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EXECUTIVE SUMMARY 

With increased penetration of variable renewable energy (VRE) resources 
that are often subsidized and competition from low natural gas prices, existing 
light water reactor (LWR) nuclear power plants (NPPs) are struggling to remain 
economically competitive. This work examines the potential economic 
competitiveness of various thermal energy storage (TES) technologies when 
coupled directly or indirectly with an NPP. To highlight their relative economic 
competitiveness, we contrast several energy storage solutions in stochastic 
dispatch optimization. 

We leverage data from recent work analyzing a range of TES technologies 
with varying capital costs, performance, and technology readiness level (TRL) to 
establish our case. We explore inserting these technologies into an electricity 
market with existing nuclear generation and large projected variable renewable 
energy (VRE) penetration. Although the project capital costs of these 
technologies may make them unlikely candidates in their current state, this 
analysis demonstrates a high-fidelity techno-economic analysis of energy 
storage. Furthermore, as the projected cost of energy storage technologies 
evolves, this analysis sets a precedent for similar future investigations.  

One region with projected trends that may be unfavorable for existing 
nuclear capacity is the New York Independent System Operator (NYISO) 
market. New York state’s baseload generation has been historically provided by 
fossil-fired, nuclear, and hydro assets. However, amid economic pressures from 
subsidized VREs and low natural gas prices, Indian Point nuclear power plant 
units 2 and 3 have recently shut down. Furthermore, the state plans to meet its 
zero-emission generation target by 2040 by replacing fossil-fired capacity with 
significant investments in VRE resources like wind and solar photovoltaic (PV) 
and battery storage. Increased intermittent resource penetration lowers the 
baseload power requirement, adding further economic pressure to the state’s 
three remaining NPPs still in operation. This work analyzes potential economic 
benefits to the three remaining NPPs on the New York grid when directly or 
indirectly coupled with various TES technologies. 

This work requires two modeling steps to analyze the potential economic 
benefits of various system configurations of the TES directly or indirectly 
coupled with nuclear. First, this analysis leverages capacity expansion modeling 
by experts at the Electric Power Research Institute (EPRI) who are authors on 
this study. Using their deterministic capacity expansion model, U.S. Regional 
Economy, Greenhouse Gas, and Energy (US-REGEN), EPRI analysts evaluated 
the capacity and generation evolution of the New York state energy market under 
four projection scenarios. These four projection scenarios were developed to 
represent the potential evolution of the capacity and generation in NYISO from 
2015 to 2050 under various economic, technology, and policy constraints. The 
results from these capacity expansion models are then used as boundary 
conditions in the second modeling step.  

The second modeling step, performed by the INL authors, uses the Holistic 
Energy Resource Optimization Network (HERON) for a set of stochastic techno-
economic analyses (STEAs) to investigate the potential increase in the economic 
viability of various configurations of the TES. With no current capacity 
expansion capabilities, HERON takes the data generated from US-REGEN for 
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2050 to generate synthetic load, solar, and wind data. Then HERON 
economically optimizes the capacity and dispatch of the various TES 
configurations. The potential economic benefit is the differential net present 
value (NPV) of the TES configurations from the no-TES baseline. As a 
stochastic techno-economic analysis package, HERON introduces uncertainty 
into the economic metrics, while US-REGEN trades resolution for reduced 
computational complexity. Using HERON also allows the modeling of direct 
thermal coupling, a feature not common in capacity and dispatch models.  

As expected, with high capital costs, the costs of introducing energy storage 
for all the technologies considered outweighed the potential economic benefit of 
this strategy for flexible plant operation under Reference scenarios. However, for 
scenarios with elevated electricity prices, due to implementation of a nationwide 
clean energy standard, there is a clear benefit from introducing TES to provide 
NPP flexibility. Further, in the clean energy standard cases, new NPP can be 
profitably introduced when coupled to TES to further increase profitability, 
demonstrating a complementary balance between VRE generation and NPP 
coupled with TES.  

And additional benefit of this analysis is primarily in demonstrating a 
workflow that examines innovative solutions to increase NPP revenue via TES 
coupling. HERON’s stochastic capacity and dispatch optimization process used 
in this work has proven an effective tool in observing and evaluating the impact 
of introducing storage technologies in a grid energy system. 
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A TECHNICAL AND ECONOMIC ASSESSMENT OF 
LWR FLEXIBLE OPERATION FOR 

GENERATION/DEMAND BALANCING TO OPTIMIZE 
PLANT REVENUE  

1. INTRODUCTION 
As the global energy landscape transitions toward grid decarbonization and strives to meet clean 

energy targets, there has been renewed interest in the role of nuclear energy to provide clean and reliable 
baseload power generation. Currently, nuclear power provides 1/5th of the total electricity generation and 
roughly half of the total carbon-free energy produced in the United States. Furthermore, nuclear power 
plants (NPPs) provide carbon-free and reliable baseload generation 24 hours a day, seven days a week. 
However, power generation mixes are undergoing rapid changes driven by technological advancements, 
emissions targets, and market factors.  

Over the last decade, grid decarbonization efforts and technological advancements have driven the 
sharp impetus towards investment in variable renewable energy (VRE) resources, like wind and solar 
photovoltaic (PV) generation. Furthermore, government subsidies for wind and solar PV have pushed the 
expansion of VRE portfolios in many areas of the U.S. Increased penetration of weather-dependent, 
intermittent resources creates challenges in both hourly and seasonal balancing of intermittency and 
maintaining grid reliability. Increased capacity investment in VRE resources creates over-generation in 
times of high availability, decreasing baseload generation requirements during those times. Furthermore, 
historically low natural gas prices have increased investment in gas turbine generation. With increased 
competition in the electricity grid from low natural gas prices and low-cost VREs, NPPs are under 
increasing pressure to remain economically competitive. 

Operating NPPs flexibly is a potential solution. In a flexible plant operation, the nuclear power plant 
varies power output to meet market demands, ramping up in times of low VRE production and down in 
times of high VRE production. Although flexible plant operation has been successfully applied in France 
for more than 30 years [1], this operation method is not in practice in the U.S. With fixed refueling 
contracts, existing license limitations, and fixed dollar per megawatt-hour operations and maintenance 
costs, the economic benefits of load-following to U.S. based NPP operators remains unproven [2]. 

Another potential solution to increase the economic competitiveness of nuclear is by operating NPPs 
as a part of an integrated energy system (IES). For example, NPPs coupled with energy storage could 
supply power to the grid during times of scarcity and store energy during periods of oversupply. The 
stored energy is later converted back to electricity to supply the grid in a power-storage-power scenario. 
Integrating energy storage with existing NPPs would reduce curtailment, allowing plants to maintain 
high-capacity factors.  

