI&C system.  
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Figure 17. Piping and Instrumentation Diagram for QIAS-P, CPCS, IPS, and QIAS-N. 
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First, the QIAS-P is simplified into a diagram, having already been analyzed in our previous study 
[4]. The information from the QIAS-P is provided to the QIAS-N processor and the IPS server. Second, 
the CPCS, which has four divisions (i.e., A, B, C, and D), offers several modules for calculating core-
related values such as the departure from nucleate boiling and local power density, based on plant 
parameters (e.g., hot leg temperature). The CPCS then sends the values to the QIAS-N processor and the 
IPS server. Third, the QIAS-N system’s processor, primary and backup controllers, server, and alarm 
processing function help gather plant information and analyze the data, while the QIAS-N front panel 
displays, mini-large display panel, and shutdown overview display panel present the information to 
operators in MCRs. Last, the IPS encompasses (1) the primary and dedicated backup servers for 
collecting information from the QIAS-P and CPCS, (2) the alarm processing system, and (3) applications 
such as the IPS information flat panel display, safety parameter display and evaluation system+, and CPS.   

Figure 18 shows the top event of the HSI FT. The top event logic consists of FT gates that represent 
those cases in which QIAS-P (Figure 19), QIAS-N (Figure 20), and IPS (Figure 21) fail to notify 
operators via an alarm and fail to accurately reflect safety variables under a degraded reactor state. The 
CPCS is modeled in QIAS-N and IPS as shown in Figure 20 and Figure 21. These FT logics include the 
front-end hardware failure (e.g., hardware failure of display monitor), the back-end hardware failure (e.g., 
onboard integrated circuits experiencing burnout or loose joint causing complete failure), or the back-end 
software failure (e.g., unsafe information flow [UIF] representing software failure mode or CCFs in 
software). The failure rates of basic events modeled in these FTs are from [4] [5].  

 
Figure 18. Top Event of the HSI Fault Tree. 
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Figure 19. Fault Tree Logic for QIAS-P. 
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Figure 20. Fault Tree Logic for QIAS-N. 

 

 
Figure 21. Fault Tree Logic for IPS. 
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  This study calculates failure probabilities and cutsets for three DI&C systems (i.e., QIAS-P, QIAS-
N, and IPS), as well as for the top event. This FT is quantified by utilizing SAPHIRE 8, using truncation 
level 1E-12. Table 18 compares failure probabilities, numbers of cutsets, and cutset rankings for the top 
event, QIAS-P, QIAS-N, and IPS. The failure probability of the top event is 9.21E-4 with 394 cutsets. 
The failure probabilities for QIAS-N and IPS are 4.84e-4 and 5.34e-4, respectively, whereas that of 
QIAS-P is 9.66E-5. In other words, the safety-critical I&C system (i.e., QIAS-P) shows a lower failure 
probability than the non-safety-related I&C systems (i.e., QIAS-N and IPS). Note that the basic events 
from QIAS-N and IPS account for cutset rankings #1–5 in the failure probability of the top event.  

Table 18. Comparison of Failure Probabilities and Numbers of Cutsets. 
 Top Event QIAS-P QIAS-N IPS 

Failure Probability 9.21e-4 9.66e-5 4.84e-4 5.34e-4 

# of Cutsets 394 383 388 389 

Cutset 
Ranking 

#1 QND-APS-
UIFA QPD-H QND-APS-UIFA IFD-APS-UIFA 

#2 IFD-APS-UIFA QPD-PA-CTC-S-CFD QND-APS-H IFD-SPA-H 

#3 QND-APS-H QPD-PA-RCS-S-CFD QND-SV-H QPD-H 

#4 IFD-SPA-H QPD-PA-HJC-S-CFD QPD-H IFD-APS-H 

#5 QND-SV-H QPD-PA-RLC-S-CFD QND-PRO-H IFD-CPS-H 

 

4.4.2 Step #2 – HRA for Human Actions under HSI Degradation 
This study used the IDHEAS-ECA method to calculate HEPs for a human action under HSI 

degradation and when all HSIs successfully work, respectively. The human action is that operators fail to 
respond with RPS signal present as introduced at the beginning of this session. Table 19 indicates the 
summary of performance influencing factor (PIF) evaluation for the human action under HSI degradation 
and when all HSIs successfully work, respectively. The PIF is intrinsically the same with PSFs, but the 
different term is used in the IDHEAS-ECA method. 

All the PIFs are evaluated as nominal for the human action when all HSIs successfully work because 
the action is relatively easy and well-known to operators. On the other hand, operators may have not 
experienced and been trained for the situation that HSIs give them wrong information or some of HSIs 
have failed. With this assumption, the PIFs, such as scenario familiarity, task complexity, procedures and 
guidance, training and experience, and system and I&C transparency, are negatively evaluated as shown 
in Table 19.  

Table 19. The PIF evaluation using the IDHEAS-ECA method. 
HEPs for a Human Action 

under HSI Degradation 
and When All HSIs 
Successfully Work 

The IDHEAS-ECA PIF Evaluation HEP Value 

HEPHSI_Success • All the PIFs are evaluated as nominal.  1.20e-3 

HEPHSI_Degraded • Scenario familiarity: infrequently performed scenarios 
• Task complexity: no cue or mental model for detection 
• Procedures and guidance: procedure lacks details 
• Training and experience: operator is inexperienced 
• System and IC transparency: system or I&C does not behave 

as intended under special conditions 

 

5.58e-1 
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4.4.3 Step #3 – Integration Outputs into PRA Models 
The last step is integrating the equation and the probabilities into PRA models. The final HEP can be 

calculated using Equation (23). Figure 22 shows the RTS FT including the HSI failure. The outputs from 
the first step (i.e., the HSI FT) and the second step (i.e., the basic event—the human action under HSI 
degradation) are modeled in the fault tree. There was a 9% increase after adding the HSI failure. Table 20 
indicates the cutsets for the RTS fault trees before and after adding the HSI failure. The cutsets including 
the basic events modeled in the HSI failure tree are showing up from the fifth highest cutset ranking. 
Table 21 including the HSI failure. By following the Fussell-Vesely (FV) values, the fourth, seventh, 
eighth, and tenth rankings are the basic events coming from the HSI failure tree.   

 
Figure 22. The RTS FT including the HSI failure. 

Table 20. The cutsets for the RTS FTs before and after adding the HSI failure.  
Cutsets 
Ranking 

RTS Before Adding the HSI Failure RTS After Adding the HSI Failure 

1 RPS-ROD-CF-RCCAS RPS-ROD-CF-RCCAS 

2 LC-LP-SF-CCF-TA, RPS-XHE-XE-SIGNL LC-LP-SF-CCF-TA, RPS-XHE-XE-SIGNL 

3 LC-BP-UCA-A-CCF, RPS-XHE-XE-
SIGNL 

LC-BP-UCA-A-CCF, RPS-XHE-XE-
SIGNL 

4 RPS-XHE-XE-SIGNL, RTB-UV-HD-CCF RPS-XHE-XE-SIGNL, RTB-UV-HD-CCF 

5 LP-HW-CCF, RPS-XHE-XE-SIGNL IFD-APS-UIFA, LC-LP-SF-CCF-TA, RPS-
XHE-XE-SIGNL-HSIFAILURE 

6 LC-BP-HW-CCF, RPS-XHE-XE-SIGNL LC-LP-SF-CCF-TA, QND-APS-UIFA, 
RPS-XHE-XE-SIGNL-HSIFAILURE 
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Table 21. Result of importance analysis on the RTS FT. 

Ranking No. Name FV Value 

1 RPS-ROD-CF-RCCAS 8.231e-1 

2 LC-LP-SF-CCF-TA 1.214e-1 

3 RPS-XHE-XE-SIGNAL 1.169e-1 

4 RPS-XHE-XE-SIGNAL-HSIFAILURE 6.005e-2 

5 LC-BP-UCA-A-CCF 3.074e-2 

6 RTB-UV-HD-CCF 1.815e-2 

7 IFD-APS-UIFA 1.547e-2 

8 QND-APS-UIFA 1.547e-2 

9 LP-HW-CCF 4.079e-3 

10 IFD-APS-H 3.260e-3 

 

4.5 Discussion 
This study proposed a method of specifically evaluating HSIs for DI&C systems. A FT representing 

operator errors under normal and abnormal HSI software and hardware performance is developed using 
RESHA and calculated using ORCAS and IDHEAS-ECA method. 

 Degraded HSI conditions affecting the human action of initiating a manual reactor trip was analyzed 
in the case study. The human errors under different HSI software and hardware performance were 
respectively analyzed and quantified using the IDHEAS-ECA method. The outputs were integrated into 
the RTS FT of a generic PWR PRA model. The probability of top events, cutsets, and importance 
analysis results were discussed in this study. This method would be useful to provide an integrated and 
comprehensive evaluation of HSIs deployed in NPPs. Ongoing research will focus on further 
methodological improvements and practical demonstrations. 
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5. INVESTIGATING THE USE OF DYNAMIC PROBABILISTIC RISK 
ASSESSMENT METHODOLOGIES FOR ANALYZING DI&C 

SYSTEM COMMON CAUSE FAILURES 
This section investigates using a dynamic PRA approach to evaluate the impacts of software CCFs on 

plant safety. The structure of ESFAS under consideration is described in Section 5.2. The implementation 
details for the analysis are presented in Section 5.3. The results of the analysis are discussed in 
Section 5.4, followed by a summary of the study's findings in Section 5.5. 

5.1. Introduction 
The implementation of DI&C systems in NPPs is increasingly replacing conventional analog systems 

due to their notable advantages. Digital systems offer enhanced plant safety and reliability by improving 
hardware reliability, failure detection capability, accuracy, and computational capacity. However, despite 
these benefits, there are currently no universally accepted methods for reliability analysis of digital 
systems in PRA [43]. While the traditional ET/FT approach is still employed for reliability modeling, it 
faces concerns regarding its ability to adequately account for dynamic interactions among system 
components. This limitation may result in the failure to identify potentially significant dependencies 
among failure events or properly quantify their likelihood [15]. 

Studies suggest that the traditional ET/FT approach is inadequate for ideal utilization in NPP 
reliability/safety assessments, particularly due to its inability to model time-dependent 
hardware/software/firmware/process interactions [15]. Furthermore, the traditional ET/FT approach 
encounters challenges in modeling changes in accident progression based on variations in the plant state, 
representing repair actions, and addressing software aging issues [44]. 

Software aging poses a significant risk to safety-critical systems in NPPs, such as DI&C systems, 
leading to performance degradation rather than immediate failure [45]. Although no physical failure 
occurs in the software, it has been observed that software systems "age" due to error accumulation or 
depletion of operating system resources during prolonged execution time. Software failure rates also 
increase significantly with increased usage [46]. However, the estimation of software failure rates due to 
aging remains uncertain, as there is no consensus on a specific model, and various factors contribute to 
the issue. It is suggested that failure rates gradually increase, and artificially increased failure rates are 
assumed for parametric studies [47]. To mitigate performance degradation caused by software aging, 
software rejuvenation emerges as an important method [48]. Determining the optimal schedule for 
software rejuvenation is crucial for software reliability analysis, but the traditional ET/FT approach lacks 
explicit representation of time, hindering its consideration [45]. 

To overcome the limitations of traditional PRA, dynamic PRA (DPRA) methods have been 
developed to provide a more accurate representation of the probabilistic evolution of I&C systems over 
time by accounting for complex interactions. Evidence in the literature suggests that the traditional 
method tends to overestimate top event frequencies when compared to DPRA methods [49]. DPRA 
methods also allow the evaluation of safety impacts with higher resolution, considering the timing and 
sequencing of events without relying on overly conservative modeling assumptions or success criteria [9]. 
The inclusion of event timing as a new degree of freedom in the issue space with DPRA enables the 
evaluation of scenarios that were previously overlooked, leading to insights into hidden risks. 

The dynamic event tree (DET) approach is a DPRA method that aligns well with the existing PRA 
structure and is similar to the traditional ET approach. However, unlike ETs, where the sequence of 
system responses following initiating events is predetermined by the analyst, DETs determine both the 
timing and sequence of system responses using a time-dependent model of system evolution and 
branching conditions selected by the analyst. DETs provide more comprehensive and systematic coverage 
of possible event scenarios compared to the traditional ET approach, facilitating the consideration of 
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hardware/process/software/human interactions in a phenomenologically and stochastically consistent 
manner [50].  

In line with previous research [15], [43], [44], this study explores the feasibility of employing DPRA 
methodologies in DI&C system reliability analysis. The DET approach is used as a case study to 
investigate the impact of software CCFs and software aging in a representative ESFAS based on the APR 
1400 design. 

5.2. System Description 
Figure 9 shows the functional logic of the example ESFAS. This four-division digital ESFAS 

includes the portion of PPS that activates the ESFs and their component control system (CCS) [7]. The 
safety I&Cs of the ESF systems consist of the electrical and mechanical devices and sensor circuitry to 
the actuation-device input terminals that are involved in generating signals that actuate the required ESF 
systems. The ESFAS portion of the PPS includes the following functions: (1) bistable logic (BL), (2) 
LCL, (3) ESFAS initiation, and (4) the testing function. After receiving ESFAS initiation signals from the 
PPS, MCR operator console, or remote shutdown room (RSR) shutdown console, the ESF-CCS generates 
ESF actuation signals to ESF component interface modules (CIMs), which transmit signals to the final 
actuated device [7]. 

The ESFAS portion of PPS consists of four divisions, as indicated by Divisions A through D in 
Figure 9. Each PPS division is located in an I&C equipment room and contains both an input and output 
module, two BPs, two racks for the LCL functions, and other hardware for the interface with other PPS 
divisions. The redundant BPs generate ESF actuation signals to the LCL racks in the four redundant 
divisions if the process values exceed their respective setpoints. Each LCL rack contains two logic 
processors (LPs); the initiation signals are provided to the ESF-CCS, which consists of four divisions of 
group controller (GC) and loop controller (LC) cabinets. Each GC supports component control and 
provides ESF actuation signals to the LC. Each LC has component control logic and multiplexing 
function. Each ESF-CCS GC performs selective two-out-of-four coincidence logic. The output of the 
ESF-CCS GC is transmitted to the component control logic in the LC. The logic produces digital output 
(DO) signals to control the component through the CIM, which performs signal prioritization [7]. 

5.3. Case Study 
The DET was assessed by simulating failures in all divisions of the ESFAS and the timing of 

activation for each division using simplified case studies and failure injection. Figure 23 illustrates an 
example DET. Failures were intentionally introduced into the system when ESFAS was required during 
the progression of accidents. The study encompassed two distinct cases to explore software CCFs and 
software aging effects. 

