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SUMMARY 

In fiscal year (FY)-2019, the Risk-Informed Systems Analysis (RISA) 
Pathway of the U.S. Department of Energy’s (DOE’s) Light Water Reactor 
Sustainability (LWRS) program initiated a project to develop a risk assessment 
strategy for delivering a strong technical basis to support effective, licensable, 
and secure digital instrumentation and control (DI&C) technologies for digital 
upgrades/designs. An integrated risk assessment for digital I&C (RADIC) 
process was proposed for this strategy, which aims to identify key digital-induced 
failures, implement reliability analyses on related digital safety instrumentation 
and control (I&C) systems, and evaluate the unanalyzed sequences introduced by 
these failures (particularly software common cause failures [CCFs]) at the plant 
level. 

According to the RADIC guidelines and requirements, an approach for 
REdundancy-guided Systems-theoretic Hazard Analysis (RESHA) was 
developed in FY-2020 that aims to help system designers and engineers address 
digital-based CCFs and qualitatively analyze their effects on digital system 
vulnerability. It also provides a technical basis for implementing future reliability 
and consequence analyses of unanalyzed sequences and optimizing the use of 
defense-in-depth (DiD) analyses in a cost-effective way. This approach has been 
developed and applied for the hazard analysis of a digital reactor trip system 
(RTS) and engineered safety features actuation system (ESFAS). RESHA 
provided a means to identify software-based interactions and potential CCFs in 
highly redundant, state-of-the-art DI&C systems, by fully incorporating 
redundancy into the hazard analysis process. Embracing redundancy in the 
analysis allowed the work to meet its objectives in three ways: (1) RESHA 
defines a step-by-step approach for the hazard analysis of digital systems that can 
help engineers efficiently make design and risk mitigation decisions by providing 
them a means to systematically identify the most critical CCFs and hazards of 
DI&C systems; (2) RESHA identifies the critical hazards of a system, allowing 
utilities to effectively manage the cost of safety-rated DI&C by strategically 
eliminating unnecessary design features; and (3) RESHA provides a technical 
basis for reliability analysis by identifying crucial failure modes and qualitatively 
determining their effects on system vulnerability. Ultimately, RESHA helps 
improve the design of highly redundant DI&C through a detailed qualitative 
hazard analysis. RESHA also provides a technical basis for implementing 
cybersecurity, reliability, and consequence analysis on unanalyzed sequences and 
optimizing the use of DiD analysis in a cost-effective way. 

Additionally, this work also developed a novel method, a BAyesian and 
HRA(human reliability analysis)-Aided Method for the reliability Analysis of 
Software (BAHAMAS), to perform reliability analysis of DI&C systems. 
Software failure probabilities are quantified using an integrated method that 
incorporates state-of-the-art techniques in the Bayesian Belief Network (BBN), 
HRA, and CCF modeling. BAHAMAS provides a means for analyzing new 
software systems where operational data is rarely available. Additionally, 
BAHAMAS provides flexibility, which allows the analyst to employ appropriate 
HRA methods or incorporate new or advanced methods to capture the desired 
details of any software development life cycle (SDLC). The case study relied on 
the use of the technique for human error rate prediction (THERP) for the 
quantification of faults in the SDLC. In this work, BAHAMAS has the potential 



 

 iv 

of meeting many of these attributes. By providing a clear method and allowing 
for flexibility in the use of HRA, the door has been opened to allow for 
reasonable assumptions for case-specific analysis. The method accounts for 
lifecycle activities and provides consideration for CCFs. With further work on 
verification and uncertainty quantification, the method has the potential to 
undergo such actions. Additionally, BAHAMAS can certainly incorporate 
environmental and other contributors of fault into the BBN. Additional 
operational considerations—particularly the interactions between the digital 
system and controlled processes—are partially accounted by consideration of the 
process model and control algorithm. BAHAMAS provides a flexible and useful 
tool for the quantification of software failures of DI&C systems and meets many 
of the desired attributes of an ideal quantitative software reliability method. 
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Redundancy-Guided System-Theoretic Hazard And 
Reliability Analysis Of Safety-Related Digital 

Instrumentation And Control Systems In Nuclear 
Power Plants 

1. INTRODUCTION 

Digital upgrades and plant modernization efforts offer the foremost path to performance and cost 
improvements of nuclear power plants (NPPs) [1]. Despite decades of experience with analog systems, 
the technical challenges associated with their continued use (e.g., signal drift, high maintenance costs, 
obsolescence, lack of industrial suppliers) have caused the nuclear industry to move toward digital 
instrumentation and control (DI&C) in favor of integrated circuitry and the modern microcontroller [2]. 
Compared with analog systems, DI&C systems offer significant advantages in the areas of monitoring, 
processing, testing, and maintenance [3] [4]. Notwithstanding the immediate attraction, the nuclear 
industry has been slow to adopt safety-rated DI&C because each new design must be shown to maintain 
or improve the status quo by means of a risk assessment [2]. Though many of the concepts for the risk 
assessment of analog systems carry over, DI&C systems present unique challenges. In 1997, the National 
Research Council detailed several technical challenges for the implementation of DI&C systems. Those 
relating specifically to the present work are: (1) the system aspects of digital systems; (2) the potential for 
software-based common cause failures (CCFs); and (3) the need for a risk assessment method tailored to 
DI&C systems [2]. 

The system aspects of DI&C involve issues that extend beyond individual components and even 
beyond the function of the system itself. The challenge with using these system aspects is discussed in 
NUREG/CR-6901. Digital systems exhibit two types of interactions—Type 1: the interactions of a DI&C 
system (and/or its components) with a controlled process (e.g., NPP); and Type 2: the interactions of a 
DI&C system (and/or its components) with itself and/or other digital systems and components [5]. 
Kirschenbaum et al. provide a useful summary of these concerns in their own work on the investigation of 
digital systems [6]. Common or redundant components are often utilized as a backup to ensure system 
reliability. However, the improper application of redundant features can leave a system vulnerable to 
CCFs, which arise from the malfunction of two or more components, or functions, due to a single failure 
source [1] [7]. In order to make redundancy designs effective, diversity is employed, providing an 
alternative technology, method, technique, or means to achieve a desired result [8]. The diverse protection 
helps to eliminate the common features necessary for a CCF. NUREG/CR-5485 provides general 
guidance for modeling CCFs in risk assessments [9]. NUREG/CR-6303 was published by the NRC in 
December 1994 as “Method for Performing Diversity and Defense-in-Depth Analyses of Reactor 
Protection Systems.” In it, a method was described to identify design vulnerabilities to common-mode 
failure for computer-based nuclear reactor protection systems [10]. In October 1995, the U.S. Nuclear 
Regulatory Commission (NRC) called attention to top-level system aspect requirements of DI&C 
applications in NPPs, which were addressed in the general design criteria in Title 10 of the Code of 
Federal Regulations (CFR) 50, Appendix A [11]. NUREG/CR-6734 Vols. 1 and 2, published in 2001, 
provided guidance for reviewing high-integrity software requirements documents in NPPs, which 
contained a set of 45 failures that illustrate the need for and importance of specific requirements-review 
guidelines [12] [13]. NUREG/CR-7007, published in 2008 as “Diversity Strategies for Nuclear Power 
Plant Instrumentation and Control Systems,” provided guidance to determine how much diversity in a 
safety system is needed to mitigate the consequences of potential CCFs identified in the evaluation of 
safety system design features [14]. NUREG/CR-6819, published in 2008, reviewed the CCF data of 
emergency diesel generators [15], motor-operated valves [16], pumps [17], and circuit breakers [18] to 
gain further understanding of why CCF events occur and what measures may be taken to prevent, or at 
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least mitigate the effect of CCF events. Next, some general observations on the consistencies and 
inconsistencies in how defense-in-depth (DiD) has been defined and used were included in 
NUREG/KM-0009, “Historical Review and Observations of Defense-in-Depth” [19]. In 2016, the NRC 
revised the Standard Review Plan (SRP) to fully adapt it and the associated regulatory guides to DI&C 
systems [20]. Chapter 7 of the SRP provided guidance for the review of the instrumentation and control 
(I&C) portions of: (1) applications for nuclear reactor licenses or permits; and (2) amendments to existing 
licenses. These reports provide a basis for dealing with CCFs. The need remains to identify the most 
significant CCFs to focus the application of diversity in design. 

Diversity and DiD analyses are proposed and performed using deterministic approaches while the 
NRC probabilistic risk assessment (PRA) policy statement encourages the use of risk information in all 
regulatory activities supported by the state-of-the-art and data [21]. Activities to develop digital system 
models have been in process for some time; however, no approaches have been generally accepted for 
digital system modeling in current NPP PRA efforts. Furthermore, deterministic guidance available in 
Chapter 7 of the SRP does not consider digital system reliability quantitatively as part of determining the 
acceptability of a digital system for safety applications [22]. Currently, the NRC continues to perform 
research that supports the development of licensing criteria to evaluate new DI&C systems. According to 
guiding principles in SECY-18-0090 [23], published in 2018, a DiD analysis for reactor trip systems and 
engineered safety features should be performed to demonstrate that vulnerabilities to a CCF have been 
identified and adequately addressed, either by a design-basis deterministic approach or best-estimate 
approach. Recently, in January 2019, NRC staff developed the Integrated Action Plan (IAP) [24], and it 
updates the plan as a living document. One of the goals of the IAP is to assist NRC staff in performing 
regulatory reviews and I&C system inspections in more-efficient, effective, consistent, and risk-informed 
ways. In addition, industry is seeking a more risk-informed, consequence-based regulatory infrastructure 
that removes uncertainty in requirements and enables technical consistency [24]. 

Therefore, a need clearly exists to develop a risk assessment strategy to support quantitative DiD 
analyses for assuring the long-term safety and reliability of vital digital systems and reducing 
uncertainties in costs, time, and support integration of digital systems in the plant. Many efforts from 
regulatory, industrial, and academic communities have been made for risk analysis of DI&C systems, but 
there is no consensus method for the software reliability modeling of digital systems in an NPP. 
NUREG/GR-0020, published in 2000, reviewed existing methods for the analysis of hardware and 
software CCFs, and their applicability to digital embedded systems. It was found that there is a tight 
integration of the hardware and software components when embedded digital systems are in actual 
operation, the effects of hardware and software malfunctions must be analyzed in a unified manner. Some 
evaluations have been implemented by different researchers for the approaches to model digital protection 
systems in a probabilistic safety analysis for an NPP. The results showed that the introduction of software 
causes difficulties in a traditional PRA since probabilistic data are scarce and there is no commonly 
accepted method for assessing reliability data for software; as such, models often depend on expert 
judgement [4] [25] [26]. NUREG/CR-6962 [27] reviewed traditional PRA methods for digital systems 
and indicates that these traditional methods based on event tree/fault tree (ET/FT) and Markov modeling 
are useful for the PRA of DI&C systems, but still have limitations in the state-of-the-art for modeling 
digital systems, where additional research and development are needed. NUREG/CR-6942 [28] 
demonstrated how an existing NPP PRA could incorporate a digital upgrade of the I&C system by 
considering dynamic reliability modeling. NUREG/CR-6985 [29], published in 2008, implemented two 
dynamic methodologies—dynamic flowgraph methodology (DFM) and the Markov/cell-to-cell mapping 
technique (CCMT)—are on the benchmark digital feedwater control system. Zio [30] developed a method 
for processing accident scenarios generated in a dynamic reliability analysis of a NPP with DI&C, which 
takes into account both the system states reached at the end of the scenarios, but also the timing and 
magnitude of the occurred failure events, as well as the characteristics of the process evolution. Ma [31] 
evaluated the dynamic reliability performance of digital reactor protection systems using the colored petri 
net (CPN) considering the module repair time and CCFs, and fault tolerance techniques and fault 
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coverage are introduced to calculate the different failure rates. In 2018, A platform based on the claim-
argument-evidence (CAE) theory was designed by Guo and Zou [32] for the demonstration of software 
reliability and the identification of vulnerability elements, which influenced the reliability of DI&C 
system software life cycle. These researches indicate timing and interdependency of digital-based failures 
pose new challenges for the risk assessment of DI&C systems. Besides, to identify the root causes of 
software failures and estimate the failure probabilities of NPP software, Bayesian networks have been 
applied for incorporating software failures into an NPP PRA model [33, 34, 35, 36]. Some existing 
approaches about hazard analysis and reliability analysis have been reviewed in Section 2. 

In FY-2019, the Risk-Informed Systems Analysis (RISA) Pathway of the U.S. Department of 
Energy’s (DOE’s) Light Water Reactor Sustainability (LWRS) program initiated a project to develop a 
risk assessment strategy for delivering a strong technical basis to support effective, licensable, and secure 
DI&C technologies for digital upgrades/designs [37]. An integrated RADIC process was proposed for this 
strategy, which aims to identify key digital-induced failures, implement reliability analyses on related 
digital safety I&C systems, and evaluate the unanalyzed sequences introduced by these failures 
(particularly software CCFs) at the plant level. According to the guidelines and requirements of the 
RADIC process, an approach for REdundancy-guided Systems-theoretic Hazard Analysis (RESHA) was 
developed in FY-2020 that aims to help system designers and engineers address digital-based CCFs and 
qualitatively analyze their effects on digital system vulnerability. It also provides a technical basis for 
implementing future reliability and consequence analyses of unanalyzed sequences and optimizing the use 
of DiD analyses in a cost-effective way. This approach has been developed and applied for the hazard 
analysis of digital reactor trip system (RTS) and engineered safety features actuation system (ESFAS). 
Relevant description and case studies are shown in Section 3. A method for reliability assessment of 
digital control systems with consideration for the quantification of CCFs is described in Section 4, which 
is defined as a BAyesian and HRA(human reliability analysis)-Aided Method for the reliability Analysis 
of Software (BAHAMAS). Section 5 summarizes the conclusion and future work about risk assessment 
of DI&C systems.  
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2. TECHNICAL APPROACHES 

The purpose of Section 2 is to provide an overview of approaches for hazard and reliability analysis 
for DI&C systems. 

2.1 Approaches for Hazard Analysis 

Hazards can be understood as a state or condition that can lead to a loss of something of value to 
stakeholders [38]. Hazard analysis is defined as the process of examining a structure, system, or 
component (SSC) in order to identify hazards and triggers of hazards with the goal of eliminating, 
mitigating, or controlling them [39]. The 2013 Electric Power Research Institute (EPRI) report on DI&C 
hazard analysis methods discusses common strategies, as well as indicating their respective strengths and 
weaknesses [40]. In order to successfully model DI&C systems, the need exists to model both the 
hardware and software interactions of the system. Traditional methods, such as failure modes and effects 
analysis (FMEA) and fault tree analysis (FTA), have been used to extensively model analog systems. 
However, interactions between digital systems and controlled processes (i.e., Type 1 interactions) and the 
interactions between digital systems and their own components or other systems (i.e., Type 2 interactions) 
can result in failure modes or hazards that are difficult to discover using traditional methods [22]. Lessons 
learned from the NRC’s investigation of multiple analysis methods indicate there “may not be one 
preferable method for modeling all digital systems” [22]. However, combinations of methods may prove 
beneficial. A recent advancement in hazards analysis developed jointly by EPRI and Sandia National 
Laboratory combines FTA and the systems-theoretic process analysis (STPA) as a portion of their 
methodology for Hazard and Consequence Analysis for Digital Systems (HAZCADS) [41]. The current 
work incorporates this concept of combining FTA and STPA as part of the approach for RESHA. 

FTA is a conventional, top-down, risk assessment tool that is used to identify the faults that contribute 
to the failure of a selected top event, which may depend on the combinations of multiple smaller 
contributors, known as basic events. A key aspect of FTA is the determination of the “cut set,” which is a 
collection of events that, when combined, will result in the failure of the selected top event. There are 
often many variations of cut sets comprising of single or multiple events [42]. For a hazard analysis, the 
determination of the cut set is critical and can be done without probability, or failure rate, data [43]. FTA 
is the workhorse of the nuclear industry and has been used extensively to model control systems. 

