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ABSTRACT 

Under the Department of Energy’s Light Water Reactor Sustainability 
Program, within the Plant Modernization research pathway, the Digital 
Instrumentation and Control (I&C) Qualification Project is identifying new 
methods that would be beneficial in qualifying digital I&C systems and devices 
for safety-related usage. One such method that would be useful in qualifying 
field components such as sensors and actuators is the concept of testability. The 
Nuclear Regulatory Commission (NRC) considers testability to be one of two 
design attributes sufficient to eliminate consideration of software-based or 
software logic-based common cause failure (the other being diversity). The NRC 
defines acceptable “testability” as follows: 

Testability – A system is sufficiently simple such that every possible 
combination of inputs and every possible sequence of device states are tested and 
all outputs are verified for every case (100% tested). [NUREG 0800, Chapter 7, 
Branch Technical Position (BTP) 7-19] 

This qualification method has never proven to be practical when viewing a 
very large number of combination of inputs and sequences for device states in a 
typical I&C device. However, many of these combinations are not unique in the 
sense that they represent the same state space or the state space that would not 
affect the critical design basis functions of the device. Therefore, the state space 
of interest might possibly be reduced to a manageable dimension through such 
analysis.  

This project will focus on a representative I&C device similar in design, 
function, and complexity to the types of devices that would likely be deployed in 
nuclear power plants as digital or software-based sensors and actuators (e.g., 
smart sensors). Analysis will be conducted to determine the feasibility of testing 
this device in a manner consistent with the NRC definition.  

This report describes the development of test process for bounded exhaustive 
testing with respect to combinatorial test methods. The report describes the 
candidate Embedded Digital Device - the Virginia Commonwealth University 
smart sensor, conceptual experimental methods for stated test objectives, 
description of the process, tools, resources, and computing. This information will 
be used to fully develop a detailed test plan (based on statistical measure needs) 
and test environment for conducting an I&C device testability demonstration 
study. The future planed experimental study of this project is to demonstrate 
digital qualification via bounded exhaustive testability with respect to common 
cause failure. 
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Specification of Bounded Exhaustive Testing Process 
for a Software-based Embedded Digital Device 

1. Introduction and Purpose 
As digital upgrades to nuclear power plants in the United States has increased, concerns related to 

potential software common cause failures (CCF) and potential unknown failure modes in these systems 
has come to the forefront. The U.S. Nuclear Regulatory Commission (NRC) identified two design 
methods that are acceptable for eliminating CCF concerns: (1) diversity or (2) testability (specifically, 
100% testability) [1]. As pointed out in Ammann and Offutt’s book [2], there is near universal consensus 
among computer scientists, practitioners, and software test engineers that exhaustive testing for modestly 
complex devices or software is infeasible [3,4], which is due to the enormous number of test vectors (i.e., 
all pairs of state and inputs) needed to effectively approach 100% coverage [1]. For this reason, diversity 
and defense-in-depth architectural methods for computer-based Instrumentation and Control (I&C) 
systems have been become conventional in the nuclear industry for addressing vulnerabilities associated 
with common-cause failures [5]. However, the disadvantages to large-scale diversity and defense-in-depth 
methods for architecting highly dependable systems are well known: significant implementation costs, 
increased system complexity, increased plant integration complexity, and very high validation costs. 
Without development of cost effective qualification methods to satisfy regulatory requirements and 
address the potential for CCF vulnerability associated with I&C digital devices, the nuclear power 
industry may not be able to realize the benefits of digital or computer-based technology achieved by other 
industries. However, even if the correctness of the software has been proven mathematically via analyses 
and was developed using a quality development process, no software system can be regarded as 
dependable if it has not been extensively tested. The issues for the nuclear industry at large are: (1) what 
types of Software testing provide very strong “coverage” of the state space, and (2) can these methods be 
effective in establishing credible evidence of software CCF reduction? The previous report identified 
several promising testing approaches that purport to provide strong “coverage.” Namely, Combinatorial 
Testing (CT) methods can achieve “bounded” exhaustive testing under certain conditions [6]. 
Additionally, the definition for coverage will be elaborated in later sections, including several definitions 
used in the SW testing community. This document also defines and develops a specification for an 
empirical “study or test” to collect data on the efficacy of CT methods for accomplishing “bounded 
exhaustive” testing.  

1.1 Background  
Reducing the occurrence of design defects/errors in software-based systems is principally 

accomplished by design assurance methods, which are typically comprised of process, analysis, and 
testing methods. Process usually includes best practices, prevailing standards, and regulatory guidelines 
that govern the lifecycle development device software for a given level of assurance needed. Analysis 
encompasses the methods used to access the design and implementation of the device software with 
respect to a set of requirements and specifications. Testing aims to achieve discernable differences 
between intended and actual behaviors of a system (observable at the level of resolution required for 
assurance), or at gaining confidence that there are no discernible differences. The goal of testing is defect 
detection: finding impactful differences between the behavior of the implementation and the intended 
behavior of the system under test (SUT), as expressed by its requirements. Software testing is a broad 
term encompassing a wide spectrum of different activities: testing of a small piece of code by the 
developer (unit testing), to the customer validation of an installed system (acceptance testing), to the 
monitoring at run-time of a network-centric service-oriented application. In the various stages, the test 
cases could be devised to aim at different objectives, such as exposing deviations from user’s 
requirements, assessing the conformance to a standard specification, evaluating robustness to stressful 
load conditions or to malicious inputs (fuzzing for security), etc. 
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This document focuses on a perspective with respect to coverage and testability. Nuclear industry’s 
definition of testability is different from the testability definition used by the software testing community. 
The NRC defines acceptable “testability” as follows: 

Testability – A system is sufficiently simple such that every possible combination 
of inputs and every possible sequence of device states are tested and all outputs 
are verified for every case (100% tested). [1]  

The NRC’s definition is more closely aligned with hardware testability metrics, rather than software 
testability measures. The software testability-related definition is: 

Software testability is the degree to which a software artifact (i.e., a software 
system, software module, requirements- or design document) supports testing in 
a given test context. If the testability of the software artifact is high, then finding 
faults in the system (if it has any) by means of testing is easier. [7] 

The issue with the NRC definition is that any modest microprocessor-based embedded device 
executing ordinary control software has an effective infinite state space, thus direct 100% testability by 
state enumeration is infeasible for most software systems. Accordingly, qualification methods based on 
these criteria are only applicable for extremely simple systems and have never proven to be practical in 
view of the very large number of combinations of inputs and sequences of device states for a typical I&C 
device. Another issue with the NRC definition is there is no given definition of “states,” which can lead to 
different interpretations of states and requisite coverage. For example, one valid definition of “states” is 
from the automata model of computability [6]. Automata models are abstract models of computations 
(either SW or HW) and provide the underlying formal basis for computers. The state of a finite automata 
(representing software) includes not only the information about which discrete state the software is in 
(indicated by the bubble in the figure below), but also what values any variables have. The number of 
possible states can be very large, or countably infinite. If there are n discrete states (bubbles), and m 
variables each of which can have one of p possible values, the size of the state space is:  

|states| = npm 

Or more simply, take two “bubble” states and six variables (assuming all variable are unique). Use 
16-bit INT data types to each variable, it produces:  

|states| = 2(216)6 = 5.01 x 1030 enumerated states  (1) 

As shown, this definition of states is extremely conservative in defining “uniqueness” amongst the 
elements of a state set. However, this is a like a ground definition of states—abstractions of state space 
can be built up from this definition based on assumptions of groupings, equivalence, and conditions. As 
far as is known, the NRC definition of testability provides no guidance on reasonable theoretical 
abstractions as other industries have done (notably commercial air transportation, and railway industry).  
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Figure 1. Extended finite automata.  

For the above example, conducting exhaustive testing would take 1021 years to complete assuming 
one test per nanosecond. Obviously, this definition of states results in an impossibility of using testing to 
show a reduction of CCF. Another definition of “states” is related to the combinatorics of the variable and 
decision space of the digital behavior with respect to the software. A close cousin to the automata model 
is multiple condition model (that is, exhaustive testing from a condition evaluation aspect). Multiple 
condition model of testing defines states with respect to inputs and decisions points in the digital behavior 
of the software. That is, all possible combinations of inputs for each decision in the software. This ensures 
that the correct decision outcome is reached in all cases. Again, the problem with such testing is that for a 
decision with n inputs, 2n tests are required. The multiple condition model is not doubly exponential as is 
the automata model, but it is still exponential in growth. In cases where n is small, running 2n tests may be 
reasonable; running 2n tests for large n is impracticable. As example, consider a fragment of code where 
36 variables (conditions) are parameters to decisions statements (if-then-else, case statements, etc.). This 
is not an uncommon occurrence in control system software. At least 236 tests would be needed to 
exhaustively test the decision conditions. How long would this take assuming 1000 tests/sec?  

(236 tests)*(1 sec/1000 tests)*(1 minute/60 sec)*(l hour/60 min)*(1 day/24 hour)*(1 year/365 day) = 
Approximately 2.179 years  

How much data space would be required to store this test result? If the test artifacts include a single 
line for the test results of each test case, with time, date, duration – then 10 bytes is reasonable for each 
test result.  