In Case Study I, the DET was employed to determine the probabilities of ESFAS failures with 
different sequences of failures, with the aim of identifying worst-case scenarios. On the other hand, Case 
Study II focused on evaluating the consequences of increasing ESFAS failure probabilities due to 
software aging. It is essential to emphasize that all the analyses performed in the demonstration of the 
DET methodology and the numerical results obtained do not necessarily represent the actual 
implementation of ESFAS. 
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Figure 23. Example DET. 

In both Case Study I and Case Study II, several assumptions have been made to simplify the analysis. 
These common assumptions are as follows: 

• Medium loss-of-coolant accident (MLOCA) is considered as the initiating event 

• Failures can only occur when the ESFAS is needed during the progression of the accident 

• All four ESFAS divisions are initially active and operational before the accident 

• Failures of the MCR, reactor safety system (RSR) and division permissive system are not taken 
into account in the DET 

• There is no maintenance or replacement of failed components during the analysis 

• Following a software failure in a division, a hardware failure cannot occur in the same division in 
the next time step and vice versa 

• The branch probability cutoff value is set to 1, allowing all possible accident scenarios to be 
considered in the DET 

• The ESFAS failure probability cutoff value is set to 10–18 per demand, avoiding unnecessary 
expansion of the DETs. 

In Case Study I, the application of the DET method resulted in obtaining ESFAS failure probabilities. 
The analysis assumed that all ESFAS divisions are in the same condition, and failure rates are assumed to 
be constant. 

In Case Study II, the analysis assumed that all ESFAS divisions are in different conditions, with 
increased failure rates due to software aging. Four divisions of the ESFAS were replaced or maintained at 
different times. The parametric study in Case II was used to analyze the effects of increasing failure rates, 
which were represented in Cases IIa, IIb, and IIc. The percentage increase for each case is presented in 
Table 22. 
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Table 22. Increasing percentages of failure rates of ESFAS. 
# Division Case IIa Case IIb Case IIc 

Division A failure rates 10% ↑ 20% ↑ 40% ↑ 
Division   failure rates 40% ↑ 55% ↑ 80% ↑ 
Division C failure rates 20% ↑  5%  ↑ 60% ↑ 
Division D failure rates  0%  ↑ 40% ↑ 50% ↑ 

 

The branching conditions and failure rates presented in In the DET analysis, only scenarios with three 
faults were considered. Scenarios involving four or more faults were not considered due to their 
exceptionally low likelihood of occurrence, resulting in outcome likelihood values on the order of 10–18 
per demand or even lower. 

Table 23 were intentionally created for the purpose of methodology development and demonstration; 
they are not actual values used for real-world analysis. These values were used in the DET analysis to test 
and showcase the methodology. 

In the DET analysis, only scenarios with three faults were considered. Scenarios involving four or 
more faults were not considered due to their exceptionally low likelihood of occurrence, resulting in 
outcome likelihood values on the order of 10–18 per demand or even lower. 

Table 23. Branching conditions and failure rates (per demand) of for Cases I and II. 

ESFAS 
Modules Branching Conditions 

Failure Rate (Per Demand) 

Case I Case IIa Case IIb Case IIc 

BP SW CCF: DA BPs do not provide 
command to LCL 1.062E-04 1.168E-04 1.274E-04 1.487E-04 

 SW CCF: DB BPs do not provide 
command to LCL 1.062E-04 1.487E-04 1.646E-04 1.912E-04 

 SW CCF: DC BPs do not provide 
command to LCL 1.062E-04 1.274E-04 1.434E-04 1.699E-04 

 SW CCF: DD BPs do not provide 
command to LCL 1.062E-04 1.381E-04 1.487E-04 1.593E-04 

 HW CCF of DA BPs 5.943E-06 6.537E-06 7.132E-06 8.320E-06 

 HW CCF of DB BPs 5.943E-06 8.320E-06 9.212E-06 1.070E-05 

 HW CCF of DC BPs 5.943E-06 7.132E-06 8.023E-06 9.509E-06 

 HW CCF of DD BPs 5.943E-06 7.726E-06 8.320E-06 8.915E-06 

LCL HW CCF of all LCL processors in DA 7.647E-06 8.412E-06 9.176E-06 1.071E-05 

 HW CCF of all LCL processors in DB 7.647E-06 1.071E-05 1.185E-05 1.376E-05 

 HW CCF of all LCL processors in DC 7.647E-06 9.176E-06 1.032E-05 1.224E-05 

 HW CCF of all LCL processors in DD 7.647E-06 9.941E-06 1.071E-05 1.147E-05 

ESF-CCS SW CCF: DA GC processors fail to 
provide signal 1.062E-04 1.168E-04 1.274E-04 1.487E-04 

 SW CCF: DB GC processors fail to 
provide signal 1.062E-04 1.487E-04 1.646E-04 1.912E-04 

 SW CCF: DC GC processors fail to 
provide signal 1.062E-04 1.274E-04 1.434E-04 1.699E-04 
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 SW CCF: DD GC processors fail to 
provide signal 1.062E-04 1.381E-04 1.487E-04 1.593E-04 

 HW CCF on GC 1-2 in DA 5.97E-06 6.57E-06 7.17E-06 8.36E-06 

 HW CCF on GC 1-2 in DB 5.97E-06 8.36E-06 9.26E-06 1.08E-05 

 HW CCF on GC 1-2 in DC 5.97E-06 7.17E-06 8.06E-06 9.56E-06 

 HW CCF on GC 1-2 in DD 5.97E-06 7.76E-06 8.36E-06 8.96E-06 

CIM CIM DA random hardware failure 4.00E-05 4.40E-05 4.80E-05 5.60E-05 

 CIM DB random hardware failure 4.00E-05 5.60E-05 6.20E-05 7.20E-05 

 CIM DC random hardware failure 4.00E-05 4.80E-05 5.40E-05 6.40E-05 

 CIM DD random hardware failure 4.00E-05 5.20E-05 5.60E-05 6.00E-05 
BP: Bistable Processors, LCL: Local Coincidence Logic, Dx: Division X (A, B, C, D), ESF-CCS: Engineered 
Safety Features-Component Control System, ESF-CIM: Engineered Safety Features-Component Interface Module, 
SW CCF: Software Common Cause Failure, HW CCF: Hardware Common Cause Failure, GC: Group Controller 

 

5.4. Results 
Table 24 and Table 25 present the best and worst results obtained from Case Study I accident 

progression scenarios using the DET methodology. These tables show the failure probability per demand 
for each scenario, along with the sequences of failures and their respective probabilities. In total, 11,088 
different accident scenarios were evaluated, and 432 of them resulted in the ESFAS failing to transmit a 
signal to activate the emergency safety systems. 

From the results in Table 24, it can be observed that the system performs better in handling hardware 
CCFs without signal transmission failures. All of the best scenarios, labeled as SN 1-5 in Table 24, 
consist of hardware CCFs. However, software CCFs are of significant importance for the system, as most 
of the worst-case scenarios in Table 25 include at least one software CCF. The top three worst cases, SN 
1–3 in Table 25, comprise almost all software CCFs. 

Moving on to Case Study II, a total of 33,264 different accident scenarios were evaluated, and 1,296 
of them resulted in the ESFAS failing to transmit a signal to activate the emergency safety systems. Table 
26 presents the results obtained from Case Study II, focusing on the top five worst-case scenarios. These 
scenarios explore the impact of increasing the ESFAS failure probabilities due to software aging. 

It is important to note that the data in these tables were obtained for the purpose of the study's 
demonstration and may not necessarily reflect actual ESFAS implementation or real-world conditions. 
The analysis provides valuable insights into the system's performance under various failure scenarios, 
especially concerning hardware and software CCFs and their respective effects on the ESFAS. 

Table 24. The best five accident progression scenarios of the ESFAS failure in Case Study I. 
Scenario 
Number 

(SN) 
1st Failure Injection 2nd Failure Injection 3rd Failure Injection 

Failure 
Probability (Per 

Demand) 

1 HW CCF of DA BPs HW CCF of DB BPs HW CCF on GC 1-2 in DA 2.109E-16 

2 HW CCF on GC 1-2 
in DA 

HW CCF on GC 1-2 in 
DB HW CCF of DA BPs 2.118E-16 

3 HW CCF of DC BPs HW CCF of DD BPs HW CCF of all LCL 
processors in DA 2.701E-16 
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4 HW CCF of DA BPs HW CCF of all LCL 
processors in DB HW CCF on GC 1-2 in DC 2.713E-16 

5 HW CCF on GC 1-2 
in DB 

HW CCF on GC 1-2 in 
DC 

HW CCF of all LCL 
processors in DD 2.725E-16 

BP: Bistable Processors, LCL: Local Coincidence Logic, Dx: Division X (A, B, C, D), ESF-CCS: Engineered 
Safety Features-Component Control System, ESF-CIM: Engineered Safety Features-Component Interface 
Module, SW CCF: Software Common Cause Failure, HW CCF: Hardware Common Cause Failure, GC: Group 
Controller 

 
Table 25. The worst five accident progression scenarios of the ESFAS failure in Case Study I. 

Scenario 
Number 

(SN) 
1st Failure Injection 2nd Failure Injection 3rd Failure Injection 

Failure 
Probability (Per 

Demand) 

1 
SW CCF: DB BPs do 
not provide command 
to LCL 

SW CCF: DC BPs do 
not provide command 
to LCL 

SW CCF: DD BPs do not 
provide command to LCL 1.198E-12 

2 
SW CCF: DB GC 
processors fail to 
provide signal 

SW CCF: DC GC 
processors fail to 
provide signal 

SW CCF: DD GC 
processors fail to provide 
signal 

1.191E-12 

3 
SW CCF: DB GC 
processors fail to 
provide signal 

SW CCF: DD GC 
processors fail to 
provide signal 

HW CCF on GC 1-2 in DC 
6.708E-14 

4 HW CCF of DC BPs HW CCF of DD BPs SW CCF: DB BPs do not 
provide command to LCL 6.703E-14 

5 CIM DB random 
hardware failure 

CIM DC random 
hardware failure 

CIM DD random hardware 
failure 6.400E-14 

BP: Bistable Processors, LCL: Local Coincidence Logic, Dx: Division X (A, B, C, D), ESF-CCS: Engineered 
Safety Features-Component Control System, ESF-CIM: Engineered Safety Features-Component Interface 
Module, SW CCF: Software Common Cause Failure, HW CCF: Hardware Common Cause Failure, GC: Group 
Controller 

 
These findings highlight the importance of considering software aging as a critical factor in the 

reliability analysis of DI&C systems like ESFAS. As software ages, its failure rate increases, leading to 
potential performance degradation and higher probabilities of system failure, which could impact the 
safety and reliability of NPPs. Therefore, determining the optimal schedule for software rejuvenation and 
addressing software aging in DI&C reliability modeling are crucial aspects that must be thoroughly 
addressed for ensuring the safe and reliable operation of NPPs. 

Table 26 provides insight into the impact of software aging on the ESFAS failure probabilities by 
presenting the results of the worst five scenarios. The data clearly demonstrate that software aging leads 
to a substantial increase in the ESFAS failure probabilities. 

When comparing the results of Case IIa, IIb, and IIc (as defined in Table 22) to the results obtained 
from Case I, it becomes evident that the probability of error significantly rises with increasing software 
aging. Specifically, the ESFAS failure probabilities increase by 118.9% for Case IIa, 193.7% for Case IIb, 
and 333.2% for Case IIc, respectively, when compared to the probabilities observed in Case I. 

These findings highlight the importance of considering software aging as a critical factor in the 
reliability analysis of DI&C systems like ESFAS. As software ages, its failure rate increases, leading to 
potential performance degradation and higher probabilities of system failure, which could impact the 
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safety and reliability of NPPs. Therefore, determining the optimal schedule for software rejuvenation and 
addressing software aging in DI&C reliability modeling are crucial aspects that must be thoroughly 
addressed for ensuring the safe and reliable operation of NPPs. 

Table 26. The worst five accident progression scenarios of the ESFAS failure in Case Study II. 

Failure 
Injection Order Branching Conditions 

Failure Probability (per demand) 

Case I Case IIa Case IIb Case IIc 

1st SW CCF: DB BPs do not provide 
command to LCL 

1.198E-12 2.616E-12 3.510E-12 5.175E-12 2nd SW CCF: DC BPs do not provide 
command to LCL 

3rd SW CCF: DD BPs do not provide 
command to LCL 

1st SW CCF: DB GC processors fail to 
provide signal 

1.191E-12 2.616E-12 3.510E-12 5.175E-12 2nd SW CCF: DC GC processors fail to 
provide signal 

3rd SW CCF: DD GC processors fail to 
provide signal 

1st SW CCF: DB GC processors fail to 
provide signal 

6.708E-14 1.472E-13 1.973E-13 2.912E-13 2nd SW CCF: DD GC processors fail to 
provide signal 

3rd HW CCF on GC 1-2 in DC 

1st HW CCF of DC BPs 

6.703E-14 8.194E-15 1.099E-14 1.621E-14 2nd HW CCF of DD BPs 

3rd SW CCF: DB BPs do not provide 
command to LCL 

1st CIM DB random hardware failure 

6.400E-14 1.398E-13 1.875E-13 2.765E-13 2nd CIM DC random hardware failure 

3rd CIM DD random hardware failure 
BP: Bistable Processors, LCL: Local Coincidence Logic, Dx: Division X (A, B, C, D), ESF-CCS: Engineered 
Safety Features-Component Control System, ESF CIM: Engineered Safety Features-Component Interface 
Module, SW CCF: Software Common Cause Failure, HW CCF: Hardware Common Cause Failure, GC: Group 
Controller 

 

5.5. Discussion 
This study demonstrates the application of DETs to estimate failure likelihoods for DI&C system 

reliability assessment, specifically focusing on the effect of CCFs and software aging through two 
simplified case studies. 

In Case Study I, the analysis assumed that failure probabilities used in the DET methodology did not 
change over time, and all subsystem components were new without any maintenance or replacement. The 
analysis considered an MLOCA as the initiating event, and failures were injected at times when the 
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ESFAS was required during accident progression. Case Study I revealed that the system was better 
equipped to handle hardware CCFs without transmitting signal failures. However, software CCFs had a 
significant impact, leading to several worst-case scenarios. 

In Case Study II, the analysis incorporated increasing failure probabilities over time due to software 
aging, assuming that all four ESFAS divisions were in different conditions. The results demonstrated that 
software aging, when not addressed with proper software rejuvenation, significantly impacted the 
reliability of DI&C systems. 

