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ABSTRACT 

The nuclear power industry is data-rich and these data introduce a 
tremendous potential for automation and cost savings. On the other hand, 
research organizations, among other stakeholders, have very capable methods 
and solutions often developed using simulated or synthetic data due to the lack of 
real data. One cause of this disconnect is data privacy. Data privacy is of 
paramount importance in all industries, but especially the nuclear industry due to 
the risks associated with the malicious use of data (e.g., loss of competitive edge, 
reverse-engineering of proprietary systems, national security concerns). 
However, for the data to be usable by research organizations, its inference 
characteristics need to be maintained. This challenge motivated the data 
obfuscation method called deceptive infusion of data (DIOD). DIOD is a novel 
data-masking paradigm that specifically addresses the above concerns with 
existing data-masking techniques. Fundamentally, DIOD ensures that the 
information content of the masked and the proprietary data are identical through 
the information-theoretic guarantee of mutual information, while also 
disassociating the identity of the masked data from the proprietary system. This 
one-way (i.e., masking of data) operation is irreversible and allows the analyst to 
arrive at identical conclusions using the masked data without permitting 
successful reverse-engineering.  

In this effort, DIOD is applied and demonstrated using two use cases for 
regression. One use case targeted a physics-based model generated from a 
simple, noise-free point-kinetics (PK) model with one delayed neutron group; the 
second targeted a process that resembles an actual nuclear power plant process.  
The first use case was applied to three scenarios in which power was used to 
predict the PK parameters. Those parameters were “well-posed,” “ill-posed,” and 
“reduced ill-posed.” All three scenarios were concealed by electrical load data. 
The results validated that the DIOD procedure preserves mutual information 
between the original and masked data. The second use case used a red team-blue 
team exercise where the blue team created process data from a simulation with 
anomalies included. The blue team masked the data with another process data set 
using DIOD and shared it with the red team. The red team attempted to identify 
anomalies in the masked data, and to reverse-engineer the masked data to 
decipher the identity of the proprietary system. The anomalies were discoverable, 
but the identity of the system was not revealed, indicating a successful 
demonstration of DIOD use. 
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A NOVEL DATA OBFUSCATION METHOD TO SHARE 
NUCLEAR DATA FOR MACHINE LEARNING 

APPLICATION  

1. INTRODUCTION 

The nuclear power industry has been operating for decades and storing a huge amount of useful data 
for automation of various activities at nuclear power plants (NPPs). On the other hand, research 
organizations, among other stakeholders, have very capable methods and solutions often developed using 
simulated or synthetic data due to the lack of real data. This gap motivated the development of a data 
warehouse to serve as a data hub for NPPs, vendors, research organizations (e.g., universities), standards 
committees and professional societies, compliance organizations, and various other stakeholders 
(Figure 1). The data warehouse will host a library of proven methods for NPPs to use and easily access 
(Figure 2). This would enable NPPs to validate the developed methods on the data warehouse’s servers, 
then download the methods’ algorithms and code for local use. The data warehouse would also enable 
data sharing, including allowing the data to be transferred to a user once the NPP has issued specific 
authorization or the data have been sanitized (i.e., obfuscated).  

Another benefit of the data warehouse is that it enables data integration. Given artificial intelligence 
and machine learning (AI/ML) has proven very useful to the nuclear power industry, data integration is 
considered a key enabler for AI/ML. The potential to integrate and leverage data across the entire industry 
via a data warehouse would afford multiple benefits to AI/ML development, including increased 
statistical power, higher frequencies of low base-rate behaviors, as well as enhanced verification.  

The specific data privacy challenge associated with data sharing for integration in nuclear energy 
required research into methods of data obfuscation. Data privacy is of paramount importance in all 
industries, but especially the nuclear industry due to the risks associated with the malicious use of data 
(e.g., loss of competitive edge, reverse-engineering of proprietary systems, national security concerns). 
The concern of data privacy has been investigated for decades, starting with data-masking techniques 
such as substitution, shuffling, encryption, etc., for data warehouses, and more recently, differential 
privacy and fully homomorphic encryption [1–3].  