236 = 6.8719476736e+10 then 6.8719476736e+10 (10) =687.19476736 GB (2) 

Again this is just for one decision code segment. This has to be repeated for each and every decision 
code segment.  

The key to reducing the state space is recognizing that many of the states are equivalent in their 
behavior. In recent years, approaches to justifiably reduce the testable state space have made significant 
progress. These include methods based on equivalence partitioning: modified condition/decision 
coverage, t-way CT, and model-based testing. The state space of interest is reducible to a manageable 
dimension through such analysis methods. However, the degree to which these methods can provide 
coverage of critical code regions approaching “100%” needs further exploration—at least to the nuclear 
industry.  

This report focuses on methods that support or claim high levels of “coverage” approaching 
exhaustive testing or bounded exhaustive testing. By bounded exhaustive testing we mean: 

Definition: Bounded-exhaustive is used in relation to software testing. Software testing is considered 
bounded exhaustive when well-formed relations between input space and state space allow the testable 

Stop Go 

Guard 1/Output Action 1 
Set Action 1

Guard 2/Output Action 2 
Set Action 2 

Initial Set Action 
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state space to be reduced, which enables a feasible testable set. The bounded aspect relates to the lower 
bound of contraction on space sets using a set of well-formed inference rules. Typical methods used 
(among others) to achieve state space reduction include boundary value analysis, covering arrays, and 
equivalence partitioning. The key assumption is that the state space reduction process must preserve the 
properties of and among the elements from the original state space [11,12,13]. 

Definition: Coverage refers to the extent to which a given verification activity has satisfied its 
objectives. Coverage measures can be applied to any verification activity, although they are most 
frequently applied to testing activities. Coverage is a measure, not a method or a test. As a measure, 
coverage is usually expressed as the percentage of an activity that is accomplished state space exercised 
or represented [4,9]. 

Testers of software prefer a metric that relates to coverage of the execution of source code, 
requirements, and its input domain. As example, requirements coverage analysis determines how well the 
requirements verified the implementation of the software requirements (IEC 61508, Section 3) [8], and 
establishes bi-traceability between the software requirements and the test cases. Structural coverage 
analysis determines how much of the code structure is linked to the requirements-based tests, and 
establishes traceability between the code structure and the test cases. Typically structural coverage criteria 
are divided into two types: data flow and control flow. Most structural coverage is control flow oriented; 
as such those will be discussed. For control flow criteria, the degree of structural coverage achieved is 
measured in terms of statement invocations, Boolean expressions evaluated, and control constructs 
exercised. The common types of coverage used today include statement coverage, decision coverage, 
condition coverage, single condition/decision coverage, multiple condition/decision coverage (MC/DC), 
t-way combinatorics, and multiple condition coverage. Table 1 below is an excellent reference on the 
ranking of coverage types.  

Table 1. Types of structural coverage [9]. 

 
Table 1 gives the definitions of some common structural coverage measures based on control flow. A 

dot (.) indicates the criteria that applies to each type of coverage. The structural coverage measures in 
Table 1 range in order from the weakest, statement coverage, to the strongest, multiple conditions. 

Note that the coverage measures above depend on access to program source code. CT, in contrast, can 
be a black box technique. Inputs are specified and expected results determined from some form of 
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specification. This aspect of CT is appealing because it is complementary to the “white box” coverage 
methods listed above.  

The starting point is the state space of inputs. The following example taken from the Kuhn tutorial 
illustrates the principle [10]. Suppose there is a program that accepts two inputs, x and y, with 10 values 
each. Then the input state space consists of the 102 = 100 pairs of x and y values, which can be pictured as 
a checkerboard square of 10 rows by 10 columns. With three inputs, x, y, and z, we would have a cube 
with 103 = 1,000 points in its input state space. Extending the example to n inputs, would provide a (hard 
to visualize) hypercube of n dimensions with 10n points. Exhaustive testing would require inputs of all 
combinations, but CT could be used to significantly reduce the size of the test set. Since, traditional 
coverage measures do not apply well to CT, the question remains what coverage measures are useful for 
CT? Kuhn et al. defines a number of measures in their 2010 NIST publication [9]. Namely, these include 
variable-value coverage, (t + k)-way combination coverage, and simple t-way combination coverage. 
Each of these measures has specific benefits depending on the goal of the testing. In this case, a desired 
outcome is to determine the practical limit of “stopping” t-way testing such that reasonable confidence 
can be claimed that all interaction faults have been uncovered or detected. Kuhn has collected statistics on 
a variety of domain applications and the data suggests the convergence of t-way testing is around 6-way 
interactions.  

Alternatively, if credible empirical evidence is known in advance that observed failures in similar SW 
systems are triggered by t or fewer conditions, testing all t+1-way conditions is in some sense equivalent 
to exhaustive testing – for the class of interaction faults. There are other fault classes that may not be 
detectable by t-way testing (e.g., memory leaks, timing faults), but there are other testing methods that 
can be used for those fault classes. The t-way stopping rule is of course a heuristic rule, and should be 
validated before adopting. Finally, it is reasonable to ask how t-way combinatorial testing compares to 
other testing methods, such as testing with MC/DC criteria or mutation testing or random. Are there 
differences in terms of detection, cost, resources, and scalability? Are they complementary?  Finally, no 
one software testing method is a silver bullet; but rather several testing methods used together and 
prudently can be far more effective toward CCF reduction and cost.  

2. OBJECTIVE 
The approaches, methods, and technologies described here within are mainly focused on testing 

actual software for embedded digital devices. That is, testing with actual inputs stimulating the software 
under test. The objective for this research is to develop a test specification to enable a study on the 
efficacy of t-way CT for embedded digital devices. To support this specification, questions will be 
developed to be tested by the study. These questions will be asserted in terms of statements that can be 
supported or refuted by the study.  

 Question 1: Can t-way CT perform provide evidence that is congruent with exhaustive testing for an 
embedded digital device? 

 Under what assumptions and conditions for this claim to be true?  

 Question 2: Can t-way combinatorial coverage criteria be comparatively contrasted to other coverage 
criteria (MC/DC, randomized) as to have some idea of the capabilities of CT?  

 Question 3: Is t-way CT effective at discovering logical and execution-based flaws in nuclear power 
SW-based devices (device under test [DUT])? 

 Question 4: Can t-way CT be facilitated by distributed computing and virtualized HW to reduce time 
on test, or accelerate testing?  

 Question 5: Is t-way testing (in the context of Questions 1–4) cost effective for certifying safety 
critical SW in nuclear power applications?  
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2.1 SCOPE 
The scope of this test specification is focused on t-way CT methods, technology, and supporting tools 

required to effectively carry out well-formed studies to answer Questions 1–5. It is recognized that 
dependencies in the critical path and early findings on the questions may limit the scope of the study, such 
as not locating a suitable DUT or finding that the Virginia Commonwealth University (VCU) smart 
sensor is not adequately representative of a NP smart sensor. In such cases, the program manager will be 
responsible for determining how the scope of the project is modified to answer the questions above.  

3. PRIOR WORK  

3.1 Bounded Exhaustive Testing 
Exhaustive testing, testing a system’s behavior for all combinations of inputs, is the ideal method for 

ensuring the dependability of a simple system. As was indicated Section 2.1, even for simple systems, the 
state space constituting all combinations of inputs and decision points is so large that exhaustive testing is 
unfeasible. Bounded Exhaustive Testing (BET) reduces this state space by applying boundaries on the test 
parameters of a system. An excellent survey and review of challenges with respect to CT methods is 
provided in [2]. While the majority of interest in BET has been for simpler systems [11,12] explored the 
viability of BET for a more complex dynamic fault tree modeling and analysis tool called Galileo. The 
principle of BET is that by observing only test cases that consider a specific number of inputs at any 
given time, the state space is reduced dramatically. Consider a system that takes 20 different events as 
arguments. This can be considered to have  possible input combinations. Now consider 
only the inputs combinations where six or less events may occur. The state space is reduced to 60,459 
possible input combinations.  

Recent work by Kuhn et al. [13] studied the effectiveness of CT in a variety of application domains, 
from critical systems (Traffic Collision Avoidance System, (TCAS) to web browsers). Their research has 
consistently showed that about 20–70% of software faults were triggered by single parameters, about 50–
95% of faults were triggered by two or fewer parameters, and about 15% were triggered by three or more 
parameters. Thus, CT is effective in practice. Later they studied the fault interactions of large distributed 
systems, and discovered that the failure-triggering interactions of this kind of systems are mostly centered 
around  4 to 6  parameter interactions [14,15]. Kuhn et al.’s work shows that CT can be as effective as 
exhaustive testing in some cases, if all failures can be triggered by an interaction of 6 or fewer parameter 
values. Recent work by this group has considered how sequences can be tested via CT, rule-based 
systems, comparing t-way CT testing with random testing, and methods for generating test cases and 
oracles.  