The DET approach offers a closer representation of reality compared to traditional PRA methods and 
can be integrated into the traditional ET/FT analysis of NPPs. This study highlights that the DET 
approach is a valuable tool to uncover hidden risks in systems with existing PRA structures and provides 
valuable insights for understanding and mitigating the impact of software aging on DI&C system 
reliability. 

Overall, the research emphasizes the importance of considering software aging and implementing 
software rejuvenation strategies to maintain the safety and reliability of DI&C systems in NPPs. The DET 
methodology is instrumental in this process and enables a more comprehensive assessment of the system's 
behavior under dynamic conditions. 
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6. DYNAMIC MODEL AGNOSTIC RELIABILITY EVALUATION OF 
MACHINE-LEARNING MODELS INTEGRATED IN 

INSTRUMENTATION & CONTROL SYSTEMS 
This section presents a novel method for evaluating the model agnostic reliability of potential ML 

models integrated in DI&C systems. The structure of this section is as follows: in Section 6.2, the 
theoretical background behind trustworthiness in artificial intelligence (AI) and ML systems is discussed, 
and the concept of relative reliability in model predictions is presented. In Section 6.3, the mathematical 
details within Laplacian distributed decay for reliability (LADDR) are discussed, and a method for 
parameter optimization is presented. In Section 6.4, a case study using LADDR within an AI/ML 
integrated instrumentation system is presented based on the Nearly Autonomous Management and 
Control (NAMAC) [51, 52] system. Finally, in Section 6.5, a brief discussion on the results and 
conclusion of this work is presented.  

6.1. Introduction 
Interests in integrating AI/ML into instrumentation and control systems has significantly grown in 

recent years. AI/ML systems have been used for enhanced plant diagnostics [51], automated scheduling 
of maintenance tasks [53], autonomous control [52], and numerous other applications. Typically for these 
AI/ML systems, a training dataset is used to define the function of the model by learning a specific 
correlation between input and target parameters. Unlike conventional software programs, where the 
function can be described succinctly by the implemented algorithm, the function achieved through 
training is governed solely by the incoherent multiplication of neuron weights and biases. As the weights 
and biases have no tangible meaning, this leads to a problem where the functional correctness of the 
model cannot be comprehensively interpreted and verified by users or stakeholders of the system. This 
issue is not trivial as there are numerous examples of AI/ML systems failing due to various hidden root 
causes and failure mechanisms. Notably they include such as regressional inconsistencies [54], inherent 
distributional rigidness [55], metric optimization failures [56], or unintended adversarial examples [57]. 
While verification and validation methodologies for AI/ML model development has grown significantly, 
these intelligent systems still experience significant drops in performance when applied to real-world 
operational conditions [58]. Fundamentally, it is well known that AI/ML models excel at interpolation (or 
near-interpolation) tasks and experience performance degradation at extrapolation. One possible way to 
develop trustworthiness in AI/ML predictions is by assessing how well the real-world operational data 
matches the training data of the model. If the operational data and training data are similar (i.e., 
interpolation , we can assume there is some basis for trust in the model’s predictions. This is analogous to 
inductive reasoning, where the samples in the training database act as specific evidence to support 
generalized conclusions made by the AI/ML model. However, determining when (or how far) a new input 
sample is considered an extrapolation task is a challenge and is the basis for out-of-distribution (OOD) 
[59] detection research.  

Thus, the purpose of this work is to determine “how far” a new sample must be to be considered 
OOD and how this value can be used to support trust in ML integrated systems. We established a method 
to evaluate the reliability of model predictions relative to the training data. The fundamental assumption 
being that training data can be scrutinized for correctness and representative of the mission objective. In 
this work, training data is analogous to student education and serves as the knowledge base. An OOD 
detection method is applied on the operational data to determine reliability. The method, named LADDR, 
can be used to determine the relative reliability of model predictions in real-time and can be applied to 
any data-driven time-invariant (or memoryless) model. 
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6.2. Technical Background 
6.2.1. Trustworthiness 

The concept of trustworthiness is a human conceived aspect and is relative based on the contextual 
scenario of the application. Simply applying quantitative numbers and verifiable facts does not 
necessarily establish trustworthiness of a system by humans. Nuclear energy related deaths versus any 
other fossil fuel source can attest to this statement [60]. Therefore, building a foundation of 
trustworthiness in AI/ML integrated systems is a difficult and convoluted task. Currently, one of the most 
concise and up-to-date definitions of trustworthiness as a human aspect can be found in the National 
Institute of Standards and Technology’s report titled “Artificial Intelligence Risk Management 
Framework” [61]. In their work, they describe seven broad characteristics of trustworthiness, each 
describing a socio-technical attribute related to the processes and activities of the design, development, 
and deployment of an AI/ML system.  
 

 
Figure 24. Characteristics of trustworthy AI systems [61]. 

In this work, we focus on the “Valid & Reliable” category, specifically, the reliability subcategory. In 
this subcategory, reliability is defined as “the ability of an item to perform as required, without failure, for 
a given time interval, under given conditions” [61]. Unfortunately, this definition is difficult to apply to 
AI/ML integrated control systems for a variety of reasons. 

6.2.2. ML Reliability 
The genesis of reliability was based on hardware systems and components that could fail due to 

mechanical wear and degradation. The fundamental assumption behind reliability is that the system has a 
limited life span due to environmental, chemical, physical, or other sources of degradation (i.e., corrosion) 
such that the time to functional failure (or inverse reliability) is probabilistic in nature. That is not the case 
for software systems, which include ML models. While hardware components (i.e., integrated circuits) 
that support the software can fail and be modeled with conventional hardware methods, software 
reliability is not the same case. Conventional methods for functional verification and validation in the 
development (and even pre-deployment) phase are not sufficient to guarantee reliability in the 
deployment phase [62]. While functional testing can improve the quality of the software, it cannot 
guarantee the failure-free operation of the software. Inconsistencies in design, errant assumptions, and 
incorrect implementations can lead to hidden latent defects (like landmines) in the source code. Thus, in 
[63, 64, 62], software failures are viewed as systematic failures of the design process, where existing 
statistical methods may be inadequate to determine reliability. If the same set of input conditions is 
consistently provided to software, the output will remain correct regardless of the number of tests 
performed. Unless a specific sequence and combination of unknowable input conditions is supplied, the 
system will never fail (see Ref. [65] for an example of unknowable conditions). Apparently “reliable” 
software can unexpectedly fail when a unique combination of unanticipated inputs is provided. 
Otherwise, the defect will remain hidden and have no visible impact on the overall system function. The 
concept of degradation over time on a software system also does not apply as software is virtual and 
without physical form. The generic hardware required to run software can be easily swapped making the 
theoretical life of software infinite until irrelevant. Therefore, the conventional definition of reliability in 
software is problematic. 
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Unfortunately, the current definition of reliability is used also for AI/ML systems and is difficult to 
apply in a similar manner. Take for instance, a non-reinforcement memoryless deep feedforward neural 
network (FNN), which in essence, approximates an unknown correlation through array multiplication of 
neuron layers. Typically, training samples (𝑥 ∈ 𝑋) are used to refine and develop the correlation through 
backpropagation of weights and biases of the model. During training, the model is also validated and 
verified on the withheld samples within 𝑋 which is ideally sampled from the operational set (𝑊) that 
describes the set of all inputs and outputs encountered in the realistic application of the system. Suppose 
during operation, the model is supplied with inputs, 𝑥′ ∈ 𝑊, that mimic training samples from 𝑋 such that 
𝑥1

′ = 𝑥 ∈ 𝑋. As the model was validated on the training set, it is guaranteed it will perform as expected 
for any time interval and thus achieve perfect reliability. However, realistically, the training set will 
always be a subset of the operational set (i.e., 𝑋 ⊂ 𝑊) due to various limitations in dataset construction. 
This suggests that the domain of 𝑥′ is larger than 𝑋 such that it is possible to draw samples that are in 𝑊 
but not in 𝑋 as observed in Figure 25. Furthermore, NNs are known to have degraded performance at 
extrapolation tasks, or generally whenever 𝑥2′ ∉ 𝑋.   

 
Figure 25. Input samples drawn from the training set, as well as the operational set. 

A rudimentary definition of reliability in AI/ML can be described as the probability that new input 
samples are drawn exclusively from 𝑋 and not within 𝑊\𝑋. This is the basis for OOD detection [59], 
which addresses the question: at what point is a new input sample within 𝑋 and not within 𝑊\𝑋? To 
refine the definition of reliability, we use the following arbitrary two feature dataset as an example.  

        
          (a) (b) 

Figure 26. (a) Single training point. (b) Multiple training points. 

In Figure 26(a), the training set contains a single point, 𝑥, and four input sample points (i.e., 𝑎 
through 𝑑). At what distance, is point 𝑎 considered to be too far from the 𝑥 and thus OOD? Conversely, 
point 𝑑 is the closest to 𝑥; therefore, is it the most in-distribution (ID)? Similarly, in Figure 26(b), point 𝑒 
is internally far from training points while point f is externally far. The Euclidean and Mahalanobis 
distance [66] are two distance functions to calculated separation (i.e., 𝜀1 and 𝜀2), but it is difficult (and 
subjective) to determine a consistent decision boundary for when 𝜀 is large enough to be considered 
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OOD. It also overlooks the fact that datapoints may be internally far versus externally far or in densely 
versus sparsely populated clusters. 

In this work, we propose the concept of relative reliability of ML predictions as to whether sample 
points can be represented by a limited set of local training points. Mathematically, if 𝑥1

′ = 𝑥 ∈ 𝑋, then the 
predictions are considered reliable (i.e., 𝑅 = 1) as they emulate training data. If 𝑥1

′ ≠ 𝑥 but 𝑥1
′ ∈ 𝑋, then 

the predictions are somewhat reliable (i.e., 0 < 𝑅 < 1) based on the function, 𝐿(�⃗�1
′ , �⃗�, 𝑞), between 𝑥1

′  and 
the 𝑥 ∈ 𝑋. The function 𝐿(�⃗�1

′ , �⃗�, 𝑞) is defined by a localized Laplacian distribution decay distribution 
applied to all points 𝑥 ∈ 𝑋. For the example shown in Figure 26(a), the reliability of a prediction at any 
point can be mapped as the contour plot shown in Figure 27(a). As input samples 𝑎 through 𝑑 move 
further away from the training point 𝑥, the reliability of the prediction decays exponentially. In Figure 
27(b), the superposition of Laplacian distributions over all training points illustrates how internal samples 
(i.e., point 𝑒) may have higher reliability than the external sample (i.e., point 𝑓) but may still be OOD 
relative to the training data (i.e., low reliability). The maps generated in Figure 27 are known as reliability 
maps. Note that this method of reliability determination can also extend to include the target of each 
training sample as well. This enables the capability of determining whether a prediction’s outcome is 
reliable relative to the training data. The method proposed is called LADDR. 

    
  (a)                                     (b) 

Figure 27. Relative reliability of model prediction over (a) a single point and (b) multiple points. 

6.3. Methodology 
6.3.1. Formulation of LADDR 

LADDR is implemented with the normalized multivariate Laplacian distribution from [67]; see 
Equation (24).  

𝐿(�⃗�′, �⃗�, 𝑉) =
1

2𝛼
exp(−

|𝑥 − 𝜇|

𝛼
) = exp(−2𝐷(�⃗�′, �⃗�)) 

(24) 

𝐷(�⃗�′, �⃗�) = √(�⃗�′ − �⃗�)𝑇𝑉−1(�⃗�′ − �⃗�) (25) 

 
Here, �⃗�′ is the new sample vector, �⃗� is the nearest training sample, 𝐷(�⃗�′, �⃗�, 𝑉) is the Mahalanobis 

distance, 𝐿(�⃗�′, �⃗�, 𝑉) is the relative reliability from �⃗�′ to �⃗�, and 𝑉is the covariance structure matrix for 
distribution spread in n-dimensions, as in Equation (26). For the desired behavior where 𝐿(�⃗�′, �⃗�, 𝑉) = 1 
when 𝑥1

′ = 𝑥 ∈ 𝑋, the scale factor is set to 𝛼 = 0.5. 𝑉 is a diagonal matrix where 𝛽𝑛 represents the decay 
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rate in the axis of each feature. It is not the covariance of the dataset. For a single training sample, 
�̃�(�⃗�′, �⃗�, 𝑉) will produce a number between 0 and 1, where 1 represents perfect alignment of the training 
and the input sample.  

 

𝑉 = (
𝛽1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝛽𝑛

) (26) 

 
A superposition of Equation (24) was used to generate the relative reliability maps seen in Figure 27 

and is the relative reliability of model predictions to the training data knowledge base.  

6.3.2. Optimization of LADDR Parameters 
Without a doubt, the hyper parameters within LADDR will influence the outcome of the model. 

Therefore, in this section, we provide guidance and analytical metrics to optimize LADDR. First, to 
facilitate optimization, we introduce the concept of extrapolation diameter, 𝛾, which represents how far a 
single training point can be “stretched” to cover interpolation tasks. The extrapolation diameter is defined 
per input feature as the width at 𝐿(⋅) = 20%. In Figure 28(a), for instance, a training point for feature 1 is 
located at 𝑥 = 0.5 with a specified 𝛾 = 0.36. The extrapolation radius (or half the diameter) 𝛾1/2 = 0.18 
suggests that samples less than 𝑥 = 0.68 or greater than 𝑥 = 0.32 are a fifth as reliable as closer samples 
to 𝑥 = 0.5. For users, this allows them to specify the literal distance when data points become OOD. This 
also allows hyperparameters to be optimized relative to the extrapolation diameter which is more 
interpretable than the covariance structure matrix. By specifying the extrapolation diameter for each 
feature, the covariance structure matrix can be solved for using Equation (27). In Figure 28(b), the 
variance in arbitrary feature 2 is set to five times greater than arbitrary feature 1.  

 

𝑉 =

�⃗�1
2

𝑇�⃗�1
2

 

(− ln(𝐿(⋅))2 

 

 (27) 

 
Instances where 𝛽1 ≠ 𝛽2 in 𝑉 are evident when the importance of training features is not equivalent. 

Selection of 𝛽 parameters is relative to the optimization goal and the usage context of the system. In 
Figure 29, a utilization framework is presented where LADDR is integrated with an arbitrary predictive 
ML model. Within this framework, the training data used to train the model serve as the knowledge base 
for LADDR. For a new sample, if LADDR determines the sample and subsequent prediction are likely to 
be ID, the prediction is accepted, and the system can proceed normally. Alternatively, if it is likely to be 
OOD, the prediction is rejected regardless of the actual correctness or capability of the model, and 
auxiliary functions are engaged.  