STPA is an analysis method based on system theory that is used to capture the unsafe interactions 
between system components, in addition to component failures [38]. Its top-down analysis focuses on the 
identifying constraints on behavior and the interaction of components [44]. The main parts of STPA are 
focused on the construction of a control structure and the analysis of unsafe component interactions. The 
control structure highlights the controller interactions, while the analysis identifies necessary behavior 
constraints to reduce or eliminate hazards. Together, FTA and STPA will be used to provide a clearer 
picture of the hazards in DI&C systems, as shown in Figure 1. 

Though STPA may be applied at any stage of system design and review, it is ideally suited for early 
application in the design process before safety features have been incorporated into the design [38]. Then, 
as more details are incorporated, the STPA method is applied iteratively to further improve the design. 
However, even when fine detail about a system is known, the analysis may remain at a high level, relying 
on causal factor investigations to provide the detail of subcomponent failures and interactions. In other 
words, details such as redundant subsystems or components are often ignored in all but the final part of 
STPA. Consequently, there is not a clear representation of how to apply STPA or create a control 
structure for a system containing multiple layers of redundancy. In a 2014 Massachusetts Institute of 
Technology (MIT) technical report, STPA is applied to an aircraft automatic braking system and 
redundant features are only mentioned in the context of causal factors [44]. In 2018, Rejzek and Hilbes 
replicated this idea for an application of STPA to nuclear-related DI&C systems [45].Their application 
stresses that the control structure only incorporate the functional aspects of the system, again leaving the 
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details of redundancy for the context portion of STPA [45]. While this aspect of STPA does not appear to 
lessen its effectiveness, waiting to include the finer details of a system may hinder the identification of 
CCFs. As a possible consequence of this complication, STPA does not appear to be used specifically to 
identify and address CCFs in the context of DI&C. 

It is essential that STPA have a clear application process for highly redundant systems, including their 
relationship to characteristics not clearly featured in the standard STPA analyses, to identify CCFs. For 
this STPA application, all layers of a redundancy design should be incorporated clearly and early in the 
design analysis. It is proposed that reframing STPA in a redundancy-guided way, in combination with 
FTA, will provide a means to effectively identify the unique hazards, failure modes, and CCFs associated 
with highly redundant safety-based DI&C systems. By following this approach, the triggers of the most 
significant hazards to advanced DI&C systems can be identified and either mitigated or eliminated. 

 
Figure 1. FTA and STPA combined for a full picture of I&C failures adapted from [37]. 

2.2 Approaches for Reliability Analysis 

The desire to model and understand risk, especially concerning digital technologies, prompted 
considerable research. Of the numerous methods for reliability analysis, a great number of them are based 
on software reliability growth models, Bayesian Belief Network (BBN) methods, test-based methods, 
rule-based methods, and metric-based methods [4]. In addition, many software reliability methods have 
been formulated either to incorporate the timing of events via dynamic modeling [46], or to follow a more 
traditional static approach using ETs and FTs. 

Software reliability growth methods (SRGMs) rely on the theory that software reliability grows or 
improves with time and updates. The SRGM is a method of modeling software reliability using empirical 
formulas that have been developed from software failure test data. When applied to analyze a new 
software, test data for the new software is matched to existing models to provide estimates of software 
reliability [4]. IEEE standard 1633-2016 [47] includes a collection of SRGM and provides some guidance 
for when each method might be best applied. Some of the SRGM listed include those by Jelinski and 
Moranda [48] and Musa [49]. Ultimately, each application is case-specific (i.e., there is no one perfect 
SRGM for all digital systems). The application of SRGMs tends to evaluate the whole system, rather than 
separate modules. A main limitation of SRGM is its dependence on available performance data. In 
addition, the demonstration of a highly reliable system will likely require significant testing (i.e., a 
limitation shared by the test-based approaches) [4]. 
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BBN methods use an analysis method that relies on Bayes’ theorem and graphical models (e.g., a 
network) to depict the influence of one event on another while also involving dependencies between 
events. The BBN can incorporate disparate information, which can be advantageous for performing 
analyses [4]. Recent BBN use has been described in NUREG/CR-7233 for providing an analysis of 
digital systems by including features of life cycle development [50]. BBN tends to be challenged by their 
dependence on expert opinion, which can be a source of uncertainty. 

Test-based methods rely on analyzing the expected or designed behavior of a system or subsystem 
based on an expected operational profile [4] [51]. Test-based approaches to reliability might include 
BBNs and SRGM as these can, and do, rely on test data. The strictly test-based approaches can be 
generalized as white- or black-boxed. Black box testing is focused on the external inputs and outputs to a 
system and the analysis of a system in its operational profile. Consequently, the internal workings are 
masked, thus the term “black box” [52]. By contrast, “white box” testing considers the internal 
mechanisms of a system [52]. The increased resolution of white box testing can more clearly show the 
failure modes of a system. Perhaps the most significant challenge of test-based methods is the time 
constraint that limits the ability to quantify the reliability of a system. Testing all possible inputs might be 
impractical for demonstrating high reliability, but would be required for safety systems. The rule-based 
approach is akin to rule- or engineering standard-based engineering design. The idea being to follow 
design rules that can ensure reliability. The International Electrotechnical Commission (IEC) Standard 
[53] is indicated in [4] as an example. A limitation of this form is that the methods have not been 
validated. Metric-based software reliability prediction relies on software attributes, such as bugs per line 
of code, software maturity, completeness, defect density, etc., to provide a means for determining 
reliability [54]. The metric-based approach provides the opportunity to capture many unique features that 
are involved with software development processes. 

Some of the most recent advancements for reliability analysis have been those that incorporate timing 
of events into the analysis [55]; these analyses can be classified as dynamic PRA. The goal of dynamic 
PRA is to explicitly model the behavior of a system over time [56]. Dynamic PRA can provide an 
advantage over conventional PRA (e.g., ET/FT) by providing more realistic sequence timing and better 
representation of thermal hydraulic processes and operator responses [46]. In the past 20 years, there has 
been significant interest in both dynamic and traditional models. The NRC has sponsored two major 
parallel investigations—one research path focused on the use of traditional PRA methods (e.g., ET/FT) 
for the reliability analysis of digital systems [27] [57] and the other focused on dynamic PRA approaches 
[5] [28] [29]. Dynamic PRA will be saved for later research efforts in part to support our goal to maintain 
compatibility and familiarity with conventional PRAs currently in use by the industry. 

In 2014, Mosleh provided a useful discussion on PRA, including its origin and progression to 
dynamic, simulation-based methods [46]. Mosleh highlights the successes of classical PRA methods in 
estimating the core melt frequencies for NPPs in the range of 5E-5 to 5E-4 (e.g., the WASH-1400 study) 
as compared to global experience in five meltdowns of around 10,000 hours resulting in 5E-4. Mosleh 
then introduced an intermediary class of PRA, the hybrid methods, which expand the capabilities of 
conventional methods, but are not quite dynamic simulations. One method referred to in particular is the 
Hybrid Causal Logic (HCL) method [58], which expands the conventional ET/FT by providing casual 
factor details to the FT through the use of a BBN to use its flexibility to incorporate the “human, 
organizational, and social-technical roots” into causal factors of the events within the FT [46]. Even 
though they may not account for system behavior over time, the hybrid models do provide greater detail 
than conventional methods. This concept of hybrid methods has been mirrored by others specifically 
interested in digital systems. 
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In 2013, Chu et al. prepared the NUREG/CR-7044 [59], which provides a discussion of two candidate 
methods for software reliability analysis—a test-based method and a BBN method. They appeared to 
have high potential for meeting many of the desirable attributes previously mentioned. Then, in 2018, 
they furthered their investigations using BBN for quantifying software failure of protection systems at 
NPPs [50]. This work incorporates design requirements and software life cycle development processes, 
but in its initial demonstration, it required expert elicitation for many of its processes. Like many BBN-
based methods, a lack of data tends to drive the need for expert elicitation. 

In this work, a novel method is developed for quantifying software failure probabilities. The approach 
covers a novel application of previous works by the implementation of BBN methods in combination with 
human reliability analysis (HRA) for the quantification of FT basic events identified using STPA-based 
methods. Lastly, the method addresses modeling CCF as an option for the analysis. 

2.2.1 Application of Human Reliability Analysis 

An investigation into causal factors of software failure led to several important findings. First, 
according to some [2] [60], software doesn’t fail. At least, the software code does not fail randomly like 
mechanical components. Software performs exactly how it has been designed to perform, any unwanted 
action or behavior is due to a fault within the code that has been activated based on certain inputs. An 
error or mistake in the software development will result in a fault (e.g., a bug, wrong settings, wrong 
parameters, etc.) that will remain idle until activated. Once activated, the fault may result in a failure of 
the software to perform as desired. Some faults are benign, such as a typo, whereas others can be quite 
serious. The main reason for unwanted software behavior is due to improper design requirements, 
verification, validation, and human errors in the software development life cycle (SDLC). 

A human error in the SDLC will result in a fault in whatever system is being created. For years, the 
quantification of human actions has been the subject of HRA [61]. There have been quite a number of 
methods developed for HRA over the years; some of the more well-known methods include the 
Technique for Human Error Rate Prediction (THERP) [61], the Standardized Plant Analysis Risk-Human 
(SPAR-H) reliability analysis method [62], and the Cognitive Reliability and Error Analysis Method 
(CREAM) [63]. HRA tends to deal with human error in three ways. The first focuses on those actions 
completed prior to an event (i.e., errors in maintenance, testing, or calibration). The second deals with 
actions made that are the direct initiator of an event. And the third is related to human actions made after 
or in response to an event [64]. Because most software faults are associated with faults in SDLC, the 
HRA applications used in BAHAMAS will be of the first type. The use of HRA typically provides a 
human error probability for an action performed. It is assumed that the human error probability is the 
source of any faults within the software. The probability of human error will be used in a BBN as a root 
cause of faults within the software, and ultimately, as a source of software failure. 

2.2.2 Application of Bayesian Belief Network 

The BBN is an acyclic graphical approach to model relationships between parent and child nodes [4]. 
BAHAMAS takes a basic event from a FT (e.g., a child node) and models the influence of causal factors 
(e.g., parent nodes) on the child node in the form of a BBN. For the BBN evaluation, probabilities must 
be determined for causal factors, as well as the conditional influence the causal factors have on a basic 
event. Experience with the construction and evaluation of BBN has emphasized that a challenge of the 
BBN is uncertainty associated with the nodes and their conditional relationships. It is assumed that the 
BBN can be constructed such that all but the final conditional probabilities can be assigned the binary 
probability of “1” or “0.” This is completed by assuming that any software failure, whatsoever, is due to a 
fault. Software defects, requirements defects, installation errors, etc., can all be considered as “faults.” 
Therefore, the root nodes can represent all sources of a fault, while the remaining BBN simply combines 
the results into “a probability of faults existing in the system,” as shown in Figure 2. This construction 
effectively limits the uncertainty from conditional relationships to the final two nodes of the network. 
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Figure 2. Basic BBN format: root nodes are furthest to the left, while the end node is furthest to the right. 

The conditional relationship between the final two nodes requires more consideration. The 
conditional relationship between fault probability and failure probability must be assigned. Research by 
Chu et al. [50], Kang et al. [65], and Lee et al. [66] demonstrates a method for transforming the number of 
faults existing in a software after its SDLC into probability of failure on demand. In their work, software 
failure probability (SFP) is related to the number of faults in a software at the end of development by a 
fault size distribution (FSD) parameter. The FSD serves as a proportional relationship between SFP and 
the number of faults at the end of SDLC. This relationship is given in Eq. (1): 

𝑆𝐹𝑃 = 𝑁𝑓𝑖𝑛𝑎𝑙 𝑓𝑎𝑢𝑙𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 ∗ 𝐹𝑆𝐷 (1) 

Their method is completed in two parts. The first evaluates the SFP based on operational experience 
of similar software systems. In the second, a SDLC analysis method is used to determine the number of 
final fault numbers in a “generic” software that assumes or represents the same quality in verification, 
validation, and other SDLC activities as the sample set for SFP. Then using Eq. (1), the FSD can be 
found, which is then used for specific cases to evaluate the SFP. 

𝑆𝐹𝑃𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑁𝑓𝑖𝑛𝑎𝑙 𝑓𝑎𝑢𝑙𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 ∗ 𝐹𝑆𝐷 (2) 

Upon closer inspection, BAHAMAS is not far removed from the 𝑁𝑓𝑖𝑛𝑎𝑙 𝑓𝑎𝑢𝑙𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 because it relies 
on the “probability of faults” existing within a software. In fact, the “probability of faults” might be 
thought of as: 

𝑃𝑟(𝑓𝑎𝑢𝑙𝑡𝑠) =
𝑁𝑓𝑖𝑛𝑎𝑙 𝑓𝑎𝑢𝑙𝑡 𝑛𝑢𝑚𝑏𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑢𝑙𝑡𝑠 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒𝑑 
 (3) 

Via substitution we can create a similar equation to Eq. (1). 

𝑆𝐹𝑃 = 𝑃𝑟 (𝑓𝑎𝑢𝑙𝑡𝑠) ∗ 𝑛𝑒𝑤 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 (4) 

The application of these equations requires several things: (1) operational or testing data must be 
gathered to provide the generic SFP; (2) the BBN must be created for the generic software case and 
evaluated for the generic Pr (𝑓𝑎𝑢𝑙𝑡𝑠); (3) the 𝑛𝑒𝑤 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 can be determined; (4) the BBN can be 
assigned probabilities for the specific case and evaluated for the specific Pr (𝑓𝑎𝑢𝑙𝑡𝑠); and (5) the specific 
Pr (𝑓𝑎𝑢𝑙𝑡𝑠) and 𝑛𝑒𝑤 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 can be used to solve for the specific SFP. 
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2.2.3 Modeling of Common Cause Failures 

The definition of CCFs varies. But for our purposes, a CCF event is the occurrence of two or more 
failure events “simultaneously” due to a shared cause [1] [67] [68]. For a CCF to occur, there must be 
some link between the components shared event. Some researchers break CCFs into root causes and 
coupling factors [69], [70]. The root cause is the cause of the event while the coupling factor is the link or 
reason why the root cause resulted in a CCF event [71]. 

Root causes might include design requirements, manufacturing mistakes, a lack of set procedures, and 
environmental conditions. Coupling factors might include identical design, hardware, installation staff, 
procedures, environment, location, etc. When a root cause and coupling factor are known, they can be 
used for the explicit modeling of CCFs. However, the number and variations of root causes and coupling 
factors can quickly become unmanageable in PRA [71]. Implicit CCF modeling provides a way to 
simplify the modeling of CCFs and lead to more manageable analyses. According to [71], guesses for 
explicit models might be better than choosing to use an implicit model exclusively. And both implicit and 
explicit models can be used in the same PRA. If possible, at least some potential CCFs should be modeled 
explicitly [71]. But the rest may be modeled using implicit methods. The selected implicit methods 
depend on the assumptions made for the risk assessment mainly surrounding the multiplicity of CCFs to 
be modeled (m/n or all n components failing together). 

There are a number of implicit CCF modeling techniques. The most common is the beta factor 
method [71]. With the beta factor method, CCFs are modeled to result in the failure of all n/n 
components. There is no consideration for the multiplicity of CCFs. There are methods that deal with 
multiplicity (e.g., multiple Greek, multiple beta factor [71]), but they do not explicitly indicate which of 
the identical components may fail together. They only express a failure as a probability for resulting in 
some m/n components. For the initial application of this work, CCF analysis will neglect the multiplicity 
of common failures and rely on the commonly used beta factor method. 
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3. REDUNDANCY-GUIDED SYSTEM-THEORETIC HAZARD 
ANALYSIS 

Section 3.1 describes the details of the proposed approach for RESHA. Section 3.2 and Section 3.3, 
respectively, describe the demonstration on a representative digital RTS and ESFAS. 