Bryce et al. made many contributions on test generation, failure diagnosis, and prioritization. 
Sherwood first introduced the CATS tool, which implemented a heuristic algorithm for pairwise coverage 
[16]. This group discussed two algebraic approaches to generate covering array, which could be used to 
build mixed covering array of Strength 2 and covering array of higher strength [17,18] introduced several 
greedy algorithms to construct covering arrays, mixed-level covering arrays, and biased covering arrays 
[19]. 

Cohen et al. worked on many areas of CT, including test generation, application, test prioritization, 
failure diagnosis, constraints, and evaluation. They first examined the need of variable strength covering 
array and proposed this new subject of research, after which they presented some computational methods, 
such as simulated annealing, to find variable strength array [20]. These researchers also explored a 
method for building covering array of strength three that combined algebraic constructions with 
computational search. This method leverages the computational efficiency and optimality of size obtained 
through algebraic constructions while benefiting from the generality of a heuristic search [21]. They used 
covering array to detect option-related defects and gave fault characterization in complex configuration 
spaces using the classification tree analysis [22]. 
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Marinov [11] evaluated the effectiveness of BET by generating mutations of nine different software 
segments and observing the ability of BET to catch the mutants. Each of the software segments consisted 
of between 8 to 47 branches. This study confirmed that in all nine software segments, 90% of mutants 
were discovered using a bound of 7 or less branches in the testing scope. This density of faults at lower 
bounds suggests advantage of the BET method over that of random test-case generation, which equally 
observes test cases with large and small inputs. Coppit [12],  Sullivan confirmed the scalability of this 
statement—that for more complex systems as well the density of faults is observed to be higher toward 
the lower bounds of inputs. 

Performance limitations for BET are typically observed during the test case generation phase, while 
the test case evaluation phase goes much quicker. Recent work in optimizing the efficiency of BET 
includes implementing parallel algorithms for test-case generation [23,24], which has been shown to 
speed up the test generation process by 7.05x using a software test-case generator called Korat. 
Optimization of the Korat software for Graphics Processing Unit (GPU) implemmentation [24] has 
observed 17.46 speed up by contrast to Siddiqui’s work [25], suggesting the multi-threaded GPU 
approach to have high potential for future work. 

One of the primary limitations of the BET is that the statistical reliability of the system cannot be 
determined since the input values selected do not tend to be user domain profiles of inputs used in 
production, but this limitation is hardly unique to BET, many other testing techniques have this same 
limitation. 

3.2 Combinatorial Testing as BET Method 
As software is growing in size and complexity, testing the software that covers all the interactions 

between the data, environment, and the configuration is a challenging task. The studies conducted in 
National Institute of Standards and Technology (NIST) on software failures in Food and Drug 
Administration medical devices from 15 years of recall data concludes that the majority of software 
failures are due to interaction faults arising from the interaction of few parameters, mostly by two and 
three [12]. For National Aeronautics and Space Administration-distributed databases, 67% of the failures 
are triggered by a single parameter, 93% by 2-way interaction, and 98% by 3-way interaction. Several 
other applications studied also depicted similar results, shown in Butler and Finelli’s 1993 article [3]. 
Applying the rule that the interaction between t or fewer variables are responsible for all the failures in 
software, testing all the t-way combinations of the variables can lead to “pseudo-exhaustive” testing of 
software. The combinatorial method, which involves selecting test cases that cover the different t-tuple 
combinations of input parameters, can lead to generating compact test sets that can be executed in 
considerably less time, while at the same time providing significant testability of the certain types of 
failures in software. Such failures are known as interaction failures because they are only exposed when 
two or more input values interact to cause the program to reach an incorrect result. CT is particularly 
suited to help detect problems like this early in the testing life cycle. The key insight underlying t-way CT 
is that not every parameter contributes to every failure, and most failures are triggered by a single 
parameter value or interactions between a relatively small number of parameters.  

On the basis of experimental data collected by NIST on a variety of software applications, as shown 
in Butler and Finelli’s 1993 article [3], it has been deduced that the cumulative percent of faults triggered 
in software reaches 100% when the number of parameters involved in the faults reaches six. This, in turn 
means that testing a software with all possible 6-tuple input parameter combinations can lead to tracking 
down all the bugs in the software. Exhaustive testing of four parameters with three values each covering 
all possible combinations will result in 81 test cases. If the combinatorial method that limits to a pairwise 
interaction level of parameters is used, the number of test cases can be reduced to nine. The combinatorial 
method thus renders a drastic reduction in test cases without compromising on the quality of testing [13]. 
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Figure 2. Cumulative proportion of faults for T (number of parameters) = 1...6 [13]. 

For combinatorial test set generation, the two mainly used combination arrays are covering arrays and 
orthogonal arrays. Covering arrays CA (N, t, k) are arrays of N test cases, which has all the t-tuple 
combinations of the k parameters covered at least a given number of times (which is usually 1). 
Orthogonal arrays (OA) (N; t, k) are covering arrays with a constraint that all the t-tuple combinations of 
the k parameters should be covered the same number of times. The major elements of a combinatorial test 
model are parameters, values, interactions, and constraints [26]. 

The first step for creating a test model is to identify all of the relevant parameters, which should 
include the user and environment interface parameters and the configuration parameters. The second step 
is to determine the values for these parameters. Using the entire set of values for all the parameters would 
lead to unmanageable test suites and testing. Hence, to confine the values of the parameters to a necessary 
and tractable set, apply the various value partitioning techniques like equivalence partitioning, boundary 
value analysis, category partitioning, and domain testing. As the third step, interactions between the 
parameters must be analyzed in order to generate an efficient set of test cases. Defining the valid 
parameter interactions and their strengths in the test model can aid in avoiding test cases involving 
interactions between parameters that actually never interact in the software and also in prioritizing test 
cases for closely interacting parameters. Specifying the “constraints” on the interactions, which define the 
set of impossible parameter interactions, is also vital for obtaining the expected software coverage [27]. 

R. Kuhn and V. Okun’s work on “Pseudo Exhaustive Testing for Software” [13] discusses the 
concept of integrating combinatorial methods with model checking and presents the results of applying 
this technique on an experimental system. Model checking can be used for automatic test case generation. 
The requirement to be tested is identified and a temporal logic formula is formulated in such a way that 
the requirement is not satisfied. This formulation of the negative requirement will be the test criterion, 
which will cause the software model to fail, thus causing the model checker to generate counterexamples 
that can be used as test cases. By using t-way coverage of the variables as the test criterion, the 
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combinatorial test cases can be derived. Temporal logic expressions in the form AG(v1 & v2 & ... & vt -> 
AX !(R)), which directs that for the input variable combination (v1, v2…vt), the condition R should be 
false in the next step, has to be fed as input to the model checker tools. Thus, the model checker will 
generate counter examples that cover all the variable combinations that satisfy R. The experiment 
conducted by Kuhn et al. in using a symbolic model checker to create pairwise to 6-way combinatorial 
test cases for a Traffic Collision Avoidance System gives supporting results. It shows a 100% error 
detection rate with 6-way combinatorial coverage of inputs. Although there were more counterexamples 
generated by the model checker than the actual t-way combinations needed, the number of redundant test 
cases were found to reduce as the input interaction coverage (t) increases. 

R. Kuhn (NIST) ) and J. Higdon’s (U.S. Air Force) research work on extending the application of CT 
to event driven systems, described in the paper “Combinatorial Methods for Event Sequence Testing” 
[27], also proves to be noteworthy for systems of the type found in NPP. Some faults in the software 
become activated only when there is a particular sequence of events happening—a very relevant condition 
related to NPP operations. Sequence covering arrays can be used to test all of the t-way order of t events 
in a software. The basic concept of sequence covering is that if there is a 2-way event testing, there should 
be a test case with x...y, such that y event occurs after x event. And there should also be a reverse order of 
the event occurrence y...x where x occurs after y. Testing the forward and reverse order of occurrences for 
all the events with respect to all other events can help when detecting most of the event-driven failures in 
the software. The research paper provides mathematical proof that the number of tests only grows 
logarithmically with respect to the number of events. This combinatorial sequence-based testing helps 
when tracking down all the event sequence-based issues in software, thereby improving the efficiency of 
testing. 

A lot of research has also been done in the field of studying and developing various algorithms for 
covering array test suite generation, including greedy algorithms, and heuristic methods. Bryce et al.’s 
greedy algorithm for test case generation in Bryce and Colbourn’s 2006 article [28], which takes user 
inputs on the priorities of the interactions to be covered and which also allows for seeding of fixed test 
cases into the test set, is identified as another important work in the field of CT. 

