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ABSTRACT 

Operators at a nuclear power plant (NPP) are responsible for several tasks 

that can result in the operations organization becoming the most burdened 

organization in the plant. In addition to visually monitoring plant instruments in 

digital or analog form to keep track of plant conditions, operators are tasked with 

changing the plant configuration when needed, performing operator rounds, 

conducting and documenting surveillances, issuing clearance orders (including 

tagging in and out equipment), coordinating with other plant organizations, and 

performing random walks and checks of the plant. With this level of tasking, 

operators tend to adopt a reactive model to plant monitoring—i.e., responding to 

alarms and events—rather than a proactive model, under which small signs of 

anomalies can be detected, tracked, and mitigated before the issue escalates. 

Escalation of an anomaly to a functional failure can result in severe economic or 

safety consequences to the plant and demand a responsive effort with costs that 

often far exceed what would have been invested to mitigate the issue.  

Techniques that have been developed to proactively detect anomalies in a 

plant are based on manual inspection through visual or physical checks on 

equipment by surveillances, preventive maintenance, and operator rounds. The 

nuclear power industry has recently become interested in implementing 

automated monitoring through retrofitting equipment that are not currently 

instrumented with permanent condition-monitoring sensors capable of 

transferring data to custom-developed methods, revealing the condition of the 

equipment. Deploying this approach on a large scale is an investment that 

requires resources the industry is reluctant to allocate under current economic 

conditions, and would require significant time to adopt— time that industry does 

not have. This research targets an alternative approach that is both inexpensive 

and faster-to-deploy: leveraging enormous amounts of existing process data that 

are archived on a plant computer. These data can be used to detect process 

anomalies based on recognized behaviors that have been identified over decades 

of operations. The aim of this approach is to enable operations to detect 

anomalies that are hidden in the process data, foresee catastrophic failures, and 

prepare for or mitigate them.  

A specific scenario was targeted in this effort in collaboration with a United 

States NPP. On May 11, 2018, and May 26, 2018, two drywell fan-coil units 

(FCUs) at Cooper Nuclear Station failed unexpectedly, resulting in a 6-day plant 

outage. A lack of vibration sensors on the FCUs prevented the plant from 

predicting and preparing for this failure. Because installing new sensors was not 

an option for the plant, new means to detect anomalies associated with this 

failure mode were needed. Thirty-six process-instrument data points from the 

plant computer related to the failure were instead used to achieve this objective. 

This required studying minor deviations in the data correlation in time to 

determine whether a change has occurred due to an external factor (such as 

environment or load change) or an equipment or process anomaly because of a 

failure precursor. The operator brain cannot perceive such correlations beyond a 

few degrees of freedom, especially when tasked with many competing priorities. 

As a result, machine-learning methods were developed and applied. Two 

unsupervised learning methods—K-Means and isolated forests—were tested and 

yielded a large number of false-positive alarms. They were therefore excluded. 

Long short-term memory (LSTM) networks were used instead to introduce the 
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time and memory element. The LSTM method was customized with an anomaly-

detection criterion that yielded satisfactory results. 

The resulting method was able to predict the failure of FCU D 8 days before 

it occurred and, coincidentally, detected a sensor failure 2 days before its 

occurrence. The failure of FCU A occurred around two weeks after FCU D. This 

caused the FCU A failure to not be detected because the model has not been 

trained for a scenario that has only three fans running under similar plant 

conditions (i.e., this new behavior could not be predicted without more time for 

the machine to learn). In addition to directly using the method to monitor fans for 

the collaborating NPP, this pilot will feed into two directions of research: 1) to 

develop equipment-agonistic anomaly-detection methods 2) to create physics-

based anomaly detection using a digital twin.  
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SUBTLE PROCESS-ANOMALIES DETECTION USING 
MACHINE-LEARNING METHODS 

1. INTRODUCTION 

Operators at a nuclear power plant (NPP) are responsible for several tasks that can result in the 

operations organization becoming the most burdened organization in the plant. In addition to visually 

monitoring plant instruments in digital or analog form to keep track of plant conditions, operators are 

tasked with changing the plant configuration when needed, performing operator rounds, conducting and 

documenting surveillances, issuing clearance orders (including tagging in and out equipment), 

coordinating with other plant organizations, and performing random walks and checks of the plant. With 

this level of tasking, operators tend to adopt a reactive model to plant monitoring—i.e., responding to 

alarms and events—rather than a proactive model, under which small signs of anomalies can be detected, 

tracked, and mitigated before the issue escalates. Escalation of an anomaly to a functional failure can 

result in severe economic or safety consequences to the plant and demand a responsive effort with costs 

that often far exceed what would have been invested to mitigate the issue.  

There are four main techniques to proactively detect anomalies in the plant: 

• Manual inspection. This is the model currently used by most of the nuclear power industry (through 

preventive maintenance and surveillance). Temporary and localized measurement of a certain 

physical phenomena (such as vibration) is performed manually, and the data are analyzed to 

determine the health of an equipment.  

• Plant instrumentation with set-point based alarms. This model is also used by much of the nuclear 

power industry through legacy plant computer and localized systems. The monitoring system alarms 

when the monitored parameter falls outside given set-points. This method is limited because it does 

not detect anomalous behavior within the set-point range and can give false positive indications for 

normal behavior that crosses a set-point value. 

• Automated monitoring. Through retrofitting equipment that are not currently instrumented with 

permanent condition-monitoring sensors, data can be transferred to custom-developed methods that 

determine the condition of the equipment. This is the model to which the industry is moving. 

However, deploying this approach on a large scale is an investment that requires resources the 

industry lacks under current economic conditions, and would take significant time to adopt—time that 

industry does not have. 

• Process-anomaly detection. This method is used to detect process data anomalies based on 

recognized behaviors that have been identified over decades of operations. The nuclear power 

industry has an enormous amount of process data that are archived in plant computers. These data can 

often reveal some condition anomalies, but are not utilized because analyzing data is challenging. 

Process-anomaly detection can be applied in parallel to manual inspection and automated monitoring, 

but is mostly valuable when the equipment monitored cannot be manually inspected or equipped with 

automated monitoring (this report targets an example of this scenario). 

These four levels of defense are aimed towards a common objective, which is to reduce the level of 

unexpected equipment failure. This results in a lower probability of operations interruption and plant 

outage and fewer alarms and events (i.e., reduced operator workload in monitoring the plant). 