If stakeholders are concerned about safety, LADDR may be configured where only samples that 
emulate training data are accepted, whereas all others are rejected. Conversely, LADDR can be 
configured to maximize model performance while only rejecting significantly different contextual 
scenarios. In this respect, LADDR acts as a supervisor, filtering out scenarios that are irrelevant to the ML 
model. As LADDR acts as a filter, it is expected the ML model’s performance will degrade whenever 
LADDR rejects a correct prediction. However, if LADDR were to accept all predictions, it is likely an 
incorrect prediction is not filtered and is a peril to the operational safety of the system. These two 
perspectives are used to form two analytical metrics known as degradation (𝑓𝐷) and peril (𝑓𝑃) seen in 
Equations (28) and (29), respectively. These metrics are used to minimize what is most important to 
stakeholders of the ML system in the context of their application. 
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            (a)                                   (b) 

Figure 28. (a) Extrapolation diameter. (b) Elliptical distribution generated by 𝛽2 = 5𝛽1 in 𝑉. 

 
Figure 29. Basic framework of LADDR coupled with an ML-aded I&C system. 

𝑓𝐷 =
𝑅o

𝑅o + 𝐴o
 

 

(28) 

𝑓𝑃 =
𝐴x

𝐴x + 𝐴o
 

 

(29) 

Here, 𝑅o and 𝐴o are the total number of rejected and accepted predictions that were correct while 𝑅X 
and 𝐴X are the total number of rejected and accepted predictions that were incorrect. The degradation 
metric, Equation (28), describes the ratio of correct predictions made by the model but were subsequently 
rejected over the total number of correct predictions that were rejected or accepted. A value of 0 suggests 
that all correct predictions made by the model were also accepted by LADDR while a value of 1 suggests 
that all correct predictions were rejected. This can occur if the extrapolation diameter specified for each 
feature in LADDR is too small such that only the immediate vicinity of the training data points is 
considered sufficient evidence to justify predictions. For stakeholders concerned about peak performance 
and less so about functional safety of the system, the extrapolation diameters can be chosen to minimize 
this parameter.  

Alternatively, if the system is considered safety critical, the extrapolation diameters are chosen to 
minimize the peril metric, Equation (29). This metric describes the ratio of incorrect predictions accepted 
over the total number of predictions accepted by LADDR. A value of 0 is where all accepted predictions 
are correct while a value of 1 is where that all accepted predictions are incorrect. Correctness is 
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determined relative to the specified acceptance criteria by stakeholders (e.g., ±1%). Peril (𝑓𝑃) grows as 
extrapolation diameters are increased and represent when limited data is used to make gross predictions.  

However, importantly, if degradation is minimized, peril will grow, and vice versa, as the 
extrapolation diameters that minimize either are different. Therefore, we also introduce a third metric, 
ineptitude (𝑓𝑓), which combines of the degradation and peril metrics; see Equation (30). The ineptitude 
metric describes the total number of rejected correct predictions and accepted incorrect predictions over 
the total number of predictions that are filtered. A value of 1 suggests that all predictions filtered are 
erroneous while a value of 0 suggests LADDR is perfectly proficient at accepting correct—but rejecting 
incorrect—predictions. This metric can be minimized if both performance and safety are desired by 
stakeholders. 
 

𝑓𝑓 =
𝑅o + 𝐴x

𝐴o + 𝑅x + 𝑅o + 𝐴x
  (30) 

 

6.4. Case Study 
The LADDR framework presented in Figure 29 is applied to a diagnostic digital twin (DT) model 

[51] developed for the NAMAC [52] system. The DTs are deep FNN developed for partial loss-of-flow 
accident scenarios to predict the peak fuel centerline temperature (𝑇𝐹𝐶𝐿). The datasets were gathered and 
simulated using a GOTHICTM model of the Experimental Breeder Reactor-II (EBR-II) [68]. In EBR-II, 
two separate primary sodium pumps, designated as P1 and P2, provide coolant flow through the core. In 
the postulated scenario, P1 partially loses pump rotational speed, thus decreasing the overall coolant flow 
through the core block. The scenario is monitored by the diagnostic DT.  ased on NA AC ’s automated 
recommendations, the rotational speed of P2 is increased to compensate. The scope of the numerical 
demonstration can be represented by the time-dependent curve of the rotational speed of P1 Equation 
(31). 
 

𝜔1(𝑡) = 𝜔0 (1 −
1 − (𝜔1)𝑒𝑛𝑑

𝑇1
𝑡),     𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇1 (31) 

 

Here, 𝜔0 is the nominal pump speed, 𝑇1 is the ramp-down duration, (𝜔1)𝑒𝑛𝑑 is the normalized P1 end 
speed, and 𝑡0 is the transient start time. By varying pump end speed and ramp-down duration, different 
profiles can be simulated. Core flow rate, plenum temperatures, and 𝑇𝐹𝐶𝐿 are sampled for 2,000 time-
steps per transient (Table 27). In column 1, the reference label is provided; column 2 shows the number of 
transients per scenario; columns 3–4 show the degree of degradation; and columns 5–6 show percentage 
of data used for training and forming LADDR knowledge base vs. used in testing. In Figure 30, the 
transient data is plotted. Each color represents a different transient from start to end. The set D2 was not 
used to train the DT and instead is used to gauge the performance of LADDR when an entirely different 
scenario is provided. The objective of the diagnostic DT is to predict 𝑇𝐹𝐶𝐿 within ±10oC of the simulated 
temperature and serves as the acceptance criteria for predictions. As 𝑇𝐹𝐶𝐿 is generally an unobservable 
variable due to obstructions within the fuel bundle, establishing the reliability of model predictions is 
critical to operational safety. For this case study, the upper plenum temperature and total core flow rate 
are used as inputs to train the DTs while 𝑇𝐹𝐶𝐿 is used as the predictive target. The same three parameters 
are used as the knowledge base within LADDR. Finally, note that the post-training performance of the 
diagnostic DT in this case study is irrelevant. Model performance is intentionally poor to demonstrate the 
capability of the LADDR framework at rejecting and accepting predictions based on training data 
knowledge.  
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Table 27. Size of training and testing sets used within LADDR and for the FNN DTs. 
Label # of Episodes 𝑇1 (𝑤1)𝑒𝑛𝑑  (% of 𝑤0) % Used in Training % Used in Testing 

D1 1,024 467.81 51.6 – 100 10% 90% 
D2 250 467.81 0 – 38.7 Not Used 100% 

 

In Figure 31a, the reliability map is generated for Figure 30a where only the inputs features are 
considered for reliability. As the inputs are two-dimensional, the reliability map illustrates where there is 
a high degree of training evidence to support model predictions. In Figure 31b, the simulated 𝑇𝐹𝐶𝐿 is also 
considered as evidence, and a two-dimensional slice of the three-dimensional reliability map for when 
𝑇𝐹𝐶𝐿 = 0.877 is shown. Figure 31b illustrates that even if input data is similar to training data, if the 
prediction is not correct, there is very little reliability in the outcome.  
 

   
(a)       (b) 

Figure 30. (a) Normalized input training data. (b) Normalized fuel centerline temperature transients. 

   
(a) (b) 

Figure 31. a) Reliability map where only the input features are considered for reliability. b) Reliability 
map where the simulated 𝑇𝐹𝐶𝐿 is also considered as evidence given 𝑇𝐹𝐶𝐿 = 0.877. 

Table 28. Analytical metrics for extrapolation diameter optimization. 
Minimized 

Metric 
Optimized Normalized Extrapolation Diameters Analytical Metrics 

UP Temp. Total Core Flow Rate 𝑇𝐹𝐶𝐿 Peril Degradation Ineptitude 
Peril 0.0254 0.0254 0.064 0 0.105 0.085 
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Degradation 0.0254 0.0254 0.113 0.116 0 0.105 
Ineptitude 0.0254 0.0254 0.072 0.027 0.079 0.084 

 

In Table 29, the total number of incorrect and correct rejections and acceptances are shown for the 
testing sets D1 and D2. Although the extrapolation diameters are minimized for the training set D1, 
LADDR can still perform well on set D2, filtering out a majority of unsafe predictions. The degradation is 
expected to be higher for set D2 as the scenarios are significantly different. However, as D2 is not part of 
 A DDR’s knowledge base, the higher rejection rate is associated with lack of training data evidence to 
support model predictions even if they are within the ±10oC acceptable margin.  

   
Figure 32. Prediction reliability (blue line) against model prediction and simulated truth (red dotted line). 

Table 29. Summary of LADDR performance of the developed loss-of-flow transient datasets. 

Dataset Correct 
Accept 

Correct 
Reject 

Incorrect 
Accept 

Incorrect 
Reject Peril Degradation Ineptitude 

D1 13,825 4,084 635 931 4.4% 6.3% 8.04% 
D2 6,865 3,487 400 3,783 5.5% 35.5% 28.8% 

 

6.5. Discussion 
The preliminary results demonstrate the utility of LADDR at filtering out predictions that are 

unreliable relative to the training database. Three additional optimization metrics were also presented to 
allow optimization of LADDR parameters based on stakeholder concerns: (1) peril, which dictates the 
rate of incorrect predictions not filtered; (2) degradation, which dictates the percentage of performance 
drop as a result of LADDR acting as a filter function to the ML model; and (3) ineptitude, which is a 
culmination of the other two metrics. Currently, LADDR has only been tested on three-dimensional 
training sets. As most training sets can contain upward of 10 features, we plan to verify the capability of 
LADDR on higher dimensions and improve upon the optimization techniques for the extrapolation 
diameters. It is anticipated that LADDR can improve the trustworthiness of ML models by acting as a 
“supervisor” for predictions made by intelligent systems.  
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7. COLLABORATIVE EFFORTS WITH NUCLEAR INDUSTRY 
This section briefly summarized the collaboration initiated by the PWROG and the LWRS program in 

FY 2023 to support a pilot risk evaluation of a safety-related DI&C system in use at a nuclear utility. 
Complete analysis and results have been documented in [14]. 

7.1. Purpose and Motivation 
The purpose of this work is to demonstrate the capabilities of the methodologies developed by LWRS 

to assess software CCF on a pilot risk evaluation of a DI&C safety related system, and to address research 
topics identified by the PWROG. The PWROG identified several research topics relevant to software 
CCF, some of which are used to define the scope of this collaboration:  

1. Identification of Software Failures: Existing software development and testing processes for 
DI&C systems are already rigorous. Few, if any, relevant software CCFs have been identified in 
operating nuclear power plant DI&C systems. Identifying relevant software failures is challenging, 
in part, due to the complex interaction of heterogeneous digital components developed under 
different operational assumptions by the manufacturer, which may lead to emergent hazards or 
failures. A more realistic method is desired to qualitatively identify relevant software failures 
including CCFs and their consequences. 

2. Quantification of Software Failures: In addition to the challenge of identification of software 
failures that impact safety related functions of DI&C systems, the quantification of software 
failures is another matter of interest. Due to the relative novelty of software in safety-related DI&C 
systems and the lack of significant software related failures in the historical record, there is 
insufficient failure data and operational history to adequately support realistic failure estimates. 
Until sufficient experimental data is accumulated, a new evaluation technique is sought to more 
accurately quantify software failure.  

3. Addressing Conservative Assumptions in CCF modeling: Limited software CCF data requires 
conservative assumptions for CCF model and estimation, an example would be assuming software 
CCF always fails the entire system. The traditional beta factor treatment of software CCF assumes 
that all redundant channels and trains of a safety-related DI&C system subject to a potential CCF 
will fail with a conditional probability of beta. Modeling software CCF with bounding assumptions 
(e.g., beta=1) negates the defenses anticipated from redundancy and diversity applications (e.g., 
redundancy of signals, channel separation within a DI&C system, deployment of watch dogs) and 
may overestimate the impact of software CCFs on the overall DI&C system risk. A detailed 
treatment of software CCF within DI&C systems should be employed by considering or reducing 
the limitations of bounding assumptions. 

7.2. Technical Approach 
The PWROG supplied the LWRS research team with data including design information and a PRA 

model from a pilot safety-related DI&C system. The models and capabilities of the LWRS-developed 
framework offer a pathway to addressing the research motives and thus represent a useful pathway for the 
PWROG to investigate. Each of the research motives identified above are addressed as follows:  

1. The LWRS-developed framework employs a systems-based hazard analysis capable of 
considering systems interactions such as those that may be encountered and lead to emergent 
CCF. This method is called the RESHA. Guided by RESHA, the complex interactions can be 
directly incorporated as failure modes for FT analysis providing a basis for both qualitative and 
quantitative assessments. 

2. The LWRS-developed framework employs two separate tools capable of addressing limited data. 
One method, called the  A HA AS , considers the specifics of a software’s development plans 
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and activities in a structured manner to addresses software failure quantification. The other 
method, called the ORCAS, provides a means of quantification by direct consideration of the 
software testing and development. Both methods have been developed based on experience with 
diverse industrial software development strategies, and there are known conservatisms in their 
applications to safety-related DI&C systems. 

3. As an alternative to the traditional beta-factor method for CCF modeling, the LWRS-developed 
framework employs a hybrid model. The hybrid model allows for more complex investigations of 
CCF events such that the benefits of redundant configurations can be seen. In other words, the 
hybrid model does not necessarily limit its consideration of CCF events to those that completely 
wipe out all redundant defenses. 

7.3. Summary 
This work demonstrates risk assessment and quantification specifically directed toward software 

elements of that system. Hardware-based failures are outside of the scope of this report. The results of this 
analysis demonstrate the ability to calculate a software common cause failure value via these methods 
although improvements to the methodology have been identified. For example, the software CCF model 
can provide additional credit regarding a system’s defenses against software CCFs and increased 
consideration of system complexity. These software defenses or features, also called subfactors, provide 
an indication of the strength of coupling mechanisms between redundant elements. The stronger the 
coupling, the more significant a software CCF. The pilot DI&C system was designed to defend against 
software CCF. However, a reduction of the source similarity subfactor as discussed in [14] would 
positively benefit the CCF defense and examination of improvements to the calculation of this subfactor 
and reduction of conservatisms within this subfactor is an ongoing research topic. The initial benefit from 
refinement of this subfactor is a reduction of the total system failure through train-specific information 
sources. Introducing sub-train independence (i.e., reducing sub-train source similarity), can also provide 
additional improvement for CCF defense. 

