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ABSTRACT 

Automation technologies have the potential to reduce operations and 

maintenance costs, ensure reliable power generation and safety, and thereby 

contribute to extending the lifespan of nuclear power plants. To fulfill this 

aspiration, automation behaviors have to be understandable and predictable to 

human operators and traceable for license holders and regulators in the event of 

automation failures. The current report investigates how automation transparency 

as a systems design principle can keep operators sufficiently informed about the 

inner workings of automation or make fail-safe automation run invisibly in the 

background to free up operator capacity. 
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FOREWORD 

The present contract report arose from discussions between the Institutt for 

energiteknikk and Idaho National Laboratory following the presentation of HWR 

1250 at the May 2019 Extended Halden Programme Group Meeting in 

Sandefjord, Norway. In this foreword, we review the content of HWR-1250. 

The first half of HWR-1250 draws a distinction between seeing-through and 

seeing-into automation transparency. The human factors discipline adopts the 

seeing-into perspective: the principle that the responsibilities, capabilities, goals, 

activities, inner workings, performance, and effects of automation should be 

observable/visible to the operator1. This perspective on transparency, however, is 

antithetical to the perspective adopted in other fields. In teleoperation, computer 

network design, and mobile communication infrastructure for example, 

automation transparency refers to the experience of direct interaction with a task 

through a technology medium so well designed as to appear invisible. This 

alternative use has been referred to as seeing-through automation transparency. 

The work report makes the argument that the opposing semantic meanings of 

these two uses of automation transparency present a concern. The report 

advocates for the adoption of the alternative phrase, automation apparency2 to 

refer to the seeing-into connotation of transparency3. 

HWR-1250 proceeds with a brief description of the Situation Awareness-

Based Agent Transparency (SAT) model, introduced by Chen and colleagues to 

facilitate human collaboration with smart and independent computer agents in the 

military command and control domain. Although SAT has dominated the human 

factors literature on automation transparency (i.e. transparency in the seeing-into 

sense) for more than 5 years, the HWR-1250 offers critiques of the model’s weak 

conceptual foundations, ambiguity in content and structure, conceptual 

overreach, and unconvincing early empirical validation. We expand on the 

empirical evidence in this report. 

In a final section of the work report, we explore how the notion of 

transparency arises in human-robot interaction (HRI). After recounting a case 

study, we discuss the central concern about human trust in the robot and the 

misleading presumption that automation transparency (in the seeing-into sense) 

emerged as a response to the trust problem. While these two notions are often 

intertwined, trust has many bases that are unrelated to information disclosure; 

and transparency as a design principle has many anticipated effects beyond trust 

calibration. That said, exploring the HRI literature on transparency gave us 

confidence that further insight could be found by exploring other literatures; an 

approach we follow up with in this report.  

 

1  This definition is updated from the HWR-1250 as we continue to encounter transparency content expectations in the 

literature. We include this footnote explicitly as we have previously noted how inconsistent use of technical terms in human 

factors has led to confusion. 

2  Credit to Sheridan and Verplank (1978) for introducing this term. 

3  Throughout most of this report we continue to use “seeing-into transparency”, although we revert to the more concise and 

descriptive “apparency” when we present a taxonomy of automation transparency design frameworks. 
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Towards a Deeper Understanding of Automation 
Transparency in the Operation of Nuclear Plants 

1. MOTIVATION AND OBJECTIVE 

In the United States (U.S.), commercial nuclear power plants (NPPs) generate approximately one-

fifth of the reliable baseload electricity that powers the nation’s economy. Because of this important 

function, owners and operators are actively working to not only maintain but continuously improve and 

extend the operating life of existing NPPs. The Light-Water Reactor Sustainability (LWRS) Program, 

which is sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Energy, has the mission 

to perform research and development (R&D) that establishes the technical bases for NPP life extension. 

One research area in the LWRS Program is the Plant Modernization Pathway, which includes human 

factors R&D, human factors engineering (HFE), and ergonomics. LWRS Program researchers in this 

pathway conduct targeted R&D to address challenges with the legacy instrumentation and control (I&C) 

systems by helping to design, demonstrate, and deploy digital I&C technologies. In doing this, the LWRS 

Program not only helps ensure legacy I&C systems are not a life-limiting factor for U.S. commercial 

NPPs but also helps enable full plant modernization through broad innovation and digitalization, thereby 

allowing the industry to develop advanced concepts of operations that improve the business case for the 

continued operation of NPPs. 

Automation technologies hold promise to make NPPs cost-competitive with other forms of electrical 

power generation. Currently, for many commercial U.S. NPPs, the most significant cost associated with 

operating the plant is in operations and maintenance (O&M). Automation is therefore seen as a way to 

reduce O&M costs while maintaining exceptionally high levels of safety. Two examples from the LWRS 

Program are Computerized Operator Support Systems (COSS) and computer-based procedures (CBP). 

