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ABSTRACT 

To achieve high capacity factors, the nuclear fleet has relied on labor-
intensive and time-consuming operation and preventive maintenance programs 
for plant systems. Manually-performed inspection, calibration, testing, and 
maintenance of plant assets at periodic frequencies, along with the time-based 
replacement of assets irrespective of condition, have resulted in a costly, labor-
centric business model. 

Fortunately, there are technologies that can eliminate unnecessary preventive 
maintenance activities by deploying risk-informed predictive maintenance, 
enabling the transition to a technology-centric business model. The technology-
centric business model will enable plants to optimize and automate maintenance 
activities, leading to cost reductions, since labor is a rising cost and technology is 
a declining cost. The implementation of scalable technologies and methodologies 
across plant systems and across the nuclear fleet is critical for the successful 
deployment of a risk-informed predictive maintenance strategy at commercial 
nuclear power plants. 

The work presented in the report is being developed as part of a collaborative 
research effort between Idaho National Laboratory and Public Service Enterprise 
Group Nuclear, LLC. This report describes the technical basis using the Markov 
Process to evaluate the value proposition for the risk-informed predictive 
maintenance strategy for the circulating water system. Circulating water system 
plant process data from the Salem and Hope Creek nuclear power plants were 
utilized to develop a Markov chain risk model and set of equations that allows us 
to estimate the loss and gain in revenue based on plant availability. The outcomes 
presented in this report provide the technical basis for an extensive quantitative 
evaluation of a scalable risk-informed predictive maintenance strategy as part of 
future research.  
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Markov Process to Evaluate the Value Proposition of a 
Risk-Informed Predictive Maintenance Strategy 

1. INTRODUCTION 
The primary objective of the research presented in this report is to describe the scalability of a 

deployable risk-informed predictive maintenance (PdM) strategy. As well-constructed PdM approaches, 
taking advantage of advancements in data analytics, machine learning, artificial intelligence, and 
visualization, are developed and deployed for an identified plant asset, it is important to ensure the 
scalability of the approach across plant systems and across the nuclear fleet. This would allow 
commercial nuclear power plants (NPPs) to achieve a reliable transition from current labor-intensive 
preventive maintenance (PM) programs to a technology-driven PdM program, as shown in Figure 1, 
eliminating unnecessary operation and maintenance (O&M) costs. Over the years, the nuclear fleet has 
relied on labor-intensive and time-consuming PM programs, driving up O&M costs to achieve a high 
capacity factor. 

 
Figure 1. Transition from a PM program to a risk-informed PdM program. 

The value proposition for scalability of the risk-informed PdM strategy presented in this report was 
developed by Idaho National Laboratory (INL) in collaboration with Public Service Enterprise Group 
(PSEG) Nuclear, LLC. To develop the initial scalable methods, models, and visualization schemes, the 
circulating water system (CWS) at PSEG-owned Salem and Hope Creek NPPs was selected as the 
identified plant asset. The CWS is an important non-safety related system and is omnipresent across the 
fleet of existing light-water nuclear plants. Traditionally, most of the PdM approaches in the nuclear 
industry are developed at the component level [1–5]. This approach is not holistic and presents challenges 
when scaled to the system level. In addition, it prevents nuclear plant sites from harvesting the maximum 
benefits. Here, benefits could be in terms of automation, optimization of labor and material resources, 
cost savings, and others. The research approach presented in this report addresses these limitations. 

The research and development (R&D) and outcomes reported here are part of the Technology 
Enabled Risk-Informed Maintenance Strategy (TERMS) Project sponsored by the U.S. Department of 
Energy’s Light Water Reactor Sustainability (LWRS) program. The LWRS program is an R&D program 
conducted in close partnership with industry to provide the technical foundations for licensing, managing, 
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and economically operating the current fleet of NPPs. The LWRS program serves to help the U.S. nuclear 
industry adopt new technologies and engineering solutions. 

Within the LWRS program, the Plant Modernization Pathway conducts targeted R&D to address 
aging and reliability concerns with legacy instrumentation and control through modernized technologies 
for the existing U.S. fleet of operating light-water reactors (LWRs) and improved processes for plant 
operation and power generation. The research goals of the Plant Modernization Pathway are focused on 
delivering technologies and results that significantly reduce the technical, financial, and regulatory risk of 
modernization. 

To achieve both LWRS program and Plant Modernization Pathway goals [6], a series of pilot projects 
are underway to develop and demonstrate new technologies that can affect transformative change in the 
operations and support of nuclear plants. The TERMS pilot project is developing the necessary 
technologies and methodologies to achieve performance improvement through a transformative transition 
to PdM. 

This research project is designed to help nuclear industry officials understand the benefits of 
advanced data analytics and risk methodologies in eliminating unnecessary costs associated with labor-
intensive time-based PM programs at NPPs. To deliver this message and enable the transition to 
risk-informed PdM across plant systems and across the nuclear fleet, this report presents scalability R&D 
activities performed on CWS across two plant sites. 

1.1 Motivation and Background 
Global energy market trends are driven heavily by the abundant reserves of natural gas. As such, 

there is an immediate need to reduce costs associated with operating and maintaining the current domestic 
fleet of nuclear plants (99 operating units). Operating in a market selling wholesale electricity for 
$22/MWh becomes unsustainable with current nuclear plant O&M costs, which account for at least 66% 
of the total operating cost. Prices for producing nuclear energy start higher than the market price of 
electricity, with the nuclear industry average operating cost at approximately $34/MWh (not specific to 
PSEG-owned Salem and Hope Creek NPPs) and O&M costs of approximately $22/MWh. On average, 
annual O&M costs equate to approximately $145M per station. 

