

INL/EXT-21-64039

Light Water Reactor Sustainability Program

Quantitative Risk Analysis of High Safety-
significant Safety-related Digital

Instrumentation and Control Systems in
Nuclear Power Plants using IRADIC

Technology

August 2021

U.S. Department of Energy

Office of Nuclear Energy

DISCLAIMER
This information was prepared as an account of work sponsored by an

agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/EXT-21-64039

Light Water Reactor Sustainability Program

Quantitative Risk Analysis of High Safety-significant Safety-
related Digital Instrumentation and Control Systems in

Nuclear Power Plants using IRADIC Technology

Han Bao1, Tate Shorthill2, Edward Chen3, Hongbin Zhang1

August 2021

1Idaho National Laboratory
Idaho Falls, Idaho 83415

2University of Pittsburgh

Pittsburgh, PA 152601

3North Carolina State University
Raleigh, NC 27695

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

 ii

EXECUTIVE SUMMARY
This report documents the activities performed by Idaho National Laboratory (INL) during Fiscal

Year (FY) 2021 for the U.S. Department of Energy (DOE) Light Water Reactor Sustainability (LWRS)
Program, Risk Informed Systems Analysis (RISA) Pathway, digital instrumentation and control (DI&C)
risk assessment project. In FY-2019, the RISA Pathway initiated a project to develop a risk assessment
strategy for delivering a strong technical basis to support effective, licensable, and secure DI&C
technologies for digital upgrades/designs. An integrated risk assessment technology for the DI&C
systems (IRADIC technology) was proposed for this strategy, which aims to (1) provide a best-estimate,
risk-informed capability to quantitatively and accurately estimate the safety margin obtained from plant
modernization, especially for the High Safety-significant Safety-related (HSSSR) DI&C systems, (2)
develop an advanced risk assessment technology to support transition from analog to DI&C technologies
for nuclear industry, (3) assure the long-term safety and reliability of vital HSSSR DI&C systems, (4)
reduce uncertainty in costs and support integration of DI&C systems in the plant.

To achieve these technical goals and deal with the expensive licensing justifications from regulatory
insights, the IRADIC technology is instructive for nuclear vendors and utilities on how to effectively
lower the costs associated with digital compliance and speed industry advances by: (1) defining an
integrated risk-informed analysis process for DI&C upgrade, including hazard analysis, reliability
analysis, and consequence analysis, (2) applying systematic and risk-informed tools to address common
cause failures (CCFs) and quantify responding failure probabilities for DI&C technologies, particularly
software CCFs, (3) evaluating the impact of digital failures at the individual level, system level, and plant
level, (4) providing insights and suggestions on designs to manage the risks, thus to support the
development, licensing, and deployment of advanced DI&C technologies on nuclear power plant (NPPs).

Many efforts from regulatory, industrial, and academic communities have been made for qualitatively
addressing CCFs in DI&C systems, especially software CCFs, given the increased designs and
deployment of HSSSR DI&C systems in NPPs. These efforts provide a technical basis for dealing with
potential software CCF in the HSSSR DI&C systems of NPPs; however, some technical challenges
remain:

(1) Is qualitative evaluation sufficient for addressing software CCFs in HSSSR DI&C systems?

(2) How to quantitatively evaluate CCF-related impacts to HSSSR DI&C systems and entire plant
response?

(3) How to efficiently identify the most significant CCFs, especially software CCFs?

(4) How to perform a complete reliability analysis for large-scale HSSSR DI&C systems with small-scale
software/digital units?

(5) Lastly, a need clearly exists to develop a risk assessment strategy to support quantitative defense-in-
depth and diversity (D3) analyses for assuring the long-term safety and reliability of vital digital
systems and reducing uncertainties in costs, time, and support the integration of digital systems
during the plant’s design stage.

To deal with the technical issues in addressing potential software CCF in HSSSR DI&C systems of
NPPs, the IRADIC technology provides:

(1) An integrated and best-estimate, risk-informed capability to address new technical digital issues
quantitatively, accurately, and efficiently in plan modernization progress, such as software CCFs in
HSSSR DI&C systems of NPPs.

(2) A common and modularized platform for DI&C designers, software developers, plant engineers and
risk analysts to efficiently prevent and mitigate risk by identifying crucial failure modes and system

 iii

vulnerabilities, quantifying DI&C system reliability, and evaluating the consequences of digital
failures on the plant responses.

(3) A technical basis and risk-informed insights to assist Nuclear Regulatory Commission (NRC) and
industry in formalizing relevant licensing processes relevant to CCF issues in HSSSR DI&C systems.

(4) An integrated risk-informed tool for vendors and utilities to meet the regulatory requirements and
optimize the D3 applications in the design of HSSSR DI&C systems.

In this report, an approach for performing software CCF analysis, given limited data, is developed
and demonstrated using a case study of a highly redundant digital reactor trip system. Consequence
analysis is also performed based on different accident scenarios. Results indicate plant modernization
including the improvement of HSSSR DI&C systems will make great benefits to plant safety by
providing more safety margins to accident management. In addition, a novel approach is proposed in this
report for the quantification of software hazards when sufficient operational and testing data available.
The method incorporates software development quality as well as strong analysis techniques to identify
and link software defects to potential failure modes. The approach includes both semantic and test-based
analysis to detect failures that can exist in different stages of the software development life cycle. This
method is applied to an advanced human-system interface relevant to reactor trip safety developed from
the design of Advanced Power Reactor 1400 MW (APR-1400).

 iv

ACKNOWLEDGEMENT
The research activities and achievements documented in this report were funded by the United States

Department of Energy’s Light Water Reactor Sustainability Program, Risk Informed Systems Analysis
(RISA) Pathway. The authors are grateful to Alison (Krager) Hahn of the United States Department of
Energy, and Bruce P. Hallbert, Svetlana (Lana) Lawrence and Curtis L. Smith at Idaho National
Laboratory for supporting this effort. The authors thank Kenneth D. Thomas at Idaho National Laboratory
and Edward Quinn at Technology Resources for their informative technical suggestions. The authors
would like to recognize the technical supports from Zhegang Ma, Ronald L. Boring, Sai Zhang, Thomas
A. Ulrich, Jeffrey C. Joe at Idaho National Laboratory. The authors also thank Rebecca N. Ritter at Idaho
National Laboratory for technical editing and formatting of this report.

The authors would also like to acknowledge our collaborators from universities: Nam Dinh at North
Carolina State University, Heng Ban at University of Pittsburgh, Hyun Gook Kang at Rensselaer
Polytechnic Institute for their valuable comments in methodology development and demonstration.

 v

CONTENTS

EXECUTIVE SUMMARY ... ii

ACKNOWLEDGEMENT .. iv

ACRONYMS ... ix

1. INTRODUCTION ... 1

1.1 INL-IRADIC Technology.. 1

1.2 Challenges in Addressing CCF in HSSSR DI&C Systems ... 2

1.3 Value Proposition for INL-IRADIC Technology.. 4

1.4 Report Layout ... 7

2. SOFTWARE COMMON CAUSE FAILURE MODELING AND ESTIMATION 8

2.1 Background of Common Cause Failure Modeling .. 8

2.2 Methods for Common Cause Failure Modeling .. 10
2.2.1 Direct Assessment Methods .. 11
2.2.2 Ratio Models .. 11
2.2.3 Shock Models ... 12
2.2.4 Other Models .. 12

2.3 Selected Method for Modeling Multiple CCCGs .. 12
2.3.1 Modified Beta-Factor Model ... 13
2.3.2 Partial Beta Factor-1 ... 14
2.3.3 Partial Beta Factor-2 ... 15

2.4 Case Study .. 17

2.5 Results of CCF Analysis .. 22

2.6 Summary and Conclusions .. 23

3. CONSEQUENCE ANALYSIS OF A GENERIC PWR MODEL WITH IMPROVED
FAULT TREES ... 24

3.1 Introduction of INL Generic PWR SAPHIRE Model ... 24

3.2 Scenario Selections.. 25

3.3 Original and Improved Fault Trees for HSSSR DIC Systems ... 31
3.3.1 Original Fault Tree for Reactor Trip System .. 31
3.3.2 Original Fault Tree for Engineered Safety Features Actuation System 32
3.3.3 Improved Fault Tree for Digital Reactor Trip System .. 32
3.3.4 Improved Fault Tree for Digital Engineered Safety Features Actuation

System .. 33

3.4 Accident Scenario Analysis for General Plant Transient .. 35
3.4.1 INT-TRANS ... 35
3.4.2 INT-SLOCA ... 36
3.4.3 INT-MLOCA .. 36

3.5 Summary of Consequence Analysis ... 37

4. ORTHOGONAL-DEFECT CLASSIFICATION FOR ASSESSING SOFTWARE
RELIABILITY .. 38

 vi

4.1 Introduction ... 38

4.2 Technical Background ... 39
4.2.1 Software Reliability Growth Models ... 39
4.2.2 Bayesian Belief Networks ... 39
4.2.3 Test-Based Analysis.. 40
4.2.4 Metric-Based Analysis .. 40

4.3 Methodology ... 41
4.3.1 Terminology ... 41
4.3.2 Overview .. 42
4.3.3 Software Requirements Specification and Software Design Description 44
4.3.4 Redundancy-guided Systems-theoretic Process Analysis 44
4.3.5 Metric-Based Analysis .. 46
4.3.6 T-way Combinatorial Tests ... 50
4.3.7 Failure Probability Quantification ... 50
4.3.8 Failure Categorization via Orthogonal Defect Classification 51
4.3.9 Unacceptable Failure Probabilities from Integrated Fault Tree 55

4.4 Summary ... 55

5. INTEGRATED HAZARD AND RELIABILITY ANALYSIS OF DIGITAL HUMAN-
SYSTEM INTERFACE RELEVANT TO REACTOR TRIP ... 56

5.1 Assumptions .. 56

5.2 Software Requirements Specification and Software Design Description 57

5.3 Redundancy-guided Systems-theoretic Process Analysis.. 59
5.3.1 Step 1: Create Detailed Hardware Representation of Digital System of

Interest .. 59
5.3.2 Step 2: Develop Hardware FT for Top Event of Interest in Digital System 62
5.3.3 Step 3: Determine UCAs/UIFs Based on RESHA.. 63
5.3.4 Step 4: Construct an Integrated FT by Adding Applicable UCAs/UIFs as

Basic Events ... 64
5.3.5 Step 5: Identify Software CCFs from Duplicate UCAs/UIFs within

Integrated FT .. 66

5.4 Metric-Based Analysis .. 66
5.4.1 Requirements Traceability .. 66
5.4.2 Defect Density .. 67
5.4.3 Test Coverage ... 67
5.4.4 Coverage Factor .. 68

5.5 Failure Categorization via Orthogonal Defect Classification .. 69

5.6 Failure Probability Quantification .. 70
5.6.1 Single Failure Probability .. 70
5.6.2 Common Cause Failure Probability ... 71

5.7 Unacceptable Failure Probabilities from Integrated Fault Tree ... 73

5.8 Results and Discussion .. 74

6. CONCLUSIONS AND FUTURE WORKS ... 77

6.1 Conclusions ... 77

6.2 Future Works .. 78

7. REFERENCES.. 80

 vii

FIGURES
Figure 1. Schematic of proposed risk assessment strategy for DI&C systems. .. 2

Figure 2. The flexible and modularized structure of the IRADIC technology. ... 6

Figure 3. Clarification on acceptable methods for addressing CCF according to NRC BTP 7-19
vs. INL-IRADIC capability in CCF analysis. ... 6

Figure 4. Example System showing the relationship of independent and dependent failures in the
context of a FT. ... 9

Figure 5. CCF modeling flowgraph. ... 17

Figure 6. Detailed representation of the digital RTS. .. 18

Figure 7. Generic PWR ET for general plant transient (INT-TRANS). ... 26

Figure 8. Generic PWR ET for INT-ATWS. .. 27

Figure 9. Generic PWR ET for loss of seal cooling (INT-LOSC). .. 28

Figure 10. Generic PWR ET for small-break LOCA (INT-SLOCA). .. 29

Figure 11. Generic PWR ET for medium-break LOCA (INT-MLOCA). .. 30

Figure 12. Main fault tree of original RTS-FT in the generic PWR SAPHIRE model. 31

Figure 13. Main FT of HPI failure in the generic PWR SAPHIRE model where CCF of analog
ESFAS is considered. .. 32

Figure 14. Main fault tree of improved RTS-FT using IRADIC technology.. 33

Figure 15. ESFAS functional logic. ... 34

Figure 16. Overall software reliability quantification method ORCAS. .. 43

Figure 17. Generic component failure and recommended failure branches. .. 45

Figure 18. (Left) Original STPA control diagram. (Right) Revised STPA diagram for RESHA. 45

Figure 19. Flow chart for integrating detected faults with UCA/UIFs in an integrated fault tree. 54

Figure 20. Division A of the QIAS-P system with component and information flow [46]. 61

Figure 21. Condensed qualified indication and alarm control system-safety (QIAS-P) flow
diagram [46]. ... 62

Figure 22. QIAS-P system-level hardware FT with empty software failure branches. 63

Figure 23. Partial integrated FT from Division A of the QIAS-P. ... 65

TABLES

Table 1. Coupling factors for Example System 1.. 9

Table 2. Coupling factors for Example System 2.. 10

Table 3. Defenses for the assessment of a system beta.. 14

Table 4. Sub-factor estimation table [37]. .. 15

 viii

Table 5. Redundancy and diversity sub-factor scoring criteria. ... 16

Table 6. Total hardware and software failure probabilities for CCF analysis... 19

Table 7. Coupling factors for the BPs. ... 20

Table 8. CCCGs for the BPs. ... 20

Table 9. Sub-factor scores for BPs CCCG 2 (Division CCF). ... 21

Table 10. Beta factors for each BP CCCG.. 21

Table 11. Hardware failures and beta factors for each CCCG of RTS components. 22

Table 13. Cut sets for the original RTS-FT. ... 31

Table 14. Cut sets for the improved RTS-FT. ... 33

Table 15. Cut sets for the improved ESFAS-FT. .. 34

Table 16. Comparison of the top events with original ESFAS-CCF basic event and improved
ESFAS-FT. .. 34

Table 17. Comparison of INT-TRANS ET quantification results. ... 35

Table 20. Changes of ET CDFs by adding digital RTS and ESFAS FTs into ETs. 37

Table 21. Reclassified UCAs and UIFs from STPA. .. 46

Table 22. ODC defect classes and descriptions. ... 53

Table 23. Hardware total failure rate for QIAS-P digital components. .. 62

Table 24. RT Defect tag, description, and location. .. 67

Table 25. DD Defect tags, description, and location. .. 68

Table 26. TC Defect tag, description, and location. .. 68

Table 27. CF Defect tag, description, and location. .. 69

Table 28. Grouped ODC defect classes and tags. ... 69

Table 29. Coupling between identified UCAs/UIFs and non-empty ODC classes. 70

Table 30. ODC defect classes, tags, and failure rates. ... 70

Table 31. Single failure rates for UCAs/UIFs for all QIAS-P components. ... 71

Table 32. Beta-factor scoring based on environmental and development conditions. 72

Table 33. CCF rates for all QIAS-P components. ... 73

Table 34. Cut sets derived from SAPHIRE 8 for top event of interest. .. 74

 ix

ACRONYMS
AFP auxiliary feedwater pump

AFW auxiliary feedwater

APR-1400 Advanced Power Reactor 1400 MW

ATF accident tolerant fuel

ATWS anticipated transient without scram

BAHAMAS Bayesian and HRA-Aided Method for the Reliability Analysis of Software

BBN Bayesian Belief Network

BFM beta-factor model

BP bistable processor

CCCG common cause component group

CCF common cause failure

CDF core damage frequency

CET core exit thermocouple

CF coverage factor

CIM component interface module

CPU central processing unit

D3 defense-in-depth and diversity

DD defect density

DiD defense-in-depth

DI&C digital instrumentation and control

DIS diverse indication system

DOE U.S. Department of Energy

DOE–NE U.S. Department of Energy–Office of Nuclear Energy

DOM digital output module

DPS diverse protection system

EPRI Electric Power Research Institute

ERP Enhanced Resilient Plant

ESF engineered safety feature

ESFAS Engineered Safety Features Actuation System

ET event tree

ETA event tree analysis

FLEX Flexible Coping Strategy

FMEA failure mode effect analysis

https://en.wikipedia.org/wiki/Megawatt

 x

FT fault tree

FTA fault tree analysis

FY Fiscal Year

GC group-controller

HAZCADS Hazards and Consequence Analysis for Digital Systems

HJTC heated-junction thermocouple

HPI high-pressure injection

HRA human reliability analysis

HSSSR High Safety-significant Safety-related

IAP integrated action plan

ICC inadequate core cooling

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

INL Idaho National Laboratory

IPS information processing system

IRADIC Integrated risk assessment for digital instrumentation and control systems

KLOC thousand lines of code

LC loop-controller

LCL local coincidence logic

LOCA loss-of-coolant accident

LOSC loss of seal cooling

LP logic processor

LPCI low-pressure core injection

LPI low-pressure injection

LWR light water reactor

LWRS Light Water Reactor Sustainability

MCR main control room

MDAFP motor-driven auxiliary feedwater pumps

MDP motor-driven pump

MGL multiple Greek letter model

NEI Nuclear Energy Institute

NHPP non-homogeneous Poisson process

NPP nuclear power plant

NRC U.S. Nuclear Regulatory Commission

ODC orthogonal defect classification

 xi

ORCAS Orthogonal-defect Classification for Assessing Software reliability

PBF partial beta factor

PWR pressurized water reactor

PRA probabilistic risk assessment

QIAS-P qualified indication and alarm system – safety

QIAS-N qualified indication and alarm system – non-safety

R&D research and development

RCCA rod cluster control assembly

RCS reactor control system

RePS Reliability Prediction System

RESHA Redundancy-guided Systems-theoretic Hazard Analysis

RHR residual heat removal

RISA Risk-Informed Systems Analysis

RMS radiation monitoring system

RPS reactor protection system

RRO Risk Reduction Objective

RSR reserve shutdown room

RT requirements traceability

RTB reactor trip breaker

RTS reactor trip system

RTSS reactor trip switchgear system

SDLC software development life cycle

SAPHIRE Systems Analysis Programs for Hands-on Integrated Reliability Evaluations

SBO station black-out

SDD software design description

SDN safety data network

SP selective processor

SRGM software reliability growth method

SRP Standard Review Plan

SRS software requirements specifications

SSC system, structure, and component

ST shunt

STD systems test document

STPA systems-theoretic process analysis

TC test coverage

 xii

TDAFP turbine-driven AFP

THERP Technique for Human Error Rate Prediction

UCA unsafe control action

UIF unsafe information flow

UPM Unified Partial Method

U.S. United States

UV undervoltage

1

QUANTITATIVE RISK ANALYSIS OF HIGH SAFETY-
SIGNIFICANT SAFETY-RELATED DIGITAL

INSTRUMENTATION AND CONTROL SYSTEMS IN
NUCLEAR POWER PLANTS USING IRADIC

TECHNOLOGY
1. INTRODUCTION

1.1 INL-IRADIC Technology
This report documents the activities performed by Idaho National Laboratory (INL) during fiscal year

(FY) 2021 for the U.S. Department of Energy (DOE) Light Water Reactor Sustainability (LWRS)
Program, Risk Informed Systems Analysis (RISA) Pathway, digital instrumentation and control (DI&C)
risk assessment project [1] [2]. The LWRS program, sponsored by the U.S. DOE and coordinated through
a variety of mechanisms and interactions with industry, vendors, suppliers, regulatory agencies, and other
industry research and development (R&D) organizations, conducts research to develop technologies and
other solutions to improve economics and reliability, sustain safety, and extend the operation of nation's
fleet of nuclear power plants (NPPs). The LWRS program has two objectives to maintain the long-term
operations of the existing fleet: (1) to provide science- and technology-based solutions to industry to
implement technology to exceed the performance of the current business model and (2) to manage the
aging of systems, structures, and components (SSCs) so NPP lifetimes can be extended, and the plants
can continue to operate safely, efficiently, and economically.

As one of the LWRS program’s R&D pathways, RISA Pathway aims to support decision-making
related to economics, reliability, and safety providing integrated plant systems analysis solutions through
collaborative demonstrations to enhance economic competitiveness of the operating fleet. The RISA
Pathway R&D’s purpose is to support plant owner-operator decisions with the aim to improve the
economics and reliability and maintain the high levels of current NPPs’ safety over periods of extended
plant operations. The goal of the RISA Pathway is to conduct R&D to optimize safety margins and
minimize uncertainties to achieve economic efficiencies while maintaining high levels of safety. This is
accomplished in two ways: (1) by providing scientific basis to better represent safety margins and factors
that contribute to cost and safety; and (2) by developing new technologies that reduce operating costs.

In FY 2019, the RISA Pathway initiated a project to develop a risk assessment strategy for delivering
a strong technical basis to support effective, licensable, and secure DI&C technologies for digital
upgrades/designs [1]. An integrated risk assessment technology for the DI&C systems (IRADIC
technology) was proposed for this strategy which aims to:

• Provide a best-estimate, risk-informed capability to quantitatively and accurately estimate the safety
margin obtained from plant modernization, especially for the high safety-significant safety-related
(HSSSR) DI&C systems

• Develop an advanced risk assessment technology to support transition from analog to DI&C
technologies for nuclear industry

• Assure the long-term safety and reliability of vital HSSSR DI&C systems

• Reduce uncertainty in costs and support integration of DI&C systems in the plant.

To achieve these technical goals and deal with the expensive licensing justifications from regulatory
insights, the IRADIC technology is instructive for nuclear vendors and utilities to effectively lower the
costs associated with digital compliance and speed industry advances by:

2

(1) Defining an integrated risk-informed analysis process for DI&C upgrade, including hazard analysis,
reliability analysis, and consequence analysis

(2) Applying systematic and risk-informed tools to address common cause failures (CCFs) and quantify
corresponding failure probabilities for DI&C technologies, particularly software CCFs

(3) Evaluating the impact of digital failures at the component level, system level, and plant level

(4) Providing insights and suggestions on designs to manage the risks, thus, to support the development,
licensing, and deployment of advanced DI&C technologies on NPPs.

The IRADIC technology includes two phases: risk analysis and risk evaluation. Risk analysis aims to
identify hazards of digital-based SSCs, estimate their failure probabilities, and analyze relevant
consequences by performing hazard analysis, reliability analysis, and consequence analysis. The results
from the risk analysis are compared with the specific risk acceptance criteria in the risk evaluation.
Figure 1 displays the schematic of the risk assessment strategy for DI&C systems. The task is to evaluate
whether the risk from digital failures can be accepted at the component, system, and plant levels, then
provide suggestions to reduce these potential risks in both design stage and operation and maintenance
stage.

Figure 1. Schematic of proposed risk assessment strategy for DI&C systems.

1.2 Challenges in Addressing CCF in HSSSR DI&C Systems
The system aspects of DI&C involve issues that extend beyond individual components and even

beyond the function of the system itself. The challenge with using these system aspects is discussed in
NUREG/CR-6901. Digital systems exhibit two types of interactions—Type 1: the interactions of a DI&C
system (and/or its components) with a controlled process (e.g., NPP); and Type 2: the interactions of a
DI&C system (and/or its components) with itself and/or other digital systems and components [3].
Kirschenbaum et al. provide a useful summary of these concerns in their own work on the investigation of
digital systems [4]. Common or redundant components are often utilized as a backup to ensure system
reliability. However, the improper application of redundant features can leave a system vulnerable to
CCFs, which arise from the malfunction of two or more components, or functions, due to a single failure
source [5] [6]. To make redundancy designs effective, diversity is employed, providing an alternative
technology, method, technique, or means to achieve a desired result [7]. The diverse protection helps to
eliminate the common features necessary for a CCF. Some general observations on the consistencies and

3

inconsistencies in how defense-in-depth (DiD) has been defined and used were included in
NUREG/KM-0009, “Historical Review and Observations of Defense-in-Depth” [8]. In 2016, the U.S.
Nuclear Regulatory Commission (NRC) revised the standard review plan (SRP) to fully adapt it and
associated regulatory guides to DI&C systems [9]. Chapter 7 of the SRP provided guidance for the review
of the I&C portions of: (1) applications for nuclear reactor licenses or permits and (2) amendments to
existing licenses.

DiD and diversity (D3) analyses are proposed and performed using deterministic approaches while
the NRC probabilistic risk assessment (PRA) policy statement encourages the use of risk information in
all regulatory activities supported by the state-of-the-art and data [10]. Activities to develop digital system
models have been in process for some time; however, no approaches have been generally accepted for
digital system modeling in current NPP PRA efforts. Currently, the NRC continues to perform research
that supports the development of licensing criteria to evaluate new DI&C systems. According to guiding
principles in SECY-18-0090 [11], published in 2018, a D3 analysis for reactor trip systems (RTSs), and
engineered safety features should be performed to demonstrate that vulnerabilities to a CCF have been
identified and adequately addressed, either by a design-basis deterministic approach or best-estimate
approach. Recently, in January 2019, NRC staff developed the integrated action plan (IAP) [12], and it
updates the plan as a living document. One goal of the IAP is to assist NRC staff in performing regulatory
reviews and I&C system inspections in more-efficient, effective, consistent, and risk-informed ways. In
addition, industry is seeking a more risk-informed, consequence-based regulatory infrastructure that
removes uncertainty in requirements and enables technical consistency [12].

