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EXECUTIVE SUMMARY 

RAVEN is a complex software tool that has functionality spanning from being the RELAP-7 user interface, to using 
RELAP-7 to perform Risk Informed Safety Characterization (RISMC), and to controlling RELAP-7 calculation 
execution. 
The goal of this document is to: 

1. Highlight the functional requirements of the different tasks of RAVEN 
2. Identify shared functions that could be aggregated into modules to obtain minimal software redundancy and 

maximize software utilization.  

RAVEN is a software framework that will allow the user to take advantage of the following functionalities: 
• Derive and implement the control logic required to: 

o Simulate the plant control system  
o Simulate the operator (procedure guided) actions 
o Perform Monte Carlo sampling of random distributed events  
o Perform event tree based analysis 

• Provide a GUI to: 
o Input a plant description to RELAP-7 (component, control variable, control parameters) 
o Concurrent monitoring of control parameters 
o Concurrent alteration of control parameters 

• Provide Post Processing data mining capability based on 
o Dimensionality reduction 
o Cardinality reduction 

This document will show how an appropriate mathematical formulation of the control logic and probabilistic analysis 
leads to having most of the software infrastructure leveraged between the two main tasks. 
Further, this document will go through the developments accomplished this year, including simulation results, and 
priorities for the next year’s development.  
  



 

 

0 Introduction 

The document is divided in five main sections: 
1. Control Logic 

The analysis of the control logic classical equation set is carried over in a very general formalism and then the 
software infrastructure is derived 

2. GUI 
The requirements of the GUI are highlighted and integrated into the software design 

3. Probabilistic safety analysis 
A general mathematical framework for modeling dynamic stochastic systems is introduced. Then, the software 
implementation is derived so to maximize leveraging with the control logic framework 

4. Results 
An overview of results obtained so far is presented: GUI capabilities, control logic application and probabilistic 
analysis 

5. Future developments 
For each of the above-defined tasks of RAVEN, the main future tasks and challenges are outlined 

6. DEMO set up 
The initial preparation of a DEMO based on a PWR for PRA analysis is described 

 

 

1 Control Logic 

1.1 Plant and Control System Model 

The first step is the derivation of the mathematical model representing, at a high level of abstraction, the plant and control 
system model. Let it be ̅(ݐ)ߠ a vector describing the plant status in the phase space, and the governing equation: 
ݐ߲(ݐ)ߠ߲̅  = ℋഥ(̅(ݐ)ߠ,  (ݐ

Eq. 1 

In the above equation we have assumed the time differentiability of the phase space. This is generally not required and it 
is used here for compactness of the notation.  
Now an arbitrary decomposition of the phase space is performed: 
ߠ̅  = ቀݒ̅ݔഥቁ 

Eq. 2 

This decomposition is made in such a way that ̅ݔ represents the set of unknowns solved by RELAP-7, while ̅ݒ represents 
the variables directly controlled by the control system. 
Eq. 1 is now cast in a system of equations: 



 

 

 

൞߲̅ݐ߲ݔ = ,ݔ̅)തܨ ,ݒ̅ ݐ߲ݒ߲̅(ݐ = തܸ(̅ݔ, ,ݒ̅  (ݐ
Eq. 3 

As a consequence of this splitting, ̅ݔ contains only the state variables of the phase space that are continuous while ̅ݒ 
contains only the discrete state variables that are usually handled by the control system. Next we notice that the function ܸ(̅ݔ, ,ݒ̅  representing the control system, does not depend on the knowledge of the complete status of the system but on a (ݐ
restricted subset that we call control variables ̅ܥ: 
 

۔ۖەۖ
ݐ߲ݔ߲̅ۓ = ,ݔ̅)തܨ ,ݒ̅ ̅ܥ(ݐ = ,ݔ̅)ܩ̅ ݐ߲ݒ߲̅(ݐ = തܸ(̅ܥ, ,ݒ̅  (ݐ

Eq. 4 

where ̅ܥ is a vector having lesser dimensionality than ̅ݔ and therefore is more convenient to work with.  
In this document the following naming convention will be used: 
 Monitored variables :̅ܥ •
 Controlled variable :ݒ̅ •

Note that even if it seems more appropriate, the standard naming system of signals (monitored) and status (controlled) is 
not used. The reason for this choice is that, the chosen naming system better mirrors the computational pattern between 
RAVEN and RELAP 7. Moreover, the definition of signals is tight to the definition of the control logic for each 
component and therefore relative rather than absolute in the overall system analysis. In fact we could have signal for a 
component that is the status of another component creating a definition that would be not unique. Another reason is that 
the standard naming will loose every meaning once used also for uncertainty analysis. 
 

1.2 Operator Splitting Approach for the Simulation of the Control System 

The system of equations shown in Eq. 4 is, generally speaking, fully coupled and in the past it has always been solved 
using an operator splitting approach. The reasons for this choice are several: 
• Control systems react with an intrinsic delay 
• The reaction of the control system might move the system between two different discrete state and therefore 

numerical errors will be always of first order unless the discontinuity is treated explicitly 

At least in its initial implementation, RAVEN will follow this common practice. Therefore Eq. 4 becomes: 
 

۔ۖەۖ
ݐ߲ݔ߲̅ۓ = ,ݔത൫̅ܨ ,௧షభݒ̅ ̅ܥ൯ݐ = 	 ,ݔ̅)ܩ̅ ݐ߲ݒ߲̅(ݐ = തܸ൫̅ܥ, ,௧షభݒ̅ ିଵݐ						൯ݐ ≤ ݐ ≤ ݐ = ିଵݐ +  ݐ∆

Eq. 5 



 

 

1.3 Operator Response 

It will not be RAVEN’s task to define mathematical models of plant operator behavior, but at the same time once those 
models (for the moment only deterministic) are built it would be easy to implement them in a similar fashion to the 
implementation of the plant control system itself. 
 

1.4 Software Implementation of the Control System 

RELAP-7 is the solver for the plant system except for the control system. From the mathematical formulation presented so 

far, RELAP-7 will solve  
డ௫̅డ௧ቚ = ,ݔത൫̅ܨ ,௧షభݒ̅  ൯. RELAP-7 will be based on the middleware software MOOSE, that, inݐ

addition to providing the algorithms for the solution of the differential equation, will also provide all the manipulation 
tools for the C++ classes containing the solution vector. More specifically, the plant will be represented by a set of 
components and each component type will correspond to a C++ class. At each time step RELAP-7/MOOSE will update 
the information within the classes with the current solution ̅ݔ, then RAVEN will ask MOOSE to perform the needed 
manipulation to construct the monitored quantities ̅ܥ. Once ̅ܥ is constructed, the information is reduced to a vector of 

numbers understandable to the control system. The equation 
డ௩തడ௧ቚ = തܸ൫̅ܥ, ,௧షభݒ̅  ൯ is solved and the set of controlݐ

parameters for the next time step (̅ݒ௧) is obtained. Up to now no situations where the complexity of 
డ௩തడ௧ቚ = തܸ൫̅ܥ, ,௧షభݒ̅  ൯ݐ

required a numerical solution therefore for the moment RAVEN remains numerical integration free.  
Note that once the information is transferred to ̅ܥ, the way the plant solution (̅ݔ) is computed or stored is irrelevant. The 
last statement highlights the capability of RAVEN to represent an easily generalizable tool. To be more specific, in reality 
MOOSE is made aware of the need to compute at the end of each time step the ̅ܥ. As a consequence this is computed 
before returning the calculation to RAVEN. Therefore, the scheme in Figure 1 is more accurate in terms of software 
implementation. 
 

Figure 1: Control system software layout 
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1.5 Definition of the ഥ Space 

The contraction of the information from the ̅ݔ space to the ̅ܥ space is a crucial step that defines the functional 
requirements of both modules: Control Logic and RELAP-7 Interface. Since ̅ܥ represents an arbitrary middle step, a set of 
rules are defined that will make this choice unique.  At the same, it would make sense to use this degree of freedom to 
minimize software redundancy and clear methods of ownership (e.g where algorithms are implemented and maintained).  
After accounting for the above considerations, ̅ܥ will be chosen such that: 

• The solution of డ௩തడ௧ቚ = തܸ൫̅ܥ, ,௧షభݒ̅ ൯ could be carried along without any knowledge of the solution algorithm of డ௫̅డ௧ቚݐ = ,ݔത൫̅ܨ ,௧షభݒ̅   .൯ݐ

• This sets the minimum contraction of the information from ̅ݔ to ̅ܥ 
• All the actions represented by ̅ܥ = 	 ,ݔ̅)ܩ̅ require knowledge of the solution algorithm of డ௫̅డ௧ቚ (ݐ = ,ݔത൫̅ܨ ,௧షభݒ̅  .൯, i.eݐ

the derivation of ̅ܥ = 	 ,ݔ̅)ܩ̅  .is performed by subsequent calls to the MOOSE post processing capabilities (ݐ
• This set the maximum contraction of the information from ̅ݔ to ̅ܥ 
The intersection of the two subspaces above defined seems to create a unique minimal set (at least in all the problems 
sampled so far). 
At this point an example might be helpful: 
• Controlled parameter: bypass valve status (open/closed, 1/0) 
• Control logic: differential pressures between two specific points along pipes i and j set the opening of the bypass 

Let: 
 • = 0				(݈), ≤ ݈ ≤  ,  pressure along pipe iܮ
 • = 0				(݈), ≤ ݈ ≤  ,  pressure along pipe jܮ

ݏ • = ቄ10, control variable of the bypass 

• ݈, coordinate of the control point of the pressure along pipe i 
• ݈, coordinate of the control point of the pressure along pipe j 
• ∆ ܲ, opening delta pressure 
• ∆ ܲ, closing pressure drop 

The control logic becomes: 

ݏ	݂݅  =
۔ۖەۖ
ۓ 0, 	ℎ݁݊ݐ ൝ ݈)ߜ݈݀ − (݈)(݈ −  ൫ߜ݈݀ ݈ − ݈൯(݈)ೕ ≥ ∆ ܲ	ݐℎ݁݊	ݏ = 1 ݈)ߜ݈݀ − (݈)(݈ −  ൫ߜ݈݀ ݈ − ݈൯(݈)ೕ < ∆ ܲ	ݐℎ݁݊	ݏ = 	ℎ݁݊ݐ			,01 ൝ ݈)ߜ݈݀ − (݈)(݈ −  ൫ߜ݈݀ ݈ − ݈൯(݈)ೕ ≤ ∆ ܲ	ݐℎ݁݊	ݏ = 0 ݈)ߜ݈݀ − (݈)(݈ −  ൫ߜ݈݀ ݈ − ݈൯(݈)ೕ < ∆ ܲ	ݐℎ݁݊	ݏ = 1 

Following the above specified role for the creation of  ̅ܥ we introduce: ܥ =  ݈)ߜ݈݀ − (݈)(݈  control variable m ܥ  = ൫ߜ݈݀ ݈ − ݈൯(݈)ೕ  control variable n 

That in a coherent notation could be translated in the following expression for ̅ܩ: 

̅ܥ  = ቀቁ = ,ݔ̅)ܩ̅ (ݐ = ቆ ௗఋ(ି)()ಽబ ௗఋ൫ೕି൯ೕ()ಽೕబ ቇ 

And also the formulation of the control logic would become: 



 

 

ݏ	݂݅  = ൞ 0, 	ℎ݁݊ݐ ൜ܥ − ܥ ≥ ∆ ܲ	ݐℎ݁݊	ݏ = ܥ1 − ܥ < ∆ ܲ	ݐℎ݁݊	ݏ = 	ℎ݁݊ݐ			,01 ൜ܥ − ܥ ≤ ∆ ܲ	ݐℎ݁݊	ݏ = ܥ0 − ܥ < ∆ ܲ	ݐℎ݁݊	ݏ = 1 

 

1.6 The Auxiliary Plant and Component Status Variable 

So far it is assumed that all information needed is contained in ̅ݔ and ̅ݒ. Even if, as previously shown, this information is 
sufficient for the calculation of the system status in every point in time it is not a very practical way to implement the 
control system. 
To focus the idea it might be helpful to consider the following example. 
• Pump A has two different behaviors (head value) depending if in a pre scram or post scram situation or pump fault.  
• In this case to decide what would be its head at a certain point of the simulation the whole history of the plant and 

of the pump would be needed to decide if either a fault or scream condition has been encountered.  
• In order to avoid this inefficiency it is possible to introduce a set of auxiliary variables തܽ that do not add information 

but simplify the implementation of the control system. 

Later in the report there will be  a more deep discussion on what is the mathematical meaning of this variables but 
essentially those are the variables that in statistical analysis are artificially added to the phase space to force a Morkovian 
behavior into the system, (i.e. only the previous time step information are needed to determine the future status of the 
system). 
For convenience it is also useful to introduce two types (what is called here convenience is in a more correct mathematical 
wording for minimization of the control logic set): 
• Global status auxiliary control variables, e.g., scram, time from scram initiated, hot shut-down, time from hot shut-

down, cold shut-down, etc. 
• Component status auxiliary variables, e.g., correct functioning status, time from fault, etc. 

It could be helpful to make an example for the control law of a pump: 
• Pump gets requested only after scram 
• Pump stops properly working above a certain temperature cumulative load 
• If the pump is active, the flow rate is a function of the temperature in the core 
• If pump is not working, the flow rate decays exponentially with a certain lambda from the failure time 

Following the above logic to perform the control of the pump we need: 
• Control variables (̅ܥ space): cumulative temperature load  
• Global auxiliary: scram status (1/0), scram time 
• Component auxiliary: fault status (1/0), flow rate when fault occurred, time when fault occurred 
• Component control parameter: flow rate 

In conclusion, when building the input for the control system we need to: 
• Define a set of global status auxiliary control parameters, initial values and control logic 
• Define the component auxiliary control parameters initial values and control logic 

It is important to notice that the sequence in which the global and local auxiliary, and the component control parameters 
are computed might alter the outcome of the simulation. The addition of a priority property to the control logic is therefore 
suggested as a future development. This choice might avoid closed loops and linearize in time the control logic. 

To make an example we can just refer to the previous one where the control variable of the bypass ቀݏ = ቄ10ቁ now would 

be a component status auxiliary variable. We can also reformulate system Eq. 5 to account for this new set of auxiliary 
information. 
 