3.1 Approach Description 

To deal with the complexity problem of redundancy and identify software CCFs effectively, the 
system-theoretic hazard analysis is proposed to integrate and reframe the STPA process in a redundancy-
guided way as a seven-step process, the key outcomes of which are an integrated FT, including software 
failures and hardware failures, identified CCFs, and minimal cut sets to discover the single points of 
failure (SPOFs) leading to the loss of function of the entire digital system. SPOF refers to a situation in 
which a single part of a system fails, and the entire system loses function as a result. The proposed 
RESHA approach is illustrated in Figure 3. The steps of the RESHA approach are briefly described 
below. 

 
Figure 3. Workflow of the proposed RESHA approach. 

Step 1: Create a detailed hardware representation of the digital system of interest. 

The purpose of Step 1 is to establish a system sketch to serve as a blueprint for the hazard analysis. 
This is done by gathering system design information, including wiring, piping and instrumentation 
diagrams, existing logic diagrams, etc. This information is then used to create a system sketch, the main 
goal being to map out the processors, sensors, controllers, components, interactions, and connections of 
the system. The point of this step is not to necessarily fit everything into one diagram, but to gain a 
sufficient understanding of the system in order to complete the hazard analysis; the level of detail 
provided in this step lays out the foundation for the work. 

In this step, detailed information on the structure and functions of the digital system of interest should 
be collected, gathered, and classified. Normally, a DI&C system has a three-level hierarchical architecture 
[43]: (1) divisions that process the signal path from sensor to actuator level (e.g., the four-division design 
in APR-1400 ESFAS), (2) units that perform a specific task by using several modules (e.g., an acquisition 
and processing unit or a voter unit), and (3) modules that realize a specific part of the function processing 
(e.g., input/output modules, processors). The representation should contain information on hardware 
structure and be created to a detailed level that captures sufficient design information affecting system 
function and reliability. In this work, most efforts on hazard identification and reliability modeling reach 
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to the level of modules, which is the smallest hardware component to implement a specific part of the 
entire function processing independently. In addition, based on the requirements and purposes of the risk 
analysis phase, practical assumptions and reasonable simplifications of the hardware representation 
should be stated and explained in this step. The representation figure should clearly display the 
information flow between different divisions, units, and modules. For the analysis on digital systems with 
redundancy designs, the complexity of redundancy should be illustrated in the hardware representation. It 
builds the basis for the construction of hardware FTs and redundancy-guided multilayer control structure. 

Several key points are considered for Step 1: 

• Step 1 emphasizes the boundary conditions and scope of the analysis. These should be clearly 
understood as they will be revisited in Step 2 and Step 3. 

• Though the RESHA has been developed to analyze digital systems, this system sketch should also 
include the hardware structural arrangement (i.e., the components of the system in addition to details 
collected for the digital structural arrangement). 

• The level of detail included in a hazard analysis can extend beyond module level failures to the 
components and sensors providing input to process modules. The level of detail to be included in the 
hazard analysis depends on the scope of the investigation. 

Step 2: Develop an FT of hardware failures for a top event of interest of the digital system. 

Based on the hardware representation created in Step 1, a FT is developed in this step to include 
hardware failures to the detailed level required for representing the loss of functions. For analysis of a 
digital system with redundancy designs, the structure of a hardware FT should follow the levels of 
redundancy from the division to the unit and to the module levels. This kind of redundancy-guided 
structure makes it convenient to add in a software failure identified in the next step. The probability 
quantification of each basic event is not required in this step and will be performed in the integrated 
reliability analysis. The main assumption for this step is that all software failures will be captured using 
STPA in Step 3. Therefore, only hardware failures will be included in FT, which is created using the two-
part process adapted from the U.S. National Aeronautics and Space Administration (NASA) Handbook 
[42]. 

Step 2A: Define the boundary of the analysis (revisited from Step 1). This includes selecting a top 
event and resolution for the analysis. Top events are based on the purpose of the system of interest (SOI). 
The failure of the SOI’s most significant function is a priority event to be analyzed by the FT—a top 
event. Step 3A may also be visited briefly to ensure the proper selection of top events. 

Step 2B: Construct the FT. Starting from the top event, construction proceeds by determining the 
“necessary and sufficient immediate events” contributing to failure of the top event [42]. This process is 
repeated down the tree by analyzing each subsequent event step-by-step, ending with an event that can be 
resolved no further (either by way of fact, or by the discretion of the analyst) [42]. This event is known as 
a basic event. The failure of each event depends on a logical combination (e.g., “and,” “or,” and “n/m” 
functions) of basic events, which should be built into the FT based on the system diagram from Step 1. 
The structure of the FT should capture the details of redundancy that will aid in the subsequent steps of 
the hazard analysis. In most cases, the highest level of redundancy will be associated with protecting the 
main function of the SOI. For instance, a system may have two or more divisions, independent and 
redundant in function, to ensure the reliability of that system. Redundancy also extends to the units and 
modules of digital systems, for which commonality becomes a possible source of CCF. The hardware 
CCFs should also be included in the FT. Software details will be added in Step 3 of the RESHA. 
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Step 3: Determine Unsafe Control Actions (UCAs) based on a redundancy-guided application of 
STPA. 

In this step, part of the STPA process is applied to identify the UCAs as potential software failures. 
First, based on the requirements and purposes specified in Step 1, key losses and system-level hazards are 
identified. In STPA, a loss impacts something of value to stakeholders or the public (e.g., a loss of human 
life or a human injury, property damage, environmental pollution, or any other loss that is unacceptable) 
[43]. A hazard is defined as, “a system state or state or setoff conditions that, together with a particular set 
of worst-case environmental conditions, will lead to a loss” [38]. The identification of hazards is tightly 
connected to the function and operating requirements of the SOI. 

Second, according to the redundancy information in the hardware FT, a redundancy-guided 
multilayer control structure is modeled. A control structure is defined as, “a system model composed of 
feedback control loops,” [38] which illustrates the interactions between controllers and a controlled 
process, including sensors and actuators. A generic control loop is shown in Figure 4. Generally, 
controllers provide control actions to conduct certain processes. A controller includes control algorithms 
representing a controller’s decision-making process while a process model represents the controller’s 
internal criteria used for its decision-making. The actions provided by a controller can be influenced by 
the controller’s process models, control algorithms, and feedbacks. 

 
Figure 4. A generic control structure in the STPA application. 

In a digital system, all information exchanges—including the decision-making process of the 
controllers, control and implementation of control actions, performance of controlled process, and 
feedbacks from controlled process—have a potential to fail the function of the digital system when it is 
needed or send spurious signals that are not needed. These systematic failures could be initiated by the 
UCAs as a result of an unrealistic process model, an inappropriate control algorithm, an incorrect 
feedback, or outside information. Therefore, the potential software failures can be understood and 
analyzed by identifying these UCAs. To deal with the complexity problem of redundancy and to identify 
software CCFs effectively, control structure is built in a redundancy-guided way. The redundancy-guided 
multilayer control structure zooms in on systematic information exchanges on each redundancy level 
because CCFs are tightly connected with redundancy designs. Each control structure layer is created with 
numbered control actions and feedback signals until a final, redundancy-guided, multilayer control 
structure is created for the complete system of interest, as shown in Figure 5. 
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Figure 5. Illustration of a multilayer control structure. 

Third, the UCAs are identified according to the multilayer control structure and specified hazards. A 
UCA is defined as, “a control action that, in a particular context and worst-case environment, will lead to 
a hazard” [38]. There are four types of UCAs in an STPA: 
• Control action is not provided when it is needed. 
• Control action is provided when it is not needed. 
• Control action is provided when it is needed, but too early, too late, or in a wrong order. 
• Control action lasts too long or stops too soon (only applicable to continuous control actions). 

Each UCA should take the following format for consistency [38]: 

𝑼𝑪𝑨 = [𝒔𝒐𝒖𝒓𝒄𝒆] + [𝑼𝑪𝑨 𝒕𝒚𝒑𝒆] + [𝑪𝒐𝒏𝒕𝒓𝒐𝒍 𝑨𝒄𝒕𝒊𝒐𝒏] + [𝑪𝒐𝒏𝒕𝒆𝒙𝒕]
+ [𝑳𝒊𝒏𝒌 𝒕𝒐 𝑺𝒚𝒔𝒕𝒆𝒎 𝑯𝒂𝒛𝒂𝒓𝒅𝒔] (5) 

The specification of the context for UCAs is important, usually words like “when,” “while,” or “during,” 
are used to define the context. The UCA context should represent an actual or true condition that would 
make the control action unsafe, not a controller process model that may or may not be true. 

Step 4: Construct an integrated FT by adding applicable UCAs as basic events. 

In this step, applicable UCAs are selected and added into the hardware FT as the software failures. 
For a specific top event in the FT, some UCAs may be inapplicable. For example, if the top event of 
hardware FT is “ESFAS fails to actuate ESF components,” Type 2 and 4 of UCAs are inapplicable since 
the control action of “sending actuation command” is needed, and not a continuous action. If the top event 
is “unexpected actuations by ESFAS,” only Type 2 is applicable. Considering the hardware FT and 
redundancy-guided multilayer control structure are tightly connected and consistent with each other, these 
applicable UCAs (software failures) can be incorporated into the hardware FT in parallel with the 
respective hardware failures. Figure 6 provides an example of this structure. 
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Figure 6. Example FT format for incorporating software- and hardware-based failures. 

Step 5: Identify software CCFs from duplicate UCAs for redundant designs within the integrated 
FT. 

After integrating UCAs into the hardware FT, the same types of UCAs, located in the same 
redundancy level, can be separated into independent failures and CCFs. Additionally, software CCFs can 
be classified into different types depending on the redundancy levels: (1) software CCFs occurring in all 
divisions; (2) software CCFs occurring in all of the units in one division; and (3) software occurring in all 
of the modules in one unit. The classification of software CCFs depends on the software diversity of the 
digital system. As one of the guidelines for the DiD analysis, software diversity should be considered. 
Software diversity is defined as, “the use of different programs designed and implemented by different 
development groups with different key personnel to accomplish the same safety goals; for example, using 
two separately designed programs to compute when a reactor should be tripped” [10]. Therefore, before 
the identification of software CCFs, the level of software diversity should be one of the key assumptions 
to guide the classification of software CCFs. 

Step 6: Determine the minimal cut sets to discover the potential SPOFs. 

As the main outcome of the systematic-theoretic hazard analysis, the minimal cut sets of the 
integrated FT should be calculated and evaluated to determine how many potential SPOFs have been 
added by considering the software failures. If the digital system has a low level of software diversity, the 
software CCF types occurring in all divisions could lead directly to the top event (e.g., the loss of function 
of the entire digital system), regardless of the contributions from other safety designs. As a part of risk 
analysis, hazard analysis directly provides evidence to evaluate the question, “Does the individual digital 
failure lead to the loss of function of the digital system?” If the individual digital failure is one of the 
SPOFs, a redesign request will be made for system designers and engineers based on the risk evaluation 
results. 

Step 7: Identify and provide guidance to eliminate latent faults or triggers of CCFs. 

A dormant fault does not affect safety before a triggering condition or event activates it to a failure. 
Triggers include plant transients, initiating events, external conditions, interactions among systems, 
human interactions, and internal states. Two main software faults identified by the NRC and EPRI were 
inconsistent with the system requirements specification [72], as well as the faults introduced during the 
detailed logic-design phases of software development due to interactions between some process logic 
inhibits and the test logic not being recognized by the designers or verifiers [73]. The NRC proposed two 
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design attributes to eliminate CCFs: diversity and 100% testability [74]. Diversity is applied to mitigate 
the potential for common faults and ensure safety using different or dissimilar means in technology, 
function, and implementation. With respect to 100% testability, the NRC stated, “If a portion or 
component of a system can be fully tested, then it can be considered not to have a potential for software-
based CCF. Fully tested or 100% testing means that every possible combination of inputs and every 
possible sequence of device states are tested, and that all outputs are verified for every case” [74]. 
However, both design strategies have limitations. Diversity normally leads to higher costs, while potential 
CCF vulnerabilities will be more complicated and difficult to identify as system complexity increases. 
Applying 100% testing may reveal the presence of a fault, but not its absence, which means 100% testing 
does not fully eliminate software CCF concerns. 

Therefore, this step focuses on identifying and providing guidance to eliminate the potential latent 
faults or triggers of CCFs and other independent failures based on the redundancy-guided STPA 
application in previous steps. The faults and triggers for hardware CCFs or independent failures can be 
identified in a straightforward manner. For software CCFs and independent failures, once the respective 
UCAs are obtained, their causal factors or latent faults can be placed into one of two categories: 
(1) unsafe controller behaviors (i.e., operator errors, power failure of digital controllers, or a pressurizer 
setpoint that is not correctly programmed in BPs) or (2) inadequate feedback or outside information (i.e., 
wrong or absent signals sent from the pressurizer to ESFAS). The triggers for software failures are 
defined as the contexts of the identified UCAs. The identification of causal factors should be interpreted 
by expert teams in system and software engineering, human reliability analyses, etc., and would be 
helpful to provide guidance for risk reduction and redesign of the digital systems. 

The categories serve as a starting point for analyzing the results from previous steps. However, the 
impact of the results of Step 7 will depend largely on the knowledge and skill of the analysis team for 
determining the details of the causal factors. As each causal factor is identified, efforts can be made to 
evaluate or mitigate them by applying D3 or redesigning the system. The initial efforts in identifying 
causal factors may result in a resource bank of typical causal factors that can be used to expedite future 
analyses, thus reducing the cost of the RESHA over time. 

3.2 Demonstration on Digital Reactor Trip System 

This Section describes the hazard analysis of a four-division digital RTS, which has a similar 
structure to state-of-the-art digital systems in existing NPPs [75]. The analysis follows the seven-step 
process outlined in the preceding Section. The following is a list of assumptions built into the analysis: 

• All RTS components are assumed to be digital, and are therefore susceptible to software failures. The 
reactor trip breakers (RTBs) are an exception; they are assumed to be analog, having only hardware 
failures. 

• The functions of an RTB are controlled by two mechanisms: an undervoltage (UV) trip mechanism 
and a shunt (ST) trip mechanism; the reactor protection system (RPS) activates the UV while the 
diverse protection system (DPS) activates the ST. The main control room (MCR) and the reserve 
shutdown room (RSR) are assumed to have an alternate method that causes the RTBs to open. 

• The MCR and the RSR only need to make a single control action to trip the reactor. They do not trip 
individual divisions. 

• The controller in the MCR/RSR is an operator. The UCAs associated with the human controllers are 
added to the FT in the same manner as the UCAs associated with the software failures of digital 
controllers. 

• The number of CCFs in the FT is limited to common failures within a single division, as well as 
CCFs across all divisions. No CCFs are provided for combinations of divisions. Limiting the 
combinations of CCFs, in the manner specified, simplified the model without removing the most 
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significant SPOFs caused by CCFs. Assuming failures had to occur across all divisions ensured that 
the analysis would capture a SPOF of the RPS due to CCFs. Including all other interdivisional CCF 
combinations (e.g., A-B, ABC, CBD, etc.) would provide an increase in cut sets, but is beyond the 
scope of this case study. It is assumed acceptable to ignore the SPOFs due to CCFs within sub-
divisions or modules. 

• RTS component and software diversity is ignored. All components that have identical functions are 
assumed to be identical components (i.e., there is no diversity provided in the system). Limiting 
diversity simplifies the identification of CCFs and helps to direct the use of safety features, such as 
diversity, to mitigate CCFs. It should be noted that if diversity is known, it can be included. However, 
the analyst should refer to NUREG/CR-6303, NUREG/CR-7007, NUREG-KM-0009, and 
NUREG/CR-5485, as necessary, to make informed decisions regarding the adequacy of diversity and 
where to include CCFs in the FT [9] [10] [14] [19]. 