Many efforts from regulatory, industrial, and academic communities have been made for qualitatively
addressing CCFs in DI&C Systems, especially software CCFs, given the increased designs and
deployment of HSSSR DI&C systems in NPPs. To successfully model DI&C systems, the need exists to
model both the hardware and software interactions of the system. Traditional methods, such as failure
modes and effects analysis (FMEA) and fault tree analysis (FTA), have been used to extensively model
analog systems. However, interactions between digital systems and controlled processes (i.e., Type 1
interactions) and the interactions between digital systems and their own components or other systems
(i.e., Type 2 interactions) can result in failure modes or hazards that are difficult to discover using
traditional methods [13]. Lessons learned from the NRC’s investigation of multiple analysis methods
indicate there “may not be one preferable method for modeling all digital systems” [13]. Combining
methods may prove beneficial. A recent advancement in hazards analysis, developed jointly by Electric
Power Research Institute (EPRI) and Sandia National Laboratory, combines FTA and the systems-
theoretic process analysis (STPA) as a portion of their methodology for Hazard and Consequence
Analysis for Digital Systems (HAZCADS) [14]. Though STPA may be applied at any stage of system
design and review, it is ideally suited for early application in the design process before safety features
have been incorporated into the design [15]. Then, as more details are incorporated, the STPA method is
applied iteratively to further improve the design. However, even when fine detail about a system is
known, the analysis may remain at a high level, relying on causal factor investigations to provide the
detail of subcomponent failures and interactions. In other words, details such as redundant subsystems or
components are often ignored in all but the final part of STPA.

In July 2021, Nuclear Energy Institute (NEI) published the pre-submittal activities for NEI 20-07,
“Guidance for Addressing Software Common Cause Failure in High Safety-Significant Safety-Related
Digital I&C Systems.” [16] A two-step process was proposed to address HSSSR systematic CCF based
on STPA: Step 1 is to perform a systematic hazards analysis based on STPA that creates a model of the
system control structure, identifies unsafe control actions (UCAs) as software failures, and establish a risk
reduction objective (RRO); Step 2 is to develop STPA loss scenarios and eliminate or mitigate them in an
efficient way. A bounding assessment is proposed to calculate the risk change when entire HSSSR
systems fail due to software CCFs (assuming system failure probability = 1). The risk change (e.g., ∆ core
damage frequency [CDF]) is then mapped to the regions described in RG 1.174 [17] and used to

4

determine the RRO. This process qualitatively addresses potential failures in DI&C based on a bounding
assessment, consequently, the real safety margin gained by plant digitalization on HSSSR DI&C systems
could be underestimated in this conservative way.

The described above efforts provide a technical basis for dealing with potential software CCF in the
HSSSR DI&C systems of NPPs; however, some technical challenges remain:

(1) Is qualitative evaluation sufficient for addressing software CCFs in HSSSR DI&C systems? Most of
the STPA-based approaches mentioned above focus on the identification of software failures but not
the quantification of their probabilities. Although these software failures are added into an integrated
fault tree, their probabilities are not calculated. Instead, a conservative bounding assessment is
performed to evaluate their impacts to plant safety (e.g., ∆ CDF), which may lead to an
underestimation of safety margins gained by plant digitalization.

(2) How to quantitatively evaluate CCF-related impacts to HSSSR DI&C systems and entire plant
response? This proposes a need in developing an integrated strategy to include both qualitative hazard
analysis and quantitative reliability and consequence analysis for addressing software CCFs issues in
HSSSR DI&C systems of NPPs. Inputs and outputs of each analysis process should be consistently
connected.

(3) How to efficiently identify the most significant CCFs, especially software CCFs? Existing STPA-
based approaches represents good performance in capturing systematic failures in digital interactions;
however, there is not a clear representation of how to create a control structure for a complicated
system containing multiple layers of redundancy and diversity.

(4) How to perform a complete reliability analysis for large-scale HSSSR DI&C systems with small-scale
software/digital units? Currently, there is no consensus method for the software reliability modeling
of digital systems in NPPs. A reliability analysis approach is needed, especially for the quantification
of UCAs from STPA analysis.

(5) Lastly, a need clearly exists to develop a risk assessment strategy to support quantitative D3 analyses
for assuring the long-term safety and reliability of vital digital systems and reducing uncertainties in
costs, time, and supporting integration of digital systems during the design stage of the plant.

1.3 Value Proposition for INL-IRADIC Technology
To deal with the technical issues in addressing potential software CCF issues in HSSSR DI&C

systems of NPPs, the IRADIC technology is expected to provide:

(1) An integrated and best-estimate, risk-informed capability to address new technical digital issues
quantitatively, accurately, and efficiently in plan modernization progress, such as software
CCFs in HSSSR DI&C systems of NPPs.

Existing qualitative approach for addressing CCFs in HSSSR DI&C systems may significantly
underestimate the real safety margin introduced by plant digitalization. The IRADIC technology is
developed and demonstrated in an integrated way including both qualitative hazard analysis and
quantitative reliability and consequence analysis. IRADIC aims to provide a best-estimate, risk-informed
capability to accurately estimate the safety margin increase obtained from plant modernization, especially
for the digital HSSSR I&C systems.

In IRADIC, a redundancy-guided systems-theoretic method for hazard analysis (RESHA) was
developed HSSSR DI&C systems for supporting I&C designers and engineers to address both hardware
and software CCFs and qualitatively analyze their effects on system availability [18] [19]. It also provides
a technical basis for implementing, following reliability and consequence analyses of unexpected
software failures and supporting the optimization of D3 analyses in a cost-efficient way. Targeting the
complexity of redundant designs in HSSSR DI&C systems integrates STPA [15], FTA and HAZCADS

5

[14] to effectively identify software CCFs by reframing STPA in a redundancy-guided way: (1) framing
the complexity of the redundancy problem in a detailed representation; (2) clarifying the redundancy level
using FTA before applying STPA; (3) building a redundancy-guided multilayer control structure; and
(4) locating software CCFs for different levels of redundancy. This approach has been demonstrated and
applied for the hazard analysis of a four-division digital RTS [18] and a four-division, digital, engineered
safety features actuation system (ESFAS) [19]. These efforts have been included in the FY-20 milestone
report [2].

The second part in risk analysis is reliability analysis with the tasks of: (1) quantifying the
probabilities of basic events of the integrated fault tree (FT) from the hazard analysis; (2) determining the
optimal basic component combinations for prevention and mitigation; and (3) estimating the probabilities
of the consequences of digital system failures. In IRADIC, two methods have been developed for
different application conditions: the Bayesian and HRA-Aided Method for the reliability Analysis of
Software (BAHAMAS) [20] for limited-data conditions and Orthogonal-defect Classification for
Assessing Software reliability (ORCAS) for data-rich analysis. More details can be found in Chapter 4.

As the third and final part, consequence analysis should be implemented to evaluate the impact of
consequences from digital failures on plant responses. The main concern is some software failures have
the potential to initiate an unanalyzed event or scenario that may not be analyzed before and, therefore, to
threat reactor safety, such as by core damage or a large early release. The PRA results from the previous
reliability analyses are supposed to provide different risk-significant accident scenarios for the multi-
physics best-estimate plus uncertainty analysis. The capability has been built by different platforms such
as the INL-developed LOTUS [21]. In FY 2021, a couple of accident scenarios have been selected for the
consequence analysis, as described in Chapter 3.

(2) A common and modularized platform for I&C designers, software developers, plant engineers,
and risk analysts to efficiently prevent and mitigate risk by identifying crucial failure modes
and system vulnerabilities, quantifying DI&C system reliability, and evaluating the
consequences of digital failures on the plant responses.

Many programs/projects were and are being created with various methods/approaches/frameworks
generated either for single software reliability analysis or for quantifying the system-level interactions
between digital systems or between digital systems and other systems. However, these efforts are rarely
targeting software CCFs in HSSSR DI&C systems.

As shown in Figure 2, IRADIC, as a modularized platform, aims to have a good communication with
various small-scale unit-level software reliability analysis methods (e.g., quantitative software reliability
methods) and large-scale system-level reliability analysis frameworks (e.g., PRA). RESHA, as a top-
down approach, can identify the digital or software failures in the unit-level interactions inside of a digital
system, then BAHAMAS and ORCAS can be used to quantify the probability of the STPA-identified
software failures based on suitable existing quantitative software reliability methods such as Bayesian
networks, test-based, or metric-based methods.

6

Figure 2. The flexible and modularized structure of the IRADIC technology.

(3) A technical basis and risk-informed insights to assist NRC and industry in formalizing relevant
licensing processes relevant to CCF issues in HSSSR DI&C systems.

Figure 3 illustrates how the IRADIC technology can support licensing of a HSSSR DI&C design or
upgrade. NRC BTP 7-19, “Guidance for Evaluation of Diversity and Defense-In-Depth in Digital
Computer-Based Instrumentation and Control Systems Review Responsibilities” [22], clarifies the
requirement for acceptable methods for addressing CCFs, including identifying CCFs, reducing CCF
likelihood, and evaluating CCF impacts in design-basis events. The capabilities of IRADIC technology in
hazard, reliability, and consequence analysis matches well with these requirements.

Figure 3. Clarification on acceptable methods for addressing CCF according to NRC BTP 7-19 vs. INL-
IRADIC capability in CCF analysis.

(4) An integrated risk-informed tool for vendors and utilities to meet the regulatory requirements
and optimize the D3 applications in the design of digital HSSSR systems.

The IRADIC technology can be beneficial for the design of digital HSSSR systems in plant
modernization process: the estimated safety margin using IRADIC should be much higher and more
accurate than other conservative bounding assessment approach. The safety improvements of these new
digital designs are expected to be significant and can be presented more clearly.

7

Currently, it is thought after qualitatively addressing CCFs, all of them need to be fixed by adding
diversity, which costs a lot. In fact, some of CCFs do not have significant impacts on the change of CDF
or large release frequency. The IRADIC technology can evaluate the impacts of single software CCFs to
the HSSSR DI&C systems and even the plant safety, based on which suggestions can be provided to
optimize the D3 application in the design of HSSSR DI&C systems. By comparing the risk and cost of
different redundant and diverse designs, cost can be saved if some CCFs are proved to be insignificant to
plant safety. Based on current IRADIC analysis results, failure probability of HSSSR DI&C system due
to software CCFs is quite low and the CDF is also significantly reduced compared with the one with
traditional analog systems. More details can be found in Chapter 3.

1.4 Report Layout
Chapter 2 describes RISA efforts in software CCF modeling and estimation, considering existing

CCF modeling methods were mainly developed for hardware failures, which may be inapplicable in
software CCF analysis. Chapter 3 documents the consequence analysis of a generic pressurized water
reactor (PWR) model with improved digital RTS and ESFAS FTs. Chapter 4 introduces the recent efforts
in the improvement of IRADIC capability for software reliability analysis, including the development of
ORCAS method. In Chapter 5, ORCAS is demonstrated for the risk analysis of an advanced human-
system interface (HSI) relevant to reactor trip; the model of which was developed based on the APR-1400
HSI design. Chapter 6 provides conclusions and outlines future work.

8

2. SOFTWARE COMMON CAUSE FAILURE MODELING AND
ESTIMATION

CCF modeling is an important part of a risk assessment. Previous research efforts focused on the
identification and quantification of risks associated with HSSSR DI&C systems. The work described
herein details the CCF modeling of the risks identified in previous efforts. Section 2.1 provides
background details for CCF modeling. Section 2.2 introduces methods for modeling CCFs. Section 2.3
describes a selected approach for modeling components that are part of multiple common cause
component groups (CCCG), groups of components which share coupling. Section 2.4 applies the selected
CCF modeling techniques as part of a case study. Sections 2.5 and 2.6 provide the results and conclusions
of this chapter.

2.1 Background of Common Cause Failure Modeling
A CCF is the occurrence of two or more failure events “simultaneously” due to a shared cause [5] [6]

[23]. A CCF is the result of the existence of two main factors—a failure cause and a coupling factor (or
mechanism) [24] [25] [26]. The failure cause is the condition to which failure is attributed. O’Connor
indicates failure cause can be divided into a proximity cause or a root cause [27]. The proximity cause is a
readily identifiable condition but may not truly represent the cause of the failure. Meanwhile, the root
cause is the true source of failure which leads to the proximity cause and failure of the component [27].
The coupling factor (or coupling mechanism) creates the condition for a failure cause to affect multiple
components thereby producing a CCF [24]. Example of common coupling mechanisms given in
NRUEG/CR-5485:

• Design

• Hardware

• Function

• Installation

• Maintenance

• Procedures

• Interfaces

• Locations

• Environment.

The identification of coupling factors and CCCGs is an essential part of the CCF analysis. When root
causes and coupling factors are known, they can be used for the explicit modeling of CCFs. However, the
number and variations root causes and coupling factors can quickly become unmanageable for PRA
models [28]. Implicit CCF modeling provides a way to simplify the modeling of CCFs and lead to more
manageable analyses. According to [28], guesses for explicit models might be better than choosing to use
implicit models exclusively. If possible, at least some of the potential CCFs should be modeled explicitly
[28] while the rest may be modeled using implicit methods. The analysis of CCFs is dependent on the
requirements of the analysis, available data, and the configuration components for the system of interest.

The main steps usually involved in a CCF analysis are to identify the system, identify hazards,
determine CCCGs, select CCF models, define model parameters, and evaluate CCFs and their influences.
Most of the preliminary steps are covered in the early portions of IRADIC. Here we will focus on the
current challenges to our work, namely the quantification process starting from the identification of
CCCGs.

9

Within a CCCG of m components, CCFs are in various combinations of k/m where (2 ≤ 𝑘 ≤ 𝑚).
The components of a CCCG are generally assumed to have identical coupling factors. Table 1 provides an
example system. Here, components A, B and C share installation procedure, location, and manufacturer.
Assume these components are part of a system that requires 2 out of 3 (2oo3) for success of the system.
Figure 4 details a portion of the FT for Example System 1.

Table 1. Coupling factors for Example System 1.
Component Installation Procedure Location Manufacturer
A Procedure A Room A Company A
B Procedure A Room A Company A
C Procedure A Room A Company A

Figure 4. Example System showing the relationship of independent and dependent failures in the context
of a FT.

Consider a scenario where the components in Example System 1 are arranged in the 2/3 criteria for
failure shown in Figure 4. The probability of failure for the system is described in NUREG/CR-5485 [24]
and is shown below:

𝑃(𝐹) = 𝑃(𝐴𝐼)𝑃(𝐵𝐼) + 𝑃(𝐵𝐼)𝑃(𝐶𝐼) + 𝑃(𝐴𝐼)𝑃(𝐶𝐼) …

+ 𝑃(𝐶𝐶𝐹𝐴𝐵) + 𝑃(𝐶𝐶𝐹𝐵𝐶) + 𝑃(𝐶𝐶𝐹𝐴𝐶) …

+ 𝑃(𝐶𝐶𝐹𝐴𝐵𝐶)

(1)

It is a common practice in reliability modeling to assume the failure probabilities (or rates) of similar
components are the same [24]. This symmetry assumption results in the following:

𝑄𝑘
𝑚 represents the failure rate or probability of an event involving of k/m components in a CCCG of

size m. Substitutions are made resulting in a simplified expression for the system failure probability.

𝑃(𝐹) = 3𝑄1
2 + 3𝑄2 + 𝑄3 (5)

The symmetry assumption is most often applied to simplify the model and nearly all conventional
CCF modeling techniques use it [27]. The symmetry assumption assumes all identical components with
identical coupling factors can be placed in a single CCCG, as is the case for Example System 1. However,

𝑄1
3 = 𝑃(𝐴𝐼) = 𝑃(𝐵𝐼) = 𝑃(𝐶𝐼) = 𝑄1 (2)

𝑄2
3 = 𝑃(𝐶𝐶𝐹𝐴𝐵) = 𝑃(𝐶𝐶𝐹𝐵𝐶) = 𝑃(𝐶𝐶𝐹𝐴𝐶) = 𝑄2 (3)

𝑄3
3 = 𝑃(𝐴𝐵𝐶) = 𝑄3 (4)

10

there are cases where the symmetry assumption may not be appropriate and can make modeling difficult.
Consider Example System 2 where the components share some but not all coupling factors. In this
scenario, there are only two options: either ignore the differences or attempt to account for them. Table 2
shows a new scenario in which the coupling factors are not the same for each identical component. In this
scenario, components A, B, and C are coupled by procedures, while A and B are coupled by location.

Table 2. Coupling factors for Example System 2.
Component Installation Procedure Location
A Procedure A Room A
B Procedure A Room A
C Procedure A Room B

Placing all identical components in one CCCG is the option most often selected because it does not
cause issues with conventional CCF modeling techniques. Thus, the symmetry assumption is employed
resulting a case were 𝑃(𝐶𝐶𝐹𝐴𝐵) is assumed approximately identical to 𝑃(𝐶𝐶𝐹𝐵𝐶) and 𝑃(𝐶𝐶𝐹𝐴𝐶). This
assumption may be appropriate depending on the situation. Conversely, it may be of greater importance to
account for variations in the coupling factors.

The second option is to allow components to be part of different CCCGs (components A, B, &C for
CCCG1 and A&B for CCCG2). Allowing components to be part of multiple groups creates additional
challenges for the analysis because conventional methods may provide two different probabilities for the
same CCF event. For example, using conventional methods to determine 𝑃(𝐶𝐶𝐹𝐴𝐵) from CCCG1 and
CCCG2 will lead to two different values for 𝑃(𝐶𝐶𝐹𝐴𝐵). This is because conventional methods
incorporate the group size as part of their evaluation process. If CCF modeling is performed using a
program such as Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE)
[29], having multiple CCCGs may lead to double counting of the 𝑃(𝐶𝐶𝐹𝐴𝐵). Ma et al. further address
CCCG issues in their work from 2020. To avoid double counting, they suggest using the largest CCCG
that is reasonable [30]. However, this solution requires the analyst to ignore asymmetry. A second option
may be to select which of the two values for 𝑃(𝐶𝐶𝐹𝐴𝐵) is appropriate. Examples of components being
part of multiple CCCGs do exist but require very specific conditions [30]. To be part of multiple CCCGs,
each CCCG represents a unique failure mode or is part of a unique FT scenario. Conventional methods
will work for these scenarios because the coupling factors and CCCGs are associated with different
events (each the failure is different even though they are still CCFs). Some examples from [30]:

• Unique failure modes (rotating components vs. drive mechanism of pumps): “Redundant motor-
driven auxiliary feedwater pumps (MDAFPs) A and B are in a CCCG with the same design,
manufacture, capacity, and environment (CCCG size = 2), while they are in another CCCG along
with the turbine-driven AFP (TDAFP) due to the similarity in function/design of the rotating
components in MDAFPs and TDAFP (CCCG size = 3).”

• Unique FTs (low-pressure injection vs. residual heat removal): “Redundant motor-driven pumps
(MDPs) A and B are in a CCCG with the residual heat removal (RHR) function (CCCG size = 2),
while the same components of A and B are in another CCCG along with MDP C for the low-pressure
core injection (LPCI) function (CCCG size = 3).”

2.2 Methods for Common Cause Failure Modeling
The examples of multiple CCCGs in the preceding section are outside of the current scope. This work

explores CCF modeling where various coupling factors and associated root causes result in the same CCF
event. For this case, when identical components exhibit coupling factors that are not necessarily shared by
all components of the CCCG, there are two options: (1) group all identical components together in one
CCCG and justify the assumption of symmetry; (2) place components into unique, coupling-factor-based

11

CCCGs and account for the inconsistency between the groups. The second option is a large motivation of
this work as it pertains to several CCFs to be modeled in our case studies. This current work explores the
second option by selecting methods which will allow for multiple CCCGs without introducing logical
inconsistencies. The next sections discuss conventional approaches, some of their attributes, and their
applicability for multiple CCCGs.

Once the CCCG’s have been identified the next step usually is to determine how to model CCFs of
the components within the CCCG. A number of CCF modeling techniques have been developed for these
purposes. Some have placed these techniques into categories such as: direct assessment methods, ratio
models, shock models, and other models [27].

2.2.1 Direct Assessment Methods
The primary means of explicit modeling is through direct assessment via data analysis of operations

or testing experience. This method depends on available data. For example, the number of failures
observed given demands, and how many failures involved two or more components. This is perhaps the
simplest method for assessing CCFs. These methods are limited by their dependence on testing or
performance data to determine CCFs. Data may be limited and not show any CCF occurrences. In
addition, results are system specific. As performance data and test data can often be black box in nature,
this method may actually provide very little information regarding how the component or systems failed.
Some advantages are that method is simple, and if the direct assessment can be performed, it provides a
groundwork for many other approaches.

The basic parameter model is an example of direct estimate methods. The basic parameter model
groups CCFs according to the number of components that fail together. Given a CCCG of size 3
components (e.g., A, B, and C), there can be CCFs for 2/3 or 3/3 components. The model employs a
symmetry assumption in which each combination of 2/3 components within the CCCG are assumed the
same failure probability—for example, 𝑃(𝐶𝐶𝐹𝐴𝐵) = 𝑃(𝐶𝐶𝐹𝐴𝐵) = 𝑃(𝐶𝐶𝐹𝐴𝐵) = 𝑄2. This allows for a
simple model of the system failure probability when each combination of failure can be expressed with a
value, such as Q2, Q3, etc. The basic parameter model is simple but limited by its assumption of
symmetry; therefore, it is not directly applicable for our case study.

2.2.2 Ratio Models
Ratio models include those models which rely on the assumption that a ratio exists between total

failure and dependent failures. This category includes the beta-factor model (BFM), alpha factor model
(AFM), and multiple Greek letter (MGL) models [27]. Each relies on a ratio with only subtle differences
in their formulations. The MGL and AFM account for combinations of CCFs within CCCGs (i.e., k/m for
CCCG of size m). The BFM only considers CCFs for which all m/m components fail. Because each
method in the category is very similar, there is an overlap between them. For example, the BFM is a
unique case of the MGL model [24]. Also, CCFs for each combination of k/m in the AFM can be
expressed in the MGL method. In fact, there are tables showing their equivalence in NUREG/CR-5485
[24]. The primary difference in the methods comes from how they are formulated. Alpha factor is
designed to work with parameters that are more easily measured than compared with MGL [24]. Details
for their formulations can be found in NUREG/CR-5485 among other sources. O’Conner introduced a
variation of the AFM called the partial AFM the goal of which was to account for coupling factors and
root causes in the assessment of CCF. The partial AFM relies on failure event data for the allocation and
scoring of the model parameters [27].

Because of their similarity to each other, ratio models have the similar advantages and limitations.
Data remains the limiting factor. When data is limited, the parameters must be approximated via expert
elicitation or numerous assumptions [24]. When data is available, each method will have some approach
for quantifying their parameters based on the available data.

12

2.2.3 Shock Models
According to NUREG/CR-5485, “shock is an event that occurs at a random point in time and acts on

the system, i.e., all the components in the system simultaneously.” The shock model considers a
component may fail either due to random independent causes or by shocks that impact all components of
the system at a certain frequency [24]. O’Connor indicates shock models follow a Poisson process where
for each component of a CCCG the shock is a Bernoulli trial that will fail the component with some given
probability. Shock models attempt to model the actual physical phenomena that lead to a CCF [27].
Additionally, O’Connor provided some of the advantages and disadvantages given in literature and based
on his review [27]. Some advantages are shock models are applicable for systems with high levels of
redundancy and are easy to adjust for different sized CCCGs. Shock models can be limited by their
dependence on data, shock models require data to find parameters, and parameters are difficult to measure
since they assume symmetry and do not account for defenses in a system’s architecture that may prevent
CCFs.

2.2.4 Other Models
Influence diagram/Bayesian belief networks (BBNs) have been of interest for some time for

reliability modeling. Even our most recent effort relies on Bayesian techniques using BAHAMAS. The
BBN depict the influences of events on each other by accounting for their conditional and independent
relationships. BBNs are used largely for prediction or for diagnosis. Prediction is defined as given some
prior knowledge of a root cause, the probability of an event can be determined. Diagnosis analysis
proceeds in reverse; given evidence, the probabilities of potential causes can be determined [31]. BBNs
can incorporate disparate information, which is advantageous for performing analyses [32]. These
methods provide insight that allows consideration of defenses mechanisms of coupling factors of CCFs
[33]. However, there can be significant uncertainty when dealing with limited data. BAHAMAS works in
a very specified way to limit uncertainty associated with its application of BBN; however, such
formulations may not be applicable to a network designed for coupling factors and defense mechanisms.

Interference models predict the failure of components by assuming random variables for strength and
load [27]. The load is imposed upon a component or a group of components, and strength (or resistance)
is how components react to a load. Failures occur when strength is overcome by the load [33]. The more
intense a load is, the higher the probability of component failure. One example of the interference model
is the common load model or the extended common load model. Some advantages of these models are
they can be used to model high levels of redundancy and may be capable of modeling asymmetry by
removing the assumption of identically distributed components [27] [33]. Disadvantages include
complexity and the reliance on the symmetry assumption under normal configurations [33]. In the
absence of data, interference models require assumed probability distributions for load and resistance
intensities [27].

2.3 Selected Method for Modeling Multiple CCCGs
The review of existing methods provided a common theme. Nearly all methods are limited by an

assumption of symmetry (the most notable exception being the BBN-based approaches) [27], and for
those method which do rely on symmetry, allowing component to be part of multiple groups may lead to
double counting. In addition, most methods are designed to incorporate some form of operational data. A
major challenge for our current work is the issue of limited data which has a direct influence on all
methods, without specific failure data the ratio models must be quantified using elicitation techniques.
Shock models require assumptions about the shock parameters which are normally intended to model
natural phenomena. Without certain design details, it would be challenging to approximate shocks
correctly. The BBN and influence models, such as Zitrou’s [33], are limited by the uncertainty associated
with elicitation. Finally, interference models require assumptions that would be challenging to make for a
system not yet fully defined. Therefore, rather than making special exceptions for conventional methods,

13

other options were investigated. One method happened to be specifically developed for the multiple
CCCG scenario. This method from 2012 is a modified version of the BFM [34].