 

 

ەۖۖ
۔ۖۖ
ۓ ݐ߲ݔ߲̅ = ,ݔത൫̅ܨ ,௧షభݒ̅ ̅ܥ൯ݐ = 	 ,ݔ̅)ܩ̅ ߲(ݐ ത߲ܽݐ = ,ݔ൫̅ܣ̅ ,̅ܥ തܽ, ,௧షభݒ̅ ݐ߲ݒ൯߲̅ݐ = തܸ൫̅ܥ, ,௧షభݒ̅ തܽ, ൯ݐ

ିଵݐ							 ≤ ݐ ≤ ݐ = ିଵݐ +  ݐ∆
Eq. 6 

 

1.7 Example: Implementation of a Proportional Integrative and Differential (PID) 
Controller 

A PID controller is one of the most general formulations for a controller therefore is considered a good example on which 
perform a test of the framework designed so far. 
The mathematical representation is: 
ݐ݀ݒ݀  = (ݐ)ݑߙ + ߚ ݐ݀(ݐ)ݕ݀ + නߛ ௧(′ݐ)ݖ′ݐ݀

  

Eq. 7 

To highlight how the software framework is supposed to handle this type of controller it is helpful to assume: 
(ݐ)ݑ  = (ݐ)ݕ =  (ݐ)ݖ

Eq. 8 

And  
(ݐ)ݑ  = න ,ݎ̅)ܲݎ̅݀ (ݐ  

Eq. 9 

So that (ݐ)ݑ represents the average pressure in component i. Eq 7 could be rewritten as: 
ݐ݀ݒ݀  = ߙ න ,ݎ̅)ܲݎ̅݀ (ݐ + ߚ ݐ݀݀ න ,ݎ̅)ܲݎ̅݀ (ݐ + ′ݐන݀ߛ න ,ݎ̅)ܲݎ̅݀ (′ݐ

௧
  

Eq. 10 

Or 
ݐ݀ݒ݀  = ߙ න ,ݎ̅)ܲݎ̅݀ (ݐ + ߚ න ݎ̅݀ ݐ݀݀ ,ݎ̅)ܲ (ݐ + ߛ න ݎ̅݀ න݀ݎ̅)ܲ′ݐ, ௧(′ݐ

  

Eq. 11 



 

 

It is clear from last formulation that, given the rule described in the previous paragraph for the definition of the ̅ܥ space, 
all the terms appearing in the above equation need to be treated as a separate C type variables. This is due to the fact that 
RAVEN is blind with respect the numerical scheme in time used by MOOSE.  
Once we introduce the operator splitting approach, the right side of Eq. 11 is a constant therefore the final status will be 
simply: 
௧ݒ  = ൫ܥߙଵ,௧షభ + ଶ,௧షభܥߚ + ݐଷ,௧షభ൯ܥߛ +  ௧ିଵݒ

Eq. 12 

The task repartitioning between MOOSE and RAVEN is depicted in the figure below: 

Figure 3: Task repartitioning for the PID implementation 

 
1.7.1.1 Kernel (Operators) Needed to Create the Necessary Control Variables 

In order to do so the following list of operators needs to be supported by the MOOSE framework (priority ordered): 
 1⋃ ܸୀଵ න ⋃ݎ̅݀ సభ

 

The	average	operator	should	be provided	both	for	each	single	component	(n=1)	and	for	a	combination	of	them	(this	is	a	lower	priority)	since	this	type	of	averages	need	to	be	volume	weighted	(already	implemented) 
∙ሼݔܽ݉  ݎ̅∀| ∈ ⋃ ܸୀଵ ሽ	݉݅݊ሼ∙ ݎ̅∀| ∈ ⋃ ܸୀଵ ሽ	

 

• The min/max operator for the moment could be limited to the maximum on the nodal 
point while in the future it might be required to compute a more accurate value 
(Gaussian node, or arbitrary point search). As before the extension to multiple 
components could be a feature added later 

න ݎ̅)ߜ − ⋃ݎ̅݀(ݎ̅ సభ
 

• The point wise operator is especially needed when it is relevant to match the physical 
location of transponders with the computed controlled quantity 

MOOSE RAVEN 
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ௗௗ௧ ۔ۖەۖ
ۓ ଵ⋃ సభ  ⋃ݎ̅݀ సభ݉ܽݔሼ∙ ݎ̅∀| ∈ ⋃ ܸୀଵ ሽ݉݅݊ሼ∙ ݎ̅∀| ∈ ⋃ ܸୀଵ ሽ ݎ̅)ߜ − ⋃ݎ̅݀(ݎ̅ సభ

 
Time	derivative	operator	

•  

 

 ௧ᇱ௧బ′ݐ݀ ۔ۖەۖ
ۓ ଵ⋃ సభ  ⋃ݎ̅݀ సభ݉ܽݔሼ∙ ݎ̅∀| ∈ ⋃ ܸୀଵ ሽ݉݅݊ሼ∙ ݎ̅∀| ∈ ⋃ ܸୀଵ ሽ ݎ̅)ߜ − ⋃ݎ̅݀(ݎ̅ సభ

	
 

• Time integral operator 

 

  



 

 

1.8 Control Logic Software Layout 

The following scheme represents the current implementation that has been built to cover also all foreseen future needs.
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Figure 2 Calculation Flow 
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1.9 Control Logic Final Remarks 

1.9.1 Control Logic User interface 

So far the control logic is implemented by the user via Python scripting. The reason of this choice has been to try to 
preserve generality of the approach in the initial phases of the project so that later specialization would be possible and 
less expensive. At the moment the variables needed to define the control logic are accessible via an interface transparent 
to the user and once they are defined in the input file they are accessible in the control logic in the following form: 
• Auxiliary.name 
• Controlled.name 
• Monitored.name 

While it is believed that this is a rather convenient form to work with, it will be part of the GUI task to also automatize the 
construction of the control logic scripting to minimize user effort. Already available is the possibility to define via the 
input the creation of customable distribution and cumulative distribution functions. Once the user provide names to those 
specialization they will also available in the python scripting in a similar form to the other variables ( 
distribution.name(allowable list of arguments) ). 
 
1.9.2 Concerning Usage and Definition of Auxiliary Variable 

While the addition of auxiliary variables is a requirement to recast the system in a Markovian form during our preliminary 
test it has been noticed that they are useful tools to simplify the implementation of the control logic from a user 
standpoint. This usage increases the dimension of the phase space above what is strictly needed to represent the system 
but so far it has not been considered an issue. 
 

2 Graphical User Interface 

The Graphical User Interface has been highlighted by several of our stakeholders as one of the key success factors of the 
whole project (also including RELAP-7 itself). The GUI will evolve along with the expansion of the code capabilities 
therefore at this stage is very important to maintain the project open to future expansion and modular. Feedback from the 
stakeholder suggest the below discussed capabilities of the GUI to be prioritized. 
 

2.1 GUI Capability Requirements 

2.1.1 Graphical input of plant components and overall overview of the plant 

For each component the GUI provides a box to input: 
• Full component description 
• The list of the needed inputs required to fully describe a RELAP-7 component is available via an automatized 

process. Each new defined component has to inform the underling software (MOOSE) of the input need to fully 
describe itself. This information is retrievable by a special command in MOOSE that is called at the initialization 
stage of the GUI, so that the construction of new input interface for a new component is completely automatized. 

Next requirement is the capability to set up the general calculation requirement (accuracy, solver type, ending time etc.) 
like: 
• Algorithm choice 
• Convergence criteria 
• Ending time 

Note that also this process benefit of the above description automatic process. 
The above capabilities are exhaustive with respect the creation of a new RELAP-7/MOOSE input file and of course there 
should be the capability to open and modify also a pre-existing input file  
As long as the development of the GUI proceed to easy the user task we envision:  



 

 

• a 3D layout in real geometry 
• a 2D projection (in  a fake geometry avoiding component overlapping) 
• the possibility to inquire each component eventually modify it 
• Drag and drop component 
• CAD file importing 

The creation of a 2D projection of the plant, while is at the present the most common visualization layout for similar 
software, poses here a quite difficult challenge since the general framework under which RELAP 7 is developed will 
easier provide support for the 3D view. Unfortunately the 3D view might become unpractical for very complex geometry 
and therefore later in the project it might be required to provide also the 2D visualization capability. 
 
2.1.1.1 Graphical input of the control system 

After the building of the physical layout of the plant it is possible to move forward toward the creation of the information 
necessary to define the control system. 
To properly built the control logic the following information will be necessary: 
• List of the control variable ̅ܥ. A possibility to import such a list from the RELAP-7/MOOSE file (if already present) 

should be provided 
• List of the control variable ̅ݒ. A possibility to import such a list from the RELAP-7/MOOSE file (if already present) 

should be provided 
• List of the control variable തܽ 
• Laws ̅ܥ തܽ and ̅ܥ, തܽ̅ݒ. To be noticed that the logic at the beginning will be provide by a python scripting while 

later on it is foreseeable to be automatized via the GUI. 

2.1.1.2 Online Monitoring 

All the control variable, controlled parameters and auxiliary ones are available in an comma separated value file (CSV) 
and update while the calculation is running by the RAVEN (control) module. At the same time also the values of the 
variable computed by RELAP-7/MOOSE are stored in a separate exodus file. The online monitoring should be performed 
on both files. The GUI should provide the capability to the user to inspect all these variables. While the controlled, 
monitored and auxiliary variable are a 1D field therefore of easily visualization the solution field provided by RELAP-7 is 
still 1D but in three-dimensional layout (following plant layout). The visualization of this latter information will be 
therefore more complex and leveraging already developed software will be suggested. As part of the online monitoring of 
the simulation the user should also be able to interrupt the simulation and modify the control logic.  
 

2.2 GUI Development environment 

To develop a full GUI from scratch is a long task and most likely not needed. For this reason several possible option has 
been preventively evaluated. The development of the GUI itself will be performed using QtPy that is Python interface for 
a C++ based library (Qt) for GUI development, probably the most currently used environment for GUIs. The evident 
advantage of this choice is to have a state of the art environment and hopefully a higher chance to find people expert to 
speed the development.  
Even adopting Qt the visualization of 3D dimensional field and giving the user post processing capabilities remain a large 
and difficult task. In order to optimize effort in this direction this development will take advantage of the native support 
for exodus file in the VTK libraries. This choice will ease the visualization task while providing the needed post 
processing capabilities remains still of difficult reach. One of the possibilities considered is to leverage the capability of 
PARAVIEW. PARAVIEW is a software developed by KitWare based on vtk libraries and implemented in Qt. This 
software has great specialization capabilities and also provides a very flexible and complete post processing capability. It 
will be part of the next fiscal year task to better define the user needs in this respect and identify the most effective 
strategy.  



 

 

2.3 Software layout of the GUI-RAVEN interaction with the simulation flow 

Since RAVEN RELAP 7 will run with or without the GUI interface and also the GUI could be used only for generating 
input files t be run later on, the coupling scheme should be designed to allow these different configuration. Another 
important point to be considered is that most likely there will be a regulatory requirement to preserve input files. 

Figure 3: GUI and RAVEN driver interaction 
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3 RAVEN FOR MODELLING OF DYNAMIC STOCHASTIC SYSTEMS 

3.1 Mathematical Framework 

3.1.1 Derivation of the set of equations  

The scope of this part of the document is to present the mathematical framework underling RAVEN development to 
model dynamic stochastic system. This framework also account for uncertainties. By dynamic stochastic systems we refer 
to systems whose dynamics contain random (i.e., not predictable a priori) elements. Random behaviors, although present 
in nature, it is often artificially introduced into models to account for incapability of producing simulations that accurate 
enough.  
Although this differentiation, which pairs with the classical definition of epistemic (artificial) and aleatory (intrinsic) 
makes no difference in the way the evaluation on the uncertainties on the results of simulations. For the simulation of the 
behavior of those system, it will be more relevant the time dependence that those variable posses, this is anyhow a concept 
that will more deeply investigated later in this document. 
Possible examples of random elements are: 

• Random variability of parameters (e.g. uncertainty in physical parameters) 

• Presence of noise (background noise due to intrinsically stochastic behaviors or lack of detail in the simulation) 

• Uncertainty in the initial and boundary conditions 

• Random failure of components 

• Aging effect 
 
While RAVEN’s primary field of action is the reliability analysis of nuclear power plants when coupled with RELAP-7a 
code, the concepts investigated in this section are of general validity for the analysis of dynamic stochastic systems. 
It might be helpful to first recall Eq. 1 where the initial condition is added: 
 ቐ߲̅ݐ߲(ݐ)ߠ = ℋഥ(̅(ݐ)ߠ, (ݐ)ߠ̅(ݐ = ߠ̅  

Eq. 13 

 
Now each source of uncertainty or stochastic behavior will be considered and introduced one by one. 
It is helpful also to split the space phase between continuous (e.g., temperature and pressure) and discontinuous variables 
(e.g., status of components including both operating and failure states), where the latter, as already discussed, are treated 
only by RAVEN. 

ߠ̅ • ∈ Φ ⊆ ℝ the set of continuous variables, and, 

ௗߠ̅ • ∈ Ψ ⊆ ℕࡰ the set of discrete variables (e.g., status of the system components).  

 
Eq. 13 takes now the following form: 

                                                      
a Even	if	RAVEN	is	designed	to	be	directly	coupled	to	RELAP-7,	also	other	system	simulators	such	as	MELCOR	[8],	MAACS	[5]	and	RELAP-5	[11]	could	be	coupled	to	RAVEN. 



