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ABSTRACT 

The Human Unimodel for Nuclear Technology to Enhance Reliability 
(HUNTER) framework affords software capable of conducting human reliability 
analysis (HRA) using a dynamic approach built around operating procedures 
(OPs) from nuclear power plants (NPPs). Previous HUNTER reports document 
the development of this software tool, the coupling of HUNTER to the simulator 
code, the collection of operator performance data by using simulators to calibrate 
HUNTER models, and linking HUNTER to probabilistic risk assessment (PRA) 
software. The present report largely addresses two topics. The first is a new 
function in HUNTER called the HUNTER-Procedure Performance Predictor 
(P3). HUNTER-P3 uses HUNTER’s built-in Monte Carlo tools featuring human 
performance variability to identify potential error traps in procedures. The second 
topic is time distribution analysis to generate time inputs for dynamic HRA. The 
current analysis was performed to investigate time distributions for task 
primitives, which are the minimum task unit of analysis used in dynamic HRA 
modeling. Using the time distribution data, the elapsed time for human actions in 
an extended loss of AC power (ELAP) scenario is then investigated. Time data 
and prediction are essential for modeling procedure performance. 
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USE OF TIME DISTRIBUTIONS TO PREDICT 
OPERATOR PROCEDURE PERFORMANCE IN 

DYNAMIC HUMAN RELIABILITY ANALYSIS 
1. INTRODUCTION 

The Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER), a modeling 
framework for performing human reliability analysis (HRA) in nuclear power plants (NPPs), was 
developed by researchers at Idaho National Laboratory. HRA is a discipline centered around quantifying 
human risk and mitigating error by measuring the impact of human decisions/actions against system 
performance, with the goal of maximizing safety. It uses various techniques, including static and dynamic 
approaches to HRA, to assess human error probabilities (HEPs). 

Historically, HRA methods have used static HRA—a technique based on worksheet completion—to 
analyze errors and compute HEPs. Static HRA considers a “snapshot” of a human failure event (HFE) 
(Lew, et al., 2022), but it doesn’t generally account for evolving scenarios and tasks (hence the term 
“static”) nor human variability. The fact that static HRA cannot readily demonstrates other aspects 
integral to human performance (e.g., task duration, event sequencing, and operator deviations from the 
norm) makes it less realistic in terms of modeling. In contrast, a novel emerging method known as 
dynamic HRA paints a more realistic picture. It not only applies Monte Carlo sampling, time 
distributions, and cognitive modeling methods to HEP analyses, but also evaluates the task time—a 
critical parameter in HRA. Most importantly, dynamic HRA considers factors such as cognitive 
processes, decision making abilities, and evolving contexts surrounding human performance (Lew, et al., 
2022). But compared to static HRA, its increased modeling fidelity tends to make its outcomes much 
more complex to generate and evaluate. 

By dynamically modeling human performance under various scenarios in complex systems, dynamic 
HRA can more accurately account for risk and errors, thus better assisting in the mitigation of adverse 
events. In particular, the HUNTER framework dynamically models operator performance. To assess 
human error, HUNTER creates a virtual operator that researchers can use to detect and analyze HEPs and 
consider contributing factors. For example, the information that HUNTER provides on both time and 
mental workload affords valuable insights into the tasks performed by plant staff (Boring, et al., 2022). 
Such data can be analyzed to maximize human performance in regard to the plant, the task being 
performed, and the system being used (Lew, et al., 2022). 

The HUNTER reports published to date are as follows: 

• Initial framework and demonstration of HUNTER concepts (Boring, et al., 2016) 

• Initial standalone software demonstration of HUNTER (Boring, et al., 2022) 

• Data collection to support HUNTER modeling (Park, et al., 2022) 

• Demonstration of new scenarios and simulator coupling (Lew, et al., 2022) 

• Demonstration of linking HUNTER with the Event Modeling Risk Assessment Using Linked 
Diagrams (EMRALD) probabilistic risk assessment software (Lew, et al., 2023). 
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The present report largely covers two topics. The first is a new function added to the HUNTER 
software, called the HUNTER-Procedure Performance Predictor (P3). HUNTER-P3 uses HUNTER’s 
built-in Monte Carlo tools featuring human performance variability in order to identify potential error 
traps in procedures. Section 2 explores HUNTER-P3 in detail. The second topic is time distribution 
analysis for generating time inputs for dynamic HRA. Using data collected from the Simplified Human 
Error Experimental Program (SHEEP) study (Park, et al., 2022), the present study investigated time 
distributions for task primitives, which are the minimum task units employed in dynamic HRA modeling. 
Elapsed time for human actions in an extended loss of alternating current (AC) power (ELAP) scenario is 
then investigated, based on the time distribution data (see Sections 3 and 4 for details). Time data and 
prediction are essential for modeling procedure performance. 