LWRS Program researchers at Idaho National Laboratory (INL) have been developing multiple 

versions of a COSS to assist operators in plant monitoring, fault diagnosis, and fault mitigation4. The 

COSS does not perform operator actions, but rather performs rapid assessments, computations, and 

provides recommendations to the operators. These automated information analysis and decision selection 

functions seek to reduce crew workload and augment operator judgment and decision-making during fast-

moving, complex events (Thomas, Boring, Lew, Ulrich, and Vilim, 2013). As COSS are considered for 

implementation in NPP operations, a key question will be the extent to which operators will need to 

understand their underlying control logic and behavior. 

Another example of NPP automation is in the development of CBP and other dynamic instruction 

systems (e.g., Oxstrand and Le Blanc, 2012). LWRS Program researchers have been automating 

traditional, static, paper-based procedures. CBP functions include automatic place keeping, correct 

component verification, calculations, integration with soft controls, and selective enabling of procedure 

steps that are relevant to the operating context. Automatic execution of these functions should minimize 

administrative and operational errors; however, questions remain regarding what the operators need to 

know with respect to how these dynamic instructions work (Jamieson and Skraaning, 2019; Skraaning 

and Jamieson, 2020). 

Two central tenets of safe operation of highly automated facilities are comprehensibility and 

traceability. Comprehensibility dictates that—for operators to rely appropriately on automation—its 

behavior should be understandable and predictable. Traceability dictates that—in the event of automation 

failures—license holders and regulators must understand how and why failures occurred to prevent 

recurrence of similar events. If U.S. NPPs are to become more highly automated, how can technology 

developers provide the necessary level of comfort and confidence among regulators and utilities to 

 

4  More recent research seeks to apply COSS to support cyber diagnostics. 
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embrace future automation technologies? That is, how can technology developers make the automation 

comprehensible and traceable—particularly when the nature of the technology itself challenges these 

design objectives? 

There are many important questions about the underlying design philosophy of automation that need 

to be understood before automation technologies can be more broadly deployed. One question gaining 

prominence is the degree to which operators should be informed about the inner workings of automation 

(i.e. by introducing transparency in the seeing-into sense). As noted in the foreword, this is a topic of 

ongoing interest within the Halden Reactor Project’s Human Technology Organization5 program. This 

report advances that investigation by 1) providing an overview of related Institutt for energiteknikk (IFE) 

and University of Toronto research activities, 2) summarizing empirical efforts to verify and validate the 

predominant automation transparency design framework, 3) recounting an industrial automation 

transparency design failure that led to significant loss of life and economic impacts, 4) expanding the 

human factors understanding of automation transparency as it manifests in artificial intelligence (AI), 5) 

introducing a taxonomy of automation transparency design approaches, and finally 6) offering 

preliminary insights on the implications of automation transparency design decisions in the context of 

future commercial NPPs. 

2. UPDATE ON TRANSPARENCY-RELATED R&D ACTIVITY 

2.1 Recent Activities, Progress and Developments 

In an overlapping research program, we have gathered a group of loosely affiliated researchers around 

the topic of automation transparency (seeing-into). The group is led by Gyrd Skraaning (IFE) and Greg A. 

Jamieson (University of Toronto) and includes several University of Toronto graduate students 

(Rajabiyazdi, Quispe, Farooqi, and Gentile). This group has made several contributions since the 

publication of HWR-1250: 

• IEEE P7001 Working Group – Transparency of Autonomous Systems (Rajabiyazdi – observer). 

 

The IEEE Standards Association initiated a Global Initiative on the Ethics of Autonomous and 

Intelligent Systems in April 2016. One of the five principles considered by the Committee is 

transparency. The Committee proposed the question: “How can we ensure that autonomous and 

intelligent systems are transparent?” To address this question, the IEEE Standards Association 

initiated IEEE P7001, a standard on the Transparency of the Autonomous System. 

 

P7001 is to provide guidance on how to develop autonomous technologies that represent why an 

autonomous system made a particular decision given the situation. The P7001 Working Group 

defined five groups of stakeholders including users, safety certifiers or agencies, accident 

investigators, lawyers or expert witnesses, and the wider public. As stated by Winfield (2019), the 

P7001 Chair, “For each of these stakeholder groups, P7001 is setting out measurable, testable levels 

of transparency so that autonomous systems can be objectively assessed and levels of compliance 

determined, in a range that defines minimum levels up to the highest achievable standards of 

transparency... P7001 will provide system designers with a toolkit for self-assessing transparency, and 

recommendations for how to achieve greater transparency and explainability.” (p. 47–48). 

• IEEE Access journal article submission – “A Review of Transparency in Human-Automation 

Interaction”—under revision (Rajabiyazdi, Jamieson, Skraaning, Mirjalali, Barnes, and Kinnear). 

Reviews received April 10, 2020. 

 

5  Man Technology Organization through 2020. 
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• IEEE-SMC 2020 conference paper submission – “A Review of Transparency (seeing-into) 

Models”—in review (Rajabiyazdi, Jamieson and Skraaning). 

• IEEE-SMC 2020 conference paper submission – “A Machine Learning-Based Micro-World Platform 

for Condition-Based Maintenance” (Quispe, Rajabiyazdi, and Jamieson). This open source platform 

will serve as the apparatus for subsequent seeing-into transparency studies. 