4. REPRESENTATIVE SMART SENSOR DEVICE TO BE TESTED 

4.1 VCU Open Source Smart Sensor  
The VCU Smart Sensor is a barometric pressure and temperature sensing device that originates from 

the VCU Unmanned Aerial Vehicles (UAV) Laboratory. The device is derived from a Part 23 (non-safety 
related) VCU ARIES_2 Advanced Autopilot Platform [7,9], which consists of mature design and code, 
and has over 10,000 hours of tested flight time. The VCU Smart Sensor is comprised of both hardware 
and software articles, which are described more in-depth in the following sections. The definitive 
descriptions of the VCU Smart Sensor software are the VCU Software Requirements Specification and 
Software Design Document—both found on the VCU Github repository. The VCU Github repository (see 
link below) contains all software, documentation, fault files, and testing setups. All software for the VCU 
Smart Sensor is written in GNU11 C programming language for the application code and compiled and 
executed by the GNU Compiler Collection (GCC) Version 7.3 to run on top of the ChibiOS Version 
17.6.4 Real-Time Operating System (RTOS). The VCU Smart Sensor aims to aid in the qualification and 
licensing of Embedded Digital Devices (EDDs) in the Nuclear Digital I&C Domain, where the tests 
performed thereafter will serve as a benchmark for the originally planned CCF measurements and tests. 

4.1.1 General Matter 

The VCU Smart Sensor software consists of several threads executing periodically in a real-time 
operating system. The following generalities are mentioned to place the software development process 
and documentation in context. 
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 Development - Several developmental tools were evaluated and used to generate the VCU Smart 
Sensor and the associated supporting documentation files. The primary development tools used 
include the GNU11 C programming language, the GNU GCC Version 7.3. 

 Code support - the graphic visualization tools code2flow, Doxygen, and Graphviz. The entire 
structure and functionality of the VCU Smart Sensor is comprised of source code, written in the 
GNU11 C programming language, which is readily available to the user for further inspection or 
external testing. The GNU GCC compiler is the standard compiler used to compile and execute the 
application code.  

 Function maps - The associated function-call maps, which are found in the Software Requirements 
System (SRS) and Software Design Document (SDD) in the VCU Smart Sensor Github repository, 
are generated directly from the VCU Smart Sensor application code using the online interactive code 
to flowchart converter, code2flow. Additionally, the open source tools Doxygen and Graphviz were 
used to create visual call graphs of the software. Doxygen is the standard tool for generating 
documentation from annotated application code sources, and Graphviz is an open source graph 
visualization software.  

4.1.2 User Documentation 

The following documents are provided for the user for more in-depth information: 

 The VCU Software Requirements Specification Document (Github)  

 The VCU Software Design Document (GitHub)  

 Product Specifications Document (Datasheet) for ST STM32F405xx and SM32F407xx ARM Cortex-
M4, 2016. 

 Reference Manual for ST STM32F405/415, STM32F407/417, STM32F427/437 and 
STM32F429/439 Advanced ARM®-Based 32-Bit MCUs, 2017. 

 Product Specifications Document (Datasheet) for TE Connectivity MS4525DO PCB Mounted Digital 
Output Transducer, Combination Differential, Gage, Absolute, Compound, & Vacuum Temperature 
and Pressure Sensor with I2C or SPI Protocol, 2016. 

 Product Specifications Document (Datasheet) for TE Connectivity Sensor Solutions MS4525DO PCB 
Mounted Digital Output Transducer, 2016. 

 I2C and SPI Interface Specifications Document (Datasheet) for TE Connectivity Sensors, Interfacing 
to MEAS Digital Pressure Modules, 2016. 

 Product Specifications Document (Datasheet) for TE Connectivity Sensor Solutions MS5611-
01BA03 Barometric Pressure Sensor, with stainless steel cap, 2017. 

4.2 VCU SMART SENSOR COMPONENTS 

4.2.1 Hardware Architecture 

The hardware architecture of the VCU Smart Sensor is shown in Figure 3. The main components of 
the hardware architecture include the STM32F4 ARM Cotrex-M4 168 MHz microcontroller, the 
MS4525DO absolute and differential pressure sensors, onboard memory components, multiple peripheral 
options, dedicated buses for networking, and components for the communications interfaces. Since the 
VCU Smart Sensor is based on the pre-existing and vigorously tested VCU ARIES_2 Advanced 
Autopilot Platform, using the ARM-based processor was an easy decision. Additionally, the ARM 
STM32FM407 System on a Chip is a very widely used chip in the embedded systems world and in 
safety-related embedded systems, and there is a vast array of supporting documentation for the 
STM32FM407 microcontroller. The ARIES_2 was originally designed as a generic hardware and 
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software platform, with a specific emphasis on ease of extendibility as a general computing device for 
embedded applications that require sensory input. More generally, ARIES_2 was designed for further 
platform modifications and testing. 

The sensor heads for pressure and temperature measurements are integrated through the I2C bus. The 
physical sensor head, Measurement Specialties MS4525DO offers both absolute and differential pressure 
sensing capabilities. The MA4525DO sensor head was chosen during design so that the user could choose 
between using either of the different sensor types, absolute or differential. Additionally, a static pressure 
sensor, the Freescale MP3H6115A, is included for altitude measurement, as well as a dynamic pressure 
sensor, the Freescale MP3V5004DP, included for airspeed measurement with sub-knot precision. The 
differential pressure sensor type is used currently to calculate the altitude for the VCU Smart Sensor, 
which is then mapped into an digital value using the associated Analog to Digital Conversion channels. 

 
Figure 3. Hardware architecture of the VCU Smart Sensor. 

The bus-bridge in the center of Figure 3 separates the two types of operations within the hardware 
architecture of the VCU Smart Sensor. The right side of the AHB/APB1 bus-bridge includes components 
used for high-speed operations, including the processor core and memory components, instruction and 
data buses, and memory buses, all connected through the 168 MHz AHB1 bus. The left side of the 
AHB/APB1 bus-bridge includes components used for low-speed operations, including external and 
internal communication peripherals such as the serial UART and I2C interfaces, for the communication of 
data and instructions. The MS4525DO sensor heads are included in the low-speed operations 
components. All low-speed operation components are connected through the 42-MHz APB1 bus. The 
external power supply requirements are covered in Section 4.2.1.2, External Power Interfaces.  

4.2.2 Software Stack Model 

The software stack model for the VCU Smart Sensor is seen in Figure 4. The VCU Smart Sensor 
software incorporates the ARIES_2 software, which has an integrated configuration system that allows 
for the runtime configuration of most low-level and high-level drivers, for onboard peripheral 
configuration. 
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Figure 4. VCU smart sensor software stack model. 

The software layers of the VCU Smart Sensor include the user application layer and the sensor 
drivers layer, which are original articles generated by the VCU UAV Laboratory, and modified for this 
current project for adjustment to the appropriate context and functionality required. The sensor drivers 
layer includes the drivers for the MS4525DO pressure sensor. The MS4525DO pressure and temperature 
transducers are managed by the user application layer to obtain pressure and temperature information, 
including altitude, speed, and offset. The VCU Smart Sensor is built around the ChibiOS real-time 
operating system (RTOS). ChibiOS provides the hardware drivers layer and the ChibiOS kernel layer, 
which include the drivers used for I2C and serial UART communication, and the RTOS scheduler, 
respectively. 

All of the various software layers communicate with each other via I2C communication, and are 
managed by the full stack RTOS ChibiOS. The combination of the application code and ChibiOS ensure 
the proper scheduling and execution of all periodic tasks within the system, which are handled by a 
priority-based queue system. The software stack model has been designed and adjusted through years of 
implementation to ensure that it is a modular software design that may be adjusted or modified for future 
work as necessary. 

4.2.3 Real-Time Operating System – ChibiOS 

The software provided by VCU is built around the ChibiOS complete development environment for 
embedded applications. The ChibiOS development environment includes a RTOS, a hardware abstraction 
level (HAL), various peripheral drivers, support files and tools. ChibiOS is a free, open source RTOS, 
which includes many standard APIs used for most common peripherals. Additionally, ChibiOS supports 
the STM32FM4 and all onboard peripherals, which was the primary reason for the original design choice 
of using the ChibiOS development environment. Since the VCU Smart Sensor originates from the VCU 
ARIES_2 Advanced Autopilot Platform, which is also built around the ChibiOS development 
environment, all protocols for the accurate interfacing of software using ChibiOS within the VCU Smart 
Sensor are already in place and have been tested extensively. The architecture model for ChibiOS is seen 
in Figure 5. 
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Figure 5. ChibiOS architecture model. 

ChibiOS is a static rate-based multi-threaded RTOS, which allows for deterministic behavior. The 
ChibiOS architecture is composed of an application model, startup code, ChibiOS/RT, and 
ChibiOS/HAL. The application model is a single application with multiple threads, consisting of a trusted 
runtime environment and multiple threads that share the same address. The original RTOS scheduler has 
been replaced by a thread-based protocol, which generates threads during platform initialization. The 
generated threads are awoken as needed, either by various VCU Smart Sensor functions, or on a periodic 
basis using internal timers, depending on the thread. The application and operating system are linked 
together into a single memory image (a single program). The startup code is executed after the reset, and 
is responsible for core, stack, and runtime initializations, as well as the calling of the main function of the 
application. ChibiOS/HAL is the hardware abstraction layer, which includes a set of device drivers for the 
peripherals most commonly found in microcontrollers. 