These O&M costs (bundled with the labor-intensive PM program) are right now a major contributor 
to total operating costs. They involve manually-performed inspection, calibration, testing, and 
maintenance of plant assets at a periodic frequency, along with the time-based replacement of assets, 
irrespective of condition. This has resulted in a costly, labor-centric business model. Fortunately, there 
are technologies (advanced sensor, data analytics, and risk assessment methodologies) that can enable the 
transition to a technology-centric business model. The technology-centric business model will result in the 
significant reduction of PM activities, driving down costs since labor is a rising cost and technology is a 
declining cost. This transition will also enable nuclear plants to maintain and perhaps even achieve higher 
capacity factors while still significantly reducing O&M costs. 

The challenges facing the industry are clearly understood by regulators, operators, and vendors alike, 
but there are particular roadblocks that make change difficult to implement. For example, the Nuclear 
Energy Institute has issued several efficiency bulletins related to reducing the cost of maintenance. The 
PdM R&D plan [7] laid the foundation for the real-time condition assessment of plant assets. Successful 
execution of the R&D plan will result in the development of a deployable PdM maintenance program for 
plant use, thereby enhancing the safety, reliability, and economics of operation. 
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1.2 Report Layout 
This report is organized as follows: 

• Section 2 discusses the Markov chain process to address scalability and cost evaluation of risk 
models. Both parametric and non-parametric scaling of two- and three-state Markov models are 
presented. 

• Section 3 summarizes the research accomplishments and presents a path forward in advancing R&D 
activities. 

2. COST EVALUATION USING MARKOV CHAIN APPROACH 
This section deals with the scalability of continuous Markov models when they are applied to a risk-

benefits analysis of operating assets in NPPs. To demonstrate the scalability of the Markov chain model 
for a particular component, the CWS is selected. Initially, two types of Markov chain models for a single 
circulating water pump (CWP) and a CWP motor—three-state and two-state models—are applied. The 
three-state CWP and the CWP motor model are based on the assumption that the maintenance performed 
on the asset is divided into two categories—corrective and preventive. Corrective maintenance (CM), 
sometimes called “repair,” is performed when a component fails during operation or during standby 
(random event). In this situation, performing maintenance is a necessity for returning the component to an 
operational state. On the other hand, PM is normally performed when a component is operational but 
requires some service. Often, PM is performed when the component is online; however, PM may require 
derating the unit. In addition, PMs are periodic and mostly performed at fixed time frequencies. For CM, 
the component often needs to be taken out of service. While the time intervals between CM events are 
random, PM is performed more on a scheduled basis; time intervals are more regular but with some 
variance. The transition diagram for the three-state model is shown in Figure 2. 

 
Figure 2. Transition diagram for a three-state model. 

The three-state model is completely defined by four parameters: 𝜆𝜆 represents the failure rate, 𝜇𝜇 
represents the CM rate, 𝜂𝜂 represents the PM scheduling rate, and 𝜈𝜈 represents the PM rate and its initial 
conditions. The system of differential equations, governing the evolution of the three-state model can be 
written as follows [9]: 

𝑑𝑑𝑑𝑑0
𝑑𝑑𝑑𝑑

=  𝜇𝜇 ∙ 𝑝𝑝1 − 𝜆𝜆 ∙ 𝑝𝑝0 + 𝜈𝜈 ∙ 𝑝𝑝2 − 𝜂𝜂 ∙ 𝑝𝑝0 

 
𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

=  𝜆𝜆 ∙ 𝑝𝑝0 − 𝜇𝜇 ∙ 𝑝𝑝1                                                                             (1) 
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𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

=  𝜂𝜂 ∙ 𝑝𝑝0 − 𝜈𝜈 ∙ 𝑝𝑝2 

 
𝑝𝑝0(0) = 1,𝑝𝑝0(𝑡𝑡) + 𝑝𝑝1(𝑡𝑡) + 𝑝𝑝2(𝑡𝑡) = 1. 

 
where 𝑝𝑝0, 𝑝𝑝1,and 𝑝𝑝2 are probabilities for the component to be in corresponding state. 

The transition diagram in Figure 2 can be easily rearranged to represent a death-birth process [8], 
where the transitions are only possible to the neighboring states as shown in Figure 3. 

 
Figure 3. Transition diagram for a three-state model represented as death-birth process. 

The advantage of representing a transition diagram as a death-birth process is that in this case, the 
steady-state probabilities can be calculated analytically [9]. Using the normalization requirement and two 
of the three equations, the steady-state probabilities can be written as [9]: 

𝑝𝑝1 =
1

1 + 𝜇𝜇
𝜆𝜆 + 𝜇𝜇 ∙ 𝜂𝜂

𝜆𝜆 ∙ 𝜈𝜈
;𝑝𝑝0 =

𝜇𝜇
𝜆𝜆

 𝑝𝑝1; 𝑝𝑝2 =
𝜂𝜂
𝜈𝜈
𝑝𝑝1                                  (2) 

The steady-state solution is guaranteed to exist for situations when all four parameters are 
independent of time (i.e., they are constants) [10]. In this report, time-independent parameters are 
considered. The parameters can be estimated from a motor's operational history and, for the three-state 
model required, historical data is used to estimate all four parameters. For details, refer to [4]. Given the 
parameters, the probabilities of the asset to be in a specific state (i.e. being operational or being under PM 
or CM) are estimated [4]. The parameters can be estimated from operational data, as shown in Figure 4, 
where 𝜏𝜏𝑖𝑖𝑜𝑜 are time intervals when the CWP is fully operational, 𝜏𝜏𝑖𝑖𝑟𝑟 are time intervals when the CWP or the 
CWP motor is undergoing CM, 𝜏𝜏𝑖𝑖𝑚𝑚 are time intervals when the CWP or the CWP motor is in PM, and 𝜏𝜏𝑖𝑖𝑠𝑠 
is the time interval between scheduled PMs. Having obtained these time intervals from operational data, 
the four parameters can be estimated using the procedure described in [4]. For Salem Unit 1, the 
following values were obtained, 𝜆𝜆 = 3.6 × 10−4, 𝜇𝜇 = 1.8 × 10−2, 𝜂𝜂 = 6.4 × 10−5, and 𝜈𝜈 = 7.5 × 10−2. 
The steady-state probabilities calculated using Equation (2) are 𝑝𝑝0 = 0.97952, 𝑝𝑝1 = 0.019645, and 𝑝𝑝2 =
0.00083455. 
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Figure 4. A realization of the time-evolution dynamics of a three-state system. The abscissa axis is the 
time and the ordinate axis is the model’s state. 