• Skraaning Jr., G. and Jamieson, G. A. (2019). “Human Performance Benefits of The Automation 

Transparency Design Principle: Validation and Variation” Human Factors, 

https://doi.org/10.1177/0018720819887252. 

• Early stages of a statistical meta-analysis of empirical transparency results (Rajabiyazdi). This project 

will yield an open source database of experiments. 

• Initial investigation of transparency in the context of Automated Money Laundering detection 

(Farooqi). 

• New project w/ Ericsson on Transparency in Condition-Based Maintenance in Industrial Settings 

(Gentile). 

2.2 Updates on the Validation of SAT 

In addition to the above activities, we have continued to monitor the ongoing efforts to validate the 

Situation Awareness-based Automation Transparency model. HWR-1250 provided an initial assessment 

of these efforts and progress since that report has not been exceptional. However, the SAT model is the 

most ambitious formulation of seeing-into transparency. The U.S. Air Force Research Laboratory (AFRL) 

has invested considerable effort in developing and validating this model. The model and its empirical 

foundations are more or less indicative of what we observe in more general seeing-into transparency 

research. We also interpret that this research program has concluded and that other research institutions 

may be picking up on this work. For all of these reasons, an update on SAT validation efforts seems 

prudent. 

Table 1 summarizes the SAT validation publications that we have identified to date. 

Table 1. Publications reporting or summarizing SAT validation efforts. 

Source Contents 

Wright et al. (2015) Two experiments on the effects of level of transparency on human 

performance in a military supervisory control task. 

Wright et al. (2017)  An AFRL technical report; likely the forthcoming article noted above and 

covering three peer-reviewed articles (Wright et al., 2016a, 2016b, 2017). 

Chen et al. (2018) A summary article, including several peer-reviewed articles (Mercado et al., 

2016; Selkowitz et al., 2016; Stowers et al., 2016) and one technical report 

(Wright et al., forthcoming). 

Guznov et al. (2020) One experiment on level of robot communication transparency on human 

performance in a supervised robot path following task. 

Bhaskara et al. (2020)  Summarizes SAT validation findings to date. 

 

Given the origin of the SAT model in a U.S. Department of Defence Research Laboratory, it is not 

surprising that SAT applications to date have been localized to automated decision aids in the military 

context. Despite this common content, however, the applications reflect a variety of experimental settings 

and tasks. This variety is accompanied by nontrivial inconsistencies in the design expression of the SAT. 
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That is, the contents of each design instance appear to differ. These differences in settings, tasks and 

model expressions limit the informativeness of the empirical results (i.e., the SAT model validation is 

inhibited by design verification). 

Table 2 summarizes the findings to date by predicted human performance impact of increased 

transparency according to the SAT model. 

Table 2. Summary of empirical results of SAT validation efforts to date. 

Outcome Findings 

Task performance Results sometimes as predicted (e.g., Wright et al., 2015) but have also been 

observed to fail to follow predicted trends across SAT levels (e.g., Wright et 

al., 2015; 2016).  

Workload Results statistically insignificant and weak (e.g., Selkowitz et al., 2016; 

Wright et al., 2016; Guznov et al., 2020) or significant and large for only a 

subset of workload dimensions (e.g., Guznov et al., 2020). 

Trust Results are at times compelling (e.g., Selkowitz et al., 2016) but at other 

times narrowly restricted to specific blocks of data (Mercado et al., 2016). 

Situation Awareness • No observations reported by Mercado et al. (2016), Stowers et al. (2016), 

or Wright et al. (2015). 

• Selkowitz et al. (2016) report several results corresponding with SAT 

model predictions, but the effect sizes are small (η2 =0.6–0.7). Other 

predictions are not supported with statistically significant findings. 

• Guznov et al. (2020) observed no effect of transparency. 

 

Given the results summarized in Table 2, it would be premature to accept SAT as either verified or 

validated as a transparency design framework. In terms of verification, both Bhaskara et al. (2020) and we 

have independently noted the inconsistencies in the expression of the model across several interface 

implementations for agent-based automation. These include inconsistencies within individual designs, 

where contents of communication specified as belonging to one level of the model are encoded in the 

interface at different (or redundant) levels. As well, inconsistencies can be observed between the 

interfaces designed by researchers working in the research facility that advanced the SAT model itself. 

These discordant expressions of the SAT model in interfaces intended to serve as research platforms 

impair verification efforts. 

In terms of validation, the evidence supporting the predictive power of the SAT model is not 

compelling. Stronger evidence is to be found in relative improvements in task performance and trust 

across increasing (and cumulative) levels of the SAT model. However, the evidence remains fickle. The 

predictive power of the model would be more thoroughly assessed through the inclusion of a baseline 

control condition. Workload results have followed expectations in only narrow selections of available 

data. Situation awareness results are sparse and, where statistically significant, indicative of weak effects. 

These inconsistent empirical results cannot be considered a sufficient technical basis for validation of the 

SAT model. 