In ChibiOS, the startup code is provided with the operating system for the various supported 
architectures and compilers. Scatter files and any other necessary files required for system startup are also 
provided with the operating system. ChibiOS is meant to be used in 8, 16, and 32-bit microcontrollers 
starting from 2 KB of RAM and 16 KB of Flash. Additionally, ChibiOS can be ported to any CPU 
architecture as long as it includes a real stack pointer. More information on the ChibiOS open source 
development environment may be found at http://www.chibios.org/dokuwiki/doku.php. 

4.3 High Level Description of Smart Sensor 
The VCU Smart Sensor will run as a single interface application. On startup, the following will occur: 

 Input/Output (I/O) Initialization – A user-defined American Standard Code for Information 
Interchange (ASCII)-formatted input file for the sensor head will be fed into the Arduino from a host 
computer via a universal serial bus (USB) connection. This will be discussed more thoroughly in 
Section 4.2.5, Testing Interface. 
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 Thread Initialization – The ChibiOS Kernel will be started and the main program will become a 
thread. Various threads exist for specific functions within the source code. 

 Serial Initialization – The Serial I/O interface will be started between the host computer and the 
Arduino via a USB connection. This will be discussed more thoroughly in Section 4.2.5, Testing 
Interface. 

 Timer Initialization – The system timer will be initialized and started, counting the system time from 
system startup. 

4.3.1 Data Flow 

Figure 6 shows the program data flow of the software components of the VCU Smart Sensor in its 
testing environment context, including the threads and communication protocols used to transmit data 
between modules. 

 
Figure 6. Program data flow. 

As seen in Figure 6, the board peripherals are initialized prior to any other actions. Following the board 
peripheral initializations, three threads shall be generated: 
 Thread 1: Serial Port 

 Thread 2: Communication Transmit/Receive 

 Thread 3: Barometric Sensor. 

Following the generation of the three respective threads, various data transmission, receive, and wait 
functions shall be utilized to read/write barometric data/packets (at a rate of 2 Hz), calibration registers, 
and receive packets using serial communication protocols. 

4.3.2 Software Interfaces 

The VCU Smart Sensor shall interface with software to enable the user to communicate externally via 
software. The user shall interact with the PC-based console window. The PC-based console window shall 
communicate with the VCU Smart Sensor via a serial port (UART) on the VCU Smart Sensor. Data will 
be formatted as an ASCII text transmitted via RS-232 protocol to the PC-based command line prompt 
shell. Another software interface is the Windows/Linux operating system. Specific API calls shall be 
employed during the programming and operation of the VCU Smart Sensor. 

4.3.3 Communications Interfaces 

All I2C communication is performed using standard I2C protocol; that is, all I2C communication is 
event-driven and uses write-on requests. All communication within the VCU Smart Sensor, including the 
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different layers of the software stack and the implementation of high-level communications functions for 
the API, which shall be performed using the standard I2C protocol. Only one I2C bus is used within the 
VCU Smart Sensor, which shall perform all peripheral communication and driver communication for 
hardware interfacing purposes. The communication interface to the VCU Smart Sensor from an external 
user will be a serial port using a serial monitor application at 57600 Baud (bits per second).  

4.3.4 External Interface Design 

This section describes the five types of external interfaces: user interfaces, hardware interfaces, 
software interfaces, communications interfaces, and test and debug port interfaces. 

4.3.5 User Programming Interface 

Programming methods currently exist on Windows or Linux operating systems. The testing method 
preferred by VCU uses the Linux operating system, where the methods have been tested on the Ubuntu 
16.04 LTS 64-bit version, and all user programming operations are performed via the command line 
interface. Users are encouraged to program the VCU Smart Sensor using the ST-Link Utility. 

The steps for user programming using the ST-Link Utility are as follows: 

 The ST-Link software for programming may be downloaded at 
http://www.st.com/content/st_com/en/products/development-tools/software-development-
tools/stm32-software-development-tools/stm32-utilities/stsw-link009.html. The user must unzip and 
run the stlink-winusb-install.bat file, followed by a machine restart after the installation finishes.  

 From the start menu, the user must run the STM32 ST-Link Utility. 

 From the bar at the top, the user must click “target,” then click “connect.” The text at the bottom 
should say “SWD frequency 4 MHZ, device family STM32F405xx, etc.” 

 From the target menu, the user must click “program” and “verify.” 

 The user must click “browse” from the “File Path” menu, and navigate to the compiled aries.bin file 
in the “build” folder of aries_rt. 

 The user must ensure that “verify while programming” or “verify after programming” is selected. The 
user must also select “reset after programming.” The user then must click “start.” An example to this 
point is shown in Figure 7. 
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Figure 7. ST-Link utility programming process example. 

 The program window should exit and the bottom of the screen should say “Verification… OK.” 

 If the user reaches this point, then the VCU Smart Sensor is successfully programmed. An example to 
this point is shown in Figure 8. 

 
Figure 8. ST-Link utility programming success example. 



 

 17 

After programming is complete, the purple light on the VCU Smart Sensor should begin to blink. If 
the purple light does not blink, the user must unplug the programmer from the VCU Smart Sensor and 
power cycle the smart sensor. 

4.3.6 Operational User Interface 

The VCU Smart Sensor is configured to continuously convert pressure and temperature samples, and 
to transmit the data over serial communication. The “Small Red” board included is a Sparkfun Future 
Technology Devices International (FTD)I Basic 3.3V, which converts the serial signal used by the VCU 
Smart Sensor to USB that can be used by the host computer. A cable shall be included which connects the 
FTDI to the port labeled “MDM” on the VCU Smart Sensor. The cable should be a 6-position connector 
with three pins populated. The user shall plug this cable into the FTDI adapter such that the black wire is 
connected to the position labeled “GND” in the FTDI adapter. The other two pins should be connected to 
the “RXI” and “TXO” pins on the FTDI adapter. 

The user shall connect the VCU Smart Sensor and FTDI adapter to the host computer with a 
microUSB and miniUSB cable, respectively. The red light on the VCU Smart Sensor should turn on, and 
the blue and purple lights should blink continuously. The user shall open the serial port using a serial 
monitor application at 57600 Baud (bits per second). On Ubuntu Linux, the user may use the command 
line prompt “Screen/dev/ttyUSBx 57600” from the terminal where “x” is the name of the serial adapter. 
The user can view the available serial adapters by typing “ls/dev.” Usually the device will appear as 
“/dev/ttyUSB0.” If the user has connected correctly, they should see pressure, temperature, and Kalman-
filtered pressure displayed as key value triples of the format 
“pre:1.000000,tem:10.000000,kf_pre:4.799696,” for example. Pressure shall be displayed in Pascals, 
temperature shall be displayed in degrees, Celsius, and Kalman-filtered pressure shall be displayed in 
Pascals. 

4.3.7 User Data Logging Interface 

The VCU Smart Sensor shall provide a means for the logging of raw sensor data, the viewing of the 
data, and the downloading of the data. This interface shall be implemented via a serial port (UART) on 
the VCU Smart Sensor. Data will be formatted as ASCII text transmitted via RS-232 protocol to a PC-
based command line prompt shell. The commands for interrogating the data are as follows: 

 Initiate Data Stream 

 Stop Data Stream 

 Change Rate of Data Stream. 

4.3.8 Debug and Test Port Interface 

The VCU Smart Sensor shall provide a debug and testing port to allow for real-time monitoring of 
execution behavior of the VCU Smart Sensor. The VCU smart sensor will use ARM CoreSight Debug 
and Trace debug standard for this purpose. At a minimum, the VCU Smart Sensor will use the Serial 
Wire Debugger port for communicating test and debug information to commercial debug environments. A 
variety of debugger SW tools exist for the testing and debugging of the VCU Smart Sensor via Serial 
Wire Debugger. The options include the GNU GDB (GNU Debugger) 
(https://www.gnu.org/software/gdb/), the ARM Keil Microcontroller Development Kit Toolset 
(http://www2.keil.com/mdk5/), the ARM CoreSight Debug and Trace – Serial Wire Debugger 
(https://developer.arm.com/products/system-ip/coresight-debug-and-trace/coresight-architecture/serial-
wire-debug), and the Atollic Serial Wire Viewer (http://blog.atollic.com/cortex-m-debugging-
introduction-to-serial-wire-viewer-swv-event-and-data-tracing). 
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4.3.9 External Power Interfaces 

The software requires that the testing board uses a 3.3-V input voltage, which is currently provided 
via a USB connection, in order to perform specific limits calculations. Details on the miniUSB and 
microUSB connectors are given in Section 4.2.1.2, Operational User Interface. 

4.3.10 Hardware Interfaces 

The VCU Smart Sensor shall interface with several hardware articles during operation. The first 
hardware interface is the serial modem, used to communicate data information between the PC-based 
console window and the VCU Smart Sensor. The PC-based console window is responsible for a 
combination of inputs to the Arduino (subsequently transmitted to the VCU Smart Sensor) and readouts 
from the VCU Smart Sensor. The PC-based console window shall communicate with the Arduino via a 
USB connection and with the VCU Smart Sensor via a serial port (UART) on the VCU Smart Sensor. 
The Arduino shall communicate with the VCU Smart Sensor via a serial port (UART) on the VCU Smart 
Sensor. Data will be formatted as an ASCII text transmitted via RS-232 protocol to the PC-based 
command line prompt shell. The same serial port shall be used to output data to the host computer for 
logging purposes. The output data will be formatted as an ASCII text as well, including pressure, 
temperature, and Kalman-filtered pressure values.  