• Each control action (e.g., trip signal) originates from an independent action within the controller 
rather than a single control action that is electrically or physically split to multiple destinations. This 
was done to follow the STPA process specifically, which assumes nothing regarding the physical 
connections between controllers. This provides the most unbiased controller requirements for the 
designers to work with. Decisions regarding how to distribute or duplicate control actions can be a 
point of defense in a system design. STPA allows the designer to make decisions how best to defend 
the system after the fact. The trip signal from the bistable processors (BPs) to individual logic 
processors (LPs) is the one notable exception. These connections, not shown in the control structure, 
are assumed to be physically split and distributed to each LP. This simplified the analysis from 512 
potential UCAs associated with the BPs to 128. 

• No bypassing function, maintenance work, or corrective actions are considered in the analysis. 

• The hazard analysis assumes the RTS is monitoring an NPP operating normally at 100% power, with 
the control rods completely withdrawn and full power to the turbines prior to the anticipated 
operational occurrence (AOO). 

• Individual sensor failures are grouped into one single basic event per division (e.g., division A sensor 
failure). 

Step 1: Create a detailed representation of the SOI. 

The RTS is responsible for controlling the automatic insertion of reactor control rods into the core to 
bring the nuclear reaction to a shutdown state. For the sake of this hazard analysis, the RTS contains four 
main controllers capable of causing reactor shutdown: (1) the MCR; (2) the RSR; (3) the DPS; and (4) the 
RPS. The MCR and the RSR are manual components, while the DPS and RPS are automatic. The 
automatic control elements of the RTS maintain four divisional redundancy, while the manual 
components (assumed for this analysis) have no divisional redundancy. The case study is simplified by 
narrowing the analysis to the module level detail of the RPS and divisional or higher resolution for the 
remaining three parts of the RTS, as shown in Figure 7. 



 

 17 

 
Figure 7. Detailed representation of the RTS. 

Step 2: Develop a FT consisting of the hardware failures for a chosen function of the SOI. 

Step 2A: The most significant function of the RTS is to trip or scram the reactor by rapidly inserting 
the control rods. The top event selected for the FT is therefore chosen to be that the RTS fails to trip the 
reactor during an AOO, which may be any event that can be anticipated for the reactor requiring 
shutdown via trip or scram. 

Step 2B: The FT is assembled based only on the hardware failures of the RTS components, according 
to the process described previously. The FT should also include hardware CCF basic events for every 
common or redundant hardware component of the RTS. Figure 8 shows a portion of the hardware-based 
FT. Note that the structure also includes the logic indicated by the system sketch. 
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Figure 8. Portion of RTS FT showing hardware-type failures only. The U.S. NRC PRA software 
SAPHIRE was used to construct the FT [76]. 

Step 3: Determine UCAs based on a redundancy-guided application of STPA. 

Step 3A: In order to gain a clearer understanding of the system, tables of losses and hazardous states 
that can lead to those losses are created. The RTS is designed to prevent these hazardous states from 
occurring and ultimately prevent the losses in the table. The hazardous states demonstrate system-level 
hazards and provide context for UCAs to be identified later. Table 1 and Table 2 present the losses and 
system-level hazards, respectively, for the RTS. 

Table 1. Major losses to be prevented. 
L1 Human injury or loss of life 
L2 Environmental contamination 
L3 Equipment damage 
L4 Power generation 
L5 Public perception 

 
Table 2. Hazards that may lead to losses. 

H1 Reactor temperature too high (L1, L2, L3, L4, L5) 
H2 Equipment beyond limits (L1, L2, L3, L4, L5) 
H3 Release of radioactive materials (L1, L2, L5) 
H4 Reactor shutdown (L4, L5) 

 
Step 3B: A redundancy-guided multilayer control structure is created. Each layer of redundancy in the 

RTS is used to create a control structure diagram. The first layer of the RTS contains the redundancy for 
the trip function across four diverse controlling subsystems: MCR, RSR, DPS, and RPS. The second layer 
of redundancy is found in the multiple divisions of the DPS and the RPS. The next layers of the control 
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structure come from the units and modules found in the RPS. The DPS sub-divisional redundancy is 
ignored to simplify the case study. Figure 9 shows the multilayer control structure for division A. The 
remaining divisions for the case study are identical in format. Each structure indicates control actions and 
feedback in the system. The unknown control actions (i.e., CAx in Figure 9) are populated as they are 
discovered by layer. 

 
Figure 9. Redundancy-guided multilayer control structure. 

Step 3C: The control actions found in each control structure are compiled in a table and analyzed 
according to the four UCA categories. Each UCA follows the format provided previously. Table 3 shows 
an example of the UCA table. It is assumed that Case D is not applicable, as a trip command applied too 
long should not matter during an AOO. Also, it is assumed that a trip command cannot be stopped too 
soon, as it is not a continuous controlling action. 
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Table 3. Examples of UCAs. 
Control Action 
(CA) 

UCA-a: CA is 
needed, but not 
given 

UCA-b: CA is 
given, but not 
needed 

UCA-c: CA is given 
too early, too late, or 
in the wrong order 

UCA-d: CA is 
applied too long or 
stopped too soon 

CA18: DOM-1 
demands SP1 to 
trip the reactor 

UCA18a: DOM-1 
does not provide trip 
command to SP1 
during AOO [H1, 
H2, H3]. 

UCA18b: DOM-1 
provides trip 
command to SP1 
when there is NO 
AOO [H4]. 

UCA18c: DOM-1 
provides trip command 
to SP1 after AOO has 
existed for some time 
[H1, H2, H3]. 

UCA18d: 
Not applicable.  

CA20: 
DOM-3 
demands SP1 to 
trip the reactor 

UCA20a: DOM-3 
does not provide trip 
command to SP1 
during AOO [H1, 
H2, H3]. 

UCA20b: DOM-3 
provides trip 
command to SP1 
when there is NO 
AOO [H4]. 

UCA20c: DOM-3 
provides trip command 
to SP1 after AOO has 
existed for some time 
[H1, H2, H3]. 

UCA20d: 
Not applicable. 

Note: AOO: Anticipated Operational Occurrence; DOM: Digital Output Module; SP: Selective Processor. 
 
Step 4: Construct an integrated FT by adding applicable UCAs as basic events. 

The top event chosen for this case study is that the RTS fails to trip the reactor during an AOO. Based 
on this assumption, the appropriate UCAs are chosen (types: UCA-a and UCA-b) to populate the FT with 
software failures. Figure 10 shows the software failures added to the FT and the update from Figure 8. 

Step 5: Identify potential software CCFs based on duplicate or redundant UCAs within the FT. 

Within the FT, there are redundant or duplicate control actions that can be used to add additional 
software CCF basic events. The FT in Figure 10 shows the basic events of UCA Types A and C, as these 
were deemed appropriate to add to the FT in the previous step. These UCAs have commonality across 
redundant divisions or units. For example, Division A Selective Processor 1 from Figure 10 is the same 
component as Division A Selective Processor 2 (unit redundancy) and the same component as Division 
B,C, and D Selective Processors (divisional redundancy). Each of these common components can be seen 
in Figure 7. Assuming all of these components are from same manufacturer, with identical software and 
functionality, they have the potential for a CCF. In the FT, under each category for software failures, the 
newly identified CCF events are added. CCFs in this model are assumed to occur within a single division 
and across all divisions. There are no subsets of CCFs between divisions (e.g., A-B, B-C, C-D, etc.) 
Figure 10 shows the software-based CCFs that have been added to the FT. 
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Figure 10. Portion of FT showing the UV trip failure of RTB A1 with software failures and CCFs added. 

Step 6 Solve the FT for the minimal cut sets to determine potential SPOFs in the design. 

The minimal cut sets were found using the SAPHIRE software program (e.g., the same program used 
to create the FT). To evaluate and provide a list of cut sets without having failure data, the cut sets were 
listed and truncated based on order rather than by probability. For this case study, the number of basic 
events contributing to the failure of the top event is limited to a truncation of six or fewer basic events. 
Table 4 contains results for the FT for varying conditions: (1) complete RTS; (2) hardware only failures; 
(3) automatic trip functions only; and (4) RPS only. 

Table 4. Cut set results. 
Truncation (order) Full RTS model RTS hardware only Automatic trip only RPS only 
None N/A 15234 N/A N/A 
6 1,184,652 - 4,583,568 N/A 
5 85788 - 1,038,956 328,355 
4 468 - 13,1628 54,899 
3 0 - 9,532 15,283 
2 0 - 52 1,203 
1 0 - 0 13 

 
Based on the information shown in Table 4, only the final column has any SPOFs. This result was 

obtained by ignoring the diversity usually provided by the DPS, RSR, and MCR. Each of these could 
have also been evaluated singularly for SPOFs, but the case study was simplified purposefully. Results 
for the RPS are given in Table 5. A total of 13 SPOFs exist—five that are hardware-based and eight that 
are software-based. All of them are due to CCFs (see footnote 5 in Section 3 regarding CCFs and SPOFs). 
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Table 5. First-order cut sets or SPOFs for the RPS system, UV trip only. 
Number Cut set Description 
1 SP-HD-CCF Selective processor hardware CCF. 
2 LC-DOM-HD-CCF Logic cabinet digital output module hardware CCF. 
3 RTB-UV-HD-CCF Reactor trip breaker undervoltage hardware CCF. 
4 LC-BP-HD-CCF Logic bistable processor hardware CCF. 
5 LC-LP-HD-CCF Logic cabinet logic processor hardware CCF. 
6 LC-LP-SF-CCF-TA Logic cabinet logic processor software CCF Type A. 
7 LC-LP-SF-CCF-TC Logic cabinet logic processor software CCF Type C. 
8 LC-DOM-SF-CCF-TA Logic cabinet digital output module software CCF Type A. 
9 LC-DOM-SF-CCF-TC Logic cabinet digital output module software CCF Type C. 
10 SP-SF-CCF-TA Selective processor software CCF Type A. 
11 SP-SF-CCF-TC Selective processor software CCF Type C. 
12 LC-BP-SF-CCF-TA Logic cabinet bistable processor software CCF Type A. 
13 LC-BP-SF-CCF-TC Logic cabinet bistable processor software CCF Type C. 

 
Step 7: Identify and provide guidance to eliminate triggers of critical failures in the design, including 
CCFs and SPOFs. 

The focus of this step is the CCFs and SPOFs of the system. However, these techniques can be 
applied to any event of interest found in the cut set lists. The idea is to provide possible sources for their 
failure. The STPA Handbook indicates that the causes of UCAs can be grouped into two categories: 
(1) unsafe controller behaviors; and (2) inadequate feedback and/or other inputs [38]. Hardware-based 
failures are reasonably understood due largely because of industry experience [77]. Identifying causal 
factors for these failures is therefore based on historical failure rate data. For software-based failures, the 
analysis can be more challenging and requires the researcher to consider the possible causes of unsafe 
controller behavior or inadequate feedback. The following is an example of these two categories applied 
to one of the software CCFs found in Table 5. Specifically, the chosen basic event is LC-BP-SF-CCF-TC 
(i.e., Logic Cabinet Bistable Processor CCF of Software Type C) corresponding to the failure of all the 
BPs to provide a trip command to each of the logic cabinets of each division too late during an AOO: 

• Causal factors due to category 1: unsafe controller behavior: 

Scenario: The nuclear reactor experiences an event meriting a reactor trip/scram. During this time, the 
BP should recognize the status of the plant and demand the reactor to trip. Processing delays within 
the BP result in the CA occurring too late. Software engineers should provide guidance as to the 
causes of processing delays because shared software can lead to a potential CCF. 

• Causal factor due to category 2: inadequate feedback: 

Scenario: A BP may experience failure due to a lack of adequate feedback from the plant leading to 
the BP having an incorrect view of the status of the plant. For example, the BP relies on steam 
generator pressure information. This signal for steam generator pressure may be corrupt or incorrect, 
resulting in the BP failing to act appropriately. The BP may “think” the system is at an appropriate 
pressure and do nothing for some time before the pressure reaches a value corresponding to what the 
BP “thinks” is necessary to trip the reactor. Based on the assumption that all BPs have the same 
software, this would result in a CCF of the system. Of course, the CCF originates in faulty sensors, 
but also extends to the CA of the BPs and the subsequent UCA. 

• Guidance for these two scenarios: 

Scenario: A BP may experience failure due to a lack of adequate feedback from the plant leading to 
the BP having an incorrect view of the status of the plant. For example, the BP relies on steam 
generator pressure information. This signal for steam generator pressure may be corrupt or incorrect, 
resulting in the BP failing to act appropriately. The BP may “think” the system is at an appropriate 
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pressure and do nothing for some time before the pressure reaches a value corresponding to what the 
BP “thinks” is necessary to trip the reactor. Based on the assumption that all BPs have the same 
software, this would result in a CCF of the system. Of course, the CCF originates in faulty sensors, 
but also extends to the CA of the BPs and the subsequent UCA. 

For the second scenario, the proper use of D3 will help eliminate the common failure potential of 
shared software and hardware. In addition, the use of proper procedural testing and maintenance can 
ensure the sensors will provide correct information to the BP. Diversity in sensor measurements can also 
help to ensure safety by providing a backup source of feedback to the BP. Both processes are already 
commonly employed by the NRC and industry. See NUREG/CR-6303, NUREG/CR-7007, NUREG-KM-
0009 and NUREG/CR-5485 to make informed decisions regarding the adequacy of diversity and where to 
include CCFs in the FT [9] [10] [14] [19]. 

3.3 Demonstration on the Digital Engineered Safety Features 
Actuation System 

In this Section, the proposed RESHA approach was applied in the hazard analysis of a four-division 
digital ESFAS, which was modeled based on the digital ESFAS design for an advanced pressurized water 
reactor [75]. 

Step 1: Create a detailed hardware representation of the digital system of interest. 

This four-division digital ESFAS includes the portion of the plant protection system (PPS) that 
activates the engineered safety features and their component control system (CCS). The safety 
instrumentation and controls of the ESF systems consist of the electrical and mechanical devices and 
circuitry from sensors to actuation-device input terminals, which are involved in generating signals that 
actuate the required ESF systems. The ESFAS portion of the PPS includes the following functions: 
(1) bistable logic; (2) local coincidence logic (LCL); (3) ESFAS initiation; and (4) testing. After receiving 
ESFAS initiation signals from the PPS, MCR operator console, or RSR shutdown console, ESF-CCS 
generates ESF actuation signals to ESF component interface modules (CIMs), which transmit signals to 
the final actuated device. ESF-CIMs also receive actuation signals from the DPS. 

In each division, the ESFAS portion of PPS consists of four divisions. Each PPS division is located in 
an I&C equipment room and contains both an input and an output module, two BPs, two LCL function 
racks, and other hardware for interfacing with the other PPS divisions, as shown in Figure 11. The 
redundant BPs could generate ESF actuation signals to the LCL processors in the four redundant divisions 
if the process values exceed their respective setpoints. Each LCL rack contains two LPs. Initiation signals 
are provided to them via the ESF-CCS, which consists of four divisions of group-controller (GC) and 
loop-controller (LC) cabinets. Each GC supports component control and provides ESF actuation signals 
to the LC. Each LC has component control logic and a multiplexing function. Each ESF-CCS GC 
performs selective 2-out-of-4 coincidence logic, the output of the selective 2-out-of-4 logic is transmitted 
to the component control logic in the LC. The logic produces digital output signals to control the 
component through the CIM, which performs signal prioritization [29]. 
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Figure 11. ESFAS functional logic. 

Step 2: Develop a FT of hardware failures for a top event of interest of the digital system. 

The top event for the FT was set as “ESFAS fails to actuate ESF systems.” For different ETs, 
different relevant top events can be identified for ESFAS; for example, the top event of ESFAS could also 
be “ESFAS sends spurious signals to actuate ESF systems” when the actuation command is not actually 
needed. For hardware failures of ESFAS components, units, and modules, a hardware-based FT can be 
built. In this work, the PRA tool SAPHIRE [76] is used to construct the FT. Part of the hardware-based 
FT is shown in Figure 12. The top event for this portion of the FT is “LP-A1 fails to send actuation 
signals to GC-A1,” where two conditions should be considered if software failures are not included: either 
an LP-A1 hardware failure or LP-A1 does not receive any signals from BPs. 