Much of the focus on energy storage technology in the past decade has been on lithium-ion (Li-ion) 
battery storage, despite its high costs [3], challenges in cold climates [4], and recent problems with 
facility fires and explosions [5] [6]. Another promising energy storage technology that is being explored 
by both academia (e.g., [3] [7] [8]) and industry [9] for potential NPP coupling is thermal energy storage 
(TES). Since nuclear reactors produce heat, coupling TES with an NPP allows the plant to operate at full 
power without sacrificing efficiency lost in the conversion. While the capital costs of TES are generally 
projected to be lower than Li-ion, they are still significant. To be economically beneficial, the flexibility 
introduced must be sufficient to overcome the capital costs of TES. Although high capital costs may deny 
practical TES deployment, this analysis demonstrates a high-fidelity techno-economic analysis of energy 
storage.  
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One energy market in the U.S. facing challenges in balancing intermittency and maintaining grid 
reliability is the New York state electricity market. The New York state grid, operated by New York 
Independent System Operator (NYISO), plans to meet its zero-emissions climate target by 2040 through 
significant investment in VRE resources, battery storage, and phasing out of fossil-fired generation [10]. 
Among challenges to remain economically competitive with subsidized VRE resources and low natural 
gas prices, two nuclear units at Indian Point Energy Center have been deactivated, a loss of roughly 2,000 
MW of baseload capacity. With three NPPs of about 3,200 MW of capacity still in operation, this analysis 
is interested in the potential increase in economic benefit to the existing NPPs on the NYISO grid when 
coupled with one of several TES technologies compared with more common electrical storage mediums 
such as Li-ion and hydrogen. Leveraging previous work analyzing storage technologies with the potential 
to be coupled with existing light water reactors (LWRs) [11], three different TES technologies were 
chosen for our analysis, Electro-Thermal Energy Storage (ETES), Thermal Hitec XL, and Thermal 
Dowtherm A. More on the TES technologies considered in our analysis can be found in Section 4. 

This work focuses on proving the effectiveness of state-of-the-art INL software tools in observing and 
evaluating the impact of introducing storage technologies in a grid energy system. The software Holistic 
Energy Resource Optimization Network (HERON) is a tool for capacity and dispatch optimization. As a 
representative case to prove the effectiveness of HERON, this analysis performs Stochastic Techno-
Economic Analyses (STEA) of several different TES technologies in the NYISO energy market. The 
STEA aims to investigate the potential increase in the economic viability of an NPP when coupled with 
TES, considering several different TES technological varieties. First, under varying assumptions and 
policies, four capacity expansion possibilities for New York state are established as baselines for 
comparison. The impact is then determined by comparing the system's economic viability in the no-TES 
baseline to an NPP coupled with TES technology. The analysis also examines the optimal configuration 
of the system and how much of each technology can benefit the system. 

1.1 Simulation Tools Review and Design Overview  
To demonstrate the effectiveness of HERON’s stochastic capacity and dispatch optimization process 

on energy storage, this analysis investigates the potential increase in the economic viability of existing 
NPPs coupled with TES in the NYISO market. Laying the groundwork for the STEA requires first 
creating a baseline of capacity and generation evolution in the NYISO projected into 2050. To create this 
baseline, capacity expansion modeling was performed using the Electric Power Research Institute (EPRI) 
U.S. Regional Economy, Greenhouse Gas, and Energy Model (US-REGEN). Experts at EPRI applied and 
adjusted economic drivers and assumptions in US-REGEN to create four different scenarios, discussed in 
Section 3.1; these scenarios reflect possible outcomes on NYISO capacity, generation, and system costs 
from 2015 to 2050.  

We then use this baseline information as boundary conditions for a set of STEA that includes TES. 
As a part of the Framework for Optimization of Resources and Economics (FORCE), Risk Analysis 
Virtual ENvironment (RAVEN) framework plugin HERON is used to perform the STEA. RAVEN takes 
the baseline data in 2050 from the four  
US-REGEN scenarios and generates synthetic load, solar, and wind data. A STEA introduces uncertainty 
into the economic metrics and models the synthetic data in a time-continuous fashion. HERON then 
economically optimizes both the capacities and dispatch of TES configurations. Furthermore, traditional 
capacity and dispatch tools focus on electricity. HERON, however, is designed to treat all resources (e.g., 
heat and electricity) equally during the modeling process.  

1.2 Report Purpose and Organization 
The primary purpose of this analysis is to demonstrate the effectiveness of HERON’s workflow as 

used to examine innovative solutions for increasing NPP revenue. This work achieves that purpose 
through analyzing the potential benefits of several different TES technologies to NPP economic viability 
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in the NYISO market. Coupling TES with an NPP allows a plant to operate flexibly while continually 
producing energy, potentially creating an opportunity to increase NPP revenue in the face of decreasing 
baseload requirements. We investigate this potential solution by first leveraging the capacity expansion 
capabilities of EPRI’s US-REGEN and then performing a set of STEA on TES technologies using 
HERON software. The results from the STEA are then compared to the baseline, allowing us to 
investigate the optimal TES technology and what capacity of each system leads to the most significant 
economic benefit for the NPPs in the NYISO market under several scenarios.  

This report is structured as follows. Following the Introduction, Section 2 gives a brief overview of 
the current and planned NYISO market. Next, Section 3 discusses how the baseline for comparison is 
created using the US-REGEN capacity expansion model and explains the outlooks produced in the four 
model runs. The outlooks provide the boundary conditions needed to run the STEA of several TES 
technologies. Section 4 then gives a brief overview of the specific TES technologies considered. In 
Sections 5 and 6, we discuss the capacity and dispatch optimization performed by HERON and the results 
from the HERON runs, respectively. Finally, Section 7 summarizes the analyses performed, results, 
conclusions and suggests potential future work from the lessons learned.  

2. NYISO ELECTRICITY MARKET 

2.1 Market Structure 
NYISO operates a deregulated market, providing real-time and day-ahead electricity auctions, 

ancillary services, and a longer-run capacity auction. Competitive wholesale electricity markets 
characterize a deregulated market for buying and selling electricity. In this market structure, generators 
bid their production costs ($/MW) and capacity available in advance in each production cycle. After the 
bids are submitted, the grid operator, NYISO in this case, assembles the bids based on the bid price and 
capacity of each retail supplier. NYISO then dispatches the capacity from the least to most expensive 
until the load is met. When the market clears (i.e., supply matches demand), the bidding price of the most 
expensive generation unit to successfully clear the market becomes the “clearing price.” This is then the 
dollar per megawatt paid to each generator dispatched during the cycle. Each generator aims to maximize 
profit by submitting bids at marginal cost and dispatching to receive revenue greater than or equal to 
marginal cost. This competitive market incentivizes and rewards efficient and innovative generation (i.e., 
low marginal costs).  

2.2 Current and Future Generation Mix 
New York state’s generation mix has undergone significant changes over the last two decades. Under 

decarbonization objectives and the eroding economics of oil and coal-fired generation, the state’s resource 
mix has shifted toward lower or zero-carbon emission generation sources. Over the last decade, driven by 
policy efforts and technological advancements, the state’s investment in VRE resources like wind and 
solar PV has increased [12]. With increased penetration of relatively inexpensive VRE resources that 
reduce baseload requirements and competition from low natural gas prices, New York deactivated two of 
its nuclear reactors in the last two years [13]. The NYISO grid of today is representative of these trends 
over the previous two decades.  

In 2020, 55% of energy production in the New York Control Area (NYCA) was zero-emissions 
resources. Nuclear energy provided 53% of the zero-emissions generation, hydro provided 41%, and wind 
provided the remaining 6% [14]. New York saw an increase in fossil-fired generation and a decrease in 
zero-emissions generation following the closure of Indian Point Unit 2, a nuclear reactor in downstate 
New York, in April of 2020. Zero-emissions generation is expected to fall even further in 2021 after the 
closure of Indian Point Unit 3 in April [15]. Without Indian Point Units 2 and 3, the remaining nuclear 
power was expected only to comprise 9% of NYCA’s installed capacity available in summer 2021 [14].  
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With support from government subsidization, technological advancements, and climate policy 
pressures, many markets in the U.S. are expanding their VRE portfolios, including NYISO. Under their 
2019 Climate Leadership and Community Protection Act (CLCPA), the investment targets for the new 
generation envisioned by NYISO consist of 6000 MW of solar, 9000 MW of wind, and 3000 MW of 
battery storage. These investment targets, among others, will help the NYISO achieve a zero-emissions 
grid by 2040, as called for in the CLCPA [14].  