Only one I2C bus is used within the VCU Smart Sensor, which shall perform all peripheral 
communication and driver communication, for hardware interfacing purposes. Both digital barometric 
sensors shall interface to the main processor over the single I2C bus, and the communication shall be 
handled by the underlying operating system of the VCU Smart Sensor, ChibiOS. Specific protocols are 
already in place for the accurate communication of data between the transmitter and microcontroller 
within the VCU Smart Sensor, due to the original software protocols used within the VCU ARIES_2 
Advanced Autopilot Platform. These protocols have been tested extensively. A microUSB and miniUSB 
connector shall be used with the FTDI adapter to power and operate the VCU Smart Sensor. Further 
details on the miniUSB and microUSB are given in Section 4.2.1.2, Operational User Interface. 

5. TEST METHODOLOGY AND PROCESS 
This section outlines a general framework for designing a set of studies to address test objectives.  

5.1 Prioritization of Test Objectives  
The test methodology to be developed shall be designed to address the five test objectives listed in 

Section 2 of this document. The following definitions describe the set of desirable goals that a 
comprehensive software testing method (in the spirit of the NRC testability definition) endeavors to 
achieve.  

 Goal 1: The method is unambiguous and can be applied to a wide variety inputs data types, logical 
expressions, and configurations in most (if not all) types of safety critical software 

 Goal 2: The method has a basis on rigorous mathematical foundations, with well-defined assumptions 
and constraints 

 Goal 3: The number of tests to achieve “bounded exhaustive” testing is tractable (e.g., ideally linear 
or logarithmic) with respect to the number of terms (and interactions) in the expressions 

 Goal 4: All the variables interactions, conditions, and configurations (or terms) in the expressions can 
expressions are observable 

 Goal 5: Complicated expressions can receive more testing than simple expressions 

 Goal 6: The method is shown to have a high probability of detecting errors. 
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Whether all of these goals can be achieved in total or partially for combinatorial t-way testing is an 
open question, especially with constraints on resources, time, and cost. The purpose of the test 
methodology is to provide objective evidence on some these goals. Specifically, Goals 3, 4, and 6 are of 
particular interest.  

The restated research test objectives in context of goals are given in Table 2 below. 

Table 2. Test objective and goals. 
 Test Objective Supports Goals Requires 

1 Can t-way combinatorial testing provide evidence that 
is congruent with exhaustive testing for an embedded 
digital device? 

Goals 3 and 4 Representative DUT SW, tools 
to conduct t-way combinatorial 
testing, design of experiments 
(studies) to achieve 
comparative results.  

2 Can t-way combinatorial coverage criteria be 
comparatively contrasted to other coverage criteria 
(MC/DC, randomized) as to have some idea of the 
capabilities of combinatorial testing? 

Supports Goals 2 and 5 Representative DUT SW, in 
addition to conducting t-way 
combinatorial testing must 
conduct testing with respect to 
MC/DC criteria  

3 Is t-way combinatorial testing effective at discovering 
logical- and execution-based flaws in nuclear power 
SW-based devices? 

Supports Goal 6  Representative DUT SW, 
faulted versions of the DUT 
SW, Design of Experiments 
study to determine statistical 
power of the testing 

4 Can t-way combinatorial testing be facilitated by 
distributed computing and virtualized HW to reduce 
time on test, or accelerate testing? 

Supports Goals 3 and 4 Representative DUT SW, 
faulted versions of the DUT 
SW, distributed computing 
clusters, processor to function 
mapping (HADOOP), maybe 
virtualized HW. 

5 Is t-way testing (in the context of Questions 1–4) cost 
effective for certifying safety critical SW in nuclear 
power applications? 

Supports Goals 1 and 2 All of the above, PLUS 
manpower estimates in time 
and effort, resources required 
to estimate certification costs. 

 
Table 2 provides the details to examine goals in terms of “things” required to answer the 

questions of the objectives. These “things” roughly relate directly to expected resources, level of 
effort, and person-effort. For this research effort, test Objective 1 and 3 have been identified as 
essential, in that order. Others, while important must be placed on a second tier of priority. 
Accordingly, the following subsections will focus on test concepts for addressing test Objectives 1 
and 3.  

5.2 Test Objectives 1 and 3 
 T1: Can t-way CT provide evidence that is congruent with exhaustive testing for an embedded 

digital device? 

 T3: Is t-way CT effective at discovering logical- and execution-based flaws in nuclear power 
SW-based digital devices? 

5.3 Preliminary Concepts  
To fully develop the idea behind this study, we first describe some essential material related to 

state space and interaction t-way CT. Efficient generation of test suites to cover all t-way 
combinations is a difficult mathematical problem (NP hard). Additionally, contemporary software in 
most embedded digital devices is a combination of data types representing continuous variables (fixed 
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point, floats), integers, Booleans which have possible values in a very large range. For effective 
reduction to a testable state space, the range of these values must be mapped to a much smaller range, 
possibly a few values. This is usually done though equivalence partitioning and sampling methods—
another non-trivial problem. Most evident of all is the problem of determining the correct result that 
should be expected from the system under test for each set of test inputs. This is the oracle problem—
how to determine when something is correct. Fortunately, most of these challenges have been 
addressed to the point where practical methods and tools supporting t-way CT allow credible 
reduction of the input and state space. Nonetheless, there are still open research issues associated with 
t-way CT, and they are actively being addressed, notably the creation of effective test oracles.  

Beginning with the generation of tests, generally, the number of t-way combinatorial tests that 
will be required is proportional to vt log n, for n parameters with v possible values each. The key 
parameter in these equations is v and t. Keeping v and t small reduces the “parameter state space.” t is 
a function of the logical behavior of the software. v is a function of the data type space in terms of 
range of the data type. Normally, creating partitions for each v is minimally sufficient for testing. For 
example, a variable whose range was -10 to +10 might create a partition with the set {-10, -1, 0, 1, 
+10}—five representative values. This case provides the min/max values, values close to 0, and 0. To 
exhaustively test this range, the full span of values would be needed is (21). The issue in the design of 
this experiment is that the full span of variables cannot be used with a large range for comparative 
exhaustive testing. Another way must be found. One idea is to look at how the variable is used in the 
decision logic of the program. If the variable is a part of a condition or guard expression, then 
selecting a range of values on the condition and on either side of the condition might be sufficient for 
testing interactions. This is called boundary value analysis, to select test values at each boundary and 
at the smallest possible unit on either side of the boundary, for three values per boundary. The 
intuition, backed by empirical research, is that errors are more likely at boundary conditions because 
errors in programming may be made at these points. Additionally, the boundary analysis partition can 
now be expanded to include more representative elements. This becomes the basis for comparing to 
an “exhaustive set.” The bounded partition is defensible because every important element of the set is 
represented at least once and the smallest units are used at the boundaries.  

5.3.1 Number of Tests  

From [9], The goal to find covering arrays is to find the smallest possible array that covers all 
configurations of t variables. If every new test generated covered all previously uncovered 
combinations, then the number of tests needed would be:  

  (3) 

Since this is not generally possible, the covering array will be significantly larger than  but still 
a reasonable number for testing. It can be shown that the number of tests in a t-way covering array 
will be proportional to: 

 (4) 

Where v is the value span of the input variables or parameter (n) 

n is the number of inputs parameters 

t is the number of interactions between parameters.  

First, note that the number of tests grows exponentially with the interaction strength t, but 
logarithmic with the number of input parameters (n). The value span of v determines the base of the 
value, which can have a growth effect of the number tests. Table 3 below provides an indication on 
the relationship between v and t and the number of tests. Since its contributions is logarithmic, n was 
ignored. Although the number of tests required for high-strength CT can be very large (as illustrated 
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below), with advanced distributed processing clusters and mapping software (like gridunit or Hadoop) 
it is not out of reach. 

Table 3. Relationship between v and t for covering array tests. 
v  t  2 3 4 5 6 
2 4 8 16 32 64 
6 36 64 256 1024 4096 
10 100 1000 10,000 100,000 1,000,000 
12 144 1728 20736 248832 2,985.984 
16 256 4096 65536 1048576 16,777.216 

 
For illustrative purposes suppose the following subset of variables are taken from the VCU smart 

sensor: 

 20 Boolean variables - each variable takes on (T,F) 

 10 continuous time variables (float) – by Boundary Value Analysis (BVA )and equivalence 
partitioning each variable is represented by 12 values 

 10 integer variables - by BVA and equivalence partitioning each variable is represented by 10 
values.  

What would be the expected number of tests for a 4-way cover array? 

  

  

 . 

Total = 39,808 tests. 