For LP-A1 hardware failure, four basic events are included: (a) LP-A1 hardware random failure; (b) a 
hardware CCF of all LPs in Rack II of Division A; (c) hardware CCF of all LPs in Division A; and 
(d) hardware CCF of all LPs in all divisions. It is assumed that all basic units or modules that have 
identical function are identical. Both hardware and software diversity are ignored to simplify the process 
for CCF identification. It should be noted that diversity of the target digital safety system should be 
considered for a plant-specific hazard analysis. Therefore, three different CCFs are identified here 
according to the different levels of redundancy: division, unit, and module. In the following steps, the 
identification of software CCFs are also guided by the category of redundancy levels. 
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Figure 12. Portion of ESFAS FT showing hardware-type failures only (LP-A1 fails to send actuation 
signals to GC-A1). The values of failure probabilities are not assigned in this work. 

Step 3: Determine UCAs based on a redundancy-guided application of STPA. 

The first task is to build tables for losses that will be prevented and hazards that may lead to those 
losses. The major losses could be identified as human injury or loss of life, environmental contamination, 
equipment damage, and damage to public perception, while hazards could be core damage, release of 
radioactive materials, etc. Next, a redundancy-guided multilayer control structure is created for ESFAS, 
based on its functional logic and hardware structure, as shown in Figure 13. Figure 13 illustrates the 
different levels of redundancy in a digital ESFAS, shown previously in Figure 11. The top-level layer of 
redundancy is the four independent divisions to actuate ESF components (i.e., the division-level 
redundancy). The functioning of each ESF component is affected by a specific division. Signals from 
plant sensors are sent to all divisions to compare with the engineered set points. In each division, signals 
are received and sent by several independent LCL racks, where decisions are made as to whether to 
actuate ESF components. This is the second layer of redundancy: unit-level redundancy. Then, in each 
LCL rack, actuation signals are transmitted in redundant LPs, which is considered to be the third level of 
redundancy: the module level redundancy. 
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Figure 13. Redundancy-guided multilayer control structure for a digital ESFAS. 

Based on the information contained in the multilayer control structure for ESFAS, there are 82 total 
CAs identified: one CA from MCR, one CA from RSR, four CAs from DPS, and four groups of 19 CAs, 
one from each ESFAS division—A, B, C, and D. Based on these CAs and the categories of UCAs 
described in the STPA Handbook, different UCAs can be defined. To deal with the complexity problem 
of redundancy and identify software CCFs effectively, the system-theoretic hazard analysis is proposed to 
integrate and reframe STPA process in a redundancy-guided way as a seven-step process, the key 
outcomes of which are an integrated FT, including software failures and hardware failures, identified 
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CCFs, and the minimal cut sets to discover the SPOFs leading to the loss of function of the entire digital 
system. SPOF refers to a situation in which a single part of a system fails, and the entire system loses 
function as a result. The proposed RESHA approach is illustrated in Figure 15. The steps of the RESHA 
approach are briefly described below. To deal with the complexity problem of redundancy and identify 
software CCFs effectively, the system-theoretic hazard analysis is proposed to integrate and reframe the 
STPA process in a redundancy-guided way as a seven-step process, the key outcomes of which are an 
integrated FT, including software failures and hardware failures, identified CCFs, and the minimal cut 
sets to discover the SPOFs leading to the loss of function of the entire digital system. SPOF refers to a 
situation in which a single part of a system fails, and the entire system loses function as a result. The 
proposed RESHA approach is illustrated in Figure 15. The steps of the RESHA approach are briefly 
described below. Table 6 lists the UCAs identified for LP-A1 software failures. 

Table 6. UCAs identified for LP-A1 software failures. 
Control Action 
(CA) 

UCA-a: CA is 
needed, but not 
given 

UCA-b: CA is 
given, but not 
needed 

UCA-c: CA is given in 
a wrong time or in the 
wrong order 

UCA-d: CA is given 
too long or stopped 
too soon 

CA-15: LCL-
Rack-A2-LP-A1 
provides an 
actuation signal 
to GC-A1 

UCA-15-a: LCL-
Rack-A2-LP-A1 
fails to provide an 
actuation signal to 
GC-A1 when it is 
needed 

UCA-15-b: LCL-
Rack-A2-LP-A1 
provides an 
actuation signal to 
GC-A1, but it is 
not needed 

UCA-15-c: LCL-Rack-
A2-LP-A1 provides an 
actuation signal to GC-
A1, but too late 

UCA-15-d: LCL-
Rack-A2-LP-A1 
provides an 
actuation signal to 
GC-A1, but stops 
too soon 

 
Step 4: Construct an integrated FT by adding applicable UCAs as basic events. 

In this step, applicable UCAs are selected and added into the hardware FT as software failures. For a 
specific top event in the FT, some UCAs may be inapplicable. Considering the top event for the portion 
of FT in Figure 12 is “LP-A1 fails to send actuation signals to GC-A1,” UCA-15-b and UCA-15-d are not 
applicable because sending an actuation command is required and is not a continuous action. Only UCA-a 
and UCA-c were considered in this case. 

Step 5: Identify software CCFs from duplicate UCAs for redundant designs within the integrated 
FT. 

After integrating UCAs into the hardware FT, the same types of UCAs located in the same 
redundancy level can be separated into independent failures and CCFs. According to the assumption that 
all basic units or modules that have identical function are identical, and software diversity is ignored to 
simplify the process for CCF identification, three different software CCFs, based on UCA-15-a or UCA-
15-c, are classified depending on the redundancy levels. UCA-15-a provides an example: (1) all LPs in 
Rack II of Division A fail to provide an actuation command when it is needed; (2) all LPs in Division A 
fail to provide an actuation command when it is needed; and (3) all LPs in all divisions fail to provide an 
actuation command when it is needed, as shown in Figure 14. 
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Figure 14. Integrated FT for “LP-A1 fails to send actuation signals to GC-A1,” with relevant software 
failures added. 

Step 6: Determine the minimal cut sets to discover the potential SPOFs. 

SAPHIRE was used to calculate the cut sets of the integrated FT and to determine the potential 
SPOFs that might be added by considering the software failures. The cut sets are truncated based on 
order, rather than by probability, as listed in Table 7. The values of failure probabilities are not assigned 
in this work. For the fully integrated ESFAS FT model, there is only one first-order cut set that leads to 
the top event, which is “CIM hardware CCF.” CIMs only receive hardwired signals from ESF-CCS and 
transmit signals to the final actuated devices. This basic event is also the only one first-order cut set for 
the FT model with hardware failures only and for the FT model without MCR/RSR operations. The latter 
is considered as a model for automatic actuation only. For the ESFAS FT model without diverse actuation 
systems (i.e., DPS and MCR/RSR), there are 13 first-order cut sets identified, as shown in Table 8. Four 
of these basic events are hardware CCFs, while others are software CCFs identified using redundancy-
guided STPA. It should be noted that both hardware and software diversity are ignored to simplify the 
process for CCF identification in this work. Results should be different for plant-specific analysis once 
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LP-UCA-A-CCF

1.00E+00

SW-CCF: All LCL processors in all divisions 

fail to provide actuation command when it's 

needed
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diverse designs are considered. Compared to other cut sets, these identified ones could be potential key 
hazards that fail the whole digital ESFAS system if other diverse actuation systems are not in good 
working condition. 

Table 7. Cut set calculations for different ESFAS models. 
Truncation 

(Order) 
Cut Set # 

Full FT FT with 
hardware only 

FT w/o MCR or RSR 
(Automatic control) 

FT w/o DPS, MCR 
or RSR 

5 50714 570 127236 1096601 
4 182 6 417 39834 
3 19 3 91 139 
2 19 3 37 31 
1 1 1 1 13 

 
Table 8. First-order cut set for the ESFAS FT model without diverse actuation systems (i.e., DPS and 
MCR/RSR). 

# Cut set / Basic event Description 
1 LC-BP-UCA-A-CCF All BPs in logic cabinets fail to send actuation signals to LPs 
2 LC-BP-UCA-C-CCF All BPs in logic cabinets send actuation signals to LPs, but too late 
3 LC-BP-HW-CCF BP hardware fails in all divisions 
4 LP-UCA-A-CCF All LPs in logic cabinets fail to send actuation signals to ESF-CCS 
5 LP-UCA-C-CCF All LPs in logic cabinets send actuation signals to ESF-CCS, but 

too late 
6 LP-HW-CCF LP hardware fails in all divisions 
7 ESF-CCS-GC-UCA-A-CCF All GC processors in ESF-CCS fail to send actuation signals to 

ESF-CCS LC processors 
8 ESF-CCS-GC-UCA-C-CCF All GC processors in ESF-CCS send actuation signals to ESF-

CCS LC processors, but too late 
9 ESF-CCS-GC-HW-CCF GC processor hardware fails in all ESF-CCS divisions 
10 ESF-CCS-LC-UCA-A-CCF All LC processors in ESF-CCS fail to send actuation signals to 

CIMs 
11 ESF-CCS-LC-UCA-C-CCF All LC processors in ESF-CCS send actuation signals to CIMs, 

but too late 
12 ESF-CCS-LC-HW-CCF LC processors hardware fails in all ESF-CCS divisions 
13 CIM-HW-CCF CIM hardware fails in all divisions 

 
Step 7: Identify and provide guidance to eliminate latent faults or triggers of CCFs. 

This step focuses on providing guidance to eliminate potential triggering conditions or events that 
activate dormant faults to the CCFs that were identified in previous steps. As mentioned in Section 4, for 
software CCFs or independent failures, all causal factors can be identified in two categories: (1) unsafe 
controller behaviors; and (2) inadequate feedback or outside information. The triggers of software failures 
are defined as the contexts of the identified UCAs. The step takes the CCF of UCA-15-a (#4. LP-UCA-A-
CCF in Table 8) as an example to illustrate how to determine these causal factors. The identification of 
causal factors should cooperate with the expert teams in system and software engineering, HRA, etc. 
According to the contexts of the UCAs, different sub-causal factors can be defined for the two categories 
by using Bayesian networks. Figure 15 displays a simple Bayesian network; more details should be added 
via collaborations with different expert teams. In this way, reliability analysis can be performed based on 
these Bayesian networks and reliability models for quantifying the probabilities of identified CCFs in 
future work. 
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Figure 15. A simple Bayesian network for the identification of causal factors of a CCF. 
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4. INTEGRATED RELIABILITY ANALYSIS 

This Section aims to propose a generic method for quantifying the probabilities of software failure 
that are defined as UCAs in Section 3. When applying RADIC for the specific plants with DI&C systems, 
relevant hardware and software information can be obtained for the plant-specific reliability analysis. This 
Section also demonstrates the proposed reliability analysis method based on a digital RTS design as 
described in Section 3. 

4.1 Desirable Attributes for Quantitative Software Reliability 
Methods 

In this Section, desirable attributes are discussed, as well as some common limitations found in the 
quantitative software reliability methods (QSRMs) described in the literature. A review of past works has 
provided some of the desirable QSRM attributes, which, when missing, can be a limitation. A QSRM 
should: 
• have a clear method description 
• have reasonable assumptions 
• consider operational conditions 
• consider the quality of lifecycle activities 
• incorporate of testing and experience 
• account for uncertainty 
• be verified and validated 
• be capable of demonstrating systems with high reliability 
• consider CCFs 
• not be based solely on previous experience 
• account for dynamic interactions between: (a) the digital system and controlled processes; and (b) the 

components of the digital system itself. 

Despite there being no method capable of satisfying all desirable attributes [5] [59], the list can be 
used to select the best methods for specific applications. Case-specific application of methods may help to 
minimize limitations and increase analysis coverage. 

Specifically related to our previous work using RESHA is the need to quantify failures associated 
with subsections or modules of a software. Contrary to our need, nearly all “QSRMs consider the 
software system as a whole, and not as separate modules, or broken down by failure modes.” Though 
some may be able to be applied to subsystems, this is not typically indicated. Consequently, finding an 
application capable of working with the results from RESHA is the primary challenge for our work. 

4.2 Approach Description 

The BAHAMAS workflow is discussed in this Section, where each of the main methods mentioned in 
the approach are incorporated for the reliability analysis of a software system. As discussed in Section 1, 
the risk assessment of digital systems has been divided into three phases. Phase 2 provides quantification 
for the results found in Phase 1. Although it is the intention in Phase 2 for BAHAMAS to be flexible, 
much of its formulation is based on the results of a RESHA-based Phase 1 hazard analysis. Consequently, 
the subsequent approach to Phase 2 is tailored best to hazards identified by the RESHA. BAHAMAS 
involves six main steps, as shown in Figure 16. 
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Figure 16. BAHAMAS workflow. 

Step 1: Identify a software failure of interest. 

The first step of BAHAMAS is to select an event needing to be quantified from a qualitative study. 
This step assumes that some previous hazard identification work has been completed. The event of 
interest should include details of the controller, CA, and context. The term controller can be thought of as 
a digital system or sub-part or module of a digital system (e.g., essentially anything required to perform 
some action). RESHA output falls into four main categories based on STPA principles: (1) action not 
provided; (2) action provided and not needed; (3) action provided too early, too late, or in the wrong 
order; and (4) actions provided for too long or stopped too early. These outputs form the basic sub-
categories of failure to be quantified by BAHAMAS. The purpose of Step 1 is to select a basic event of 
interest and ensure it is adequately detailed for further analysis. 

Step 2: Identify potential causes of the failure. 

The purpose of Step 2 is to collect and organize information regarding the event of interest. In Step 1, 
the specific controller, action, and context of the event should have been identified. The analyst should 
then determine the dependencies, inputs, outputs, and components of the controller. Emphasis should be 
made to include all the components of the controller that have software or integrated software (firmware). 
However, it is ultimately the responsibility of the analyst to decide the desired resolution of the analysis. 
A simplified version of a controller is represented in Figure 17. 
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Figure 17. Simplified representation of the components of a digital controller. 

It is indicated by STPA that a controller consists of two main parts: the process model and the control 
algorithm. The process model can be thought of as the diagnosis portion of a system, whereas the control 
algorithm provides actions based on the model’s diagnosis [38]: 

• Process model: A controller’s internal beliefs used by the control algorithm to determine control 
actions. The process model may be updated in part by feedback used to observe the controlled 
process. 

• Control algorithm: specifies how control actions are selected based on the controller’s process model, 
previous control inputs and outputs, and other factors. Figure 18 provides an example of the 
relationship between the process model and control algorithm. Using the concepts of control 
algorithm and process model can help determine the potential causes that may interrupt or interfere 
with the correct behavior of the controller. It is a fundamental assumption that failures should have a 
root cause of human error. Consequently, root causes identified during the analysis of the controller, 
its components, process model, and control algorithm should be extracted to their human sources of 
error. 

 
Figure 18. General relationship between a process model and control algorithm for a controller. 

Step 3: Organize potential causes of failure into a Bayesian network. 

This step is focused on creating a BBN based on the causes identified in Step 2. The main idea of the 
BBN is to create an acyclic (i.e., without feedback [4]) graphical network representing the relationships of 
interest. In this case, the relationships between root causes and probability of software failure. The reader 
can visit [78] or other sources for guidance on formulation or additional information regarding the BBN. 
For this step, each causal factor and root error source should be arranged as base or root nodes for the 
network and combined in a manner as follows. 



 

 34 

It is assumed that the probability of error in the SDLC process are a direct result of human error. The 
BBN above is a simplified version. Each application will have variations, but BAHAMAS requires that 
the penultimate node should be the probability of a fault existing in the system. 

Step 4: Determine the root node probabilities and generic failure probability. 

This step adapts methods described in the approach for the determination of a necessary parameter for 
the evaluation of probability of failure given the probability of a fault in the system. 