3. THE BOEING 737 MAX 8 ACCIDENTS SEEN FROM AN 
AUTOMATION TRANSPARENCY PERSPECTIVE 

The nuclear industry has a well-established practice of learning from the operating experiences of 

other safety-critical industries. In particular, we have the opportunity to gain insight into early 

implementations of, and experiences of operators working with, advanced automation. The Boeing 737 

MAX accidents and the subsequent investigations and U.S. Congressional hearings provide a recent, 
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high-profile, and well-documented case that speaks directly to the seeing-into and seeing-through 

approaches to automation transparency. In doing so, it highlights an important issue that the nuclear 

industry will contend with in the near future. In this section, we explain the aircraft design features and 

flight control characteristics that have contributed to two well-publicized Boeing 737 MAX accidents 

(KNKT, 2019; AAIB, 2019; and Endsley, 2019). 

3.1 Design of a See-through Automated System6 

The Boeing 737 MAX was developed to compete with the Airbus A320neo (new engine option). It is 

extremely expensive to develop new airframes, so Boeing sought to modify their popular B737 design. 

However, the B737 MAX needed larger fuel-efficient engines that did not fit under the wings of the 

original B737 airframe. Larger engines were therefore placed slightly forward and higher up on the wing 

of the new model. The narrow-body fuselage design from 1968 remained unchanged. 

Given the considerable market penetration of the B737 and the high cost of training pilots on new 

aircraft, the B737 MAX designers sought to replicate the flight control characteristics of the familiar 

B737. However, the new engine placement resulted in different flying characteristics that would make it 

more likely for pilots to angle the aircraft too steeply upwards during takeoff, risking a stall. Boeing 

therefore developed and installed flight control software that made flying the B737 MAX as similar as 

possible to previous B737 models, despite the differences in engine placement. 

The Maneuvering Characteristics Augmentation System (MCAS) works silently in the background by 

automatically pushing the nose of the aircraft downward (see Figure 1). MCAS activates under manual 

flight when an angle of attack (AOA) sensor indicates that the climb angle is too elevated. This correction 

is achieved through manipulation of the horizontal stabilizers at the tail of the airplane and is referred to 

as an automatic stabilizer trim. The stabilizer manipulation was controlled by software that activated 

without pilots being aware of the intervention. 

 

6  This subsection draws from a similar description in an upcoming technical report for the OECD Halden Reactor Project. 
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Figure 1. The MCAS automatic function (figure by The Air Current, BBC). 

Two fatal Boeing 737 MAX 8 accidents (Lion Air flight 610 and Ethiopian Airlines flight 302) have 

been triggered by malfunctioning AOA sensors that fed incorrect information about the climb angle to 

MCAS. These instrumentation errors falsely activated MCAS and wrongly pushed the nose of the aircraft 

down towards the ground. In such cases, it is up to the pilots to intervene by manually trimming the 

stabilizer, but MCAS had incorrectly been presumed to be a fail-safe function that would operate reliably 

in the background. It was therefore implemented as black box automation with no way for pilots to infer 

the intentions, activation, and behavior of the system. MCAS was excluded from the transition training 

for the B737 MAX models, and the flight crew operations manual made no mention of the system. In 

both accidents, pilots ended up in a battle with a hidden automatic system that they could not understand 

or collaborate with. 

3.2 Interpretation of B737 MAX Accidents from an Automation 

Transparency Perspective 

The B737 MAX case study offers a revealing look into the seeing-through versus seeing-into 

automation transparency design approaches. MCAS worked according to the seeing-through principle. It 

was incorrectly presumed to be a fully automatic and fail-safe function that would operate in the 

background and never require human intervention. When faulty sensor information caused MCAS to 

behave erratically, pilots were unexpectedly thrust into a situation where automation transparency in the 

seeing-into sense could have helped them tremendously. They ended up fighting with silent black box 

automation that was virtually impossible to understand and control. 

How did Boeing come to adopt the seeing-through approach to the design of the MCAS? As 

explained in the U.S. Congressional hearing on the B737 MAX accidents (2019), early design 

documentation reveals that Boeing had considered installing an indicator light that would have alerted 
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pilots to an MCAS failure (although not a mere triggering of the system). However, that indication was 

later integrated with a failure indicator for the speed trim systems of which Boeing came to consider 

MCAS a component. 

Further evidence of Boeing’s adoption of the seeing-through design approach can be found in email 

correspondence explicitly calling for the removal of MCAS from the flight crew operations manual and 

pilot training material (see Figure 2 and the U.S. Congressional hearing on the B737 MAX accidents 

[2019]). Boeing (with the approval of the Federal Aviation Administration [FAA]) deliberately 

transitioned from a seeing-into to a seeing-through automation transparency design approach. By some 

accounts, the company did not inform pilots about MCAS functionality until after the Lion Air accident 

(Committee on Transportation and Infrastructure, 2019, p. 6). 