The methods suited for data warehouses are generally not applicable to industrial data analysis and/or 
do not preserve the physical correlations necessary for AI/ML tools to be effective. For example, omitting 
all but the last four digits of social security numbers is not applicable to time-series data from the sensor 
of an industrial control system. Traditional encryption with decryption keys is intended to protect the data 
in transit to an analyst; however, it does not protect the data from the analysts themselves, instead relying 
on administrative red tape, non-disclosure agreements, etc., to prevent the analyst from reverse-
engineering the data and publicizing the findings. Homomorphic encryption, while promising and 
allowing for the mathematical manipulation of data directly in the encrypted form, is in its infancy and is 
limited in application, typically reduced to multiplication and addition operations in a constrained 
analytical environment [2]. Furthermore, the massive overheads in encryption render it unscalable to the 
size of process data commonly encountered in industry. Last, differential privacy relies on the privacy-
utility tradeoff by injecting artificial noise (typically Laplacian) into the data collected to provide 
plausible deniability to the source while preserving group statistics [3]. However, the effect of the injected 
noise on industrial data is typically detrimental to AI/ML algorithms as it degrades the quality of the data, 
and injecting vast amounts of noise to obscure trends and patterns renders the data unusable.  
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Figure 1. A data warehouse enables experience and methods to be transferred among NPPs and outside 
organizations, allowing the establishment of industry-wide solutions. 

 
Figure 2. Data obfuscation is a potential solution for enabling data sharing among plants and research 
organizations. 

In this effort, a new data obfuscation method is created. Deceptive infusion of data (DIOD) is a novel 
data-masking paradigm which specifically addresses the above concerns with existing data-masking 
techniques. Fundamentally, DIOD ensures that the information content of the masked and the proprietary 
data are identical through the information-theoretic guarantee of mutual information, while also 
disassociating the identity of the masked data from the proprietary system. Mutual information is 
employed to validate the claim of identical inference here. This one-way (i.e., masking of data) operation 
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is irreversible and allows the analyst to arrive at identical conclusions using the masked data without 
permitting successful reverse-engineering. Also, DIOD addresses the computational burden on data-rich 
industrial systems by introducing a highly scalable implementation after an initial one-time reduced-order 
modeling cost that is typically performed by domain experts for most industrial systems. 

The remainder of the report is organized as follows: Section 2 presents the DIOD method. Section 3 
consists of two use cases to demonstrate DIOD for regression. One use case targeted a physics-based 
model, the second targeted a process that resembles an actual NPP process.  The preservation of inference 
properties using DIOD are demonstrated in both use cases. The second use case outlines a red team-blue 
team exercise where the blue team is composed of experimentalists generating proprietary data with 
anomalies from a proprietary system and performing the DIOD procedure, while the red team is 
composed of analysts that are tasked with identifying anomalies in the masked data and attempting to 
reverse-engineer the masked data to decipher the identity of the proprietary system.  
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2. METHOD 

DIOD decomposes the target data into two sets of metadata: fundamental metadata, the metadata 
relating to the proprietary system identity; and inference metadata, the metadata relevant for AI/ML 
applications. The fundamental metadata are typically composed of the underlying differential equations, 
system geometry, material properties, etc., that are fixed across a set of experiments, whereas the 
inference metadata are composed of the operational regimes, varying parameters of interest, and temporal 
and/or sensor correlations that depend on the target AI/ML application. This decomposition is given by:  

𝑦𝑃(𝑥, 𝛼) ≈  ∑ 𝜓𝑖
𝑃(𝑥)𝜙𝑖

𝑃(𝛼)

𝑟

𝑖=1

        (1) 

Here, 𝑦𝑃(𝑥, 𝛼) is the proprietary system data approximated as the sum of 𝑟 dyads, where 𝜓𝑖
𝑃(𝑥) is the 

proprietary system fundamental metadata corresponding to a parameter 𝑥 and 𝜙𝑖
𝑃(𝛼) is the proprietary 

system inference metadata corresponding to some process parameter 𝛼. 

The goal of the DIOD methodology is to replace the fundamental metadata of the proprietary system 
with that of the fundamental metadata of another generic system, 𝜓𝑖

𝐺(𝑥′), to disassociate the identity of 
the data from the proprietary system, while preserving the inference metadata. This is achieved by 
decomposing the generic system to extract the generic system fundamental metadata 𝜓𝑖

𝐺(𝑥′): 

𝑦𝐺(𝑥′, 𝛼′) ≈  ∑ 𝜓𝑖
𝐺(𝑥′)𝜙𝑖

𝐺(𝛼′)

𝑟

𝑖=1

        (2) 

and using it through the so-called concealment kernel 𝑘(𝑥′, 𝑥):  

𝑘(𝑥′, 𝑥) = ∑ 𝜓𝑖
𝐺(𝑥′)𝜓𝑖

𝑃∗(𝑥)

𝑟

𝑖=1

 (3) 

𝑦𝐷(𝑥′, 𝛼) = 𝑘(𝑥′, 𝑥) ∗ 𝑦𝑃(𝑥, 𝛼) ≜  ∑ 𝜓𝑖
𝐺(𝑥′)𝜓𝑖

𝑃∗(𝑥)𝜓𝑖
𝑃(𝑥)𝜙𝑖

𝑃(𝛼)