Step 4-A: Assign root node probabilities based on the SDLC quality of the generic software. 

The purpose of this step is to provide numerical values for the root nodes of the BBN based on the 
average or general quality of the software. It is assumed the root source of failure can be sourced to 
human errors during the development of the software (i.e., the SDLC). As mentioned previously, 
HRA methods can be applied to quantify human errors. The analysist must select an HRA method 
based on the needs of the analysis. It is important the analysis be aware of the limitations and 
assumptions involved in the HRA method chosen. Also, when the SDLC is not clearly defined, the 
analyst must provide clear assumptions of the necessary activities and verification processes of the 
SDLC in order to apply HRA. Some applications are flexible, but will require assumptions to extend 
their application to tasks outside standard human responses to events within a NPP. CREAM attempts 
to incorporate aspects of the decision-making processes and cognitive concerns of human action into 
a reliability assessment [63]. SPAR-H provides the fast and convenient approach to analysis of human 
actions [62]. THERP is one of the first HRA methods. It should be noted that BAHAMAS is flexible 
and should produce consistent results regardless of selected HRA method. It is simply advisable that a 
more detailed HRA will provide greater coverage of SDLC attributes, and thus, produce a more 
comprehensive result. 

Once the desired HRA method(s) is selected, the analyst will apply the method for a general SDLC. 
The HRA should be applied using assumptions to match the general quality of SDLC used for the 
software being analyzed (i.e., safety or non-safety software, etc.). 

Step 4-B: Assign simple conditional probabilities for all except the final node. 

To evaluate the probability of software failure, the BBN requires a conditional relationship between 
parent and child nodes. BAHAMAS requires the BBN to be structured in such a way as to limit 
additional uncertainties by minimizing the number of conditional relationships that must be provided 
by the analyst. The goal is to construct the network such that there are binary conditional relationships 
between each node, except for the final two. This conditional probability table for each node will be 
similar to the example shown in Table 9. Note that the BBN is structured so that conditional 
probability is either “0” or “1” for all the nodes, except the final node. 

Table 9. Example conditional probability table. 
Parent Nodes State of Node State of Node 

Error in SDLC Task 1 for module A Y N 
Error in SDLC Task 2 for module A Y N Y N 

Child Node State Probability Given Parents 
Fault in Module A (Yes) 1 1 1 0 
Fault in Module A (No) 0 0 0 1 

 
Step 4-C: Evaluate the BBN for the probability of faults for the generic software case. 

Using the following equations or some other type of commercial software, the analyst should evaluate 
the marginal probability of faults for the generic software case. The following is a discussion on the 
determination of marginal probability within a BBN. 
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The marginal probability refers to the probability of a specific state within the joint probability of all 
other states [78]. The marginal probability incorporates both the conditional and node state 
probabilities for the calculation of a specific node prior to any observations of the system. The term 
“prior” means without having updated the information for any of the nodes. The concept of Bayesian 
updating is not necessary for the evaluation of the BBN of our current approach. The reader is 
advised to visit sources such as [78] to learn more about BBN updating, if desired. For the sake of the 
current approach, only the marginal probability determination is shown. 

Given the following properties: 

o Joint probability, also called the intersection [78], of two events A and B is 𝑃(𝐴, 𝐵): 

𝑃(𝐴, 𝐵) = 𝑃(𝐴 ∩ 𝐵) =  𝑃(𝐴) × 𝑃(𝐵|𝐴) (6) 

o The commutative property [79] states that 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵 ∩ 𝐴): 

𝑃(𝐵 ∩ 𝐴) = 𝑃(𝐵) × 𝑃(𝐴|𝐵) (7) 

The equation for marginal probability is: 

𝑃(𝐴 = 𝑎𝑖) = ∑ 𝑃(𝑎𝑖, 𝑏𝑗)

𝑚

𝑗=1

 (8) 

Consider a BBN of two binary state nodes: Node A (parent) and B (child). Each has two possible 
states: True or False (i.e., 𝐴 = {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} and 𝐵 = {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}). Assume, in this example, the 
probability for each state of Node A is known, in addition to the conditional probability of Node B 
given each state of Node A. Using these known values, the marginal probability of B = true can be 
determined: 

𝑃(𝐵 = 𝑏1) = ∑ 𝑃(𝑏1, 𝑎𝑗)

𝑚

𝑗=1

= 𝑃(𝑏1, 𝑎1) + 𝑃(𝑏1, 𝑎2) (9) 

Because 𝑃(𝐵|𝐴) is known, it is beneficial to use the commutative property to arrive at: 

∑ 𝑃(𝑏1, 𝑎𝑗)

𝑚

𝑗=1

= 𝑃(𝑎1, 𝑏1) + 𝑃(𝑎2, 𝑏1) = 𝑃(𝑎1)𝑃(𝑏1|𝑎1) + 𝑃(𝑎2)𝑃(𝑏1|𝑎2) 

= 𝑃(𝐴 = 𝑡𝑟𝑢𝑒)𝑃(𝐵 = 𝑡𝑟𝑢𝑒|𝐴 = 𝑡𝑟𝑢𝑒) + 𝑃(𝐴 = 𝐹𝑎𝑙𝑠𝑒)𝑃(𝐵 = 𝑡𝑟𝑢𝑒|𝐴 = 𝐹𝑎𝑙𝑠𝑒) 

(10) 

The known probability values can then be used to evaluate the solution for B=true. This is the process 
by which the BBN can be evaluated by hand. Of course, for larger BBNs, it is the more convenient 
option to use commercial software. 

Step 4-D: Determine the generic failure probability for failure of interest. 

The SFP value must be determined first for a generic representation of software (e.g., control systems 
software or safety systems software). The idea is to gain a generic distribution for SFP based on 
representative software experience. This SFP should match the case of the chosen failure of interest 
from the categories listed in Step 1 (i.e., failure on demand, spurious action, wrong timing, etc.). 

Kang et al. [65] collected operational data from nuclear safety-rated software failure on demand 
around the world. A hierarchal Bayesian analysis [80] was then used to estimate the SFP. This 
process involves making an estimation of the distribution of the probability of interest, called a 
“prior,” and then updating the estimation using current observations. Together, the prior and 
observations (e.g., operational data) are used to estimate a distribution for the probability of interests. 
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The basic steps of this process are to first guess a prior SFP distribution. This can come from 
research, historical data, and expert opinions. Second, actual data should be collected for the SFP. 
Finally, an update of the prior distributions based on the observations should be made. Some key 
points mentioned in [80]: 

o The prior distribution should be based on information other than the data collected (e.g., one 
should not use the same data for both the prior and the update). 

o There are many possible distributions to select. The chosen distribution should match best with 
the case being analyzed. 

o The most convenient prior distribution for probability is the beta distribution. 

A convenient option for this form of Bayesian analysis is to use existing software. The NRC and 
Idaho National Laboratory (INL) developed a free online software called the reliability calculator 
website [81], which is a useful tool, but provides a limited number of prior distributions to work with. 

It is important to note the following: Designers of safety systems often attempt to mitigate failure via 
redundancy, which limits or transitions system failure modes from single failures to the “hopefully” 
less likely CCFs. Thus, failures of safety systems may be a direct result of either single or CCF 
sources. In this Section, operational data is used to provide an estimate probability distribution for 
software failure. Without knowing the design for each of the sample systems, it is not possible to 
verify whether CCFs are a relevant concern. Therefore, it is reasonable to assume that either single or 
CCF causes could lead to failures of the sampled safety systems. Thus, the SFP distribution found 
here represents both CCF and single failure contributions. 

Step 4-E: Determine the value for the “new parameter.” 

Now that both the generic SFP and Pr (𝑓𝑎𝑢𝑙𝑡𝑠) have been determined, the new parameter can be 
calculated: 

𝑛𝑒𝑤 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =  𝑆𝐹𝑃/𝑃𝑟 (𝑓𝑎𝑢𝑙𝑡𝑠) (11) 

The new parameter is specific to the HRA methods and the type of software being analyzed. Any 
future applications using this new parameter must be done using the same HRA methods and for the 
same software types at the risk of incorrect results. 

Step 5: Determine the probability for failure of interest. 

Step 5-A: Determine the value for the “new parameter.” 

The root nodes probabilities should be modified to match the quality of SDLC for the specific 
software. The process is identical to Step 4-A. Once the nodes are modified, the analyst can then 
create a conditional probability table for the final BBN node. The conditional relationship between 
the final two nodes is defined by the new parameter found previously. The conditional probability 
table should appear, as shown in Table 10. 

Table 10. Conditional probability table for the probability of the failure of interest. 
Parent Nodes State of Node State of Node 

Fault exists in the system Y N 
Child Node State Probability Given Parents 

Probability of Failure given parent node (Yes) New parameter 0 
Probability of Failure given parent node (No) 1-(new parameter) 1 
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Step 5-B: Evaluate the complete BBN for the specific software case. 

This step focuses on the BBN evaluation to determine the probability of the failure of interest. The 
process mirrors the evaluation in Section 4.3 with the evaluation of marginal probability, including 
the BBN end node. The result of this step stems from the generic SFP found using operational data. 
The SFP represents the contributions of single and CCF sources. Step 6 is necessary to determine the 
proportions of single and CCF source to the total SFP for the specific case. 

Step 6: Evaluate CCF probability. 

BAHAMAS determines the probability that a failure will occur because of faults existing in the 
software. Step 6 relies on the beta factor method to determine the single and CCF contributions to the 
total SFP found in Step 5. This is done using the following equations for the failure of A: 

𝑃(𝐴𝑡𝑜𝑡𝑎𝑙) = 𝑃(𝐴𝑠𝑖𝑛𝑔𝑙𝑒) + 𝑃(𝐴𝐶𝐶𝐹) (12) 

𝑃(𝐴𝑠𝑖𝑛𝑔𝑙𝑒) = (1 − 𝛽)(𝐴𝑡𝑜𝑡𝑎𝑙) (13) 

𝑃(𝐴𝐶𝐶𝐹) = (𝛽)(𝐴𝑡𝑜𝑡𝑎𝑙) (14) 

Total failure probability of the component or module consists of the individual and the CCF 
probabilities. Individual failure and CCF failure are mutually exclusive events; therefore, the total 
probability represents the possibility of either event, which is found by the sum of the two probabilities. 

4.3 Case Study of Probability Estimation of Software Failures 

This Section describes the reliability analysis of the four-division digital RTS, shown previously in 
Figure 5, which has a similar structure to state-of-the-art digital systems in existing NPPs [75]. The 
analysis follows the six-step process outlined in Section 4.2. The reliability analysis builds on the hazard 
analysis performed by RESHA; therefore, the reliability analysis adopts the initial hazard analysis 
assumptions in addition to the new assumptions made for this reliability case study. 

Below are some assumptions of BAHAMAS, in addition to the assumptions for RESHA: 

• The hardware failure causal factors that could lead to a software failure have been left out of the BBN 
because given hardware failure of software components (e.g., memory, DOM, DIM, etc.), it is 
assumed a hardware failure will ultimately cause failure of the specific component to perform its 
required function. And if grouped with the HD failures in the FT. 

• The multiplicities of CCFs have been limited to all m/m identical components failing. This is the all 
or nothing approach that is common for analysis, which use the beta factor method for quantifying 
CCFs. This eliminates consideration of the single division or sub-module CCF and is done to simplify 
the case study. 

• Generic SFP distributions are gathered from operational data, unless specified otherwise, are assumed 
to consist of both individual and CCF sources. 

• Generic and specific models are assumed to have the same SDLC because a specific software is 
unavailable to analyze. 

• Generic controller or processor is assumed to have four parts: the input, memory, processor, and 
output. Each having potential for firmware failures. 

• Setpoint faults will not result in the probability of failure on demand for the RTS, as it is assumed that 
setpoint faults will more likely result in delayed or spurious trip activation. 

• All root causes are modeled with the same HRA values as the application software. This is to simplify 
the demonstration of the case study. 
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• It is assumed that any HRA method can be used for the quantification of human root causes, though 
some may have better coverage. THERP was used for this case study. All assumptions related to the 
application of the THERP are included in Appendix A. 

Step 1: Identify a software failure of interest. 

Step 1 requires an event to be chosen from a hazard analysis. The previous work relied on RESHA to 
identify hazards associated a four-division digital RTS. One of the significant outputs from RESHA was 
the identification of potential SPOFs. CCFs were included in the category of SPOFs for the RESHA case 
study, so long as they were represented by a single basic event within the FT. The results of the hazard 
analysis are shown in Table 5. The reliability analysis case study will provide an example of the 
quantification for number 12 from Table 5. The basic event for number 12 can be seen in Figure 19. 
According to the reliability analysis methodology, the event of interest should include details for the 
controller, action, and context: 

• Controller: RTS BPs. 

• Action: Failure to provide trip signal to Logic Cabinets. 

• Context: During an AOO. 

• Additional Detail: The BP is responsible for evaluating the status of the NPP and initiating a trip 
during unsafe plant conditions. The trip signal is sent to the logic cabinets for each of the four RTS 
system divisions. 

 
Figure 19. Failure event of interest (LC-BP-SF-CCF-TA), as shown within a FT. 
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Step 2: Identify potential causes of the failure. 

The purpose of this step is to organize and collect information regarding the event of interest. Details 
for the event of interest may include dependencies, inputs, outputs, components of the controller, etc. 
First, the components of the controller are identified. The controller components should be assigned to 
their roles relating to the process model or control algorithm. The BP is assumed to be a controller 
consisting of the four components of a generic controller shown in Figure 17. Next, the inputs and outputs 
and dependencies are indicated. 

The process model depends on the input module, central processing unit (CPU), and memory. The 
inputs to the process model are the sensor signals for reactor trip calculation. Outputs from the process 
model are nine state variables used to determine if a reactor trip is required: 
• Over-power (reactor trips on high value) 
• Local power density (reactor trips on high value) 
• Logarithmic power (reactor trips on high value) 
• Departure from nucleate boiling ratio (reactor trips on low value) 
• Reactor coolant system flow rate (reactor trips on low value) 
• Pressurizer pressure (reactor trips on high and low values) 
• Steam generator water level (reactor trips on high and low values) 
• Steam generator pressure (reactor trips on low value 
• Containment pressure (trips on high). 

The control algorithm relies on the output module, memory, and CPU for performance of its 
functions. The input to the control algorithm depends on the output from the process model. The output of 
the control algorithm is to send a trip signal or do nothing based on the 11 trip setpoints for each of the 
nine plant state variables. The BP will send a trip signal to each division of the RTS based on the state-of-
the-plant. 

The majority of the information regarding the process model and control algorithm will be used to aid 
in the analyst assess the quality of the SDLC. When available, actual software code can be used to 
determine how the components of the BP communicate and how they are used. Understanding individual 
components helps the analyst better assess the quality of software development processes; more detail 
leads to a better quantification in later steps. 

Root causes of software failure are due to faults within the process model and control algorithm 
components. Faults can consist of malfunctions in hardware, or faults in the software (including 
firmware). As mentioned in the assumptions, hardware malfunctions have been grouped under the basic 
events in the FT for hardware. Therefore, environmental, electromagnetic, vibrational, and other potential 
causes whose influence on software comes via the hardware damage are excluded from this case study. 
Individual sensor failures (input to the process model) are also already included in the FT and are not 
needed for this case study. 