Given the four parameters, the following variables can be computed. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁𝑜𝑜

�𝜏𝜏𝑖𝑖𝑜𝑜
𝑁𝑁𝑜𝑜

𝑖𝑖=1

 and Failure rate 𝜆𝜆 =
1

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(per unit of time)  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁𝐶𝐶

�𝜏𝜏𝑖𝑖𝑟𝑟
𝑁𝑁𝐶𝐶

𝑖𝑖=1

 and Corrective maintenance rate 𝜇𝜇 =
1

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(per unit of time)          (3) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁𝑃𝑃

�𝜏𝜏𝑖𝑖𝑚𝑚
𝑁𝑁𝑝𝑝

𝑖𝑖=1

 and Preventive maintenance rate 𝜈𝜈 =
1

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(per unit of time)  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁𝑃𝑃𝑃𝑃

�𝜏𝜏𝑖𝑖𝑠𝑠
𝑁𝑁𝑃𝑃𝑃𝑃

𝑖𝑖=1

and Preventive maintenance scheduling rate 𝜂𝜂 =
1

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(per unit of time)  

where 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 represents the mean time between failures, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 represents the mean CM time, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 
represents the mean PM time, and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 represents the mean time between scheduled PMs. 𝑁𝑁𝑜𝑜 is the 
number of times the CWP was in the 𝑆𝑆0 state (here 𝑁𝑁𝑜𝑜 = 5), 𝑁𝑁𝑐𝑐 is the number of times the CWP was in 
the 𝑆𝑆1 state (here 𝑁𝑁𝑐𝑐 = 3), 𝑁𝑁𝑃𝑃 is the number of times the CWP was in the 𝑆𝑆2 state (here 𝑁𝑁𝑃𝑃 = 2), and 𝑁𝑁𝑃𝑃𝑃𝑃 
is the number of times the CWP entered the 𝑆𝑆2 state (here 𝑁𝑁𝑃𝑃𝑃𝑃 = 1). The steady-state probabilities have 
important practical interpretations as average relative percentages of time the system spends in particular 
states. This interpretation, for example, allows for calculating the hourly profit for a particular asset given 
hourly rates, as shown in Equation (4). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝑝𝑝0 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝑝𝑝1  (4) 

In a more general form, the profit equation can be written for a system that can be in 𝑁𝑁 number of states 
as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 ∙ 𝑝𝑝𝑖𝑖                                  (5)
𝑁𝑁

𝑖𝑖=1

 

S0 

S1 

T 

o
1τ

o
2τ

o
4τ

r
1τ r

2τ
r
3τ
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s
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where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 is cost of being in the 𝑖𝑖 − 𝑡𝑡ℎ state, which is calculated by considering the revenue and 
expense of being in the 𝑖𝑖 − 𝑡𝑡ℎ state. Notice, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 could be positive or negative depending on whether the 
system is making or losing money by being in a corresponding state. 

Another commonly used Markov chain model is a two-state model where the two types of 
maintenance are merged into one state, as shown in Figure 5. 

 
Figure 5. Transition diagram for a two-state model. 

The two-state model is described by the system of two differential equations, along with initial 
conditions: 

𝑑𝑑𝑑𝑑0
𝑑𝑑𝑑𝑑

=  𝜇𝜇 ∙ 𝑝𝑝1 − 𝜆𝜆 ∙ 𝑝𝑝0 

𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

=  𝜆𝜆 ∙ 𝑝𝑝0 − 𝜇𝜇 ∙ 𝑝𝑝1                                                                        (6) 

𝑝𝑝0(0) = 1,𝑝𝑝0(𝑡𝑡) + 𝑝𝑝1(𝑡𝑡) = 1. 

Notice that the two-state model represents the simplest type of death-birth process with only two 
states. Using the normalization requirement and one of the two equations, the steady-state solutions for 
the two-state system can be expressed as: 

𝑝𝑝0 =
𝜇𝜇

𝜇𝜇 + 𝜆𝜆
; 𝑝𝑝1 =

𝜆𝜆
𝜇𝜇 + 𝜆𝜆

                                                                    (7) 

In contrast to the three-state model, the two-state model has only two parameters, 𝜆𝜆 and 𝜇𝜇. These 
parameters can be estimated from operational data as shown in Figure 6, and following the procedure 
described in [4]. 

 
Figure 6. A realization of the time-evolution dynamic of a two-state system. 
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Here 𝜏𝜏𝑖𝑖𝑚𝑚 are the time intervals when the pump is undergoing PM or CM. Note, that the 𝜏𝜏𝑖𝑖𝑚𝑚 described 
here is different from the one in Figure 4. After estimating these time intervals from operational data, the 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 can be obtained using its expression in Equation (3), while the mean maintenance time, denoted as 
𝑀𝑀𝑀𝑀𝑀𝑀, is computed as, 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�𝜏𝜏𝑖𝑖𝑚𝑚
𝑁𝑁

𝑖𝑖=1

 and Maintenance rate 𝜇𝜇 =
1

𝑀𝑀𝑀𝑀𝑀𝑀
(per unit of time)                                 (8) 

where 𝑁𝑁 is the number of times the CWP is in the 𝑆𝑆1 state. 