 

Figure 2. Email correspondence between system developers and the regulator demonstrating that seeing-

through transparency was an intentional design choice for MCAS. Presented at the Senate committee 

meeting on aviation safety and the future of Boeing’s 737 MAX. 

It is possible, although not well-documented in the accident reports and U.S. Congressional hearings, 

that Boeing designers were concerned about the number of indications provided to pilots about 

automation systems they were not expected to have to interact with (The Air Current, 2018). As we noted 

in HWR-1250, a radical seeing-into approach to advanced automation will almost certainly result in 

information overload for operators. 

That said, relying on seeing-through transparency had catastrophic consequences in this case. From a 

safety perspective, the failure of the design approach resulted in the deaths of 364 people, the loss of two 

airframes, and a worldwide safety shutdown of the aircraft. In economic terms, the grounding of the B737 

MAX fleet will cost Boeing around $19 billion USD, including “...increased costs, loss of sales and 

revenue, loss of reputation, victims litigation, client compensation, decreased credit rating and lowered 

stock value” (Financial impact of the Boeing 737 MAX groundings, n.d.). 

3.3 Implications for the Nuclear Industry 

The Lion Air and Ethiopian Air B737 MAX accidents demonstrate that applying the inappropriate 

automation transparency principle may have substantial safety implications. Making the wrong design 

decision could also have colossal economic impacts if operational safety is compromised. Automation 

transparency is therefore not a hang-up of system designers or of mere academic interest. Rather, it is a 

real and present industrial automation design challenge. 
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The B737 MAX case sheds light on how regulatory regimes can influence design practices in 

unanticipated ways. The FAA (the responsible regulator) worked with Boeing to certify the new aircraft 

as a variant of an aircraft with an enviable safety record. By characterizing MCAS as an addition to the 

speed trim system, Boeing took explicit steps to avoid increased FAA certification. Their meeting 

minutes warned: “If we emphasize MCAS is a new function there may be a greater certification and 

training impact.” (Committee on Transportation and Infrastructure, 2019). 

Ultimately, the FAA condoned Boeing’s adoption of the seeing-through approach to MCAS. 

Regulators in the nuclear industry should be alert to how the seeing-through approach to transparency 

might appeal to automation technology designers more focused on functionality than operator 

understanding of that functionality. 

The B737 MAX case is a cautionary one; not a refutation of the seeing-through design approach. 

Under other operational circumstances, seeing-into transparency may overload operators and distract 

them from core tasks (as demonstrated in a HAMMLAB experiment from 2009; see Skraaning and 

Jamieson [2019]). In many situations, seeing-through transparency might be advisable. We observe this 

clearly in the automotive industry. Electronic Stability Control automatically and silently compensates for 

loss of traction during braking and steering. This feature saves thousands of lives around the world every 

year (Iombriller et al., 2019; Starnes, 2014). There would seem to be little technical basis for 

implementing such a system by adopting a seeing-into transparency approach. One may also speculate 

about whether the seeing-through transparency implementation for MCAS would have been a safe and 

reliable option if automation was activated based on consistent input from several AOA sensors, if 

maintenance practices for AOA sensors were less prone to failure, if the B737 MAX cockpit interface 

design did not overload pilots and obscure problems etc. (KNKT, 2019). Perhaps seeing-through 

transparency can be effectively realized if automation designers are able to consider the broader context 

of operation while at the drafting table. 

The B737 MAX case raises a pressing research question for future nuclear plants: Are there 

generalizable problem characteristics that point to when the design of automation system should adopt the 

seeing-into or seeing-through transparency principles? And what implications does a choice of 

automation transparency principle have for the broader systems-engineering approach, including design 

for maintenance, system and software testing, training regimes, and regulatory review. 

What we can deduce from the B737 MAX case study is a caution against the temptation to adopt one 

or the other principle for one of many attractive outcomes. These include realizing short-term economic 

gains; satisfying the hubris of automation designers; complying with corporate visions, technology trends, 

traditions, or industry culture; overemphasizing operator preferences; complying with anachronistic 

regulatory requirements; etc. The lesson learned from the B737 MAX accidents is that such critical design 

decisions should be knowledge-based and carefully validated in realistic test situations with humans in the 

loop. 

4. TRANSPARENCY IN EXPLAINABLE ARTIFICIAL INTELLIGENCE 

The B737 MAX automation transparency case study arises from a regulated, safety-critical domain 

with a considerable history of human-automation interaction research and practice. The MCAS 

automation is founded in familiar systems-engineering thinking and relies on system components (i.e., 

sensors, software, actuators) and environmental interactions that are familiar to nuclear processes. 

We turn now to a distinctly different technology sector where notions of transparency are in vigorous 

use. Artificial Intelligence refers to a wide-ranging effort to develop machines that exhibit characteristics 

of human cognition; particularly learning and problem solving as expressions of centralized information 

processing. Explainable artificial intelligence (XAI) deals with the problem of allowing humans to 
understand and collaborate with such advanced forms of automation. We briefly introduced XAI in 

HWR-1250, and the literature has evolved significantly even in the past year (e.g., Arrieta et al., 2020). In 
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this report, we offer a broad, high-level account of the transparency notion arising from a dynamic XAI 

literature. 