2.3.1 Modified Beta-Factor Model
The modified BFM from 2012 is designed specifically to allow for components to be members of

multiple CCCGs [34]. The model assumes the total failure probability/rate (𝑄𝑡) of a component is the
summation of independent (𝑄𝐼) and dependent failures (𝑄𝐷). Equation (7) shows the total dependent
failure consists of the contribution of each CCCG failure, where each CCCG is assigned a group beta
(𝛽𝑤). Each group beta represents the contribution of a single CCCG to the total failure probability.
Equation (11) shows the independent failure probability in terms of each CCCG beta and total failure
probability.

Some advantages of this method include its ability to account for multiple CCCGs directly. It also
avoids the potential for double counting that is present in conventional methods. Double counting is
avoided because it is based on the beta-factor assumptions; the CCFs represent the failure of all the
components with the CCCG. Using an earlier example, given CCCGs (components A, B, &C for CCCG1
and A&B for CCCG2), there will be no chance of counting 𝑃(𝐶𝐶𝐹𝐴𝐵) twice because 𝑃(𝐶𝐶𝐹𝐴𝐵) is only
found for CCCG2. Additional advantages of this method are its ease of application and its ability to
consider the coupling factors unique for each CCCG.

This modified BFM, like most methods, require reference data to determine each CCCG failure
probability/rate. Like other ratio-based methods, the quantification of its parameters can be challenging
for the limited-data scenario. The modified BFM is limited to identical components with identical total
failure probabilities. If the 𝑄𝑡 for the components within a CCCG are not identical, then depending on the
𝑄𝑡 selected for Equation (8), there will be differing values for the same CCFs. An additional limitation
can occur if the total beta, shown by Equation (9), exceeds unity. If this happens, then the dependent
failures will exceed the total failure probability. To account for this issue, the original authors indicate a
possible solution which is to normalize the CCCG beta factors such that they sum to unity while
maintaining their relative magnitudes. Other options include normalizing by the largest CCCG beta or
using weight factors for each CCCG [34].

Despite its known limitations, this work will employ the modified BFM for the quantification of
CCFs because it works directly for the multiple CCCG scenario. The next challenge is defining the model
parameters. Some approaches use direct data [24]. Others attempt expert elicitation. The emphasis of the
current work is the limited-data scenario which naturally requires some form of elicitation. For elicitation,

𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑄𝑡 = [𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑎𝑖𝑙𝑢𝑟𝑒] + [𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠] (6)

𝑄𝐷 = 𝑃(𝐶𝐶𝐶𝐺1) + 𝑃(𝐶𝐶𝐶𝐺2) + ⋯ 𝑃(𝐶𝐶𝐶𝐺𝑤) (7)

𝑃(𝐶𝐶𝐶𝐺𝑤) = (𝛽𝑤)𝑄𝑡 (8)

𝛽𝑡 = ∑(𝛽𝑤)

𝑤

1

 (9)

𝑄𝐷 = 𝑄𝑡 ∑(𝛽𝑤)

𝑤

1

 (10)

𝑄𝐼 = (1 − 𝛽𝑡)𝑄𝑡 = [1 − ∑(𝛽𝑤)

𝑤

1

] 𝑄𝑡 (11)

14

it is desirable to consider qualitative defenses against CCFs. There are at least two methods presented in
literature which express the elicitation of the beta parameter without the use or dependence on operational
data. These two methods, both of which are called “partial beta methods,” develop betas from a
combination of partial attributes. The chief difference among them is how they find an overall beta; one
employs an additive scheme, while the other a multiplicative scheme [33]. The following is a discussion
of these two methods for defining an overall beta.

2.3.2 Partial Beta Factor-1
Developed around 1987, this method’s goal was to provide an improvement over the traditional BFM.

The claim was the dependent failure rate for a system could not be determined without an engineering
assessment of that system’s defenses for such failures. The resultant method provides a means of
determining quantitative results informed through a structured qualitative analysis [35]. The system is
assessed according to 19 defenses (see Table 3). Each defense receives a beta value (between 0–1), the
product of which is the beta to be assigned for the system. This method is focused on finding a beta for
use in the standard BFM. Again, this is a component failure ratio model in which the total failure rate is
related to the independent and dependent failures by means of the ratio beta [27].

Table 3. Defenses for the assessment of a system beta.
Defense categories Partial betas
Design control 𝛽1
Design review 𝛽2
Functional diversity 𝛽3
Fail-safe design …
Operational interfaces …
Protection & segregation …
Redundancy & voting …
Proven design & standardization …
Derating & simplicity …
Construction control …
Testing & commissioning …
Inspection …
Construction standards …
Operational control …
Reliability monitoring …
Maintenance …
Proof test …
Operations 𝛽19

𝛽 = ∏ 𝛽𝑖

• Limitations: There is very limited documentation for this method. The use of a product means there
may be a tendency for the system beta to approach a small value when this may not be appropriate.
For example, if 18/19 defense were given 𝛽𝑖 = .99, there should be a high likelihood of CCF for the
system. However, the remaining 𝛽 can dominate the system score resulting in an improper score for
the system beta (e.g., 𝛽19 = .1 will result with 𝛽 = .083). Should additional defense categories be

15

needed, their product would approach a small value and may result in underpredicted dependent
failures.

• Advantages: The method provides a more rigorous estimation of beta compared simple guesses. The
method is simple.

2.3.3 Partial Beta Factor-2
This second method has been developed and modified by several individuals starting with R. A.

Humphreys and Rolls-Royce and Associates [36] and later modified to become part of what is called the
Unified Partial Method (UPM) [33]. The UPM has a systems level and a component level focus. UPM’s
component level approach is called the partial beta-factor method and is based on Humphreys’ work,
though Humphreys never called it a partial beta-factor method. In fact, the method doesn’t use partial
betas, rather the method uses a collection of sub-factors which contribute to the overall beta score. So, this
method really should be called the beta-from-sub-factors method; however, since this is a mouthful, we
will keep with continue to call this a partial beta-factor method. To keep it distinguished for remainder of
the work, it will be called Partial Beta Factor-2 (PBF-2).

The PBF-2 is a method used to define a beta for use in CCF modeling. The method was founded in
the question, “What attributes of a system reduce common cause failures?” [36] A collection attributes,
called sub-factors, were selected which are known to contributed to the prevention of CCFs. The sub-
factors are shown in Table 4. Each sub-factor was weighted by reliability engineers for their importance.
The methodology requires the analyst to assign a score (A, B, C, etc.) for each sub-factor. An “E”
indicates a component is well defended against CCFs (i.e., A= worst, E = best). Beta is then determined
as a function of the assigned scores using Equation (12). The model was arranged such that the upper and
lower limits for beta correspond with values reported in literature [36]. This is ensured by the sub-factor
weighting and the denominator given in Equation (12). The beta value determined by this method is
intended to be used with the BFM.

Table 4. Sub-factor estimation table [37].
Sub-factors A A+ B B+ C D E
Redundancy (& Diversity)1 1750 875 425 213 100 25 6
Separation 2400 580 140 35 8
Understanding2 1750 425 100 25 6
Analysis 1750 425 100 25 6
MMI3 3000 720 175 40 10
Safety Culture4 1500 360 90 20 5
Control 1750 425 100 25 6
Tests 1200 290 70 15 4
1This sub-factor category was only called Similarity in Humphreys’ original version [36]. Also, there
was no A+ or B+ score for any category.
2Complexity in [36].
3Procedures in [36].
4Training in [36].

𝛽 =
∑(𝑆𝑢𝑏 − 𝑓𝑎𝑐𝑡𝑜𝑟𝑠)

50000
 (12)

The sub-factor names alone are not sufficient to describe the details for assessing each actual sub-
factor; therefore, readers are advised to visit the original source material for making assessments. For

16

example, Table 5 provides details from Humphreys [36] and UPM [37] for defining the “Redundancy &
Diversity” sub-factor.

Table 5. Redundancy and diversity sub-factor scoring criteria.
A Minimum identical redundancy (e.g., 1oo2, 2oo3, 3oo4 for success)

H: Identical units
A+ Enhanced identical redundancy (e.g., 1oo3, 2oo4 for success)

H: n/a
B Robust identical redundancy (e.g., 1oo4, 1oo5, 2oo5 etc.)

H: Similar units with only small differences in layout or circuit
B+ Unusually high-identical redundancy (1oo ≥8)

H: n/a
C Enhanced identical redundancy (e.g., 1oo3) with functional diversity

OR Robust identical redundancy (e.g., 1oo ≥4) with operational diversity
OR Unusually high-identical redundancy (e.g., 1oo ≥8) in a passive system
H: Different layout or circuit to achieve same purpose

D Robust identical redundancy (1oo≥4) with functional diversity
H: Units with different function but with common factors (e.g., a number of identical
components)

E Two entirely diverse independent redundant subsystems.
H: Diverse units, quite different both in function and construction.

Note: “H” indicates guidance from Humphreys [36]

• Limitations: the PBF-2 is limited by the range of possible beta it can produce. Zitrou indicates the use

of expert judgment to define the weighting of the sub-factors, and the fact that the model is point
based means there is inherent uncertainty for the model which remains to be captured [33].
Additionally, because the possible outcomes of beta are limited, the model may be considered
inflexible.

• Advantages: The model is simple to apply and allows for a more structured determination of beta than
simple judgments. The provided model allows for qualitative features to be considered in the
quantification of CCFs. Unlike PBF-1, a weighting scheme prevents any particular sub-factor score
from illogically and drastically offsetting the total system beta.

Despite its limitations, perhaps the most valuable aspect of PBF-2 is its ability to provide a beta value
with very little system-specific detail. Other methods require specific operational data (e.g., Cause-
Defense Matrices [38]) or system configuration details (e.g., Betaplus [39]). Betaplus requires
information about wiring configurations and possibly testing information [39] [40]. Such detail is not
always available for novel designs or for preliminary risk assessments; consequently, PBF-2 provides the
best option for our requirements. Future work may lead to improvements of PBF-2 to better account for
its known limitations.

This section has discussed the development of an approach for performing CCF analysis given the
limited data and multiple CCCGs. The approach relies on the modified BFM to account for multiple
CCCGs and PBF-2 to define beta factors for each CCCG. Together these two methods will provide a
means to overcome the limitations of conventional methods. A formalized process that relies on the
modified BFM and PBF-2 is shown in Figure 5. The primary sections’ headings of Figure 5 come from

17

descriptions of CCF modeling processes found in existing sources [24] [27]. The subsequent section will
demonstrate this process as part of a case study.

Figure 5. CCF modeling flowgraph.

2.4 Case Study
This section describes the quantification of CCFs associated with the four-division digital RTS. The

structure shown in Figure 6 is based on state-of-the-art digital systems in existing NPPs [41]. The RTS
consists of many redundant features including, bistable processors (BPs), logic processors (LPs), digital
output modules (DOMs), selective processors (SPs), undervoltage (UV) trip devices, shunt trip (ST)
devices, and reactor trip breakers (RTBs). The BPs detect a plant trip scenario from sensor information.
Each BP sends a plant trip signal to the local coincidence logic (LCL) racks for each division of the RTS.
The LPs within the LCL racks require at least one-out-of-two (1oo2) BP signals per division, and at least
2oo4 divisions in order to transmit a reactor trip signal. The LPs transmit trip signals through the DOMs
to the SPs. To transmit a trip signal, the SPs require 2oo2 signals, one from Rack-1 (1oo2 from DOM-1 or
DOM-3), and one from Rack-2 (1oo2 from DOM-2 or DOM-4). When each of these criteria have been
met, the SPs transmit the trip signal to the undervoltage trip devices which proceed to activate the RTBs.
There RTBs for each division actuate from the either the UV trip device or from the ST devices. The
diverse protection system (DPS) activates the ST devices. Manual trip activates the RTBs manually. The
control rods will insert and trip the reactor upon activation of 2oo4 divisions.

This case study describes the quantification of the CCFs associated with the BPs. Previous efforts
provided a deterministic value for the total software failure probability for the BPs. The objective here is
to define the dependent and independent portions of the total software failure probability previously
found. The following are assumptions of the study:

• There is no diversity in the software.

• RTBs hardware is diverse.

18

• All hardware components are identical (unless otherwise specified).

• Installation teams and maintenance teams are assumed identical for each CCCG.

• Each set of identical components that are part of the same CCCGs have the same total failure
probabilities.

• Software probability for the BP and LCL processors were quantified by BAHAMAS. They are
assumed identical given limited details available to distinguish them.

The goal of the case study is to quantify the CCFs of the hardware and software components of the
digital RTS. Table 6 provides the list of components for which failure rates need to be quantified. The
initial demonstration of BAHAMAS assumed a generic layout for these components, consisting of four
parts: an input, output, central processing unit (CPU), and memory; each part was assumed to have
software. For our current work, the BP and LCL are both PLC platforms, and software is only housed in
the memory of each PLC processor. Thus, the evaluation with BAHAMAS followed the same format as
given in the original publications [20] but tailored to the assumptions of the current case study.

Figure 6. Detailed representation of the digital RTS.

19

Table 6. Total hardware and software failure probabilities for CCF analysis.
Components Hardware

failure
Total Hardware
failure probability

Software
failure

Total Software failure
probability

BPs YES 4.00E-5 YES 1.871E-4
LCL Processors YES 6.48E-5 YES 1.871E-4
Digital Output Modules YES 1.64E-5 N/A N/A
Selective Relay YES 6.20E-6 N/A N/A
RTB-UV device YES 1.70E-3 N/A N/A
RTB-Shunt device YES 1.20E-4 N/A N/A
RTB RTSS1 YES 4.50E-5 N/A N/A
RTB RTSS2 YES 4.50E-5 N/A N/A
All hardware values came from [42].
Software probability for the BP and LCL processors were quantified by BAHAMAS. They are
assumed identical given limited details available to distinguish them.

Step 1: Perform a hazard analysis

The hazard analysis of the digital RTS shown in Figure 6 was completed previously. The details of
the hazard analysis can be found in [18]. The key output from Step 1 is the identification of the hazard to
be quantified in the reliability analysis.

Step 2: Perform a reliability analysis

The objective of the reliability analysis is to quantify the hazards identified in Step 1—the details of
which can be found in [18]. The subsequent steps for CCF modeling are for the limited-data scenario.
Thus, according to Figure 5, the steps follow the BAHAMAS quantification. The key output from Step 2
is the total component software failure probabilities. These will be broken down into their respective
independent and dependent portions in the subsequent steps.

Step 3: Identify potential CCCGs

The objective of Step 3 is to identify potential CCCGs, for the component of interest. This process is
done by first identifying all identical components within the system, then listing their coupling factors.

Step 3.1: Identify identical components and list their coupling factors

Identical components will share coupling factors. NUREG/CR-5485 [24] provides a list of common
coupling factors. These factors include the same design, hardware, function, installation and maintenance
procedures, interfaces, locations, environments, and others. Components that share these features should
be considered as part of a potential CCCG. There are eight identical BPs in the RTS, two per division.
They each have identical function and are assumed to share the same features except for location of
installation. Table 7 shows a simplified list of the coupling factors.

20

Table 7. Coupling factors for the BPs.
Component Coupling

Factor 1
Coupling
Factor 2

Coupling
Factor 3

Coupling
Factor 4

Coupling
Factor 5

Division A: BP1 Function Hardware X Software Y Manufacturer Z Division A
Division A: BP2 Function Hardware X Software Y Manufacturer Z Division A
Division B: BP1 Function Hardware X Software Y Manufacturer Z Division B
Division B: BP2 Function Hardware X Software Y Manufacturer Z Division B
Division C: BP1 Function Hardware X Software Y Manufacturer Z Division C
Division C: BP2 Function Hardware X Software Y Manufacturer Z Division C
Division D: BP1 Function Hardware X Software Y Manufacturer Z Division D
Division D: BP2 Function Hardware X Software Y Manufacturer Z Division D

Step 3.2: Assign components to CCCGs

Once the associated components and coupling factors have been identified, the CCCGs can be
assigned. Each CCCG shall be formed based on a unique set of coupling factors. The BPs shown in Table
7 are identical except for location. For this case, a CCCG should be formed to account for CCFs based
each set shared features. The BPs all share function, hardware, software, and manufacturer; thus, a
CCCGs should be formed based on these features. Location remains an additional coupling factor
identified which can be used to form CCCGs. Table 8 shows the CCCGs for the BPs.

Table 8. CCCGs for the BPs.
CCCGs Coupling Factors
1 All BPs Function, Hardware, Software, & Manufacturer
2 Division A: BP1, BP2 Division A
3 Division B: BP1, BP2 Division B
4 Division C: BP1, BP2 Division C
5 Division D: BP1, BP2 Division D

Step 4: Define CCCG parameters
The objective of Step 4 is to define the beta-factor parameters to be used for CCF modeling. This

process follows the PBF-2. This is done for each CCCG. Note groups 2–5 in Table 8 contain the same
details and will have identical betas. PBF-2 consists of an evaluation of defense categories which pertain
to the prevention of CCFs. Each CCCG receives a score for each sub-factor category. Table 4 shows the
sub-factors and their weights. An “E” indicates the CCCG is well defended against CCFs (i.e., A= worst,
E = best).

Table 9 shows the sub-factor scores applied to the BPs of CCCG2 and the calculation for beta based
on Equation (12). Table 10 shows the beta values for each CCCG.

21

Table 9. Sub-factor scores for BPs CCCG 2 (Division CCF).
Sub-factors Scores for CCCG2
Redundancy (& Diversity) A 1750
Separation A 2400
Understanding A 1750
Analysis D 25
MMI C 175
Safety Culture E 5
Control D 25
Tests C 70

𝛽 =
∑(1750 + 2400 + 1750 + 25 + 175 + 5 + 25 + 70)

50000
= 0.124

Table 10. Beta factors for each BP CCCG.

CCCGs Group Beta Coupling Factors
All BPs .0454 Function, Hardware, Software, & Manufacturer
Division A: BP1, BP2 .124 Division A
Division B: BP1, BP2 .124 Division B
Division C: BP1, BP2 .124 Division C
Division D: BP1, BP2 .124 Division D

Step 5: Calculate the independent and depend failures

The purpose of Step 5 is to evaluate the independent and dependent failures for each component of
the CCCG. The evaluation is conducted using either the tradition BFM or the PBF2.

Step 5.1: Single CCCG: apply the traditional BFM

If a component belongs to only a single CCCG, then the dependent and independent failures are
found using the traditional BFM. Originally proposed by Fleming in 1975, the BFM it is arguably one of
the most well-known methods [28]. This is a component failure ratio model in which the total failure rate
is related to the independent and dependent failures by means of the ratio beta [27].

The model is defined using the following:

𝑄𝑘
𝑚 = {

(1 − 𝛽)𝑄𝑡 𝑘 = 1
0 𝑚 > 𝑘 > 1

𝛽𝑄𝑡 𝑘 = 𝑚
 (13)

𝑄𝑡 = the total failure probability of one component.

𝑚 = number of components in CCCG.

𝑘 = number components to fail due to common cause.

𝛽 = ratio of CCFs to total failures.

𝑄𝑘
𝑚 = the failure rate or probability of an event involving of k/m components in a CCCG of size m.

None of the components shown in Table 10 belong to only one CCCG. Thus, there will be no need to
apply the conventional BFM for the BPs. Details for multiple CCCGs are provide subsequently.

22

Step 5.2: Multiple CCCG: apply the modified BFM

If a component belongs to multiple CCCG, then the dependent and independent failures are found
using the modified BFM. The details of the modified BFM are given earlier in this chapter. The modified
BFM requires each CCCG for a component be identified. For example, Division A BP1 is found in
CCCG1 and CCCG2 according to Table 10. The evaluation for the independent and dependent failures
for Division A BP1 are shown below. Equation (8) is used to solve for the CCF probability for each
CCCG of A1. The process requires the total failure probability (𝑄𝑡 = 1.871𝐸 − 4) that was found by
BAHAMAS. The total independent failure is found using Equation (11). Results are shown below:

2.5 Results of CCF Analysis
The results of the CCF analysis are shown in Table 11 and Table 12. Each table provides the betas

used for each CCCG. Note the categories, Individual, Rack, Division, and ALL, correspond to the
CCCGs. The CCCG All contains all the identical components within the RTS. Not all components have
every CCCG category; hence, there are not Rack or Division CCCGs for each component of the RTS.

Table 11. Hardware failures and beta factors for each CCCG of RTS components.
Component Individual Rack Division All Total
BPs 3.322E-05 4.960E-06 1.816E-06 4.00E-05
(CCCG Beta) 0.124 0.0454 0.1694
LCL Processors 5.098E-05 6.901E-06 3.972E-06 2.942E-06 6.48E-05
(CCCG Beta) 0.1065 0.0613 0.0454 0.2132
DOMs 1.462E-05 1.175E-06 4.333E-07 1.729E-07 1.64E-05
(CCCG Beta) 0.07162 0.02642 0.01054 0.10858
Selective Relay 5.556E-06 5.525E-07 9.164E-08 6.20E-06
(CCCG Beta) 0.08912 0.01478 0.1039
RTB-UV device 1.674E-03 2.604E-05 1.70E-03
(CCCG Beta) 0.01532 0.01532
RTB-Shunt device 1.182E-04 1.838E-06 1.20E-04
(CCCG Beta) 0.01532 0.01532
RTB RTSS1 4.302E-05 1.976E-06 4.50E-05
(CCCG Beta) 0.04392 0.04392
RTB RTSS2 4.302E-05 1.976E-06 4.50E-05
(CCCG Beta) 0.04392 0.04392

Table 12. Software failures and beta factors for each CCCG of RTS components

 Individual Rack Division All Total

𝑃(𝐶𝐶𝐶𝐺1) = (𝛽1)𝑄𝑡 = 8.494𝐸 − 6 (14)

𝑃(𝐶𝐶𝐶𝐺2) = (𝛽2)𝑄𝑡 = 2.320𝐸 − 5 (15)

𝑄𝐷 = 𝑃(𝐶𝐶𝐶𝐺1) + 𝑃(𝐶𝐶𝐶𝐺1) = 3.169𝐸 − 5 (16)

𝑄𝐼 = (1 − 𝛽𝑡)𝑄𝑡 = [1 − ∑(𝛽𝑤)

𝑤

1

] 𝑄𝑡 = 1.554𝐸 − 4 (17)

23

BPs 1.554E-04 2.320E-05 8.494E-06 1.871E-04
(CCCG Beta) 0.124 0.0454 0.1694

LCL Processors 1.472E-04 1.993E-05 1.147E-05 8.494E-06 1.871E-04
(CCCG Beta) 0.1065 0.0613 0.0454 0.2132

2.6 Summary and Conclusions
This chapter presented a CCF analysis of the highly redundant digital RTS. The chapter introduces

CCF modeling by providing essential definitions and attributes of CCFs. A CCF is the failure of two or
more components due to the same cause at the same time. For a CCF to occur, two factors must exist (1) a
root failure case that is common between two or more components and (2) the existence of a coupling
mechanism. It is the coupling mechanism (or factor) which creates the condition for a failure cause to
affect multiple components. CCF analyses depend on the identification of these two factors. A hazard
analyses identifies root failures leaving the coupling factors as a major focus area for this chapter.

When a group shares coupling factors, they form a CCCG. It is essential CCCGs be identified as part
of a proper CCF analysis. For the majority of analyses, the components that belong to a CCCG do not
belong to any other groups. This is because the components have no other coupling factors to share with
components outside of their existing group. A challenge arises when this is no longer the case. When
components can be grouped into multiple CCCGs, it becomes difficult to model their failure probabilities
using conventional methods, and there is the potential for erroneous and illogical results. Because of the
unique and highly redundant structure of digital RTS, there is a need to model several of its components
as part of multiple CCCGs.

With the case study as clear motivation, this work proceeded to investigate possible solutions to
modeling multiple CCCGs. The chapter describes a procedure for modeling the multiple CCCG scenario
using a combination of existing tools. The modified BFM was selected to model components with
multiple CCCGs as it was constructed for such a case. Normally CCF methods rely on historical data or
experience to define model parameters. However, with limited data available concerning the novel digital
RTS, a solution for quantifying model parameters had to be found. Without the parameters, the modified
BFM would not work. Several elicitation methods were reviewed, and PBF-2 was selected. The novel
application of PBF-2, together with the modified BFM, allows for a successful quantification process for
the multiple CCCGs under a limited-data scenario.

Several aspects of CCF modeling within the IRADIC technology remain for future work. First, the
goal of the PBF-2 is to define a CCF parameter (beta) whose value reflects the quality of a component’s
defenses against CCF. The method only considers eight sub-factors for assessing beta. The PBF-2 model
can be improved and even tailored for software-related CCFs. There have been other publications
indicating important factors which affect a component’s CCF probability. Some factors address specific
coupling mechanisms. The PBF-2 could be improved by incorporating additional sub-factors. The Cause-
Defense matrix formalism provides a structure that may lend itself to an improved PBF-2. Of course, each
of these improvements would remain part of the limited-data focus. Once data is available, such a method
is no longer needed for an elicitation process. The modified BFM can also be improved. In its current
form the method, like other ratio-based methods, it is limited to identical components with identical total
failure probabilities; future work may provide guidance for when this case is no longer true.

In conclusion, the CCF modeling process developed for this work provides an effective means of
quantification given the scope of the case study. Despite the known limitations, the method provided a
means to account for software CCFs in PRA for a limited-data scenario. Future collaborations with
industry partners may afford our team the opportunity to investigate the data-sufficient scenario. In this
case, there will be many opportunities to improve our models. In any case, there remain avenues to
explore in the upcoming fiscal years.