𝑟

𝑖=1

= ∑ 𝜓𝑖
𝐺(𝑥′)𝜙𝑖

𝑃(𝛼)

𝑟

𝑖=1

   (4) 

𝜓𝑖
∗ is the conjugate of 𝜓𝑖 and is used to eliminate the dependence on 𝑥 in 𝑦D (i.e., remove the 

fundamental metadata). Given that the masked data 𝑦D only possess the fundamental metadata of the 
generic system and the transformed inference metadata of the proprietary system, it is impossible to guess 
the identity of the source since infinite possibilities exist. For instance, if a proprietary first-order system 
of equations (such as a point-kinetics [PK] model) is transformed into a generic system of equations 
(spring-mass-damper model), any reverse-engineering efforts would only inform the adversary of the 
spring-mass-damper model, providing no clues to the first-order or the stiff nature of the simple PK 
model. Furthermore, the invariance of mutual information to invertible transformations and extraneous 
metadata implies that transformations on the inference metadata and discarding of irrelevant inference 
metadata is possible to further fine-tune the masking procedure to the target AI/ML application. In 
summary, Eq. 1–4 show that any reverse-engineering efforts to identify the system are expected to lead to 
the generic system fundamental metadata. However, any inference efforts will have identical performance 
on both the proprietary and the masked data since they carry the same information content. 

Additionally, Eq. 1–4 are highly scalable requiring an initial one-time cost to develop a library of 
concealment operators corresponding to the fundamental metadata of various proprietary and generic 
systems. Multiple data sets carrying the same information content may then be generated through 
repeated applications of Eq. 4, fusing the inference metadata (or transformations of it) with the 
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fundamental metadata of multiple generic systems. This effectively creates a benchmark data set where 
the masked data consist of the same information but appear to have come from various systems. In theory, 
an ideal AI/ML algorithm is expected to perform identically on all the sets of data due to the identical 
information content. A detailed discussion of the method can be found in [4]. 
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3. USE CASES 

This section presents two use cases to demonstrate the use of DIOD to regression problems, which are 
commonly used for time-series type of data. In the first use case, PK equations are used as a physics-
based experiment in which the data need to be obfuscated. In the second use case, process data from a 
simulated process that represent real nuclear power plant data are used. In the first use case, the 
obfuscation is performed using concealment operators that are from a totally different system. In the 
second use case, another process (i.e., similar type of data) is used to obfuscate the original process. In 
both cases, the aim is to establish a relationship between the observations of a system or process and its 
input parameters, assuming the data owner is reluctant to share the observations directly for fears of 
misuse. To circumvent this issue, the owner of the data provides the masked version of the data using the 
DIOD procedure, and the true relationship can be identified by reversing the operations known only to the 
owner. 

The process use case utilizes a red team-blue team setup wherein the blue team generates the sensitive 
and generic data, injects anomalies into the proprietary system, and performs the DIOD procedure. The 
masked data are then handed to the red team, which is tasked with detecting the various anomalies while 
simultaneously attempting to reverse-engineer the masked data (i.e., recover the identity of the proprietary 
system and potentially the sensitive data themselves). It is assumed that the red team is aware of the 
DIOD procedure and its mathematical framework for the target AI/ML application without 
knowing the specific transformations used. 

3.1 Physics Use Case 

3.1.1 Description of Physics Use Case 

For this experiment, the proprietary system data are generated from a simplified, noise-free PK model 
with one delayed neutron group [5, 6] as shown below in Eq. 5–6. 

𝑑𝑃

𝑑𝑡
=

𝜌 − 𝛽

𝛬
𝑃(𝑡) + 𝜆𝐶(𝑡) 

(5) 

𝑑𝐶

𝑑𝑡
=

𝛽

Λ
𝑃(𝑡) − 𝜆𝐶(𝑡) (6) 

Here, 𝜌 is the initial reactivity inserted into the system, 𝛽 is the total fraction of delayed neutrons, Λ is the 
mean lifetime of prompt neutrons, 𝜆 is the one-group average half-life of neutron precursors, and each 
sample of 𝑃 is aggregated to form the proprietary system data. For this experiment, each parameter is 
sampled from a uniformly random distribution with mean values shown in Table 1, and an uncertainty of 
10% for each parameter. A sample power profile is generated below in Figure 3.  

Table 1. Parameter values for generated PK data. 
Parameter 𝝆 𝜷 𝚲 (seconds) 𝝀 (seconds) 

Mean Value 
Uncertainty 

  0.0005 
±0 .00005 

     0.0065
± 0.00065 

1 ∗ 10−5 
± 10−6 

0. 08 
       ±0.008 
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Figure 3. Sample power ratio in time. 