There are several compelling reasons for the nuclear industry to be aware of the transparency 

concepts arising from XAI. First, XAI is a discipline originating from computer science (in contrast to the 

engineering and psychology underpinnings of human factors and human-automation interaction research). 

This disciplinary pivot offers fresh thinking on the transparency of future intelligent systems. In 

particular, we are less knowledgeable about the nature of the technology, the computer programming, and 

the design processes employed in this discipline. Despite these limitations, it is still important to 

transcend that disciplinary boundary because the smartest and most complex forms of automation 

developed so far—at least from a programming perspective—are arising from computer science. These 

include deep learning algorithms that learn progressively from experience and organize knowledge in 

layers (artificial neural networks) similarly to humans (LeCun, Benigo, and Hinton, 2015). Thus, a second 

reason to be aware of XAI is that these are extreme technologies that may help us understand the future 

challenges and limits of automation transparency and project those for the nuclear industry. A third 

motivation for interest in XAI is that AI-based decision support and action implementation systems have 

been—and are being—adopted in other safety-critical industries. They are, for example, paving the way 

for driving automation, are embraced and explored in air traffic control (Eurocontrol, 2019), and are 

already established in healthcare and military command and control. Moreover, these adoptions have not 

necessarily been smooth. 

The top ten industrial use cases listed in Figure 3 may also suggest how intelligent automation may 

benefit the future operation of nuclear plants. 

 

Figure 3. Top ten industrial AI use cases according to the Internet of Things (IoT) Analytics’ 2020–2025 

Market Report (the figure is from the IoT Analytic’ web site, 2019). 
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4.1 Uses of Transparency in XAI 

Our observation to date is that transparency is used inconsistently within the XAI community. Some 

authors (Mohseni et al., 2020) refer to transparency as disclosure of goals, activities, inner workings, and 

performance of intelligent systems (i.e. akin to seeing-into transparency as in human factors, human-

automation interaction, and HRI). Other authors (e.g., Arrieta et al., 2020) use transparency more 

narrowly to characterize intelligent systems that are interpretable by design (so called glass box models). 

In contrast, opaque intelligent systems (black box models, e.g., deep learning algorithms) have to be 

“explained” post hoc. We concentrate on these latter interpretations of transparency and post hoc 

explanations as they add a new facet to our thinking about the disclosure decisions made by designers. 

To make intelligent systems understandable to humans, AI-developers may, as suggested above, 

either 1) construct interpretable models that are transparent by design or 2) develop more complex opaque 

models that have to be explained post hoc, using dedicated techniques such as model simplification, 

assessment of “influence, relevance, and importance of model features for the predictability of output”, 
and/or visualizations of the model (Arrieta et al., 2020, p. 19–20). Both the inherently transparent and 

post hoc explainable approaches disclose information about automation and thereby facilitate seeing-into 

transparency. 

A key distinction in XAI, however, has been that both the interpretable model and post hoc 

explanation approaches are meant to disclose the inner workings of intelligent systems to AI-developers 

specifically, i.e. these methods were originally not intended for end users. That said, the goals, concepts 

and core thinking of XAI may very well be applicable to both developers and end users. It is also worth 

noting that there seems to be a recent change of attitude where the purpose of XAI is understood more in 

terms of end user than developer needs. For example, the objective of Defense Advanced Research 

Projects Agency (DARPA’s) Explainable Artificial Intelligence program is to “create a suite of new or 

modified ML techniques that produce explainable models that, when combined with effective explanation 

techniques, enable end users to understand, appropriately trust, and effectively manage the emerging 

generation of AI systems” (Gunning and Aha, 2019, p. 45). 

Unexplained intelligent systems can be argued to resemble seeing-through transparency, although 

such black box models are often incomprehensible due to technological immaturity or complexity. Thus, 

their opacity is not a feature, whereas seeing-through transparency may be an intentional design 

philosophy (e.g., in remote operations). 

4.2 How Insights from XAI can Help the Nuclear Industry Address 
Future Human-Automation Interaction Challenges 

We have noted how the XAI discipline characterizes intelligent systems as transparent by design or 

post hoc explainable. This distinction has inspired an extension of the automation transparency 

framework presented in HWR-1250 (see below) and pushed us towards a deeper understanding of the 

operational dilemmas associated with future forms of automation in nuclear plants. 

We anticipate that such learning systems will appear in the nuclear power domain in the form of 

intelligent decision support agents, smarter alarm/diagnosis systems, handling of within-design basis 

events, operation/procedure automation in normal plant states, or even accident management/safety 

systems in future NPPs. Alternatively, and perhaps initially, advanced AI technologies are expected to be 

an integral part of microreactor development. 

On the one hand, these anticipated technology incursions prompt an array of difficult questions. Is the 

nuclear industry ready to adopt the emergent complexities of future intelligent systems if automation 

becomes incomprehensible to system designers and plant operators? Will the industry be willing to 
implement stochastic algorithms that have to be justified and explained in a simplified manner depending 
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on the process output? Can we trust smarter and more autonomous automation that is also vague and 

semireliable? 