Ultimately, this collaborative project provided the LWRS team with insights to improve and further 
develop the LWRS-developed framework to respond to the needs of the nuclear industry. Several paths 
have been defined to provide more realistic CCF estimates including research in activation pathway of 
software CCFs, applying Bayesian updating based on accumulated operational or testing data, improving 
CCF modeling methodology, and accounting for software defensive design features in the refinement of 
attributes that are used to define the software CCF modeling parameter. 

Ultimately, this collaborative project provided the LWRS team with insights to improve and further 
develop the LWRS-developed framework to respond to the needs of the nuclear industry. This work 
represents an example of the successful partnership and research benefits that can be achieved through 
industry collaboration. It is a goal of the LWRS team to continue such collaborations and provide science- 
and technology-based solutions and insights that support the long-term operations of the existing nuclear 
fleet. 
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8. CONCLUSIONS AND FUTURE WORKS 
8.1. Conclusions 

This report outlines R&D focused on refining current methods on software CCF modeling and 
estimation and exploring additional innovative approaches to risk assessment of DI&C systems to enable 
a more comprehensive and complete assessment of various safety-related DI&C design architectures. 
This research is intended to enhance the robustness of the methodology for the risk assessment and design 
optimization of safety-critical DI&C systems. 

Methodology of the proposed framework and methods (e.g., RESHA, BAHAMAS, ORCAS, and 
CCF modeling approach) has been refined and improved based on feedback from the collaboration with 
the industrial partners and the comments from the technical peer review. A modification to the CCF 
approach employed by the LWRS-developed framework to increase its capabilities for modeling CCFs of 
diverse DI&C systems. The CCF model was adjusted by the introduction of 𝑄𝑐𝑐 and the defense factor, 𝜙. 
𝑄𝑐𝑐 represents the common parts between software, including diverse software, and is therefore used to 
represent the theoretical commonality that can leads to CCF; 𝜙 represents the how well defended a CCCG 
is against CCF. This 𝑄𝑐𝑐 term provides a direct model of the commonality between functionally 
redundant software elements, even diverse elements. This work proposed BAHAMAS to evaluate 𝑄𝑐𝑐 
given BAHAMAS has the capability to directly consider the commonality of components. A simple case 
study was shown to demonstrate the approach to modeling potential CCFs of diverse components. Future 
work will include methodology development and improvement in addition to demonstrations on more 
detailed and complex analyses. 

Identifying and classifying coupling factors that contribute to software CCFs is a critical and 
challenging task, especially in multi-function control platforms applied across different systems. Even 
when distinct programming languages, algorithms, and methodologies are used, the potential for CCFs 
remains. Unpredictable failure modes and spurious operations can impact other systems, potentially 
leading to cascading effects. Despite efforts to ensure diversity, intricate interactions within software and 
between systems can result in unexpected CCFs. Specifying dependencies between coupling factors and 
sub-factors in the CCF scoring table can enhance the CCF modeling and estimation approach. 

In addition to the work on CCFs, this research includes the development of new methodologies for 
HSI risk assessment, dynamic PRA, and model-agnostic reliability assessments of potential ML models 
integrated into DI&C systems. Detailed findings for each research area can be found in the respective 
discussion sections. 

8.2. Future Works 
In FY-24, this project will further develop and improve the proposed framework to better meet the 

needs of the industry in DI&C reliability and risk analysis, particularly, for (1) function-based risk 
assessment of multi-function DI&C systems, (2) methodology refinement and maturation to keep 
supporting the pilot project with PWROG on DI&C reliability analysis, (3) development of capabilities 
on evidence generation and evaluation to support DI&C safety assurance and design optimization, and (4) 
risk assessment of (semi-) autonomous DI&C systems. 

Key activities in FY-24 include:  

• Improve and further develop the current framework and methods for the function-based risk 
assessment of multi-function DI&C systems in collaboration with the industry. 

• Refine the current methods to (1) keep supporting the need of DI&C reliability analysis from the 
industry; (2) align better with international standards and existing risk-informed approaches and 
guides.  
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• Develop capabilities on risk-informed evidence generation and evaluation to support DI&C safety 
assurance and design optimization with the industry and other research institutions. 

• Develop novel approaches to inform risk management and design optimization of advanced 
(semi-) autonomous DI&C systems designed for existing LWR fleets.  
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APPENDIX A – REDUNDANCY-GUIDED SYSTEM-THEORETIC 
HAZARD ANALYSIS (RESHA) 

This appendix provides the steps in detail for performing RESHA. Each step is elaborated 
subsequently as shown in Figure 3. 

Step 1: Create a detailed representation of the system of interest. 
The purpose of STEP-1 is to establish a system sketch that serves as a blueprint for the analysis. This 

involves collecting system design information, such as wiring diagrams, piping and instrumentation 
diagrams, logic diagrams, etc. This information is then used to create a system sketch that outlines the 
processors, sensors, controllers, components, interactions, and connections of the system. It is important 
to note that the goal of this step is not to cram everything into a single diagram, rather it is to gain a 
sufficient understanding of the system to complete the hazard analysis; the level of detail obtained in this 
step lays out the foundation for the work.  

Digital I&C structures can be divided into three hierarchical levels [69]: (1) divisions; (2) units; and 
(3) modules. Divisions typically fulfill the role of monitoring processes, systems, or functions 
redundantly with other divisions by relying on their subsystems of units and modules. Units perform 
specific tasks that are supported by the function processing capabilities of modules [69]. The system 
information collected should clearly account for the flow of information between divisions, units, and 
modules. Emphasis should be placed to clearly illustrate the redundancy and diversity of the system to 
provide a basis for constructing the FT in STEP-2 and control structure in STEP-3 and identifying 
potential CCFs in STEP-5. Key points for STEP-1: 

• STEP-1 emphasizes the boundary conditions and scope of the analysis. These should be 
clearly understood as they will be revisited in STEP-2 and STEP-3. 

• Though the RESHA has been developed to analyze digital systems, this system sketch should 
also include the hardware structural arrangement (i.e., the components of the system in 
addition to details collected for the digital structural arrangement).  

• The level of detail included in a hazard analysis can extend beyond module level failures to 
the components and sensors that provide input to process modules. The level of detail to be 
included in the hazard analysis depends on the scope of the investigation. 

At this stage of RESHA, the purpose of the analysis should be defined. The system of interest (SOI) 
should be defined along with its losses, hazards, boundaries, and environments. The system details 
gathered in this step should provide clear indication of the boundary, and environment. Losses can be 
identified as something of value to stakeholders, including loss of human life or injury, property damage, 
environmental pollution, loss of mission, loss of reputation, loss or leakage of sensitive information, or 
any other loss that stakeholders deem unacceptable [8]. Losses should be listed to provide direction for 
identifying hazards, i.e., those states or sets of conditions that, in a particular worst-case scenario, will 
lead to one or more losses [8]. These hazards pertain to the system as a whole and do not represent a 
complete hazard analysis. Instead, the losses and hazardous states that can be identified provide a 
foundation for contextual assessment of the unsafe interactions that may occur within the systems.  

Step 2: Develop a FT consisting of the hardware failures for a chosen 
function of the system of interest. 

A FT is constructed based on the information gathered in STEP-1. For analysis of a digital system 
with redundancy, the structure of the FT should follow the levels of redundancy (e.g., from the division to 
the unit and module levels). The structure of the FT should capture the details of redundancy that will aid 
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in the subsequent steps of the hazard analysis. In most cases, the highest level of redundancy will be 
associated with protecting the main function of the SOI. For instance, a system may have two or more 
divisions, independent and redundant in function, to ensure the reliability of that system. The use of a 
redundancy-guided structure makes it convenient to add and track postulated CCF events. The FT is 
created using the following 2-part processa adapted from the NASA Handbook [70].  

STEP-2A: Define the boundary of the analysis (revisited from STEP-1). This includes selecting a top 
event and resolution for the analysis. Top eventsb are based on the purpose of the SOI. The failure of the 
SOI’s most significant function is a priority event to be analyzed by the FT—a top event. STEP-3A may 
also be visited briefly to ensure the proper selection of top events. For example, some events are not 
failures, but are events of interest. The spurious activation of a shutdown process may cause no immediate 
harm, but rather a financial burden to the stakeholders. Such events may be selected as the top event 
within the FT.  

STEP-2B: Construct the FT. Starting from the top event, the construction proceeds by determining 
the “necessary and sufficient” logical combinations  e.g., “and,” “or,” and “n/m” functions  of events that 
contribute to the occurrence of the top event [70]. This analysis proceeds by gradually identifying the 
essential events that are logically connected to the top event, progressing step-by-step until reaching an 
event that cannot be further resolved, either by way of fact, or at the discretion of the analyst [70]. At this 
stage of the assessment, the focus is on tracking hardware failures, while software failure identification is 
a subject of RESHA Step 3. However, at this stage, it can be useful to add undeveloped software events as 
temporary placeholders to assist in the organization of the FT. Thus, the FT comprises a pattern of three 
branches that repeat for various DI&C components of the system: the hardware failure branch, the 
software failure branch, and the dependency or external failure branch, as depicted in the Figure 33 
below. 

 
Figure 33. Example of FT organization. 

 
a This process has been simplified to two parts and directed to the analysis of highly redundant DI&C from the original eight-step 

FTA given in the NASA FTA Handbook [71]. 
b There can be multiple top events for a single system with the FT for each new top event varying significantly. The number of 

FT to be analyzed will depend on the project scope. 
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Under the hardware branch of a component, there are hardware-based events relevant to the specific 
component and its applicable hardware failure modes. Under the software branch, a place holder is added 
to account for the internal failure mechanisms, such as those associated with a processor’s control 
algorithm or process model that will be added in STEP-3. Under the external failure branch, the upstream 
dependencies are added and can include both hardware and software failures. This typically will include 
other controllers, information processors, or sensors. The process follows a pattern until the dependency 
branch can be resolved no further. 

A note on the construction of the FT: The FT should be populated with hardware events and if readily 
known and within the scope of the assessment, hardware CCF events can and should also be included. 
Though the focus of CCF comes in STEP 5, there may be instances where an existing hardware FT is 
available. In such an instance it is logical to work with the existing FT including its CCF event data. 

Step 3: Determine UCAs/UIFs based on a redundancy-guided 
application of STPA. 

The main purpose of STEP-3 is to identify, by means of a redundancy-guided application of STPA, 
the software failure events to add to the FT from STEP-2. These failures can be categorized as unsafe 
control actions (UCAs) or unsafe information flow (UIFs) as result of an unrealistic process model, an 
inappropriate control algorithm, incorrect feedback, or outside information. A UCA is control action that, 
in a particular context and environmental conditions, will lead to a hazard [8]. UIF is analogous to UCA, 
but for information flow rather than control actions UCAs and UIFs offer insights to the control action 
and feedback pathways of a system. In a digital system, all information exchanges—including the 
decision-making process of the controllers, control and implementation of control actions, performance of 
controlled process, and feedback from controlled process—have a potential to lead to unsafe behavior of 
the digital system. Potential software failures can be understood and analyzed by identifying UCAs/UIFs. 
RESHA works by identifying the UCAs through a thorough examination of a redundancy-guided control 
structure diagram (i.e., from a redundancy-guided application of STPA). Once identified, the relevant 
UIFs and UCAs are defined and inserted under the software branches of the FT. 

 According to the STPA Handbook there are four main parts to the STPA. The first two focus on the 
construction of a control structure, and the second two focus on the analysis of unsafe component 
interactions. A complete description of STPA can be found in the STPA Handbook 2018 [8]. The process 
given here highlights the key parts directly applicable to RESHA. 

STEP-3A: Create a model of the control structure. This step involves identifying, grouping, and 
organizing the system components, controllers, and controlled processes and information flow to create a 
control structure diagram. For RESHA, a redundancy-guided multilayer-control structure is created which 
focuses on systematic information exchanges within each redundancy level. By reframing the standard 
STPA approach, complex and highly redundant digital systems can be broken down into more 
manageable portions. In addition, the redundancy-guided approach allows a straightforward creation of a 
multi-layer control structure to both capture the details of the SOI and support the identification of 
potential CCFs.  

The first layer of the control structure should be based on the highest level of redundancy (e.g., 
divisional), followed by any sub-layers (e.g., unit and module-basedc redundancies). Each control 
structure layer is created with numbered control actions and feedback signals until a final, redundancy-
guided, multi-layer control structure is created for the complete SOI, as shown in Figure 34.  

STEP-3C: Identify UCAs/UIFs. A UCA is control action that, in a particular context and 
environmental conditions, will lead to a hazard [8]. UIF is similar to UCA, but for information flow rather 

 
c Creating a control structure for the internal structure of a module may not be required based on the assumed/desired model 

resolution and scope. 
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than control actions. Thus, a UIF is information that, in a particular context and conditions will lead to a 
hazard. UCAs/UIFs can be determined by the assessment of the numbered control actions and feedback 
signals identified from the control structure diagram. The UCAs/UIFs should be numbered and tracked 
within a table. The UCAs/UIFs will be used to add software failures to the FT from STEP-2. For each 
control action identified, there are four categories of potential UCAs/UIFs that may affect the behavior of 
the SOI. These categories are shown in Table 30. Note that each UCA/UIF shall be formatted based on 
the standard format given in [8] for consistency and clarity. (Note that destination/user of control action 
or information flow can also be indicated as part of the control action and context [4].) 

 
Figure 34. Illustration of a multilayer control structure. 

 
UCA = [Source] + [UCA Type] + [Control Action] + [Context] + [Link to System Hazards] (32) 

UIF = [Source] + [UIF Type] + [Information Flow] + [Context] + [Link to System Hazards] (33) 

 
Table 30. Examples of basic types of UCAs and UIFs. 

 Type A  
(Not providing 
causes hazard) 

Type B 
(Providing causes 
hazard) 

Type C 
(Timing/order of 
discrete events 
causes hazard) 

Type D 
(Timing of 
continuous events 
causes hazard) 

Unsafe Control 
Action (UCA) 

Control action is 
not provided when 
needed 

Control action is 
provided when it is 
not needed 

Control action is 
provided to early, 
too late, or in the 
wrong order 

Control action is 
stopped too soon or 
applied too long 
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Unsafe Information 
Flow (UIF) 

Information is not 
provided when 
needed 

Information is 
provided when it is 
not needed  

Information is 
early, late, out of 
sync, or out of 
order. 

Information is 
stopped too soon, 
applied too long,  

Note: UIF is still under development, and value such as too low, too high, not-a-number, infinite or otherwise 
corrupt information may be classified under Type B or D and is up to the discretion of the analyst. 

 

Step 4: Construct an integrated FT by adding applicable UCAs/UIFs as 
basic events. 