Adopting a proactive model through process-anomaly detection requires studying minor deviations of 

many variables correlation in time to determine whether a change has occurred due to an external factor 

(such as environment or power generation) or due to an equipment or process anomaly caused by a failure 

precursor. The human brain cannot perceive variables’ correlations beyond a few degrees of freedom; this 

is especially true for an operator, tasked with many competing priorities. High-dimensional feature spaces 
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are well beyond human capabilities to understand: the interactions occurring on a continual temporal basis 

and how they relate to ongoing equipment performance or upcoming failure events is complex. A 

machine, equipped with intelligent methods that can distinguish between an anomaly and normal plant 

behavior, is therefore a better candidate. Advanced machine-learning (ML) algorithms processing 

continual data streams can learn complex patterns and be configured to flag anomalies indicative of 

pending failure events in order to support an operator’s decision process. However, extensive research is 

needed to develop these sophisticated models that can span supervised (i.e., informed by a training set of 

data that represent prior knowledge) and unsupervised (i.e. prior knowledge is not provided through the 

training data set) learning environments drawing from an ever-growing pool of algorithms and structural 

approaches. Several tools, designed by online-monitoring vendors, are offered for anomaly detection 

using pattern recognition. These tools, however, mainly provide libraries of methods to use and require 

the user to configure them for the specific problem being addressed.  

The aim of this effort is research and develop data-analysis methods to detect anomalies based on 

data that is already present in an NPP plant computer. While a method agnostic to equipment— i.e., one 

method that can work for any equipment in the plant—is desirable, achieving this objective requires an 

incremental approach. The aim of this effort is to tackle a critical equipment failure as a step towards 

more generalized anomaly detection.  

1.1 Problem Statement 

A drywell is the containment structure enclosing the vessel and recirculation system of a boiling-water 

reactor (BWR, U.S. Nuclear Regulatory Commission 2019). Figure 1 shows where the drywell space lies 

relative to the reactor vessel. Because the reactor vessel is completely enclosed within the drywell, heat 

must be continuously removed from the drywell atmosphere by the drywell’s ventilation system. The design 

temperature limit of the drywell is 135F (General Electric 2011). Typical temperatures during operation 

from fall to spring are ~111F whereas, in the summer months, the temperature ranges from ~125 to 130F 

due to the higher temperature of river water. The plant intakes Missouri River water through a shell-and-

tube heat exchanger. The river water provides cooling for the reactor-equipment cooling (REC) water. The 

REC water flows through shell-and-tube heat-exchanger coils, which have a 10°F approach (i.e., the 

difference between the water-inlet and the air-outlet temperatures). The REC-water flow rate is 

approximately 1,650–1,700 gallons per minute (GPM).  

During normal plant operation, a closed loop of flowing nitrogen within the drywell provides cooling. 

Nitrogen flows through four fan coil units (FCUs)—each comprising a shell-and-tube heat exchanger and 

a centrifugal fan and located at the bottom of the drywell—surrounding the drywell. Each FCU consists of 

an electric motor driving a shaft directly coupled to a fan. The fan and motor units are connected to coils 

that pass heat from the air to recirculating fluid.  The fan pulls hot air from the top of the drywell space 

above the nuclear reactor to the FCU. The REC loop provides cooling to all four FCUs. Hot nitrogen gas is 

cooled as it passes over the cooling-coil heat exchanger, and the fan directs the cool nitrogen upwards 

through a supply duct.  

Figure 2 shows a schematic overview of FCU placement within the drywell environment from both 

the lateral and top-down perspectives. The FCUs are placed adjacent to FCU recirculation pumps (A and 

B) that control the fluid recirculation to the FCU coils. The reactor vessel is in the middle of the 

configuration. The drywell fans are identical except for the direction of rotation, but the enclosures are 

different given the custom designs for each of the four fan units. The fan units are designated FC-R-1A, 

B, C and D and are each allocated to one of four quadrants of the drywell (Figure 2).  

On May 11 and May 26, 2018, two drywell FCUs at the Cooper Nuclear Station (CNS, see Figure 3) 

failed in a catastrophic manner, resulting in a plant outage. Specifically, Unit FC-R-1D failed on May 11, 

followed by Unit FC-R-1A on May 26, 2018 (see Figure 2 for location and Figure 4 for one of the 

failures). Both units failed when outboard fan bearings failed, damaging shafts and the mechanical 

infrastructure supporting the units. The bearings were installed in 2016, and failure occurred after 
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approximately 18 months of service. After the failure, the fan shafts were found to have broken at the fan 

side of the inboard bearings. The outboard bearings and support structures were severely damaged. The 

outboard end of the fan shaft had ground down through the bearing, lowering that end of the shaft. The 

fan wheels and inlet cones were somewhat damaged due to a lowering of the outboard end of the fan 

shaft. The failure of the second FCU resulted in an unscheduled plant shutdown lasting 6 days to facilitate 

repairs, resulting in a significant loss of revenue for the plant. This shutdown was necessary to protect the 

integrity of the drywell environment and stay in compliance with regulatory standards relative to drywell 

temperature limits.  

 

Figure 1. Configuration of drywell within a typical BWR, from Lochbaum (2013). 

 
(a) Lateral perspective 

 
(b) Top-down perspective 

 

Figure 2. FCU placement and arrangement of FCUs within CNS’s drywell containment structure from 

lateral (left) and top-down (right) perspectives. 
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(a) Three-dimensional model of fan (b) Fan mockup 

Figure 3. Drywell FCU at Cooper Nuclear Station. 

 
Figure 4. FCU failure showing the shaft displaced from the bearing. 

The FCU system is not instrumented with sensors monitoring motor or bearing metrics, which could 

have been used for operators to track equipment health. New sensors cannot be installed without 

significant effort due to a lack of needed infrastructure and the complexity of an installation. This 

necessitates approaching this problem using process-anomaly detection. The CNS facility captures 

extensive sensor data from various plant environments and processes via the plant computer to monitor, in 

real-time, system and equipment performance. Sensor data points are archived at varying timescales, 

allowing for users to retrieve data via a software interface displaying time-series plots, data tables, and 

varying aggregate statistics. This effort identified thirty-six individual data points from the plant computer 

at CNS that relate to the drywell environment and, therefore, to the fan. These data are logged at roughly 
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a 1-minute temporal resolution, and include temperature, humidity, and fluid-flow rates. Each data point 

is assigned a unique data point identification (DP ID) in this effort for traceability. 

1.2 Literature Review 

Throughout multiple industries, traditional remaining-useful-life (RUL) metrics have been used to 

track equipment degradation guiding preventative maintenance and economic decisions. RUL is based on 

known equipment parameters, extensive operations testing, and known operating-environment constraints 

to track progress on degradation curves. However, faults occurring because of a combination of 

degradation and other factors or due to unknown defects can occur outside of known degradation curves. 

This makes them unreliable for fault prediction. Instead, researchers have turned to ML algorithms 

configured for unsupervised or supervised scenarios to identify anomalies that can be useful predictors for 

oncoming or already-occurring faults. This section will present some of the relevant work that was 

captured in literature. 

Fault detection via associated data anomalies has been studied using various approaches. Farber et al. 