On the other hand, what are the consequences for the future of our industry if the most intelligent 

automation is collectively rejected while other safety-critical sectors and competing power generating 

industries embrace the new AI technology? Is it a realistic alternative to rely on deterministic automation 

that is sufficiently intelligent, transparent by design, and thereby fully understandable to developers and 

operators? The downside of a conservative approach to the adoption of intelligent automation is that 

algorithmic complexity and intelligence tend to be positively correlated (i.e. smarter systems that may be 

necessary to remain competitive and relevant as an industry have so far been inscrutable by nature). 

If the industry decided to open up to more opaque forms of automation, perhaps for operator support 

systems as an initial step, to what degree and in what sense should operators be expected to understand 

these new forms of intelligent automation? Based on the automation transparency framework presented in 

HWR-1250 and the discussion on XAI above, we believe that the depth of operator comprehension of 

automation in future plants could fall into three categories: 

• Full comprehension: operators have a deep functional understanding of the inner workings of 

automation 

• Attainable comprehension: operators are provided with the means to develop a simplified rationale in 

order to justify and build trust in the decisions and actions of otherwise opaque automation 

• Minimal comprehension: seeing-through transparency where automation appears invisible to 

operators. 

Whereas the full and minimal comprehension approaches have featured already in our automation 

transparency framework, attainable comprehension would require an extension. Given the likely opaque 

nature of smart automation in future plants, this might be a form of automation transparency that we 

should seek to develop. In the next section, we consider this from the perspective of industrial design 

approaches. 

5. OVERVIEW OF AUTOMATION TRANSPARENCY DESIGN 
APPROACHES 

Creating user-centred automation has challenged developers for decades, and this report highlights 

automation technology trends that deepen this challenge. As these technologies penetrate the nuclear 

industry, developers will seek out proven transparency design approaches to guide the development of 

interactive automation. We have discovered a breadth of design perspectives that overlap and intersect 

with the automation transparency principle. Figure 4 offers an initial taxonomy of automation 

transparency design approaches that adopt an end user orientation. 
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Figure 4. A taxonomy of (end user focused) automation transparency design approaches. Note the 

reintroduction of “apparency.” 

In describing Figure 4, we first emphasize that the taxonomy refers to end user automation design 

approaches. Additional perspectives on transparency emerge from developer-oriented methods in XAI 

that fall outside of the project scope (e.g., Mohseni et al., 2018). 

The first level of the hierarchy distinguishes between three approaches to automation design and 

aligns each approach with a “box” metaphor. Much of the transparency and XAI literature adopts the 

black box versus glass box metaphor and we have found that metaphor to be reasonably robust. The 

notion of a glass box aligns with the seeing-into concept where automation (i.e., the contents of the box) 

is visible to operators7. The black box concept is analogous to a design approach where the inner 

workings of the automation are hidden from the operator (with the exception of inputs and outputs)8. 

Inspired by our reading of the XAI literature, we have extended the metaphor to include a translucent box; 

one that can be peered into to reveal useful but limited insight into its contents. 

At the second level of the hierarchy are the design models, frameworks and methods that exemplify 

the higher-level frameworks. Under the glass box metaphor, we find the SAT model and its expansion as 

the Dynamic SAT model (Chen et al., 2018), the Coactive System Model (Johnson et al., 2014), and the 

Human-robot Transparency Model (Lyons, 2013). Also included under the glass box metaphor are AI 

methods that seek inherently interpretable models. This list could be expanded with additional models 

that have yet to gain traction in the literature. 

A similar expansion of the Translucent Box can be developed. Although we have not identified any 

explicit Translucency (again, a label that we are introducing here) models, frameworks, or methods, it is 

plausible that transparent counterparts could be adapted to the more modest design objectives. Another 

possible direction for the development of translucent automation would be through application of social 

metaphors, which we explored in HWR-1128. Whereas we have questioned the future viability of the 

venerable human supervisory control metaphor, substantial insight into apparency requirements might be 

gained from other contexts in which humans interact closely with intelligent agents. These can include 

both human-human (e.g., the Butler metaphor) and human-animal (e.g., the horse and rider, the hunting 

dog). Social metaphors encapsulate many expectations about the knowledge, skills, and awareness of—

 

7  Visibility does not necessarily imply controllability. A glass box might make automation apparent without affording 

accessibility in terms of control. 

8  Although the glass box and black box metaphors align well with the seeing-into and seeing-through uses of automation 

transparency, we employ both sets of metaphors here to motivate the “translucent box” metaphor; a new insight arising from 

our encounter with the XAI community. 
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and transactions between—agents. However, these metaphors are both approximate and incomplete; 

characteristics that might approximate what we mean by translucent automation. 

Under the black box metaphor, we have denoted two approaches. The first includes methods like deep 

learning, which are inherently intractable to human understanding and thus, by design, foreign to the 

notion of explanation. We distinguish these from control methods that, while wholly modellable by 

engineers, are sufficiently robust to be entirely hidden from the end user. These methods arise from the 

teleoperation tradition and are elegantly expressed in “fly-by-wire” technologies arising from the aviation 

domain. 