In this step, relevant software failure modes from Step 3 are added to the FT from STEP-2. Not every 
identified UCAs/UIFs belong in the same FT; rather, only those UCAs/UIFs whose occurrences are 
necessary and sufficient to lead to the specific top event. For example, control actions that are continuous, 
like those relating to category four above, may, in some cases only be applicable to top events requiring 
continuous control. Also consider, if an event represents a was a failure to actuate (i.e., a type A or UCA-
A mode of failure), then it is the analysis must carefully select reasonable causal events that would result 
in a particular UCA-A event. Each appropriately selected UCA/UIF is added to the FT. These events will 
fill the software event placeholders that were added to the FT previously. Figure 35 provides an example 
of this FT. 

 
Figure 35. Example FT structure for RESHA. 

Step 5: Identify potential CCFs to add to the FT. 
The purpose of this step is to identify potential hardware and software CCFs and add them to the FT. 

CCFs are conditional on a shared root cause and coupling factor. Again, redundancy is employed as a 
guide to identify potential CCFs. Within the DI&C system, redundant components may share common 
hardware and software features making them susceptible to CCFs. Also, I&C systems will frequently 
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employ diversity to ensure functionally redundancy. It has been noted that diversity does not guarantee 
the prevention of software CCF [17], [19]. Thus, the functionally redundant components should be 
identified and grouped. These groupings represent a high-level assessment of potential CCFs. At this 
stage, a conservative approach may be to create CCF events for each of these groups and add them to the 
FT. However, further refinement should be considered. 

The identification of coupling factors beyond simple functional redundancy helps to determine unique 
CCCGs. Various examples of coupling mechanisms for hardware or analog systems have been indicated 
in the literature, for example, some provided by NUREG/CR-5485 include design, function, installation, 
maintenance, and environmental conditions [22]. Thus, the simple group of functionally redundant 
hardware components may be refined into subgroups. Consider a system with three redundant controllers. 
In this system, controllers 1 and 2 are in a separate room from controller 3. At a high level, all three 
controllers are redundant and may be susceptible to CCF. Further refinement may be accomplished by 
considering that location may allow an additional CCF to occur between controllers 1 and 2 while 
controller 3 remains unaffected. Figure 36 provides an example FT with CCFs added. 

 
Figure 36. Example FT with CCFs added. 

Identification of software CCFs requires consideration of additional software-centric features. A 
software failure is the direct result of operational conditions (i.e., a trigger scenario) activating some 
hidden software defect(s) causing the inability of the software to perform its require or intended functions 
(based on concepts from [71] and [17]). A software CCF will occur when a coupling mechanism creates a 
scenario for operational conditions to activate a common software defect. Coupling mechanisms influence 
how a trigger event and/or a defect is shared by multiple components. As an example, consider that a 
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software developer (i.e., a coupling mechanism) introduces a shared defect in redundant controllers 
allowing a trigger event to cause a CCF. In contrast, a maintenance procedure (i.e., a coupling 
mechanism) may shut down half of a system thereby creating a condition for a trigger event to affect only 
the active components. Given a group of redundant software components, variations in their operating 
conditions may lead to some, but not all, components failing together. Variations in the operational 
environment of otherwise identical components may result from differences in maintenance staff, input 
variables, etc. Ultimately, subtle differences in coupling mechanisms may lead to unique combinations of 
CCFs. Thus, it is essential to consider software-based coupling mechanisms when assessing the potential 
for CCFs within a DI&C system. 

There are several action items that should occur for CCF analysis. To start, the analyst should identify 
the functionally redundant components or elements of the system. Next, the analyst identifies and lists all 
the known coupling mechanisms for the system. Emphasis on software-centric features (e.g., shared 
software code, shared requirements, similar languages employed, common inputs, shared 
operators/users). The third action item is to group the components by their shared coupling mechanisms 
thereby identifying the CCCGs of the system. Finally, CCFs are added to the FT corresponding to each 
identified CCCG. A CCF event should be added to the FT for each CCCG that can be distinguished by a 
unique set of coupling factors. The CCF events should be added under each component of the FT where 
applicable. 

• Action Item 1: Identify functionally redundant components or elements of the system. 

• Action Item 2: List coupling mechanisms that are known to exist for the system. 

• Action Item 3: Form CCCGs based on the coupling mechanisms. 

• Action Item 4: Add CCF events to the FT where applicable. 

In many instances the hardware FT constructed for Step 2 may already include hardware CCFs. 
However, the analysis may benefit from revisiting these 4 action items given as they may help capture 
any hardware CCFs that were not included previously. The focus of Step 5 is the identification of 
potential CCF, including hardware and software CCFs. The basic action items listed are generally 
applicable and for supporting CCF analysis. 

Step 6: Solve the FT for the minimal cut sets to determine critical 
failures in the design. 

The integrated FT and minimal cut sets are chief outcomes of RESHA. The purpose of this step is to 
solve the FT for the minimal cut sets and evaluate the design. Solving the FT is typically conducted using 
a software package such as SAPHIRE [72]. The number of basic events within each cut set varies; those 
cut sets that only consist of a single event are called first-order cut sets. For a qualitative analysis, the 
significance of each cut set is assumed to be dependent only on order. Therefore, the fewer basic events in 
the cut set, the more likely it will occurd. Single points of failure can be classified as first-order cut sets, 
yet the NRC does not consider CCFs as SPOFs for the sake of design basis evaluations [73]. To avoid any 
confusion, in this work, cut sets containing a CCF as their only basic event are simply referred to as first-
order cut sets. By evaluating the results for first-order cut sets, designers can determine where and how 
the SOI is vulnerable and redesign accordingly.  

There will be instances where, due to the system design, there are no first-order cut sets to analyze. In 
such cases, the analysis should proceed with second-order, or third-order, etc. Essentially, the smallest or 
shortest cut-sets are most likely to occur. And, in the absence of data, the shortest cut-sets are a logical 
area to focus on for re-designs. A useful exercise is to evaluate portions of the FT such as those that were 

 
d The addition of probability values can lead to higher order cut sets occurring with greater probability than those of lower order. 

These effects will be investigated as part of the reliability analysis in a future work.  
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identified based on functional redundancy (i.e., system or division levels of the FT). Evaluating such 
portions of the FT, including those that are most concerning to designers, may reveal localized first-order 
cut sets that may serve as focal points for redesign efforts, or additional analysis. 

Step 7: Identify and provide guidance to eliminate critical failures or 
their causes. 

The previous six steps serve to identify the hazards of the system. The intention of STEP-7 is to 
identify and provide guidance to eliminate critical failures or their causes. This step comes from the 
fourth part of STPA and focuses on the context for which UCAs or hazards may occur. The study of loss 
scenarios encompasses identifying and evaluating the combination of causal factors that can lead to a 
specific loss. It is in these loss scenarios that Type 1 or Type 2 interactions [15] may be identified. The 
STPA Handbook indicates that causes of UCAs can be grouped into two categories: (1) unsafe controller 
behaviors; and (2) inadequate feedback or other inputs [8].  

• Category 1: failures related to the controller itself (physical failures); inadequate control 
algorithms (the decision-making process may be inappropriate); inadequate process model (the 
controller’s view of the controlled process may be incorrect  [8]. 

• Category 2: Information/Feedback is not received by the controller; inadequate 
feedback/information is received by the controller; unsafe control input (a controller receives an 
UCA input from another controller) [8].  

According to the STPA handbook [8], “emergent properties are properties that are not in the 
summation of the individual components but ‘emerge’ when the components interact.” And that 
“emergent properties arise from relationships among the parts of the system.” Therefore, it is important to 
consider how the interactions of components may influence the system behavior. As a simple example, a 
UCA of an altitude controller may occur due to a UIF of one of the sensors that provide information to the 
control system. RESHA models the UIF and the UCA within a fault tree to capture the relationship and 
the emergent behavior of the altitude controller due to interactions it has with other components of the 
system. So, even though the altitude controller itself does not fail, the interaction with other components 
has led to unwanted and unsafe behavior. In other words, A UCA may occur when correct information 
(i.e., Category 2) is not provided to the controller.  

The study of loss scenarios is intended to capture the emergent behaviors and interactions that can 
lead to the UCAs, which may lead to a loss. The importance of this activity is not missed by RESHA, 
rather loss scenarios are represented by failure paths within a fault tree. To aid in the representation of 
loss scenarios, RESHA models directly unsafe information flow associated with the system of interest and 
its interactions with itself, controlled processes, or other systems. Together, failures associated with the 
control action pathway and the information feedback pathways are detailed by the integrated fault tree, 
particularly by the inclusion of UCAs and UIFs events. 

Of course, there may be numerous causes (i.e., causal factors) that may result in a particular UCA or 
UIF (e.g., hardware, software, or human causes) and a loss scenario. The last step of STPA is to identify 
these causal factors and present options for eliminating them. A key insight provided by the integrated 
fault tree is the relative relations and links between each failure pathway of the FT (i.e., cut sets). In other 
words, some cut sets may appear more critical (i.e., first-order cut sets) and efforts can be made to reduce 
or eliminate the causal factors of certain basic events within these cut set. For example, a given UCA 
event may be eliminated or mitigated by addressing or reducing the identified causes of that event (i.e., 
adding a diverse system, a watchdog time, specific processing criteria). The initial efforts in identifying 
causal factors may result in a resource bank of typical causal factors that can be used to expedite future 
analyses, thus reducing the cost of the RESHA over time. 
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APPENDIX B – ORTHOGONAL-DEFECT CLASSIFICATION FOR 
ASSESSING SOFTWARE RELIABILITY (ORCAS) 

The essence of ORCAS is to methodically collect failure data throughout the SDLC. This is then used 
to assess the anticipated operational reliability qualitatively and quantitatively. Different recommended 
approaches to collect and assess the completeness of the SDLC are included in ORCAS. 

The overall workflow of the proposed methodology can be seen in Figure 37. Items in the dashed box 
are elements pertaining to ORCAS. In general, the outputs are the software failure probabilities and 
confidence in the assessment process. Note that qualitative evidence is used to support or reject the 
conclusions of the assessment. The objective of stages 0 to 3 is focused on comprehensive data collection 
within the scope of the assessment. In stage 4 and 5, the data are then used to determine failure 
probability and the confidence in the assessment. It is important to note that the assessment of software 
reliability should be continuously evolving with the implementation and design of the system. Relevant 
items that are missed in the first rounds of assessment will require returning to the prior stage for further 
refinement. For example, when a defect is detected and classified in stage 3, it is expected to be repaired 
before the software is deployed. This will require returning to stage 2 for defect removal activities.  

 
Figure 37. Overall process of ORCAS for software reliability analysis. 

Stage 0: Collect system design and software requirements 
specification documentation. 

In stage 0, the relevant information and details pertaining to the system are collected. This stage is 
assumed to occur in any assessment and thus not described in detail. The information that can be collected 
at this stage can include formal documentation (i.e., IEEE 29148 [74], IEEE 829 [75], IEC 61508 [76]), 
defect and anomaly reports, design, and requirements specifications. Exact documents are not specified; 
however, information pertaining to the functional and non-functional requirements, implementation 
design, digital and hardware architecture, and test verification and validation are useful in further stages. 
This information is used to guide the construction of objectives and relevant targets of the assessment.  
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Stage 1: Define target, scope, and requirements of analysis. 
In stage 1, the target and scope are defined. A control structure diagram (CSD) based on top-down 

deconstruction is created to identify the target components and their interactions with each other. Methods 
to construct the CSD can be found in [8]. The scope of the analysis is also inherently defined by the CSD. 
Here, the desired modules and functions of the system are outlined, the hierarchal structure, and the type 
of tests anticipated to be completed based on specified constraints. 

From the formal documentation collected in stage 0, the requirement traceability matrix (RTM) is 
formed. The RTM specifies the functional and non-functional requirements on the software system as 
well as the associated tests required to achieve each target. The RTM is used as qualitative evidence 
toward the confidence in the assessment.  

Once the relevant aspects for analysis are identified, the target software and corresponding modules 
can be assessed for testing completeness. Specifically, both white-box and black-box testing approaches 
such as T-way combinatorial testing [77], modified condition decision coverage (MCDC) [78], boundary 
value analysis (BVA) [79], and equivalence partitioning (EP) [79] are recommended to verify the 
functional correctness of the software modules. These methodologies have been experimentally proven to 
be effective at defect removal and can be easily automated for the testing process. For instance, the 
Automated Combinatorial Testing for Software Tools (ACTS) is a free automated test generation tool 
developed by the National Institute of Standards and Technology (NIST) for T-way combinatorial and 
sequential testing [80]. They showed in Reference [80], that ACTS can capture nearly all hidden input 
related defects. Furthermore, the tool can partially automate the testing process thereby reducing effort.  

Within the ORCAS methodology, testing adequacy is gauged by a three-level test suite hierarchy 
known as the Trigger Covering Array (TCA), as shown in Figure 38. Each level specifies contextual 
conditions (also known as triggers) that need to be considered during test implementation for more 
comprehensive debugging. In Reference [81], they experimentally demonstrated that debugging can be 
improved by considering the triggers mentioned. Each trigger also has associated recommended activities 
to complete each test requirement. The purpose of this stage is to ensure that the tests conducted through 
the SDLC are effective and complete at detecting software defects. By considering the various triggers of 
defects and levels of software in the test process, the potential for latent hidden defects in the code are 
reduced qualitatively, improving reliability. Note that the test execution is not conducted at this stage. 
Rather, a collection of the anticipated and necessary test cases is constructed so it can be compared to the 
actual tests conducted to identify inadequate areas.  
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Figure 38. Three-tier software testing requirements with recommended activities and methods. 

Stage 2: Assess software development assurances and defect 
removal activities. 

In stage 2, the testing requirements identified in the previous stage are compared to the actual testing 
efforts conducted by the development team. For activities involving T-way combinatorial testing, BVA, 
and EP, the specific parameter range, variation, edges cases, etc. identified in the previous stage must 
have a traceable test(s) to verify the activity is complete. For MCDC path analysis, tests should exist that 
consider different path conditions to achieve near unity coverage. For the RTM, both functional and non-
functional requirements of the software should be traced to associated test cases that demonstrate 
adequate conformance. The completeness of the RTM and TCA are used as qualitative evidence to justify 
software reliability. These metrics also serve to identify areas requiring further testing. For instance, if 
function variation was not considered during testing, the associated tests can be implemented to satisfy 
this trigger. Ultimately, the objective of testing is to collect historical defect data that can later be used to 
quantify software failure modes. The defect reports can be collected from two sources. The first source 
includes existing defect reports discovered during the SDLC. The second source is through additional 
testing, which is initiated due to inadequacies in the RTM, TCA, or structural coverage. 