 For this numerical experiment, a simple PK model of a nuclear reactor is simulated with the initial 𝜌, 
𝜆, 𝛽, and Λ as inputs and 𝑃 and precursor-related concentration as output, via Eq. 5–6. The inverse 
problem is set up to solve for the PK parameters as output given the 𝑃 data as input using a neural 
network. The time-series of 𝑃 in time is used to provide sufficient degrees of freedom to generate the four 
PK parameters. Although there are four PK parameters, it is noted that the 𝑃 data are uniquely determined 
by three combinations, namely, 𝜌−𝛽

Λ
,

𝛽

Λ
, and 𝜆. This implies that the inverse problem is ill-posed as all four 

parameters cannot be uniquely determined from the 𝑃 distribution without additional constraints.  

For the purposes of this report, the numerical experiment is subdivided into three cases: (1) a case 
where only two of the four PK parameters are varied, rendering the inverse problem well-posed, (2) a 
case where all four PK parameters are varied limiting the degree of inference and rendering the inverse 
problem ill-posed, and (3) a reduced form of the ill-posed case where three combinations of parameters 
are varied.  For all cases, 50,000 samples are generated and randomly partitioned into 90% training 
samples, 5% validation samples, and 5% testing samples. The results are evaluated by comparing the fit 
PK parameters against their true values. 

The experiment begins by evaluating the former case, formulated as a well-posed problem with 
perfect recoverability where the variables 𝛽 and 𝜆 are fixed, while 𝜌 and Λ are varied uniformly as 
described in Table 1.  From this trial, it is observed that both 𝜌 and Λ are recovered perfectly, as shown in  
Figure 4. 
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The experiment is then extended to the ill-posed case, representative of most realistic systems, where 
all four parameters are allowed to vary. However, the inverse problem only allows recoverability of, at 
most, three combinations of the parameters, resulting in the neural network applying additional 
assumptions/constraints such as minimization of error to arrive at one of infinite solutions. Figure 5 
displays a large bound of uncertainty from this effect that will only be reduced by changing the 
experiment (i.e., generating PK parameters with less than 10% uncertainty per Table 1). This is an 
example of bias introduced by the inference procedure specifically and artificially exaggerating the 
degree of relationship between the input and output variables (i.e., it artificially inflates the mutual 
information between the input and the neural network output). 

If three variables are used instead, namely 𝜌

Λ
, 𝛽

Λ
, and 𝜆, they are perfectly recoverable from 𝑃 without 

any bias from the inference procedure as shown in Figure 6. This denotes the limit of inference for the 
given inverse problem, after which the individual four PK parameters can only be determined with 
additional constraints imposed by the inference procedure (minimizing mean-squared error, L1 norm, 
regularization, etc.). 

  

(a) 𝜌 (b) Λ 

Figure 4. Original vs. predicted parameters given original data in the well-posed case. 
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(a) 𝜌 (b) 𝛽  

  

(c) Λ (d) 𝜆 

Figure 5. Original vs. predicted parameters given original data in the ill-posed case. 
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(a) 𝜌

Λ
 (b) 𝛽

Λ
 

 

 

(c) 𝜆  

Figure 6. Original vs. predicted parameters given original data in the reduced ill-posed case.  

3.1.2 DIOD Implementation in Physics Use Case 

The generic data considered for this section of the manuscript are electrical load data from the 
Electric Reliability Council of Texas (ERCOT) [7]. ERCOT provides a multitude of free-access data 
involving the power grid, economic demand, generation, relevant documents, etc., encompassing the 
majority of the Texas power grid. These data are usable for many analyses (e.g., surrogate data 
generation, regression, classification training). For this specific task, the 2013 electrical load demand is 
considered, which is shown in Figure 7.  
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Figure 7. ERCOT hourly electrical load.  

This time series, measured hourly over a year, was selected due to the presence of strong seasonality 
that shares a large correlation with a regular business cycle. For example, the left subplot of Figure 8 
shows only the first 100 hours of the 2013 load data, and clearly reflects 12-hour and 24-hour cycles, and 
displays a larger trend which can be seen in the right subplot of Figure 8. The ERCOT data are dominated 
by seasonal behavior, in sharp contrast to the simple exponential curve, which may result in masked data 
shown in Figure 9 that are also dominated by seasonal behavior.  

  

(a) Hours 1-100 (b) Hours 1-500 

Figure 8. Magnified ERCOT hourly electrical load.  
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Figure 9. Sample 𝑃 data, masked with DIOD.  