So far, three- and two-state models are used to describe the state of the CWP and the CWP motor of 
the CWS. Both models can be scaled to a system level by rescaling the parameters. Scalability via a 
parameter estimation approach was considered first and presented here. For example, Figure 7 and 
Figure 8 show three- and two-state models rescaled to handle a CWS with six CWPs and CWP motors. 

  
Figure 7. Transition diagram for the three-state model scaled to handle six CWPs. 

 
Figure 8. Transition diagram for the two-state model scaled to handle six CWPs. 

Notice that the transition rates from the operational state are multiplied by a factor of six as any of the 
six CWP motors can fail. The interpretation of the model's states after scaling is also different from a 
single-CWP motor model. For a single-CWP motor model, the operational state means that the CWP 
motor is fully operational, while the maintenance state means that the CWP motor is down and under 
maintenance. In the scaled models (Figure 7 and Figure 8), operational state means that all CWP motors 
are operational. In the case of Salem NPP, all six CWP motors are operational, and, in case of the Hope 
Creek NPP, all four CWP motors are operational. Similarly, for scaled models, the maintenance state 
means that at least one CWP motor is down and under maintenance. 

While the scaled three- and two-state system-level models can handle systems with different numbers 
of components, they cannot be used to reflect the derate in gross load and plant trips when a certain 
number of CWP motors are unavailable. The models considered so far are effectively binary models, as 
each state is either “operational” or “maintenance.” Notice that in Figure 7 and Figure 8, the maintenance 
rates remained the same as in the single-motor models (Figure 4 and Figure 5), as only one maintenance 
crew is assumed. 

Analysis of Figure 2 and Figure 3 reveals that the three-state model can be transformed or scaled to a 
two-state model by combining PM and CM into a single state and adding the corresponding rates, as 
shown in Figure 9. 
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Figure 9. Scaling a three-state model to a two-state model. 

The summation of the rates requires an assumption that the underlying point processes are simple 
Poisson processes with interarrival time intervals distributed exponentially [1]. This assumption may not 
be correct for parameter 𝜂𝜂 as it is a preventive scheduling rate, which tends to be performed at predefined 
time intervals. Using a single-CWP motor failure and maintenance rates for the three-state system, which 
are 𝜆𝜆 = 6.01 × 10−5, 𝜇𝜇 = 1.8 × 10−2, 𝜂𝜂 = 1.06 × 10−5, and 𝜈𝜈 = 7.5 × 10−2; and revised failure and 
maintenance rates for the scaled three-state system, which are 𝜆𝜆′ = 7.08 × 10−5 and 𝜇𝜇′ = 2.03 × 10−5, 
the states' probabilities were calculated. For the comparison of two models, the parameter 𝑝𝑝0 is 
interpreted as the probability of being in an operation state, and parameter 𝑝𝑝1 is interpreted as the 
probability of being in a maintenance state. Table 1 and Table 2 shows these two parameters for the three-
state model and scaled three-state model for a single pump along with profit information. For the profit 
calculations, the following dollar values were used: $34 per Megawatt hour (MWh) was used as the 
revenue hourly rate and, for both CM and PM, the hourly rates were assumed to be $100/MWh, which 
included labor and parts costs. In addition, for both types of maintenance, it was assumed that the unit 
was either offline or derated and thus an additional cost of $34/MWh was added bringing the hourly 
maintenance cost to $134/MWh. Equation (5) was used to calculate hourly profit. 

Table 1. Comparison of the original three-state single-CWP motor model and parameter-scaled three-state 
single-CWP motor model. 

 Three-state model Scaled three-state model 
P(operational) 0.99653 0.99652 
P(maintenance) 0.0035 0.0035 
Profit, $/hour 33.417 33.417 

 
For the six-pump CWS systems depicted in Figure 7 and Figure 8, the corresponding results are 

presented in Table 2. 

Table 2. Comparison of the original three-state six CWP motor model and parameter-scaled three-state 
six CWP motor model. 

 Three-state model Scaled three-state model 
P(operational) 0.97952 0.9795 
P(maintenance) 0.0205 0.0205 
Profit, $/hour 30.6 30.6 
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For the results presented in Table 2, the following parameters have been used: 𝜆𝜆 = 3.6 × 10−4, 𝜇𝜇 =
6.4 × 10−5, 𝜂𝜂 = 6.4 × 10−5, and 𝜈𝜈 = 7.5 × 10−2 for the original three-state model and 𝜆𝜆′ =
2.03 × 10−5 and 𝜇𝜇′ = 2.03 × 10−5 for the scaled three-state six CWP motor model. 

As we can see from Table 1 and Table 2, the two models produced identical results, with the six-
pump models having lower probabilities of being operational and higher probabilities of being in 
maintenance. For the three-state model, the probability of being in a maintenance state is the sum of the 
probabilities of being in a CM state and a PM state. These results are intuitively correct because the 
probability that a single-CWP motor will go down is lower than the probability that out of six CWP 
motors at least one will be down. These results confirm the scalability of the three-state and two-state 
models with respect to the parameters superposition and number of states. Also, notice that due to the 
lower probability of a single-motor failure, the single-motor model shows a higher hourly profit than the 
six-motor model. 

The calculation of compound rates 𝜆𝜆′ and 𝜇𝜇′ to scale from a three-state model to a two-state model 
can either be performed by adding the corresponding three-state model rates, as shown in Figure 9, or it 
can be performed directly from the data, as shown Figure 10 for a two-pump case. In this case, the 
resulting flow will have higher rates than those of individual processes but may not be an arithmetic sum 
of their individual rates. The time of event occurrences in Figure 10 is designated with letter E𝑖𝑖𝑖𝑖, where 𝑖𝑖 
is the motor index and 𝑗𝑗 is the event index. 