Stage 3: Apply ODC to the collected data. 
In stage 3, the defect reports are collected and categorized based on ODC theory [82]. Specifically, 

defects fall under one and only one class specified in Table 31. An analysis of defect reports involves 
understanding what went wrong and how it was resolved. Recall that defects are classified based on the 
resolution or solution and not what failure occurred. It should also be noted that if widely different 
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solutions exist for the same problem, it may indicate inadequate requirements and constraints 
specification for the problem.  

Table 31. Defect class table with abridged descriptions [83]. 
Defect Class Description 
Assignment Value assigned incorrectly or not at all. 
Checking Missing or incorrect validation of parameters or data in conditional statements. 
Algorithm Efficiency or correctness problem that affects functionality without a formal design 

change. 
Function Missing or incorrect functionality affecting system capability requiring a formal change. 
Timing Inappropriate serialization/timing of limited resources such as memory, locks, updates, 

etc. 
Interface Errors in communication between any level of software (i.e., macros, drivers, objects).  

Documentation Consistency of documented functions and implemented code functions. 
Relationship Conditional association problems related to linkage between data structures and objects. 

 

Stage 4: Quantify software reliability based on historical defect data. 
In stage 4 of ORCAS, the defects reports collected in the previous stage are modeled with reliability 

growth models. For low-reliability systems (i.e., greater than 1E-4 occurrence probability), it is assumed 
that conventional SRGM models are applicable as data collection is tractable. The growth models attempt 
to predict the number of hidden latent defects that may exist in the software after testing is complete. 
When modeling with growth models, there are two conditions that must be satisfied, (1) sufficiency of 
failure data and (2) stability of predictions. Condition 1 is to ensure that the models developed by growth 
models are useful and accurate. If there are insufficient data points, the growth models can be highly 
uncertain and can lead to misleading results. This is possible if the development history is unavailable to 
the assessor either because it is proprietary, or if the system is sufficiently simple such that the number of 
defects recorded is limited. The second condition is to ensure model fidelity. Inconsistent but plentiful 
failure data can also lead to uncertain predictive results and should also be avoided. 

The exact mathematics behind reliability growth models is not discussed in detail as extensive 
literature already exists and is referenced in this work. However, importantly, no one SRGM can be used 
to generalize across all datasets as development lifecycles vary significantly between organizations. 
Within ORCAS, five SRGMs are provided in Table 32 to cover different potential shape profiles, 
underlying SDLC assumptions, and development lifespans. Alternatively, a unified SRGM can also be 
used, such as those referenced in [84, 85]. Below, M(t) is the predicted number of remaining defects in the 
code at a specific time. 

Table 32. Different SRGMS to model defect history. 
Model Name M(t) 
Goel-Okumoto (GO) [86] 𝑎(1 − 𝑒−𝑏𝑡) 
GO S-Shaped [87] 𝑎(1 − (1 + 𝑏𝑡)𝑒−𝑏𝑡 
Weibull [88] 𝑎(1 − 𝑒−𝑏𝑡𝑐

) 
Yamada Raleigh [89] 

𝑎(1 − exp(−𝑟𝛼(1 − exp (−
𝛽𝑡2

2
)) 

Log Poisson [86] 1/𝑐 ln(𝑐𝛼𝑡 + 1) 
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In Figure 39, an example of defects recorded over time is presented with the HBase software dataset 
and modeled with the GO S-Shaped SRGM. On the x-axis is the number of combined testing days 
conducted over the development period of HBase. Combined testing days is the number of days of testing 
multiplied by the number of developers. On the y-axis is the cumulative number of defects over testing 
time as well by defect class. Both the cumulative number of defects detected and by defect class are 
plotted. The GO S-Shaped SRGM (dashed lines) is modeled against experimental data to show how 
SRGMs can be used to predict individual class occurrence probabilities. Note that the sum of all defect 
classes is equal to the cumulative number of defects. In the figure, near the end of the development cycle 
(i.e., between 12500 – 17500), pre-release, the cumulative number of defects recorded over time flattens, 
demonstrating the idea of growing reliability over increasing development effort. For additional details on 
ODC class specific SRGMs, the author recommends Ref. [82]. After an SRGM is fitted to the historical 
data, the occurrence probability of a specific defect class remaining undetected in the code can be 
determined using Equation (34). 

 
Figure 39. Defect modeling with GO S-Shaped curve for cumulative and specific defect classes [90]. 

𝐹𝑖(𝑡|𝑠) = 1 − exp(𝑀𝑖(𝑠) − 𝑀𝑖(𝑠 + 𝑡)) (34) 

 
𝑃(UXj) = ∑ 𝑃(UXj|𝑖)𝐹𝑖(𝑡|𝑠)

𝑖=defect class

 

 

(35) 

Here, 𝐹𝑖(𝑡|𝑠)is the probability of the 𝑖𝑡ℎ defect class occurring after 𝑡 additional hours of testing, and 
𝑠 is the last recorded defect time. The probability of specific UCA/UIF modes can now be determined by 
multiplying the correlation of each class with the occurrence probability per hour per class probability, as 
shown in Equation (35). Recall that the correlations were determined through the historical defect data of 
multiple different pieces of software. Only the second term, 𝐹𝑖(𝑡|𝑠) needs to be determined by the users 
from the testing efforts conducted.  

The first term 𝑃(UXj|𝑖) is the relational strength between defect classes and UCA/UIF mode. In 
Table 33, the overall mean and two standard deviation confidence intervals of all class correlations to 
UCAs/UIFs are shown. Table 33 also provides a global perspective of the relationship between defect 
classes and UCA/UIF failure modes. For instance, if the target software is speculated to have an 
assignment defect, from the table, it has a 28.4% chance to cause a UCA/UIF-A, a 64.8% chance of a 
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UCA/UIF-B, and so on. The exact failure modes (i.e., UCA-A or UIF-A) are determined by the 
functionality of the target software. The correlation strength is described by 𝑃(UXj|𝑖) between the 𝑗𝑡ℎ 

UCA/UIF failure mode and the 𝑖𝑡ℎ defect class. In row one, column D, no data points were observed 
so no correlation is assigned. In the last two rows, no data points from the analyzed software 
development lifecycles included documentation and relationship defects. An uninformed flat 
distribution is assumed for each UCA and UIF correlation. Note that the global correlation table (Table 
31) provides a wholistic perspective on software failure and defect classes. To be used for quantification, 
data pertaining to the target software are still required, specifically, the occurrence probability of each 
defect class within the software (i.e., 𝐹𝑖(𝑡|𝑠)).  

Table 33. Global correlations between software failure modes (UCA/UIFs) and orthogonal defect classes. 
Defect Class UCA/UIF – A UCA/UIF – B UCA/UIF – C UCA/UIF – D 
Assignment 0.288 ± 0.152 0.667 ± 0.130 0.045 ± 0.072 N/A 
Checking 0.219 ± 0.074 0.539 ± 0.115 0.102 ± 0.072 0.141 ± 0.129 
Algorithm 0.217 ± 0.051 0.525 ± 0.068 0.124 ± 0.044 0.134 ± 0.019 
Function 0.250 ± 0.154 0.518 ± 0.064 0.157 ± 0.092 0.074 ± 0.216 
Timing 0.095 ± 0.334 0.190 ± 0.289 0.524 ± 0.423 0.190 ± 0.289 
Interface 0.262 ± 0.065 0.579 ± 0.086 0.093 ± 0.095 0.065 ± 0.039 
Documentation 0.250 ± 0.250 0.250 ± 0.250 0.250 ± 0.250 0.250 ± 0.250 
Relationship 0.250 ± 0.250 0.250 ± 0.250 0.250 ± 0.250 0.250 ± 0.250 

 

𝑃(UIFA) =

[
 
 
 
 
 
 
𝑃(UIFA|Alg. )

𝑃(UIFA|Asi. )

𝑃(UIFA|Fnc. )

𝑃(UIFA|Int. )

𝑃(UIFA|Chk. )

𝑃(UIFA|Tim. )]
 
 
 
 
 
 
T

[
 
 
 
 
 
 
𝐹𝐴𝑙𝑔(𝑡|𝑠)

𝐹𝐴𝑠𝑖(𝑡|𝑠)

𝐹𝐹𝑛𝑐(𝑡|𝑠)

𝐹𝐼𝑛𝑡(𝑡|𝑠)

𝐹𝐶ℎ𝑘(𝑡|𝑠)

𝐹𝑇𝑖𝑚(𝑡|𝑠)]
 
 
 
 
 
 

 

 
 

(36) 

For high-reliability systems, it is already known from Reference [91], that the amount of testing effort 
required is intractable and therefore SRGMs are inapplicable. In addition, existing estimation methods 
depend on the observation of unreliability. However, highly reliable systems will inherently have low 
instances of unreliability which also makes the estimation highly uncertain. To address this issue, a 
rudimentary estimation method is implemented where the occurrence probability of a defect is assumed to 
be approximately constant and can be estimated using Equation (37) from Reference [91].  

𝐹𝑖 = 1 − exp (−
𝑛𝑖

𝑚
) (37) 

Here, 𝐹𝑖 is the time-independent occurrence probability of the 𝑖𝑡ℎ defect class, 𝑛𝑖 is the number of 
discovered defects of the 𝑖𝑡ℎ class, and 𝑚 is the total number of tests conducted. This equation assumes 
that relevant and extensive validation and verification testing has already been completed and the product 
is ready for deployment. The implication of Equation (37) is that the source code cannot be defect free 
regardless of any amount of testing.  

Stage 5: Assess efficacy of analysis. 
The last stage of ORCAS is the qualification of the SDLC by evaluating the qualitative evidence 

derived from the RTM, the TCA, the structural path coverage, and the stability of the reliability modeling. 
The developers and users can assess the completeness of the testing effort by reviewing how complete 
each qualitative factor is and which areas need further refinement. For instance, the RTM informs the 
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developers whether each requirement was tested, while the TCA informs the developers that every 
scenario is considered. The developers can then return to those software sections and conduct further 
testing. 
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APPENDIX C – BAYESIAN AND HRA-AIDED METHOD FOR THE 
RELIABILITY ANALYSIS OF SOFTWARE (BAHAMAS) 

This appendix provides the steps in detail for performing BAHAMAS. Each step is elaborated 
subsequently as shown in Figure 40.  

 
Figure 40. Workflow of the BAHAMAS in the proposed framework for the software reliability analysis 
of DI&C systems.  

Step 1: Identify a software failure of interest. 
This step is coupled with hazard analysis activities. Within the LWRS-developed framework, this 

connection is with RESHA for which postulated software failure events can be identified with different 
modes of failure UCA/UIF-A, B, C &D. The failure of interest may be found within an existing FT. In 
any case, the details of the failure of interest should be used to establish the overall scope of the 
quantitative assessment.  

The failure of interest should be identified as an associated function of a piece of software. 
BAHAMAS is not intended to evaluate the failure probability of a system of software elements. 
BAHAMAS should be applied to a single software and its functions. The FT provided by RESHA allows 
for these larger interactions to be considered. 

Step 2: Identify the software development tasks for each phase of the 
SDLC. 

The entire focus of this step is to establish what tasks are planned or have been performed for the SOI 
and map them to the BBN. SDLC activities and their tasks are clarified by the standards, manuals, 
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programs, plans, and policies followed by developers. If possible, the actual human-performed tasks for 
the software development should be noted. However, at early stages, the intended tasks will suffice. The 
human-performed tasks should be documented and grouped according to which stage of the SDLC they 
correspond. The stages selected for BAHAMAS are concept, design, implementation, testing, and 
installation & maintenance stages. Even though many standards and guidelines establish when a task is 
performed, the specifics vary by case. Each task, specific to the SOI, should be mapped to the stage they 
most directly correspond within the BAHAMAS network. For example, the human task of defining the 
project scope, or software interface requirements map to the concept and design stages, respectively. 
Once all tasks have been identified and mapped accordingly, the next step is to prepare the BBN for 
evaluation by assigning node probabilities. In summary for this step there are two action items: 

• Action Item for normal assessment: Identify and list the critical or essential tasks of the SDLC 
and group them according to which phase of the SDLC they are performed. 

• Action Item for CCF assessment: Identify and list the critical or essential tasks of the SDLC 
and group them according to which phase of the SDLC they are performed. For CCF analysis, 
only the tasks that are found to be common among the SDLC of each member of the CCCG 
should be identified. 

Step 3: Determine the HEP for the tasks identified in Step 2. 
Two primary concepts are employed by BAHAMAS, these are defect introduction and defect 

removal. Human errors account for defect introduction while review activities account for removal. This 
step addresses the defect introduction.  

Each of the critical tasks that have been identified in Step 2 should be assessed for the HEP. To do so, 
the analyst should rely on HRA. Ultimately the HEP for each task identified will be used to inform the 
probability of defects in the software without considering review. This probability of defects is used to 
populate the root nodes: Stage Defects.  

The process for defining defect nodes requires that critical activities of the SDLC stage be identified 
and then evaluated for human errors. Each SDLC stage has multiple activities consisting of multiple 
tasks. Each of these may introduce errors to the software. HRA is applied to determine the HEP of each 
critical task (T), the union of which provides an indication of the probability of defects for each stage (see 
Equation (38) below). 

𝑃(𝑆𝑡𝑎𝑔𝑒 𝐷𝑒𝑓𝑒𝑐𝑡𝑠) = ∑ (𝐻𝐸𝑃)𝑖

𝑇

𝑖=1
 (38) 

Here it is important to note that HRA may provide coverage for review activities in the definition of 
the HEP (e.g., THERP does). However, BAHAMAS considers review separately in the network. 
Therefore, the HRA performed for this step accounts only for those actions and correction factors that 
pertain to the performance of the task at hand. No consideration of checking from teammates or 
independent reviews of the specific tasks should be considered here. The review activities will be 
considered in Step 4.  

Regarding the CCF analysis, the need is to consider the overlapping or common tasks and their 
impact on the probability of defects for each stage of the SDLC. HRA is applied to determine the HEP of 
each critical task (T), the union of which provides an indication of the probability of defects for each stage 
for CCF analysis, only the common tasks should be assessed. And in the case of diverse software, only a 
subset of T may be common (i.e., 𝑇𝑐𝑐). Additionally, the 𝐻𝐸𝑃 from equation (38) should be replaced by 
𝐻𝐸𝑃𝑚𝑖𝑛, corresponding to the smaller evaluated HEP of the task shared by the diverse CCCG. The result 
of this change is shown in equation (39). As an example, given a task that is shared by software-1 and 
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software-2, the maximum overlap of the HEPs will be given by the smaller of the two. This follows the 
discussion in [26] concerning the upper bound on joint probability distributions. 