2019 developed a method to detect small-break loss of coolant at a nuclear power plant using kernel 

density estimation. The method resulted in an average detection delay of one-seventh the time that a 

reactor usually takes to trip. A system for fault detection occurring within variable-air-volume air-

conditioning systems based on system behavior rules was evaluated in Wang and Chen (2016). 

Specifically, they incorporated a residual-based exponentially weighted moving-average control-chart 

method in conjunction with twenty-six system behavior rules and validated this approach on air-

conditioning systems data, incorporating artificial faults. Despite promising results, this approach requires 

extensive subject-matter expertise to develop rules, which limits its implementation to already well-

known systems.  

Other researchers utilized support vector machines (SVM) (Cortes and Vapnik, 1995) model to detect 

anomalies.  In specific, an unsupervised single-class SVM was used to model anomalies in heating, 

ventilation, and air conditioning (HVAC) systems (Beghi et al. 2014). The lack of labelled HVAC data 

streams often prohibits supervised approaches. A single-class SVM learns to identify objects belonging to 

a class defined by the features of a single-class training data set. In this case, it was used to develop a 

“reference” model by training on data derived from a unit operating under normal conditions with no 

faults. The model was applied to an HVAC data set with known anomalies, and it returned good 

classification results. Although single-class SVMs are ideally suited to work with extremely unbalanced 

data sets like those studied for fault detection, it is only suitable as a grouping mechanism and may 

become less effective as variance or noise within training data expands the grouping boundaries. This 

could make the model less effective at detecting faults. This issue can also be aggravated by “concept 

drift,” a phenomenon that occurs in time-series data exhibiting long-term changes or temporal 

dependence.  

Fault detection based on signal-feature extraction and a decision tree was evaluated for vibration data 

from roller bearings on low-speed equipment (Song et al. 2018). Feature extraction was performed by 

combining a statistic filter, wavelet-package transform, and a moving-peak-hold method. Resultant 

features were passed to a decision tree for fault diagnosis. A method such as this requires directly coupled 

sensors and tuning signal-feature extraction using extensive training data for both normal and abnormal 

states.  

ML algorithm development supported by engineering subject-matter expertise was used to detect 

faults in a commercial-building chiller unit, achieving an 80% accuracy during testing (Hu et al. 2019). 

The approach outlined specific questions asked of the experts to guide model development and reduce 

features. SVMs were trained on well-curated and labeled data. The analysis shows it is possible to 

significantly reduce the number of features while maintaining model performance metrics. But the 

approach requires extensive access to experts with deep domain expertise.  
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A framework was proposed and tested where anomalous data in HVAC temperature- and electricity-

sensor data were identified and then pruned using contextual information to reduce false positives (Hayes 

and Capretz 2015). A univariate Gaussian predictor model was used to build a historical model of the 

data; this was used to predict and compare new content anomalies. Because the content detection would 

likely flag false positives as well, a contextual anomaly detector was used to prune the final output. 

Contextual anomaly detection was based on assigning incoming content anomalies to defined sensor-

group profiles derived from K-means (MacQueen 1967) clustering of sensor information (i.e., location, 

date, time, climate, etc.) to make a final classification determination based on the distance of the content 

value from the group average. Although the research shows the importance of contextual information, in 

some scenarios, context may not always be available. 

Isolation forests were developed to explicitly isolate anomalies in numerical data sets using random 

subsampling versus profiling normal instances, thereby improving algorithm efficiency and reducing 

memory requirements (Liu et al. 2008). When compared to other ML algorithms, including neural 

networks and random forests, the isolation forest algorithm performed well in benchmark tests and 

excelled for large data sets in use of memory and computation time (Carrasquilla 2010). However, the 

algorithm depends upon two assumptions: that anomalies make up a minority of the instances of a data set 

and have attribute values that are very different from those of normal instances. From the perspective of 

detecting subtle anomalies preceding faults, it is not known whether an approach using an isolation forest 

would be suitable to flag such instances without incurring excessive false positives. 

K-means clustering was applied to multiple telemetry data streams typically monitored by human 

operators to track equipment health (Azevedo et al. 2012). In most cases, the algorithm was effective in 

identifying anomalous instances preceding known equipment faults. However, in cases of subtle 

anomalies, where variation in the data was small, anomaly-classification accuracy was reduced. K-means 

clustering can be impacted by background variance or “noise” in the data, which can reduce sensitivity to 

smaller anomalies preceding equipment faults or failures. Also, it is more challenging to implement as an 

online learner given the model carries with it the distance matrix for all features on which it was trained. 

This matrix continually increases with training. In some cases, data dimensionality-reduction strategies, 

such as principle-components analysis (PCA) (reviewed in Jolliffe & Cadima, 2016) can be leveraged to 

reduce noise and improve model sensitivity. 

A sequence-learning framework called hierarchical temporal memory (HTM) can be implemented to 

process data streams in real time and to incorporate continual learning to account for concept drift in a 

way that can detect anomalies. This method was evaluated using the Numenta anomaly benchmark data in 

Ahmad et al. (2017). The results indicated that the errors of HTM are not always correlated. 

Long short-term memories (LSTMs) (Hochreiter and Schmidhuber, 1997) were used to predict fault 

occurrences and track RUL based on performance metrics of simulated aircraft-turbofan data sets 

provided by the National Aeronautics and Space Administration (NASA, Yuan et al. 2016). Their 

analysis showed LSTMs outperformed the standard recurrent neural network (RNN) architecture. 

Although their results are encouraging, the researchers had the benefit of the simulated and well-curated 

data necessary for supervised models. This included multiple fault events on multiple engine components 

and given output responses of the measured engine variables or features. This level of labelling and 

curation is not always available when working with complex, multivariate time-series data derived from 

equipment or industrial facilities. 

Approaches have been developed allowing for the inclusion of LSTMs when labeled anomalies or 

faults are not available or are very limited. This is done by training an LSTM to reconstruct time-series 

data of a “healthy” system by using input features and labels associated with normal activity. After 

training, any time the model is tasked to reconstruct time-series data based on features with anomalies or 

faults, the reconstruction error or difference from the “healthy” baseline increases, indicating that the 

model is seeing something different than the healthy baseline. Researchers demonstrated this by 
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developing a health index (HI) calculated by an LSTM encoder-decoder (LSTM-ED) (Malhotra et al. 

2016). Because the LSTM-ED trained only on the healthy baseline system, error would occur in its 

predictions when anomalies occurred impacting the input features during predictions. The reconstruction 

error was then used to adjust the RUL estimation. This framework was developed and validated using 

publicly available turbofan-engine and milling-machine data sets and was successfully tested on data 

from a pulverizer mill where the HI showed high correlation with maintenance costs. This approach is 

similar to earlier work performed by Petsche et al., (1996) who used neural-network-based auto 

associators (encoders) trained to reconstruct electrical-motor data derived from healthy systems. This 

method requires extensive historical data prior to implementation. 