24

3. CONSEQUENCE ANALYSIS OF A GENERIC PWR MODEL WITH
IMPROVED FAULT TREES

SAPHIRE is a probabilistic risk and reliability assessment software tool developed and maintained by
INL for the U.S. NRC [29]. This chapter documents the consequence analysis of a generic PWR
SAPHIRE model with improved digital RTS and ESFAS FTs. Section 3.1 describes the generic PWR
SAPHIRE model. In Section 3.2, the scenario to be analyzed is introduced as well as the original event
tree (ET) models for these scenarios including a FT for the failure of an analog RTS and one CCF basic
event for the ESFAS failure. Section 3.3 compares the original FTs for analog RTS and ESFAS and the
new FTs for digital RTS and ESFAS. Results for consequence analysis of these selected ET models are
discussed in Section 3.4.

3.1 Introduction of INL Generic PWR SAPHIRE Model
In past decades, SAPHIRE has been widely used to model plant response to both internal hazards

(e.g., general transients, loss of offsite power, and loss of feedwater) and external hazards (e.g., seismic,
fire, external flooding, and high wind). SAPHIRE 8 is a powerful PRA software that has both the basic
PRA modeling capabilities such as creating event trees and fault trees, defining and assigning basic event
failure data, linking and solving event trees and fault trees, documenting and reporting the results, and the
advanced capabilities such as integrated Level 1 and Level 2 PRA analysis, performing sensitivity and
uncertainty analyses, and conducting specialized analyses for the NRC’s Accident Sequence Precursor
program and Significance Determination Process. [43]

A generic internal events PRA model was developed at INL using SAPHIRE 8 for a typical PWR
plant for the accident scenario analysis with various initiating events, which has been applied for different
purposes including plant-level scenario-based risk analysis for Enhanced Resilient Plant (ERP) during
station black-out (SBO) and loss-of-coolant accident (LOCA) [43], risk-informed analysis for an ERP
with Accident Tolerant Fuel (ATF), optimal use of Diverse and Flexible Coping Strategy (FLEX), and
new passive cooling systems [44] [45]. There are 24 ETs included in this generic PWR SAPHIRE model,
as listed below:

• EQK-BIN-1: Seismic Initiator (0.05 - 0.3g)
• EQK-BIN-2: Seismic Initiator (0.3 - 0.5g)
• EQK-BIN-3: Seismic Initiator (> 0.5)
• INT-ISL-HPI: ISLOCA IE 2-CKV HPI interface
• INT-ISL-LPI: ISLOCA IE 2-CKV LPI interface
• INT-ISL-RHR: RHR pipe ruptures
• INT-LLOCA: LARGE LOCA
• INT-LOACA: LOSS OF VITAL 4160V AC BUS A
• INT-LOCCW: LOSS OF CCW INITIATING EVENT
• INT-LOCHS: LOSS OF CONDENSER HEAT SINK
• INT-LODCA: LOSS OF VITAL 125 VDC BUS A
• INT-LODCB: LOSS OF VITAL 125 VDC BUS B
• INT-LOMFW: LOSS OF MAIN FEEDWATER
• INT-LONSW: LOSS OF NSW COOLING INITIATING EVENT
• INT-LOOPGR: LOSS OF OFFSITE POWER INITIATOR (GRID-RELATED)
• INT-LOOPPC: LOSS OF OFFSITE POWER INITIATOR (PLANT-CENTERED)
• INT-LOOPSC: LOSS OF OFFSITE POWER INITIATOR (SWITCHYARD-RELATED)
• INT-LOOPWR: LOSS OF OFFSITE POWER INITIATOR (WEATHER-RELATED)
• INT-MLOCA: MEDIUM LOCA
• INT-SGTR: SG TUBE RUPTURE

25

• INT-SLBOC: STEAM LINE BREAK OUTSIDE CONTAINMENT
• INT-SLOCA: SMALL LOCA
• INT-TRANS: GENERAL PLANT TRANSIENT
• INT-XLOCA: EXCESSIVE LOCA INITIATING EVENT.

3.2 Scenario Selections
This project applies SAPHIRE 8 for the FT development of DI&C system and combines these

improved FTs with the existing generic PWR ET models. The consequence analysis of DI&C failures
documented in this report covers the following accident scenarios: INT-TRANS (initiating event - general
plant transient) with ATWS (anticipated transient without scram), LOSC (loss of seal cooling), SBLOCA
(small-break loss-of-coolant accident) and MBLOCA (medium-break LOCA). These five accident ETs
are respectively shown from Figure 7 to Figure 11. INT-TRANS is selected here for the DI&C
consequence analysis because it shows relatively significant impacts of digital failures to key plant
responses. RTS and ESFAS failures are treated as initiating events or important basic events included in
cut sets that have significant contributions to change of CDF (∆CDF).

26

Figure 7. Generic PWR ET for general plant transient (INT-TRANS).

27

Figure 8. Generic PWR ET for INT-ATWS.

28

Figure 9. Generic PWR ET for loss of seal cooling (INT-LOSC).

29

Figure 10. Generic PWR ET for small-break LOCA (INT-SLOCA).

IE-SLOCA

SMALL LOCA

RPS

REACTOR TRIP

AFW

AUXILIARY FEEDWATER

HPI FAB

FEED AND BLEED

SSCR

SECONDARY SIDE COOLING
RECOVERED

SSC

COOLDOWN (PRIMARY &
SECONDARY)

LPI

LOW PRESSURE INJECTION

RHR

RESIDUAL HEAT REMOVAL

HPR

HIGH PRESSURE RECIRC

LPR

LOW PRESSURE RECIRC # End State
(Phase - CD)

1 OK

2 OK

3 CD

4 OK

5 CD

6 OK

7 OK

8 CD

9 CD

SSC1 10 CD

11 OK

12 OK

13 CD

14 OK

15 CD

16 OK

17 CD

18 CD

19 CD

30

Figure 11. Generic PWR ET for medium-break LOCA (INT-MLOCA).

31

3.3 Original and Improved Fault Trees for HSSSR DIC Systems
3.3.1 Original Fault Tree for Reactor Trip System

The original RTS-FT in the generic PWR SAPHIRE model has identified analog/hardware failures in
detail. The main logic of original RTS-FT is shown in Figure 12. A two-train analog RTS was modeled;
the main failure modes include electric failures, CCF of rod cluster control assembly (RCCA) fail to drop,
contribution of seismic events, operator errors, and RTS failures during test and maintenance.

This FT was quantified with SAPHIRE 8 using a truncation level of 1E-12, RTS failure probability is
4.288E-6 with five cut sets. Table 13 lists these cut sets for the original RTS-FT; it shows the main
contributed basic events are the CCF of reactor trip breaker A, B and CCF of RCCA, which contribute
about 65.77% of the total RTS failure. Results indicate hardware CCFs are the main concerns for the
failure analog safety-related redundant I&C systems.

Figure 12. Main fault tree of original RTS-FT in the generic PWR SAPHIRE model.

Table 13. Cut sets for the original RTS-FT.
Probability Total % Cut Sets
1 1.610E-6 37.55 RPS-BME-CF-RTBAB
2 1.343E-6 31.33 RPS-CCP-TM-CHA, RPS-TXX-CF-6OF8, RPS-XHE-XE-

NSIGNL
3 1.210E-6 28.22 RPS-ROD-CF-RCCAS
4 1.040E-7 2.43 RPS-UVL-CF-UVDAB, RPS-XHE-XE-SIGNL
5 2.052E-8 0.48 RPS-CCP-TM-CHA, RPS-TXX-CF-4OF6, RPS-XHE-XE-

NSIGNL
Total 4.288E-6 100 -

32

3.3.2 Original Fault Tree for Engineered Safety Features Actuation System
In the original generic PWR SAPHIRE model, ESFAS failure is presented using a CCF of ESF

actuation signal in both Train A and B, named ESF-VCF-CF-TRNAB with a probability as 6.420E-4.
These CCF basic events are used in the FTs of several top events in IE-TRANS scenarios including AFW
(representing failure of auxiliary feedwater), AFW-ATWS (representing failure of auxiliary feedwater for
ATWS scenarios), HPI (representing failure of high-pressure injection), and LPI (representing failure of
low-pressure injection). It should be noted another basic event is used to represent “operator fails to
manually initiate safety features,” which will be replaced by an integrated FT representing failure of
digital HSI and operator errors in future work.

Figure 13. Main FT of HPI failure in the generic PWR SAPHIRE model where CCF of analog ESFAS is
considered.

3.3.3 Improved Fault Tree for Digital Reactor Trip System
The integrated FT for the failure of 4-division RTS is added into the generic PWR SAPHIRE model

and quantified in this section. This RTS-FT was developed using RESHA in FY-20 [18] and quantified
using BAHAMAS in FY-21. Compared with the original FT for a 2-train analog RTS, this improved
RTS-FT keeps part of failure modes: CCF of RCCA fail to drop, contribution of seismic events, operator
errors, and RTS failures during test and maintenance and extends the electric failures to an integrated
automatic RTS failure including both hardware and software failures. The main logic of this integrated
RTS-FT is displayed in Figure 14. (please contact Han Bao han.bao@inl.gov for more details about this
FT).

This FT was also quantified with SAPHIRE 8 using a truncation level of 1E-12, RTS failure
probability is 1.270E-6 with 27 cut sets. Table 14 lists part of these cut sets with significant contributions.
Compared with the original RTS-FT, the total failure probability of RTS system is reduced about 50%.
Mechanical CCF of RCCA becomes the main contributor (>95% of total), the software CCFs do not
significantly affect the reliability of digital RTS because of the highly redundant design and high
reliability of PLC-based digital components.

mailto:han.bao@inl.gov

33

Figure 14. Main fault tree of improved RTS-FT using IRADIC technology.

Table 14. Cut sets for the improved RTS-FT.
FT Name # Probability Total % Cut Sets

Improved
RTS-FT

1 1.210E-6 95.25 RPS-ROD-CF-RCCAS

2 2.052E-8 1.62 RPS-CCP-TM-CHA, RPS-TXX-CF-4OF6, RPS-
XHE-XE-NSIGNL

3 1.976E-8 1.56 RPS-XHE-XE-SIGNL, RTB-SYS-2-HD-CCF
4 1.976E-8 1.56 RPS-XHE-XE-SIGNL, RTB-SYS-1-HD-CCF
Total 1.270E-6 100 -

Original
RTS-FT Total 4.288E-6 100 -

3.3.4 Improved Fault Tree for Digital Engineered Safety Features Actuation
System

The integrated FT for the failure of 4-division ESFAS for the actuations of AFW, HPI, and LPI is
added into the generic PWR SAPHIRE model and quantified in this section. This ESFAS-FT was
developed using RESHA in FY 2020 [19] and quantified using BAHAMAS in FY 2021. Compared with
the original ESFAS-CCF, this integrated ESFAS-FT has a complicated logic to match the 4-division
digital ESFAS structure deployed in APR-1400, as shown in Figure 15. More details about this integrated
ESFAS-FT can be found in [19]. (please contact Han Bao han.bao@inl.gov for more details about this
FT).

This FT was also quantified with SAPHIRE 8 using a truncation level of 1E-12, ESFAS failure
probability is 2.600E-5 with 13 cut sets. Table 15 lists part of these cut sets with significant contributions.
Compared with the original ESFAS failure, the total failure probability of ESFAS system is significantly
reduced. Hardware CCF of ESF-component interface modules (ESF-CIMs) becomes the main
contributor, and the software CCFs do not significantly affect the reliability of digital RTS because of the
high-redundant design and high reliability of PLC-based digital systems.

mailto:han.bao@inl.gov

34

Accordingly, the impact of ESFAS failure to the actuations of safety features were estimated by
solving the FTs of AFW, AFW-ATWS, HPI, and LPI; results are listed and compared in Table 16. All the
failure probabilities of these safety features have been reduced due to the decrease of ESFAS failure
probability.

Figure 15. ESFAS functional logic.

Table 15. Cut sets of the improved ESFAS-FT.
FT Name Probability Total % # of Cut Sets
Improved ESFAS-FT 2.600E-5 100 13
Original ESFAS failure 6.420E-4 100 1

Table 16. Comparison of the top events with original ESFAS-CCF basic event and improved ESFAS-FT.

Top Event
Probability # of Cut Sets
Original New Original New

Failure of AFW 1.487E-5 1.240E-5 1539 1551
Failure of AFT-ATWS 2.367E-4 2.343E-4 906 918
Failure of HPI 1.104E-5 9.803E-6 1163 1172
Failure of LPI 8.416E-4 2.258E-4 1567 1579

35

3.4 Accident Scenario Analysis for General Plant Transient
In this section, IE-TRANS, IE-SBLOCA, and IE-SBLOCA ET tree quantification results are

discussed. As IE-ATWS and IE-LOSC are sub-ETs of IE_TRANS developed in the generic PWR
SAPHRIE model, they will be discussed in the section on INT-TRANS.

3.4.1 INT-TRANS
The generic PRA model representing general plant transient as INT-TRANS was shown in Figure 7.

The IE-TRANS ET was quantified with SAPHIRE 8 using a truncation level of 1E-12. Table 17
compares the quantified CDF with original and new ETs. The original total IE-TRANS CDF is 1.073E-
6/year and half-reduced to 5.795E-7/year with the new FTs. There are 16 non-zero CDF sequences out of
a total of 145 INT-TRANS accident sequences (i.e., the sequence end state is core damage).

INT-TRANS:21-16 from ATWS scenarios is one of the most risk-significant sequences with a CDF
reduced from 5.388E-7/year to 1.596E-7/year and contributes 27.5% of the CDF of improved INT-
TRANS. In this sequence, RTS fails to trip the reactor; primary and secondary side depressurization are
not successful. Core damage occurs as long-term cooling cannot be established.

INT-TRANS:20 from TRANS scenarios is another risk-significant sequence with a CDF reduced
from 3.895E-7/year to 3.286E-7/year, contributing 56.7% of the CDF of improved INT-TRANS. In this
sequence, RTS successfully trips the reactor, core damage occurs as neither auxiliary feedwater is not
available nor HPI could provide makeup water to the reactor coolant system.

Table 17. Comparison of INT-TRANS ET quantification results.

Sequence
CDF # of Cut Sets

Original ET Improved ET ∆ CDF/
Original CDF

Original
ET

Improved
ET

INT-TRANS:21-16 5.388E-07 1.596E-07 -70.38% 51 38
INT-TRANS:20 3.895E-07 3.286E-07 -15.64% 1060 1047
INT-TRANS:21-14 7.262E-08 2.150E-08 -70.39% 49 18
INT-TRANS:02-02-09 5.830E-08 5.830E-08 0 1248 1248
INT-TRANS:19 8.132E-09 6.738E-09 -17.14% 282 236
INT-TRANS:02-03-09 2.731E-09 2.731E-09 0 387 387
INT-TRANS:02-02-10 9.546E-10 9.546E-10 0 168 168
INT-TRANS:21-15 7.568E-10 2.124E-10 -71.93% 102 29
INT-TRANS:02-04-10 5.865E-10 5.865E-10 0 142 142
INT-TRANS:02-14-10 1.994E-10 1.994E-10 0 81 81
INT-TRANS:02-03-10 7.653E-12 7.653E-12 0 4 4
INT-TRANS:02-09-09 7.558E-12 7.558E-12 0 4 4
INT-TRANS:02-06-09 7.558E-12 7.558E-12 0 4 4
INT-TRANS:02-08-09 7.558E-12 7.558E-12 0 4 4
INT-TRANS:02-07-09 2.287E-12 2.287E-12 0 2 2
INT-TRANS:02-10-09 2.287E-12 2.287E-12 0 2 2
Total 1.073E-6 5.795E-7 -45.99% 3590 3414

36

3.4.2 INT-SLOCA
The generic PRA model representing small-break LOCA as INT-SLOCA was shown in Figure 10.

The INT-SLOCA ET was quantified with SAPHIRE 8 using a truncation level of 1E-12. Table 18
compares the quantified CDF with original and new ETs. The original total INT-SLOCA CDF is 7.784E-
8/year and reduced to 7.512E-8/year with the new FTs. There are seven non-zero CDF sequences out of a
total of 10 INT-SLOCA accident sequences (i.e., the sequence end state is core damage).

INT-SLOCA:03 is the most risk-significant sequences with a CDF of 6.433E-8/year and contributes
85.6% of the CDF of improved INT-SLOCA. In this sequence, RTS successfully trips the reactor, and the
auxiliary feedwater and HPI are available. Core damage still occurs, as long-term low-pressure cooling
cannot be established.

Table 18. Comparison of INT-SLOCA ET quantification results.

Sequence (with
CDF > 1E-9)

CDF # of Cut Sets
Original
ET

Improved
ET

∆ CDF/
Original CDF Original ET Improved ET

INT-SLOCA:03 6.433E-08 6.433E-08 0 564 564
INT-SLOCA:05 2.867E-09 2.867E-09 0 97 97
INT-SLOCA:09 7.386E-09 6.647E-09 - 10.01% 142 142
Total 7.784E-8 7.512E-8 - 3.49% 838 838

3.4.3 INT-MLOCA
The generic PRA model representing medium-break LOCA as INT-MLOCA was shown in Figure

11. The INT-MLOCA ET was quantified with SAPHIRE 8 using a truncation level of 1E-12. Table 19
compares the quantified CDF with original and new ETs. The original total INT-MLOCA CDF is 6.279E-
7/year and reduced to 5.032E-7/year with the new FTs. There are eight non-zero CDF sequences out of a
total of nine INT-MLOCA accident sequences (i.e., the sequence end state is core damage).

INT-MLOCA:03 is the most risk-significant sequences with a CDF of 4.917E-7/year and contributes
97.7% of the CDF of improved INT-MLOCA. In this sequence, RTS successfully trips the reactor, and
the auxiliary feedwater and HPI are available. Core damage still occurs, as long-term low-pressure
cooling cannot be established.

The most significant CDF reduction appears in INT-MLOCA:10 from 1.305E-07 to 7.348E-09,
which contributes to 98.8% of ∆ CDF. In this sequence, RTS successfully trips the reactor, and the
auxiliary feedwater is available. Core damage still occurs as neither HPI nor LPI can be established for
long-term cooling. According to the change of failure probability of LPI shown in Table 16, LPI
availability was highly increased by adding a FT of a more reliable 4-division digital ESFAS instead of
using a conservative CCF. Improved ET models can provide a more accurate prediction for ESFAS
failure and relevant sequences.

37

Table 19. Comparison of INT-MLOCA ET quantification results.

Sequence (with
CDF > 1E-9)

CDF # of Cut Sets
Original
ET

Improved
ET

∆ CDF/
Original CDF Original ET Improved ET

INT-MLOCA:03 4.917E-07 4.917E-07 0 722 722
INT-MLOCA:05 1.870E-09 1.870E-09 0 47 47
INT-MLOCA:07 8.999E-11 8.999E-11 0 26 26
INT-MLOCA:09 1.866E-09 1.866E-09 0 192 192
INT-MLOCA:10 1.305E-07 7.348E-09 -94.37% 47 47
INT-MLOCA:11 5.206E-10 2.778E-11 -94.66% 3 3
INT-MLOCA:12 5.320E-10 2.263E-11 -95.75% 8 2
INT-MLOCA:14 8.576E-10 2.540E-10 -70.38% 5 4
Total 6.279E-7 5.032E-7 -19.86% 1050 1043

3.5 Summary of Consequence Analysis
To compare the changes of CDF after adding integrated FTs of digital RTS and ESFAS to the generic

PWR ET models; in this chapter, consequence analysis has been performed based on INT-TRANS and
relevant accident scenarios. Integrated FTs of RTS and ESFAS include both software and hardware
failures, particularly CCF, that may occur in a 4-division digital RTS and a 4-divison digital ESFAS.
Results show the CDF of INT-TRANS accident scenarios are reduced significantly.

The original generic PWR SAPHIRE model has 24 event trees; most of them use a top event for the
failure of a 2-train RTS. Its detailed FT consists of hardware failures, operator errors, and external
hazards. ESFAS failure is modeled using a basic event as CCF of ESF actuation signal, which is
embedded in the FTs of relevant safety features including auxiliary feedwater, HPI, and LPI. This CCF
basic event is included in cut sets that have significant contributions to CDF.

This generic PWR SAPHIRE model represents the conditions of existing U.S. NPPs with traditional
analog HSSSR DI&C systems.

By adding the integrated FTs of 4-division digital RTS and ESFAS into the PRA models, the safety
margin obtained from the plant digitalization on HSSSR DI&C systems are quantitatively estimated. For
example, results show RTS failure probability is half-reduced from 4.288E-6 to 1.270E-6; LPI failure
probability greatly decreases from 8.416E-4 to 2.258E-4 due to the improvement of ESFAS-FT. This
explains the significant reduction of CDF in these analyzed accident scenarios, as summarized in Table
20. More accident scenarios will be analyzed in FY 2022.

Plant modernization including the improvement of HSSSR DI&C systems such as RTS and ESFAS
will make great benefits to plant safety by providing more safety margins to accident management.

Table 20. Changes of ET CDFs by adding digital RTS and ESFAS FTs into ETs.
ETs Original CDF New CDF ∆ CDF ∆ CDF/ Original CDF
INT-TRANS 1.073E-6 5.795E-7 - 4.935E-7 - 46%
INT-SLOCA 7.784E-8 7.512E-8 - 2.720E-9 - 3.4%
INT-MLOCA 6.279E-7 5.032E-7 - 1.247E-7 - 20%

38

4. ORTHOGONAL-DEFECT CLASSIFICATION FOR ASSESSING
SOFTWARE RELIABILITY

4.1 Introduction
For the past decade, growing interest in digital control systems for NPP has led to the development of

numerous case studies advocating for digitization. Improvements in the plant monitoring and control
systems have the potential for faster detection through real-time network monitoring, boosting the overall
safety and reliability of the system (e.g., asset performance management [46]). New DI&C implemented
in the Korean OPR-1000 reactors [47] have already been added to the design of the APR-1400 reactor
[48]. However, with increased hardware digitalization and integration of advanced software, a
considerable amount of risk associated with CCFs and software single failures are also introduced.

In previous work, RESHA was applied to analyze the possible software hazards/basic events as well
as software CCFs that can occur through highly redundant systems. The process is an adaptation of the
STPA and HAZCADS methodologies and is a system-level analysis technique. It involves first
identifying the target underlying control structure and feedback responses between different hardware and
software modules. From there, a hardware FT is created to represent the possible failures associated with
the digital systems. STPA is then utilized to identify UCAs communicated between modules that can
potentially lead to a hazard. The identified UCAs are integrated into the hardware FT as software basic
events. Triggering events are also identified to provide context for each software basic event. Commonly
identified UCAs across different redundant divisions are classified as potential software CCFs. The
following work to the RESHA application is to quantify failures identified.

While no industry wide consensus has been reached regarding the best method to quantify software
failures, numerous methods have been presented. These approaches range from the use of evidence
supported BBN to test-based failure quantification through exhaustive testing. However, each method has
specific drawbacks related to the unique development conditions of each software. The proprietary nature
of software also makes failure quantification difficult from the perspective of external investigators due to
lack of available operational data. BAHAMAS, a methodology previously developed by this group,
presupposed insufficiency of data and instead analyzed the completeness of the software development life
cycle (SDLC) by examining the human elements of the design process. By assigning success probabilistic
values for each phase in the SDLC and linking the process via a BBN, the method was able to provide
preliminary failure quantification estimates. However, when operational and testing data are available, a
new more detailed method to analyze failure probabilities is needed.

In this chapter, a detailed method to quantify software hazards identified with the RESHA method is
presented and a case study is examined in next chapter. The method presumes operational and testing data
are readily available to the reviewer. The method referred as ORCAS leverages existing methodologies in
a unique combination to provide software specific failure quantification.

In instances where sufficient operational and development data are available, ORCAS attempts to
address how specific software defects relate to identified UCAs and affect the overall system reliability.
In contrast to RESHA, which is a top-down system analysis method, ORCAS examines the specific
quality assurance and developmental information during the design, implementation, and testing of base
software modules. The method is a bottom-up analysis method in that individual software modules and
the intra-relationship between them are closely scrutinized for defects. The specific defect information is
then used to inform on the overall system reliability by combining determined module failure
probabilities with the integrated fault tree from RESHA.

39

4.2 Technical Background
In this section, a brief literature review on existing hazard quantification methods for digital software

is conducted to provide context. Software hazards are notoriously difficult to quantify as each
methodology has significant drawbacks and limitations. Furthermore, each developer will have a
specialized software development process and quality assurance measures rendering generic methods
ineffective. While no solid consensus has been formed in industry, many different methods have been
proposed to address software failure probability. In this paper, the methods discussed are software
reliability growth models (SRGM), test-based analysis, and metric-based analysis. Bayesian belief
networks, while popular for software reliability, are evidence-based analysis methods and do not directly
quantify hazard likelihoods. Only BAHAMAS [20], previously developed by INL, is analyzed due to its
relevancy to RESHA.

4.2.1 Software Reliability Growth Models
The most well-known quantification methodology is SRGM. These methods use historical test data to

ascertain whether a particular piece of software has demonstrated an acceptable failure rate. As an input
requirement when developing the historical test databases, either the times between successive failures or
the number of failures during different test intervals must be known. The data is then used to fit model
parameters specific to the SRGM to predict future failure rate and testing hours required to achieve it.
Unfortunately, these parametric values are specific to each SDLC and are difficult to generalize. As a
result, while hundreds of SRGMs exist, each with slightly different assumptions, no one SRGM can
significantly outperform the other. In addition, the majority of SRGM methods also assume once a failure
is detected, the software can be repaired perfectly and instantaneously. Over time, this leads to reliability
growth of the software as more tests are conducted. This assumption is not always valid as software
repairs will sometimes add additional defects. While different SRGMs models have been proposed to
overcome shortcomings, such as different empirical formulas, failure rate over time, repair rate, etc. No
one SRGM can cover all limitations. In IEEE Standard 1633 [49], SRGMs can be broadly categorized
into three high-level categories: exponential Non-Homogeneous Poisson Process (NHPP), non-
exponential NHPP, and Bayesian. In this paper, only exponential NHPP models are examined due to their
popularity and simplicity.