Percentage of tests with respect to exhaustive testing (with respect to the defined equivalence 
partitions) 

          (5) 

This low-state space coverage result can be interpreted as follows. If the equivalence and BVA 
partitions are well-formed for the program, and the covering arrays generate tests that cover all 
combinations, then a very percentage of well-formed test vectors is needed to perform as well as brute 
force exhaustive testing—the essence of bounded exhaustive testing. This is the power of the test. The 
key assumptions are that reduction methods like BVA and equivalent partitions are well-formed, and 
4-way interactions are sufficient. In the case where 4-way interactions is found not to be sufficient, then 
performing t+1 (5) interactions is required. This would roughly have 6-fold increase in the number of 
tests to ~282,000. 

For a study, where the purpose of the study is to affirm or refute, the capacity of a given SW testing 
method to achieve bounded exhaustive testing or (pseudo exhaustive testing) then increasing t and v to 
levels well beyond where no faults are observed, could require significant computational resources, time 
and effort. This should be noted early as a significant factor in the study. 
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5.3.2 Conceptual Experiment Process 

Figure 9 below shows conceptually the experiment process required to achieve the objectives. The 
first step is to define all of the relevant parameters required for the test objectives. In this case the critical 
parameters are t, v, n, and the faulted versions of code; there are more parameters (like time, IDs) but 
these are critical. Each of these parameters must be pre-analyzed (e.g., by Boundary Value Analysis) to 
determine their equivalence partitions. With tool assistance, a “covering array” of the parameter space is 
used to define the list of experiments; this can be done parametrically (one factor at a time), or by Design 
of Experiment methods. The list of “covering” test vectors is then used to define the experiments. One-
way experiments can be designed is by varying the t variable for a given set of experiments, increasing t 
incrementally. The same can be done with the v parameter. These experimental test vectors are applied to 
the DUT. For each experiment executed, the DUT must start from a known good state. This usually 
requires the experiment automation instrumentation to issue reset before each experiment. Once the DUT 
is operational, the test vectors are applied. The outcomes of the DUT are observed by the test oracle or by 
assertions (maybe code based). The oracle makes notations on pass/fail, collects data for statistics, etc. 
The outcomes will belong to three sets: detected/undetected faults, coverage metric (percentage of 
covering array), and a metric related to the percentage of state space examined. This process is repeated 
for each “fault seeded” version of the code. The process continues until there are no more variations on 
the parameter sets for any fault-seeded versions OR the computational complexity exceeds the processing 
power to carry out the experiments. Data is post processed from the outcome space to determine if the 
experiments yielded evidence to support (or refute) the claims (test objectives). Implementation of this 
experiment method or process can be accomplished a number of ways. The key point is that the 
experiment process implementation must be designed to accurately collect data for the test objectives. 
The following subsection discusses a step-by-step outline on issues and choices for experimenters.  

 

 
Figure 9. Conceptual view of the bounded exhaustive testing process. 
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5.3.3 Step by Step Outline  

Step 1: The first step for creating an input test model is to identify relevant input parameters, which 
should include the user and environment interface parameters and the configuration parameters—the n 
parameter. For the smart sensor this includes as a minimum all input data variables, calibration variables, 
intermediate function variables, filtering algorithm variables, I/O handling variables, and device 
configuration settings. This set is around 35 to 40 parameters of various data structure types. The exact 
number will be determined via engineering analysis of important parameters. RTOS functions and 
parameters, drivers, and lower level service functions are excluded at this time. This step only identifies 
the candidate parameters.  

Step 2: The second step determines the values for these parameters—the v parameter. Using the 
entire set of values for all the parameters would lead to infeasible test suites and testing. Hence, to confine 
the values of the parameters to a necessary and tractable set, the various value partitioning techniques like 
equivalence partitioning, boundary value analysis, category partitioning and domain testing need to be 
applied. This step requires some analysis and tool support to define the ranges and domains of the 
parameter set for the test objectives.  

Step 3: As the third step, interactions between the parameters must be analyzed in order to generate 
an efficient set of test cases—this is the t value. Defining the valid parameter interactions and their 
strengths in the test model can aid in avoiding test cases involving interactions between parameters that 
actually never interact in the software and also in prioritizing test cases for closely interacting parameters. 
Specifying the constraints on the interactions is necessary to create a searchable state space.  As noted in 
Kuhn et al.’s 2010 article and Kuhn and Okum’s 2006 article [10,13], the input data range could be 
constrained by the problem domain or implementation aspects combined with the data representation 
format. As an example, speed measurement always belongs to the input domain s ≥0. If the speed input is 
a signed integer, then the input domain is reduced by half. As another example, if the speed sensor 
maximum output is 90, s [0,90], represented by a 16-bit unsigned integer format, and the software input 
is a 32-bit unsigned integer, then the input domain is reduced by 216, as these combinations will not be 
produced by the sensor.  

Step 4: The fourth step generates test cases for the DUT, which is one of the more challenging 
aspects of SW testing, and it is no different for combinatorial t-way testing. Most methods use a 
combination strategy which selects test cases based on some combinatorial strategy [29]. Combinational 
strategies involves four elements: (1) covering array specifying the specific kind of test suite to be used; 
(2) seeding to assign some specific user test cases in advance; (3) considering constraints in the test 
generation; and (4) using methods to generate test cases. The general approach, once the above steps have 
been concluded, is to build a set of test vectors that support an experiment list. Note most of combination 
strategy generator methods are supported by open source tools (such as NIST ACTS), but require expert 
domain knowledge to effectively use. While the elements of combinational strategy are encompassed in 
most tools, the two most important elements are covering arrays and test sequence generation. Most 
testing can be accomplished with these two methods.  

 Covering array - The two mainly used combination arrays for combinatorial test set generation are 
covering arrays and orthogonal arrays. Covering arrays CA (N, t, k) are arrays of N test cases, which 
has all the t-tuple combinations of the k parameters covered at least a given number of times (which is 
usually 1). Orthogonal arrays OA (N; t, k) are covering arrays with a constraint that all the t-tuple 
combinations of the k parameters should be covered the same number of times. The major elements 
of a combinatorial test model are parameters, values, interactions, and constraints [26]. Even using 
covering arrays, a large number of combinations will be required, but far fewer than fully exhaustive 
testing. For the small example in Kuhn et al.’s 2010 article [10], exhaustive coverage would have 
required 230,400 combinations, but all 4-way combinations were covered with 1,450, all 5-way with 
4,347, and all 6-way with 10,902.  
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 Seeding - Seeding means to assign some specific test cases or some specific schema in testing. 
Seeding is used to guarantee inclusion of favorite test cases by specifying them as seed tests. Seeding 
has two practical applications. (1) Seeding allows explicit specification of important combinations. 
For example, if a tester is aware of combinations that are likely to be used in the field, the tester can 
specify a test suite to contain these combinations. (2) It can be used to minimize change in the test 
suite when the test domain description is modified and a new test suite regenerated.  

 Constraints. Constraints occur naturally in most systems. The typical situation is that some 
combinations of parameter values are invalid. Existence of constraints increase the difficulty in 
applying CT, as most existing test generation methods have limited ways to deal with constraints. 
With the NIST ACTS tool one can specify constraints, which inform the tool not to include specified 
combinations in the generated test configurations from the covering arrays. ACTS supports a set of 
commonly used logic and arithmetic operators to specify constraints.  

 Test sequence generation - Test case generation for t-way CT is a very active research area, and thus 
there are many options for generating test sequences. The following website provides a list of tools 
that are used to generate testing sequences (http://www.pairwise.org/tools.asp). Greedy algorithms 
have been the most widely used method for test suite generation for CT. They construct a set of tests 
such that each test covers as many uncovered combinations as possible. Recent research has focused 
on using model checking with test sequence generation to automatically generate tests and oracles 
together. Model checking is applied to test generation in the following way. One first chooses a test 
criterion, that is, decides on a philosophy about what properties of a specification must be exercised 
to constitute a thorough test. When the model checker finds that a requirement is inconsistent, it 
produces a counterexample. These counterexamples are used as stimulus to the SW.  

Step 5: The fifth step is generating oracles. Even with efficient algorithms to produce covering arrays, 
test sequences, the oracle problem is critical. Testing requires both test data and results that should be 
expected for each data input. Much care should be given early and often on the “whats and hows” of the 
oracle; that is define what you want the oracle to do, and how it is going to do it. Approaches to solving 
the oracle problem for CT include: 

 Crash testing: The easiest and least expensive approach is to simply run tests against SUT to check 
whether any unusual combination of input values causes a crash or other easily detectable failure. 
This is essentially the same procedure used in “fuzz testing,” which sends random values against the 
SUT. Crash testing is the weakest form of oracle testing.  

 Embedded assertions: An increasingly popular “light-weight formal methods” technique is to embed 
assertions within code to ensure proper relationships between data, for example as preconditions, 
post-conditions, or input value checks. Tools such as the Java modeling language or Frama-C, can be 
used to introduce very complex assertions, effectively embedding a formal specification within the 
code. The embedded assertions serve as an executable form of the specification, thus providing an 
oracle for the testing phase. With embedded assertions, exercising the application with all t-way 
combinations can provide reasonable assurance that the code works correctly across a very wide 
range of inputs. Of course the DUT SW language must accept embedded assertions, and this requires 
access to the source code. It is not known at this time how difficult it would be to instrument the VCU 
Smart Sensor code with embedded assertions. It would have to be recompiled with the Frama-c 
compiler.  