As the state’s energy grid transitions, NYISO acknowledges potential challenges in maintaining grid 
reliability and balancing intermittency. Historically, fossil-fired, nuclear, and hydro generation has 
supplied most of the state’s baseload requirements. With the retirement of Indian Point Units 2 and 3 and 
the phasing out of fossil-fired generation, NYISO recognizes the challenge of maintaining a reliable grid 
with increased penetration of weather-dependent, intermittent resources. NYISO is considering how 
dispatchable and flexible resources can help meet these challenges [14].  

3. CAPACITY EXPANSION MODELING IN US-REGEN  
HERON is not currently designed for capacity expansion modeling. As such, to create the no-TES 

baseline, this analysis leverages work performed by experts at EPRI using their US-REGEN model [16] 
on four potential decarbonization scenarios in the NYISO market. As a deterministic model, US-REGEN 
sacrifices some of the uncertainty analysis and resolution present in HERON to consider long-term 
projection modeling of grid energy system development. Leveraging this capability, HERON can then use 
US-REGEN outputs and introduce changes in the predicted outcomes. Specifically, HERON can 
introduce new technologies, optimizing capacity and enabling analysis of TES coupled with nuclear.  

US-REGEN is a regional energy-economy model that combines dispatch and capacity expansion 
models and dynamic computable general equilibrium models of the U.S. As a regional energy-economy 
model, US-REGEN explores the impacts of sub-region differences in policy, costs, technology, demand, 
and electricity transmission on the evolution of capacity, generation, and system costs over the modeling 
time horizon. For this analysis, US-REGEN uses two operation modes. The first operation mode is a 
dynamic long-run formulation, producing the economically optimal capacity portfolios for each year in 
the modeling time horizon, a thirty-five-year period from 2015 to 2050. In the dynamic mode, to reduce 
computational complexity and improve run time, each year is represented by roughly 100 segments 
instead of modeling every hour. Each time slice represents anywhere from one to two hundred hours of 
the 8760 hours in a given year, and the hours within each time slice are not usually contiguous. These 
time slices are chosen to be representative of different periods throughout a given year, such as peak 
demand in the summer or several hours in shoulder months. Together, these time slices capture the intra-
annual renewable resource availability and load profile. 

The second operation mode US-REGEN uses for this analysis is a static hourly formulation for the 
year 2050. Modeling storage requires the sequential 8,760 hours. Since the temporal granularity of the 
dynamic model is reduced to 100 segments per year, US-REGEN is unable to model storage in this mode. 
To include storage, the outputs from the dynamic long-run mode of US-REGEN are then used as inputs to 
the static hourly formulation. The static hourly formulation mode enables full 8,760 hourly resolution. For 
this analysis, US-REGEN dynamic model data for the year 2050 are used to seed the static model. See 
US-REGEN model documentation [16] for more information on the differences in characteristics of  
US-REGEN's dynamic and static models. 

3.1 Scenarios and Assumptions  
The capacity expansion portion of this analysis examines the market and grid energy system 

development of the NYISO for four possible decarbonization scenarios. The design of these scenarios 
includes a combination of pricing structures, New York state and national policies, and technology 
constraints. The matrix of US-REGEN model runs is shown in Table 1. It is essential to keep in mind that 
the scenarios presented are not projections of the future, but rather descriptions of possible systems given 
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the inputs. While each of the four scenarios are under the same state policy, they allow for differing 
assumptions on U.S. policy, nuclear costs, renewable costs, and Li-ion storage allowance. Note that the 
inclusion or omission of storage from the scenarios is in EPRI’s US-REGEN baseline-defining cases 
only, and doesn’t reflect on HERON’s inclusion of storage in subsequent analyses. 

Table 1. US-REGEN EPRI scenario descriptions. 

 
State 
Policy 

U.S. 
Policy 

Nuclear 
Cost Assumptions 

Renewable 
Cost Assumptions Other Assumptions 

Reference Current 
(70% RPS 
in NYS 
by 2030) 

Current Default Reference No Li-ion Storage 

Reference 
+ Storage 

Current Current Default Reference Li-ion Storage 

CES Current 100% 
CES 
in 2035 

Lower Nuclear 
Costs 

Smaller Declines 
in Wind and Solar PV 

No Li-ion Storage 

CES + 
Storage 

Current 100% 
CES 
in 2035 

Lower Nuclear 
Costs 

Smaller Declines 
in Wind and Solar PV 

Li-ion Storage 

 

3.1.1 Policy Assumptions 

For this analysis, the US-REGEN model implements a state and national policy for each of the four 
capacity expansion scenarios. All the scenarios considered in this analysis are under the same state policy: 
a 70% Renewable Portfolio Standard (RPS) in New York state by 2030. The US-REGEN model requires 
the New York state RPS target to be met as a binding constraint. The reference cases implement current 
national policy. The clean energy standard (CES) cases implement a national policy of meeting 100% 
CES in 2035. 

3.1.2 Nuclear and Renewable Cost Assumptions 

The US-REGEN model takes in nuclear and renewable cost assumptions. These cost assumptions are 
shown in Figure 1 below. Both reference scenarios use a default capital cost for any new nuclear 
construction of $4,000/kW. The two CES scenarios use lower nuclear costs of $3,000/kW, a capital cost 
reduction of 25%. The lower nuclear cost of $3,000/kW was chosen to reflect the ambition of some 
advanced nuclear designers and serves as a lower, or cheapest, boundary cost. Note that existing nuclear 
in the NYISO is assumed to continue operating without capital cost until end of foreseeable license 
extensions. For renewable cost assumptions, the two reference scenarios use the US-REGEN reference 
renewable costs, and the two CES scenarios use a higher (but still decreasing) renewable cost assumption. 
Compared to the reference, the high-cost renewable assumption is represented by smaller declines in 
renewable costs over time.  
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Figure 1. Time-dependent cost of generation resources. 

Lastly, these four scenarios are under a Li-ion storage assumption. The US-REGEN model 
implements this assumption for each of the four cases, either allowing or prohibiting Li-ion storage 
capacity build-out. As shown in Table 1, the reference and CES scenarios with storage allow Li-ion 
storage capacity to be built out. In contrast, the reference and CES scenarios without storage prohibit Li-
ion storage from building out in their capacity expansion forecasts.  