SRGMs in the category of exponential NHPP assumes the failure rate decreases exponentially with
time, and the failure rate is proportional to the number of current faults in the software. The failure rate
also remains constant over the intervals between failure detections. Model parameters are fitted to the
historical test database after sufficient information has been collected, and evaluation of performance is
determined based on fit accuracy. Some examples of models that fall under this category include [50],
[51], [52], and [53].

While exponential NHPP SRGMs have been utilized extensively by the industry, application in ultra-
reliable software is limited. This is because safety software is inherently simplistic in design to mitigate
potential failure modes resulting in long mean time between failures (MTBF). The lack of consecutive
failure data causes the estimation of software reliability extremely sensitive with larger error bars in
addition to requiring long testing making SRGMs resource intensive.

4.2.2 Bayesian Belief Networks
Bayesian belief networks are probabilistic graphical models that depict a set of random variable nodes

and their conditional interdependencies in a directed acyclic graph. Here, “directed” defines the direction
of impact a node can have on other nodes. The BBN’s direction is typically one-way such that a child
node cannot impact the parent node. “Acyclic” forces the BBN to not have any closed paths or loops,
where the transition of N nodes will result in returning to the start node. Connections between nodes,
known as edges, signify dependencies between random variables. In a BBN, multiple end state child
nodes can exist, each representing a possible result from the BBN. An end node exists where there are no

40

departing edges only arriving edges. By considering the joint distribution of all parent nodes to an end
node, the probability of occurrence can be calculated. The popularity of BBNs is due to flexibility in
disparate sources of information. Factors, such as expert decision, test results, supporting evidence, etc.,
can all be incorporated into the BBNs when determining the end node.

However, each supporting evidence node must have a probability distribution assigned to it. These
distributions are known as prior distributions (or prior belief), and the shape and magnitude influence the
probability of the final results. When prior distributions are not known, uninformed distributions (also
known as uniform distributions) are used as an initial estimate. The chief limitation to this is poor or
skewed selection of prior distributions will significantly alter the distribution of the end node making the
uncertainty quantification vital for BBNs.

BAHAMAS is one technique utilizing BBNs previously developed by INL to quantify software
reliability. It was developed specifically for the reliability analysis of DI&C systems by analyzing the
completeness of the SDLC. In the analysis, one key assumption is that software failures result from
human errors during the SDLC and operational and test data was not readily available. This limitation of
acquirable data is realistic as many companies do not publicly share failure data. As such, THERP in
combination with BBN was utilized to quantify the potential failures associated in the SDLC.
Specifically, it looks at the various stages of development that may be required for a piece of software and
assigns a probability value for completion and adequacy. These values can then be propagated through the
various stages of the SDLC to estimate the overall software reliability of the system.

4.2.3 Test-Based Analysis
Test-based analysis is the most direct approach to failure rate quantification but is also the most

resource-intensive approach. By creating an exhaustive regime of tests, the functionality of software is
guaranteed through test verification. A test may comprise simply of an input to a function block and a
verification the output matches known or intended behavior (e.g., unit test). Test-based approaches
generally rely on an automated testing framework, such as TestMaster, to generate input sequences to the
function block. An “oracle” is also required to confirm the output to that test is correct. The key limitation
to testing lies in the testing environment and whether it can adequately reproduce the true operational
environment. Tests conducted in idealized environments that are under-representative of realistic
operational profiles can lead to under prediction of the failure rate. Furthermore, comprehensive testing of
large programs can be overly labor intensive and marginally beneficial at a certain point. While SRGM
were developed to address the second limitation, each software is case specific, and no generic method
has been adopted. Some notable examples of test-based analysis include computer aided software testing
(CAST), Lint, and Selenium.

4.2.4 Metric-Based Analysis
Metric-based analysis uses good programming practices and quality software features as a way to

measure the potential reliability of DI&C systems. Characteristics deemed inherent to reliable DI&C
systems, such as requirements traceability, are used as a surrogate to gauge the probability of failure-free
operation of a piece of software. The methodology assumes highly reliable software will also demonstrate
completeness or “high marks” in each software quality metric. Through both implicit and explicit
methods during the analysis of the system, design defects in the system can be identified in the various
stages of the application development. Once metrics are quantified, through a variety of different
estimation techniques, the reliability of the software can be predicted. Although the regulatory review
process does not yet consider metric-based analysis for the assessment of current DI&C systems, the
principles behind the methodology are rooted in highly effective software development processes
recommended by industry experts.

Multiple publications by the NRC have already investigated metric-based methods, specifically the
Reliability Prediction System (RePS). In NUREG-0019 [54], a preliminary study on the types of metrics

41

industry experts believe to represent quality software was performed. From that analysis, 40 software
engineering measurements were identified, and their respective capability at predicting software
reliability systematically ranked. In NUREG/CR-6848 [55], a small-scale validation study was conducted
on the personnel access control system (PACS), and later in NUREG/CR-7042 [56], a large-scale
validation study was conducted on a typical reactor protection system (RPS). The overall conclusion from
the studies is using key software engineering metrics as a tool to bridge measures and reliability should be
incorporated in the analysis of safety critical software [56].

However, while 40 metrics were identified in the original paper [54], not all methods were shown to
be applicable or even accurate at the prediction of software reliability. Correlation-based metrics that
utilized historical data were shown to be the most inaccurate at predicting reliability. For example, a
historical correlation-based metric used in each study was the Gaffney “bugs per line of code” estimate
[57]. This estimate was inaccurate in reliability prediction and exhibited an inaccuracy factor on the order
between 10 to 1000. This is attributed to the specificity of software development and is unique for each
company, team, and objective and each software piece should be treated as individual cases. It was found
the use of historical data to generalize correlation to new software is inherently error-prone and
susceptible to large inaccuracy factors.

Other metrics not based on correlations, but rather the actual source code and documentation were
shown to be much more robust when determining software reliability. Requirements traceability, for
example, is a semantic-based defect tracking method that attempts to map the software requirements
specifications (SRS) document to the actual source code. This method directly analyzes both the source
code and developmental documents to pinpoint potential defects located in the code and is case specific.
Coverage factor is another prime example for highly relevant software metrics. The method relies on
determining the number of tests implemented at the different levels of software to ensure each
requirement has been adequately assessed and meets acceptance criteria. The testing requirements are
reminiscent to the test-based methods; however, they incorporate additional development information
when formulating the test space and can detect requirement inadequacies during the measurement
process. The inaccuracy factor for these two metrics was on the order of ten or less.

4.3 Methodology
In this section, the methodology to conduct software reliability quantification is presented. The

method proposed is referenced as ORCAS. It is an extension of the RESHA methodology and attempts to
quantify the probability of each basic event identified from the integrated FT. Whereas RESHA is a
qualitative methodology to determine software failures and software based CCFs, ORCAS strives only to
quantify identified software failures through unique combinations of strong existing methods.

4.3.1 Terminology
To support the methodology and for clarity, commonly used terms in this section are defined first. A

defect or fault is defined as a deficiency in the development wording or coding that may result in an
unexpected or undesirable result. The terms are used interchangeability but represent the same definition.
Defects may occur either as a miswording problem in the requirements or design specification of the
software or as incorrect implementation within coding. A defect can also be a missing element, either as a
missing vital requirement of the software or as a missing code block that implements a function. The
former is considered an implementation defect as while the functionality was incorporated into the design
and code, the exact method is flawed, limited, or insufficient. The latter is considered a design defect as a
vital feature which should have incorporated, either in the design or code, is not there and would require a
formal design change to implement. While not all defects or faults lead to software failures, generally
higher defect counts in the code lead to higher failure rates. In addition, defects come in all different
flavors, ranging from superficial to mission critical. Superficial defects could include a spelling mistake
on the display monitor of a control system while a mission critical defect could result in the
miscalculation of core flow rate leading to core damage. In this report, superficial defects, for example

42

those not identified in the integrated FT, are ignored and assumed to not affect the overall reliability of
the system. Ultimately, higher mission critical defects cause lower reliability rates of the software.

Reliability is defined as the probability of failure-free continuous operation over a specified period.
Conversely, failure rate is the number of failures within the same specified period [58]. These terms are
used interchangeably as both measures are directly correlated to each other. Continuous operation is
specified here due to the difference in actuation systems and control systems. The former does not operate
continuously but instead only in specific instances of demand; therefore, it does not have a continuous
failure rate. Instead, a failure rate on demand is used to quantify the reliability of actuation systems.
Control systems, on the other hand, operate at all times and will only fail when a specific set of conditions
are met. The continuous failure rate is thus how long the control system will operate before it encounters
a set of trigger conditions that will cause the system to fail. In this report, only the continuous failure rate
and continuous reliability are used.

Failures and losses are events that cause a specified loss to the operator, whether economic,
environmental, human, or structural. Economical losses can include spurious trip scenarios where capital
is lost by the company due to unavailability or outages triggered by the software. Environmental losses
encompass release of radioactive products into the atmosphere, ground, or water systems that exceed
allowed regulation release limits. Human losses include injury or loss of life either directly or indirectly
due to a software event. Lastly, structural failures or losses, include damage to the reactor vessel, system,
building, or grounds. For example, core damage due to failure to detect and trip the reactor from the
control software.

UCA, a term specified from STPA, is a control action to a module that under a particular context and
environment will lead to a loss. Here, control actions are specified as an action a controller makes to the
controlled process that changes its internal state in response to feedback from the process. For example, a
pump adjusting the input power in response to increases or decreases in flow rate. An additional term,
unsafe information flow (UIF), is also introduced to categorize unsafe feedback from the controlled
process that changes a controller's state, but the controller itself does not inherently have control. For
example, core monitoring software receiving faulty sensor data signaling a spurious event. In such case,
the software does not have the ability to control the core sensors but can still fail if the necessary
protections were not built into the program. In these instances, under the wrong conditions, both will
result in a loss.

The context and environment that causes the loss is defined as a triggering event (or trigger). The
triggering event, within software, could be a particular operational profile or input sequence that causes
unexpected or undesirable software response. Inappropriate human operations of the software are also
considered triggers—for example, incorrect set points to a comparator. The different expected operational
conditions (i.e., startup, transient, and shutdown) are all possible triggering events of software failures.
Environmental conditions, such as excessive heat, cooling, flooding, etc., are also possible triggers.

4.3.2 Overview
In this section, an overview to the ORCAS approach is presented (Figure 16). On the left hand, a

generic SDLC is shown. Within all generic SDLCs, there are three key stages to development: software
requirements formulation, software design, and software implementation and testing. While not all
SDLCs may follow this procedure exactly, all SDLCs will cover each of these stages at least once. From
there, the software product information is what is analyzed for reliability. Ideally, the software product
information should include the source code, the SRS document, and the software design description
(SDD) document. Additional documents, such as the systems test document (STD) if available, can also
be used to analyze software reliability. Section 4.3.3 describes what information is required for this step.

43

Figure 16. Overall workflow of software reliability quantification method ORCAS.

The SRS and SDD documents are used to conduct the first hazard analysis method, RESHA. From a
top-down perspective, RESHA identifies qualitatively potential software hazards via STPA and
HAZCADS. The top-down approach is able to identify key high-level failures between different
component interactions. The output from the RESHA is the integrated FT which incorporates hardware,
software, and potential software CCFs. While a top-down approach is meaningful in identifying hazards,
it does not pinpoint defects correlated to identified hazards.

By supplementing RESHA with a bottom-up hazard analysis technique, defects can be identified and
quantified for each software module of concern. In this case, the bottom-up analysis technique utilized in
this report is an abbreviated version of the metric-based RePS [54]. Four metrics are utilized from RePS:
requirements traceability, defect density, coverage factor, and test coverage. These metrics were selected
due to the directness of analysis, examining source code and documents for defects as opposed to
depending on historical correlations. The first two analysis techniques identify design defects in the
development process and are aimed at finding requirement deficits. The latter two identify
implementation defects in the source code and deficits in acceptance tests. Metric values are not used to
quantify software failure probability (as is done in RePS), instead are only used to identify design and
implementation defects. The outcome from the metric analysis is the design and implementation defects
for each software module. Section 4.3.5 clarifies on how each metric is utilized to identify defects.

Post metric analysis of the software, unacceptable design and implementation defects may be
discovered that are undesirable from the perspective of the developer. The developer may choose to return
to the SDLC and use the information procured from ORCAS to enhance or improve the software design.
If defects are undesirable but acceptable (i.e., cosmetic), the developers may also choose to continue the
analysis to determine failure probabilities of individual modules and the overall system.

Once relevant defects have been determined, the connection to software basic events in the integrated
FT can be made. While some defects will have clear and direct relationships to hazardous UCAs /UIFs

44

(and can be coupled directly), the difficulty lies in the linkage between defects that have unclear impact
on overall software reliability. In such cases, a methodology developed by IBM called orthogonal defect
classification is used to link the unclear defects to the identified software basic events within the
integrated FT. The orthogonal defect classification (ODC) methodology systematically categorizes
identified defects into distinct software impact groups. Each software impact group is then assumed to
impact a set of UCAs/UIFs based on the semantic description of both the UCAs/UIFs and the ODC
category. Section 4.3.8 clarifies the connection between UCA/UIF and ODC classes.

From there, the identified implementation defects are quantified through test-based analysis and
operational data. This method produces the single failure rate. To ease exhaustive testing requirements, T-
way testing is recommended as a reduced-order testing framework. The testing conditions and inputs act
as triggering conditions for identified defects and quantify the probability of each failure occurrence.
Section 4.3.6 clarifies on the methodology to develop T-way testing and fault probability.

For CCF rates, the UPM, described in Section 2.3.3 is used. The single failure rate is combined with a
pre-determined beta factor to calculate the CCF rate. The beta factor is derived based on the software and
hardware environmental and development conditions. Sections 2.3.3 and 4.3.7 clarify how to determine
CCF rates and beta-factor values.

Lastly, after fault probability is quantified and classified, the values can be included into the
integrated FT and unacceptable software failure probability as well as cut sets can be identified. During
ORCAS, if at any stage an unacceptable defect (whether design or implementation) is detected, a return to
the SDLC may be required to resolve defective software features.

4.3.3 Software Requirements Specification and Software Design Description
This is the most important step when determining software reliability. The collection of software

requirements, through the SRS document, and the collection of implementation information, through the
SDD document, is vital in determining the overall system architecture and potentially any latent design
defects. The required information in the SRS include:

• Requirements specification for the target system

• Requirements specification for the application software

• Requirements specification for the system software

• Success criteria for algorithmic verification

• Success criteria for functional and non-functional verification

• Required target failure rates.

Within the SRS document, both functional and non-functional program requirements should be
clearly outlined. Here, a functional requirement specifies something the software must be capable of
performing. These requirements define the behavior of the system to adequately perform as expected and
answers the question “what does the program need to do?” A non-functional requirement describes how
the software must achieve the outlined goal—for example interface requirements, constraints, or
performance requirements. These requirements attempt to answer, “how does the program need to do it?”
In addition, each document should clearly define specific software-hardware interactions, constraints
applied to the system, algorithmic simplifications, and software architecture.

4.3.4 Redundancy-guided Systems-theoretic Process Analysis
After the necessary requirements documentation is collected, the integrated FT can be build using the

steps outlined in the RESHA process [2]. As a general overview, each step is briefly explained below to
generate the integrated FT. Only Steps 1 through 5 are conducted, as Steps 6 and 7 are revised with the
ORCAS software quantification methodology.

45

Step 1: Create a detailed hardware representation of the digital system

In this step, a physical and literal representation of the underlying hardware is constructed based on
the source documentation collected previously. Specifically, the representation should identify
information flow and feedback between separate modules.

Step 2: Develop hardware FT for the top event of interest

Based on detailed hardware representation, FTs can be developed to identify potential hardware and
dependency failures. It is recommended for each event four different failure branches are included,
namely the hardware stochastic failure, the hardware design failure, the dependency failure, and an
unresolved software design failure branch (Figure 17). The first two failure branches describe the normal
wear on hardware as well as potential failures in hardware design constraints. The dependency failure
branch is allocated for when dependent signals from other components are missing causing a failure. The
last branch describes failures associated with software implementation or design. Identification of
software basic events and failure probability quantification is not required at this step.

Figure 17. Generic component failure and recommended failure branches.

Step 3: Determine UCAs/UIFs Based on a Redundancy-guided Application of STPA

In this step, an expanded version of STPA is applied to identify potential software failures. In the
original STPA, component interactions with other components leading to hazards are considered UCAs.
Specifically, a UCA is only possible when a controller gives a command and receives feedback
information from the dependent component that is a closed control loop (Figure 18). However, UIFs
leading to unanticipated program faults that are not necessarily caused by CA are also possible. In the
second scenario, a component provides fabricated or false data to another dependent component it relies
on for decision-making. The dependent component processes the false data and outputs false signals,
leading to a hazardous state. This results in two possible causes of software failures, either UCAs or UIFs.
Thus, the revised STPA is used to identify these two types of events.

Figure 18. (Left) Original STPA control diagram. (Right) Revised STPA diagram for RESHA.

46

The first step in STPA is to define the purpose of the analysis and to identify losses, hazards, and the
analysis scope. Defined losses are typical to any operational circumstance, while defined hazards are
specific to the system.

Step 4: Construct an integrated ft by adding applicable UCAS/UIFS as basic events

In this step, based on the selected top event of the FT, relevant unsafe software actions are added into
the hardware FT under the software design failure branch. The four UCAs identified in STPA including
the following: control action is missing when needed, control action is provided when not needed, control
action is provided too early, too late, or out of order, and control action is applied too long or stopped too
soon. From these four categories, six subcategories are defined to better separate different scenarios. The
re-classification serves only to specify what exactly the software failure is (Table 21). Multiple unsafe
actions may also appear in more than one location in the FTs due to the interdependency of system
components.

Table 21. Reclassified UCAs and UIFs from STPA.
STPA-defined Control Action RESHA-defined UCAs or UIFs
CA is missing when needed (A) CA/IF is missing when needed
CA is provided when not needed (B) CA/IF is provided when not needed
CA is provided too early, too late, or out of order (C) CA/IF is provided too early

(D) CA/IF is provided too late
(E) CA/IF is applied in the wrong order

CA is applied too long or stopped too soon (F) CA/IF is applied too long or too much
(G) CA/IF is stopped too early or applied too little

Step 5: Identify Software CCFs from Duplicate UCAs/UIFs within Integrated FT

Duplicate unsafe software actions that appear in the integrated FTs are considered software CCFs. For
divisions with no hardware or software diversity, a CCF can appear in all components as the failure
modes are the same and can triggered by the same event. Furthermore, depending on the level of
redundancy (i.e., division vs. system), different CCFs are possible.

4.3.5 Metric-Based Analysis
To determine software failure rate, two vital perspectives must be incorporated into the analyze of the

software. The first is the completeness and adequacy of software requirement design. As most software
failures are caused by inadequacies in constraint enforcement, this is reflected in poor SRS and SDD
documentation. For example, a requirement inadequacy could be where the input range for a software
module considers only the normal operating conditions and does have extended ranges for recovery
scenarios. The second is the correct translation of the SRS and SDD into source code. The “correctness”
of the translation is conventionally accomplished through acceptance tests and benchmarking against
experimental results of implemented algorithms as well as unit/integration tests between different
software modules.

The four metrics selected to analyze both perspectives include semantic analysis of the SRS and SDD
documentation as well as operational profile testing of the source code. This combination of software
quality assurance offers the robust coverage required by highly reliable software. In the following
sections, each metric is described in detail.

• Requirements Traceability

47

From IEEE guidelines [59], requirements traceability (RT) is a semantic analysis technique that
identifies the number of implemented requirements to the total number of listed requirements. This aids in
determining which requirements were not implemented in the design and implementation phases and
checks for overall coding completeness. RT does not confirm whether requirement development is
complete, rather only if the requirements were adequately met within the source code. This can also be
used to inform developers areas of code inadequacies and directions for future efforts. In instances where
the source code is not available (due to proprietary constraints), the SDD is assumed to be the source code
implementation. As the SDD is meant to be the detailed design of the source code, requirements not
explicitly implemented within the SDD are also assumed to not be present in the source code. Typically,
RT is composed of both forward and backwards requirements tracing in the documentation and code.

Forward tracing is where the SRS and SDD documents are scrutinized and compared to the source
code. Line by line tracing for which requirements are associated to which chunk of code should be
conducted. Any requirement identified in the SRS and SDD document but not present in the code is
tagged as a design defect. For example, if a module is required to acknowledge every 1 second a signal is
received but is not implemented in code, it is considered a design defect and can introduce risk to overall
software reliability.

Backward tracing is where the code is first examined line by line and associated with requirements
outlined in the SRS and SDD documents. Additional code that is implemented but not identified in the
documents is also considered a design defect as the introduction of undocumented code and can lead to
instability and increase software risk. For example, an additional constraint implemented in code but not
mentioned in the SRS can lead to specific case scenarios of failure. Additional unspecified requirements
implemented are counted as “Requirements Implemented” in the numerator below.

In instances where the source code is not available, the SDD is compared against the SRS in both
forward and backwards tracing. Identified design defects can also be further broken down into functional
and non-functional requirement defects. The metric is measured using the following equation and is
separated based on modules:

RT% =
Requirements Implemented

Requirements Listed

(18)

This metric is only used to determine which modules are insufficient in implementation and can be
used to inform the software designers development direction. The metric is not used in the quantification
of software failures. Ideally, a value of 100% suggests perfect requirements implementation. Less than
100% suggests some specified requirements were not implemented and greater than 100% suggests
additional unspecified requirement implementations. Both under and over are undesirable and can inform
which module(s) need additional development work. Additional attention should be noted if the number
of extra requirements is equal to number of missing requirements as this would also result in unity.

• Defect Density

From RT, a known limitation is the inability to determine whether requirement specifications are
complete. To compensate for this limitations, defect density (DD) is used to measure the effectiveness
and completion of the inspection process. DD also relies on semantic analysis of documentation but can
be the most subjective of the four metrics as it depends on independent inspectors to review completeness
of documentation and implementation at each stage of the SDLC. The inspections conducted are manual
examinations of the source code modules and documents to ensure compliance with both quality
assurance policies as well as product specifications and requirements. Inspection is conducted at all stages
of the SDLC (i.e., requirements, design, coding) with emphasis on tracking how detected defects are
remedied in later stages of the development. The premise behind DD is that defects detected early in the
SDLC but not remedied only amplify code instability due to hierarchical nature of code development

48

(e.g., object inheritance). The DD is thus the measure of the number of defects detected per line of code
during each of the inspection stages. In ideal inspection processes of the SDLC, the value of DD should
decrease over the stages of the project down to a minimum acceptable DD value (e.g., one defect per
thousand lines of code). The minimum acceptable DD is defined based on the quality assurance policy
adopted by the project.

In scenarios where the DD does not decrease over the SDLC, it is an indication the inspection process
is inadequate in detail, or the project checkpoints are separated too far from each other. The development
should be halted until the inspection process is corrected or the project checkpoints are redefined.

One limitation to the inspection process required by DD is that it can be ineffective for unstructured
projects (e.g., research) or projects that lack defined checkpoints. Thus, for the inspection to return
meaningful design defects, the project structure and the inspector must be committed to the inspection
process. Closely managed projects with guided quality management processes (e.g., NQA-1) that has
well-defined defect detection goals are ideal for the DD inspection process.

The DD inspection process generically contains seven steps: planning, overview, preparation,
inspection, discussion, rework, and follow-up. In the planning stage, the entrance criteria for selection are
first formulated. This specifies required qualifications for selected reviewers. The agenda as well as
materials to be inspected is then created in advance and distributed to the reviewers once selected. The
following plan is the overview process which updates inspectors that are not completely familiar with the
goals and scope of the project or inspection. In the preparation phase, details pertaining to the inspection
process should be reviewed by each inspector (e.g., quality compliance policy). The inspection phase is
where the code and documentation are scrutinized for consistency and compliance. Each inspector should
conduct the inspection independently and list all discovered defects in a report. After each inspector has
completed reviewing the material, a discussion on potential defect fixes can be conducted among all
inspectors and the project team. In the rework and follow-up phases, proposed fixes to the code are either
addressed or re-designed, and a report is submitted to detail what changes were made to remedy which
discovered defects. A detailed description of the review process can be found in [60].

The metric, derived from [56], is measured using the following equation and is separated based on
modules:

𝐷𝐷 =
1

𝐾𝐿𝑂𝐶
∑(𝐷𝑖 − 𝐹𝑖 − 𝑅𝑖)𝑗

𝑗

 (19)

Here 𝐷𝑖 is the unique defects detected at the current development stage, 𝐹𝑖 are the defects fixed up
until the current stage, and 𝑅𝑖 is the number of duplicate defects found by inspectors at the current stage.
The subscript 𝑗 indicates the inspector and the subscript 𝑖 indicates the stage of development.

This metric is only used to determine which stage(s) of the SDLC does not meet inspection goals and
require additional development. The metric is not used in the quantification of software failures, only the
process is used to detect defects in the code and documentation.

• Test Coverage

From IEEE guidelines [49], test coverage (TC) is a measure of the completeness of the testing
process. This aids in determining how many of the implemented requirements had a test associated with it
and were adequately tested. By determining the thoroughness of testing and potentially inadequate results,
TC can assist reviewers in identifying implementation defects in the source code. Furthermore,
independent test validation is conducted to verify tests are adequate and meet goals outlined by the SRS
and SDD. Implemented tests should cover different levels of software implementation; for example, unit
and acceptance tests should be implemented for each software module to ensure algorithmic and

49

functional correctness of implementation. Between separate modules, integration tests should be
implemented to ensure appropriate interactions. The determination of test success for algorithmic
implementation is benchmarked against the success criteria listed in the SRS document which should
include experimental results as reasonable justification. For the determination of test success against
function or non-functional requirement tests, the success criteria for input-output sequences need to
present in the SRS document. This analysis can only be adequately accomplished if the source code is
available.