 Model based test generation uses a mathematical model of the SUT and a simulator or model checker 
to generate expected results for each input. If a simulator can be used, expected results can be 
generated directly from the simulation, but model checkers are widely available and can also be used 
to prove properties, in addition to generating tests. What makes a model checker particularly valuable 
is that if the claim is false, the model checker not only reports this, but also provides a 
“counterexample” showing how the claim can be shown false. If the claim is false, the model checker 
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indicates this and provides a trace of parameter input values and states that will prove it is false, 
which can be submitted to the DUT for fault verification and identification. 

 Model Based Simulation – With tools like Simulink, complex models of the algorithms (representing 
SW functions) can be functionally captured and simulated to provide a comparison to the device 
under test. This is called model in the loop simulation. Of course, the model has to be validated.  

Step 6: The sixth step develops faulty versions of code. To test the effectiveness of the fault detection 
capabilities of the testing methods, faulty code is needed. Generated faulty versions can be accomplished 
several ways. First, real bugs from the development and operational history of the software can be used as 
faulty versions. Second, mutated versions of the code can be created using code mutation tools. Both 
ways are acceptable means to producing reference cases.  

Step 7: The seventh step executes the tests. Executing the tests require an automated test environment 
where test vectors are submitted to the DUT and results are cataloged. Most of the time these automated 
test environments are built from commercial instrumentation environments such as LabVIEW. The key 
aspect of these environments is to capture all operational steps necessary to collect data to support the test 
objectives. The data includes things like sequencing test cases with time stamps and IDs so that results 
can be matched to inputs. Additionally, data processing requires that test results be marshaled in a way 
that allows faulty versions be tracked so that test results can show how many tests were required to detect 
the fault, how much state space was exercised, etc. To support coverage metrics we need to keep track of 
the number of test case interactions that have been processed need to be tracked so that comparative 
analysis to exhaustive testing can be made. One of the golden rules of CT from [10] start testing using 2-
way (pairwise) combinations, continue increasing the interaction strength t until no errors are detected 
by the t-way tests, then (optionally) try t+1 and ensure that no additional errors are detected. As with 
other aspects of software development, this guideline is also dependent on resources, time constraints, and 
cost-benefit considerations. 

Step 8: The eighth step analyzes the results. After all test cases have been executed, then post-
analysis can proceed to compute various metrics on the efficacy of the testing. Since a comparative 
analysis of t-way CT to exhaustive testing is desirable, multiple t-way interactions are needed. Also, a 
simpler function is needed rather than the entire code base of the Smart Sensor to achieve some 
comparative results, or the computational complexity will overwhelm the processing resources. Selection 
and analysis of metrics at the beginning of the experiment is important to ensure that experiment can 
support calculation of the metrics at the post-analysis phase.  

5.3.4 Functional Test Environment Perspective 

In the preceding sections, (Section 5.3.3) it discussed the process steps of how to realize or “build” a 
BET study. In this section, an implementation perspective is presented of how to realize a test 
environment setup. Note what is described in this section is just one of many ways to realize the process 
outlined in Section 5.3.3. Figure 10 presents a functional test environment diagram with respect to tools, 
systems and components needed to support the BET experiment process. The calls out numbers on the 
diagram roughly represent the “steps” associated with the process outline in Section 5.3.3. The first phase 
is to parse the code to reveal the variables instances, data structures, parameters, and constants the code 
embodies. This is typically found in the *.map file from the compiler.  The variables of interest are 
entered into the NIST ACTS and CCM tools to produce groupings of test vectors with respect to the 
experiment process. That is, experiment parameters (t and v) are parametrically varied to produce a table 
of t-way tests. Through the configuration and setup instrumentation, the DUT is configured to operate in 
manner that is consistent with its operating requirements. From the ACTS tool, the test vectors are 
systematically loaded into the DUT or alternatively through a test sequencer, which loads the test vectors 
into DUT. For each test vector, the DUT responds to that specific test vector with a set of readouts 
(outputs). These outputs may be combinations of pure outputs, states, or conditions. The state monitoring 
function observes these readouts and performs time stamping, instance tagging, and ordering to facilitate  
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post analysis and fault location identification. These readouts are then forwarded to the oracle where 
decisions are made on the validity of the readout. The oracle validity data field is then appended (or 
associated) to the readout.  Finally the readouts, oracle validity results are marshaled into a data base (like 
MySQL) so that queries can be made on the data for post analysis. In the upper-right corner of Figure 10 
is an alternative DUT configuration.  Realizing that working with a small set of smart sensor devices 
(possibly 1 or 2), will constrain the efficiency of the experiment process. VCU with Imperas 
Technologies have developed a high-fidelity virtualized HW model of the smart sensor [30] that can run 
on the OVPsim platform simulator [30].  The advantage to this approach is that multiple VM instances of 
the smart sensor can be distributed across a compute cluster or a server cluster to significantly accelerate 
testing as was done in [31].  The disadvantage to this approach is that the “experiment process 
management” complexity is much greater that the single article test environment.  It would be judicious to 
first implement the “single” article test environment while planning to move to a distributed test 
environment. 

 

 

 
FIGURE 10 EXPERIMENTAL FUNCTIONAL DIAGRAM 
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6. TOOLS AND RESOURCES 
Numerous commercial and open source tools are available to assist the experimenter in conducting 

the study. These can be found at (http://www.pairwise.org/tools.asp). However, the tools produced by 
NIST would be a good choice for a variety of reasons. Namely, they have been used in the analysis of 
critical systems. Key Resources to Support Test 

The resources listed below are the essential items, tools, and resources to support the functional 
experimental diagram in figure 10.  This list is not considered definitive nor complete, but suggests the 
essential items and resources to conduct an experimental evaluation.  

1. Device under Test Software – VCU Smart Sensor SW code basis.  
2. ST-Link  debug software or similar (see section 4.3.8) 
3. ST STM32F405 – ARMM4 Cortex processor development board.  
4. Ubuntu 16.04 LTS 64 Linux 
5. GNU11 C programming language, the GNU GCC Compiler Version 7.3. 
6. The VCU Software Requirements Specification Document (Github)  
7. The VCU Software Design Document (GitHub)   
8. LabVIEW development environment  
9. Host computers, servers and database software 
10. USB-8451 I²C/SPI Interface Device (maybe)  
11. Requirements for generating a test oracle – Specification of required functionality.  
12. Instrumentation to observe results (data logging) – State monitoring function 
13. Optional: Virtualized smart sensor model, OVPsim, compute clusters, test management SW, 

etc…    

NIST Combinatorial Testing tools:  
1. ACTS Covering array generator – basic tool for test input or configurations; 
2. ACTS Input modeling tool – design inputs to covering array generator using classification tree 

editor; useful for partitioning input variable values 
3. ACTS Fault Location Tool – identify combinations and sections of code likely to cause problem 
4. Sequence covering array generator – new concept; applies combinatorial methods to event 

sequence testing 
5. ACTS CCM Combinatorial coverage measurement – detailed analysis of combination coverage; 

automated generation of supplemental tests; helpful for integrating c/t with existing test methods 

7. TEST PLAN 
To execute the experiments, a test plan should be created. Since this is a research-based effort, full 

compliance to a standard is not required; however, the key elements of IEEE 829-2008 [33] would be a 
good choice to incorporate (Standard for Software Test Documentation), 829 is an IEEE standard that 
specifies the form of a set of documents for use in defined stages of software testing. The main 829 
articles that would be useful for this study would be: 

 Test objectives 

 SW test items 

 Assumptions  

 SW features to be tested 
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 SW features not to be tested 

 Technical approach or process 

 Event outcome space, and pass/fail criteria 

 When to “stop” criteria 

 Test analysis deliverable. 

8. POTENTIAL CHALLENGES AND NEXT STEPS 
The potential challenges to the proposed research are listed below: 

 Inability to determine if the VCU Smart Sensor is representative of a typical nuclear power plant 
smart sensor.  

 Complexity of SW testing exceeds given time and effort to conduct sufficient experiments to support 
or refute test objectives.  

 Development of oracles – somewhat unknown at this point with respect to the best approach to 
follow.  

 Unfamiliarity with the tools – currently, very little experience is available with the tools required to 
facilitate the experiment.  

 Time schedule – the given time (9 months) to prepare, conduct, execute, and process data is a very 
rapid pace. 

Next steps are to fully develop the details of the experimental process steps in the context of the tool 
support and the VCU Smart Sensor software. The first step is to determine what functions in the Smart 
Sensor (provided it is representative) will be selected for testing. From this starting point, each step in the 
above process needs to be fully examined in the context of supporting the test objectives. Decisions will 
be made in the next month or so about what tools to use, the maximum extent of parameter experiment 
space, what oracle designs are appropriate, the amount of data expected to be processed, etc. Most of 
these decisions can be resolved quickly once the functions to be tested are identified, and the extent and 
dimensions of the testing are considered in context of test objectives. 
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