 
Figure 10. Superposition of events flows for two CWPs. 

The scalability results presented so far only dealt with models describing the component or the whole 
system either in a fully functional state or in a maintenance state. This approach does not account for the 
impact of CWP unavailability on a plant derate or trip. The scalable models explained here will handle the 
derate and trip situations. Defining such models also requires a slightly different approach to the 
definition of the model's states and transition rates. For a CWS with six CWPs, the most basic model 
capable of handling derated states for both risk and cost calculations are shown in Figure 11. 
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Figure 11. Six CWPs with a two-maintenance-crews model. 

This model is a full six-motor model that handles failures of each individual pump as well as derated 
and tripped states. The parameter 𝜆𝜆 in this model is a single-pump failure rate, and 𝜇𝜇 is a single-crew 
maintenance rate. The model has seven states, with 𝑆𝑆0 corresponding to a fully operational state with no 
pumps failed, 𝑆𝑆1 corresponding to a state with one pump failed and undergoing maintenance, and five 
pumps operational, and so on. The final 𝑆𝑆6 state corresponds to all six pumps undergoing maintenance. 
Notice that transition failure rates for this model are products of the single-pump failures rates, 𝜆𝜆, and the 
number of operational pumps. This accounts for changing failure rates for a different number of pumps. 
The model assumes that only two maintenance crews are available, so, if more than one pump failed, the 
maintenance rate cannot be higher than 2𝜇𝜇. The six-pumps model is a death-birth model with seven states. 
Its steady-state probabilities can be calculated analytically according to the following formula: 

 𝑝𝑝0 = 1

1+∑ ∏ 6!
(6−𝑘𝑘)!∙

𝜆𝜆𝑘𝑘

𝜇𝜇𝑘𝑘
∙ 1
2𝑘𝑘−1

𝑖𝑖
𝑘𝑘=1

6
𝑖𝑖=1

                                                        (9) 

with 

 𝑝𝑝𝑖𝑖 = 𝑝𝑝0 ∙ ∏
6!

(6−𝑘𝑘)!
∙ 𝜆𝜆

𝑘𝑘

𝜇𝜇𝑘𝑘
∙ 1
2𝑘𝑘−1

𝑖𝑖
𝑘𝑘=1 , 𝑖𝑖 = 1, . . .6                                               (10) 

where 𝑝𝑝𝑖𝑖 is the probability that the model is in the i-th state. By setting the single-motor failure rate 𝜆𝜆 =
7.08 × 10−5 and single-crew maintenance rate to 𝜇𝜇 = 2.03 × 10−5, the following state probabilities can 
be obtained as shown in Table 3. 

Table 3. Probabilities of different states for six CWPs with a two-maintenance-crews model. 

State 𝑆𝑆0 𝑆𝑆1 𝑆𝑆2 𝑆𝑆3 𝑆𝑆4 𝑆𝑆5 𝑆𝑆6 
Profit, 
$/hour 

P(State) 0.9793 0.0205 0.0002 1.2472∙10-6 6.5267∙10-9 2.2769∙10-11 3.9714∙10-14 31.9 
 

The profit for the six-motors with the two-maintenance-crews model shows a bit higher profit than 
the models in Table 2; however, the difference is not significant. For the six-motor model, it was assumed 
that the loss of a single pump causes a 5% loss in revenue due to deration, two pumps—10% loss, and 
three pumps—20% loss. 

Despite the fact that the six-pump model is a death-birth model (i.e., the transitions are only possible 
between neighboring states), it handles the situation of several motors being down at the same time, with 
two pumps being maintained at the same time. Also, the model only requires single-pump and single-
crew rates to handle such situations. A comparison of the state probabilities of this model with the state 
probabilities of the system-level three-state and two-state models, shown in Table 2, reveals that the 
probabilities of operational states are very similar. The probability of the six-pump model being in 
maintenance is calculated as a sum of the probabilities of all states. But 𝑆𝑆1 is 0.0207, which is similar to 
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the maintenance probabilities of three- and two-state system-level models. However, in contrast to those 
models, the six-pump model can be used to calculate the probabilities of derated states and tripped states 
separately. Knowing these probabilities is important for risk-benefits calculations. 

The six-pump model can be simplified if some states can be merged into a single state. For example, 
if a unit is tripped when more than three pumps are down, the model can be represented as shown in 
Figure 12. 

 
Figure 12. Six CWPs two-maintenance-crews hybrid model. 

This model can be called a hybrid model as it handles the failures of individual pumps as well as 
system-level failures through a single state assigned to the occurrence of a trip. The state probabilities for 
this model are shown in Table 4. 

Table 4. Probabilities of different states for the six CWPs two-maintenance-crews hybrid model. 

State 𝑆𝑆0 𝑆𝑆1 𝑆𝑆2 𝑆𝑆3 𝑆𝑆4 
Profit, 
$/hour 

P(state) 0.9793 0.0205 0.0002 1.2472∙10-6 6.5267∙10-9 31.9 
 

The profit for this model is identical to the full six-motor model as the steady-state probabilities are 
equal. The losses due to derated states were the same as for the full six-motor model. 

A comparison of Table 3 and Table 4 reveals that the hybrid model produces virtually identical 
results to the six-motor-pumps model with the exception of states 𝑆𝑆5 and 𝑆𝑆6, which are not present in the 
hybrid model. However, the probabilities of those states are orders of magnitude lower than the 
probability of 𝑆𝑆4 and have virtually no influence on the overall performance of the model. 