 

2. HUNTER’S PROCEDURE PERFORMANCE PREDICTOR: 
SUPPORTING NEW PROCEDURE DEVELOPMENT WITH A 

DYNAMIC HUMAN RELIABILITY ANALYSIS METHODa 
2.1 Review of HUNTER 

HUNTER, a dynamic HRA tool designed to be simple to use, was initially based on an effort to 
create a dynamic implementation of the Standard Plant Analysis Risk-HRA (SPAR-H) method (Gertman, 
et al., 2005). HUNTER later evolved into a standalone software package for enabling analysts to use 
procedures and a linked NPP model to realistically simulate human performance—in essence serving as a 
virtual operator. 

The basic structure of HUNTER consists of three functional modules: 

• Task module—driven by plant operating procedures (OPs) 

• Individual module—encompassing the performance-shaping factors (PSFs) that affect the operator 

• Environment module—virtually models the “world” of the simulation (typically a simulator). 

The software implementation of HUNTER includes additional modules necessary for executing it as a 
standalone program. Among these are a scheduler that coordinates the interface between the task, the 
individual, and the environment, and also coordinates Monte Carlo runs so as to produce performance 
outcome distributions. 

Recent versions of HUNTER (Lew, et al., 2022) incorporate the Rancor Microworld Simulator 
(Ulrich et al., 2017), a simplified pressurized-water reactor simulator that has been used in a variety of 
studies involving both students and licensed reactor operators (Park, et al., 2023). The advantages of 
Rancor center around its simplicity, which makes it more readily usable than full-scope/scale simulators 
when it comes to collecting operator-in-the-loop data. It also has fewer parameters than do full-scope 
training simulators, meaning it interfaces more easily with HUNTER, while also readily enabling the 
collection of empirical data needed to validate HRA models. 

Figure 1 shows the basic framework for connecting HUNTER to a simulator. Scenarios are run by 
using the simulator and representative operators to collect initial human performance data. The simulator 
is then coupled to HUNTER, and the human performance data are applied to help refine the HUNTER 
model. For example, data on procedural sticking points or timing can be used to refine and calibrate the 
basic modeling parameters in HUNTER. A new set of scenarios is then simulated in HUNTER, and the 

 
a Adapted from an article (Boring, et al., 2023): Boring, R., Ulrich, T., Lew, R., & Park, J. (2023). 
HUNTER procedure performance predictor: Supporting new procedure development with a dynamic 
human reliability analysis method. AHFE Open Access, 117, 29-38. 
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simulation outputs can once again be compared to the available human performance data generated from 
previous simulator runs. When human performance data are collected from two different scenarios (e.g., 
steam generator tube rupture [SGTR] and loss of feedwater [LOFW]), one dataset (e.g., that pertaining to 
LOFW) would be used to calibrate HUNTER, which could then predict performance for SGTR. The 
predicted and actual SGTR performance data can then be compared so as to validate the modeling effort. 

 

 
Figure 1. The relationship between HUNTER and simulators when performing dynamic HRA modeling. 

Although preliminary work has focused on using Rancor in connection with HUNTER, the general 
approach can readily be extended to full-scope plant training simulators. In fact, Rancor’s human-
machine interfaces (HMIs) are based on tools for prototyping digital upgrades in plant simulators (Boring, 
et al., 2017), meaning that Rancor mimics the functionalities and advanced programming interfaces 
(APIs) of full-scope simulators. This makes scaling from Rancor to a plant-specific simulator 
straightforward. The process depicted in Figure 1 may be replicated for plant simulators, assuming human 
operational performance data are available from the simulator in order to calibrate and validate the 
HUNTER simulation. 

2.2 Introducing HUNTER-P3 
Much has been written about control room upgrades and the transition from analog to digital systems 

(Boring, et al., 2019), but relatively little research has specifically focused on the use of procedures with 
these new systems. An exception is the case of computer-based procedures, where procedures represent 
one of the technological systems being introduced into the modernized control room (Lew, et al., 2018). 
Despite minimal research having specifically been conducted on the application of procedures amid 
changing concepts of operations, the procedures used to operate any plant system are an important part of 
the plant’s overall HMI. 
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In recent industry forums held to discuss HUNTER, a strong use case has emerged outside traditional 
HRA applications for risk assessment. HUNTER’s focus on running procedures via a plant simulator 
opens up a unique and much-needed application in which HUNTER is used to evaluate new procedures. 
Existing plant OPs benefit from extensive operating experience, industry benchmarking, the sharing of 
lessons learned (e.g., through the Pressurized Water Reactor Owners Group), and continuous 
improvement via procedure revisions. However, this is hindered by two new developments: 

• Plant upgrades that introduce new digital systems into the main control room (MCR) and require new 
or extensively modified procedures 

• New plants that feature entirely neoteric MCRs that likewise require new procedures. 