Two components are required to conduct TC analysis: an automated test generator and an “oracle” to
verify output correctness. T-way combinatorial testing can be leveraged for this metric to reduce the
number of tests required for comprehensive testing. Additional information of T-way combinatorial
testing can be found in Section 4.3.6.

The metric is measured using the following equation and is separated based on modules:

TC% =
Requirements Implemented

Requirements Listed
⋅

Requirements Tested

Requirements Listed
 (20)

This metric is only used to determine which modules are insufficient in requirements testing and can
be used to inform the software designers development direction. The metric is not used in the
quantification of software failures. Lastly, for each test, the following testing conditions are collected for
software failure quantification in Section 4.3.7.

1. Number of tests conducted per requirement
2. Average CPU time per test
3. Number of faults per requirement test
4. Description of fault
5. Input condition or acceptance criteria that caused fault.

• Coverage Factor

In contrast to TC, coverage factor evaluates the fault tolerance capabilities of the software system.
The metric attempts to quantify the resiliency of the program given the fault exits as well as the ability to
automatically recover back to normal operation. Fault injection is typically used to gauge the reliability of
a fault-tolerant system. To conduct CF analysis, the code is first separated into its component software
modules. Each module is treated as a black box, and the complete input space is injected into the module.
The output of the module is then benchmarked against intended output. Modules that fail to recover are
considered implementation defects and are later quantified.

Two components are required to conduct CF analysis, an automated test generator and an “oracle” to
verify output correctness. T-way combinatorial testing can be leveraged for this metric to reduce the
number of tests required for comprehensive testing. Additional information of T-way combinatorial
testing can be found in Section 4.3.6.

The metric is measured using the following equation and is separated based on modules and
divisions:

CF% =
Number of faults recovered

Number of faults injected
 (21)

This metric is only used to determine which modules are insufficient in resiliency and can be used to
inform software designers development direction. The metric is not used explicitly in the quantification of
software failures.

50

Similar to TC, for each test, the following testing conditions are collected for software failure
quantification in Section 4.3.7:

1. Number of tests conducted per requirement
2. Average CPU time per test
3. Number of faults per requirement test
4. Description of fault
5. Input condition or acceptance criteria that caused fault.

4.3.6 T-way Combinatorial Tests
It is well known exhaustive testing is impossible for safety critical software due to the insurmountable

computational and human resources required. Previously discussed SRGMs, attempt to model and predict
the trend of software reliability in the process of testing; however, fidelity of reliability predictions
depends highly on the model used and still depend on rigorous testing. Combinatorial testing can alleviate
the testing requirement and is a method to improve effectiveness of software testing in addition to
reducing cost. Previous empirical data gathered by NIST [61] have suggested software failures are
triggered through the interaction of six or fewer variables. Two-way interaction testing, or pairwise
testing, is a type of combinatorial testing regularly used by industry as a way for highly effective fault
detection. However, pairwise testing has been shown to only capture a fraction of the total possible
software faults (40–60%), and a high order of interaction testing is required. In this report, five-way
interaction testing was selected to be the minimum requirement for T-way testing to satisfy
comprehensive fault detection for safety critical software (95–100% detection rate from empirical data).

Combinatorial testing specifically aims to test rare occurrence combinations of triggers to discover
latent faults that may be hidden in obscure software paths. These faults may only be triggered by the
interaction between two or more input variables and are typically implementation defects remaining in the
final source code. While exhaustive testing may attempt to test every combination to discover these faults,
for an application with more than five non-binary inputs, the number of tests required would grow
exponentially large and be infeasible. Combinatorial testing instead generates unique input combinations
of the total input space based on the specified interaction strength (e.g., pairwise would generate
combinations of two inputs).

Not all input variables are binary which make the generation of test combinations difficult for
continuous variables. This can be resolved by utilizing equivalence partitioning and boundary value
analysis to separate the input space into meaningful testing partitions. Equivalence partitioning separates
the input space into distinct valid and invalid range partitions and samples a small random subset of
within each partition. Partitions are generated based on the input of a functional and non-functional
requirement of a specific module. During the testing process, the entire partition is assumed to be valid if
all values in the subset pass. Similarly, the entire partition is invalidated if any of the subset values fails a
test. In comparison, boundary value analysis generates additional subsets to be tested based on the
limitations of the software programming environment.

4.3.7 Failure Probability Quantification
• Single Failure Probability

To determine failure probability based on detected defects depends on how they were detected. For
defects detected through CF and TC, the testing conditions are already known and can be calculated
directly from reliability equations. Defects determined from semantic analyze such as RT and DD require
additional processing to determine how these defects affect the overall system.

Recall that CF and TC defects are detected through the implementation of individual unit and
integration tests. As the condition of each test is known, such as number of tests, duration of each test,

51

etc., the failure probability can be estimated with the following equations derived from Musa’s
exponential software reliability model [51].

𝜆𝑖 =
Defect

Total Testing Time
=

𝑘𝑖

𝜏𝑡𝑜𝑡𝑎𝑙

(22)

𝐹(𝜏) = 1 − exp[− ∫ 𝜆𝑖(𝑡)𝑑𝑡
𝜏

0

]
(23)

Here 𝜆𝑖 is the failure rate, 𝑘𝑖 is the 𝑖𝑡ℎ defect, 𝜏 is the execution time, and 𝐹(𝜏) is the failure
probability for a particular defect. The execution time is used as opposed to real time as computer
processors may idle for multiple cycles during a test to load and store instructions and will produce false
lower failure probabilities.

For semantic defect detections, the majority of defects detected are those that are either missing or
extraneous. In such cases, it is difficult to extrapolate how unimplemented code may impact the overall
reliability of the system. In this report, no comprehensive method was developed or discovered from
literature to quantify design defects. This is because incorporating failure modes for hypothetical code
functionality would require considering alternative code versions or branch conditions, neither of which
can be strongly supported. Take, for example, the following design defect “algorithm shall detect
coupling faults between two address lines.” This functionality was not originally incorporated in the code;
had it been incorporated, its impact on software reliability would be unknown and speculative at best.
Furthermore, no test was developed in the test plan to verify these functions, making quantification
speculative and difficult. However, based on the premise this requirement is explicitly mentioned in the
SRS and SDD, the impact on software reliability is non-zero. To include some degree of impact
consideration on reliability associated with design defects, it is assumed each design defect will have the
same single failure probability as the largest implementation defect.

• Common Cause Failure Probability

The CCF probability is determined using the method previously described in BAHAMAS. To
determine CCF probability, either the total or single failure probability must be known. These values can
be derived using either BAHAMAS, in scenarios where operational data is insufficient, or ORCAS, when
data is available. The beta-factor method is used to gauge similarity between two software/hardware
components. Specially, a higher beta value suggests a higher likelihood the two components will fail
simultaneously. Lower beta values are achieved through hardware/software diversity, separation, and a
range of other factors. Different methods have been proposed to determine beta factor; however, in this
report, the UPM is used [62].

The beta factor, from UPM, can be determined using knowledge of the operational and
developmental conditions of the hardware/software platform. The information required to determine the
beta include software/hardware diversity, physical separation, experience, historical reliability studies,
existing tests and checks, safety culture, control access, and development tests [62]. Each knowledge
category is given a rating between A to E, where A is the worst and E is the best. The scores are
aggregated, and a normalizing constant is used to divide the result producing the beta factor. In Equation
(24), the formula to determine beta factor is shown. 𝑆𝑖 are the scores for each knowledge category, and 𝑑
is the normalization constant. Additional details can be found in Section 2.3.3.

𝛽 =
∑ 𝑆𝑖𝑖

𝑑

(24)

4.3.8 Failure Categorization via Orthogonal Defect Classification
One issue routinely encountered in software quantification is how each detected defect affects each

basic event in the integrated fault. Some defects may affect the overall operability of the program, and the

52

direct relationship is obscure. For example, a timing defect where a program fails to release a thread
resource for another program definitely affects the program; however, how this may relate to the
identified UCA is not entirely clear. In such instances, orthogonal defect classification is needed to group
failures together before generalizing the impact towards overall reliability. Once defects are identified
through the metric-based analysis, the defects can then be categorized based on how they affect the
overall system functionality. ODC was originally developed in 1992 by Chillarege at the IBM Watson
Research group [63] as a way to provide fast and meaningful feedback to developers through a semantic
bridge between statistical defect models and defect analysis. By determining the number of defects in
each category through the software development lifecycle, two pieces of information are revealed. The
first being where (in which modules) the software needs additional support and debugging to meet
performance goals. The second is the anticipated reliability based on how the number of defects in each
class changes over the testing process. The method formally identifies eight different defect classes
(Table 22) to detect software defects.

The derived classes are simple yet comprehensive such that any programmer should have no issue or
contention categorizing detected defects. Furthermore, in each class, a further distinction between
something missing and something incorrect can be made to assist determination of defect separation.

Each ODC category is applied strategically to specific ODC categories based on the particular failure
event. For UCA/UIF A, the software fails to actuate when needed. This UCA/UIF has the most potential
root causes, as any issue in the software may cause a failure of actuation. Issues with the embedded
algorithm implementation may cause incorrectly calculated values leading to a failure to trigger the
software. Issues in condition/branch validation or checking are also potential root causes, where an
incorrect setpoint triggers the software at the wrong value. For controllers that depend on shared
resources, such as threads, a failure to release the resource in time can restrict the controller’s ability to
function accordingly. Lastly, unimplemented functions specified in the SRS or SDD directly impact this
UCA/UIF as well. A controller cannot send a signal if the required functionality is missing.

For UCA/UIF B, the software spuriously actuates when not needed. This implies the functionality for
actuation was implemented (whether fully or partially). Due to this, function defects do not apply to this
UCA/UIF. However, defects in the logic (or decision algorithm) will cause spurious actuation. Consider
scenarios where the wrong equation or wrong set point are assigned to an algorithm. Furthermore,
software defects related to checking the set point or internal states can also cause unnecessary actuation.

For UCA/UIF C, D, E, and F categories, the root causes are associated with timing, checking, or
algorithmic issues with the software. The assumption here is the function has been implemented
otherwise it would be considered a UCA/UIF A scenario. Due to this, function defects do not apply to
these UCA/UIFs as adequate functionality is implied. However, an error in the internal algorithm (e.g.,
wrong equation) can still result in early or late actuation. Furthermore, defects in the checking of branch
conditions, variables, or states can also lead to early or delayed actuation. If the controller is also
dependent on timing related resources, such as sampling frequency, defects related to timing can also
cause early or late actuation. The process to integrate each fault into the UCA can be determined based on
Figure 19.

53

Table 22. ODC defect classes and descriptions.
Defect Class Description
Function Defect significantly affects capability, end-user features, product application

programming interface (API) interface with hardware architecture, or global
structure(s). Repairs would require a formal design change.

Assignment Defect affects initialization of code blocks or data structures.
Interface Defect corresponds to errors in the interaction with other components via

drivers, call statements, etc.
Checking Defect corresponds to failures in program logic, validation of data or values

used, loop conditions, etc.
Timing/Serialization Defect are related to the failure of sharing and management of real-time

resources, threads, locks, etc.
Build/Package/Merge Defects are related to mistakes in the library systems, management of changes,

or version control.
Documentation Defects are related to the mismatch between publication and maintenance

notes to the software or errors in the documents themselves.
Algorithm Defects correspond to the efficiency or correctness of the solution

implemented and can be fixed by (re)implementing the algorithm or data
structure without the need for a formal design change.

54

Figure 19. Flow chart for integrating detected faults with UCA/UIFs in an integrated fault tree.

55

4.3.9 Unacceptable Failure Probabilities from Integrated Fault Tree
Once the failure probability of each basic event is quantified and incorporated into the integrated FT,

unacceptable failure probabilities can be identified, and design recommendations can be made. For
example, if a certain program has a failure probability exceeding acceptance criteria, a separate
implementation on different hardware may provide the acceptable diversity and protection.

4.4 Summary
In this chapter, a novel approach, ORCAS, was presented for the quantification of software hazards

when sufficient operational and testing data available. The method incorporates elements of quality
software development as well as strong analysis techniques to identify and link software defects to
potential failure modes. The approach includes both semantic and test-based analysis to detect failures
that can exist in different stages of the SDLC. In addition, considerations for comprehensive testing, yet
computationally feasible, are also incorporated using T-way testing to generate valid, invalid, and edge
case test conditions. Identified defects are then systematically linked and coupled with basic events via
orthogonal defect classification. The semantic bridging presented by ODC allows flexibility but also solid
guidelines in the coupling of root causes to software hazards.

56

5. INTEGRATED HAZARD AND RELIABILITY ANALYSIS OF DIGITAL
HUMAN-SYSTEM INTERFACE RELEVANT TO REACTOR TRIP

In this chapter, the ORCAS method discussed in Chapter 4 is applied to the advanced HSI relevant to
reactor trip safety developed from the APR-1400 HSI design. From documentation [46], the HSI of the
APR-1400 consists primarily of four redundant information retrieval systems for the operator. During
nominal reactor operation, the Qualified Indication and Alarm System-Non-Safety (QIAS-N) receives
analog and digital signals from both safety and non-safety-related plant components. Under both nominal
and safety relevant scenarios, the Qualified Indication and Alarm System-Safety (QIAS-P) acts as both a
continuous source of accident monitoring information as well as a backup operator display module to the
QIAS-N system [46]. The primary role of the QIAS-P system is to provide unambiguous indication of
inadequate core cooling (ICC) as well as advanced warning of the approach towards it [46]. Both QIAS
information systems are implemented using PLC-based control platforms. To introduce HSI diversity, an
additional information processing system (IPS) also collects relevant sensor information and plant states.
The IPS is implemented under a DCS-based platform, which is fundamentally different to the PLC-based
platform. In speculated CCFs of either the QIAS or IPS systems, a last resort all analog Diverse
Instrumentation System (DIS) is available that monitors the same key accident variables as the QIAS-P.
This combination of analog and digital diversity in the HSI system ensures multiple information routes to
the operator to safely shutdown the reactor under any condition. For the current work scope, only the
QIAS-P system is analyzed using the adapted methodology.

5.1 Assumptions
In this subsection, the key assumptions during the development of the QIAS-P control architecture are

highlighted, and the reasoning behind each are stated. Due to these assumptions, the developed control
architecture from the APR-1400 DI&C manual [46] is only a representation of the true system and may
not reflect real implementation or failures.

• All set points are manually assigned, and alarms are comparators

From documentation, there is explicit mention of alarms utilized in the QIAS-P system; however, the
internal architecture is not specified. Therefore, it is assumed the most basic version of an alarm is
implemented, that is, a comparator with a single set point trigger. The comparator only triggers when the
set point is exceeded. These alarms set points are assumed to be manually assigned by the operator.

• Internal architecture is approximated

The APR-1400 HSI architecture was pieced together from multiple available NRC documentation
and publications as the original verified schematic is proprietary. Therefore, the constructed diagrams
included in this report are approximate representations based on the described connections and
functionality. Some of the failures included in the integrated FT may not be reflected in the real system.
In addition, results derived from the RESHA method are meant for application demonstration and are not
meant to be real guidelines for the HSI system of the APR-1400.

• Sensors act and fail in unison

The QIAS-P system receives 61 core exit thermocouples (CET) and 34 heated-junction
thermocouples (HJTC) sensors directly from the core. These sensors are assumed to operate as a single
unit, and a failure of one sensor results in the failure of the entire array. This is to avoid partial failure
modes and unsupported speculation on architecture response as the behavior and handling of the sensor
information received from the QIAS-P system lacks detailed documentation.

• Distributed network architecture is applied

57

From the APR-1400 documentation, the QIAS systems are implemented with a network of PLCs that
communicate to other modules via the safety data network (SDN). However, it is not explicitly mentioned
how the QIAS systems communicates with the SDN. Typical industrial networks operate via distributed
node-based communication (e.g., supervisory control and data acquisition) as opposed to centralized
server-based communication. The QIAS-P representation will be assumed to be node-based as well, and
each individual hardware module will contain a communications module connected directly to the SDN.

• Hardware design failures are not considered in this case study

This assumption applies to the hardware design choices made during the development of the digital
and analog proportions of the QIAS-P. It includes, but is not limited to, which power supply to use,
integrated chip sets, connectors, circuits, etc. Due to the unavailability of a detailed and proprietary
hardware schematic, the hardware design failure branch is excluded from the FT and will not be shown.

• QIAS-P redundant division architecture is not diverse

While typical development practices are to introduce diverse design in redundant divisions of the
QIAS-P to prevent CCFs, it is not explicitly mentioned in the documentation that diverse design was
considered. Instead, system diversity is accomplished by designing the QIAS-N, IPS, and DIS differently.
While it is possible hardware and software diversity were considered in the implementation of the QIAS-
P, in this paper, we assumed the two redundant divisions are identical.

• Operator-decision models are non-complex and based solely on data

Due to the complex nature of human decision-making, misinformation propagated by the QIAS-P
system to the operator does not guarantee failure. In fact, an additional separate human reliability analysis
is required to survey the impact on falsified information on the operator-decision model. However, in this
case study, it is assumed that failures by the QIAS-P system to communicate correct information or
trigger the correct alarm will cause an immediate failure in the operator-decision model leading to a
failing event.

• QIAS-P has only a single display monitor in main control room for operator

In normal control rooms, multiple display monitors are available to view all plant parameters. The
QIAS-P system, from documentation also has a dedicated flat panel display to view key safety-related
parameters. While realistically, the number of dedicated flat panel display should be greater than one, the
exact number is not specified and will be assumed to be one.

• QIAS-P digital components have similar hardware architecture

For parameter calculators and alarms, it is assumed the same generic digital PLC is used. This implies
the hardware failure probability for each PLC system is the same. For sensors, such as the HJTC and
CET, it is also assumed the hardware is the same.

5.2 Software Requirements Specification and Software Design
Description

In this case study, the system design documents were collected from a variety of publicly available
sources on the APR-1400. The main resource which this case study is based around is the “Chapter 7
Instrumentation and Controls” document [46]. Additional publicly available sources used to reconstruct
the system architecture include [47], [48], [64], [65], and [66]. However, due to the proprietary nature of
the reactor design documents, only a representation of the true HSI system is portrayed in this analysis
based solely on what is included and not included in the Chapter 7 documentation.

Furthermore, while the Chapter 7 document provides extensive information on the high-level design
and objectives of the APR-1400 HSI control system, the document lacks the specific requirements,
constraints, and design information required by this specific step. None of the SRS or SDD document

58

requirements listed in Section 4.3 were provided here. Due to this explicit unavailability of relevant
information, an alternate software application RTS is considered, referenced as APP. The APP
architecture was extensively analyzed in NUREG/CR-7042 [56]. In the NUREG report, the team
conducting the analysis had direct access to the original SRS and SDD documentation, later document
versions, as well as source code. The documents utilized in NUREG/CR-7042 are not publicly available
for usage in this report, however the results drawn can be used as a surrogate in this report. The analysis
conducted in the NUREG report are based on typical safety-related digital control modules that have been
used in a NPP in prior decades. The modules contain both discrete and continuous, high-level analog and
digital input and output circuits used to provide trip actuation, monitoring, alarm, and indication. Due to
the similarity in functionality to the APR-1400 HSI system, the NUREG report can be used to represent
potential failures modes of the QIAS-P system. The SRS and SDD documents used in the NUREG report
cover all requirements listed in Section 4.3.

Specifically, the scope of the system analyzed by NUREG/CR-7042 includes two separate flux/delta
flux/flow micro-processors (labelled as 𝜇p1 and 𝜇p2) and one communication module (CP). In addition,
the 𝜇p have different software and hardware versions and operate in parallel with each other as redundant
divisions. This parallels well with the two redundant divisions in QIAS-P as well as the micro-processors
used to monitor in-core sensors, such as the heated-junction thermocouple. A complete list of the relevant
requirements and design documents analyzed in NUREG/CR-7042 are shown below:

1. APP Instruction Manual

2. APP Module-Design Specification

3. APP Design Requirements

4. APP Module 𝜇p1 System SRS

5. APP Module 𝜇p1 System SDD

6. APP Module μp1 System Software Code

7. APP Module μp1 Flux/Delta Flux/Flow Application SRS

8. APP Module μp1 Flux/Delta Flux/Flow Application SDD

9. APP Module μp1 Flux/Delta Flux/Flow Application Software Code

10. APP Module μp2 System SRS

11. APP Module μp2 System SDD

12. APP Module μp2 System Software Code

13. APP Module μp2 Flux/Delta Flux/Flow Application SRS

14. APP Module μp2 Flux/Delta Flux/Flow Application SDD

15. APP Module μp2 Flux/Delta Flux/Flow Application Software Code

16. APP Module Communication Processor SRS

17. APP Module Communication Processor SDD

18. APP Module Communication Processor Software Code

19. APP Module Software Verification & Validation Plan

20. Final V&V Report for APP Module Software

21. APP Test Plan for 𝜇p1

22. APP Test Plan for 𝜇p2

59

23. APP Test Plan for Communication Processor

24. Test Summary Report for 𝜇p1

25. Test Summary Report for 𝜇p2

26. Test Summary Report for Communication Processor.

The extensive list of documents reviewed in NUREG/CR-7042 provides an excellent example of the
level of detail required by this step in the collection of relevant information to the system architecture.
The results from the NUREG/CR-7042 are used specifically in Section 5.4 and 5.6.1. All other sections
rely on the APR-1400 Chapter 7 documentation.

5.3 Redundancy-guided Systems-theoretic Process Analysis
After the requirements and design documents are adequately collected, RESHA can be applied to

develop the integrated FT.

5.3.1 Step 1: Create Detailed Hardware Representation of Digital System of
Interest

From the Chapter 7 documentation, the hardware flow diagram is first re-constructed. For this report,
the scope is only to the QIAS-P system. Peripherals (e.g., QIAS-N and secondary sensors) are not directly
monitored and used by the system are not included.

The QIAS-P monitoring system is composed of two redundant divisions (A and B) isolated both
physically in location and in communication from each other. Within each division, there is a digital
processing module (PM) and an analog retrieval module (AM). The two modules operate sequentially to
retrieve, process, and check values and alarms sent to the operator information terminal in the MCR.

The primary purpose of the PM is to check and determine intermediate values for an operator display
and use in the internal alarm system. From documentation, the PM is composed of five primary parameter
calculators and alarms, namely the HJTC, reactor vessel level, reactor coolant saturation margin, ICC, and
the CET temperature. The PM also includes an HJTC heater power controller, a maintenance/interface
test panel, and various secondary parameter calculators and alarms. One of the subroutines of the PM is to
modulate the HJTC reference power level based on a power set point. This reference level is used to
calculate the heat differential across the HJTC sensing junction. A manual override of the HJTC power
controller is also available to switch control to the DIS in a postulated CCF.

The primary purpose of the AM is to retrieve signals from the various sensors and subsystems and
either convert them from analog to digital (via analog to digital converter) or to repeat or convert the
signal (via signal conditioners). In total, the AM module receives 32 HJTC and 61 CET sensor values
directly from the core. In addition, it also receives the hot and cold leg temperatures, pressurizer pressure,
and reactor vessel head as well as Type A, B, and C variables from the SDN or auxiliary processing
cabinet. The different types of sensors (A, B, and C) denote which plant parameter is measured and how it
impacts overall plant logistics. For example, Type A sensor information are key vital monitoring
parameters directly relevant to reactor trip. The QIAS-P system collects all Type A sensors. How the
Type A sensory information is used in the QIAS-P is not specified and are thus considered peripheral (for
analysis purposes). To ensure sensor diversity, half of the analog HJTC and CET values are also routed to
the DIS.

In Figure 20, a single division of the QIAS-P system is shown. Each of the primary parameter
calculators and alarms are modeled as individual hardware components for a total of ten separate
independent modules. Each parameter calculator provides real-time monitoring information to the main
control room and to the alarms. When an alarm set point is exceeded, the alarm modules will “actuate”
and will alert the main control room of the problem.

60

To condense the information from the hardware schematic, a flow diagram was developed to illustrate
the communication between higher level modules and the feedback to the RTS. In Figure 21, the two
divisions of the QIAS-P system are shown operating in parallel to each other. The type of information or
control flowing between the various components are also shown. The unanalyzed components include the
RTS redundant branch A and B, PPS primary and auxiliary processing cabinets, ESF-CCF primary and
auxiliary processing cabinets, the QIAS-N operator's module, and the IPS operator’s module.

61

Figure 20. Division A of the QIAS-P system with component and information flow [46].

62

Figure 21. Condensed qualified indication and alarm control system-safety (QIAS-P) flow diagram [46].

5.3.2 Step 2: Develop Hardware FT for Top Event of Interest in Digital System
By using the detailed hardware model developed in Stage 1 and the guidelines from Figure 17, the

full hardware FT can be developed. The top event in the FT is defined as the “Operator fails to initiate
reactor trip causing reactor damage.” Based on this top event, the full FT includes 41 hardware stochastic
failure basic events and 33 component dependency failure branches. There are also 26 unresolved
software design failure branches. A system-level hardware FTs is developed and shown in Figure 22 as an
example. System-level redundancies (i.e., IPS, QIAS-N, and DIS) are identified but unanalyzed.

Values for PLC and sensors failure are derived from [65], [67], and [68]. In Table 23, the values for
hardware failure are presented below and conform to the assumptions listed in Section 5.1.

Table 23. Hardware total failure probability for QIAS-P digital components.
Hardware Name Failure Probability
Heated-junction thermocouple sensor 1.05E-07
Heated-junction thermocouple sensor controller 2.21E-06
Core exit thermocouple 1.05E-07
Signal conditioner 1.00E-06
Analog to digital converter 7.13E-06
Parameter calculator 2.21E-06
Parameter alarm 2.21E-06

63

Figure 22. QIAS-P system-level hardware FT with empty software failure branches.