 

 

۔ۖۖەۖۖ
ݐ߲(ݐ)ߠ߲̅ۓ = ݂൫̅ߠ, ,ௗߠ̅ ݐ߲(ݐ)ௗߠ൯߲̅ݐ = ݃൫̅ߠௗ, ,ߠ̅ (ݐ)ߠ൯̅ݐ = (ݐ)ௗߠ̅ߠ̅ = ௗߠ̅

 

Eq. 14 

For simplicity of notation we use the time derivative also for time discontinuous variables that mathematically is allow 
only after introducing very complex extension of the original time derivative operator.  
The first stochastic behavior to be introduced is the uncertainty associated to the initial conditions and to the parameters 
defining the equations ݂൫̅ߠ, ,ௗߠ̅ ,ௗߠand ݃൫̅	൯ݐ ,ߠ̅   .൯ݐ
 

ەۖۖ
۔ۖ
ۓۖ ݐ߲(ݐ)ߠ߲̅ = ݂൫̅ߠ, ,ௗߠ̅ ,തௌ௧௭ߙ ݐ߲(ݐ)ௗߠ൯߲̅ݐ = ݃൫̅ߠௗ, ,ߠ̅ ,തௌ௧௭ߙ ,ߠ̅)ߎ൯ݐ ,หߠ̅)݂݀~(ݐ ,ௗߠ൫̅ߎ(ଶߪ ,ௗหߠ൫݂̅݀~൯ݐ (ݐ)തௌ௧௭ߙௗଶ൯ߪ = ௌ௧௭ߙ൫݂݀~(ݐ)തௌ௧௭ߙ ห, ௌ௧௭ଶߪ ൯

 

Eq. 15 

Where the notation ݂݀(݉|,  തௌ௧௭ isߙ ,ߪ ଶ) stand for the probability distribution function with mean value m and sigmaߪ
the vector of parameters affected by uncertainty but not varying over time. 
Up to now, we have considered uncertainties whose values do not change during the simulation. This set of uncertainties 
accounts for most of the common source of aleatory behaviors. Examples of this kind of uncertainties are: 
• uncertainty associated to heat conduction coefficient. This value is known (but uncertain) has no physical reason to 

change during the simulation therefore follow within this category 
• Uncertainty on temperature for pipe failure. This value is usually characterized by a probability distribution function 

but again one the value has been set (through random sampling) it will not change during the simulation. In fact it 
would be unphysical to not fail the pipe at 500K while, failing the same pipe at a lower temperature later on during 
the same simulation. 

Note that up to now, by adding new variables, the dimensionality of the phase space has not increased and, moreover, the 
Markov property of the system is preserved. 
The next aleatory component to be accounted for is the set of parameters continuously changing over time. To make an 
easy parallel it will be referred to this value as subject to a Brownian motion. While what commonly goes under the 
description of Brownian motion has not impact at the space and time scales characteristics of reactor plant simulation 
there are parameters that have or appear to have a similar behavior. The word appear is used to highlight that this type of 
behavior could be not natural but generated by lack of detail in the models. To fix ideas two examples might be helpful 
• Cumulative damage growth in materials. While experimental data and models representing this phenomenon show 

large uncertainties there is also an intrinsic natural stochasticity driving the accumulation of the damage 
• Heat conductivity in the fuel gap during heating up of fuel. During transient there are situation when the fuel is 

contact with the clad while other where there is the presence of a gap. While in nature this is locally a discontinuous 
transition it not usually possible to model in such a way, especially if vibration of the fuel lead to high frequency 
transitions. In such a case it would be helpful to introduce directly into the simulation a random noise characterizing 
the thermal conductivity in when these transition occur 

The system Eq. 15 now should be rewritten in the following form: 



 

 

 

ەۖۖ
۔ۖۖۖ
ۖۖۖ
ݐ߲(ݐ)ߠ߲̅ۓ = ݂൫̅ߠ, ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ ݐ߲(ݐ)ௗߠ൯߲̅ݐ = ݃൫̅ߠௗ, ,ߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ ݐത௪߲ߙ൯߲ݐ = ܾ൫̅ߠ, ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ ,ߠ̅)ߎ(ݐ)߁൯ݐ ,หߠ̅)݂݀~(ݐ ,ௗߠ൫̅ߎ(ଶߪ ,ௗหߠ൫݂̅݀~൯ݐ (ݐ)തௌ௧௭ߙௗଶ൯ߪ = തௌ௧௭ߙ൫݂݀~(ݐ)തௌ௧௭ߙ ห, ௌ௧௭ଶߪ ൯ߙത௪(ݐ)~ߙത௪ (ݐ)߁

 

Eq. 16 

where (ݐ)߁ is 0-mean random noise and ߙത௪ is the set of parameters subject to Brownian behavior. 
Clearly the equation referring to the time change of the parameters subject to the Brownian motion should be interpreted 
in the Ito sense. 
Last and probably most difficult step is the introduction of parameters that neither are constant during the simulation or 
continuously vary over time. Unfortunately this is still a quite common case. To fix idea lets’ consider a valve that, 
provided set of operating conditions, opens or closes. If this set of conditions are reached n times during the simulation, 
the probability of the valve to correctly operate should be sampled n times. It is also foreseeable that the history of 
failure/success of the valve will impact future probability of failure/success. In this case the time evolution of such 
parameters (discontinuously stochastic changing parameters ߙതௌ) is governed by the following equation. 
ݐതௌ߲ߙ߲  = ഥܷ൫ߙതௌ, ,ߠ̅ ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ ൯ݐ തܸ൫ߙതௌ, ,ߠ̅ ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ ̅൯ݐ ቆන തௌ௧ߙݐ݀

௧బ , ,തௌߙ ,ߠ̅ ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ  ቇݐ

Eq. 17 

The above formula requires of course more in deep explanation. 
• The function ̅ߜ൫ߙതௌ, ,ߠ̅ ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ  ൯ is the delta of Dirac of the instant on which the transition need to beݐ

evaluated (control logic signaling to the valve to open/close) 

• The term ̅ ቀ തௌ௧௧బߙݐ݀ , ,തௌߙ ,ߠ̅ ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ  ቁ represents the transition probability between different states (inݐ

case of the valve open/close given the control logic signal). To be notice that the time integral of the parameter 
value itself, as argument of the function, account for the memory of the component 

• The term തܸ൫ߙതௌ, ,ߠ̅ ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ  ൯ is the rate of change. Here for a discontinuous parameter mathematically itݐ
should be defined as the value of the instantaneous ߙതௌ change 

To be noticed that the history dependence introduced inside the probability ̅ make the system not Markowian. Note that 
the system can return to be Markovian by expanding the phase space (i.e., increase its dimensionality). 
In this repsect, we introduce a new dimension in the phase space: the time at which the parameters changed status and the 
correspondent value ሼ(ߙതௌ	, ሽ(ݐ = ൛ߙതௌ	, ൟݐ = ,	ധௌߙ ݅ for) ̅ݐ = 1,… , ݊) 
Eq. 17 assumes now the form: 
ݐതௌ߲ߙ߲  = ,തௌߙ൫̅ߜ ,ߠ̅ ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ ൯ݐ തܸ൫ߙതௌ, ,ߠ̅ ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ ,	ധௌߙ൫̅൯ݐ ,̅ݐ ,ߠ̅ ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ  ൯ݐ
for ݐ ≥  ݐ

Eq. 18 



 

 

This formulation introduce a phase space continuously growing over time that poses a challenge in term of being capable 
to define a priory the size of the problem and still represents a research topics that will impact future evolution of the 
RAVEN software design. 
Several simplifications are possible: 
1. if the memory of the past is not affected by the time distance then 

,	ധௌߙ൫̅  ഥ	ݐ	 , ,ߠ̅ ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ ൯ݐ = ,	ധௌߙ൫̅ ,ߠ̅ ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ  ൯ݐ

Eq. 19 

2. if the number of samples is predictable before the simulation itself takes place in (e.g. n times), then the 
dimensionality of the phase space could be fixed and the different ߙതௌ  could be treated explicitly as ߙതௌ௧௭ while ̅ݐ (if 
the above simplification is not valid) should remain as a dimension of the phase space. In this case ̅ݐ still needs to be 
computed and its expression is: 

(ݐ)̅ݐ  = න ഥ	ݐ	ݐ݀ ,തௌߙ൫̅ߜ ,ߠ̅ ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ ൯௧ݐ
௧బ  

Eq. 20 

3. Another possible approximation alternative to the previous one is that the memory of system (here explicitly 

represented by  തௌ௧௧బߙݐ݀ ) is limited only to a fix number of step back in the past, in this case ݊ is always bounded. 

Therefore adding ൛ߙതௌ,  (for i=1,…,n) keep the system Markovian. Unfortunately this situation is deeply different	ൟݐ
from approximation 2 where the fact that ߙതௌ  do not change over time allow them to be treated as ߙതௌ௧௭ and so 
possible excluded from the space phase. From the simulation point of view that imply that this probability checks 
need to be performed during the simulation itself. 

One of the most interesting cases from point of view of the analysis that RAVEN will be performing is a combination of 
approximation 1 and 3. Under such assumption the system is again Markovian once ൛ߙതௌ	ൟ (for i=1,…,n) is added to the 
phase space. An example of this case is a component whose probability to correctly act on demand depends on his 
failure/success at the last demand. 
When we combine approximation 1 and 3 we obtain the physical model corresponding to discrete jumps or collision. In 
fact once the phase space contains this additional variable the equation describing the trajectory of the systems along those 
dimensions present a discontinuity given either by the presence of an Heaviside function or by the speed function that 
could eventually be a distribution function. 
An example of this type of modeling is the scattering kernel of the transport equation where neutron suddenly change 
direction with a probability (memory-less) by unit of length (in our case in time) given by the cross sections. 
 



 

 

 

Figure 4: Phase space structure for three different cases: simplication 1 is valid (case 1), simplification 2 is valid (case 2), 
simplification 3 is valid (case 3) 

Figure 4 give an overview of the structure of the phase space for the three different simplifications: 

• Simplification 1: ߙതௌ = തௌߙ ∪ തௌௗߙ  where ቊߙതௌ ⊂ തௌௗߙߠ̅ ⊂ ത௪ߙ and	ௗߠ̅ = ത௪ߙ ∪ ത௪ௗߙ  where ቊߙത௪ ⊂ ത௪ௗߙߠ̅ ⊂  ௗߠ̅

• Simplification 2: ߙത௪ = ത௪ߙ ∪ ത௪ௗߙ  where ቊߙത௪ ⊂ ത௪ௗߙߠ̅ ⊂  ௗߠ̅

• Simplification 3: ߙതௌ = തௌߙ ∪ തௌௗߙ  where ቊߙതௌ ⊂ തௌௗߙߠ̅ ⊂ ത௪ߙ ,ௗߠ̅ = ത௪ߙ ∪ ത௪ௗߙ  where ቊߙത௪ ⊂ ത௪ௗߙߠ̅ ⊂ ௗ and t̅ߠ̅ = t̅ ∪ t̅ௗ where ൜t̅ ⊂ t̅ௗߠ̅ ⊂  ௗߠ̅

The system Eq. 16, accounting also for ߙതௌ takes the form: 
 

ەۖۖ
ۖۖۖ
۔ۖۖۖ
ۖۖۖ
ۖۖۖ
ۓ
			
ݐ߲ߠ߲̅ = ݂൫̅ߠ, ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ ݐௗ߲ߠ൯߲̅ݐ = ݃൫̅ߠௗ, ,ߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ ݐത௪߲ߙ൯߲ݐ = ܾ൫̅ߠ, ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ ݐതௌ߲ߙ߲(ݐ)߁൯ݐ = ,തௌߙ൫̅ߜ ,ߠ̅ ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ ൯ݐ ∙																																					∙ 	 തܸ൫ߙതௌ, ,ߠ̅ ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ ̅൯ݐ ቆන തௌ௧ߙݐ݀

௧బ , ,തௌߙ ,ߠ̅ ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ ,ߠ̅)ߎ	ቇݐ ,หߠ̅)݂݀~(ݐ ,ௗߠ൫̅ߎ		(ଶߪ ,ௗหߠ൫݂̅݀~൯ݐ (ݐ)തௌ௧௭ߙ		ௗଶ൯ߪ = ௌ௧௭ߙ൫݂݀~(ݐ)തௌ௧௭ߙ ห, ௌ௧௭ଶߪ ൯ߙതௌ(ݐ) = ௪ߙ~(ݐ)ത௪ߙௌߙ (ݐ)߁

 

Eq. 21 

By introduction of approximation 1 and 3: 
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ۓ
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Eq. 22 

From a software implementation point of view it is important to distinguish explicitly what should be computed before the 
simulation starts and during the simulation itself. Starting from the above system this distinction has the following form: 
 

۔ۖەۖ
ۓ ,ߠ̅)ߎ ,หߠ̅)݂݀~(ݐ ,ௗߠ൫̅ߎ(ଶߪ ,ௗหߠ൫݂̅݀~൯ݐ (ݐ)തௌ௧௭ߙௗଶ൯ߪ = ௌ௧௭ߙ൫݂݀~(ݐ)തௌ௧௭ߙ ห, ௌ௧௭ଶߪ ൯ߙത(ݐ) = ௪ߙ~(ݐ)ത௪ߙௌߙ (ݐ)߁

 

Eq. 23 

۔ۖۖەۖۖ
ݐ߲(ݐ)ߠ߲̅ۓ = ݂൫̅ߠ, ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ ݐ߲(ݐ)ௗߠ൯߲̅ݐ = ݃൫̅ߠௗ, ,ߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ ݐത௪߲ߙ൯߲ݐ = ܾ൫̅ߠ, ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ (ݐ)߁൯ݐ

 

Eq. 24 

Of course this discussion did not cover all the possible phenomena, for example cases where the structure of the system of 
equation changes in time, but probably provide a sufficient framework to extrapolate to the cases here not explicitly 
treated. 
Given the presence of all these sources of probabilistic behavior every simulation performed by RAVEN/RELAP-7 is 
nothing more than one of the possible path of the system in the phase space. In such a case rather than one of the possible 
solution is much more informative the probability of this solution to really take place. The difference in the trajectory in 
the phase space between a deterministic and probabilistic system is depicted in Figure 5 where ߠ̅)ߎ, ,ߠห̅ݐ  ) is theݐ
probability distribution function and the ℒ ൫ߠ̅)ߎ, ,ߠห̅ݐ  ൯ the Chapman-Kolmogorov operator. The explanation of	)ݐ
those concepts is matter of the next chapter. 