The remaining root cause for faults within the software is due to human actions. These include human 
actions during the SDLC and during maintenance work, such as when a human worker installs setpoints 
for the RTS. For simplicity, the case study divides the SDLC into two categories: (1) the development of 
design requirements; and (2) the fulfillment of design requirements (i.e., software development). It is 
understood that faults are a result of human errors and a cause of software failure. Faults in the 
development of the application software used within the BP may result in failure of the BP to provide a 
trip signal. Faults may also lead to spurious or delayed trip signals. The question should be asked, “Can 
wrong setpoints in the software result in the failure of interest?” The simple answer is, “Possibly.” 
However, based on the structure and diversity in trip sensors and trip calculations, it might not be 
necessary to include setpoints in the BBN for the failure of interest. 
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Setpoints are used by the control algorithm of the BP to determine whether the reactor should trip. 
The plant state variables are all highly coupled by the physics of the reactor. A trip signal in one will 
manifest in the others as well, with subtle timing differences dependent on physics and type of AOO. For 
example: there is no doubt that an incorrect setpoint may result in the protection system failing to trip for 
low coolant flow. However, because of the highly coupled nature, the departure from nuclear boiling ratio 
(DNBR) trip would also activate for a low reactor control system (RCS) flow scenario. A complete failure 
to trip, whose cause is improper setpoints, would only occur should all of the trip setpoints be improperly 
set and in the “perfectly wrong” arrangement (e.g., some setpoints would have to be too high while the 
others, such as DNBR, would need to be too low). Ultimately, to get a failure to operate, all the setpoints 
would have to be skewed to such an extreme that it is unlikely such a scenario could ever happen. 

It is important to address the other types of failures (e.g., timing-based failures, spurious actions, etc.). 
Delayed or spurious trip signal activation is significantly more likely to be caused by wrong setpoints 
because the event would not require a “perfect” combination of human errors. However, this creates a 
new challenge for modeling. It is highly impractical to consider all combinations for setpoint variability. 
Each of the 11 trip setpoints could be correct or incorrect, and for the incorrect cases, the setpoints might 
either be higher or lower than required. This provides 311 = 177,147 possible ways that the 11 setpoints 
could be arranged. Explicitly modeling each in a BBN is impractical for the current approach. An 
alternative solution would be to simplify the options for failure of all the setpoints together (either they 
are all set too high, too low, or are all correct). 

In summary for this Section, the only contributors to software failure of interest modeled for the BP 
are those associated with the SDLC. Setpoint concerns are assumed negligible. Additionally, sensor input 
failures to the RPS along with hardware failures are also left out of the BBN because they were included 
with the original FT. 

Step 3: Organize potential causes of failure into a Bayesian network. 

This step requires that the potential causes of the failure of interest be placed into a BBN following 
the format shown in Figure 20. As discussed in Step 2, only SDLC causal factors used BBN for the UCA-
A type failure of the BP. 

 
Figure 20. BBN for the UCA-A of BPs of the RTS. 
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Step 4: Determine the root node probabilities and generic failure probability. 

Step 4-A: Assign root node probabilities based on the SDLC quality of the generic software. 

The purpose of this step is to supply the probabilities to the root nodes of the BBN for a 
representative generic software. HRA will be used to assess the quality of generic software 
development. THERP was selected for this analysis because it is one of the most widely known 
methods having been around for 50 years [82]. The following is a brief discussion of the application 
of THERP for the determination of requirements. 

THERP consists of several steps for the quantification of human error probability. The steps 
applicable for this case study are to [61]: 

1. Define the system failures of interest: 

• The system failure of interest for this example is human error in the development of 
application software requirements. 

2. List and analyze the related human operations (e.g., perform a task analysis): 

• The applicable points from the THERP description of the task analysis include: 
(1) identifying the man and machine interfaces and associating their influence on human 
performance; and (2) identifying problem areas in the design likely to cause human error 
(e.g., written procedures policies, practices, people skills). 

3. Estimate relevant error probabilities: 

• The process involves using the HRA ET to determine the probability of human error. The ET 
limbs represent binary actions for “correct” or “incorrect,” the probability of which are 
conditional [61]. The dependence between limbs of the ET are assigned conditional 
probabilities based on the relationships identified in the task analysis. 

A summary of the application of THERP Steps 1–3: 

A brief review of two international standards available from IEEE has provided a list of some of the 
key elements associated with the development of software requirements [83] [84] [85]. Key elements 
were selected from these sources and combined into a simplified task list for the development of 
requirements for the software of the BP: 
o Define the scope 
o Define the purpose 
o Define the parameters of operation 
o Define interfaces 
o Identify applicable codes and standards 
o Define the quality assurance and testing plan 
o Create technical specifications 
o Communicate design specifications. 

Work assignments were assumed for each task. Additionally, dependencies were assigned between 
the tasks to account for the influence of one on another. Using Chapter 20 from THERP (NUREG 12) 
a nominal human error probability was assigned to each task. The quality of each task was then 
assigned a medium score value based on the principle assumptions discussed in Appendix A. Finally, 
these tasks were formed in an HRA ET for the evaluation of the probability of human error for the 
development of BP software requirements. Details of the HRA analysis using THERP can be found in 
Appendix A. The results of the HRA analysis for medium SDLC quality is shown in Table 11. 
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Table 11. THERP HRA for medium quality SDLC. 
Probability of Human Error in: Medium-level Quality SDLC 
Requirements of Software 3.04E-4 
Development of Software 2.28E-3 
 
Step 4-B: Assign simple conditional probabilities for all, except the root and final nodes. 

The conditional probabilities are assigned binary values to decrease the number of uncertainties in the 
model. The following shows the conditional probability tables used for analysis. Note that root nodes 
do not have conditional probability tables; hence, they are not included in Figure 21. 

 
Figure 21. Conditional probability tables associate with the nodes of the BBN in Figure 20. 

Step 4-C: Evaluate the BBN for the probability of faults for the generic software case. 

Calculation of the BBN consists of evaluating the marginal probability of each to the nodes of the 
BBN up to and including the penultimate node. The evaluation was done by hand using the equations 
described in Section 4. The resulting probability of fault within the BP is 1.03E-2. 

Step 4-D: Determine the generic failure probability for failure of interest. 

The generic SFP for UCA-A of BP is selected based on the data gathered in [50]. The probability of 
failure on demand for generic safety system software based on operational experience is zero failures 
in 4457 demands [50]. 

To apply the process prescribed in Section 4.2, a prior distribution needs to be assumed. As 
mentioned in [4] and [86], the highest safety integrity level assigned by IEC standard 61508 is SIL 4, 
which has a corresponding probability of failure on demand at 1E-4 or less—the highest safety 
integrity assuming most safety systems should have a probability on the order of 1E-4 indicates that a 
mode for the distribution of the prior should be 1E-4. 

Assumptions for the prior are: 
o The probability density will concentrate at values peak (mode= 1E-4). 
o The probability density near 1 should be very small. 
o Values of the distribution should fit between 0 and 1 to correspond with probability. 
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Based on these assumptions, a lognormal distribution was chosen. By fixing the lognormal 
distribution node to 1E-4 and varying the value of the σ-parameter of the lognormal distribution, a 
distribution was chosen with σ-parameter=1.8 and μ-parameter=-5.97. Using the chosen lognormal 
prior and the operational experience data, the resulting distribution for SFP is found, as seen in 
Table 12. 

Table 12. Generic SFP distribution. 
Distribution Parameter 

(μ) 
Parameter 
(σ) 

Mean of 
lognormal 

Standard 
deviation of 
Lognormal 

5th percentile 
of Lognormal 

95th percentile 
of Lognormal 

Prior 
(lognormal) 

-5.97 1.80 1.29E-2 6.39E-2 1.32E-4 2.57E-2 

Update 
(lognormal) 

-8.8 0.78 2.04E-4 1.87E-4 2.25E-5 5.73E-4 

 
Step 4-E: Determine the value for the “new parameter.” 

The value of the “new parameter” is calculated using the mean value of the generic SFP distribution 
(2.04E-4) using Eq (11): 

𝑛𝑒𝑤 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =
2.04 ∗ 10−4

1.03 ∗ 10−2
= 0.0198 = 1.98 ∗ 10−2 (15) 

Step 5: Determine the probability for the failure of interest. 

Step 5-A: Modify the BBN to match the case-specific software probabilities. 

The case-specific BBN results in a probability of faults within the BP software of 9.43E-3. 

Step 5-B: Modify the BBN to match the case-specific software probabilities. 

The “new parameter” is used as the conditional probability between the final two nodes of the BBN. 
Then, the network can be calculated as before to find the SFP = 1.87E-4. The calculation can also be 
shown to be equivalent to using Eq. (4), which results in the same value for SFP: 

𝑆𝐹𝑃 = (1.98 ∗ 10−2)(9.43 ∗ 10−3) = 1.87 ∗ 10−4 (16) 

Step 6: (If required) Evaluate the CCF probability. 

The SFP represents the total failure probability of the BP, which contains the contributions from the 
single and CCF failure sources. Consequently, to find the single and CCF failure, the beta factor method 
will be used. In this case, the main assumption is that the contribution of common cause and single 
failures can be represented using a proportionality constant (i.e., beta), as seen in Table 13. 

Table 13. Common beta values from literature. 
Application Beta values 
Electrical equipment 𝛽 =0.01 (best) 0.30 (worst) 
NPP data 𝛽 =0.03-.22 with 0.10 (average) 
Safety systems 𝛽 =.001-.05 (good engineering) to .25 (poor engineering) 
Hardware failures 𝛽 =0.001-0.10 
General applications 𝛽 =0.01-.1 (good engineering) 0.25 (poor engineering) 
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The value of 𝛽 =0.05 is selected from the higher value for the safety systems without assuming poor 
engineering. The calculation of individual and CCF failure probability: 

𝑃(𝐴𝑡𝑜𝑡𝑎𝑙) = 𝑃(𝐴𝑠𝑖𝑛𝑔𝑙𝑒) + 𝑃(𝐴𝐶𝐶𝐹) 
𝑃(𝐴𝑠𝑖𝑛𝑔𝑙𝑒) = (1 − 𝛽)(𝐴𝑡𝑜𝑡𝑎𝑙) = (. 95)(1.87 ∗ 10−4) = 1.77 ∗ 10−4 

𝑃(𝐴𝐶𝐶𝐹) = (𝛽)(𝐴𝑡𝑜𝑡𝑎𝑙) = (. 05)(1.87 ∗ 10−4) = 9.34 ∗ 10−6 
(17) 

The case study for the analysis of UCA-A of the BP provides a single failure rate of 1.77E-4 and a 
CCF of 9.34E-6. These results fit well with the range of software failure probabilities for what has been 
cited from IEC 61508, “Safety Integrity Level 4” [4] [86]. It should be noted that the general SFP found 
by hierarchal Bayesian methods come from software systems operations experience representing overall 
software performance (akin to black box type testing). Using this particular SFP is likely an over 
prediction for the SFP of individual sub-components or subsystems of the RPS. Consequently, the values 
for SFP of the BP are likely conservative. 

This current approach can be improved with more specific operational testing. White box data, found 
from testing or operational experience for the specific sub-components of the system, would result in 
more correct results for the predicted UCAs. 

Based on the hazard analysis from RESHA, the single failure of any BP is unable to result in failure 
of the system; however, CCF can. The results of the reliability analysis show that the CCF probability is 
less likely than the single event. This does not absolve RPS from risk of failure involving the BP, 
combinations of failures with other components, including hardware failures, may drastically influence 
the perceived risk from single BP failures. Future consequence analysis work will investigate the various 
combinations of failures presenting the most significant risk to the RPS. 

It should be noted that the analysis provides a “new parameter” based on software type and HRA 
methods used in quantifying fault probability. In order to apply the “new parameter” to other software 
systems, the software type must match, and so also must the methods used for fault quantification (i.e., 
HRA methods). For example, the fault quantification methods must match because different methods 
produce different values for the same scenario. Thus, if the methods do not match between the generic 
analysis and the specific analysis, then the “new parameter” will skew the results. Despite this challenge, 
the analysis is structured such that it is flexible, and likely can be used for any HRA method deemed 
appropriate by the analyst, as long as the aforementioned cautions are followed. Additionally, tabulated 
values of the “new parameter” could be created to streamline future analyses. 

Regarding the calculation for CCFs using the beta factor method, this represents a limitation to our 
approach for reliability analysis because it does not account for the possibility of a multiplicity of CCFs. 
It is of interest to be able to account for combinations of failures that are not all or nothing. However, for 
this first version of BAHAMAS, the use of beta factor has been useful. 
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5. COLLABORATION 

Under the RISA Pathway of the LWRS Program, the development and application of the proposed 
RADIC process—particularly the approaches for redundancy-guided system-theoretic hazard and 
reliability analysis—have been implemented with collaboration from the Plant Modernization Pathway of 
the LWRS Program, digital vendors and utilities, universities, and other ongoing initiatives on data 
collections, methodology development, plant-specific risk analysis, and cybersecurity. This research is 
being coordinated via ongoing interactions between these organizations to develop integrated research 
plans that will maximize the effective allocation of resources and support the development and 
deployment of DI&C technologies. The collaboration with multiple partnerships will formulate an 
integrated assembly line to support the development, licensing, and deployment of advanced digital 
technologies to NPPs from data collection, methodology, and tool development to the applications on 
specific plants. Specific coordination and collaboration research activities include: 

• Coordination with the INL nuclear cybersecurity team on the establishment of a technical basis (e.g., 
PRA models and methods) for cybersecurity analysis of DI&C safety systems. 

• Collaboration with universities (e.g., University of Pittsburgh, North Carolina State University, 
University of Tennessee–Knoxville) to perform risk analysis on artificial intelligence (AI)-guided 
DI&C system designs to improve their performance. 

• Providing risk assessment capabilities for DiD and diversity applications to vendors for their DI&C 
systems. 

• Engaging with Plant Modernization Pathway and utilities to support their pilot projects. 
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6. CONCLUSIONS AND FUTURE WORKS 

6.1 Conclusions 

This work has provided a means to overcome technical challenges faced by the nuclear industry for 
the implementation of DI&C systems. A modularized approach to conduct RESHA for DI&C systems has 
been developed and demonstrated based on an advanced digital RTS and ESFAS with multilevel 
redundancy designs. Systematic methods and risk-informed tools are incorporated to address both 
hardware and software CCFs, which provide a guidance to eliminate the causal factors of potential SPOFs 
in the design of digital safety systems in advanced plant designs. RESHA provided a means to identify 
software-based interactions and potential CCFs in highly redundant, state-of-the-art DI&C systems, by 
fully incorporating redundancy into the hazard analysis process. 

Embracing redundancy in the analysis allowed RESHA to meet its objectives in three ways: 
(1) defining a step-by-step approach for the hazard analysis of digital systems that can help engineers 
efficiently make design and risk mitigation decisions by providing them a means to systematically 
identify the most critical CCFs and hazards of DI&C systems; (2) identifying the critical hazards of a 
system, thereby allowing utilities to effectively manage the cost of safety-rated DI&C by strategically 
eliminating unnecessary design features; and (3) providing a technical basis for reliability analysis by 
identifying crucial failure modes and qualitatively determining their effects on system vulnerability. 
Ultimately, RESHA helps improve the design of highly redundant DI&C through a detailed qualitative 
hazard analysis. 

The method also provides a technical basis for implementing cybersecurity, reliability, and 
consequence analysis on unanalyzed sequences and optimizing the use of DiD analysis in a cost-effective 
way. The application of RESHA requires users having sufficient knowledge about relevant methods (e.g., 
FTA, STPA) and target systems. The identification of causal factors needs collaborations with relevant 
expert teams, such as system/software designers and engineers and human reliability analysts. 

In addition, this work developed a novel method, BAHAMAS, for reliability analysis of DI&C 
systems. Software failure probabilities are quantified using an integrated approach that incorporates state-
of-the-art BBN, HRA, CCF modeling techniques. BAHAMAS also provides a means for analyzing new 
software systems where operational data is rarely available, as well as flexibility allowing an analyst to 
employ appropriate HRA methods or incorporate new or advanced methods to capture the desired details 
of any SDLC. The case study relied on the use of THERP for the quantification of faults in the SDLC. 
THERP, while a classic and well used method, is aging. Other HRA methods may prove to be better 
suited for the evaluation of SDLC. CREAM’s applications for cognitive aspects, as well as SPAR-H’s 
rapid quantification abilities, also present attractive investigations for future research. 