2. DATA ACQUISITION AND PREPARATION 

The plant computer of CNS continually logs data from various sensors, including the REC inlet- and 

outlet-water temperatures and the air bulk temperature. However, the individual flow rates through each 

of the four REC heat exchangers are not tracked. Individual FCU inlet and outlet temperatures are also 

tracked, along with FCU dew points. Table 1 shows the complete list of plant computer data points 

relative to the CNS drywell environment. The DP ID column shows the unique ID associated with the 

data stream in the plant computer. The Description column provides the descriptive text associated with 

the DP. The Units column shows the sensor measurement units and the Environment column shows the 

specific FCU associated with the sensor. Each FCU has dedicated inlet, outlet, and dew-point sensors. 

The remaining sensors are placed in varying locations throughout the drywell environment and are 

associated with all FCUs. Figure 5 shows a schematic diagram of sensor locations and associated DP IDs. 

To have enough data with which to develop exploratory models, the data span from January 1, 2017, 

through May 12, 2019. This provides data before and after the known FCU failure events.  

2.1 Data Challenges 

The challenges associated with the data collected from the plant computer can be summarized:  

• No vibration data related to the fans were found to validate the method performance. Vibration is a 

key element in identifying rotary equipment failure (Al Rashdan et al. 2018). This, however, was the 

main motive behind using a process-anomaly detection approach because the overarching goal of this 

analysis is to show CNS-drywell environmental-data streams can be used to detect anomalies 

preceding equipment fault or failure events.  

• The specific FCU data are limited to FCU-inlet and outlet temperatures and inlet dew point. The rest 

of the measurements (heat-discharge rate, power, and drywell dew point and temperature) in Table 1 

are common among all FCUs. This reduces the unique dimensionality of the individual FCU—i.e., it 

makes it harder to determine which of the FCUs is experiencing the anomaly.  

• Each data stream was logged at an approximate 1-minute resolution with date-time instances logged 

at either a second or decimal-second precision. At this resolution for thirty-six separate data points, 

tens of million records or data instances were available for a given year. Because multiple years of 

data were available for the analysis, the number of instances increased to several tens of millions, 

which was computationally demanding.  
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Table 1. CNS drywell plant computer DP IDs and associated data. 

DP ID Description Units Environment 

DP 1 Primary Containment Heat Exchanged KBTU/H ALL 

DP 2 Plant Power Output % ALL 

DP 3 Reactor Core Flow MLB/H ALL 

DP 4 FC-R-1A Inlet Air Temperature °F, Dry bulb A 

DP 5 FC-R-1B Inlet Air Temperature °F, Dry bulb B 

DP 6 FC-R-1C Inlet Air Temperature °F, Dry bulb C 

DP 7 FC-R-1D Inlet Air Temperature °F, Dry bulb D 

DP 8 Recirculation Pump A Area Temperature °F, Dry bulb ALL 

DP 9 Recirculation Pump B Area Temperature °F, Dry bulb ALL 

DP 10 FC-R-1A Outlet Air Temperature °F, Dry bulb A 

DP 11 FC-R-1B Outlet Air Temperature °F, Dry bulb B 

DP 12 FC-R-1C Outlet Air Temperature °F, Dry bulb C 

DP 13 FC-R-1D Outlet Air Temperature °F, Dry bulb D 

DP 14 FC-R-1A Inlet Dew Point °F, Dew Point A 

DP 15 FC-R-1A Inlet Dew Point °F, Dew Point B 

DP 16 FC-R-1A Inlet Dew Point °F, Dew Point C 

DP 17 FC-R-1A Inlet Dew Point °F, Dew Point D 

DP 18 Drywell Inlet Supply Temperature  °F ALL 

DP 19 Drywell Outlet Temperature °F ALL 

DP 20 Flow Rate to Drywell GPM ALL 

DP 21 Average Bulk Drywell Temperature °F ALL 

DP 22 Average Bulk Drywell Temperature (20 Data Points) °F ALL 

DP 23 Average Bulk Drywell Temperature (5 Data Points) °F ALL 

DP 24 Return Air Ring Temperature °F ALL 

DP 25 Return Air Ring Temperature °F ALL 

DP 26 Return Air Ring Temperature °F ALL 

DP 27 Zone 2B Temperature °F ALL 

DP 28 Zone 2B Temperature °F ALL 

DP 29 Zone 2B Temperature °F ALL 
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 Continued Table 1 CNS drywell plant computer DP IDs and associated data 

DP 30 Zone 2B Temperature °F ALL 

DP 31 Zone 2B Temperature °F ALL 

DP 32 Zone 2C Temperature °F ALL 

DP 33 Zone 2C Temperature °F ALL 

DP 34 Zone 2C Temperature °F ALL 

DP 35 Zone 2C Temperature °F ALL 

DP 36 Zone 2C Temperature °F ALL 

 

 
Figure 5. Location of selected sensors shown in Table 1. 

• Inspection of the data revealed occurrences of missing or “0” values and potential sensor or logging 

problems resulting in repeating data points that sometimes spanned months. An example of this is 

shown in Figure 6. The figure’s Y axis shows CNS plant power output (DP 2) and FCU B input (DP 

5) and output (DP 11) temperatures from data downloaded from the plant computer for 2018. Starting 

in early May, DP 11 likely suffered a sensor malfunction as it continually logged the exact same 

value until late September of 2018.  

• Another significant challenge is the sparse failures, which are required for training the ML 

approaches. Out of tens of millions of instances, only two mechanical-failure events are known along 

with two additional sensor failures. 



 

 10 

 
Figure 6. Data logged from three data points from Table 1 over one year of operations. 

2.2 Data Preparation 

Because of the size and complexity of the data used for this analysis, the data sets were prepared 

using Python 3.6 (Python development team, 2019), which incorporates multiple libraries suited for 

preprocessing and modelling data. Common data-handling software (such as Microsoft Excel) are not 

capable of handling or aggregating tables and supporting the complex-feature engineering tasks necessary 

for this effort. The large amount of data also challenged computer-hardware resources given the increased 

requirements for computer memory needed to load the data sets. The data-preparation process in Python 

followed the following chronological process: 

1. Time formatting must be homogenized. Inspection of data showed some data files’ date-time 

instances contained a mixture of date-time precision (second and decimal-second precisions) which 

required correction prior to time-series analysis. 

2. Although each data stream is logged at a 1-minute resolution, date-time instances are not logged at 

the exact same moment. Temporal alignment was performed. For example, DP 20 shows an instance 

was logged on December 1, 2016 at 00:00:02. For that same date, hour, and minute, DP 1 shows a 

logging time of 00:00:00 (see Figure 7). Data sets were prepared with time granularity in minutes, 

hours, days, and weeks. This decision was made to find different abstract patterns in the data as well 

as to decrease model computation time during the learning process. The time-series data resampling 

performed was based on the arithmetic mean, and each data set was saved in an individual file for 

faster processing.a 

 

a  The files were serialized using Python’s “pickling” algorithm for object serialization. 
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Figure 7. A screenshot of drywell-sensor data, arranged in columns with time steps as rows, for Minute 0 

of December 1, 2016. 