 

 

 

Figure 5: Determinitic (top) vs Probabilistic (bottom) analysis of system dynamics 

 

3.1.2 Formulation of the equation set in a statistical framework 
Given the above mentioned premises and assuming that at least one of the simplification considerate in the previous 
chapter is applicable (so that the system could be casted as Markovian) it is natural to investigate the evolution of the 
system in terms of its probability density function in the global phase space ̅ߠ via the Chapman-Kolmogorov equation 
[6,7]. 
The integral form of the Chapman-Kolmogorov is the following:  
,ଷߠ̅)ߎ  ,ଵߠଷห̅ݐ (ଵݐ = න݀̅ߠଶ	ߠ̅)ߎଶ, ,ଵߠଶห̅ݐ ,ଷߠ̅)ߎ	(ଵݐ ,ଶߠଷห̅ݐ ଵݐ	݁ݎℎ݁ݓ					(ଶݐ < ଶݐ <  	ଷݐ

Eq. 25 

while its differential form is: 
,ߠ̅)ߎ߲  ,ߠห̅ݐ ݐ߲	(ݐ = ℒ൫ߠ̅)ߎ, ,ߠห̅ݐ  ൯	)ݐ

Eq. 26 

The transition from the integral to the differential form is possible under the following assumptions:  
 lim∆௧→		 ݐ∆1 න ,ଶߠ̅)ߎ ݐ + ,ଵߠห̅ݐ∆ ଶหఏഥమିఏഥభหழఌߠ̅݀(ݐ = 0 

Eq. 27 

lim∆௧→		 ݐ∆1 ,ଶߠ̅)ߎ ݐ + ,ଵߠห̅ݐ∆ (ݐ ,ଵߠଶห̅ߠ̅)ܹ=  (ݐ
Eq. 28 
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lim∆௧→		 ݐ∆1 න ൫ߠଶ, − ,ଶߠ̅)ߎ	ଵ,൯ߠ ݐ + ,ଵߠห̅ݐ∆ ଶหఏഥమିఏഥభหழఌߠ̅݀(ݐ ,ଵߠ̅)ܣ= (ݐ +  (ߝ)ࣩ
Eq. 29 

lim∆௧→		 ݐ∆1 න ൫̅ߠଶ, − ଶ,ߠଶ,൯൫̅ߠ̅ − ,ଶߠ̅)ߎଵ,൯ߠ̅ ݐ + ,ଵߠห̅ݐ∆ ଶหఏഥమିఏഥభหழఌߠ̅݀(ݐ ,ଵߠ̅),ܤ= (ݐ +  (ߝ)ࣩ
Eq. 30 

The first condition guarantees the continuity of ߠ̅)ߎ, ,ߠห̅ݐ  ), while the other three force the finite existence of threeݐ
parameters that will be described in Section 8.1.3.  
Equation 25 can be furthermore decomposed into the continuous and discrete components: 
 

൞ ,ଷߠ̅)ߎ ,ଵߠଷห̅ݐ (ଵݐ = න݀̅ߠଶ	ߠ̅)ߎଶ, ,ଵߠଶห̅ݐ ,ଷߠ̅)ߎ	(ଵݐ ,ଶߠଷห̅ݐ ,ଷௗߠ൫̅ߎ(ଶݐ ,ଵௗߠଷห̅ݐ ଵ൯ݐ = න݀̅ߠଶௗ	ߎ൫̅ߠଶௗ, ,ଵௗߠଶห̅ݐ ,ଷௗߠ൫̅ߎ	ଵ൯ݐ ,ଶௗߠଷห̅ݐ ଶ൯ݐ ଵݐ	݁ݎℎ݁ݓ				 < ଶݐ <  	ଷݐ
Eq. 31 

and its differential form is as follows: 

۔ە
,ߠ̅)ߎ߲ۓ ,ߠห̅ݐ ݐ߲	(ݐ = ℒ ൫ߠ̅)ߎ, ,ߠห̅ݐ ,	(ݐ ,ௗߠ̅ ,ത௪ߙ ,തௌ௧௭ߙ ,തௌߙ ,ௗߠ൫̅ߎ൯߲ݐ ,ௗߠห̅ݐ ݐ߲	൯ݐ = ℒௗ ൫ߎ൫̅ߠௗ, ,ௗߠห̅ݐ ,	൯ݐ ,ߠ̅ ൯ݐ  

Eq. 32 

where: 

,ߠ̅)ߎ • ,ߠห̅ݐ  , at time t0ߠ̅  at time t given that the system was inߠ̅ ) of the system to be in stateݐ

,ௗߠ൫̅ߎ • ,ௗߠห̅ݐ   .ௗ at time t0ߠ̅ ௗ at time t given that the system was inߠ̅ ൯ of the system to be in stateݐ

•  ℒ (. ) and ℒௗ (. )  are specific Chapman-Kolmogorov operators that will be described in the following section. 

 

3.1.3 The Chapman-Kolmogorov Equation 
As mentioned in the previous paragraph, the system of equations (2) which is written in integral form can be solved in a 
differential form through the Chapman-Kolmogorov (C-K) operator [6, 7]: 
,ߠ̅)ߎ߲  ,ߠห̅ݐ ݐ߲(ݐ = − ߠ߲߲ ቀܣ൫̅ߠ, ,ௗߠ̅ ,ߠ̅)ߎ	൯ݐ ,ߠห̅ݐ )ቁݐ + 12 ߲ଶ߲ߠ߲ߠ ቀܤ,൫̅ߠ, ,ௗߠ̅ ,ߠ̅)ߎ	൯ݐ ,ߠห̅ݐ +)ቁ,ݐ න൫ܹ൫̅ߠห̅ߠ′, ,ௗߠ̅ ,′ߠ̅)ߎ൯ݐ ,ߠห̅ݐ (ݐ −ܹ൫̅ߠ′ห̅ߠ, ,ௗߠ̅ ,ߠ̅)ߎ	൯ݐ ,ߠห̅ݐ  ′ߠ൯݀̅	)ݐ

Eq. 33 

 



 

 

,ௗߠ൫̅ߎ߲ ,ௗߠห̅ݐ ݐ൯߲ݐ =ܹ൫̅ߠௗ|̅ߠௗ, ,ߠ̅ ,ௗߠ൫̅ߎ		൯ݐ ,ௗߠห̅ݐ ൯ݐ −ܹ൫̅ߠௗ|̅ߠௗ, ,ߠ̅ ,ௗߠ൫̅ߎ	൯ݐ ,ௗߠห̅ݐ 	൯ݐ
  

Eq. 34 

where 
,ߠ̅)ܣ  (ݐ = ቐ0		݂݅		̅ߠ ∈ ,ߠௗ݂൫̅ߠ̅ ,ௗߠ̅ ,௪ߙ ,ௌ௧௭ߙ ൯ݐ + 12 ,ߠ̅)ܾ߲ ߠ߲̅(ݐ ,ߠ̅)ܾܳ  ݁ݏ݅ݓݎℎ݁ݐ		(ݐ

,ߠ̅),ܤ (ݐ = ቊ0		݂݅		̅ߠ	ݎ	ߠ̅ ∈ ,ߠ̅)ௗܾߠ̅ ,ߠ̅)்ܾܳ(ݐ  ݁ݏ݅ݓݎℎ݁ݐ	(ݐ

Eq. 35 

This system of equations is composed of four parts that identify four different types of process known as drift, diffusion, 
jumps and component state transitions. These four processes are described in Sections 2.1 through 2.4. 

3.1.3.1 Drift 
The drift process is described by the Lioville’s equation: 
,ߠ̅)ߎ߲  ,ߠห̅ݐ ݐ߲(ݐ = ߠ߲߲ ቀܣ൫̅ߠ, ,ௗߠ̅ ,ߠ̅)ߎ	൯ݐ ,ߠห̅ݐ )ቁݐ  

Eq. 36 

Note that this equation describes a completely deterministic motion indicated by the equation: ߲̅ߠ(ݐ)߲ݐ = ,ߠ̅)ܣ ,ௗߠ̅  (ݐ
If ̅ߠ൫̅ߠ, ,ௗߠ̅  is the solution of	൯ݐ

డఏഥ(௧)డ௧ = ,ߠ̅)ܣ ,ௗߠ̅ ,ߠ̅)ߎ :then the solution of the Lioville equation is ,(ݐ ,ߠห̅ݐ (ݐ = ߠ̅)ߜ	 − ,ߠ൫̅ߠ̅ ,ௗߠ̅  (൯ݐ
provided the initial condition ߠ̅)ߎ, ,ߠห̅ݐ (ݐ = ߠ̅)ߜ −  (ߠ̅
 

3.1.3.2 Diffusion 
This process is described by the Fokker-Plank equation: 
,ߠ̅)ߎ߲  ,ߠห̅ݐ ݐ߲(ݐ = − ߠ߲߲ ቀܣ൫̅ߠ, ,ௗߠ̅ ,ߠ̅)ߎ	൯ݐ ,ߠห̅ݐ )ቁݐ + 12 ߲ଶ߲ߠ߲ߠ ቀܤ,൫̅ߠ, ,ௗߠ̅ ,ߠ̅)ߎ	൯ݐ ,ߠห̅ݐ )ቁ,ݐ  

Eq. 37 

where ܣ൫̅ߠ, ,ௗߠ̅ ,ߠ,൫̅ܤ ൯ is the drift vector andݐ ,ௗߠ̅ ,ߠ̅)ߎ :൯ is the diffusion matrix. Provided the initial conditionݐ ,ߠห̅ݐ (ݐ = ߠ̅)ߜ −  (ߠ̅
the Fokker-Plank equation describes a system moving with drift whose velocity is ܣ൫̅ߠ, ,ௗߠ̅  ൯ on which is superimposedݐ
a Gaussian fluctuation with covariance matrix ܤ൫̅ߠ, ,ௗߠ̅  . ൯ݐ
 



 

 

3.1.3.3 Jumps in continuous space 
This process is described by the Master equation: 
,ߠ̅)ߎ߲  ,ߠห̅ݐ ݐ߲(ݐ = න൫ܹ൫̅ߠห̅ߠ′, ,ௗߠ̅ ,′ߠ̅)ߎ൯ݐ ,ߠห̅ݐ (ݐ −ܹ൫̅ߠ′ห̅ߠ, ,ௗߠ̅ ,ߠ̅)ߎ	൯ݐ ,ߠห̅ݐ  ′ߠ൯݀̅	)ݐ

Eq. 38 

and, provided the initial condition ߠ̅)ߎ, ,ߠห̅ݐ (ݐ = ߠ̅)ߜ −  (ߠ̅
it describes a process characterized by straight lines interspersed with discontinuous jumps whose distribution is given by ܹ൫̅ߠห̅ߠ′, ,ௗߠ̅   .൯ݐ
 

3.1.3.4 Jumps in discrete space 
Transitions in the discrete space can occur in terms of jumps, then the formulation of డ൫ఏഥ,௧หఏഥబ,௧బ൯	డ௧ = ℒௗ ൫ߎ൫̅ߠௗ, ,ௗߠห̅ݐ ,	൯ݐ ,ߠ̅  :൯ is similar to the Master equation rewritten for a discrete phase spaceݐ

,ௗߠ൫̅ߎ߲  ,ௗߠห̅ݐ ݐ൯߲ݐ =ܹ൫̅ߠௗ|̅ߠௗ, ,ߠ̅ ,ௗߠ൫̅ߎ		൯ݐ ,ௗߠห̅ݐ ൯ݐ −ܹ൫̅ߠௗ|̅ߠௗ, ,ߠ̅ ,ௗߠ൫̅ߎ	൯ݐ ,ௗߠห̅ݐ 	൯ݐ
  

Eq. 39 

Note that the similarity with the equation that describes temporal evolution of multi-state Markov model: 
• The first term ܹ൫̅ߠௗ|̅ߠௗ, ,ߠ̅  ௗߠ̅ ௗ toߠ̅ ൯ indicates the transition probability fromݐ
• The second term ܹ൫̅ߠௗ|̅ߠௗ, ,ߠ̅  .ௗߠ̅ ௗ toߠ̅ ൯ indicates the transition probability fromݐ

 

3.2 RAVEN solution algorithms 

Analysis of stochastic systems can be extremely challenging due to the complexity and high dimensionality of the 
Chapman-Kolmogorov equation. An analytical solution is available only for very simple cases. When an analytical 
solution is not available, numerical methods are often employed. In this respect, two different approaches can be followed 
to solve Equations 33 and 34: 

1. Determine approximate solutions of the exact problems 

2. Determine the exact solution for the approximate models 

•  
Due to the very large complexity and the high dimensionality of the system considered, RAVEN will follow the first 
approach. In particular, two algorithms will be employed: 

1. Monte-Carlo  

2. Dynamic Event Tree  

•  
The main idea is to run a set simulation runs having different set of ߙത௪, ,തௌ௧௭ߙ ,തௌߙ  and initial conditions and	̅ݐ
terminate them until one of the following stopping conditions is reached: 

• Mission time is reached (i.e., a user specified value of time) 

• Top event is reached (e.g., maximum temperature of the clad or core damage) 
 



 

 

3.2.1 Monte-Carlo 

Given:	 ݐ߲(ݐ)ߠ߲̅ = ݂൫̅ߠ, ,ௗߠ̅ ,തௌ௧௭ߙ ,ത௪ߙ  ൯ݐ
lets define a function gi which represents the solution the previous equation: ̅ߠ(ݐ) = ݃(ݐ,  (ߠ̅
i.e., gi represents the trajectory in the ̅ߠ space for a fixed ̅ߠௗ and an initial condition ̅ߠ.  
Analysis of dynamic stochastic systems through Monte-Carlo algorithms is performed as following (see Fig.5): 

1. Sample: 

i) A value for ߙതௌ௧௭, ,തௌߙ  depending on which approximations are valid ̅ݐ

ii) The initial conditions, i.e., ̅ߠ, ݐ ௗ forߠ̅ = 0  

iii) Transition conditions, i.e., from ܹ൫̅ߠௗ|̅ߠௗ, ,ߠ̅  ௗߠ̅ ൯ sample points in the state space where a transition fromݐ
to ̅ߠௗ	∀݅, ݆ occurs  

2. Run the system simulator using the values previously sampled and change ߙത௪  (and ߙതௌ,  when possible) at ̅ݐ
each time step.  

3. Stop the simulation (e.g., at time ݐଵ) when a transition condition is reached (see step 1.III), and move from the 
actual ̅ߠௗ to the new ̅ߠௗ (e.g., ̅ߠଵௗ) 

4. Run the simulation as performed in step 3 starting from the new coordinate ൫̅ߠଵ = ݃(ݐଵ, ,(ߠ̅ ,ଵௗߠ̅  ଵ൯ and stopݐ
when a new transition condition is reached. 