3.2 Capacity Expansion Results  
Table 2. Generator acronyms for Figure 2–Figure 7. 

Legend Name Generator Name 

Storage Battery, pumped hydro, and other 

Rooftop Solar Rooftop solar photovoltaic  

Solar CSP Concentrating solar power 

Solar PV Solar photovoltaic 

Off. Wind Offshore wind  

On. Wind Onshore wind 

Hydrogen Hydrogen used for electricity production 

NGCC Natural gas combined cycle 

NGCT Natural gas combustion turbine 

Gas CCS/NGCCS Natural gas with carbon capture and sequestration 

New Gas All new natural gas without CCS 

Ex. Gas All existing natural gas without CCS 

Coal CCS Coal carbon capture and sequestration 

Coal  All types of coal that do not have CCS 

Bio CCS/BECCS Biomass with carbon capture and sequestration 

Other/Bio Oil, diesel, and minor generation methods that do not fit other categories 



 

7 

Legend Name Generator Name 

Hydro All hydroelectric 

Geothermal All geothermal facilities 

New Nuclear All new nuclear facilities 

Ex. Nuclear All existing nuclear facilities 
 

The US-REGEN tracked generation technology's capacity and generation evolution in the NYISO 
from 2015 to 2050 for the four scenarios described above. The outputs of the four US-REGEN runs are 
displayed in Figure 2-Figure 7. The outputs are displayed in two types: dynamic results and static results. 
The dynamic results, shown in Figure 2-Figure 7, indicate the projected capacity and generation evolution 
over the modeling time horizon in New York for the reference and CES scenarios. The last two figures 
show the static results, displaying the projected capacity and generation of New York in the final 
modeling year of 2050 under each of the four scenarios, respectively.  

Note that only the static model results show the capacity and generation of the Reference + Storage 
and CES + Storage scenarios. This is because modeling storage requires the sequential 8,760 hours, 
temporal granularity only available in the static model. To generate the static model results in 2050, first, 
the dynamic model results of the Reference and CES without storage scenarios were generated to capture 
the long-run additions and retirements. Then, using the dynamic model results as inputs, the static model 
optimized capacity for short-build time assets by considering both the endowments of those long-lived 
assets and the sequential 8,760 hours.  

Consistent with the current generation mix discussed in Section 2.2, Figure 2 and Figure 3 show that 
natural gas is the largest source of capacity in the NYISO at the beginning of the modeling time horizon. 
In both the reference and CES scenarios under a 70% RPS by 2030, significant retirements in existing 
natural gas assets occur. In the CES scenario, minimal new natural gas investment occurs due to the 100% 
nationwide CES starting in 2035. However, there is no restriction on the capacity for fossil-fired assets in 
the reference scenario. As a result, there is a significant new natural gas investment in the reference 
scenario from 2030 to 2050, as shown in Figure 2.  
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Figure 2. New York Capacity Evolution in the Reference Scenario. 

 

Figure 3. New York Capacity Evolution in the CES Scenario. 

In the capacity evolution of both scenarios, we see increased investment in VRE resources starting 
notably in 2030. This is unsurprising given that both scenarios are under the state’s 70% RPS by 2030. 
The effects of the high-cost renewable constraint on the CES scenario seem to be modest, with similarly 
significant increases in rooftop solar and offshore wind relative to the reference scenario. Both scenarios 
see a similar decline in existing nuclear over the modeling time horizon. However, the CES scenario sees 
new nuclear capacity investment under a low nuclear cost assumption. Under a nationwide CES, 
hydrogen capacity builds out for storage as VRE capacity grows and fossil-fired investment declines. 
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Figure 4 and Figure 5 display the generation evolution of various technologies in the reference and 
CES scenarios, respectively. In the reference scenario, under a state 70% RPS and the current national 
policy, we see net imports from outside New York (the gap between in-state generation and load) increase 
by over 150% from 2015 to 2050. The regions surrounding New York state have less ambitious RPS or 
CES targets than New York state. For example, three states that border NY - Massachusetts, Connecticut, 
and New Jersey - all have RPS targets of around 50%  by 2030 [17]. With lower RPS targets than New 
York state and without a nationwide CES, the reference scenario sees NYISO import cheaper, and 
potentially fossil-fired, electricity from its neighbors. In the CES scenario, however, which is under a 
national 100% CES in 2035, we see net imports in New York decrease by roughly 50%.  

In terms of the portion of generation provided by in-state resources, from 2015 to 2050, we see a 
significant decline in fossil-fired generation and an increase in VRE generation, most notably from 
offshore wind. This is the same in both the reference and CES scenarios. In the reference scenario, 
nuclear generation sees curtailment due to renewable overproduction cutting into the baseload operation. 
In the CES scenario, under a lower nuclear cost assumption, NYISO maintains current nuclear energy 
generation throughout the entire modeling time horizon. In the reference case, there was negative 
feedback pushing consumers to use less electricity due to electrification, so the overall demand is lower in 
the reference case than in the CES case due to high electricity costs. 

 

Figure 4. New York Generation Evolution in the Reference Scenario. 
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Figure 5. New York Generation Evolution in the CES Scenario. 

As shown in Figure 6, the addition of storage reduces NGCT capacity and slightly increases Solar PV 
capacity in the reference scenario. In the CES scenario, the addition of storage reduces the capacity of 
hydrogen, which is used as long-duration storage, by roughly the same amount of capacity added by 
storage. Expansion of storage does not impact the capacity of nuclear in either scenario. Even though 
some fossil-fired capacity was retained in all scenarios, Figure 7 shows that it is rarely dispatched and is 
only retained to meet the NYCA-wide reserve requirements. In both the reference and CES scenarios, the 
impact of adding storage on net generation is the storage generation itself. The addition of storage in both 
the reference and CES scenarios increases total generation slightly and lowers VRE curtailment. 
Consistent with the dynamic model results for the evolution of generation, in-state generation is higher in 
the CES scenarios than the reference scenarios in 2050. Figure 7 shows NY imports less in the CES 
scenarios due to higher quality and lower costs of renewables in-state relative to neighboring regions and 
because there is less cheap, fossil-fired generation available for import.  
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Figure 6. New York Capacity in 2050 for All Four Scenarios. 

 

Figure 7. New York Generation in 2050 for All Four Scenarios. 
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4. ENERGY STORAGE TECHNOLOGIES AND CONSIDERATIONS 
Existing NPPs are struggling to remain economically competitive in the face of increasing 

intermittent resource adoption and cheap natural gas. Coupling energy storage with NPPs is one potential 
solution to increase NPP revenue. Such a coupling allows the NPP to operate flexibly, supplying the grid 
in periods of scarcity and storing power in times of oversupply. One energy technology being considered 
for NPP coupling is TES. Since thermal power plants like NPPs produce heat, TES can directly store 
energy in the form of heat without the loss of efficiency from conversion. Furthermore, with low-cost 
potential and high technology readiness levels for some technologies, TES is a promising option for 
integration with existing NPPs.  

As mentioned above, our analysis leverages some previous work analyzing energy-storage 
technologies that can be integrated with existing LWRs. The authors of a previous INL study on energy 
arbitrage for NPPs the leveraged work compare a variety of TES, hydrogen, and Li-ion technologies [10]. 
From those nine technologies considered, we select three TES technologies, ETES, Thermal Hitec XL, 
and Thermal Dowtherm A, to compare to hydrogen and Li-ion. Table 3 displays the five energy storage 
technologies compared in this analysis. This study does not include, however, a potential leading option 
of burning hydrogen in an existing natural gas turbine, or in a peaking turbine dedicated to hydrogen 
production. Nor does this evaluation consider a reversible solid-oxide electrolysis/fuel cell option. These 
options could alter the outcomes of the present evaluation, because both would have lower capital costs, 
and high round-trip efficiencies that the H2 Physical Storage SOEC / PEM FC case. 

Table 3. Thermal energy storage technology characteristics. 