While a different behavior is not strictly required by DIOD, the level of masking (i.e., a complete 
change in the shape of the data) is convenient for investigating the regression case for this section. That is, 
if the masked data are also exponential, then the experiment carries a risk of bias (i.e., may lead the reader 
to ask how the success of DIOD for regression cannot also be attributed to the similarity between the 
sensitive and masked data). DIOD is implemented by decomposing the given 𝑃 data representing the 
proprietary system data, 𝑦𝑃, and the generic data, 𝑦𝐺 , composed of ERCOT electrical load data and 
applying Eq. 1–4:  

𝑦𝑃 ≈ ∑ 𝜓𝑖
𝑃(𝑥)𝜙𝑖

𝑃(𝛼)

𝑟

𝑖=1

 
(7) 

𝑦𝐺 = ∑ 𝜓𝑖
𝐺(𝑥′)𝜙𝑖

𝐺(𝛼′)

𝑟

𝑖=1

 
(8) 

𝑦𝐷 = ∑ 𝜓𝑖
𝐺(𝑥′)𝜙𝑖

𝑃(𝛼)

𝑟

𝑖=1

 
(9) 

 

Here, 𝜓𝑖
𝐺(𝑥), 𝜙𝑖

𝐺(𝛼), 𝜓𝑖
P(𝑥′),  and 𝜙𝑖

𝑃(𝛼) are the fundamental and inference metadata of the generic 
and proprietary system, respectively, obtained through reduced-order modeling techniques (such as 
principal component analysis [8], singular value decomposition [9], dynamic mode decomposition [10], 
singular spectrum analysis [11]) and 𝑦𝐷 is the masked data obtained after applying the DIOD procedure. 
To validate identical performance, a neural network is trained to fit the masked data, 𝑦𝐷 , to the four PK 
parameters, as performed earlier. The results are shown in Figure 10 for the well-posed case, Figure 11 
for the ill-posed case, and Figure 12 for the reduced ill-posed case. 
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(a) 𝜌 (b) Λ 

Figure 10. Original vs. predicted parameters given masked data in the well-posed case. 

To confirm the validity of DIOD, recall that the inference properties must be preserved, as measured 
by mutual information. Since the mutual information for the well-posed case is perfect, and for the ill-
posed case is undetermined (due to the lack of constraint on the neural network and the consequential 
noisy results), only the reduced ill-posed case is analyzed further. Given the perfect recoverability of 𝜆, 
the degree of relationship between the input and output in this case is truly quantified by the mutual 
information between the two-dimensional variables [𝜌

Λ
 
𝛽

Λ
] and [𝜌 𝛽]. However, due to computational 

difficulties in estimating mutual information among multidimensional variables and the analytical 
solvability of the univariate case, Table 2 estimates the mutual information between the individual terms 
as a proxy of the true information content. The analytically derived values are compared to the numerical 
data using a k-nearest-neighbors estimator [12]. It is observed that the nearest-neighbors estimate is 
within the uncertainty bounds for both the sensitive and masked data, thus validating that the DIOD 
procedure preserves mutual information. Alternatively, it may also be seen from Eq. 7–9 that the 
procedure amounts to an invertible transformation, which preserves the mutual information. 

 



 

 14 

  

(a) 𝜌 (b) 𝛽  

  

(c) Λ (d) 𝜆 

Figure 11. Original vs. predicted parameters given masked data in the ill-posed case.  
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(a) 𝜌

Λ
 (b) 𝛽

Λ
 

 

 

(c) 𝜆  

Figure 12. Original vs. recovered parameters given masked data in the reduced ill-posed case.  

Table 2. Mutual information between input and output parameters. 
 Sensitive Data 

(Recovered) 

Masked Data 

(Recovered) 

Sensitive Data, 

(True, KNN) 

Sensitive Data, 

(True, Analytical) 

𝐼(𝜌,
𝜌

Λ
)     0. 492 ± .0002 0.492 ±  .0002 0.493 0.5008 

𝐼(Λ,
𝜌

Λ
) 0.499 ± .0004 0.499 ±  .0005 0.500 0.5008 

𝐼(𝛽,
𝛽

Λ
) 0.508 ± .0002 0.508 ±  .0002 0.507 0.5008 

𝐼(Λ,
𝛽

Λ
) 0.503 ±  .0011 0.501 ±  .0003 0.500 0.5008 
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3.2 Process Use Case 

3.2.1 Description of Process Use Case 

The second use case of this effort simulates a process. In addition to obfuscating the data and showing 
how the mutual information is preserved, this use case demonstrates a practical application in which 
anomaly detection is performed on the proprietary and masked data. The proprietary and generic data are 
generated via an OpenModelica simulation based on well-known, simple processes [13,14]. The 
proprietary system is shown in Figure 13, wherein water is pumped into a reservoir via controller-
activated pump which responds to reservoir pressure (i.e., the water level) containing two process valves, 
upstream (Valve 1) and downstream (Valve 2) of the reservoir, respectively [13]. The water is provided 
by an infinite source and is drained into an infinite sink. The system also contains four anomalous valves 
open at various times, which will be elaborated upon in the next section. The upstream and downstream 
valves are open for the full simulation, but allow a variable mass flow over time (randomly and according 
to a Gaussian distribution). The power provided by the pump also varies randomly.  