For CCF modeling, this approach applied the beta factor method. However, this approach is limited 
because it does not account for the multiplicity of CCF events. But the beta factor method does provide a 
useful and straightforward means to quantify highlighted concerns found from RESHA. Future work will 
investigate other options for improving CCF modeling techniques. 

Section 1 discusses positive attributes for QSRMs. In this case, BAHAMAS has the potential of 
meeting many of these attributes. By providing a clear method and allowing for flexibility in the use of 
HRA, the door has been opened to allow for reasonable assumptions for case-specific analysis. The 
method accounts for lifecycle activities and provides consideration for CCFs. Despite coming up short for 
verification and uncertainty, the method has the potential to undergo such actions. In addition, reliance on 
previous experience is flexible (e.g., may not require significant testing) and validation efforts would help 
clarify how much previous test experience is really required. Finally, some of the assumptions for the case 
study precluded the consideration of operational conditions; however, BAHAMAS can certainly 
incorporate environmental and other fault contributors into the BBN. Additionally, operational 
considerations—particularly the interactions between the digital system and controlled processes—are 



 

 47 

partially accounted by consideration of the process model and control algorithm. The process model and 
control algorithm account for relationships between various attributes of the control system and are used 
for the HRA analysis. In conclusion, BAHAMAS provides a flexible and useful tool for the quantification 
of DI&C system software failures and meets many of the desired attributes of an ideal QSRM. 

6.2 Future Works 

One area for future research in FY-21 deals with the risk analysis for the Human System Interface 
(HSI) in DI&C modernization of existing NPPs. The HSI is one of the key advanced design features 
applied for modern DI&C systems of NPPs. Normally, it is designed based on a compact workstation-
based system in the control room. The compact workstation provides a convenient operating environment 
to facilitate the display of plant status information to the operator so that operability is enhanced by using 
advanced display, alarm, and procedure systems. The HSI should have sufficient diversity to demonstrate 
DiD protection against CCF of the safety system. However, the vulnerability of HSI is affected by many 
factors, human errors, cyber-attacks, software CCFs, etc. Therefore, this work aims to identify, evaluate, 
and reduce these system vulnerabilities to support the licensing, deployment, and operation of the HSI 
designs. 

Main research activities include: (1) performing systematic hazard analysis to investigate system 
vulnerabilities (e.g., human errors, cyber-attacks, software CCFs) of HSI designs for DI&C upgrades; 
(2) conducting reliability studies of HSI systems to evaluate how individual failures affects the 
availability and reliability of HSI systems; and (3) identifying the accidental events that could be induced 
by system vulnerabilities, but not analyzed by previous risk analyses, and estimate their consequential 
impacts on key plant responses. Expected outcomes are: (1) an integrated risk analysis and evaluation for 
a representative advanced HSI design to support its licensing, deployment, and operation; and (2) a 
diversity and DiD analysis to provide risk-informed insights and suggestions on reduction and cost-
efficient optimization of advanced HIS designs. 

Another future area for research in FY-21 is the collaboration with industry partners and the LWRS 
Program Plant Modernization Pathway to complete reliability studies and perform consequence analysis 
for state-of-the-art DI&C systems. An integrated reliability study and risk-informed consequence analysis 
will be performed for a representative digital RTS and ESFAS of existing plants with software CCFs and 
plant responses considered. This work complements other approaches being developed for deploying 
DI&C technologies and provides risk-informed insights to facilitate the adoption and licensing of safety-
related and non-safety-related DI&Cs. 

Main research activities include: (1) coordinating and collaborating with industry partners and the 
LWRS Program Plant Modernization Pathway to perform hazard analyses and reliability studies for a 
state-of-the-art digital RPS and ESFAS; and (2) integrating digital RPS and ESFAS reliability models 
into plant level PRA models to evaluate plant level impacts of digital failures, especially software CCFs. 
Expected outcomes are reliability studies and consequence analysis for state-of-the-art safety-related 
DI&C systems (i.e., RTS and ESFAS). 

Finally, by integrating hazard analysis, reliability analysis, and consequence analysis together, the 
risk assessment strategy aims to: (1) help system designers and engineers to systematically address 
digital-based CCFs and quantitatively analyze their effects on digital system vulnerability and key plant 
responses; (2) improve existing PRA models for the industry by identifying and evaluating the risk 
associated with DI&C technologies; and (3) provide risk insights to address the licensing challenges 
facing DI&C upgrades. 
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Appendix A 
 

Application of THERP 

The following is an application of the Technique for Human Error Rate Prediction (THERP) for the 
evaluation of root causal factors for the failure of software systems. The THERP Manual indicates that 
the “general approach used for HRA has been to identify, analyze, and estimate human error predictions 
(HEPs) for human tasks that system analysts and human reliability analysts determine could have major 
impact on system criteria of interest.” The actions to identify, analyze, and estimate form the basis of 
steps used in this application of THERP: 

• Define the system failures of interest 

• List and analyze the related human operations (perform a task analysis) 

• Estimate relevant error probabilities. 

Assumptions: 

• Because a specific system was unavailable to review, the same SDLC task list was assumed for both 
the specific RPS and generic safety system software. In contrast, a normal analysis would likely result 
in differences between the specific system SDLC tasks and the chosen generic SDLC task list. 

• To simplify the analysis, the same SDLC task list was used for all software components and modules 
within the RPS system. 

• Persons involved in the creation of requirements: stakeholders (client), engineer, engineering leader, 
and the project manager: 

o Group actions involve the engineer, engineering leader, and project manager. 

• Each of the individuals involved have the required training and expertise to perform their tasks. 

• The work environment is optimal. 

• There is dependency between tasks. 

• There is dependency between the person performing a task and the reviewer. 

• More than two reviewers are not considered to provide recovery for a task: 

o The THERP Manual indicates that recovery is not credited to more than two checkers of a routine 
task [61]. Though some tasks may not be routine, we have chosen two to be the maximum 
assigned to simplify the analysis. 

• The task of reviewing is assigned the same human error probability as the original task. 

• Diagnosis actions made by the group are chosen from Table 20-3 in [61], which consists of a 
diagnosis of abnormal events in a nuclear reactor. It is assumed that the HEP values given for group 
efforts are appropriate for the creation of requirements, as both require diagnosis of a situation. It was 
assumed that a group meeting of an hour as a reasonable time to define a scope, purpose, or 
parameters for operation of a system. Hence, the HEP associated with a 60-minute diagnosis time was 
selected corresponding to a value of 1E-4. 
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• THERP indicates when there is no appropriate HEP available, the nominal value of 3E-3 is assigned 
for errors of omission or for errors of commission (see page 20-13 in [61]). It is an assumption of the 
case study that for events not clearly omission or commission dominant, the union of the two will be 
used. Additionally, it is assumed that the omission and commission are independent. Therefore, the 
resulting value comes from Pr(A or B) = Pr(A)+Pr(B)-Pr(A)*Pr(B) = 5.991E-3. 

• To simplify the case study, the difference between SDLC quality is based on the quality of the review 
processes. Hence, the difference between the specific and general HRA applications is that the 
reviewers are given moderate dependency for all cases for the general case. 

THERP Step 1: Define the system failures of interest. 

This step was completed previously in BAHAMAS. Generally, this process involves familiarization 
with a system, followed by a qualitative assessment (e.g., hazard analysis), in order to find areas where 
human actions may be a concern [61]. For the example provided here, the event of interest is the failure of 
the BP to send a trip signal to the logic cabinets of the RPS system. 

THERP Step 2: List and analyze the related human operations (perform a task analysis). 

The THERP Manual indicates that the task analysis should generally focus on identifying the man 
and machine interfaces and their associated influence on human performance. In addition, the task 
analysis should identify problem areas in the design likely to cause human error (e.g., written procedures 
policies, practices, and people skills). It is assumed that human actions in the SDLC can result in software 
failure. Hence, the task analysis will focus on the human tasks associated with the SDLC. The case study 
concerns an HRA analysis of the development of software requirements for the application software of 
the BPs in use in a representative RPS system: 

THERP Step 2.1: Determination of SDLC tasks. 

A brief review of past and present international standards available from IEEE has provided a list of 
some of the key elements associated with the development of software requirements [83] [84] [85]. A 
similar approach would be made to determine the generic SDLC task, but only the tasks should come 
from real applications, experience, interviews, and publications. The development of requirements 
can be grouped into actions associated with preparation, definition, analysis, and management: 
• Preparation to define requirements involves: 

o Defining system boundaries and the project scope 
o Creating an organizational project strategy 
o Allocating or arranging for necessary resources 
o Clarifying the project scope with stakeholders. 

• Definition of key aspects of the requirements should include: 
o Clarifying the purpose of the system 
o Establishing the modes of operation 
o Defining the system constraints 
o Providing justification for the requirements or specifications 
o Creating a database for the requirements 
o Defining necessary system interfaces 
o Defining system installation requirements 
o Creating and defining a system architecture. 
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• An analysis of developed requirements should include: 
o A review of system requirements 
o Clearly defined performance measures 
o Feedback from stakeholders 
o Resolution of any issues. 

• Management of developed requirements should include: 
o A quality assurance plan via documentation. 

The tasks above were used to generate a simplified task list to be used in the case study for both the 
generic and specific software applications. The simplified task list for the development of 
requirements for software systems is as follows: 
1. Define the scope. 
2. Define the purpose. 
3. Define the parameters of operation. 
4. Define interfaces. 
5. Identify applicable codes and standards. 
6. Define the quality assurance and testing plan. 
7. Create technical specifications. 
8. Communicate design specifications. 

THERP Step 2.2: Analysis of tasks. 

Details regarding the tasks should be clarified. Considerations for written procedures, policies, 
practices, and people skills are important. Additionally, aspects of the individuals involved in each 
task, their training, and dependencies should be considered. The idea is to clarify details for each task 
to make quantification using the THERP methodology easier. 

The success or failure of a task may have conditional dependence on the previous tasks. For these 
cases, five levels of dependence can be assigned. The success of an example task will have zero, low, 
moderate, high, or complete dependence on the success or failure a prior task [61]. Dependency 
relationships are assessed for the eight tasks for the development of requirements and for reviewers of 
those tasks. 

Example 1: A manager will be slow to trust assignments made to the new employee. If the manager is 
responsible of reviewing the work of the new employee, the manager will likely pay great attention to 
the review. This scenario would be assigned a low dependency relationship between the manager (as 
a reviewer) and the employee. 

Example 2: For a critically important job task, a manager will be concerned that the task be 
completed correctly. A low dependence value may be assigned between the employee and the 
manager, despite the manager’s complete confidence in the abilities of the employee. 

When the task analysis and assumptions have been clarified, details regarding the HEP can be 
selected for each of the tasks being analyzed, which is the HEP probability of human error without 
consideration of shaping factors and dependency. Then, the HEP and task analysis results are used to 
determine the probability of human error using the HRA ET in Step 3 of THERP. 
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The following are the task details used for the case study: 
1. Define the scope: 

a. Dependency on previous task: Zero Dependency. 
b. Person(s) performing the task: Group. 
c. Person(s) reviewing the task: Stakeholders: 

i. Dependency on previous person(s): Low Dependency. 
d. Nominal HEP: 1E-4. 

i. Assigned from Table 20-3 item #5 from [61] for a single event. (See Assumptions 
Section.) 

2. Define the purpose: 
a. Dependency on previous task: High Dependency. 
b. Person(s) performing the task: Group. 
c. Person(s) reviewing the task: Stakeholders: 

i. Dependency on previous person(s): Low Dependency. 
d. Nominal HEP: 1E-4. 

i. Assigned from Table 20-3 item #5 from [61] for a single event. (See Assumptions 
Section.) 

3. Define the parameters of operation: 
a. Dependency on previous task: High Dependency. 
b. Person(s) performing the task: Group. 
c. Person(s) reviewing the task: Stakeholders: 

i. Dependency on previous person(s): Low Dependency. 
d. Nominal HEP: 1E-4. 

i. Assigned from Table 20-3 item #5 from [61] for a single event. (See Assumptions 
Section.) 

4. Define interfaces: 
a. Dependency on previous task: High Dependency. 
b. Person(s) performing the task: Group. 
c. Person(s) reviewing the task: Stakeholders: 

i. Dependency on previous person(s): Low Dependency. 
d. Nominal HEP: 1E-4. 

i. Assigned from Table 20-3 item #5 from [61] for a single event. (See Assumptions 
Section.) 

5. Identify applicable codes and standards: 
a. Dependency on previous task: Moderate Dependency. 
b. Person(s) performing the task: Group. 
c. Person(s) reviewing the task: Stakeholders: 

i. Dependency on previous person(s): Moderate Dependency. 
d. Nominal HEP: 1E-4. 

i. Assigned from Table 20-3 item #5 from [61] for a single event. (See Assumptions 
Section.) 
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6. Define the quality assurance and testing plan: 
a. Dependency on previous task: High Dependency. 
b. Person(s) performing the task: Engineer. 
c. Person(s) reviewing the task: Engineering Leader; Project Manager: 

i. Dependency on previous person(s): Moderate Dependency. 
ii. Dependency on previous person(s): Moderate Dependency. 

d. Nominal HEP: 5.991E-3. 
i. See Assumptions Section. 

7. Create technical specifications: 
a. Dependency on previous task: High Dependency. 
b. Person(s) performing the task: Engineer. 
c. Person(s) reviewing the task: Engineering Leader; Project Manager: 

i. Dependency on previous person(s): Low Dependency. 
ii. Dependency on previous person(s): Moderate Dependency. 

d. Nominal HEP: 5.991E-3. 
i. See Assumptions Section. 

8. Communicate design specifications: 
a. Dependency on previous task: Low Dependency. 
b. Person(s) performing the task: Engineer. 
c. Person(s) reviewing the task: Engineering Leader; Project Manager: 

i. Dependency on previous person(s): Low Dependency. 
ii. Dependency on previous person(s): Moderate Dependency. 

d. Nominal HEP: 5.991E-3. 
i. See Assumptions Section. 

The difference in application for the general SDLC quality is that the reviewers are given moderate 
dependency for all cases. 

THERP Step 3: Estimate the relevant error probabilities. 

This Section is focused on the third THERP step. The ET limbs represent binary actions for “correct” 
or “incorrect,” the probability for which are conditional [61]. The dependence between limbs of the ET 
are assigned conditional probabilities based on the relationships identified in the task analysis where the 
information from the task analysis is used in an HRA ET to determine the probability of human error. The 
basic tools used for evaluating the HRA ET of the case study are found in Figure 22 and Figure 23, as 
taken from [61]. 
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Figure 22. HRA ET basics [61]. 

 
Figure 23. Image of a table of equations used for determining conditional probabilities. The equations 
provide conditional probabilities of success and failure on Task “N,” given success or failure on previous 
Task “N-1,” for different levels of dependence [61]. 
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Figure 22 provides options to evaluate a series of parallel systems. The assumption for the case study 
is that any un-recovered error will result in an error of the whole system (e.g., the series-type system). In 
addition, it is assumed that the failure of any task simply results in an undetected error in the 
requirements, but does not prevent the completion of all tasks of the system. The probability of failure can 
be evaluated using the equations shown in Figure 22. However, it is necessary first to clarify how the use 
of dependencies have been incorporated into the HRA ET. This is done using the conditional probability 
equations, shown in Figure 23. Together, Figure 22 and Figure 23 provide the necessary background for 
the calculation of the HRA ET of the case study, as seen in Figure 24. Figure 25 provides an example of 
the calculations involved for the first two tasks of the HRA ET in Figure 22. The HRA ET results for the 
case study are shown in Table 14. 

Table 14. Example conditional probability table. 
Probability of Human error in: Medium Specific High 
Development of Requirements 3.04E-4 1.62E-4 5.31E-5 
Development of Software 2.28E-3 2.21E-3 8.88E-4 

 

 
Figure 24. HRA ET for the development of software requirements. Primes and double primes account for 
the reviewers of tasks. 
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Figure 25. Example calculations for the evaluation of the probability of human error in the development 
of software requirements. 

 