3. As indicated earlier, multiple temperature-sensor failures recorded “flat line” values or zero values 

as the time-series progressed. Furthermore, some sensors sporadically recorded a temperature below 

60°F; these readings were advised to be incorrect and needed to be removed. Given the data had 

multiple occurrences of logging issues or sensor failures, data where all sensors appeared to be 

functioning appropriately were identified, labeled, and flagged. This represented a significant section 

of data prior to the known mechanical-failure events (FCU A and D) and a sensor failure (FCU B) 

that occurred just prior to the mechanical failures. Figure 8 shows the flat-line value segments and 

the zero value segments. Three main data interruptions occurred due to: 

- FCU A inlet-temperature sensor (DP 4) failure, recorded a flat line twice consecutively, followed 

by zero values beginning December 1, 2016. 

- FCU B outlet-temperature sensor (DP 11) failure, recorded a flat line beginning May 9, 2018. 

- FCU D inlet-temperature sensor (DP 7) failure, recorded a flat line and then zero values 

beginning September 9, 2017. 

A custom defined functionb was created to handle the curation process and remove inconsistent data 

from the data. 

3. METHODS EVALUATED 

After consideration of the literature review described in Section 1.2, three approaches were selected 

for evaluation. The first is a clustering unsupervised machine approach using the K-Means method. The 

second uses another unsupervised machine approach: an isolation forest that is customized for anomalies 

detection. Last, LSTM was used to incorporate the time element into consideration. The following 

sections describe the implementation and finding of each method.  

3.1 K-Means 

3.1.1 Method Description  

K-Means is an unsupervised ML method for cluster analysis in data mining (MacQueen 1967). It is 

one of multiple commonly used methods for clustering, such as density-based spatial clustering of 

applications with noise (Ester et al. 1996), ordering points to identify the clustering structure (Ankerst et 

al. 1999), and agglomerative clustering, a subset of hierarchical clustering (Ward 1963).  

 

b  Using Jupyter Notebook. 
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Figure 8. Graph showing inlet and outlet temperature recorded by sensors for FCUs A, B, C, and D.  

K-Means is most often used with data sets that have no predefined categories or groups. The goal of 

the method is to make k distinct clusters from n total observations. It works by assigning each data point 

in the data set to one of the k groups based on all the features available. Each one of the k clusters is 

defined by its centroid. The centroids are the mathematically computed arithmetic mean of the points 

within the individual clusters (geometric center). The K-means algorithm operates by iterating between 

two main steps. At the initiation of the process, each cluster gets a random computed centroid or a 

randomly selected one from the original data set. The first step is to assign data points to the nearest 

centroid. The second step is to recalculate the centroid with all the data points assigned to the cluster. 

These two steps are done until a stopping condition or criterion is met. Common stopping conditions 

include reaching a set limit for the amount iterations, summing until the distances have been minimized, 

or reaching a point where no data points have changed cluster assignment. In summary, the K-Means 

pseudocode proceeds through these tasks: 

• Choose the number of k clusters 

• Obtain the data points from the data set 

• Place centroids c1, c2, …, ck randomly 

• Repeat the following steps iteratively until the stopping condition is met 

• For each data point xi, find the nearest centroid (c1, c2, …, ck) 

• Assign the data point to that cluster 

• For each cluster c1, c2, …, ck, find a new centroid = mean of all points currently assigned to that 

cluster. 

• Repeat until stop condition is met. 

The K-Mean method is computationally demanding and falls under the category of non-deterministic 

polynomial-time (NP)-hard problems. Although K-Means falls under such category, an efficient heuristic 

algorithm can converge on a solution rather quickly and find a local optimum. In most cases the number 

of clusters, k, is not known a priori and must be found through empirical observations. For this task a 
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technique called the “elbow method” was used for validation. The elbow method is heuristic and designed 

to help find the appropriate number of clusters in a data set. The analysis begins by determining the 

minimum and maximum number of clusters for the algorithm. The minimum number of clusters is 

trivially chosen and set to one (k = 1). The maximum number of clusters is the total number of features 

present in the data set (k = 26, which is the number of variables in Table 1 after removing the data points 

that are specific to other FCUs). After the domain of clusters has been chosen, the analysis proceeds by 

calculating a score value for each number of k clusters. The score is implementedc where the objective 

function is to minimize the sum of squares of the distances of all data points in their respective clusters. 

All the scores are then graphed in a line plot and analyzed for the elbow criterion. The optimal number of 

k clusters is where the graph shows minimal gain by increasing the number of clusters, the elbow in the 

graph. In summary, the K-Means cluster analysis pseudocode: 

• Determines the total number of features n in data set 

• For each cluster j = 1 … n, calculates a score for K-Means cluster using k=j 

• Graphs the number of clusters and its respective score 

• Looks for elbow criteria on the line-graph, optimum value sets k to optimum value. 

The K-Means algorithm can be used as an anomaly detector by analyzing the distance of each data point 

from its centroid. Closely related points are concentrated around the centroid and are considered normal. 

Data points that fall far away from the centroid are still considered to be related to their neighboring 

points, but with a lower affinity; thus, each can be classified as anomalous. The anomaly detector could 

work by using the distance as a notion of relationship and apply it as a discriminator between normal and 

abnormal. A threshold on the distance can then be set to determine whether a data point is normal or an 

anomaly. An example is shown of two cluster in Figure 9. The farthest point in this example is considered 

anomalous. 

 

Figure 9. Sample of two-dimensional data set to visualize the distance from points to centroid (Wikimedia 

Commons contributors 2016). 

Two approaches were implemented to evaluate the K-Means method as an anomaly detector using the 

distance metric. The first was to sort all members of each cluster in descending order based on the 

 
c Implemented in the Scikit-learn Python library (Pedregosa et al., 2011) 
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distance. Thresholds (p%) of 1, 2, 3, and 5% were applied to select the top p% from each cluster and 

classify them as anomalies. The second approach was also to sort all members of each cluster in 

descending order again, but the threshold would be applied globally. In this version, the same values were 

used, and the top p% were selected across all clusters. The approaches pseudocode is: 

• Run K-Means algorithm to find k clusters 

• Set threshold space t = (0.01, 0.02, 0.03, 0.05) 

• For j = 1 … k, sort members of cluster number j in descending order (Approach 1) or sort members of 

cluster number j in descending order (Approach 2) 

• For each threshold t, select top t members 

• Classify them as anomalous 

3.1.2 Tools 

To execute the K-Means algorithm, an environment was created within the Anaconda distribution for 

the Python programming language. Anaconda is entirely open source and aims to simplify package 

management and deployment through the conda system. It provides Python and R software products that 

include commonly used data science and ML libraries for desktop computing systems. The environment 

for this analysis was setup with Python 3.6.8 and Jupyter Notebook (the code-editing tool), Version 4.4.0. 