Storage 
Option 

Input 
Operating 

Temperature 
Range 

Capital 
Cost per 
unit of 
stored 
energy 

($/kWh-
e) 

Capital 
Cost 
($M) 

Cost of 
Debt 

($M/yr) 
RTE 
(%) 

Total 
Revenue 
($M/yr) 

LCOS 
(breakeven) 
($/MWh-e) TRL 

Li-ion LFP 
Batteries 

NA 828 (6 & 
12 h) 

2484 
(6h) 
4967 
(12h) 

119 (6h) 
239 
(12h) 

88  300 (6h) 
600 
(12h) 

357 (6 & 12 
h) 

9 

H2- 
Physical 
Storage, 
SOEC / 
PEM FC 

NPP heat to 
SOEC 

548 (6h) 
296 
(12h) 

1644 
(6h) 
1777 
(12h) 

79 (6h) 
86 (12h) 

38 209 (6h) 
253 
(12h) 

248 (6h) 
151 (12h) 

2-3 

Thermal 
(ETES) 

-3°C to 
390°C 

417 (6h) 
247 
(12h) 

1250 
(6h) 
1483 
(12h) 

60 (6h) 
71 (12h) 

55 204 (6h) 
297 
(12h) 

194 (6h) 
141 (12h) 

5-6 

Thermal 
(sensible / 
Hitec XL) 

120°C to 
500°C 

199 (6h) 
171 
(12h) 

598 (6h) 
2912 
(12h) 

28 (6h) 
49 (12h) 

82 212 (6h) 
202 
(12h) 

105 (6h) 
96 (12h) 

9 

Thermal 
(sensible / 
Dowtherm 
A) 

-3°C to 
359°C 

373 (6h) 
347 
(12h) 

1120 
(6h) 
2086 
(12h) 

54 (6h) 
100 
(12h) 

82 167 (6h) 
317 
(12h) 

159 (6h) 
151 (12h) 

9 
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Since this analysis considers the potential economic benefit of TES coupled with existing NPPs, the 
technologies selected to compare to Li-ion and H2 were chosen based on Technology Readiness Level 
(TRL) and commercial interests. High TRLs indicate a capability for near-term LWR coupling. Two of 
the TES technologies analyzed in this work, Thermal Hitec XL and Thermal Dowtherm A, are  
sensible-heat storage (SHS) systems. SHS systems are currently commercially available and have been 
widely deployed with thermal plants, like concentrated solar power and coal. With a high TRL and 
commercial deployment, the two SHSs were deemed attractive candidates for this analysis. Thermal 
ETES was chosen based on commercial interests as well as high TRL. While ETES is considered a TES 
technology, it differs from the other two TES systems in input. ETES operates stand alone on the grid, 
meaning the system does not need to be connected to a heat source. Instead, an ETES system takes power 
from the grid, converts it into heat energy, and then converts the heat energy back into electricity for the 
grid in a peaking manner. Li-ion and H2 were chosen as the comparison storage mediums because of 
historical precedent and increased focus on a hydrogen economy, respectively.  

Round trip efficiency (RTE) can be assessed in a variety of ways: AC to AC power, thermal to AC 
power, thermal to thermal, each of which is defined as the fraction of energy taken out of the storage to 
the energy put into storage. The higher the RTE, the more efficient the system. All storage systems lose 
power during the power conversion process, and the RTE aggregates the net losses of this process. The 
RTE values for Li-ion, H2, and Thermal ETES were established in [13] and correspond to AC to AC 
power conversion. However, the RTE values for Thermal Hitec XL and Thermal Dowtherm A storage 
options were recalculated for our analysis as for a fair comparison with a nuclear power plant, a thermal 
to thermal conversion is needed. The RTE values found in [13] for these two storage mediums is 27%, 
corresponding to AC to AC power.  

Since NPPs have around a 33% thermal to electric conversion efficiency, the power being stored in 
the Li-ion battery coupled with an NPP has already gone through a 33% transition from the nuclear heat. 
This was not accounted for in [13]. Therefore, to do a fairer comparison with Li-ion, we divided 27% by 
33%, the thermal efficiency of an NPP. This recalculation gives Thermal Hitec XL and Thermal 
Dowtherm A an RTE of 82%. The RTE for hydrogen already accounts for the NPP heat to storage 
process, and ETES takes electricity as its input. 

As can be seen from Table 3, Li-ion has the highest levelized cost of storage (LCOS) for both the 6-
hour and 12-hour storage durations, followed by H2. Even with the heat-to-heat RTE values for Thermal 
Hitec XL and Thermal Dowtherm A, Li-ion has the highest RTE of 88%. Thermal Hitec XL and Thermal 
Dowtherm A have the next highest RTE values of 82%, followed by ETES with an RTE of 55%.  

5. HERON DISPATCH ANALYSIS DESCRIPTION 

5.1 System Description 
Figure 8 displays the energy flow of the market simulated in HERON. This diagram shows the 

combination of thermal and electrical storage technologies used as optimizing components in the analysis. 
It also includes the energy produced by VREs and the turbines that convert thermal storage into 
electricity.  
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Figure 8. Diagram of HERON dispatch analysis. 

5.1.1 Synthetic History Training and Validation  

A series of synthetic histories were generated using data from US-REGEN. These histories represent 
the total load (demand), wind capacity utilization, and solar capacity utilization throughout the year. Since 
wind and solar were only provided for one year by US-REGEN, the synthetic histories were generated for 
the first and last year of the project lifetime. All the years in between were interpolated with a constant 
factor. This establishes an assumption used in HERON that load, wind, and solar behavior will not 
significantly change over 20 years. It is also important to note that the solar generation was reported using 
Greenwich Mean Time (GMT) and not Eastern Standard Time (EST). This explains why there are peaks 
in solar in the latter part of the day when the peaks would be expected during the early and middle parts 
of the day. Since the dispatch window is 24 hours, this does not significantly affect the dispatching 
results.  

Specifically, two synthetic histories were generated using a Fourier Auto-Regressive  
Moving-Average (FARMA) model. Each FARMA model requires four parameters: the auto-regressive 
order (p), the moving-average order (q), the detrending Fourier bases, and the number of clusters to group 
by.  

For the Reference case, a model order of (1,0) was chosen for p and q, respectively. The Fourier bases 
were: 8760, 4380, 2920, 2190, 438, 168, 24, 12, 6, 3 for the wind and load values, and 24, 12 for the solar 
values. The FARMA was then clustered with eight representative groups, meaning that the year of data 
can be represented using eight distinct days. This clustering reduces some of the computational 
complexity of the optimization and allows for a more generalized behavior of the stochastic history. 
Figure 9 shows the synthetic history in comparison to the original US-REGEN data.  
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Figure 9. Reference Case - Synthetic History compared to US-REGEN. 

A model order of (1,0) was chosen for the CES case. The Fourier bases were specified as 8760, 4380, 
2920, 2190, 438, 168, 24, 12, 6, 3 for wind and load and 24, 12, 6, 3 for solar. The clustering was 
performed in the same manner as the Reference case. Figure 10 shows the synthetic history in comparison 
to the original US-REGEN data. More information on this model and its formulation can be found in [19] 
and [20]. 
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Figure 10. CES Case - Synthetic History compared to US-REGEN. 