5.3.3 Step 3: Determine UCAs/UIFs Based on RESHA
From the control diagram (Figure 20), three UCAs were identified related to the HJTC controller, 15

UIFs were identified related to the digital parameter calculators, and 10 UIFs were identified related to

64

the digital alarm systems. Examining the HJTC controller, the UCAs involved are the controller fails to
provide a power reference level to the HJTC sensors when needed (Type A UCA), and the controller
provides a reference level but is either too high (Type F UCA) or too low (Type G UCA). For parameter
calculators, the prominent UIFs are the calculator fails to output a value when needed (e.g., zero, null, and
inf) (Type A UIF) and the value calculated is either too high (Type F UIF) or too low (Type G UIF). For
alarms, based on the assumption from Section 5.1, there are only two UIFs per alarm, either it fails to
trigger when needed (Type A UIF) or triggers when not needed (Type B UIF). It should be noted all
calculators and alarms have the same software basic events as the specific functionality of each
component is unavailable. (e.g., ICC calculator and HJTC calculator).

5.3.4 Step 4: Construct an Integrated FT by Adding Applicable UCAs/UIFs as
Basic Events

In this stage, based on the selected top event of the FT, relevant unsafe software actions are added
into the hardware FT under the software design failure branch. The fully integrated FT includes all
UCAs/UIFs identified in Stage 3 can be seen in a separate document as the full SAPHIRE model. (please
contact Han Bao han.bao@inl.gov for more details about this FT). A partial integrated FT can be seen in
Figure 23 and describes Division A ICC alarm, ICC calculator, HJTC sensor, and HJTC power controller.

mailto:han.bao@inl.gov

65

Figure 23. Partial integrated FT from Division A of the QIAS-P.

66

5.3.5 Step 5: Identify Software CCFs from Duplicate UCAs/UIFs within
Integrated FT

At the QIAS-P system level, the lack of software diversity results in 28 software CCFs affecting all
digital components. Each parameter calculator has three CCFs associated with UIF A, F, and G. Any
software failure in the calculator has the possibility to trigger both Division A and Division B UIFs and is
thus considered a Type 4 CCF (fifteen calculator related CCFs). For example, a logic defect in the
software can be guaranteed to manifest a parameter reading error in both division calculators. This is
because the input conditions that triggers a defect in Division A calculator will also be experienced by the
Division B calculator. This applies to each division alarm as well, each with two CCFs associated with
UIF A and B. For the five alarm modules, this corresponds to ten Type 4 CCFs. Lastly, for the single
HJTC controller, three CCFs exist associated with UCA A, F, and G (3 controller related CCFs). The
route cause behind all Type 4 system-level software CCFs is the explicit lack of diversity.

5.4 Metric-Based Analysis
In this step, the metrics selected from the RePS methodology [56] are applied to the target system

documents and source code. The metrics applied are the RT, DD, TC, and coverage factor (CF). As
mentioned previously, the unavailability of specific data prevented detailed analyze of the APR-1400 HSI
system. Instead, data from NUREG/CR-7042 on the RTS analysis is used as a surrogate.

There are two primary components analyzed in NUREG/CR-7042, the microprocessor (𝜇p) and the
communication module. The functionality of the 𝜇p is to process and collect sensor information and
conducts internal calculation. This is similar to the sensors, signal conditioners, calculators, and HJTC
controller in the QIAS-P system. For the communication processor, its role is to handle alarm notification
and parameter monitoring to the main control room. While no individual component represents the CP in
the APR-1400 HSI system, it is assumed each parameter calculator and alarm system has an internal
communication processor. Therefore, the defects discovered for the APP modules will be applied to all
corresponding APR-1400 HSI components.

5.4.1 Requirements Traceability
From NUREG/CR-7042, comprehensive RT was conducted for the APP code and related

documentation. The documents reviewed include the SRS, SDD, and source code relevant to RTS
actuation and monitoring systems, specifically, micro-processors (𝜇p) vital to monitoring and
communication. In total, of the two micro-processors and communication module described in the system,
there were seven discovered defects. The system was also analyzed across different operational profiles
(i.e., initialization, power-up, main program, and diagnostics). Within the different operating profile, only
the power-up self-test and calibration did not meet 100% traceability and suggests potential development
effort needed for future versions. Specifically, only 343 of 348 requirements were achieved translating to
an average RT of 98.56%. The discovered defects for this operational profile can be seen in Table 24.

67

Table 24. RT Defect tag, description, and location.
Tag Location Requirement Description Defect Description
D1 𝜇p1 Increment the EEPROM test counter if the

Tuning in Progress flag set
Requirement not implemented in code

D2 𝜇p1 Algorithm shall detect coupling faults
between two address lines

Requirement not implemented in code

D3 𝜇p1 Copy contents of table to Dual Port RAM Requirement not implemented in code
D4 𝜇p1 Give up semaphore Requirement not implemented in code
D5 𝜇p2 Algorithm shall detect coupling faults

between two address lines
Requirement not implemented in code

D6 CP Algorithm shall detect coupling faults
between two address lines

Requirement not implemented in code

X1 𝜇p2 (Additional code) Specified code block implemented but
not documented

For all defects where the requirement was specified but not implemented in code, these are
considered design defects and given a tag D#. For the defect where additional functionality was
implemented, but the requirement was not specified, this is still considered a design defect but is given a
tag X# for excessive.

5.4.2 Defect Density
For the DD metric, the SRS, SDD, and source code were inspected with two inspectors and one

moderator. Each inspector operated independently and recorded defects using the procedure described in
Section 4.3. The moderator then reviewed all defects in the code stage and corrected code mistakes
discovered during inspection. Defects that could not be corrected as the source of the defect was unknown
are listed in Table 25. In total, four defects were discovered related to design and implementation
inadequacy specified in the SRS or SDD.

From the defects discovered, D8 and D9 were due to ambiguity in requirement specification and thus
not implemented fully. D7 and D10 were specified but not implemented in code. All defects are
considered design defects as they are all missing requirements. Regarding the density of defects, of the
4825 lines of code reviewed, four defects were discovered for a value of 0.829 defects/KLOC.

5.4.3 Test Coverage
For TC, the test plan for each APP component was examined and traced to a corresponding

requirement from the SRS and SDD. In addition, separate verification tests were conducted on each
module. Only defects that required modification to the SRS, SDD, or code are listed. In total seven
defects were discovered through the independent test validation of the components (Table 26).

68

Table 25. DD Defect tags, description, and location.
Tag Location Requirement Description Defect Description
D7 𝜇p1 Check cannot detect coupling failure but

only stuck at high or low failures.
Requirement not implemented in
code

D8 𝜇p2 If trip condition is calculated, the logic will
force a different incorrect calculation for
the second trip calculation.

Requirement ambiguity

D9 𝜇p2 Processor has 16-bit address, but only 13
bits are examined. Remaining three bits are
not tested and may cause error.

Requirement ambiguity

D10 CP Check cannot detect coupling failure but
only stuck at high or low failures.

Requirement not implemented in
code

Table 26. TC Defect tag, description, and location.

Tag Location Requirement Description Defect Description
I1 𝜇p1 Check does not cover all address lines Requirement implementation error
I2 𝜇p1 During Power-On, processors cannot detect

missing inputs and does not indicate fatal
error

Requirement implementation error

I3 𝜇p1 Inputs changed from continuous to discrete
caused spurious trip

Requirement implementation error

I4 𝜇p1 Dual port ram detects the wrong module ID Requirement implementation error
I5 𝜇p2 Online RAM test is incomplete Requirement implementation error
I6 𝜇p2 Online EEPROM failure not identified as

fatal failure
Requirement implementation error

I7 CP Cannot initialize variable successfully Requirement implementation error

Regarding the completeness of testing, of the 3757 code statements over the three components, 3379
were tested, representing an average TC of 90.8%. Broken down by module, the coverage for 𝜇p1, 𝜇p2,
and CP are 88.6%, 93.9%, and 89.8% respectively. The varying degrees of code coverage present
potential areas where additional testing may be needed.

5.4.4 Coverage Factor
For CF, faults were manually injected into the software of the micro-processors and communication

modules to trigger software defects. The faults injected prompt the system into recovery mode and to
check existing state variables. In most scenarios, the system either returns to normal, remains in recovery
mode, or enters a failed state. Here a failed state is any state where the intended function is not achieved
or is spurious (i.e., trip signal activated when not needed). The defects discovered from the fault injection
testing process can be seen in Table 27.

69

Table 27. CF Defect tag, description, and location.
Tag Location Requirement Description Defect Description
I8 𝜇p1 Cannot detect incorrect value of the

variable SA_TRIP_1_DEENRGZE
Requirement implementation error

I9 𝜇p1 Cannot detect fAnalog_Input_6 Requirement implementation error
I10 𝜇p2 Cannot detect incorrect value of the

variable Trip_condition
Requirement implementation error

I11 𝜇p2 Cannot detect incorrect value of the
variable AIN

Requirement implementation error

I12 𝜇p1 Cannot detect incorrect value of the
variable chLEDs_Outputs

Requirement implementation error

I13 𝜇p2 Cannot detect incorrect value of the
variable have_dpm

Requirement implementation error

Of the 11,710 faults injected into 𝜇p1 and 𝜇p2, 2355 tests resulted in a failed state. This translates to a
CF of 79.88% as define in Section 4.3. This suggests the software is only ~80% robust at handling and
detecting erroneous scenarios and transitioning to a recoverable or normal state. It also suggests
development in the resiliency of program is potentially needed.

5.5 Failure Categorization via Orthogonal Defect Classification
In this section, the discovered defects are categorized into ODC classes and assigned to UCA/UIF

basic events. Following the methodology discussed in Section 4.3, each defect can be classified.
Documentation defects are excluded as they do not impact software reliability and instead only impact
usability which is not explored in this report. In Table 28, the separation of defects into ODC classes can
be seen.

Table 28. Grouped ODC defect classes and tags.
Defect Class Defect Tag
Function X1, D1, D2, D3, D4, D5, D6, D7, D10
Assignment I7
Interface None
Checking D9, I1, I2, I3, I4, I5, I6, I8, I9, I10, I11, I12, I13
Timing / Serialization None
Build / Package / Merge None
Algorithm D8

For design defects, D1–D7 and D10, are functionality specified in the SRS and SDD but are explicitly

missing from the code. They are all classified as function defects as they are functional/non-functional
requirements. In addition, the resolution of these defects would require a formal code design change to
implement them. Design defects D8 and D9 were implemented but due to requirement ambiguity did not
consider all scenarios. Specifically, D8 is a trip detection algorithmic error as the program follows an
incorrect logic path when a real trip signal is detected. This is associated with an algorithmic defect class.
D9 is also a programming error due to incomplete examination of the entire bit address. This is
considered a checking defect class as the program fails to adequately validate the entire data address
before utilizing. For implementation defects, I1–16 and I8–I13 are all associated with insufficient data

70

validation of inputs, addresses, or tests. These are all considered checking defects. Defect I7 is a failure to
initialize a variable successfully and is considered an assignment defect.

For UCA/UIF coupling, using Figure 19 as a guideline, Table 29 shows identified UCAs/UIFs and
the corresponding ODC classes. Only UCAs/UIFs identified in the integrated FT are included. ODC
classes that do not have any defects in them (i.e., timing, are also excluded).

Table 29. Coupling between identified UCAs/UIFs and non-empty ODC classes.
UCA/UIF UCA/UIF Description Corresponding ODC Classes
UCA A HJTC Controller fails to provide a reference signal All
UCA F HJTC Controller provides a reference signal too high Algorithm, Checking
UCA G HJTC Controller provides a reference signal too low Algorithm, Checking
UIF A Calculator/alarm fails to provide signal when needed All
UIF B Alarm provides a spurious control signal Algorithm, Checking
UIF F Calculator provides a value too high Algorithm, Checking
UIF G Calculator provides a value too low Algorithm, Checking

5.6 Failure Probability Quantification
5.6.1 Single Failure Probability

In this section, the single failure probability for each previously detected defect class is quantified. In
total, 24 software defects were discovered split across three different ODC classes and two component
groups. To quantify the failure probability of each of these defect classes and groups, the testing condition
and environment must be known. In NUREG/CR-7042, these testing parameters were not provided, and
thus, the failure rate must be approximated using real software failure data provided. APP software
operating data was collected over a period of 281 months from multiple NPPs. Over that period, two
software failures were detected, both spurious trip actuation of the APP module. In this report, it is
assumed this real failure rate, 𝜆, is the single failure rate for identified defects, normalized per hour. The
calculation of lambda is seen in Equation (25).

 𝜆 =
2 defects

281 months ⋅ 30
days

month ⋅ 24
hours

day

 = 9.885 ⋅ 10−6
failures

hour

(25)

The failure probability determined from Equation (23) normalized per hour is also 9.885 ⋅ 10−6. The

corresponding failure probability per defect is applied to each ODC class. As each defect is assumed to be
mutually exclusive and independent, the failure probability for each class is the product of the number of
defects by the single failure probability. In Table 30 the total failure probability per class is shown.

Table 30. ODC defect classes, tags, and failure probabilities.
Defect Class Defect Tag Total Class Failure Probability

Function X1, D1, D2, D3, D4, D5, D6, D7, D10 8.896 ⋅ 10−5

Assignment I7 9.885 ⋅ 10−6

Checking D9, I1, I2, I3, I4, I5, I6, I8, I9, I10, I11, I12, I13 1.285 ⋅ 10−4

Algorithm D8 9.885 ⋅ 10−6

71

The defect class failure probabilities can now be applied to the UCA and information flows by for all
components in the QIAS-P system. Only one division is shown as both divisions are identical (Table 31).

Table 31. Single failure probabilities for UCAs/UIFs for all QIAS-P components.
Component UCA/UIF Single Failure Probability
HJTC Controller UCA A

UCA F
UCA G

2.372 ⋅ 10−4
1.483 ⋅ 10−4
1.483 ⋅ 10−4

HJTC Calculator UIF A
UIF F
UIF G

2.372 ⋅ 10−4
1.483 ⋅ 10−4
1.483 ⋅ 10−4

HJTC Alarm UIF A
UIF B

2.372 ⋅ 10−4
1.483 ⋅ 10−4

ICC Calculator UIF A
UIF F
UIF G

2.372 ⋅ 10−4
1.483 ⋅ 10−4
1.483 ⋅ 10−4

ICC Alarm UIF A
UIF B

2.372 ⋅ 10−4
1.483 ⋅ 10−4

RVL Calculator UIF A
UIF F
UIF G

2.372 ⋅ 10−4
1.483 ⋅ 10−4
1.483 ⋅ 10−4

RVL Alarm UIF A
UIF B

2.372 ⋅ 10−4
1.483 ⋅ 10−4

RCS Calculator UIF A
UIF F
UIF G

2.372 ⋅ 10−4
1.483 ⋅ 10−4
1.483 ⋅ 10−4

RCS Alarm UIF A
UIF B

2.372 ⋅ 10−4
1.483 ⋅ 10−4

CET Calculator UIF A
UIF F
UIF G

2.372 ⋅ 10−4
1.483 ⋅ 10−4
1.483 ⋅ 10−4

CET Alarm UIF A
UIF B

2.372 ⋅ 10−4
1.483 ⋅ 10−4

5.6.2 Common Cause Failure Probability
The quantification of CCF failure probability utilizes the method previously introduced in

BAHAMAS, specifically the UPM [62]. This method accounts for a wide range of possible triggers to
calculate the beta factor for CCFs. The assumptions for beta factor determination are similar to those
defined in Section 5.1. To re-cap, the software and hardware for both redundant divisions of the QIAS-P
are identical but physically isolated from each other. In Table 32, the beta factor determination is broken
down based on the various UPM metrics.

72

Table 32. Beta-factor scoring based on environmental and development conditions.
Metric Score Score Value Score Reasoning
Diversity A 1750 QIAS-P Division A&B are identical
Separation E 8 Division A&B racks are physically isolated
Understanding A 1750 Less than 10 operating years of software

experience
Analysis C 100 Reliability studies have been conducted on QIAS-

P development
Man-Machine Interface D 40 Tests and checks exist for QIAS-P software
Safety Culture E 5 QIAS-P simulations in normal and emergency

conditions exist
Control D 25 Limited access to hardware modules and

interfaces
Tests D 15 Detailed checks have been performed for a

reasonable period of time

To determine the beta factor, the score value column is summed up and divided by a scaling value of
50,000. This scaling value was determined separately in [36]. The beta factor based on the UPM for the
QIAS-P system was determined to be 0.0738. To determine the probability of CCF, Equation (28) along
with the single UCA/UIF failure probability is used.

 𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑠𝑖𝑛𝑔𝑙𝑒 + 𝑃𝐶𝐶𝐹 (26)

 𝑃𝑡𝑜𝑡𝑎𝑙 =
𝑃𝑠𝑖𝑛𝑔𝑙𝑒

1 − 𝛽

(27)

 𝑃𝐶𝐶𝐹 = 𝛽 ⋅ 𝑃𝑡𝑜𝑡𝑎𝑙 (28)
In Table 33, the CCF for each component and corresponding UCA/UIF is shown.

73

Table 33. CCF rates for all QIAS-P components.
Component CCF CCF Probability
HJTC Controller CCF A

CCF F
CCF G

1.851 ⋅ 10−5
1.157 ⋅ 10−5
1.157 ⋅ 10−5

HJTC Calculator CCF A
CCF F
CCF G

1.851 ⋅ 10−5
1.157 ⋅ 10−5
1.157 ⋅ 10−5

HJTC Alarm CCF A
CCF B

1.851 ⋅ 10−5
1.157 ⋅ 10−5

ICC Calculator CCF A
CCF F
CCF G

1.851 ⋅ 10−5
1.157 ⋅ 10−5
1.157 ⋅ 10−5

ICC Alarm CCF A
CCF B

1.851 ⋅ 10−5
1.157 ⋅ 10−5

RVL Calculator CCF A
CCF F
CCF G

1.851 ⋅ 10−5
1.157 ⋅ 10−5
1.157 ⋅ 10−5

RVL Alarm CCF A
CCF B

1.851 ⋅ 10−5
1.157 ⋅ 10−5

RCS Calculator CCF A
CCF F
CCF G

1.851 ⋅ 10−5
1.157 ⋅ 10−5
1.157 ⋅ 10−5

RCS Alarm CCF A
CCF B

1.851 ⋅ 10−5
1.157 ⋅ 10−5

CET Calculator CCF A
CCF F
CCF G

1.851 ⋅ 10−5
1.157 ⋅ 10−5
1.157 ⋅ 10−5

CET Alarm CCF A
CCF B

1.851 ⋅ 10−5
1.157 ⋅ 10−5

5.7 Unacceptable Failure Probabilities from Integrated Fault Tree
Using Table 31 and Table 33 for single and CCF probabilities, the top event failure probability can be

calculated. SAPHIRE 8 was the software used to calculate the failure probabilities from the integrated FT.
The top event analyzed is “Operator fails to initiate reactor trip causing reactor damage.” The total failure
probability of this event was calculated to be 4.463 ⋅ 10−4. In Table 34, different cut sets for this event
are shown. As multiple cut sets will have the same probability, the table is truncated to only show
different set likelihoods. For example, Cut Sets 1–10 all have the probability but describe different
failures. The columns, from left to right, describe the cut set order, failure probability, cut set tag, and
description of failure. Cut sets are ordered by magnitude with largest occurrence frequency at the top. Cut
sets with the same magnitude are then sorted by alphabetical order.

74

Table 34. Cut sets derived from SAPHIRE 8 for top event of interest.
Failure probability Cut Set Tag Failure Description
0 5.000 ⋅ 10−5 QPD-H QIAS-P display hardware failure
1 1.851 ⋅ 10−5 QPD-ICA-CFA CCF of division A&B ICA module, fails to

actuate when need
11 1.157 ⋅ 10−5 QPD-ICA-CFB CCF of division A&B ICA module,

spurious activation
26 5.626 ⋅ 10−8 QPD-PA-ICA-YA,

QPD-PB-RSC-YA
Div. A ICA module, UIF A and Div. B
RSC module, UIF A

126 3.518 ⋅ 10−8 QPD-PA-ICA-YA,
QPD-PB-RSC-YF

Div. A ICA module, UIF A and Div. B
RSC module, UIF F

426 2.199 ⋅ 10−8 QPD-PA-ICA-YF,
QPD-PB-RSC-YF

Div. A ICA module, UIF F and Div. B
RSC module, UIF F

Cut Set 1 is the failure of the display panel for QIAS-P monitored parameters. This assumes there is

only one monitor for all parameters. Given that most control rooms will have multiple backup monitors,
this cut set is not informative and can be excluded to examine the DI&C cut sets. Excluding the FPD, the
DI&C failure probability of the QIAS-P system (including both software and hardware) was calculated to
be 3.824 ⋅ 10−4 (magnitude of cut sets from Table 34 does not change). Cut Sets 1–25 are all CCF events
of the QIAS-P system and represent 93.85% of possible events to occur. This is expected as both
Divisions A and B were assumed to have no hardware or software diversity. Cut Sets 26–426 represent
single failures from each division and represent only 6.15% of all possible failures. If diversity is assumed
and CCF cut sets are excluded for the calculation of the top event, the DI&C failure probability from only
single failures is 2.35 ⋅ 10−5.

5.8 Results and Discussion
In this section, the overall results from the ORCAS method are discussed. The strengths, limitations,

and weakness of ORCAS is also elaborated.

In summary, for the QIAS-P system, the top event was assigned to be “Operator fails to initiate
reactor trip causing reactor damage.” For simplified operator-decision models, this event is triggered
whenever the QIAS-P HSI system fails to properly display monitored parameters or alarms. The total
probability of this top event was calculated (from SAPHIRE 8) to be 4.463 ⋅ 10−4 from the integrated FT.
This includes hardware and software single and CCF failures. The top contributing basic event to this
event was the failure of the display monitor of the QIAS-P system. Considering main control rooms will
have multiple monitors, this failure can be excluded to analyze the DI&C contribution to overall failure
probability. For the two division of the QIAS-P system, the failure probability was determined to be
3.824 ⋅ 10−4. It was discovered the majority of the contributing basic events was the software CCFs
between the digital modules among the two divisions. This is due to the assumption there is no hardware
or software diversity between the divisions as it was not mentioned in the APR-1400 instrumentation and
control report [46]. Considering only the single software and hardware failures, the failure probability was
determined to be 2.35 ⋅ 10−5 . This value was determined using the defects identified in the APP RTS in
NUREG/CR-7042 [56]. Due to the strong similarities in the APP RTS monitoring and control system to
the APR-1400 DI&C, all defects identified were applicable and possible. However, analyze for the APR-
1400 is still preferred as this would reveal design and implementation defects that currently exist in the
system.

75

In total, the APP RTS software was operational for 281 months in legacy reactors. During this
operating period, only two relevant software failures were detected. This corresponds to a failure
probability of 9.885 ⋅ 10−6 . Comparing our result with the APP RTS reliability, the single failure
probability of the APR-1400 is on the same order of magnitude. For the same duration (281 months), four
software-related failures would manifest in the APR-1400 (not considering CCF or display monitor
failure). If software CCFs are considered, approximately 77 software failures are expected for the QIAS-P
system. Given that within the APR-1400 system, the QIAS-P is only one of four redundant HSI systems,
it is expected even without diversity among QIAS-P divisions, the failure probability of the top event
should be lower than 2.35 ⋅ 10−5 .

Design recommendations can also be derived from this methodology. Design defects, D1–D10, are all
functions that were specified in the SRS and SDD but were not implemented in the code. RT and DD
were the primary analysis techniques to identify these deficits. Future development directions can be
focused on these missing design defects.

Regarding identified implementation defects, the testing and fault injection methodologies (TC and
CF) were able to discover an additional 13 defects. These defects were all related to faulty or inadequate
checking or algorithmic implementation of the software and provides additional design direction for
future versions.

While the semantic and test-based metric analysis techniques were capable of discovering software
defects, each method has limitations. For RT, the invalidating assumption is the requirements
specifications were complete for the software application. This is not always the case, and in many
scenarios, designers may encounter a need for additional functionality. Defect X1 is a good example of
incomplete requirements specifications. In the defect, additional code was implemented that was not
specified in either the SRS or SDD. Depending on the software development team, the SRS and SDD
may have serious requirement deficiencies which cannot be caught by RT analysis and will skew defect
detection. In addition, compliance to quality assurance policies is absolutely required to ensure adequate
documentation which can be difficult, expensive, or tedious for engineering teams.

While DD, the second semantic analysis technique, was designed to ensure engineering design
process is complete, it also has serious limitations. The most prominent is the subjectivity of inspectors
which are required to ensure code and documentation compliance. Based on the qualification and decision
made by the inspectors, it is possible no defects are discovered leading to undetected defects passing
through the various software development lifecycles. Furthermore, the measure of DD has no acceptable
maximum boundary and cannot inform on software reliability. For example, in the case study, it was
determined the APP software had a DD value of 0.829 defects/KLOC. It is difficult to justify if this
signifies good or bad software quality. Rather it only suggests defects exist in the software. It is clear
semantic analysis alone is not sufficient for defect detection, and test-based methods are required.

For TC, while having comprehensive testing can directly inform on overall reliability, it is also highly
dependent on the testing environment. Unrealistic or idealized testing environments can lead to
overconfident reliability results. This is especially true for complex operational environments where the
number of variables in the system are too large account for every possible scenario. While T-way
combinatorial testing attempts to resolve this problem through boundary value analysis and equivalence
partitioning, extensive combinatorial testing is still required and may require considerable computational
resources. Furthermore, only 90.8% of software requirements were tested. Of the remaining 9.2%, it is
possible defects exist that were undetected due to under testing of the required functionality. Based on the
detection rate of TC, it suggests one potential defect may remain in the untested code portion.