Multiple libraries were installed using the conda system to facilitate data manipulation. Numpy and 

Pandas were mainly used to store and manipulate the time-series data sets as both incorporate unique 

functionalities supporting data engineering. Scikit-learn was used to leverage the ML algorithm and the 

internal preprocessing ability. Matplotlib was used extensively to visualize the analysis and show the 

results of the anomaly detector. 

3.1.3 Results 

The goal was for the anomaly detector to catch mechanical failures of FCUs A and D before the 

actual breakdown and with a low misclassification for the other data points. A search space for the 

threshold was created that contained the top 1, 2, 3, and 5%, as described in the previous section. A 

cluster analysis (shown in Figure 10) revealed that a high number of clusters is needed. However, to keep 

the number of clusters at minimum due to computational constraints, five clusters were selected. Except 

for the 5% threshold, none of the results (from 1, 2, and 3%) detected any anomaly. Figure 11 shows the 

resultant clusters prior to the known failure events for FCU D using 5% as the outlier threshold. The 

failure of FCU D was experienced on May 11, 2018, coinciding with the last point in the time series.  

The 5% threshold could capture the mechanical failure one day ahead of its occurrence. However, it 

contained several false positives (shown in red in Figure 11). A reduction technique was applied using 

principal-component analysis (PCA). PCA is another unsupervised learning technique, and it is used to 

reduce the dimensionality of the data set while maintaining the loss of information at a minimum (Wold 

et al. 1987). The approach was used to reduce the number of dimensions in the data set and use fewer 

clusters in the K-Means method. For optimization purposes, a component analysis was done using 1 to 

n-1 components, where n was the number of dimensions in the data. The result of the cluster analysis with 

PCA showed that the first 5 components create an elbow and explain 99% of the variance in the data set 

(Figure 12). The K-Means application after PCA provided better results in terms of fewer false positives 

(because of the 2% stricter threshold in this case), but it did not remove all false positives (Figure 13). It is 

important to note that the false positives were not investigated as a potential actual anomaly.  
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Figure 10. Cluster analysis for the data set with the elbow forming at around ten clusters 

 
Figure 11. K-means algorithm using five clusters with an outlier fraction of 5% for FCU D, from 

December 1, 2016, to May 11, 2018. 
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Figure 12. Cluster analysis for the data set with the elbow forming at around five clusters. 

 
Figure 13. K-means algorithm with PCA using five clusters and an outlier fraction of 2%, for FCU D, 

from December 1, 2016, to May 11, 2018. 

3.2 Isolation Forest 

Isolation forest is another unsupervised ML algorithm that is built based on decisions trees. The main 

idea, which is very different in representation from many other popular outlier and anomaly-detection 

algorithms, is that an isolation forest explicitly focuses on identifying anomalies instead of characterizing 

normal data points in the data set. Isolating anomalies is easier as fewer conditions are needed to separate 

them from the rest of the data set. In contrast, normal observations require more conditions to isolate 

them. 
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3.2.1 Method Description  

The isolation forest algorithm isolates observations by randomly selecting a feature from the feature 

space and then randomly selecting a split point from the maximum and minimum values of the selected 

feature. In principle, outliers have much-less-frequent occurrence than regular observations in the data 

and have subtle differences in terms of values. Because recursive partitioning can be natively represented 

by a tree structure, the number of splits required to isolate an observation is equivalent to the length of the 

path from the root node of the tree to the leaf on which the observation lies. The path length, when 

averaged over all random trees in the forest, is a measure of anomaly in the observation. For example, 

Figure 14 shows that, when the point is in the cluster (Figure 14 left), it requires significant portioning to 

identify while, when it lies outside the cluster (Figure 14 right, showing an anomaly), few partitions are 

sufficient to isolate it. 

 

Figure 14. A visualization showing how many partitions (lines) are required to find a point when it’s a 

normal point (left) and an anomaly (right) (from Lewinson 2018). 

Figure 15 shows a visualization of a single isolation forest tree defined by partitions resulting from 

the random selection of features and random split values. In this case, the red line extends from the root of 

the tree (top) and has the shortest path, indicating it is an anomaly. The blue path is longer and indicates a 

normal value. When all the trees of an isolation forest are combined into one averaged tree, the 

classification of anomaly considers all trees in the forest, instead of one (Figure 16).  

The approach taken and implemented was to use the path-length metric in the isolation forest 

algorithm and apply it over a search space for multiple time frames and contamination rates. The 

contamination rate is a parameter that describes the proportion of outliers (similar to thresholds in K-

means in the data set).d It is used when fitting the data to the model to define the threshold on the decision 

function. The contamination-rate search space was composed of the values 0.01, 0.05, and 0.1. The 

isolation forest pseudocode is: 

1. Select a point from the data set to isolate. 

2. For each feature fi, (representing one of the twenty-six data points) set the minimum in the range and 

the maximum in the range. 

 

 

 

d  Passed to the Scikit-learn ML module in Python. 
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Figure 15. A single tree representation of the isolation forest (from Hariri et al. 2018). 

 

Figure 16. Visual representation of a full forest in which each radial line represents the path length of a 

single tree. Red represents anomalies while blue represents normal values (from Hariri et al. 2018). 

3. Choose a feature at random. 

4. Pick a value within the range at random. 

5. Use the value as a partition (path in tree). 

6. Evaluate the stop condition (e.g., how many points above or below the partition to find if the point is 

the only one within the range for all features).  

7. Repeat steps 3 to 6 until the stop condition is met. 

8. Count how many times steps 3 to 6 (the loop) were done. This is the path length (plength). 

9. Repeat steps 2 to 6 for each tree ti in the forest. Each tree will be started from scratch and end up with 

a different tree structure because of the randomness of points. 

10. Sum plength for all ti and get the average apl. 

11. Find the anomaly based on the smallest apl. and the contamination rate. 
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PCA was also applied to the data, and an additional post-PCA analysis was conducted to evaluate the 

effects of dimensionality reduction on the algorithm. These values were selected specifically to fine tune 

the model and to calibrate the sensitivity to anomalous observations. The Implementation pseudocode is: 

• Use different time granularity t = (minutes, hours, days, weeks) 

• Resample original data set using arithmetic mean 

• Set contamination rate r = (0.01, 0.05, 0.1) 

• For each ti, create isolation forest:  

- For each contamination rate ri, select data points average plength < ri 

- Classify data points with plength < ri as anomalous. 