5. Repeat steps 3 and 4 until a stopping condition is reached 

6. Repeat 1 through 4 for a large number of runs set by the user. 
 							൫̅ߠ, ,ௗߠ̅ ൯ݐ ൫ఏഥ,ఏഥబ,ఈಳೝೢ,ఈೄೌ,௧൯ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛሮ ൫̅ߠଵ = ݃(ݐଵ, ,(ߠ̅ ,ௗߠ̅ ଵ൯ݐ ൫ఏഥబ→ఏഥభ൯ሳልልልልልሰ⟹ ൫̅ߠଵ, ,ଵௗߠ̅ ଵ൯ݐ ൫ఏഥ,ఏഥభ,ఈಳೝೢ,ఈೄೌ,௧൯ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛሮ ൫̅ߠଶ = ݃ଵ(ݐଶ, ,(ଵߠ̅ ,ଵௗߠ̅ ଶ൯ݐ ൫ఏഥభ→ఏഥమ൯ሳልልልልልሰ⟹ ൫̅ߠଶ, ,ଶௗߠ̅ ଶ൯ݐ ൫ఏഥ,ఏഥమ,ఈಳೝೢ,ఈೄೌ,௧൯ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛሮ ൫̅ߠଷ = ݃ଶ(ݐଷ, ,(ଶߠ̅ ,ଶௗߠ̅ ଷ൯ݐ ൫ఏഥమ→ఏഥయ൯ሳልልልልልሰ⋯ 

 

Figure 6: Example of Monte-Carlo run performed by RAVEN. 

 

 

Figure 7: Example of 3-states system 

 
An example is given for a 3 states system (see Fig.6) where: 

• Transition from ̅ߠଵௗ to ̅ߠଶௗ depends on ̅ߠ and it is described by a cumulative distribution function shown in Fig.7 
(left). 

• Transition from ̅ߠଶௗ to ̅ߠଷௗ depends on the time spent in state ̅ߠଶௗ and it is described by a cumulative distribution 
function shown in Fig.7 (right). 

 
Before each simulation run, the transition conditions from state 1 to state 2 and from state 2 to state 3 are determined by 
[9]: 

θ1
d θ2

d θ3
d



 

 

• generating two random numbers (i.e., RNG1 and RNG2) in the interval [0,1], and, 

• determining the ̅ߠ = and ∆t (ଵܩܴܰ)ଵଶିଵܨܦܥ =   (ଶܩܴܰ)ଶଷିଵܨܦܥ
 
During the simulation run, when ̅ߠ =  ଷௗߠ̅ ଶௗ toߠ̅ ଶௗ occurs and after ∆t, the transition fromߠ̅ ଵௗ toߠ̅  the transition fromߠ̅
takes place as shown in Fig.8. 
 

 

Figure 8: Examples of sampling of transiton conditions from CDF for a 3-state system (see Fig. 6) 

 

Figure 9: Example of Monte-Carlo analysis 

3.2.1.1 Dynamic Event Tree 

The concept of dynamic event trees can be summarized as the merging of: 

• Classical Static Event Trees along with 

• Monte-Carlo Analysis described in the previous section. 

•  
The classical (static) Event Tree (ET) methodology is used to determine those event sequences which can lead to an 

undesired state (i.e., any system failure such as core damage or radioactive release outside the containment) given an 
initiating event (i.e., a perturbation of the nominal conditions of the plant such as loss of off-site power). 

An example of simple Event Tree is pictured in Figure 10, after the initiating event (i.e., a Large LOCA), the system 
begins to evolve until the point where a set point for the activation of a safety system is crossed. This may include the 
Reactor Trip system, Emergency Core Cooling System (ECCS), pressurizer relief values, steam generator valves, etc.  
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Figure 10: Example of event tree. 

Each pathway on the event tree is considered to be one scenario of accident evolution. A sequence of successes or 
failures of the called-upon components gives one event tree scenario that may occur in a particular transient. Using the 
probabilities of failure for each of the called-upon systems, the probability of each scenario can be computed. Each of 
these scenarios leads to what is known as an end-state. Given the knowledge of what systems must actuate in order to 
prevent system failure within a certain period of time, the end-states can be labeled as either leading to core damage or to 
core-safe states. 

However the classical Event-Tree methodology contains certain drawbacks that do not always allow for an 
appropriate modeling of system risk. One of the most pivotal drawbacks of conventional PRA methods is that time is not 
explicitly accounted for. During the course of an accident the exact timing of events could be important in scenario 
evolution especially when operator action and certain severe accident processes are considered (20). In addition, the 
methods of classical PRA does not always provide for mechanistic modeling of all systems and processes in a physically 
consistent manner. For these reasons, dynamic event tree (DET) methods have been developed over the past decades to 
overcome the deficiencies in conventional PRA modeling by merging the hierarchical structure of classical event trees 
and system simulators. 

Conceptually, a DET algorithm is very similar to the Monte-Carlo algorithm presented in the previous section. The 
major differences are:  

 the branching conditions (which correspond to the transition conditions in the Monte-Carlo algorithm) are 
fixed by the user and are not randomly sampled 

 starting from an initial point in the state space, the algorithm generates new branches each time a branching 
condition is reached 

The tree-like structure of the simulation allows to save computational time by not repeating, for each branch, the 
simulation performed for the all its parent branches. 
A typical DET simulation is performed as following given the initial conditions and the set of branching conditions: 

1. Sample: 

a. A value for ߙതௌ௧௭, ,തௌߙ  depending on which approximations are valid ̅ݐ

b. The initial conditions, i.e., ̅ߠ, ݐ ௗ forߠ̅ = 0  

c. Transition conditions, i.e., from ܹ൫̅ߠௗ|̅ߠௗ, ,ߠ̅  ௗߠ̅ ൯ sample points in the state space where a transition fromݐ
to ̅ߠௗ	∀݅, ݆ occurs  

2. Run the system simulator using the values previously sampled and change ߙത௪  (and ߙതௌ,  when possible) at each ̅ݐ
time step.  

3. When a branching conditions is reached stop the simulation and generate a set of new branches accordingly to the 
branching conditions 

4. Perform the simulation for each branch 

5. Repeat 3 and 4 for each branch until a stopping condition is reached (e.g., simulation mission time is reached or a 
top event is reached) 

6. Repeat 1 though 5 for a different set of initial conditions 
 



 

 

An example of branching is given in Figure 11: starting from ൫̅ߠ, ,ௗߠ̅  ൯ the simulation is performed by the systemݐ
simulator until it reaches a branching condition at time t1. Accordingly to the branching conditions, a set of branches 
(usually two branches: event occurs or event does not occur) is generated. 
Each branch starts from the same initial conditions ̅ߠଵ = ݃(ݐଵ,  .ௗߠ̅ ) at time t1 and its correspondingߠ̅
 

 

Figure 11: Example of DET branching 

 
Two types of branching are considered here: 

• At fixed time intervals: the mission time is divided into intervals and at the end of each time interval a branching 
occurs. Every possible branch is taken into account. 

• At fixed points in the state space: branching occurs at specific points of the state space, when one of these points is 
reached in the simulation, a set of branches specific for that branching condition is generated. 

 
Figures 10 through 13 show examples of these branching at fixed time intervals and at fixed point in the state space 
(Figure 13 and Figure 14) and a fixed time steps (Figure 15) for a 2-state model (Figure 12). 
 

 

Figure 12: A 2-states Markov model 

 

 

Figure 13: Set of branching conditions in the state space for a 2-state model 

θ1
d θ2

d

CDF12 

θ3
c θ cθ1

c θ2
c



 

 

 

Figure 14: Example of branching at fixed points in the state space 

 

 

Figure 15: Example of branching at fixed time points 

 

4 END OF THE YEAR ACCOMPLISHMENTS 

4.1 Software Infrastructure 

Following the schemes illustrated in the previous paragraphs the implementation of RAVEN has been started this current 
FY and moved forward quite fast. 
Concerning the underling software infrastructure (Figure 2) RAVEN is already functional. In the folling the already 
available functionality are enlisted 
• Input file is received and passed to RELAP-7 to set up the problem 
• A grammar describing monitored, controlled, and auxiliary variables has been defined in a MOOSE-like structure. 

Below exemplification of the input structure is reported (explanatory comment are proceeded by # sign). 

INPUT Description 

[Controlled] 
control_logic_input = TMI_control_logic 
[./power_CH1] 
print_csv = true 
  property_name = total_power_scaling 
  data_type = double 
  component_name = CH1 
  [../] [../]	

#start of a controlled variable list 
#control logic file to be used 
#name of the controlled variable 
#printing comma separated values 
#which property is controlled (hard name) 
#data type 
#on which RELAP-7 component (soft name) 
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#end of the controlled variable 

#end controlled variable list [Monitored]					[./max_temp_clad_CH1]									operator	=	NodalMaxValue									path	=	CLAD:TEMPERATURE									data_type	=	double									component_name	=	CH1					[../]	[../]	

#start of a monitored variable list 
#name of the monitored variable 

#restriction operator to be used ̅ܥ = ,ݔ̅)ܩ̅  (ݐ
#path and name of the monitored property 
#data type 
#on which RELAP-7 component (soft name) 
#end of the controlled variable 

#end monitored variable list [RavenAuxiliary]					[./scram_start_time]									data_type	=	double									initial_value	=	100000000					[../]	[../]	
#start of a auxiliary variable list 
#name of the auxiliary variable 
#data type 
#initial value 
#end of the auxiliary variable 

#end auxiliary variable list 

 
• No new restriction ̅ܥ = ,ݔ̅)ܩ̅  operators have been implemented with respect the one already available via the (ݐ

MOOSE framework. Up to know the tested ones are: 
o ElementAverageValues: returns the average over the specified domain of one of the variables for which 

RELAP solve for (Temperature, Pressure, Velocity, Energy, Density) 
o NodalMaxValue: return the max of the nodal values assumed from a provided variable within a certain 

region of the computational domain 
• All the variable so defined are made accessible to python by dictionaries constructing using SWIG (C++ python 

interface) in the user provided file [control logic file name.py] 
• From the Python side the variable are accessible as class property in the following form: 

o auxiliary.[name]: provide access (read and write) to the auxiliary variable [name] 
o monitored.[name]: provide access (read) to the monitored variable [name] 
o controlled.[name]: provide access (read and write) to the controlled variable [name] 

• After the initialization of the RELAP-7 solution a user defined function contained in the control logic file named: 
initial_function(monitored, controlled, auxiliary) is called to initialize the control logic variables. In case controlled 
variable are altered in this step the corresponding modification are carried inside the corresponding RELAP 7 
equations 

• RAVEN start then the simulation by calling RELAP-7 
• At the end of each time step RAVEN evaluate a function named control_function(monitored, controlled, auxiliary) 

inside the control logic file where the user writes the control logic using the naming above defined 

In appendix A it is showed the input file for a PWR based demo and the corresponding control logic. 
 
 
 
 
 
 



 

 

4.2 GUI Current Capability 

The GUI currently is aiding the graphical creation of the REALP 7 RAVEN input file, while still a lot need to be done to 
increase its friendless and completeness, has its main software infrastructure completed. 

The GUI is based on a software named Peacock that is a general GUI interface for MOOSE based application. The 
the GUI for RELAP-7 is rather different from the other MOOSE based application therefore a quite intensive work is 
needed to perform the specialization of the application and this done by taking advantage of API (Advanced Programming 
Interfaces) presents in Peacock. 

 Figure 16: Information Flow for the Creation of the Input File GUI 
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4.2.1 Input/Visualization GUI Window 

After this process is completed the GUI is able to aid the user to create an input file and a side windows will show what is 
currently present in the input file. The side window, which is a specific add on for the RAVEN project, not only show the 
ongoing creation of the plant layout but also allows inspecting the component already created and change the values of the 
describing parameters. 

 

 Figure 17: Input/plan Visualization GUI Window 
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4.2.2 The Execution Set Up Window 

This window of the GUI has a central text box where the screen output of the program is shown while running and a set of 
buttons that will eventually open new windows to provide the setting information for the runs. Focusing on the 
specialization performed for RAVEN it is noticeable the specific windows to set up the multiple run used to perform 
Monte Carlo where the total number of sampling and maximum number of parallel sampling contemporaneously running 
is set. The window is showed in  Figure 18. 
 

 Figure 18: Running Control Windows 
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4.2.3 The Post Processor Visualization Window 

The post processor window is used to inspect specific values in 2D plots while running. All the auxiliary, monitored, and 
controllable variables could be exported in comma separated values format files. This windows will inspect this file to 
find out which variable are present and allow the user from a drop down list to visualize them in 2D plots.  Figure 19 
show the window while operated by the user. 
 

 Figure 19: Post processor visualization windows 

 

 

 

 

 

 

 

 

 

 

 

Plots of monitored 
variable 

Drop down list of quantities
that could be visualized 



 

 

4.2.4 The Visualization Windows 

For explanatory propose the visualization window can be imagined as project one of the solution field in the plant layout 
shown in the input windows. In reality it uses some features from the vtk graphical libraries to expand the one-

dimensional solution to pipe like geometry and than it overlap the design from the input windows. In this window the user 
can follow the simulation by playing movies of the evolving solution. The quantities that is possible to visualize are all the 

ones for which REALP-7 solve for therefore there are some that are of numerical interested but also temperature, 
pressure, velocity, enthalpy and density.  

Figure 20 shows the pressure status during a transient simulation. 
 

 

Figure 20 Movie visualization windows (solution while running) 

4.3 Result From the Mathematical Framework 

In this section two mathematical results will be shown to highlight the behaviors arising from different sources of 
stochastic behavior. 
 
4.3.1 Harmonic oscillator 

Let’s consider a classical harmonic oscillator that can be described by the following equation: ݔሷ(ݐ) + ߱ଶ(ݐ)ݔ = 0				0 ≤ ݐ < ∞ 

Eq. 40 

The coordinate in the phase space are given by: തܺ(ݐ) = ݔ(ݐ)ݔሶ(ݐ)൨ 
Eq. 41 
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That introduced in Eq. 41 lead to: തܺሶ (ݐ) = ቂ 0 1߱ଶ 0ቃ തܺ(ݐ) 
Eq. 42 

The solution can be easily found as: തܺ(ݐ) =  cos߱ݐ 1ω 	sin߱ݐ−ω	sin߱ݐ cos߱ݐ ൩ തܺ(0) 
Eq. 43 

Assuming that the initial conditions are described by a normal distribution this example becomes illustrative of a 
probabilistic behavior driven form uncertainty on the initial conditions. Referring to the notation presented in the chapter 
on the mathematical framework the initial conditions (position and velocity) are two ߙௌ௧௭. The mathematical expression 
is: 

തܺ(0) = ݔ(0)ݔሶ(0)൨ ~ ܰ(0, ,ଵ)ܰ(0ߪ ଶ)൨ߪ = ێێۏ
ۍێێ ଵߪߨ2√1 ݁ିଵଶ൭௫(బ)

మఙభమ ൱
ଶߪߨ2√1 ݁ିଵଶ൭௫ሶ(బ)

మఙమమ ൱ۑۑے
 ېۑۑ

Eq. 44 

The probability to find the system in a given point of the space phase is than (combined probability transformed into the 
product): 

,ݔ)ߎ ;ݐ ሶݔ , (ݐ = ଶߪଵߪߨ12 ݁ିଵଶቌ
௫	 ௦ఠ௧ି௫ሶఠ	௦ఠ௧ఙభమ ାିఠ௫	௦ఠ௧ା௫ሶ 	௦ఠ௧ఙమమ ቍ

 

Eq. 45 

In the following picture we see the probability density function of the system in the phase space for at different instant. 