𝑃𝑐𝑐(𝑆𝑡𝑎𝑔𝑒 𝐷𝑒𝑓𝑒𝑐𝑡𝑠) = ∑ (𝐻𝐸𝑃𝑚𝑖𝑛)𝑖 
𝑇𝑐𝑐

𝑖=1
 (39) 

• Action Item for normal assessment: Identify the HEP for each task identified in Step 2 and 
evaluate the probability of defects for each stage using equation (38).  

• Action Item for CCF assessment: Identify the HEP for each common task identified in Step 2 
and evaluate the probability of defects for each stage using equation (39) below. 

Step 4: Identify the quality of review performed for the tasks identified 
in Step 2. 

This step considers the efforts employed during the SDLC that effectively remove defects from the 
software. Essentially, the quality of review efforts indicates whether defects will remain in the software. 
For this work, quality of review is implied by the number of independent reviews and the specific review 
activities (i.e., trigger coverage) that are employed for the SDLC. Future work may incorporate other 
concepts. 

First, the number of reviews employed for each task shall be assessed and recorded. These are then 
used to find the average number of reviews for a particular stage is defined by Equation (40), where r is 
the number of independent reviews performed for each critical task and T is the total number of critical 
tasks for a given stage. Equation (40) provides a wholistic view of the number of reviews for each SDLC 
stage.   

𝑅 = 
1

𝑇
∑ 𝑟𝑖

𝑇

𝑖=1
 (40) 

 Second, the specific review activities performed (i.e., trigger coverage) of each task shall be 
assessed. The ODC methodology indicates that activities during design review, codes inspection, and 
testing can help identify and remove defects [83]. ODC employs investigations of triggers and triggering 
mechanisms during different design stages in order to find and identify defects. For example, there are 21 
total defects listed in [83]. Each has been assigned to different review stages. For example, design 
conformance is a trigger that pertains to design review activities. As such, a quality design review should 
investigate the design conformance trigger. It has been experimentally shown that consideration of all 
defect triggers can detect more latent defects than an unstructured testing methodology [81]. Thus, 
providing comprehensive and complete investigations of all triggers during each stage of the SDLC will 
lead to excellent quality reviews, and ultimately reduce the probability of defects remaining within the 
software. Table(below)shows the triggers and their associated activities adapted from [83]. 

The trigger coverage (𝑇𝐶) is determined from the average of each task-level trigger coverage (𝑡𝑐) 
which is the percent of relevant triggers that have been covered for a task of a particular SDLC stage (see 
equation (41) below). Note that T is the total number of critical tasks for a given stage. 

𝑇𝐶 = 
1

𝑇
∑ (𝑡𝑐)𝑖

𝑇

𝑖=1
 (41) 

 
Table 34: Triggers and their associated stages of the SDLC 

Review Activities Triggers 
 
 
 

Design Conformance 
Logic/Flow 
Backward Compatibility 
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For Use (typically) with Concept, Design, and 
Implementation Review Activities 

Lateral Compatibility 
Concurrency 
Internal Document 
Language Dependency 
Side Effect 
Rare Situations 

 
 
 
 
 
 
For Use (Typically) with Testing Review Activities 

Simple Path 
Complex Path 
Test Coverage 
Test Variation 
Test Sequencing 
Test Interaction 
Workload/Stress 
Recovery/Exception 
Startup/Restart 
Hardware Configuration 
Software Configuration 
Blocked Test (Previously Normal Mode) 

Descriptions for each trigger can be found in 201  I   “Orthogonal Defect Classification v 5.2 for Software 
Design & Code” [92] 

 

Consideration of this step for CCF analysis requires that the quality of the reviews be assessed with 
respect to the common or shared tasks that were identified in Step 2. This requires some modification of 
the general assessment equations.  

The trigger coverage (𝑇𝐶) is determined from the average of each task-level trigger coverage (𝑡𝑐) which 
is the percent of relevant triggers that have been covered for a task of a particular SDLC stage (see 
equation(41)). Trigger coverage (𝑇𝐶𝑐𝑐) for the CCF analysis, including diverse CCFs, is given by equation 
(42) and depends on the subset of tasks that are shared by the CCCG.  

𝑇𝐶𝑐𝑐 = 
1

𝑇
∑ (𝑡𝑐𝑐𝑐)𝑖

𝑇𝑐𝑐

𝑖=1
 (42) 

Within equation (42), the task-level trigger coverage is defined as a function of the set of triggers 
investigated ({𝑡𝑟}𝑖,𝑖𝑛𝑣) for the CCCG out of the total relevant set of triggers ({𝑡𝑟}𝑖,𝑡𝑜𝑡) that are applicable 
to a particular task. Equation (43) provides the relationship between {𝑡𝑟𝑐𝑐}𝑖 and {𝑡𝑟}𝑖.𝑠, where {𝑡𝑟𝑐𝑐}𝑖 is the 
set of relevant triggers to the CCCG and {𝑡𝑟}𝑖,𝑠 is the set covered by the SDLC of software s. The index 𝐾, 
is the total number of diverse software implementations used by the CCCG (for CCCG with only redundant 
software index 𝐾 = 1). Equation (44) gives the task-level trigger coverage for the CCCG.  

{𝑡𝑟𝑐𝑐}𝑖 = {{𝑡𝑟}𝑖,1 ∪ {𝑡𝑟}𝑖,2 …∪ {𝑡𝑟}𝑖,𝐾} (43) 

(𝑡𝑐𝑐𝑐)𝑖 =
𝑠𝑖𝑧𝑒 𝑜𝑓 {𝑡𝑟𝑐𝑐}𝑖,𝑖𝑛𝑣

𝑠𝑖𝑧𝑒 𝑜𝑓 {𝑡𝑟𝑐𝑐}𝑖,𝑡𝑜𝑡
 (44) 

The average number of reviews for a particular stage is defined by equation (45), where r is the number 
of independent reviews performed for a specific task. For the diverse CCCGs, only the common or shared 
tasks should be assessed; thus, a subset of T is employed to determine R. The result is equation (46), where 
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𝑟𝑐𝑐 represents a weighted average number of reviews for the CCCG. Equation (47) is given to show how 
𝑟𝑐𝑐 is defined for each task where 𝑟𝑖,𝑗,𝑠 is the number of reviews performed during the SDLC of software s, 
for task i, that involved trigger j of the {𝑡𝑟}𝑖,𝑠. Note, 𝐽𝑖 corresponds to the size of {𝑡𝑟}𝑖,𝑠. 

𝑅 = 
1

𝑇
∑ 𝑟𝑖

𝑇

𝑖=1
 (45) 

𝑅𝑐𝑐 = 
1

𝑇
∑ (𝑟𝑐𝑐)𝑖

𝑇𝑐𝑐

𝑖=1
 (46) 

(𝑟𝑐𝑐)𝑖  =  
1

𝑠𝑖𝑧𝑒 𝑜𝑓 {𝑡𝑟}𝑖,𝑡𝑜𝑡
∑ 𝑚𝑎𝑥(𝑟𝑖,𝑗,𝑠)𝑠=1

𝐾

𝐽𝑖

𝑗=1

 (47) 

• Action Item for normal assessment: Identify the review number and trigger coverage for each 
task identified in Step 2 and evaluate the average number of reviews and trigger coverage for 
each stage of the SDLC.  

• Action Item for CCF assessment: Identify the review number and trigger coverage for each 
common or shared task identified in Step 2 and evaluate the associated average number of 
reviews and trigger coverage for each stage of the SDLC.  

A note on this Step, the root nodes of BAHAMAS that represent stage review are quite simply a 
binary assessment. The probability for these states is given as 1 or 0 dependent upon whether a review has 
occurred. This is necessary for the evaluation of the network. All other details determined for review 
quality are required and used for the conditional probability evaluations within BAHAMAS.  

Step 5: Evaluate the Network 
The final step is to incorporate all the details, if not already completed, into a conventional solver to 

evaluate the software failure probability. Depending on the details used the output of BAHAMAS will 
provide results for software failure probability or the software common cause failure probability.  

Evaluation of the network requires that the root node probabilities and the conditional probabilities be 
known. The generic network for BAHAMAS is shown in Figure 41.  
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Figure 41. Generic BAHAMAS network. 

Root node probabilities needed to evaluate BAHAMAS: 

The root nodes include the stage defect nodes and the review nodes. Stage defect nodes are quantified 
using the equations given in Step 3. Review nodes are given as 1 or 0 depending on whether any reviews 
have occurred for the given stage (see final paragraph of Step 4).  

Conditional Probabilities needed to evaluate BAHAMAS: 

◦ The conditional probability for specific defect types at each stage of the SDLC (shown as the 
purple nodes in Figure 41): 

The types of defects that are introduced vary throughout the SDLC. As the software development 
progresses, the distribution of defect types that remain within the software varies. It is unlikely to find a 
defect related to the algorithm of a code prior to developing the algorithm itself (i.e., prior to the design 
state of the SDLC). The variation of defect types during the SDLC can be seen in [30]. It assumed that the 
concentration of defect types changes during development. To support this assumption, we investigated a 
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public database [93] (associated with [94]) of ODC results concerning three separate software packages 
(i.e., MongoDB, HBase, and Cassandra). The ODC results indicate the defects that are likely to be found 
during certain review activities.  

Figure 42 gives the distributions associated with the three databases and data reported by Chillarege 
et al. [30] given the code inspection. Table 35 provides the distributions for each defect type and SDLC 
stage. Future research may lead to adjustments in these distributions.  

 
Figure 42. Defect type distributions given code inspection. 

 
Table 35: General expected distributions for defect types for each review activity. 

Defect Type Al. As. Ch. Doc. Fun. Int. Rel. Tim. 
Type | Concept Rev. 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
Type | Design Rev. 0.1363 0.586 0.586 0.304 0.2464 0.1589 0.00 0.374 
Type | Imp. Rev. 0.4913 0.748 0.1080 0.436 0.1609 0.1040 0.035 0.103 
Type | Testing Rev. 0.4296 0.991 0.1079 0.088 0.848 0.991 0.622 0.112 
Type | I&M Rev. 0.4296 0.991 0.1079 0.088 0.848 0.991 0.622 0.112 
Type | no review 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 
Note 1: general expectation for concept stage is that no design activities have been performed. Thus, 
only documentation defects will exist.  
Note 2: Datasets contained no Relationship defects for Design Rev. 
Note 3: The distribution of defects, given no review, is assumed to be uniform. 

 
Table 35 provides a conditional probability of the existence of a particular defect type for a given 

phase of the SDLC. However, as mentioned in the review node section, the quality of review activities 
can have an influence on the existence of latent defects. The comprehensiveness of the SDLC review 
activities indicates how well or how likely defects will remain within the software when it is delivered for 
use. Good coverage of triggers and multiple reviews will increase the review quality and the quality of the 
delivered product. 

This work considers the influence of recovery and HEP separately, whereas normally HRA may 
account for such in one go. For example, THERP can account for the benefit of review wherein the 
recovery is conditional upon the dependency between the original performer and reviewer. The more 
involved the reviewer, the greater potential for effective recovery from human errors. It turns out that 
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THERP’s model for recovery follows a nearly exponential curve that is a function of the dependency 
relationships (i.e., review quality) between the reviewer and the number of reviews performed. Details are 
given in the THERP manual [95].  In this work, to achieve a similar recovery benefit, BAHAMAS 
incorporates the exponential function shown below. For convenience it is called the defect conditional 
probability (DCP) equation. Within the (𝐷𝐶𝑃) equation, 𝐺 is the general expected probability for a defect 
type for a given SDLC stage (from Table 35). 𝑇𝐶 represents the stage trigger coverage and is determined 
from equation (41). And 𝑅 is the average number of reviews performed for each task of the SDLC stage 
as defined by equation (48). 

𝐷𝐶𝑃 = {
𝑆𝑡𝑎𝑔𝑒𝑅𝑒𝑣𝑖𝑒𝑤(𝑎𝑙𝑙 𝑠𝑡𝑎𝑡𝑒𝑠) 𝑎𝑛𝑑 𝑆𝑡𝑎𝑔𝑒𝐷𝑒𝑓𝑒𝑐𝑡 (𝑦𝑒𝑠),      𝐷𝐶𝑃 = 𝐺𝑒−(𝑇𝐶∗𝑅) 

𝑆𝑡𝑎𝑔𝑒𝑅𝑒𝑣𝑖𝑒𝑤(𝑎𝑙𝑙 𝑠𝑡𝑎𝑡𝑒𝑠) 𝑎𝑛𝑑 𝑆𝑡𝑎𝑔𝑒𝐷𝑒𝑓𝑒𝑐𝑡(𝑛𝑜),        𝐷𝐶𝑃 = 0           
 

(48) 

 

◦ Conditional probability for specific defect types at the end of SDLC (shown as the yellow nodes 
in Figure 41). 

The yellow nodes that represent defect types at the end of the SDLC have two states, either yes or no. 
The conditional probability for these states is dependent on whether specific defects have been found in 
any of the earlier phases. If yes, then the yellow nodes conditional probability is yes. Otherwise, it is no. 

◦ Conditional probability for software failure (shown as the green node in Figure 41). 

 BAHAMAS follows the ORCAS methodology to evaluate software failure probability. A conditional 
relationship between the nodes representing defect type remaining and the probability of software failure 
mode is given by equation (49). Where 𝐼 is the total number of defect types considered by BAHAMAS 
and 𝑈𝐶𝑥 is the UCA/UIF failure mode being evaluated. 

𝑃(𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑜𝑓 𝑚𝑜𝑑𝑒 𝑥) = ∑𝑃(𝑈𝐶𝑥|𝑇𝑦𝑝𝑒𝑖)𝑃(𝑇𝑦𝑝𝑒𝑖)

𝐼

𝑖=1

  
(49) 

Table 33 provides the conditional probabilities used for 𝑃(𝑈𝐶𝑥|𝑇𝑦𝑝𝑒𝑖). These distributions have been 
conservatively assumed for the current work. In Table 33, is a refinement of the work from the previous 
FY [4]. Here the mean and two standard deviation confidence intervals of all class correlations to 
UCAs/UIFs have been added. The values and uncertainties for documentation and relationship defects 
have been assumed. As more classification is performed these distributions can be refined. The table 
provides a global perspective of the relationship between defect classes and UCA/UIF failure modes. 
Finally, all the necessary information has been provided for the BBN to be solved using conventional 
software tools. All the nodes have been defined along with their conditional probability values. 