3.2.2 Tools 

The Anaconda environment used for the K-Means algorithm was reused to execute the isolation 

forest implementation. One additional library within the Scikit-learn package, IsolationForest, was 

imported to handle the creation and logic for the algorithm. This library handled the creation of all 

random trees in the forest and returned the binary (-1 or 1) classification for the data set.e Matplotlib was 

used to visualize the mapped results as a color-coded scatter plot. 

3.2.3 Results 

The results are shown in Figure 17 for the pure isolation forest approach and Figure 18 for the 

preprocessing using PCA. The first approach in Figure 17 failed to catch the actual mechanical failure 

(shown in red) regardless of the contamination rate (0.05 was the highest and most relaxed). The second 

approach, shown in Figure 18, was able to catch and label the mechanical failure for FCU D as 

anomalous, but resulted in an increase in misclassification rate. Unfortunately, neither method (i.e., with 

or without PCA) was able to detect the failure without an enormous misclassification rate. While it was 

assumed that both methods identified various anomalies that did not relate to known equipment-failure 

events, this was not verified, and these anomalies could have been associated with actual plant events.  

3.3 Long Short-Term Memory Recurrent Neural Networks  

Artificial neural networks (ANNs), specifically RNNs are a supervised learning model capable of 

carrying forward temporal information or learning over time via feedback loops, which can account for 

concept drift. An RNN is a class of ANNs where the connections between nodes form a directed graph 

(digraph). The digraph is made up of a set of vertices which are connected by edges. All the edges have a 

start and end vertex, as well as a direction associated with them. In the case of the RNN, the digraph is 

formed along a temporal sequence which allows the network to exhibit a dynamic temporal behavior. 

RNNs are exceptionally well suited to process sequences of inputs due to their inherent internal state 

(memory). This makes them applicable to tasks dealing with time-series data set such as the one for this 

project. 

LSTM networks are a modern variant of RNNs and were first proposed in 1997 (Hochreiter and 

Schmidhuber 1997). LSTMs are better suited to handle long-term temporal dependencies because the 

architecture includes a memory cell to maintain temporal information (i.e., LSTM extends the memory of 

a regular RNN). The short-term memory in the LSTM is exhibited through persistent previous 

information that is used in the current neural network. It also mitigates the vanishing-gradient problem, 

which is the network’s inability to learn because the updates to the weights within the nodes become too 

small (insignificant) to alter the output. The LSTM does the mitigation by using a series of gates 

 
e       A one-to-one mapping was done from -1 to 1 and 1 to 0, where the mapped 0 meant normal and the mapped 1 meant 

anomalous. 
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contained in memory blocks that regulate the flow of information. Gates are also are used to control what 

information goes into memory cells and how long that information is maintained.  

 

 

Figure 17. Random forest algorithm performing anomaly detection on hourly time-series data set for 

FCU D. 

 

Figure 18. Random forest algorithm performing anomaly detection on hourly time-series data set with 

PCA for FCU D.  
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3.3.1 Method Description  

A typical LSTM unit is composed of a cell, an input gate, an output gate, and a forget gate. The input 

gate scales input to the cell and behaves as a write operation. The output gate scales output to cells and 

behaves as a read operation. The forget gate scales old cell values and behaves as a reset operation. Each 

of the gates in the LSTM unit behaves as a switch to control read/write operations and thus gives the 

effect of long-term memory to the model. 

Memory allows LSTM networks to excel at finding complex relationships within a multivariate 

feature space. LSTM’s ability to process sequential data and have internal memory-cell units made it 

perfect to model the time-series data set for the project. The memory attribute of the architecture would be 

able to remember seasonal patterns as well as cyclic patterns that constitute normal operating conditions. 

Given enough data, LSTM has the potential to learn patterns from one year to the next as well.  

Most approaches that use LSTM networks as anomaly detectors focus on training the models on 

historical data and predicting a future outcome y. The predicted outcome y is then compared to the actual 

observation and, if the value is more than d standard deviations away, then it is considered anomalous. 

This approach would not suffice because the algorithm must wait for an observation to be significant to 

determine whether a data point was an anomaly. In the case of this research, this would mean waiting 

until just before a mechanical failure occurred to confirm an anomaly. This identification would come too 

late. 

The approach taken was to analyze the LSTM network’s ability to learn as new dynamic information 

was being added. Ideally, the model would be trained with historical data that were assumed to be normal. 

Once the model was properly fitted, meaning it learned the training data set, a network architecture was in 

place, capable of learning normal data. Afterwards, new data was added to the training set, and the model 

was retrained. The concept is that if the new data added were normal, the model would be able to learn it 

and not predict erroneously from the training set. On the other hand, if new data were anomalous, then the 

model would begin to predict erroneous values in the training set as it tried to minimize the internal-loss 

function. This approach would consequently be able to catch anomalies before actual mechanical failures 

and behave as a preventative system. 

The method took in a training data set and the predicted values from the model for the training set. 

The data were processed sequentially, one time unit at a time. At each time unit, the actual and predicted 

values were compared with the actual and predicted values t timesteps ahead respectively. A line was 

formed between the two actual values, and another line was formed between the two predicted values. 

The angle between the two lines was used as an indication of the anomaly. A divergence between the 

lines indicates that the actual and predicted values were falling apart (i.e., an anomaly was occurring). The 

pseudocode for this process: 

• Load data with actual and predicted values 

• Set timestep t (in mins, hours, etc) 

• Set anomaly counter c = 0 

• For each record ri in the file 

- Form a line between actual value at ri and ri+t 

- Form a line between predicted value at ri and ri+t 

- If lines diverge from each other then increment c by 1 

• If c >= 1 

- Mark the newly added data as anomalous. 
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To train the LSTM, the data set had to be properly curated and processed, as described in Section 2.2 . 

After the original data set was curated, it had to be formatted accordingly to be used as input to the LSTM 

network. It had to be structured in time-windows of size l where the granularity was in hours. The 

variable l is a hyperparameter, and choosing the optimum value of l is not trivial. A value of ten 

(l = 10 hours) was used in this initial research. To construct each time window, a moving frame of size l 

was applied to the data set iteratively, with a step of one unit. Each time-window required verification for 

usability because all datapoints inside had to be temporally sequential in reference to the time unit. There 

are cases in which a time-window contains a set of data points which are not temporally sequential as a 

result of the data-curation process (i.e., removing bad data as described in Section 2.2) and must be 

disregarded as an input to the LSTM. 