 
 

Figure 13. A simple process system simulating water pumped into a draining reservoir. 



 

 17 

From this system, seven variables are arbitrarily chosen to comprise the sensitive data set from the 
proprietary system, as shown below.  

1. Volumetric flow through the downstream valve   

2. Power of the flow (or flow work on the total area of the pipe) downstream of the reservoir  

3. Enthalpy of fluid out of the reservoir over time  

4. Mass flow through the pipe upstream of the reservoir (after the upstream valve) 

5. Pressure in the bottom of the reservoir, which acts as the trigger for the pump via the controller 
component 

6. Change in the pressure at the bottom of the reservoir measured at the downstream valve over time  

7. Volumetric flow through the upstream valve.  
In post-processing, Gaussian noise was added to each variable to simulate both process and sensor 

noise. Two of the resulting variables are visualized below in Figure 14 and Figure 15.  

 

Figure 14. Volumetric flow through the downstream valve. 
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Figure 15. Power of the flow downstream from the reservoir.a 

3.2.2 System Anomalies in Process Use Case  

In this use case, anomalies are introduced into the proprietary system via process-based changes as 
well as post-processing data manipulation. A total of five anomalies are simulated—four describing the 
opening and shutting of valves (process based) and one describing sensor drift (post processing). The four 
process anomalies simulate a leak in the reservoir by opening anomalous valves as shown in Figure 13 
(i.e., an interruption that is not part of the process) at various magnitudes and periods of time. This results 
in four distinct anomalous regions, shown in Table 3. Each anomaly represents a different variation of a 
leak included in the simulation to examine whether certain types of process anomalies are more detectable 
in the DIOD-masked data than others. For comparison, the mass flow of the non-anomalous valves is 
1000 kg/s.  

The post-processing anomaly was applied to simulate sensor drift wherein only one of the seven 
sensors of the proprietary system experiences a downward linear trend (i.e., drift) to its signal for a short 
period; the arbitrary variable chosen was enthalpy flow from the reservoir. The enthalpy flow from the 
reservoir is plotted in Figure 16 with the five anomalies highlighted (corresponding to times that any of 
the four valves were open, or sensor drift was implemented). Each of the five anomalies, particularly the 
process anomalies, are visible in the sensitive data. 

 

  

 
a Negative power shown in Figure 15 refers to a net flow into the reservoir for a given time-step. 
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Table 3. Characteristics of each anomalous valve opening. 
 Mass Flow Through Valve (kg/s) Duration (Sec.) 

Anomalous Valve 1 1000 20 
Anomalous Valve 2 400 20 
Anomalous Valve 3 1000 100 
Anomalous Valve 4 400 100 

 

 
Figure 16. Enthalpy flow from reservoir with anomalies highlighted. 

3.2.3 DIOD Implementation in Process Use Case 

A generic system is used to generate five variables from a similar, but independent, simulation of a 
simple system of heated pipes as shown in Figure 17 [14]. Fewer variables are chosen for the generic data 
than for the sensitive data to assess whether the DIOD masking procedure can be detected by the red 
team. In other words, the masked data set consists of two unmasked variables and five masked variables 
from the proprietary system, of which two sample variables are plotted in Figure 18 and Figure 19. The 
variables arbitrarily taken from the generic system are: 

1. Fluid temperature at the exit of Pipe 8   

2. Enthalpy flow out of Pipe 6  

3. Friction force experienced by the fluid in Pipe 6  

4. Fluid density over time in Pipe 4 

5. Change in pressure across Valve 1. 
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Figure 17. A simple process system simulating water flowing through a series of heated pipes [14]. 
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Figure 18. Enthalpy flow through Pipe 6 in Figure 17. 

 
Figure 19. Temperature of fluid of Pipe 8 in Figure 17. 