 

 

 

Figure 21: Harmonic oscillator: plot of ݔ)ߎ, ;ݐ ሶݔ ,  for different time steps (ݐ

 
4.3.2 Cumulative Damage Time Evolution 

The scope of this second example is to show a comparative analysis of the impact of a parameter subject to random 
distribution but not changing over time (ߙௌ௧௭) or a parameter randomly changing as in Brownian motion like behavior 
The system considered is a simplified model of material damage accumulation N. The starting equation is: ቐ  .(௪ߙ) ݐ݀ܰ݀ = (0)ܰߙ = ܰ 

Eq. 46 

Since ߙ will assume a stochastic behavior it is more mathematically correct to use the integral from: ܰ(ݐ) = න ௧ߙݐ݀
 + ܰ 

Eq. 47 

Now two different cases are considered for the behavior of ߙ :ߙ = ൜ߙ௪(ݐ) = ,ߤ)ܰ (ݐ)ௌ௧௭ߙ(ߪ = ݐ)ௌ௧௭ߙ = 0) = ,ߤ)ܰ  (ߪ
Eq. 48 

The probability distribution function r for ܰ௪ and ௌܰ௧௭, respectively the solution for ߙ = ߙ ௪ orߙ =  ௌ௧௭, areߙ
provided by the respective solution of: ቐ	߲ݎ( ܰ௪, ݐ߲(ݐ = ௪ߙ− )ݎ߲ ܰ௪, ߲ܰ(ݐ + 2ߪ ߲ଶݎ( ܰ௪, ,ܰ)ݎ	ଶ߲ܰ(ݐ 0) = )ߜ ܰ௪ − ܰ)	  

Eq. 49 



 

 

ቐ݀ ௌܰ௧௭݀ݐ = ௌ௧௭ܰ(0)ߙ = ܰ  

Eq. 50 

And the solutions are: ݎ( ܰ௪, (ݐ = ݐଶߪߨ2√1 ݔ݁ ቈ− (ܰ − ݐଶߪଶ2(ݐߤ  
Eq. 51 

)ݎ ܰ௪, (ݐ = 1ඥ2(ݐߪ)ߨଶ ݔ݁ ቈ− (ܰ − ଶ(ݐߪ)ଶ2(ݐߤ  
Eq. 52 

In the following Figure 22 the probability density function of the two different solutions are plotted (color scale) versus 
time and damage. Surprising the uncertainty is lower (lower dispersion) when modeling the speed of damage as a 
Brownian variable. 
 

 

Figure 22: Uncertainty modeling of cumulative damage rate: ࡺሶ  costant in time (left) and continuosly changing in time 
(right) 

4.3.3 Combination of Control Logic and Stochastic Modeling 

It is considered a pseudo transient where the simplified model in appendix A is used. The plant moves towards the steady 
state from an initial condition of not equilibrium. The list below summarizes the events that are controlled by RAVEN (in 
square brackets the corresponding type of RAVEN feature involved). 
Problem set up: 
• Monitored variables: 

o Average fuel temperature in the hot channel (CH1) 
o Average fuel temperature on the average channel (CH2) 

• Controlled variables: 
o Thermal conductivity in channel CH1 
o Thermal conductivity in channel CH2 

Initialization: 
• The thermal conductivity in the gaps for both channels is sampled out from a normal distribution with mean value 

equal to the initial value and sigma of 5% [in this case the thermal conductivity is modeled as an ߙௌ௧௭] 



 

 

During simulation: 
• When fuel average temperature reaches 500K the thermal conductivity in the gap is set equal to the thermal 

conductivity in the fuel [control on feedback] 
• The thermal conductivity in the gap at each time step is sampled out of a normal distribution with mean value the 

thermal conductivity in the fuel and sigma of 5% [in this case the thermal conductivity is modeled as an ߙ௪] 

Monte Carlo sampling: 
• 10 different simulation are simultaneous run to generate a distribution of the plan state 

Figure 23 shows the comparison between transients where the control of the gap thermal conductivity is applied or not. 
To be noticed: 
• The sudden spike in the clad temperature is due to the contact between fuel and clad that causes the thermal 

resistance to decrease  
• The matching of the asymptotic values with or without the changes in the conductivity is due to the fact that the 

downstream thermal resistance has not changed 

Figure 24 and Figure 25 plot, respectively the clad and fuel temperature profiles for 10 different runs where the 
thermal conductivity of the gap, both initial and after reaching 500K, is subject to a random distribution. 
 

 

Figure 23: Comparison with or without the control logic acting on the gap thermal conductivity on the clad temperatures 

 



 

 

 

Figure 24: Fuel temperature behavior for the hot channel 

 

 

Figure 25: Clad temperature behavior for the hot channel 

5 FUTURE DEVELOPMENTS 

5.1 General Software Framework 

While most of the framework has been already build this year, it is needed to strength the regression test batch and to 
define an automatized process to mirror the RELAP-7 test batch. During this year it has been highlighted that given the 
deep interdependence of the two codes and the fast pace of development, it very work intensive to keep test batches in 
sync especially when changes are made on already existing components. This point is also crucial of one of next year task 
that will be to define a solid Quality Assurance model for any further development. 



 

 

 

5.2 Control Logic 

The software infrastructure for the control logic has been already completed this year but of course not the specific 
implementation for each RELAP-7 component. In this respect, next year will focus on: 
• Ensuring that the software interface that allow to access variable that needs to be controlled is in place in all current 

RELAP-7 components and in the ones will developed during next years 
• Building an internal list (enumerator) of ‘approved’ variable for control. While for uncertainty quantification it might 

be allowed to perturb all parameters in all equation for control purpose this should be limited to avoid to alter the 
fundamental models inside the code 

• Adding post-processing capabilities, in particular the ones requiring time integration and differentiation. As seen in 
the example of the PID controller these quantities are fundamental to the application of the control logic 

Another important future task will be the creation of a library of functions accessible to the user via the Python interface. 
Two different type of libraries are envisioned: 
• Component library: 
• The component library will contain several commonly used control function for components, it will range from pump 

and valve characteristics to decay heat curves. 
• Statistical function libraries: 
• This library will contain a set of random generators, probability distribution functions, cumulative distribution 

functions and their inverse. 

5.3 Probabilistic Analysis 

While the set of equations to be solved has been defined the solution capability presently is via Monte Carlo sampling. It 
is well know that this methodology is not performing effectively when the number of sampled parameter grows above few 
tens and moreover statistics might be very low in high risk low probability areas of the phase space. In order to overcome 
this issue, several activities will be performed next year. 
 
5.3.1 Dynamic event tree implementation 

The event trees approach has been already described in the software implementation for the probabilistic analysis and will 
be put in place in the next fiscal year. In this respect, handling large number of file job queuing and load balance in the 
parallel implementation will represent the main challenges; at the moment there are not show stoppers foreseen for the 
implementation of this methodology in the current software implementation. 
 
5.3.2 Data Mining 

The large number of simulation that will be needed to deeply investigate the plant behavior with a reasonable statistics 
will create a large amount of data of which not all will be relevant. Linear and not linear coordinate transformation of the 
phase space (Principal Component Analysis and Kernel Principal Component analysis) to reduce dimensionality. In order 
to reduce the cardinality of the sampling also clustering algorithm should be explored and implemented. 
Another relevant aspect of data mining is to use the information to trace back driver for high-risk situations and source of 
uncertainties. To perform such analysis it will be needed to evaluate sensitivity coefficients toward risk functions and 
statistical dispersion. This task is rather large and therefore will be more a multi year line of development but non the less 
it should be possible to see preliminary results at the end of next fiscal year. 
 
5.3.3 Guided sampling strategies 

An innovative approach to increase the effectiveness of Monte Carlo sampling is via an appropriate sampling strategy. 
Several algorithms have been proposed in this direction so far in concurrent projects. A common ground of those 
algorithms is to use the sensitivity coefficient toward risk function to prefer certain region of the initial condition space. 



 

 

At this moment, it is not possible to identify a specific choice in term of algorithm for this task. Therefore next year the 
development of data mining techniques will also to better characterize the behavior of the system under consideration and 
therefore provide an indication of the possible candidate. 
 

5.4 GUI 

Provided the above envisioned further developments the GUI plan should be derived according. It is also a given that the 
tasks below mentioned are not meant to be completed over the next fiscal year but they will span over the entire life time 
of the project 
• RELAP-7 input support 

o Increase the number of components for which graphical visualization is possible to match current and future 
component availability in RELAP-7 

o Capability to duplicate components 
o Drag and drop of component in the plant layout 

• Control Logic 
o Create drop down list of controllable variables 
o Create drop down list of monitored variables 
o Create a drop down list of the auxiliary variables 
o Create a specific window for the implementation of the control logic with available the list of: 

 Statistical functions in the library (R interface) 
 Component control laws in the library 
 Access to the list of auxiliary, monitored, and controlled variables 

o Create a mask for the implementation of the control logic that will make transparent to the user the Python 
scripting (direct Python scripting still available) 

• Probabilistic analysis 
o Full support for multi-platform parallel Monte-Carlo sampling 
o Input for branching criteria used in tree analysis 
o Enhance visualization to allow for multi runs comparison 
o Add a specific windows to perform data post processing (data mining) 

• Solution visualization and data post processing 
o Extend the capability of the ‘visualize’ windows to allow for data manipulation (possibly interface with 

Paraview) 

A table summarizing needed effort by function and operational area is summarized in appendix B 
 

6 Set Up PRA demo 

While it is not within the scope of this project to perform detailed PRA analysis of nuclear plant given that this will be one 
of the most relevant final application of the code it is meaning full to test the project against a problem representative of 
this class of user needs. 
The demo is build on a simplify PWR plan scheme (Figure 26). The plant simulation starts from nominal power condition 
but in not equilibrium thermodynamically. The steady state reaching is determined on the stabilization of the clad 
temperature (Figure 27) that is one of the most sensible values to oscillation in the coolant. Once the steady state is 
reached (~50 seconds) the plant status is saved and used as a re-start fro the PRA analysis. 
The transient to be analyzed by the PRA is the following 
• Initial loss of external power at 51 sec 
• Reactor scram and decay heat curve are used to determine the residual power decay 
• Primary pump coast down start (pumps slow down until 0.1% of their nominal head than head is set to zero) 



 

 

• Assuming that diesel will not start after 3 sec the probability of later start is given by a Gaussian centered in 5 
minutes with 10% sigma 

• The simulation ends if the clad temperature exceeds a temperature determined by a Gaussian distribution with 
mean value provided by the user (this is chosen as a degree of freedom to be determined to avoid boiling due to the 
lack of two phase flow) 

• The simulation ends 10 minutes after the loss of power 

 

Figure 26: PWR reference scheme 

 
 

 

Figure 27: Time evolution of clad temperature till steady state is reached 
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7 APPENDIX A: RELAP-7 RAVEN Input File and Control Logic: 

In this appendix it will be shown the RELAP 7 input file for a demo based on a general PWR reactor as also the 
corresponding control logic to perform uncertainty and PRA analysis. 
 

RELAP 7 RAVEN Input 

[GlobalParams] 
model_type = 3 
  global_init_P = 15.17e6 
  global_init_V = 0. 
  global_init_T = 564.15 
  scaling_factor_var = '1.e-1 1.e-5 1.e-8' 
  initial_RP = 2.77199979e9 
[] 
 
[EoS] 
[./eos] 
    type = NonIsothermalEquationOfState 
    p_0 = 15.17e6 # Pa 
    rho_0 = 738.350 # kg/m^3 
    a2 = 1.e7 # m^2/s^2 
    beta = .46e-3 # K^{-1} 
    cv = 5.832e3 # J/kg-K 
    e_0 = 3290122.80 # J/kg 
    T_0 = 564.15 # K 
  [../] 
[] 
 
[Components] 
[./CH1] 
    type = CoreChannel 
    eos = eos 
    position = '0 -1.2 0' 
    orientation = '0 0 1' 
    A = 1.161864 
    Dh = 0.01332254 
    length = 3.6576 
    n_elems = 8 
    f = 0.01 
    Hw = 5.33e4 
    aw = 276.5737513 
    Ts_init = 564.15 
    n_heatstruct = 3 
    name_of_hs = 'FUEL GAP CLAD' 
    fuel_type = cylinder 
    width_of_hs = '0.0046955  0.0000955  0.000673' 
    elem_number_of_hs = '3 1 1' 
    k_hs = '3.65 1.084498 16.48672' 
    Cp_hs = '288.734 1.0 321.384' 
    rho_hs = '1.0412e2 1.0 6.6e1' 
    power_fraction = '3.33672612e-1 0 0' 
  [../] 
  [./CH2] 
    type = CoreChannel 
    eos = eos 
    position = '0 0 0' 
    orientation = '0 0 1' 
    A = 1.549152542 
    Dh = 0.01332254 
    length = 3.6576 
    n_elems = 8 
    f = 0.01 
    Hw = 5.33e4 
    aw = 276.5737513 
    Ts_init = 564.15 
    n_heatstruct = 3 
    name_of_hs = 'FUEL GAP CLAD' 
    fuel_type = cylinder 

    width_of_hs = '0.0046955  0.0000955  0.000673' 
    elem_number_of_hs = '3 1 1' 
    k_hs = '3.65  1.084498  16.48672' 
    Cp_hs = '288.734  1.0  321.384' 
    rho_hs = '1.0412e2 1. 6.6e1' 
    power_fraction = '3.69921461e-1 0 0' 
  [../] 
  [./CH3] 
    type = CoreChannel 
    eos = eos 
    position = '0 1.2 0' 
    orientation = '0 0 1' 
    A = 1.858983051 
    Dh = 0.01332254 
    length = 3.6576 
    n_elems = 8 
    f = 0.01 
    Hw = 5.33e4 
    aw = 276.5737513 
    Ts_init = 564.15 
    n_heatstruct = 3 
    name_of_hs = 'FUEL GAP CLAD' 
    fuel_type = cylinder 
    width_of_hs = '0.0046955  0.0000955  0.000673' 
    elem_number_of_hs = '3 1 1' 
    k_hs = '3.65  1.084498  16.48672' 
    Cp_hs = '288.734  1.0  6.6e3' 
    rho_hs = '1.0412e2  1.0  6.6e1' 
    power_fraction = '2.96405926e-1 0 0' 
  [../] 
  [./bypass_pipe] 
    type = Pipe 
    eos = eos 
    position = '0 1.5 0' 
    orientation = '0 0 1' 
    A = 1.589571014 
    Dh = 1.42264 
    length = 3.6576 
    n_elems = 5 
    f = 0.001 
    Hw = 0.0 
  [../] 
  [./LowerPlenum] 
    type = ErgBranch 
    eos = eos 
    inputs = 'DownComer-A(out) DownComer-B(out)' 
    outputs = 'CH1(in) CH2(in) CH3(in) bypass_pipe(in)' 
    K = '0.2 0.2 0.2 0.2 0.4 40.0' 
    Area = 3.618573408 
    Initial_pressure = 151.7e5 
  [../] 
  [./UpperPlenum] 
    type = ErgBranch 
    eos = eos 
    inputs = 'CH1(out) CH2(out) CH3(out) bypass_pipe(out)' 
    outputs = 'pipe1-HL-A(in) pipe1-HL-B(in)' 
    K = '0.5 0.5 0.5 80.0 0.5 0.5' 
    Area = 7.562307456 
    Initial_pressure = 151.7e5 
  [../] 
  [./DownComer-A] 
    type = Pipe 