The time-window formatted data set was given to the LSTM as training, with the purpose to output 

the outlet temperature in the following time step. The internal architecture of the network was composed 

of three stacked LSTM layers followed by a dense layer (i.e., the last layer that receives input from all 

neurons and generates one output) which was responsible for the output of the model. The LSTM layers 

use a rectified liner unit (ReLU) activation function (i.e., determinative of when the neuron fires) to speed 

computation. A value of 20% was used for the dropout rate. Optimizing the dropout rate is used to 

prevent overfitting and excessive memorization. ReLU activation functions also perform exceptionally 

well when the model never has to predict a negative value. The used LSTM network architecture is 

• Layer 1 with 64 LSTM units 

• Layer 2 with 128 LSTM units 

• Layer 3 with 256 LSTM units 

• Layer 4 with 1 dense layer unit.  

The last layer in the network is the dense layer, which flatten out to a single output for prediction. The 

dense activation function was linear because the predicted target was a continuous non-discrete value 

(outlet temperature of FCU A, B, C, or D). The loss function that needs to be minimized in the learning 

process was set to mean squared error (MSE). f 

3.3.2 Tools 

To execute the LSTM algorithm, an additional environment was created within the Anaconda 

distribution. The environment was set up with Python 3.6 and Jupyter Notebook, Version 4.4.0. The 

Keras ML library was installed and used to handle the architecture of the LSTM. Keras is a wrapper 

library for the TensorFlow library that provides ML capabilities. Because this approach for anomaly 

detection is very computationally expensive, the graphical processing unit (GPU) version of Keras and 

TensorFlow were activated. GPU processing speeds up the computation time exponentially when 

compared to using the central processing unit. Numpy and Pandas were used to store the time-series data 

sets and create time-windows for input to the network. Matplotlib was used to visualize how the model 

was learning during the training and to check the loss function as time advanced. The graphing abilities 

were also used to show the actual values of the training set, compared to the predicted values of the final 

model after training. 

3.3.3 Results 

The LSTM model showed promising results during the training phase: it was able to learn what 

normal behavior was. Training and validation split were set to 80/20 respectively. The model’s loss 

function consistently decreased for both the training set and the validation set (Figure 19). More 

importantly, the loss function for both sets didn’t deviate from one another and converged at a low value. 

 

f  The optimizer used in the network was root mean square propagation (rmsprop), which has the benefit of automatically 

adjusting the learning rate. 
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Convergence of the function loss for the data sets means that the predictive model extracted sufficient 

information to learn and did not simply memorize the relations. 

The LSTM model also had a very low root mean squared error (RMSE) for both the training-data set 

and internal-validation set. The RMSE for training was 0.05 while the RMSE for the validation was 0.16. 

The low values in RMSE are indications that the model also learned some natural operating behaviors and 

cycles. Figure 20 shows that once new data, in this case an additional day closer to the mechanical failure 

of FCU D, was introduced to the LSTM model, the ability to predict its own training set diminished. This 

is visible as it forms a divergence in the prediction value from the actual values in the training set in 

Figure 20, with the red line representing predicted, blue representing actual, and black representing the 

actual data including the future behavior. The model was able to detect an anomaly before the mechanical 

failure of FCU D using this approach as early as May 3, 2018 (i.e., 8 days ahead of time). The same 

method was also inadvertently able to detect a FCU B outlet-temperature sensor failure on May 7, 2018 (2 

days ahead of time), as shown in Figure 21. The failure of FCU A was impacted by the failure of FCU D 

because the model had never been trained for a scenario that had three fans running under similar plant 

conditions (especially since twenty-four tags are common among all fans), so this was a new behavior, 

and it needed more time to learn before it could predict the next failure.  

 

 

Figure 19. LSTM-model loss function showing the convergence of the training and validation data sets. 

Graph shows the LSTM’s ability to learn. 
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Figure 20. LSTM model prediction diverging from actual value on May 3, 2018, training data for FCU D 

(8 days ahead of mechanical failure). 

 

Figure 21. LSTM model prediction diverging from actual value on May 7, 2018, training data for FCU B 

(2 days ahead of sensor failure) 

4. CONCLUSIONS AND FUTURE WORK  

In May 2018, two drywell FCUs at the CNS failed in a catastrophic manner, resulting in plant outage 

for 6 days. The lack of vibration sensors on the equipment required finding new means to predict this 

failure through detection of small process anomalies. These anomalies can be found in data that are not 

directly related to the failure. The detection of small anomalies lies in small deviations that are 
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challenging to detect especially when the time element is introduced and small anomalies become part of 

the new norm. Ignoring the time aspect and considering data measured at any point of time using 

K-means did not yield any valuable insight until the failure did occur. Dimensionality reduction via PCA 

was also applied as a means of reducing data dimensionality to improve the anomaly classification. This 

did not yield valid results. An isolation forest method was also implemented as an unsupervised learner to 

predict anomalies because they are designed for similar applications, but was unsuccessful due to a bias 

towards declaring normal states as anomalous (i.e., signaling false alarms). Both K-means and isolation 

forest method are unsupervised ML methods.  

LSTM was also applied. A baseline LSTM was developed by training a model on CNS data 

associated with normal drywell operations and examining reconstruction-error differences in temporal 

windows associated with known failure events. LSTMs were selected because they are suited to handle 

long-term temporal dependencies because the architecture includes a memory cell to maintain temporal 

information. The LSTM was customized with a new deviation/anomaly criterion that is based on 

comparing the training and actual model before and after introducing new temporal data. It was able to 

predict one of the FCU failures 8 days before it occurred and, coincidentally, detected a sensor failure 

2 days before its occurrence. The failure of the second FCU occurred around two weeks after the first. 

Because the model had never been trained for a scenario that had three fans running under similar plant 

conditions, this was a new behavior, and the LSTM network required more time to learn it before it could 

predict the next anomaly. This caused the method to miss the second failure. 

Throughout this effort, data size, quality, complexity, availability, and curation all had significant 

impacts on potential modelling pathways and outcomes. The sparsity of failures drove the research into 

detection of norms, rather than failures. The next scope of work will apply the developed method 

periodically to data from the plant to determine if anomalies are present. This will involve acquiring the 

data from the plant computer, running scripts to prepare data (as was performed in this work), and 

analyzing the results for anomalies. Future research will branch in two directions. One will explore 

expanding this scope to develop equipment-agonistic methods for anomalies detection. Achieving this 

objective is challenging, but would be very rewarding. The second approach will be a physics-informed 

ML model. A thermal-hydraulic model will be created using the Reactor Excursion and Leak Analysis 

Program (RELAP5) code representing a digital twin of the FCU to simulate the fan at normal operating 

conditions and under different failure scenarios. RELAP5 is a light-water reactor transient-analysis code 

developed for the U.S. Nuclear Regulatory Commission for simulation of a wide variety of hydraulic and 

thermal transients in nuclear power plants (Mesina 2016). The purpose of augmenting the ML model with 

simulation data is to compare the actual nitrogen supply and return temperatures based upon plant 

computer data, with predictions based upon mass, momentum, and energy conservation. Differences 

between the simulated and predicted FCU temperatures will then be examined for anomalies indicative of 

incipient fan failure. 
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