5.1.2 Dispatch Optimization 

Optimizing the dispatch of these cases is relatively straightforward. For this study, the additional 
NPP, unused NPP, grid demand, and the different storage technologies define the system of components. 
The grid and unused NPP are both required demands; both must be completely satisfied during the 
simulation each hour. Since the NPP is assumed to be operating as a non-flexible generator, there may be 
hours in which thermal energy from the NPP is generated but not used to satisfy electricity demand, and 
some portion of that may not always be stored. In these instances, lacking other alternatives in the model, 
in order to use the un-dispatched heat, the NPP must bid the electricity generated from the unused heat 
under the Production Tax Credit (PTC) [17] of the VREs, resulting in an associated cost-for-unused-heat 
of $17,000/GWe. During optimization, this cost acts as a penalty to prevent the NPP from producing an 
overabundance of heat with nowhere to store or use it. The unused NPP also has a flat demand whose 
quantity is determined in the outer optimization and remains constant in the inner. The synthetic history 
provides the grid demand. 

Table 4 displays the capacity constraints and marginal cost for each component in each scenario in 
our analysis. The combination of the capacity and cost creates the stack that will be used to drive 
cashflows and guide the dispatch strategy. Note that Solar and Wind are not a part of the  
marginal-cost-sorted list of energy generators (or “stack”) as the energy produced by VRE is subtracted 
from the total load to yield a net demand to be met by the generators, with a VRE marginal cost of 
$0.00/GWe. Also, the increasing marginal cost of each component must be observed; depending on the 
amount of capacity represented by each marginal cost in the stack, the step function that computes 
clearing price will become either elongated or abbreviated. 
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Table 4. Component capacity and costs. 

Case Strategy Component Capacity (GW) Marginal Cost ($) 

Reference Storage Hydro 4.28 $- 

Reference Storage Nuclear 1.14 $12.69 

Reference Storage NGCC 4.53 $25.11 

Reference Storage NGGT 17.22 $32.70 

Reference Storage Overflow 35.00 $169.68 

Reference No Storage Hydro 4.28 $- 

Reference No Storage Nuclear 1.14 $12.69 

Reference No Storage NGCC 4.53 $25.11 

Reference No Storage NGGT 14.52 $32.70 

Reference No Storage Overflow 35.00 $169.68 

CES Storage Hydro 4.28 $- 

CES Storage Nuclear 5.24 $12.69 

CES Storage NGCC 2.10 $25.11 

CES Storage NGGT 4.64 $32.70 

CES Storage Overflow 35.00 $169.68 

CES No Storage Hydro 4.28 $- 

CES No Storage Nuclear 5.24 $12.69 

CES No Storage NGCC 2.10 $25.11 

CES No Storage NGGT 2.10 $32.70  

CES No Storage Overflow 35.00 $169.68 
 

Using the marginal costs in Table 4 and the synthetic histories discussed in Section 5.1.1, we 
constructed visualizations of the demand levels observed as well as the corresponding marginal costs to 
meet that demand. To visualize the demand levels, we sampled 50 synthetic time histories of load, wind, 
and solar data, then subtracted wind and solar generation from load to get net load (which may sometimes 
be negative; in practice we curtail these to zero but show them in the visualization for reference). This net 
load was then placed into a histogram, showing the frequency of occurrence for each bin of demand 
levels. These are shown in orange for each scenario in Figure 11 and Figure 12.  

On the same figures, we show the evolution of the clearing price as a function of demand in blue. 
That is, the blue line sits over top of the net demand histogram at precisely the corresponding point. We 
calculate clearing price as the lowest-cost way to meet demand based on the marginal cost and available 
capacity of each generating component in the system. Each level in the blue step function is labeled with 
the new technology that must be brought online to meet demand at that level of demand, with 
corresponding clearing price. Thus, for initial demand, Hydro and Nuclear technologies , while at more 
infrequent, higher levels of demand, higher cost NGCC and NGGT must be brought online. For the most 
infrequent levels of demand (right tails of the distributions), the highest-possible clearing price results due 
to the high costs of the technology clearing price (either NGCC or NGGT). However, we can observe 
from the demand histograms that the most expensive “Overflow” technologies, meet no instances of 
demand and the “Overflow” clearing price is never realized. 
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Figure 11. Net Demand and Clearing Price, EPRI-No-Storage Baseline 

 

Figure 12. Net Demand and Clearing Price, EPRI-Storage Baseline 

The distribution of clearing prices can be obtained by considering the histogram of net demand levels 
with clearing prices in Figure 11 and Figure 12. In the Reference cases, the bulk of the histogram falls 
below the level of demand at which the NGGT determines the clearing price, resulting in cheaper prices 
of electricity when compared to the CES cases. In CES cases, the tail of the histogram is significantly into 
the NGGT portion of the clearing price plot, which in practice means more instances of higher cost of 
electricity. This increase in frequency of high-cost electricity demands leads to more opportunity for TES 
profit through NPP coupling with TES, as the NPP can store energy when demand is low and clearing 
prices are low, while providing stored energy when demand and clearing prices are high. 

In the past, HERON analyses would employ a round-about way to construct the objective function for 
the optimization, often employing price-taker assumptions. Since the clearing price stack can be described 
as a non-linear, non-differentiable function, its implementation would sometimes lead to intractable 
formulations of the objective function for dispatch optimization. 

To approximate the non-differentiable behavior with a suitable algebraic representation, an 
exponential function was fit to the stack. While an approximation of the true behavior, the exponential 
function provides two conveniences: first, an analytical way to formulate the optimization problem, which 
cuts down on computational complexity, and second, a way to guide the storage dispatch while still using 
the stack in the computation of cash flows. Figure 13 displays the given fits for each case. Note the 
previously mentioned dynamic step sizing across the cases. We emphasize that the piecewise constant 
clearing price function is used for evaluating dispatch cost as part of the stochastic dispatch optimization; 
the algebraic exponential fit is only used to emulate clearing price in dispatch optimization. 
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Figure 13. Clearing price formulation. 

5.1.3 Capacity Optimization 

While the dispatch optimization happens during the inner loop of a HERON run, capacity 
optimization occurs during the outer loop. This is where the optimizer bids to find the proper combination 
of storage capacities to maximize NPV for a given market scenario. For a meaningful conclusion to be 
drawn, a set of baseline cases that purposefully build out zero capacity for all storage technologies must 
be completed. This allows for a comparison in NPV between a scenario with no storage capacity and a 
scenario that has found specific technologies profitable. Barring the optimizer getting stuck in a local 
minimum, the difference between the baseline and optimized case NPV should converge to a  
non-negative value. 

Table 5 displays the total system cost NPV statistics gathered from the baseline cases. Note the 
extreme difference in cost across all the cases. This disparity in prices can be explained by the restrictive 
policies assumed in the CES scenarios. When a CES policy is in place, we can expect to see higher 
electricity costs due to utilities having to purchase energy from clean generators from neighboring ISOs. 
Also, as a rule, any differential NPV that falls within one standard deviation of the baseline NPV would 
be suspect of any improvement due to the observed variation of the baseline mean.  

Table 5. Baseline NPV statistics. 

Scenario Mean NPV ($MM) Std. Dev. NPV ($MM) 

Reference - No Storage $2,347.88 $41.43 

Reference - Storage $2,034.58 $46.83 

CES - No Storage $42,662.58 $962.60 

CES - Storage $43,054.78 $517.59 
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6. MARKET SIMULATION RESULTS 

6.1 Dispatching 
Figure 14 is a sample of dispatch optimization mechanics seen throughout the optimizing runs in 

HERON. Since each dispatch is part of the solution for one year, within one sample, within a single 
optimization cycle, we only display a cross-sectional overview of the dispatch system. This view provides 
insight into how the model treats energy demand during specific hours of the day. Note in reading the 
dispatch optimization figures that “absorbed quantities” (such as electricity consumed at the grid) are 
shown to have a negative value by convention in HERON; that is, when demand is high, the electricity 
absorbed at the grid is a large negative value. Conversely, when demand is low, the electricity absorbed at 
the grid is a small negative value. Note also that solid-line generation and consumption rates (such as 
GW) use the left y-axis, while dotted-line energy quantities (such as GWh, e.g., for energy storage levels) 
use the right y-axis.  