A natural generalization of the hybrid model can be obtained by merging states 𝑆𝑆1, 𝑆𝑆2, and 𝑆𝑆3 into a 
single state 𝑆𝑆𝐷𝐷, which is referred as the derated state. This model is shown in Figure 13. In this model, 𝑆𝑆0 
is a fully operational state with all six pumps available; 𝑆𝑆𝐷𝐷 is a derated state with one, two, or three pumps 
under maintenance; and 𝑆𝑆𝑇𝑇 is a trip state with more than three pumps under maintenance. Notice that, for 
this model, an additional transition rate directly from 𝑆𝑆𝑇𝑇 to 𝑆𝑆0 must be used to account for the possibility 
of different maintenance scenarios at different utilities. Parameter 𝑝𝑝 is the probability that a utility will 
choose to go online as soon three pumps are available, while 1 − 𝑝𝑝 is the probability that the utility will 
wait until all six pumps are available before going online. Both scenarios are possible, and this model 
provides an additional scalability to utilities’ maintenance policies. While the second option delays going 
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online, it provides a safety margin in case one of the pumps goes down again. Due to the additional edge 
connecting 𝑆𝑆𝑇𝑇 and 𝑆𝑆0, the mixed-scenario model is not a death-birth model, and no analytical solution is 
available for steady-state probabilities. Instead, the following system of differential equations needs to be 
solved along with normalization conditions: 

𝑑𝑑𝑑𝑑𝐷𝐷
𝑑𝑑𝑑𝑑

= 𝜆𝜆𝑑𝑑 ∙ 𝑝𝑝𝑜𝑜 + (𝜇𝜇𝑇𝑇 ∙ 𝑝𝑝) ∙ 𝑝𝑝𝑇𝑇 − 𝜇𝜇𝑑𝑑 ∙ 𝑝𝑝𝐷𝐷 − 𝜆𝜆𝑇𝑇 ∙ 𝑝𝑝𝐷𝐷                                         (11) 

𝑑𝑑𝑑𝑑𝑜𝑜
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝑑𝑑 ∙ 𝑝𝑝𝐷𝐷 + �𝜇𝜇𝑇𝑇 ∙ (1 − 𝑝𝑝)� ∙ 𝑝𝑝𝑇𝑇 − 𝜆𝜆𝐷𝐷 ∙ 𝑝𝑝𝑜𝑜                                                 (12) 

𝑑𝑑𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝜆𝜆𝑇𝑇 ∙ 𝑝𝑝𝐷𝐷 − (𝜇𝜇𝑇𝑇 ∙ 𝑝𝑝) ∙ 𝑝𝑝𝑇𝑇 − (𝜇𝜇𝑇𝑇 ∙ (1 − 𝑝𝑝)) ∙ 𝑝𝑝𝑇𝑇                                        (13) 

where 𝑝𝑝𝐷𝐷, 𝑝𝑝𝑜𝑜, and 𝑝𝑝𝑇𝑇 are the probabilities of corresponding states 𝑆𝑆𝐷𝐷, 𝑆𝑆0, and 𝑆𝑆𝑇𝑇. 

The transition rates are shown next to the arrows. Each rate is a compound rate, and we shall consider 
how they can be evaluated. First, we need to state the underlying assumptions for the flow of events in 
Markov chain modeling. The most important assumption is that the event-flows are assumed to be 
ordinary, stationary, and memoryless. Stationarity implies that the rate is not changing over time, 
memorylessness means that future events are not dependent on previous events, and the flow is called 
“ordinary” if two events cannot happen at the same time [11]. 

 
Figure 13. System-level mixed-scenario model for derate and trip states. The probability that the system 
will be returned to 𝑆𝑆𝐷𝐷 is 𝑝𝑝. 

In Figure 13, the rate 𝜆𝜆𝐷𝐷 is a compound rate of transferring from an operational state to a derated 
state. Figure 14 demonstrates the compounding diagram for evaluating 𝜆𝜆𝐷𝐷. The diagram needs to be 
analyzed from top to bottom and from left to right. The top three timelines represent the flow of failures 
for three different pumps. Each pump fails with a corresponding rate, 𝜆𝜆𝑖𝑖, at random time instances 
denoted as E𝑗𝑗, and the maintenance duration is represented as 𝜏𝜏𝑖𝑖𝑖𝑖. For three pumps, there might be a 
number of combinations of how they can fail. The simplest one is a single-pump failure, represented by a 
corresponding, 𝜆𝜆𝑖𝑖. More complex is a failure of two pumps. By two-pump failure, we do not mean the 
simultaneous failure of two pumps at the same time but rather when a second pump fails while one motor 
is already down and undergoing maintenance, as shown in Figure 14. The three-pump failure is the 
extension of a previous situation where the third motor fails while two are already in maintenance. The 
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compounding event-flows for two- and three-pump failures are shown in the two bottom timelines. For a 
three-motor configuration, the compounding failure rate will be: 

 𝜆𝜆𝐷𝐷 = ∑ 𝜆𝜆𝑖𝑖3
𝑖𝑖=1 + 𝜆𝜆𝐼𝐼𝐼𝐼 + 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼                                                                           (14) 

Assuming that the failure of four or more motors is an extremely unlikely event for a six-motor 
configuration, the compound rate can be written as: 

 𝜆𝜆𝐷𝐷 = ∑ 𝜆𝜆𝑖𝑖6
𝑖𝑖=1 + 𝜆𝜆𝐼𝐼𝐼𝐼 + 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼                                                                             (15) 

Since the failure of more than three motors is extremely unlikely, the system cannot move to the trip 
state directly from the operation state. The transfer to the trip state is only possible via the derated state. 

 
Figure 14. Time diagram for calculating the compound failure rate for three pumps. 