Fault injection is another test-based method utilized in this report, referenced as CF, to detect
software resiliency. However, fault injection is also susceptible to idealized testing environments that may
be under-representative of the real operational profile. T-way combinatorial testing is also recommended
here to reduce the number of redundant tests required but is limited by the scenarios considered. For CF,

76

while 11,710 fault scenarios were tested, it is still difficult to justify whether a sufficient number of
scenarios were considered. To accomplish comprehensive testing (whether TC or CF), detailed
knowledge of the operational profile, software interface, and recovery options are required, all of which
can be difficult obtain.

In summary, while each software quality metric has drawbacks, the combination of semantic and test-
based analyses is designed to detect the majority of significant software defects. The two fault detection
perspectives can detect a wide range of defects that can manifest in different locations in the software
development lifecycle from requirements specifications to fault injection.

77

6. CONCLUSIONS AND FUTURE WORKS
6.1 Conclusions

This report documents the research activities in FY-21 that quantitatively evaluate CCFs (especially
software CCFs) in HSSSR DI&C systems and in NPPs using the IRADIC technology.

Chapter 2 presented the CCF analysis of a highly redundant digital RTS. An approach for performing
CCF analysis given the limited data and multiple CCCGs is developed and demonstrated using a case
study. The approach relies on the modified BFM to account for multiple CCCGs and PBF-2 to define beta
factors for each CCCG. Together these two methods will provide a means to overcome the limitations of
conventional methods. Because of the unique and highly redundant structure of digital RTS, there is a
need to model several of its components as part of multiple CCCGs.

The modified BFM was selected to model components with multiple CCCGs as it was constructed for
such a case. Normally CCF methods rely on historical data or experience to define model parameters.
However, with limited data available concerning the RTS, a solution for quantifying model parameters
had to be found. Without the parameters, the modified BFM would not work. Several elicitation methods
were reviewed, and PBF-2 was selected. The novel application of PBF-2, together with the modified
BFM, allows for a successful quantification process for the multiple CCCGs under a limited-data
scenario. In conclusion, the CCF modeling approach developed for this work provides an effective means
of quantification given the scope of the case study. The proposed approach provides a means to account
for software CCFs in PRA for a limited-data scenario.

Chapter 3 describes consequence analysis based on INT-TRANS and relevant accident scenarios. The
changes of CDF after adding integrated FTs of digital RTS and ESFAS to the generic PWR ET models
are compared and discussed. Integrated FTs of RTS and ESFAS include both software and hardware
failures, particularly CCF, that may occur in a four-division digital RTS and a four-division digital
ESFAS. Results show the CDF of INT-TRANS accident scenarios are reduced significantly.

By adding the integrated FTs of four-division digital RTS and ESFAS into the PRA models, the
safety margin obtained from the plant digitalization on HSSSR DI&C systems are quantitatively
estimated. For example, results show RTS failure probability is half-reduced from 4.288E-6 to 1.270E-6;
LPI failure probability greatly decreases from 8.416E-4 to 2.258E-4 due to the improvement of ESFAS-
FT. This explains the significant reduction of CDF in these analyzed accident scenarios. It indicates plant
modernization including the improvement of HSSSR DI&C systems such as RTS and ESFAS will make
great benefits to plant safety by providing increased safety margins to accident management.

In Chapter 4, a novel approach, ORCAS, was presented for the quantification of software hazards
when sufficient operational and testing data was available. The method incorporates elements of quality
software development as well as strong analysis techniques to identify and link software defects to
potential failure modes. The approach includes both semantic and test-based analysis to detect failures
that can exist in different stages of the SDLC. In addition, considerations for comprehensive testing, yet
computationally feasible, are also incorporated using T-way testing to generate valid, invalid, and edge
case test conditions. Identified defects are then systematically linked and coupled with basic events via
orthogonal defect classification. The semantic bridging presented by ODC allows flexibility but also solid
guidelines in the coupling of root causes to software hazards.

In previous work in FY-19 and 20, RESHA was applied to analyze the possible software
hazards/basic events as well as software CCFs that can occur through highly redundant systems. ORCAS,
a detailed method to quantify software hazards identified with the RESHA method, is presented and a
case study is examined. This method leverages existing methodologies in a unique combination to
provide software specific failure quantification.

78

In Chapter 5, the ORCAS method is applied to the advanced HSI relevant to reactor trip safety
developed from the APR-1400 HSI design. The HSI of the APR-1400 consists primarily of four
redundant information retrieval systems for the operator. During nominal reactor operation, the QIAS-N
receives analog and digital signals from both safety and non-safety-related plant components. Under both
nominal and safety relevant scenarios, the QIAS-P acts as both a continuous source of accident
monitoring information as well as a backup operator display module to the QIAS-N system. The primary
role of the QIAS-P system is to provide unambiguous indication of ICC as well as advanced warning of
the approach towards it. Both QIAS information systems are implemented using PLC-based control
platforms. For the current work scope, only the QIAS-P system is analyzed using the adapted
methodology.

For the QIAS-P system, the top event was assigned to be “Operator fails to initiate reactor trip
causing reactor damage.” For simplified operator-decision models, this event is triggered whenever the
QIAS-P HSI system fails to properly display monitored parameters or alarms. The total probability of this
top event was calculated (from SAPHIRE 8) to be 4.463 ⋅ 10−4 from the integrated FT. This includes
hardware and software single and CCF failures. The top contributing basic event to this event was the
failure of the display monitor of the QIAS-P system. Considering main control rooms will have multiple
monitors, this failure can be excluded to analyze the DI&C contribution to overall failure rate. For the two
division of the QIAS-P system, the failure rate was determined to be 3.824 ⋅ 10−4 . It was discovered the
majority of the contributing basic events was the software CCFs between the digital modules among the
two divisions. This is due to the assumption there is no hardware or software diversity between the
divisions as it was not mentioned in the APR-1400 instrumentation and control report. Given that within
the APR-1400 system, the QIAS-P is only one of four redundant HSI systems, it is expected even without
diversity among QIAS-P divisions, the failure rate of the top event should be lower than 2.35 ⋅ 10−5 .

6.2 Future Works
In this project, the IRADIC technology has been developed and demonstrated for a digital design of

RPS and ESFAS of existing plants with multilayer software CCFs, human interactions with these
systems, and plant responses. This technology complements other approaches being developed for
deploying DI&C technologies and emphasizes risk-informed approaches used to facilitate the adoption
and licensing of HSSSR DI&C systems. Currently, only qualitative assessment is required for evaluating
design attributes and quality measures of DI&C systems because there is no appropriate approach for
performing quantitative assessment. To deal with the technical issues in addressing potential software
CCF issues in HSSSR DI&C systems of NPPs, the IRADIC technology provides:

• An integrated and best-estimate, risk-informed capability to address new technical digital issues
quantitatively, accurately, and efficiently in plan modernization progress, such as software CCFs in
HSSSR DI&C systems of NPPs.

• A common and modularized platform for I&C designers, software developers, plant engineers and
risk analysts to efficiently prevent and mitigate risk by identifying crucial failure modes and system
vulnerabilities, quantifying DI&C system reliability, and evaluating the consequences of digital
failures on the plant responses.

• A technical basis and risk-informed insights to assist NRC and industry in formalizing relevant
licensing processes relevant to CCF issues in HSSSR DI&C systems.

• An integrated risk-informed tool for vendors and utilities to meet the regulatory requirements and
optimize the D3 applications in the design of digital HSSSR systems.

The IRADIC technology expects to develop the capability of quantitative assessment to fill the
technical gaps, it follows the trend and the need in digital modernization of existing NPPs. The work
scope of this project in FY-22 is to further improve and demonstrate IRADIC technology based on the

79

achievements from FY-19 to FY-21, particularly in developing a software CCF modeling method,
enhancing the IRADIC flexibility in coupling various state-of-the-art reliability analysis methods for
different conditions, and providing best-estimate consequence analysis to fully evaluate the safety
margins introduced by plant digitalization in different accident scenarios.

Key activities in FY-22 include:

• Evaluate and improve existing CCF modeling methods for estimating probabilities of potential
software CCF in HSSSR DI&C systems. Build up the capability of software CCF modeling and
embed it into the IRADIC technology. Uncertainty quantification, sensitivity analysis and validation
will be performed with limited available data.

• Collaborate with university partners to further improve the reliability analysis approach in IRADIC
for DI&C systems, and develop a “plug-and-play” capability for IRADIC to couple with various the-
state-of-the-art software reliability analysis methods for different conditions.

• Complete systematic hazard analysis and reliability study for human-machine interface relevant to
actuation of engineered safety features.

• Perform an integrated risk-informed analysis (including hazard, reliability, and consequence analysis)
of additional accident scenarios (e.g., SBO, loss of offsite power, and loss of main feedwater) affected
by failures in HSSSR DI&C systems for generic plants using improved IRADIC technology.

• Adjust and demonstrate the IRADIC technology on the risk assessment and design optimization of
AI-guided advanced control systems. Considering the potential and trend to introduce AI/ML
techniques in the design and operation of LWRs, it is necessary to ensure the reliability and
availability of these AI-guided operator-advisory software or digital platforms. By accurately
identifying potential risks and estimating their impacts to plant safety (e.g., CDF), IRADIC can
provide risk-informed insights to support the decision-making of operators to deal with potential
software/digital/cyber failures, especially software CCF. Besides, IRADIC can optimize D3
applications in the design stage of AI-guided HSSSR DI&C systems, especially to the designs of ML-
based digital twins. By estimating the safety margins obtained by the plant digitalization in a best-
estimated means, suggestions can be provided to the designers.

80

7. REFERENCES
[1] Bao, H., H. Zhang, and K. Thomas. 2019. "An Integrated Risk Assessment Process for Digital

Instrumentation and Control Upgrades of Nuclear Power Plants." Idaho National Laboratory,
Idaho Falls, ID. https://doi.org/10.2172/1616252.

[2] Bao, H., H. Zhang, and T. Shorthill. 2020. "Redundancy-guided System-theoretic Hazard and
Reliability Analysis of Safety-related Digital Instrumentation and Control Systems in Nuclear
Power Plants." Idaho National Laboratory, Idaho Falls, ID.
https://www.osti.gov/servlets/purl/1668835.

[3] Aldemir, T., D.W. Miller, M.P. Stovsky, J. Kirschenbaum, P. Bucci, A.W. Fentiman, and L.T.
Mangan. 2006. "Current State of Reliability Modeling Methodologies for Digital Systems and
Their Acceptance Criteria for Nuclear Power Plant Assessments." NUREG/CR-6901, U.S.
Nuclear Regulatory Commission, Washington, D.C.. http://purl.access.gpo.gov/GPO/LPS100342.

[4] Kirschenbaum, J., P. Bucci, M. Stovsky, D. Mandelli, T. Aldemir, M. Yau, S. Guarro, E. Ekici,
and S.A. Arndt. 2009. "A Benchmark System for Comparing Reliability Modeling Approaches
for Digital Instrumentation and Control Systems." Nuclear Technology 165, no. 1: 53-95.
https://doi.org/10.13182/NT09-A4062.

[5] Thomas, K., and K. Scarola. 2018. "Strategy for Implementation of Safety-Related Digital I&C
Systems." INL/EXT-18-45683, Idaho National Laboratory, Idaho Falls, ID.

[6] Wierman, T.E., D.M. Rasmuson, and A. Mosleh. 2007. "Common-Cause Failure Databased and
Analysis System: Event Data Collection, Classification, and Coding." NUREG/CR-6268, Rev. 1,
Idaho National Laboratory, Idaho Falls, ID.

[7] U.S. Nuclear Regulatory Commission. 1979. "A Defense-In-Depth and Diversity Assessment of
the RESAR-414 Integrated Protection System." NUREG-4093, U.S. Nuclear Regulatory
Commission, Washington, D.C..

[8] U.S. NRC. 2016. "Historical Review and Observations of Defense-in-Depth. NUREG/KM-0009,
U.S. Nuclear Regulatory Commission, Washington, D.C.

[9] U.S. NRC. 2016. "Standard Review Plan for the Review of Safety Analysis Reports for Nuclear
Power Plants: LWR Edition — Instrumentation and Controls." NUREG-0800, U.S. Nuclear
Regulatory Commission, Washington, D.C.

[10] U.S. NRC. 1995. "Use of Probabilistic Risk Assessment Methods in Nuclear." Federal Register
60, no. 158: 42622-42629.

[11] U.S. NRC. 2018. "Plans for Addressing Potential Common Cause Failure in Digital
Instrumentation and Controls." SECY-18-0090, U.S. Nuclear Regulatory Commission,
Washington, D.C.

[12] U.S. NRC. 2019. "Integrated Action Plan to Modernize Digital Instrumentation and Controls
Regulatory Infrastructure." ML19025A312, U.S. Nuclear Regulatory Commission, Washington,
D.C.

[13] Arndt, S.A., and A. Kuritzky. 2010. "Lessons Learned from the U.S. Nuclear Regulatory
Commission’s Digital System Risk Research." Nuclear Technology 173, no. 1: 2-7.
https://doi.org/10.13182/NT11-A11478.

[14] Clark, A.J., A.D. Williams, A. Muna, and M. Gibson. 2018. "Hazard and Consequence Analysis
for Digital Systems – A New Approach to Risk Analysis in the Digital Era for Nuclear Power
Plants." in Transactions of the American Nuclear Society 119, no. 1: 888-891.

[15] Leveson, N.G. and J. P. Thomas, STPA Handbook. March 2018.
[16] Nuclear Energy Institute. 2021. “Guidance for Addressing CCF in High Safety Significant

Safety-related DI&C Systems.” NEI.
[17] U.S. NRC. 2002. "An Approach for Using Probabilistic Risk Assessment in Risk-Informed

Decisions on Plant-Specific Changes to the Licensing Basis." Regulatory Guide 1.174 Rev. 1.
U.S. Nuclear Regulatory Commission, Washington, D.C.

81

[18] Shorthill, T., H. Bao, H. Zhang, and H. Ban. 2020. "A Redundancy-Guided Approach for the
Hazard Analysis of Digital Instrumentation and Control Systems in Advanced Nuclear Power
Plants." https://arxiv.org/abs/2005.02348v1.

[19] Bao, H., T. Shorthill, and H. Zhang. 2020. "Hazard Analysis for Identifying Common Cause
Failures of Digital Safety Systems using a Redundancy-Guided Systems-Theoretic Approach."
Annals of Nuclear Energy 148, 107686. https://doi.org/10.1016/j.anucene.2020.107686.

[20] Shorthill, T., H. Bao, Z. Hongbin, and H. Ban. 2021. "A novel approach for software reliability
analysis of digital instrumentation and control systems in nuclear power plants." Annals of
Nuclear Energy 158: 108260. https://doi.org/10.1016/j.anucene.2021.108260.

[21] Zhang, H., R. Szilard, S. Hess, and R. Sugrue. 2018. "A Strategic Approach to Employ Risk-
Informed Methods to Enable Margin Recovery of Nuclear Power Plants Operating Margins."
Idaho National Laboratory, Idaho Falls ID. https://doi.org/10.2172/1514992.

[22] U.S. NRC. 2016. "Guidance for Evaluation of Diversity and Defense-In-Depth in Digital
Computer-Based Instrumentation and Control Systems Review Responsibilities." in NUREG-800.
U.S. Nuclear Regulatory Commission, Washington, D.C..

[23] NEA. 2004. "International Common-Cause Failure Data Exchange. ICDE General Coding
Guidelines - Technical Note." NEA/CSNI/R(2004)4, Nuclear Energy Agency.

[24] Mosleh, A., D. Rasmuson, and F. Marshall. 1998. "Guidelines on Modeling Common-Cause
Failures in Probabilistic Risk Assessment." NUREG/CR-5485, U.S. Nuclear Regulatory
Commission, Washington, D.C..

[25] Parry, G.W. 1991. "Common Cause Failure Analysis: A Critique and Some Suggestions."
Reliability Engineering and System Safety 34, no. 3: 309-326. https://doi.org/10.1016/0951-
8320(91)90106-H.

[26] Paula, H.M., D.J. Campbell, and D.M. Rasmuson. 1991. "Qualitative cause-defense matrices:
Engineering tools to support the analysis and prevention of common cause failures," Reliability
Engineering & System Safety 34, no. 3: 389-415. https://doi.org/10.1016/0951-8320(91)90110-S .

[27] O'Connor, A. and A. Mosleh. 2013. "A General Cause Based Methodology for Analysis of
Dependent Failures in System Risk and Reliability Assessments." Ph.D. diss., University of
Maryland.

[28] Hokstad, P. and M. Rausand. 2008. "Common Cause Failure Modeling: Status and Trends." in
The Handbook of Performability Engineering, edited by K.B. Misra, 621-640 London, Springer.
https://doi.org/10.1007/978-1-84800-131-2_39.

[29] U.S. Nuclear Regulatory Commission. 2011. "Systems Analysis Programs for Hands-on
Integrated Reliability Evaluations (SAPHIRE) Version 8.0." NUREG/CR-7039 Vol. 3, U.S.
Nuclear Regulatory Commission, Washington, D.C.

[30] Ma, Z., R.F. Buell, J.K. Knudsen, and S. Zhang. 2020. "Common-Cause Component Group
Modeling Issues in Probabilistic Risk Assess." INL/CON-20-57077, Idaho National Laboratory,
Idaho Falls, ID.

[31] Bobbio, A., L. Portinale, M. Minichino, and E. Ciancamerla. 1999. "Comparing Fault Trees and
Bayesian Networks for Dependability Analysis." In Computer Safety, Reliability and Security,
edited by Felici M. and Kanoun K. https://doi.org/10.1007/3-540-48249-0_27.

[32] Chu, T.L., M. Yue, M. Martinez-Guridi, and J. Lehner. 2010. "Review of Quantitative Software
Reliability Methods." Brookhaven National Laboratory. https://doi.org/10.2172/1013511.

[33] Zitrou, A. 2006. "Exploring a Bayesian Approach for Structural Modelling of Common Cause
Failures." Ph.D. diss., University of Strathclyde.

[34] Kancev, D. and M. Cepin. 2012. "A new method for explicit modelling of single failure event
within different common cause failure groups." Reliability Engineering and System Safety 103:
84-93. https://doi.org/10.1016/j.ress.2012.03.009.

[35] Johnston, B.D. 1987. "A Structured Procedure for dependent Failure Analysis (DFA)." Reliability

Engineering 19, no. 2: 125-136. https://doi.org/10.1016/0143-8174(87)90107-7.

https://arxiv.org/abs/2005.02348v1

82

[36] Humphreys, R.A. 1987. "Assigning a Numerical Value to the Beta Factor Common Cause
Evaluation." in Reliability '87, Proceedings of the Sixth Conference Birmingham, England;
2C/5/1-2C/5/8.

[37] Lindberg, S. 2007. "Common cause failure analysis: Methodology evaluation using Nordic
experience data." Ph.D. diss., Uppsala Universitet.

[38] Paula, H.M., G.W. Parry, D.J. Campbell, D.B. Mitchell, and D.M. Rasmuson. 1990. "A Cause-
Defense Approach to the Understanding and Analysis of Common Cause Failures." NUREG/CR-
5460, U.S. Nuclear Regulatory Commission, Washington D.C.

[39] 1998. "The Betaplus Common Cause Failure Model." Safety and Reliability 18, no. 1: 16-23.
https://doi.org/10.1080/09617353.1998.11690672.

[40] Technis. 2021. "Betaplus." Wilde Analysis Ltd., Accessed July 2021.
https://www.wilderisk.co.uk/software/technis-products/betaplus/.

[41] Korea Electric Power Corporation and Korea Hydro & Nuclear Power Co., Ltd. 2018. "APR1400
Design Control Document Tier 2. Chapter 7: Instrumentation and Controls.", South Korea.

[42] Varde, P.V., J.G. Choi, D.Y. Lee, and J.B. Han. 2003. "Reliability Analysis of Protection System
of Advanced Pressurized Water Reactor-APR 1400." KAERI/TR-2468/2003, Korea Atomic
Energy Research Institute, South Korea.

[43] Ma, Z., C. Parisi, H. Zhang, D. Mandelli, C. Blakely, J. Yu, R. Youngblood, and N. Anderson.
2018. "Plant-Level Scenario-Based Risk Analysis for Enhanced Resilient PWR – SBO and
LBLOCA." Idaho National Laboratory, Idaho Falls, ID. https://doi.org/10.2172/1495192.

[44] Ma, Z., C. Parisi, C. Davis, J. Park, R. Boring, and H. Zhang. 2019. "Risk-Informed Analysis for
an Enhanced Resilient PWR with ATF, FLEX, and Passive Cooling." Idaho National Laboratory,
Idaho Falls, ID. https://doi.org/10.2172/1777257.

[45] Ma, Z., C. Davis, C. Parisi, R. Dailey, J. Wang, S. Zhang, H. Zhang, and M. Corradini. 2019.
"Evaluation of the Benefits of ATF, FLEX, and Passive Cooling System for an Enhanced
Resilient PWR Model." Idaho National Laboratory, Idaho Falls, ID.
https://doi.org/10.2172/1777262.

[46] K. E. P. Corporation and L. T. D. Korea Hydro & Nuclear Power Co. 2018. "APR 1400
Instrumentation and Controls." 2018.

[47] Lee, M., S. Song and D. Yun. 2012. "Development and application of POSAFE-Q PLC
platform." International Atomic Energy Agency 43 no. 50. .

[48] Chung, H.-Y., and D.-W. Kim. 2003. "Design of advanced power reactor (APR1400) I&C
system." IFAC Proceedings Volumes 36, no. 20: 729-734. https://doi.org/10.1016/S1474-
6670(17)34557-3.

[49] 2017. "IEEE 1633-2016 - IEEE Recommended Practice on Software Reliability." in IEEE Std
1633-2016 (Revision of IEEE Std 1633-2008). https://doi.org/10.1109/IEEESTD.2017.7827907..

[50] Goel, A.L. and K. Okumoto. 1979. "Time-dependent error-detection rate model for software
reliability and other performance measures." IEEE Transactions on Reliability R-28, no. 3: 206-
211. https://doi.org/10.1109/TR.1979.5220566.

[51] Musa, J.D. and K. Okumoto. 1984. "A logarithmic poisson execution time model for software
reliability measurement." in Proceedings of the 7th international conference on Software

engineering, 230-238.
[52] Jelinski, Z. and P. Moranda. 1972. "Software reliability research." Statistical Computer

Performance Evaluation, 465-484. https://doi.org/10.1016/B978-0-12-266950-7.50028-1.
[53] Schneidewind, N.F. 1975. "Analysis of error processes in computer software." ACM SIGPLAN

Notices 10, no. 6: 337-346. https://doi.org/10.1145/390016.808456.
[54] Smidts, C. and M. Li. 2000. “Software Engineering Measures for Predicting Software Reliability

in Safety Critical Digital Systems” NUREG/GR-0019, U.S. Nuclear Regulatory Commission.
[55] Smidts, C.S. and M. Li. 2004. "Preliminary Validation of a Methodology for Assessing Software

Quality." NUREG/CR-6848, U.S. Nuclear Regulatory Commission.

83

[56] Smidts, C.S., Y. Shi, M. Li, W. Kong, and J. Dai. 2011. "A large scale validation of a
methodology for assessing software reliability." NUREG/CR-7042, U.S. Nuclear Regulatory
Commission.

[57] Gaffney, J.E. 1984. "Estimating the number of faults in code." IEEE Transactions on Software

Engineering SE-10, no. 4: 459-464. https://doi.org/10.1109/TSE.1984.5010260.
[58] American Nuclear Society Standards Committee. 2016. "Glossary of Definitions and

Terminology," American Nuclear Society.
[59] IEEE. 2006. IEEE 982.1-2005 - IEEE Standard Dictionary of Measures of the Software Aspects

of Dependability.
[60] Strauss, S.H. and R. G. Ebenau, Software Inspection Process. New York: McGraw-Hill Inc.,

1993.
[61] Kuhn, D.R., R. N. Kacker, and Y. Lei. 2010. "Practical Combinatorial Testing." Sp 800-142,

National Institute of Standards and Technology.
[62] Lindberg, S. 2007. "Common cause failure analysis: Methodology evaluation using Nordic

experience data." Corpus ID: 997682.
[63] Chillarege, R., I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moebus, B.K. Ray, and M.-Y.

Wong.1992. "Orthogonal defect classification-a concept for in-process measurements." IEEE

Transactions on Software Engineering 18, no. 11: 943-956. https://doi.org/10.1109/32.177364.
[64] Choi, K.C., S.W. Song, G.M. Park, and S.J. Hwang. 2012. "Reliability Analysis for Safety Grade

PLC (POSAFE-Q)." IAEA.
[65] Park, J.-j., D.-i. Kim, and D.-j. Kim. 2008. "Development of Qualified Indication and Alarm

System-PAMI based on POSAFE-Q." Transactions of the Korean Nuclear Society Spring
Meeting, Gyeongju, Korea.

[66] Shin, Y.C., H.Y. Chung, and T.Y. Song. 2003. "Advanced MMIS design characteristics of
APR1400." International conference on global environment and advanced nuclear power plants;
Kyoto, Japan.

[67] Lee, J.-K., K.-I. Jeong, G.-O. Park, and K.-Y. Sohn. 2014. "A Quantitative Reliability Analysis of
FPGA-based Controller for applying to Nuclear Instrumentation and Control System." The
Journal of the Korea institute of electronic communication sciences 9, no. 10: 1117-1123.
https://doi.org/10.13067/JKIECS.2014.9.10.1117.

[68] Department of Defense. 1990. Military Handbook, Reliability Prediction of Electronic

Equipment. Washington D.C.