In this section, the DIOD procedure is implemented on the sensitive data by modifying Eq. 7–9. In 
the current experiment, the difference in scale of the proprietary system data may provide clues to its 
origin, necessitating the masking of the inference metadata. However, to preserve the mutual information 
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of the data with respect to anomaly detection, an invertible transformation of the inference metadata 
across sensors at each time-step is permitted, denoted using the function 𝑓(⋅). All other variables retain 
their original meaning (as in Eq. 7–9), but they are now applied to the new proprietary and generic 
system. 

𝑦𝑃 = ∑ 𝜓𝑖
𝑃(𝑥)𝜙𝑖

𝑃(𝛼)

𝑟

𝑖=1

 (11) 

𝑦𝐺 = ∑ 𝜓𝑖
𝐺(𝑥′)𝜙𝑖

𝐺(𝛼′)

𝑟

𝑖=1

 (10) 

𝑦𝐷 = ∑ 𝜓𝑖
𝐺(𝑥′)𝑓 (𝜙𝑖

𝑃(𝛼))

𝑟

𝑖=1

 

 

(12) 

A sample of the DIOD-masked data is shown below in Figure 20. As mentioned above, only five of 
the seven variables are utilized to form 𝑦𝐷. Specifically, the volumetric flow through the downstream 
valve (𝑦1

𝑃) and upstream valves (𝑦7
𝑃) are not obfuscated by DIOD, and these variables are provided to the 

red team without masking. 

 
Figure 20. Masked power of flow downstream the reservoir. 

3.2.3.1 Red Team Anomaly Analysis 

The objective of this exercise is to demonstrate the data masking capabilities of the DIOD paradigm 
by verifying the preservation of inferential properties for the target AI/ML application (anomaly 
detection) and ensuring that the source of the data (i.e., the original process) cannot be gleaned. This 
section of the report was written independently of any preceding sections that relate to the process use-
cases, as it was not revealed to the red team. 
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A red team was given a DIOD-masked data set tabulated as an 8500 × 7 matrix, consisting of seven 
responses labeled [y1

𝐷 y2
𝐷 … y7

𝐷] of the variables in Section 3.2.1 and over 8,500 time-steps without 
information on the actual time intervals or the variables.  

The task of the red team is to identify any abnormal behavior among the variables and identify the 
source of the data. In the data set, responses y3

𝐷 and  y7
𝐷 display easily visible abrupt changes at various 

intervals as depicted in  Figure 21 and Figure 22, indicating changes in operation and/or potential 
abnormal behavior, neither of which is as easily distinguishable in the other responses. The operational 
changes are drastic, occurring over a period of approximately 50 seconds, after which it achieves steady-
state operation. This may be indicative of a ramp function input, or a swift response to a sudden change in 
setpoint, as expected by the proportional action of a proportional-integral (PI) controller. Furthermore, 
keeping the DIOD paradigm in mind, the observed responses may also be a linear or nonlinear 
combination of several original responses. However, the consistency of the peaks and dips indicate it is 
unlikely that some of the given responses were masked and may be from the proprietary system itself. 
The rest of this analysis assumes that y3

𝐷and y7
𝐷 are not masked except for a scaling operation, while the 

others are masked via the DIOD paradigm. 

 
Figure 21. Response 𝑦3

𝐷 showing anomalous regions. 
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Figure 22. Response 𝑦7

𝐷. 

Some of the changes in behavior in response y3
𝐷 appear to be indicative of anomalous behavior due to 

its inconsistency with other responses. This is especially evident in the time intervals 𝑡 ∈
(1500, 1600)  ∪ (2500, 2600) ∪  (4000, 4100) ∪ (4650, 5100) ∪  (5900, 6400). For instance, 
Figure 23 shows the quotient of y3

𝐷 with respect to y4
𝐷. Here, four of the five intervals identified are 

clearly anomalous due to abrupt dips in the time series while the intervals outside respect the correlations 
over the operational periods identified using y7

𝐷 earlier.  

To distinguish between operational regime changes and anomalies further, the quotient of y3
𝐷 with 

respect to y7
𝐷 is plotted in Figure 24. It is expected that operational changes manifest themselves 

differently than anomalies, especially in the interval where a sizable anomaly is expected to occur, such as 
in the interval (5900, 6400) shown in Figure 25. If the features of this anomaly persist over the other 
identified anomalous intervals, it may be considered further evidence in favor of the hypothesis that the 
identified intervals are anomalies. Furthermore, they may also be categorized as the same type of anomaly 
if the features are similar. 