Once in a derated state, the system can move back to an operational state with a maximum rate of 
𝜇𝜇𝐷𝐷 = 2𝜇𝜇, where 𝜇𝜇 is the maintenance rate for a single pump and two maintenance crews are assumed. 
Also, from a derated state, the system can move to the trip state with a compound rate similar to 𝜆𝜆𝐷𝐷. Since 
when in a fully derated state (three motors down) only three motors are left, the compound transition rate 
will be: 

 𝜆𝜆𝑇𝑇 = ∑ 𝜆𝜆𝑖𝑖3
𝑖𝑖=1 + 𝜆𝜆𝐼𝐼𝐼𝐼 + 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼                                                                (16) 

While in a trip state, the model can move to either a derated state or a fully operational state when all 
six CWPs are operating, as shown in Figure 13. The probability 𝑝𝑝 can be determined from the utilities' 
operational data. If failure data for all pumps are not available, the double- and triple-pump failure rates 
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can be determined from a single-motor failure rate through the process of random process thinning, as 
illustrated in  Figure 15. 

 
Figure 15. Thinning of the random process. 

Assuming the single-pump failure rate is 𝜆𝜆𝑆𝑆, we can calculate 𝜆𝜆𝐼𝐼𝐼𝐼  and 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼 as 

 𝜆𝜆𝐼𝐼𝐼𝐼 = 𝑝𝑝𝐼𝐼𝐼𝐼 ∙  𝜆𝜆𝑆𝑆                                                                                 (17) 

 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼 ∙  𝜆𝜆𝑆𝑆                                                                               (18) 

where 𝑝𝑝𝐼𝐼𝐼𝐼 is the thinning probability for a two-pump failure rate and 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼 is the thinning probability for the 
triple-pump failure rate. The process of thinning takes a single-motor failure process, as in our case, and 
goes over each event in that process. The thinning process either keeps the event with probability 𝑝𝑝𝐼𝐼𝐼𝐼 or 
removes it with probability 1 − 𝑝𝑝𝐼𝐼𝐼𝐼 to obtain a double-pump failure rate. The same operation is performed 
to obtain triple-pump failure rates; however, in this case, the thinning probability is 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼. As a result, 
thinner processes are produced, which represent double- and triple-pump failure rates. Assuming both 
processes are Poisson, the relationship between 𝜆𝜆's (i.e., 𝜆𝜆𝑖𝑖, 𝜆𝜆𝐼𝐼𝐼𝐼, and 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼) can be expressed by Equations 
(15) and (16). The key parameters for this operation are the thinning probabilities 𝑝𝑝𝐼𝐼𝐼𝐼 and 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼, which can 
be estimated from operational data. There is actually no need to thin the process—we are just 
manipulating 𝜆𝜆's. Having single-, double-, and triple-failure rates, we can use Equations (13) and (14) to 
obtain 𝜆𝜆𝐷𝐷  and 𝜆𝜆𝑇𝑇, respectively, and, assuming 𝜇𝜇𝐷𝐷 = 1.5𝜇𝜇 and 𝜇𝜇𝑇𝑇 = 2𝜇𝜇, we can calculate the probabilities 
of different states for the mixed-scenario model for different maintenance scenarios. 

For this report, we used, 𝑝𝑝 = 1, 𝑝𝑝 = 0, and 𝑝𝑝 = 0.5. For single-, double-, and triple-pump failure 
rates, we used 𝜆𝜆 = 7.08 × 10−5, 𝜆𝜆𝐼𝐼𝐼𝐼 = 2.99 × 10−4, and 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼 = 3.31 × 10−5. The double- and triple-
failure rates were obtained through the thinning process of a single-pump failure rate and by multiplying 
the thinned rate by 15 for the double rate and by 20 for the triple rate to account for the number of 
combinations of two or three pumps out of six that can fail. Steady-state probabilities are presented in 
Table 5, Table 6, and Table 7 for the different values of 𝑝𝑝. Profit calculations for the models presented in 
Table 5, Table 6, and Table 7 were modified to reflect the fact that derated and trip states in this case are 
compound states, and, when being, for example, in derated state, we do not have information on how may 
pumps are down-one, two, or three. To deal with this problem, the expenses in derated and tripped states 
were calculated as: 

𝐸𝐸𝐷𝐷 = ∑ 𝜋𝜋𝑖𝑖 ∙ 1003
𝑖𝑖=1                                                                      (19) 
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where 𝐸𝐸𝐷𝐷 represents the expense of being a derated state and 𝜋𝜋𝑖𝑖 is the steady-state probability of being in 
the 𝑖𝑖 − 𝑡𝑡ℎ derated states. While those probabilities are not available for this model, they can be obtained 
from the full six-motor model in Table 3. Similar calculations can be applied to estimate revenue in the 
derated state. Notice that revenue in the tripped state is zero. 

Table 5. Probabilities of different states for the system-level mixed-scenario model with 𝑝𝑝 = 1. 
State 𝑆𝑆0 𝑆𝑆𝐷𝐷 𝑆𝑆𝑇𝑇 Profit, $/hour 

P(state) 0.9754 0.0243 3.2501e-04 31.5 
 

Table 6. Probabilities of different states for the system-level mixed-scenario model with 𝑝𝑝 = 0. 
State 𝑆𝑆0 𝑆𝑆𝐷𝐷 𝑆𝑆𝑇𝑇 Profit, $/hour 

P(state) 0.9758 0.0238 3.1921e-04 31.5 
 

Table 7. Probabilities of different states for the system-level mixed-scenario model with 𝑝𝑝 = 0.5. 
State 𝑆𝑆0 𝑆𝑆𝐷𝐷 𝑆𝑆𝑇𝑇 Profit, $/hour 

P(state) 0.9756 0.0240 3.2227e-04 31.5 
 

Table 5 shows results for 𝑝𝑝 = 1 (i.e., the model can be returned to a fully functional state via the 
derated state). This scenario may arise if a utility wants to go online as soon as possible. Notice that the 
probability of a fully operational state is practically identical to the similar probability of all other models, 
such as system-level two- and three-state models, a six-motor model, and a hybrid model. The probability 
of a derated state is also similar for all of these models. While the probability of being in a tripped state is 
small for all of these models, the probability is higher for the mixed-scenario model. The mixed-scenario 
model will require more research. It also should be noted that the hourly profit is identical for all three 
models shown in Table 5, Table 6, and Table 7. 