 

 

    eos = eos 
    position = '0 2.0 4.0' 
    orientation = '0 0 -1' 
    A = 3.6185734 
    Dh = 1.74724302 
    length = 4 
    n_elems = 3 
    f = 0.001 
    Hw = 0. 
  [../] 
  [./pipe1-HL-A] 
    type = Pipe 
    eos = eos 
    position = '0 0.5 4.0' 
    orientation = '0 0 1' 
    A = 7.562307456 
    Dh = 3.103003207 
    length = 4. 
    n_elems = 3 
    f = 0.001 
    Hw = 0.0 
  [../] 
  [./pipe2-HL-A] 
    type = Pipe 
    eos = eos 
    position = '0 0.5 8.0' 
    orientation = '0 1 0' 
    A = 2.624474 
    Dh = 1.828 
    length = 3.5 
    n_elems = 3 
    f = 0.001 
    Hw = 0.0 
  [../] 
  [./pipe1-CL-A] 
    type = Pipe 
    eos = eos 
    position = '0 3.0 4.0' 
    orientation = '0 -1 0' 
    A = 2.624474 
    Dh = 1.828 
    length = 1. 
    n_elems = 3 
    f = 0.001 
    Hw = 0.0 
  [../] 
  [./pipe2-CL-A] 
    type = Pipe 
    eos = eos 
    position = '0 4 4.0' 
    orientation = '0 -1 0' 
    A = 2.624474 
    Dh = 1.828 
    length = 0.8 
    n_elems = 3 
    f = 0.001 
    Hw = 0.0 
  [../] 
  [./pipe1-SC-A] 
    type = Pipe 
    eos = eos 
    position = '0 5.2 4.0' 
    orientation = '0 -1 0' 
    A = 2.624474 
    Dh = 1.828 
    length = 1. 
    n_elems = 3 
    f = 0.001 
    Hw = 0.0 
  [../] 
  [./pipe2-SC-A] 
    type = Pipe 

    eos = eos 
    position = '0 4.2 8.0' 
    orientation = '0 1 0' 
    A = 2.624474 
    Dh = 1.828 
    length = 1. 
    n_elems = 3 
    f = 0.001 
    Hw = 0.0 
  [../] 
  [./Branch1-A] 
    type = ErgBranch 
    eos = eos 
    inputs = 'pipe1-HL-A(out)' 
    outputs = 'pipe2-HL-A(in) pipe-to-Pressurizer(in)' 
    K = '0.5 0.7 80.' 
    Area = 7.562307456 
    Initial_pressure = 151.7e5 
  [../] 
  [./Branch2-A] 
    type = ErgBranch 
    eos = eos 
    inputs = 'pipe1-CL-A(out)' 
    outputs = 'DownComer-A(in)' 
    K = '0.5 0.7' 
    Area = 3.6185734 
    Initial_pressure = 151.7e5 
  [../] 
  [./Branch3-A] 
    type = ErgBranch 
    eos = eos 
    inputs = 'pipe2-HL-A(out)' 
    outputs = 'HX-A(primary_in)' 
    K = '0.5 0.7' 
    Area = 2.624474 
    Initial_pressure = 151.7e5 
  [../] 
  [./Pump-A] 
    type = Pump 
    eos = eos 
    Area = 2.624474 
    Initial_pressure = 151.7e5 
    Head = 9.9 
    K_reverse = 1000 
    outlet = 'pipe1-CL-A(in)' 
    inlet = 'pipe2-CL-A(out)' 
  [../] 
  [./HX-A] 
    type = HeatExchanger 
    eos = eos 
    eos_secondary = eos 
    position = '0 4. 8.' 
    orientation = '0 0 -1' 
    A = 5. 
    A_secondary = 5. 
    Dh = 0.01 
    Dh_secondary = 0.01 
    length = 4. 
    n_elems = 10 
    Hw = 1.e4 
    Hw_secondary = 1.e4 
    aw = 539.02 
    aw_secondary = 539.02 
    f = 0.01 
    f_secondary = 0.01 
    Twall_init = 564.15 
    wall_thickness = 0.001 
    k_wall = 100.0 
    rho_wall = 100.0 
    Cp_wall = 100.0 
    n_wall_elems = 2 
  [../] 



 

 

  [./Branch4-A] 
    type = ErgBranch 
    eos = eos 
    inputs = 'pipe1-SC-A(out)' 
    outputs = 'HX-A(secondary_in)' 
    K = '0.5 0.7' 
    Area = 2.624474e2 
    Initial_pressure = 151.7e5 
  [../] 
  [./Branch5-A] 
    type = ErgBranch 
    eos = eos 
    inputs = 'HX-A(secondary_out)' 
    outputs = 'pipe2-SC-A(in)' 
    K = '0.5 0.7' 
    Area = 2.624474e2 
    Initial_pressure = 151.7e5 
  [../] 
  [./Branch6-A] 
    type = ErgBranch 
    eos = eos 
    inputs = 'HX-A(primary_out)' 
    outputs = 'pipe2-CL-A(in)' 
    K = '0.5 0.7' 
    Area = 2.624474e2 
    Initial_pressure = 151.7e5 
  [../] 
  [./PressureOutlet-SC-A] 
    type = TimeDependentVolume 
    input = 'pipe2-SC-A(out)' 
    p_bc = '151.7e5' 
    T_bc = 564.15 
    eos = eos 
  [../] 
  [./DownComer-B] 
    type = Pipe 
    eos = eos 
    position = '0 -2.0 4.0' 
    orientation = '0 0 -1' 
    A = 3.6185734 
    Dh = 1.74724302 
    length = 4 
    n_elems = 3 
    f = 0.001 
    Hw = 0. 
  [../] 
  [./pipe1-HL-B] 
    type = Pipe 
    eos = eos 
    position = '0 -0.5 4.0' 
    orientation = '0 0 1' 
    A = 7.562307456 
    Dh = 3.103003207 
    length = 4. 
    n_elems = 3 
    f = 0.001 
    Hw = 0.0 
  [../] 
  [./pipe2-HL-B] 
    type = Pipe 
    eos = eos 
    position = '0 -0.5 8.0' 
    orientation = '0 -1 0' 
    A = 2.624474 
    Dh = 1.828 
    length = 3.5 
    n_elems = 3 
    f = 0.001 
    Hw = 0.0 
  [../] 
  [./pipe1-CL-B] 
    type = Pipe 

    eos = eos 
    position = '0 -3.0 4.0' 
    orientation = '0 1 0' 
    A = 2.624474 
    Dh = 1.828 
    length = 1. 
    n_elems = 3 
    f = 0.001 
    Hw = 0.0 
  [../] 
  [./pipe2-CL-B] 
    type = Pipe 
    eos = eos 
    position = '0 -4.0 4.0' 
    orientation = '0 1 0' 
    A = 2.624474 
    Dh = 1.828 
    length = 0.8 
    n_elems = 3 
    f = 0.001 
    Hw = 0.0 
  [../] 
  [./pipe1-SC-B] 
    type = Pipe 
    eos = eos 
    position = '0 -5.2 4.0' 
    orientation = '0 1 0' 
    A = 2.624474 
    Dh = 1.828 
    length = 1. 
    n_elems = 3 
    f = 0.001 
    Hw = 0.0 
  [../] 
  [./pipe2-SC-B] 
    type = Pipe 
    eos = eos 
    position = '0 -4.2 8.0' 
    orientation = '0 -1 0' 
    A = 2.624474 
    Dh = 1.828 
    length = 1. 
    n_elems = 3 
    f = 0.001 
    Hw = 0.0 
  [../] 
  [./Branch1-B] 
    type = ErgBranch 
    eos = eos 
    inputs = 'pipe1-HL-B(out)' 
    outputs = 'pipe2-HL-B(in)' 
    K = '0.5 0.7' 
    Area = 7.562307456 
    Initial_pressure = 151.7e5 
  [../] 
  [./Branch2-B] 
    type = ErgBranch 
    eos = eos 
    inputs = 'pipe1-CL-B(out)' 
    outputs = 'DownComer-B(in)' 
    K = '0.5 0.7' 
    Area = 3.6185734 
    Initial_pressure = 151.7e5 
  [../] 
  [./Branch3-B] 
    type = ErgBranch 
    eos = eos 
    inputs = 'pipe2-HL-B(out)' 
    outputs = 'HX-B(primary_in)' 
    K = '0.5 0.7' 
    Area = 2.624474 
    Initial_pressure = 151.7e5 



 

 

  [../] 
  [./Pump-B] 
    type = Pump 
    eos = eos 
    Area = 2.624474 
    Initial_pressure = 151.7e5 
    Head = 9.9 
    K_reverse = 1000 
    outlet = 'pipe1-CL-B(in)' 
    inlet = 'pipe2-CL-B(out)' 
  [../] 
  [./HX-B] 
    type = HeatExchanger 
    eos = eos 
    eos_secondary = eos 
    position = '0 -4. 8.' 
    orientation = '0 0 -1' 
    A = 5. 
    A_secondary = 5. 
    Dh = 0.01 
    Dh_secondary = 0.01 
    length = 4. 
    n_elems = 10 
    Hw = 1.e4 
    Hw_secondary = 1.e4 
    aw = 539.02 
    aw_secondary = 539.02 
    f = 0.01 
    f_secondary = 0.01 
    Twall_init = 564.15 
    wall_thickness = 0.001 
    k_wall = 100.0 
    rho_wall = 100.0 
    Cp_wall = 100.0 
    n_wall_elems = 2 
    disp_mode = -1.0 
  [../] 
  [./Branch4-B] 
    type = ErgBranch 
    eos = eos 
    inputs = 'pipe1-SC-B(out)' 
    outputs = 'HX-B(secondary_in)' 
    K = '0.5 0.7' 
    Area = 2.624474e2 
    Initial_pressure = 151.7e5 
  [../] 
  [./Branch5-B] 
    type = ErgBranch 
    eos = eos 
    inputs = 'HX-B(secondary_out)' 
    outputs = 'pipe2-SC-B(in)' 
    K = '0.5 0.7' 
    Area = 2.624474e2 
    Initial_pressure = 151.7e5 
  [../] 
  [./Branch6-B] 
    type = ErgBranch 
    eos = eos 
    inputs = 'HX-B(primary_out)' 
    outputs = 'pipe2-CL-B(in)' 
    K = '0.5 0.7' 
    Area = 2.624474e2 
    Initial_pressure = 151.7e5 
  [../] 
  [./PressureOutlet-SC-B] 
    type = TimeDependentVolume 
    input = 'pipe2-SC-B(out)' 
    p_bc = '151.7e5' 
    T_bc = 564.15 
    eos = eos 
  [../] 
  [./pipe-to-Pressurizer] 

    type = Pipe 
    eos = eos 
    position = '0 0.5 8.0' 
    orientation = '0 0 1' 
    A = 2.624474 
    Dh = 1.828 
    length = 0.5 
    n_elems = 3 
    f = 10. 
    Hw = 0.0 
  [../] 
  [./Pressurizer] 
    type = TimeDependentVolume 
    input = 'pipe-to-Pressurizer(out)' 
    p_bc = '151.7e5' 
    T_bc = 564.15 
    eos = eos 
  [../] 
  [./high_pressure_seconday_A] 
    T_bc = 537.15 
    p_bc = '152.19e5' 
    eos = eos 
    input = 'pipe1-SC-A(in)' 
    type = TimeDependentVolume 
  [../] 
  [./high_pressure_seconday_B] 
    T_bc = 537.15 
    p_bc = '152.19e5' 
    eos = eos 
    input = 'pipe1-SC-B(in)' 
    type = TimeDependentVolume 
  [../] 
[] 
 
[Preconditioning] 
active = 'FDP_PJFNK' 
  [./FDP_PJFNK] 
    type = FDP 
    full = true 
    petsc_options = '-snes_mf_operator -pc_factor_shift_nonzero' 
    petsc_options_iname = '-mat_fd_type' 
    petsc_options_value = 'ds' 
    petsc_options_iname = '-mat_fd_type' 
    petsc_options_value = 'ds' 
  [../] 
  [./FDP_Newton] 
    type = FDP 
    full = true 
    petsc_options = '-snes' 
    petsc_options_iname = '-mat_fd_type' 
    petsc_options_value = 'ds' 
    petsc_options_iname = '-mat_fd_type' 
    petsc_options_value = 'ds' 
  [../] 
[] 
 
[Executioner] 
  type = RavenExecutioner 
  dt = 5e-2 
  time_t = '0         3.0         5.01       9.5     9.75    14      17    5e1' 
  time_dt = '1.e-2  1.0    1.1   2.5e-1    2.5e-1  2.5e-1      2.5e-1    2.5e-1' 
  dtmax = 9999 
  e_tol = 10.0 
  e_max = 99999. 
  max_increase = 2 
  perf_log = true 
  petsc_options_iname = '-ksp_gmres_restart' 
  petsc_options_value = '300' # '300' 
  nl_rel_tol = 1e-6 
  nl_abs_tol = 1e-10 
  nl_max_its = 100 
  l_tol = 1e-5 # Relative linear tolerance for each Krylov solve 