5.1 Implications 

We anticipate that these myriad perspectives on end user (and developer) oriented automation design 

approaches could inform the development of a practical roadmap for the implementation of automation 

transparency in future nuclear facilities. Such a roadmap could aid developers in selecting and practicing 

an automation transparency approach, and it could aid regulators in reviewing the suitability of a chosen 

approach and verifying that it was consistently applied. However, it is worth noting that there is 

disagreement within the XAI community, and between it and the human factors community, about the 

organization of these approaches. Varieties in the use of language, design objectives, audience (i.e., to 

whom should the automation be transparent), content of communication, etc., make these approaches 

difficult to categorize and compare. 

If there is to be a standardized taxonomy for the implementation of automation transparency, it is yet 

to be established—and obtaining consensus on such a framework across disciplines would likely be a 

slow and contentious process. It is not our goal to resolve these perspectives. Rather, we call attention to 

the plausible situation where designers working within one disciplinary context would not have broad 

awareness of alternative design approaches and the use of terms in other disciplines. This could readily 

lead to miscommunication about design intent and thus hamper verification and validation efforts. 

6. CONCLUSION: INFORMING AND ADVANCING LWRS PROGRAM 
GOALS THROUGH AUTOMATION TRANSPARENCY 

The objective of DOE’s LWRS Program is to support the long-term sustainability of U.S. commercial 

NPPs. LWRS Program researchers conduct R&D to modernize technologies and improve processes, 

thereby providing the technical bases that help reduce the uncertainty and risk of full plant modernization. 

This report addresses the potential uncertainties and risks associated with the introduction of automation 

technology to the plant and operating environment as a means to fulfill the purpose of the LWRS Program 

objectives. We specifically concentrate on the ability of control room crews to understand the inner 

workings of automation or to appropriately rely on capable automation operating in the background. 

The preceding investigation supports several conclusions: 

1. The Boeing 737 MAX case study establishes that automation transparency is an industrial safety 

problem. This and other operating experiences with advanced automation in safety-critical industries 

offer a significant learning opportunity for the nuclear power industry. 

2. To date, the most concerted efforts to develop a seeing-into transparency design framework have 

suffered from inconsistency in design expression and empirical validation. Other efforts yield 

alternative frameworks that are largely untested. The implication of these observations and findings is 

that the technical basis for seeing-into automation transparency is insufficient to inform design. 

3. Realistic testing of transparency design solutions is necessary to make informed design and 

technology acceptance decisions. There is no known analytical alternative to such empirical testing at 

present. 
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4. The seeing-into automation transparency research base is almost exclusively situated in military 

command and control. While significant insight can be extracted from this research, the NPP sector 

should consume these results with caution. 

5. XAI raises new challenges and suggests compelling alternative perspectives on automation 

transparency. However, this literature offers no clear path forward with respect to the preceding 

challenges—and should be expected to introduce new challenges as new forms of automation emerge. 

6. To the extent that technology developers might be aware of the contrasting seeing-into and seeing-

through design principles, there is no existing guidance regarding the selection of these principles—

and little guidance regarding their application (see points 1 and 2 in this list). 

Based on our research to date, we anticipate several challenges for the U.S. nuclear industry related to 

automation transparency. 

1. Is the seeing-through design principle a viable alternative for developers of NPP control room 

automation? Is it plausible that the regulator would deem acceptable a technology that eludes the 

understanding of operating crews? Would blind trust and reliance be considered sufficient validating 

evidence? 

2. What are the uncertainties and risks associated with adopting a translucent automation design 

principle where operators are informed on a need to know basis to facilitate trust and (where 

necessary) reliance without a full understanding of the automation’s inner workings? 

3. What would a translucent automation design framework look like? Perhaps a measured application of 

an existing seeing-through transparency framework (although see point 1 in this list)? 

4. What expectations could be established for verification and validation of a translucent technology? 

a) What criteria should designers use in selecting between the seeing-into, translucent, or seeing-

through principles? 

b) How could a technology developer or regulator verify that a given transparency framework has 

been chosen and employed? 

5. How could a developer or regulator validate that a specific technology change to a plant or operating 

environment meets the expectations for crew performance in terms of automation transparency? 

It is evident that control room automation will comprise a significant portion of the I&C technologies 

that ensure the long-term sustainability of the U.S. light-water reactor fleet. Decades of operating 

experience and human factors research suggest that the design decisions about the roles of operating 

crews in interacting with this automation will determine the safe and effective operation of more highly 

automated facilities. Moreover, emerging technologies, such as intelligent agents, will complicate these 

decisions and raise the stakes for verification and validation efforts. Automation transparency principles 

offer a useful approach to thinking about those decisions and anticipating their impacts. However, there 

are many gaps in the automation transparency operating experience and academic literature that point to 

uncertainties and risks that can be resolved and mitigated through further R&D efforts. 
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