Table 6 shows results for 𝑝𝑝 = 0 (i.e., the model is returned to the fully operational state only directly 
from a tripped state). This scenario is possible if a utility wants to have a safety margin before returning to 
an online status. As can be seen from Table 6, in this case, the probability of a fully operational state is 
slightly higher than for 𝑝𝑝 = 1, as expected, because the model cannot return to a derated state directly 
from a tripped state. While both of these scenarios are plausible scenarios, the most likely scenario is 
when a mixture of these two approaches is used by a utility. That is, sometimes a utility chooses to get 
online as soon as possible, and sometimes it is willing to delay a return to operations in order to guarantee 
a safety margin. This mixed scenario can be represented by setting 𝑝𝑝 = 0.5 (i.e., assuming that a utility 
exercises one of these possibilities equally). The estimate for p can be obtained from operational 
experience data. Table 7 shows results for 𝑝𝑝 = 0.5. The steady-state probabilities are similar to two 
previous cases; however, the steady-state probabilities for 𝑝𝑝 = 0.5 are effectively arithmetic means of 
other two cases. For example, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑆𝑆0|𝑝𝑝 = 0.5) = 0.9756, which is equal to (0.9754+0.9758)/2-
the arithmetic mean of steady-state fully functional probabilities for the other two states. 

In summary, we considered the scalability of a continuous-time Markov chain applied to the 
reliability analysis of a CWS. A number of different models have been analyzed and researched. 
Specifically, three-state and two-state single-pump and system-level models were investigated. These 
models were found capable of scaling upward and downward through parameter superposition. Similarly, 
a three-state model can be scaled to a two-state model, either for a single pump or for a system. The 
steady-state probabilities are similar to all models demonstrating consistency and interchangeability. 

Also, a motor-level model has been analyzed in terms of scalability and was demonstrated as scalable 
to a single-motor as well as to a system-level. The steady-state probabilities are very similar for that 
model regardless of whether it is motor-level or system-level. The disadvantage of component-level 
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models is that, for a large number of components, they may become very complicated and convoluted. 
This requires system-level models such as the mixed-scenario models considered above. Such models can 
be scaled and adapted to different systems and different numbers of components. 

3. SUMMARY AND PATH FORWARD 
This report presented different Markov chain models developed by INL in collaboration with PSEG 

Nuclear, LLC-owned Salem and Hope Creek NPPs. The developed models provide the technical basis to 
evaluate the value proposition of a risk-informed PdM strategy. Two- and three-state Markov chain risk 
models developed at a component-level to a system-level and even to the plant-level were demonstrated 
on the Salem CWS. A component-level two-state Markov chain model that can capture system-level 
performance and a three-state system-level Markov chain model that can capture plant-level performance 
were developed. Both two- and three-state Markov chain models were used to estimate the profit based on 
the time CWP spends in a particular state. 

The path forward for this research project for the next year includes performing R&D in collaboration 
with PSEG Nuclear, LLC and PKMJ Technical Services in performing rigorous evaluations and 
validations of two- and three-state Markov chain models to quantify the cost-effectiveness of deploying 
scalable risk-informed PdM strategy. This would enable the cost-benefit analysis of the risk-informed 
PdM strategy across the nuclear fleet. 

4. REFERENCES 
1. McJunkin, T., V. Agarwal, N. J. Lybeck, and C. Rasmussen 2015. “Online Monitoring of Induction 

Motors,” INL/EXT-15-36681, Idaho National Laboratory. 

2. Agarwal, V., N. J. Lybeck, and B. T. Pham. 2014. “Diagnostic and Prognostic Models for Generator 
Step-up Transformers,” INL/EXT-14-33124, Idaho National Laboratory. 

3. Agarwal, V., N. J. Lybeck, L. C. Matacia, and B. T. Pham. 2013. “Demonstration of Online 
Monitoring for Generator Step-up Transformers and Emergency Diesel Generators,” INL/EXT-13-
30155, Idaho National Laboratory. 

4. Goss, N., et al. 2020. “Integrated Risk-Informed Condition Based Maintenance Capability and 
Automated Platform: Technical Report 1,” PKM-DOC-20-0013, PKMJ Technical Services. 

5. Agarwal, V., et al. 2019. “Deployable Predictive Maintenance Strategy Based on Models Developed 
to Monitor Circulating Water System at the Salem Nuclear Power Plant,” INL/LTD-19-55637, Idaho 
National Laboratory. 

6. Idaho National Laboratory. 2019. “Light Water Reactor Sustainability Program, Integrated Program 
Plan,” INL/EXT-11-23452, Rev. 8, Idaho National Laboratory. 

7. Agarwal, V. 2018. “Risk-Informed Condition-Based Maintenance Strategy: Research and 
Development Plan,” INL/LTD-18-51448, Idaho National Laboratory. 

8. Feller W. 1968. An Introduction to Probability Theory and Its Applications, Vol. 1 of Wiley 
mathematical statistics series, 3rd Edition. Hoboken, NJ: Wiley. 

9. Winston, W. L. 1991. Operations Research: Applications and Algorithms. 2nd ed. Boston: PWS-Kent 
Publishing. 

10. Kleinrock, L. 1975. Theory. Vol. I of Queueing Systems. Hoboken, NJ: Wiley. 

11. Nelson, R. 1995. Probability, Stochastic Processes, and Queueing Theory. New York: Springer-
Verlag. 

 


	1. INTRODUCTION
	1.1 Motivation and Background
	1.2 Report Layout

	2. COST EVALUATION USING MARKOV CHAIN APPROACH
	3. SUMMARY AND PATH FORWARD
	4. REFERENCES