In Figure 14Figure 14, we can see that Dowtherm A chooses to build up storage while electricity is 
cheap during low-demand hours, so it will be able to sell it off when electricity becomes more expensive. 
Similarly, the same behavior can be seen in Li-ion battery storage when the grid demands are near zero. 
What is particularly interesting is the lagging factor seen in lithium-ion storage level and the threshold for 
when it decides to start building up storage levels.  

 

Figure 14. Example dispatch strategy. 
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Figure 14 becomes more interesting when looking at it combined with Figure 15. This figure shows 
the solar and wind availability as a percentage of installed capacity along with total load demand taken 
from each respective stochastic history. We can see that as the variable renewable energies peak in the 
day, it reduces the net amount of energy the grid demands. The storage technologies see this as an 
opportunity to build up storage since the clearing price of electricity is low, due to high VRE production. 
Also, once the VREs drop off, the storage technologies sell off much of its level since demands are higher 
without the VREs satisfying the load, leading to higher clearing prices.  

 

Figure 15. Example Synthetic History in Dispatch Window. 

Also note in Figure 14 that frequently the dispatch optimization both charges and discharges storage 
technology simultaneously. In this specific dispatch scenario, the net demand after VRE generation 
requires less than the NPP full capacity, and there is not enough storage built to absorb all the excess 
generation. To avoid underbidding the PTC and curtailing VREs, the dispatch optimization instead uses 
the inefficiencies of the storage technology, represented in the RTE, to sink excess heat. While it is 
unlikely a storage owner would choose to remove excess energy through this process, it is indicative of 
the quantity of unused heat in some dispatch hours due to baseload NPP operation and  
high-variance VRE generation. 

6.2 Optimization Results  
As expected, the results of the HERON optimization analyses display a tendency to minimize storage 

technology capacity across the Reference scenarios. This result becomes quite clear when looking at the 
projected capital costs per unit of energy for each technology in Table 3. The current costs of these 
technologies act as a barrier to entry in deregulated markets, where electricity prices rarely rise high 
enough to justify the capital costs required to invest in TES. However, many of these technologies are 
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currently low TRL, suggesting large uncertainty in actual capital costs. Some of these newer low-TRL 
technologies may have significantly lower capital costs, and therefore lower electricity costs required 
before installation may be profitable. 

In CES scenarios, however, electricity prices often higher than in the Reference scenarios. This 
allows additional opportunity for TES to capitalize on buy-low sell-high dynamics, storing energy from 
the NPP during low demand (and low prices) and providing that energy during high-demand high-price 
time. This demonstrates that small changes in the projected price of electricity can have large impact on 
the viability of storage. The profitability of storage does not lead to a continuum of solutions; rather, if 
storage is net profitable, enough storage should be built to capitalize on price fluctuations. Inversely, if 
storage is not net profitable, no storage should be built. The decision variable for building storage or not 
is binary. The question of how much storage to build is a secondary question that can be answered once 
the profitability of storage is determined. 

Furthermore, the CES scenarios represent NPP with a low capital cost, lower than some predictions 
but within the bounds of current estimates. While existing NPP in NYISO are assumed incur no capital 
cost for inclusion in the simulation, we allowed HERON to consider installing additional nuclear at 
$3000/kW in CES scenarios and $4000/kW in Reference scenarios, as discussed in Section 3.1.2. In 
Reference scenarios, HERON optimized no additional nuclear installation. In CES scenarios, however, 
significant nuclear is installed, up to 100% more than the amount predicted in the baseline models. This 
additional nuclear installation is enabled through the direct coupling of the TES, allowing nuclear to act in 
response to the volatility of the VREs that are dominant in the CES scenarios. 

Another noteworthy result in the optimization processes is the speed with which some technologies 
are embraced or rejected. This speed of rejection is indicative of strong sensitivity in the expected NPV 
with respect to the construction of that TES technology; the higher the negative impact due to introducing 
the technology, the more readily the optimization process will reject the technology. Generally, we 
observe the electricity-based storages being minimized first. Among heat storage technologies, we 
observe Hi-Tec XL to be the last storage minimized, suggesting the most positive effect from this heat 
storage. These results correlate well with the capital costs of the technologies.  

Table 6 summarizes the optimization results achieved by HERON for each case. As shown in the 
following sections, the Reference scenarios struggled to fully realize any TES installation; however, the 
result was not as profitable as the baseline case (in which no TES at all was installed). We attribute this 
lack of convergence to difficulties in the topology of the problem, which we discuss in Section 7.2. In the 
CES cases, however, notable improvements in the NPV are shown by introducing TES, especially in the 
No-Storage baseline case from US-REGEN. We discuss each of these optimizations in the following 
sections. 

Table 6. Optimization Results 

Scenario 

H2 
GWhe 

ETES 
GWhe 

Hitec 
XL 

GWht 

Dowt
herm 

A 
GWht 

Li-ion 
GWhe 

Mean 
NPV  

$MM 

Baseline 
NPV 

$MM 

Δ NPV  
$MM 

Change 
% 

Reference – 
No Storage 

0.00 0.00 0.10 1.53 0.00 $2,273 $2,347 -$74 -3.16% 

Reference - 
Storage 

0.25 0.26 0.41 0.25 0.45 $1,511 $2,034 -$523 -25.73% 

CES - No 
Storage 

0.23 0.00 0.00 4.64 0.00 $49,368 $42,662 $6,706 15.72% 

CES - 
Storage 

0.54 0.50 0.45 0.43 0.46 $43,835 $43,054 $780 1.81% 
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Figure 16 through Figure 19 in the following sections show the evolution of optimization decisions 
made by HERON as a function of the number of iterations. We define an iteration as each successive step 
HERON makes in determining the optimal component sizing. At each iteration, HERON evaluates the 
expected value of the configuration’s NPV by sampling many synthetic histories and optimizing dispatch 
to each. HERON evaluates this expected NPV both at a proposed new optimal point as well as neighbor 
points. These evaluations are then used to locally estimate a gradient, pick a new direction to move to 
maximize NPV, and choose a step size to take in that direction. In the event the new proposed optimal 
point is an improvement over the old point, the new point is accepted (green dot). If the new point is not 
an improvement, it is rejected (red dot), and HERON returns to the previously accepted point to 
reconsider the gradient and step size (blue dot). Eventually as HERON falls into a profit-maximization 
point, it is unable to find any beneficial movements and reports convergence. This convergence is reached 
much more quickly near a boundary (such as when all storages are zeroed out) than on the interior of the 
problem. 

 

6.2.1 Reference – EPRI-No-Storage 

The Reference – No Storage case represents a scenario that maintains current state and national 
policies, along with default nuclear costs and the assumption that no new lithium-ion batteries would be 
built during the projected window of our analysis. It can be observed in Figure 16 that all storage 
technologies are driven toward 0 GWh of capacity, and the mean difference between optimized NPV and 
baseline NPV approaches 0 as the TES are removed from the system. This, in effect, drives the 
differential NPV towards zero since the resultant capacities mirror the capacities found in the baseline 
case.  
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Figure 16. Optimization results of Reference – EPRI-No-Storage scenario.  