 

 

  l_max_its = 100 # Number of linear iterations for each Krylov solve 
  start_time = 0.0 
  end_time = 50 
  ss_check_tol = 1e-05 
  nl_rel_step_tol = 1e-3 
  [./Quadrature] 
    type = TRAP 
    order = FIRST 
  [../] 
[] 
 
[Output] 
  file_base = TMI_test_PRA_steady_state 
  exodus = true 
  output_initial = true 
  perf_log = true 
  num_restart_files = 1 
[] 
 
[Controlled] 
  control_logic_input = TMI_test_PRA_control 
  [./power_CH1] 
    print_csv = true 
    property_name = total_power_scaling 
    data_type = double 
    component_name = CH1 
  [../] 
  [./power_CH2] 
    property_name = total_power_scaling 
    print_csv = true 
    data_type = double 
    component_name = CH2 
  [../] 
  [./power_CH3] 
    property_name = total_power_scaling 
    print_csv = true 
    data_type = double 
    component_name = CH3 
  [../] 
  [./high_pressure_secondary_A] 
    property_name = p_in 
    print_csv = true 
    data_type = double 
    component_name = high_pressure_seconday_A 
  [../] 
  [./high_pressure_secondary_B] 
    property_name = p_in 
    print_csv = true 
    data_type = double 
    component_name = high_pressure_seconday_B 
  [../] 
  [./Head_PumpB] 
    property_name = Head 
    data_type = double 
    print_csv = true 
    component_name = Pump-B 
  [../] 
  [./Head_PumpA] 
    property_name = Head 
    data_type = double 
    print_csv = true 
    component_name = Pump-A 
  [../] 
[] 
 
[Monitored] 
  [./max_temp_clad_CH1] 
    operator = NodalMaxValue 
    path = CLAD:TEMPERATURE 
    data_type = double 
    component_name = CH1 
  [../] 

  [./max_temp_clad_CH2] 
    operator = NodalMaxValue 
    path = CLAD:TEMPERATURE 
    data_type = double 
    component_name = CH2  
  [../] 
  [./max_temp_clad_CH3] 
    operator = NodalMaxValue 
    path = CLAD:TEMPERATURE 
    data_type = double 
    component_name = CH3 
  [../] 
  [./Max_Fluid_Vel_H_L-A] 
    operator = NodalMaxValue 
    path = VELOCITY 
    data_type = double 
    component_name = pipe1-HL-A 
  [../] 
  [./Max_Fluid_Vel_C_L_A] 
    operator = NodalMaxValue 
    path = VELOCITY 
    data_type = double 
    component_name = DownComer-A 
  [../] 
  [./out_temp_sec_A] 
    operator = ElementAverageValue 
    path = TEMPERATURE 
    data_type = double 
    component_name = pipe2-SC-A 
  [../] 
  [./DownStreamSpeed] 
    operator = ElementAverageValue 
    path = VELOCITY 
    data_type = double 
    component_name = pipe1-CL-B 
  [../] 
  [./UpstreamSpeed] 
    operator = ElementAverageValue 
    path = VELOCITY 
    data_type = double 
    component_name = pipe1-CL-B 
  [../] 
  [./max_temp_fuel_CH1] 
    operator = NodalMaxValue 
    path = FUEL:TEMPERATURE 
    data_type = double 
    component_name = CH1 
  [../] 
  [./max_temp_fuel_CH2] 
    operator = NodalMaxValue 
    path = FUEL:TEMPERATURE 
    data_type = double 
    component_name = CH2 
  [../] 
  [./max_temp_fuel_CH3] 
    operator = NodalMaxValue 
    path = FUEL:TEMPERATURE 
    data_type = double 
    component_name = CH3 
  [../] 
[] 
 
[PredefinedDistributions] 
  [./trip_dist] 
    parameter1 = 1 
    parameter2 = 0.1 
    x_max = 2 
    x_min = 0 
    type = NORMAL 
  [../] 
  [./1%_gauss] 
    parameter1 = 1 



 

 

    parameter2 = 0.01 
    x_max = 0.8 
    x_min = 0 
    type = NORMAL 
  [../] 
[] 
 
[RavenAuxiliary] 
  [./scram_start_time] 
    data_type = double 
    initial_value = 10000 
    print_csv = true 
  [../] 
  [./auxiliary_system_time_on] 
    data_type = double 
    initial_value = 5 
    print_csv = true 
  [../] 
  [./InitialMassFlowPrimary] 
    data_type = double 
    initial_value = 0 
    print_csv = true 
  [../] 
  [./initialInletSecPress] 
    data_type = double 
    print_csv = true 
    initial_value = 0 
  [../] 
  [./CladDamaged] 
    data_type = bool 
    print_csv = true 
    initial_value = False 
  [../] 
  [./AuxDieselAvailable] 
    data_type = bool 
    print_csv = true 
    initial_value = true 
  [../] 
  [./AuxDieselSuppliy] 
    data_type = bool 
    print_csv = true 
    initial_value = true 
  [../] 
  [./DeltaTimeScramToAux] 
    data_type = double 
    initial_value = 4 
    print_csv = true 
  [../] 

  [./InitialOutletSecPress] 
    data_type = double 
    print_csv = true 
    initial_value = 0 
  [../] 
  [./AuxDieselRecoveryTime] 
    data_type = double 
    print_csv = true 
    initial_value = 180 
  [../] 
  [./PrimaryPump] 
    data_type = double 
    print_csv = true 
    initial_value = 0 
  [../] 
  [./PrimaryPumpTransStart] 
    data_type = double 
    print_csv = true 
    initial_value = 0.5 
  [../] 
  [./SecondaryPump] 
    data_type = double 
    print_csv = true 
    initial_value = 0 
  [../] 
  [./SecondaryPumpTransStart] 
    data_type = double 
    print_csv = true 
    initial_value = 0.5 
  [../] 
  [./PowerStatus] 
    data_type = double 
    print_csv = true 
    initial_value = 0 
  [../] 
  [./CladTempTreshold] 
    data_type = double 
    print_csv = true 
    initial_value = 1477.59 
  [../] 
  [./HydroPressureSecondary] 
    data_type = double 
    print_csv = true 
    initial_value = 29.35152e+3 
  [../] 
 [] 
 

 

7.1 Control Logic Python File 

import sys 
import math 
import distribution1D 
import raventools 
distcont  = distribution1D.DistributionContainer.Instance() 
DecayHeatScalingFactor     = raventools.decayHeat(1,1,3600*24*30*8,0.064) 
PumpCoastDown                 = raventools.pumpCoastdown(1,9.9) 
PumpCoastDown Sec          = raventools.pumpCoastdown(1,1) 
 
 
def initial_function(monitored, controlled, auxiliary): 
 
#Nominal/initial values 
    auxiliary.InitialHead                      = controlled.Head_PumpB 
    auxiliary.initialInletSecPress        = controlled.high_pressure_secondary_A 
    return 
 
def control_function(monitored, controlled, auxiliary): 
 
    if monitored.time>=auxiliary.scram_start_time: 



 

 

        auxiliary.ScramStatus = True 
    else: 
        auxiliary.ScramStatus = False 
         
    if auxiliary.ScramStatus: #we are in scram situation     
        #primary pump B 
        if controlled.Head_PumpB>1.e-4*auxiliary.InitialHead: 
            controlled.Head_PumpB = PumpCoastDown.flowrateCalculation(monitored.time-auxiliary.scram_start_time)  
        else: 
            controlled.Head_PumpB = 0 
        #primary pump A         
        if controlled.Head_PumpA>1.e-4*auxiliary.InitialHead: 
            controlled.Head_PumpA = PumpCoastDown.flowrateCalculation(monitored.time-auxiliary.scram_start_time)  
        else: 
            controlled.Head_PumpA = 0         
        #core power following decay heat curve      
        controlled.power_CH1 =DecayHeatScalingFactor.powerCalculation(monitored.time-auxiliary.scram_start_time) 
        controlled.power_CH2 =DecayHeatScalingFactor.powerCalculation(monitored.time-auxiliary.scram_start_time) 
        controlled.power_CH3 =DecayHeatScalingFactor.powerCalculation(monitored.time-auxiliary.scram_start_time) 
        #secondary system replaced by auxiliary secondary system 
        if monitored.time<(auxiliary.scram_start_time+auxiliary.DeltaTimeScramToAux): # not yet auxiliary system up 
            if controlled.high_pressure_secondary_A >= auxiliary.InitialOutletSecPress:  
                if auxiliary.initialInletSecPress*PumpCoastDownSec.flowrateCalculation(monitored.time-auxiliary.scram_start_time) >=    
                                                                                                                          (auxiliary.InitialOutletSecPress+ auxiliary.HydroPressureSecondary):    
                     controlled.high_pressure_secondary_A = auxiliary.initialInletSecPress* 
                                                                                         PumpCoastDownSec.flowrateCalculation(monitored.time-auxiliary.scram_start_time)  
                else: 
                     controlled.high_pressure_secondary_A = auxiliary.InitialOutletSecPress+ auxiliary.HydroPressureSecondary 
            else: 
                controlled.high_pressure_secondary_A = auxiliary.InitialOutletSecPress+ auxiliary.HydroPressureSecondary  
            if controlled.high_pressure_secondary_B >= auxiliary.InitialOutletSecPress: 
                if auxiliary.initialInletSecPress*PumpCoastDownSec.flowrateCalculation(monitored.time-auxiliary.scram_start_time) >=  
                                                                                                                          (auxiliary.InitialOutletSecPress+ auxiliary.HydroPressureSecondary):    
                     controlled.high_pressure_secondary_B = auxiliary.initialInletSecPress* 
                                                                                         PumpCoastDownSec.flowrateCalculation(monitored.time-auxiliary.scram_start_time) 
                else: 
                     controlled.high_pressure_secondary_B = auxiliary.InitialOutletSecPress+ auxiliary.HydroPressureSecondary 
            else: 
                controlled.high_pressure_secondary_B = auxiliary.InitialOutletSecPress+ auxiliary.HydroPressureSecondary  
        else: # auxiliary system up 
            if controlled.high_pressure_secondary_A<15198299.45:                       #check if it has not already reached the final value 
                controlled.high_pressure_secondary_A = auxiliary.InitialOutletSecPress +  
                                                                                    (15198299.45-auxiliary.InitialOutletSecPress)/5* 
                                                                                    (monitored.time-(auxiliary.scram_start_time+auxiliary.DeltaTimeScramToAux)) 
            if controlled.high_pressure_secondary_B<15198299.45:                       #check if it has not already reached the final value 
                controlled.high_pressure_secondary_B = auxiliary.InitialOutletSecPress +  
                                                                                    (15198299.45-auxiliary.InitialOutletSecPress)/5* 
                                                                                    (monitored.time-(auxiliary.scram_start_time+auxiliary.DeltaTimeScramToAux))     
    else: 
        return 
    if (monitored.max_temp_clad_CH1>auxiliary.CladTempTreshold) or  
       (monitored.max_temp_clad_CH2>auxiliary.CladTempTreshold) or  
       (monitored.max_temp_clad_CH3>auxiliary.CladTempTreshold): 
        auxiliary.CladDamaged = True 
        raise NameError ('exit condition reached - failure of the clad') 
    return 

 
 
 
  



 

 

8 APPENDIX B 

The following table summarizes the needs and the respective area of development interested that are deemed necessary to 
reach a reasonable level interest from possible users. 
 
 Work	Area	 Quality	Assurance	 RELAP	7	Input	GUI	 RAVEN	Control	Logic	 Data	Mining	 PRA	Software	Framework	 -Linking	Regression	Test	to	RELAP	7	-Installation/Release	package		

DONE	 -Construct	templates	for	control	functions	-Registration	of	control	functions	as	MOOSE	actions	(?)	-Allow	stop/start	with	recompiled	control	logic		

-R	evaluation/	integration	(interface)	-	Construct	templates	for	data	processing	functions	-Template	registration	of	statistical	functions	as	MOOSE	actions	(?)		

-Construct	templates	for	statistical	functions	-	Template	registration	of	statistical	functions	as	MOOSE	actions	(?)	-R	evaluation/	integration	-Automatic	simulation	branching	for	tree	constructions		
Software	implementation	 -Verify	doxigen	implementation	-build	regression	test	to	achieve	>90%	coverage	

-Implementation	of	enumerators	for	all	controllable	variable	-Drop	down	menus	for	the	definition	of	controllable,	and	monitorable	variables	
-Extension	of	MOOSE	post	processors	(integral	and	differential	over	time,	coordinate	return)	-Building	a	library	of	control	laws	for	components	-Registration	of	each	component	control	function	(?)	

-Building	library	of	data	mining	functions	-Registration	of	each	data	mining	function	(?)	
-Construction	a	library	of	statistical	functions	(in	case	of	R	integration	building	interfaces)		

Theory	development	 	 	 -Signal	analysis	for	simulation	of	plant	operation	control	 -Evaluate	effectiveness	of	different	data	mining	approaches		
-Automatic	branching	strategies	-Adaptive	goal	oriented	sampling	-Adaptive	goal	oriented	branching	GUI	implementation	 	 -Extend	graphical	coverage	to	missed	component	and	future	ones	-Create	graphical	interactive	operators	(duplicate,	drag	and	drop)	-Interface	visualization	with	Paraview	for	post	processing	solution	data	(?)	

-Build	GUI	for	control	logic	input	and	Python	automatic	generation	-Construct	interface	for	RELAP	stop/start	control	and	control	logic	re-compilation	-online	signal	analysis	capability	

-Create	a	new	tabs	for	data	mining	-Allow	uploading	of	simulations	data	bases	
-Visualization	of	data	while	parallel	simulation	are	ongoing	-Visualization	of	data	mining	results	while	data	base	is	building	up	

Visible	Outcome	 -Manuals	-QA	documents	 -Full	graphical	input	creation	-Data	post	processing	interface	
-Full	graphical	input	of	the	control	logic	-Control	logic	function	library	-Visualization	of	results	of	signal	analysis	

-Capability	to	perform	data	mining	on	simulation	data	bases	via	GUI	
-In	line	visualization	of	simultaneous	simulation	results	and	inline	data	mining	-Adaptive	PRA	capability		

(?) Task with a question mark implies that a final decision still needs to be taken on their implementation 
 

 