It is observed that the anomalous region is characterized by a less-noisy dip than the surrounding 
region, as in Figure 24. Such regions are identified in the intervals (4000, 4100) and (4650, 5100). 
While a significant dip with less relative noise is identified in the interval (2500, 2600), it is unclear 
whether the type of anomaly is the same given the higher noise level, which may or may not be due to the 
change in operational regime during the interval. An earlier anomaly in the interval (1500, 1600) was 
also identified. However, it is difficult to distinguish this anomaly from its surroundings as shown in 
Figure 26, and it is thus classified as a different type of anomaly or a potential artifact in the data. 
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Figure 23. Response 𝑦3

𝐷 / 𝑦4
𝐷 depicting anomalous regions. 

 
Figure 24. Response 𝑦3

𝐷 / 𝑦7
𝐷 depicting anomalous regions. 
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Figure 25. Response 𝑦3

𝐷 / 𝑦7
𝐷 depicting features of the anomalous region in the interval (5900,6400). 

 
Figure 26. Response 𝑦3

𝐷 / 𝑦7
𝐷 depicting features of a potential anomalous region. 

If the mutual information is preserved across each time-step with respect to anomaly detection, the 
newly formed responses would be expected to be a linear combination of the original sensors, implying 
that the two sets of data span the same subspace. An attempt to extract an orthogonal basis for this 
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subspace using singular value decomposition is next performed to validate some of the above 
conclusions. The five anomalous regions are clearly seen in the fifth left singular vector, as depicted in 
Figure 27.  

In summary, the red team identified five suspicious regions using response y3
𝐷 that are not 

representative of the surrounding regions. Of these anomalies, the last three share similar characteristics 
and may be classified as the same type. While the team is confident in its assessment that the second 
identified region is an anomaly, it is unclear as to whether it is a distinct type of anomaly, or the same as 
the last three since its features are convoluted with those of a change in operational regime. The 
subtleness of the potential anomaly in the first region and the lack of a clear distinction from its 
neighboring regions indicate that it may be an artifact in the operational data. The red team is least 
confident in the classification of this region.  

After the conclusion of the experiment, it was confirmed that the red team correctly identified all 
anomalies but was unable to decipher any other information from the system. 

 
Figure 27. Fifth left singular vector depicting the anomalous regions identified earlier. 

3.2.3.2 Red Team Source Analysis 

Reverse-engineering efforts based on knowledge of the DIOD paradigm and domain knowledge on 
simulations of modern proprietary systems indicate that responses y3

𝐷 and y7
𝐷 are not masked and may 

originate from the sensors of the proprietary system due to the high level of noise. It is expected that an 
actuator has a significantly lower noise level due to the presence of filters and/or PI controllers, and may 
also exhibit saturation behavior, none of which were observed in y3

𝐷 and y7
𝐷. As previously mentioned, 

operational regime changes were introduced through an abrupt change in setpoint or a very short ramp 
function, and the quick approach to steady state with a lack of overshoot indicates a PI controller with a 
relatively high proportional action (i.e., a first-order input-output response). Derivative action is not 
expected to perform well in noisy scenarios, while a higher integral action typically increases the time 
constant and may result in saturation unless the error is reset periodically. The red team was unable to 
arrive at a guess to the identity of the system beyond that the system may contain a first-order controller.  
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Upon communication of the results with the blue team, it was revealed that the red team was able to 
detect the presence of one of the unmasked variables owing to the consistency of the process in contrast 
with other variables. However, the proprietary system of simulated water pumped into a reservoir was not 
revealed. While the anomalies were correctly identified and grouped, the pump model followed a first-
order input-output response, and the operational regimes were the result of abrupt changes (revealed as 
valve action). In summary, the red team was unsuccessful in its attempt to determine the identity of the 
system or reverse the masking process to obtain the proprietary data.  
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4. CONCLUSION  

This report outlines the DIOD data-masking paradigm and its applicability to regression and 
unsupervised learning tasks. Specifically, data from physics- and process-based systems were simulated 
using a simple PK model and a realistic reservoir-pump system model. These data were masked to appear 
like data from a generic system. Inference procedures were employed on the original and masked data 
sets for both use cases. Comparing the results from inference models (in the physics-based system) and 
human evaluation (in the process-based system) validated the claim that the DIOD application did not 
alter the inference conclusions and preserved information content for a target AI/ML application.  

In addition to preserving mutual information, the irreversibility of DIOD-masked data was 
demonstrated by a red and blue team exercise on the process-based use case. The red team was able to 
successfully identify the five anomalies and broadly categorize them into two types in an unsupervised 
manner. The red team successfully identified one of the two intentionally unmasked responses, but this 
did not lead to any clues to the process identity of the response. The team was also able to categorize the 
type of operational regime change in the proprietary system as an abrupt change in setpoint or a very fast 
ramp; however, the red team was unable to correctly identify the proprietary system or reconstruct the 
proprietary data. 
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