6.2.2 Reference – EPRI-Storage 

Similar to the previous case, the Reference – Storage case makes all the same assumptions about state 
and national policies as well as nuclear costs. The primary difference from the previous case is that Li-ion 
storage is allowed to be built and used throughout the project lifetime. As shown in Figure 17, HERON 
struggled to find an optimization path after minimizing the size of the additional nuclear installation. It is 
likely that the sensitivity of the NPV to this parameter dwarfs the sensitivity to other parameters, and the 
optimizer struggles to minimize the size of storages. With additional work on the HERON optimization 
parameters, we expect this optimization process would improve. However, no optimization iterations 
approach the profitability of the baseline case, leading us to doubt the options for profitable TES inclusion 
in this scenario. 
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Figure 17. Optimization Results of Reference – EPRI-Storage scenario. 
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6.2.3 CES – EPRI-No-Storage 

The CES – No Storage scenario operates under the assumption that the US will implement a CES 
policy by 2035. It also assumes reduced cost in nuclear power generation capital costs. As shown in 
Figure 18, while HERON minimizes the sizes of other TES, it elects to profitably build 5 GWht 
Dowtherm A storage. Furthermore, it also elects to install nearly 4 GWt (1.3 GWe) of additional nuclear 
capacity to capitalize on the TES coupling. These combined choices lead to a $6 billion in expected NPV 
over the baseline case, a 15% increase. 

Interestingly, the capital cost of Dowtherm A is higher than Hitec XL, and both technologies have a 
similar RTE and mechanical interaction with the NPP and grid. Thus, we expect Hitec XL to be a superior 
choice in the optimization. We attribute the optimizer’s choices to the dominance of two dimensions, 
Additional NPP and total installed storage, in NPV sensitivity when compared to the choice of any one 
storage technology. We discuss this behavior more in Section 7.2. We expect that, were the Additional 
NPP and total storage fixed, the optimizer would be able to navigate the problem to select Hitex XL over 
Dowtherm A. 

 

 

Figure 18. Optimization results of CES – EPRI-No-Storage scenario.  
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6.2.4 CES – EPRI-Storage 

The CES – Storage scenario employs the same assumptions as the previous case with the addition of 
Li-ion storage in the baseline case. The optimizer struggled to converge this case but found profitability in 
installing some additional nuclear capacity and some TES capacity as well. While this result is not as 
well-converged as the CES No-Storage scenario, we observe significant variance in the Mean NPV with 
respect to very small changes in the TES parameters. This suggests additional synthetic scenarios would 
be required in this case to resolve useful gradients in the optimization process; the noise to signal ratio is 
simply too high for effective optimization in this scenario.  

 

Figure 19. Optimization results of CES – EPRI-Storage scenario. 
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7. CONCLUSIONS 

7.1 TES Analysis with HERON 
This analysis demonstrates the effectiveness of HERON’s workflow in examining the potential 

increase in NPP economic competitiveness through flexible plant operations. Using a variety of TES 
technologies, this work performs stochastic dispatch optimization to highlight the potential benefits of 
coupling energy storage to NPP competitiveness in the NYISO market.  

For TES to be economically viable as a solution for flexible plant operation, the added benefits of 
flexible plant operation must outweigh the cost of construction. In our analysis, benefits are only realized 
if the NPP with TES can take advantage of energy arbitrage – storing energy in times of low electricity 
costs and regenerating power to sell to the grid in times of high electricity costs. Therefore, profitability 
of TES is determined by both a high mean electricity price as well as large variance. The benefit of a TES 
in this consideration is a direct competition between the TES CAPEX and the mean and variance of the 
electricity prices.  

Based on our simulation analysis and the scenarios evaluated, our results show that participating in 
energy arbitrage with TES provides economic benefit to NPP revenue in the NYISO market under certain 
policy and cost assumptions. Under a nationwide CES, the clearing price of electricity is high without the 
option to import low-cost fossil-fired generation from neighboring regions. With a high clearing price for 
electricity, HERON chooses to build TES as it leads to a profitably optimal solution for flexible plant 
operation. Additionally, due to the lower cost nuclear assumption in the CES scenarios, HERON chooses 
to build significantly more nuclear in combination with TES to maximize potential profitability. This 
suggests that if new installation of nuclear becomes sufficiently inexpensive, new NPP coupled to TES 
may be an economically promising counterpart to VRE generation. 

In our Reference scenarios, without a nationwide CES and with higher cost nuclear, TES is not cost-
effective and therefore HERON chooses to minimize storage capacity. In these cases, high capital costs of 
TES or too low of electricity prices, or a combination of the two, prevent TES from being economically 
viable. Our results show that only under the policy and cost assumptions in the CES scenarios do the 
added benefits of flexible plant operation with TES outweigh the cost of construction. In the scenarios 
without these assumptions, current TES capital costs and low clearing prices produce a barrier for TES 
viability for NPP operators.  

We observe the profitability of NPP coupling with TES to be a competition between capital cost and 
electricity prices. Most of the TES technologies considered are of high TRL, with low uncertainty in 
CAPEX costs. However, low TRL TES have more uncertain CAPEX costs, presenting an opportunity for 
future improvement. Through targeted design, reducing low-TRL TES capital costs may yield additional 
economically viable options for direct coupling with NPP.  

7.2 Future Work 
While the framework to demonstrate storage as an optimizing component has been implemented in 

HERON, there is still research to be done regarding optimization heuristics and low TRL storage 
technologies. Additionally, this work only considers TES with nuclear in a power-storage-power scenario. 
Future work may consider additional applications of storage to other markets, both electricity and 
otherwise, to investigate a potential increase in NPP revenue. This may provide TES additional avenues 
to add economic benefit to a NPP if stored heat can used to generate a secondary revenue source. 

Regarding optimization, HERON’s current optimizer can traverse the parameter space but struggles 
with the pathological “valley problem” common to gradient descent algorithms, where locally dominant 
gradients in some dimensions greatly increase the challenge of optimizing non-dominant dimensions. For 
example, the dominant gradient in many of the scenarios considered in this work was the amount of 
storage to build; the NPV was much less sensitive to the choice of individual storage options than it was 
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sensitive to the total available storage. Currently, the optimizer lacks the heuristics to recognize a valley 
and adaptively increase or decrease its step size and direction to navigate this phenomenon. Improving 
this capability would lead to more robust results in less computational time. It would also be beneficial to 
implement a feature in HERON that can visualize low-dimensional optimization surfaces so that users can 
see how the optimization algorithm traversed the response surface.  

Also, while this analysis focuses significantly on many high TRL storage technologies, the sensitivity 
to capital costs may lead to an increased industry interest in analyzing emergent technologies. There is the 
possibility that these newer technologies have lower costs than currently projected. If so, there might be 
an opportunity for these newer technologies to become profitable given the current market dynamics in 
addition to high-electricity-cost scenarios.  

Noted in the text, this study does not include the option of burning hydrogen in an existing natural gas 
turbine, nor in a peaking plant for hydrogen. It also does not consider reversible solid-oxide electrolysis. 
These are scenarios for future work. The lower capital costs and improved round-trip efficiencies of these 
technologies will provide for an informative analysis.  

In conclusion, HERON today provides storage optimizing capabilities that will be instrumental in 
future economic analyses. From a computational and software perspective the work has been successful. 
HERON will continue to help industry make well-informed investment decisions and will be used as a 
planning tool in the near term. 
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