These Version Null procedures present potential safety and efficiency concerns when it comes to 
operator performance. 

To address this challenge, HUNTER-P3 uses HUNTER’s built-in Monte Carlo tools featuring human 
performance variability in order to identify potential error traps in procedures. In this way, HUNTER-P3 
can flag problems with the procedures themselves, or issues with how they are executed by reactor 
operators. HUNTER-P3 can serve as a screening tool for novel procedures, helping iterate and refine 
them prior to deployment. Identified error traps serve to prioritize scenarios that warrant empirical 
evaluation. 

HUNTER includes a procedure authoring system that makes it easy to input procedures for driving 
the Task module. A prototype tool called HUNTER-Gatherer uses natural language processing to 
automate the inputting of procedures from existing libraries. In this manner, HUNTER-P3 can be used in 
conjunction with other procedure authoring tools to simulate Version Null procedure performance. 

2.3 The Importance of Simulator Coupling 
As noted earlier in this section, to realize HUNTER-P3, HUNTER must be coupled to a simulator. 

Boring et al. (Boring, et al., 2023) explained the importance of synchronous vs. asynchronous coupling 
for realistic modeling of human-system interactions. Coupling refers to the link between the virtual 
operator (i.e., HUNTER) and the environment model (i.e., the plant simulator). Asynchronous model 
coupling occurs via a model code (e.g., a thermohydraulic simulation) designed to operate without 
evolving inputs. Asynchronous models take all inputs at the beginning and then run in a batch mode to a 
defined stopping point. For example, an SGTR scenario run may feature the following event sequence: 

• Initial Condition: Normal operations at 100% power for the starting point 

• Fault: Fault introduction in the form of a rupture 

• Mitigative Actions: Manual responses to the rupture, such as reactor trip and safety injection 

• Termination: Completion of the scenario at a specified time or upon achieving cooldown status. 

This sequence is repeated in Monte Carlo fashion, with slight systematic variations (e.g., different 
times at which mitigative actions are performed) and a degree of stochasticity (e.g., normal variability in 
plant conditions and timings), generating a range of outcomes for parameters such as total leak 
time/volume. 

The key distinction between synchronous and asynchronous coupling lay in the performing of 
mitigative actions. In asynchronous coupling (see Figure 2), the mitigative actions are prespecified to be 
performed at particular points during the scenario runs. In contrast, in synchronous coupling, mitigative 
actions are part of an iterative plant-operator feedback loop in which the operator responds to and alters 
the plant conditions, and then the plant proceeds from there. The value of synchronous coupling is 
predicated on three assumptions: 
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1. Human actions are responsive to emerging plant conditions and cannot be completely predicted a 
priori. 

2. Human actions will change plant conditions in a way that meaningfully alters the course of the 
scenario in an evolving manner that cannot be completely predicted. 

3. The timing of human actions, as well as the selection of specific actions from among many possible 
mitigation options, changes plant conditions in ways not fully predictable a priori. 

 

 
Figure 2. Human-plant interaction for asynchronous and synchronous coupling (from Boring et al., 2023). 

The common theme pertaining to these assumptions is that myriad plant and human outcomes 
become possible as a scenario unfolds. For example, a 30-second delay in responding to an upset may 
change the course of that event in a manner that necessitates completely different actions. In general, 
asynchronous models do not fully simulate cases in which the dynamics of the evolving operational 
context may lead to deviations from the nominal path. 

Another way to consider asynchronous vs. synchronous is in the context of normative vs. descriptive 
models. Bell, Raiffa, and Tversky (Bell, et al., 1988) delineate normative models as being those that 
predict an ideal outcome, whereas descriptive models reflect actual performance. Asynchronous modeling 
typically results in normative outcomes, meaning the expected normal or ideal case. Synchronous 
modeling results in descriptive models, meaning the actual case. The latter is essential for understanding 
realistic courses of operator behavior when using procedures. HUNTER-P3 synchronously couples its 
virtual operator representation with the plant full-scope simulator in order to predict how operators would 
actually perform when using procedures. 

Note that HUNTER-P3 possesses all the features necessary to automate plant operations if coupled to 
an actual plant instead of a simulator. However, its performance would not align with the normative 
performance expected from automation. Rather, HUNTER-P3 would provide an operating context that 
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incorporates operator shortcomings, and such shortcomings are generally antithetical to the goals of 
automation. 

2.4 Evaluating New Procedures 
In this section we consider how digital upgrades affect procedures. For example, a newly modernized 

digital turbine control system (TCS) may largely mimic the functionality of the existing electro-hydraulic 
control it replaces at the plant, but its new digital interface and control system require slightly different 
operator actions, necessitating new procedural steps—or perhaps even whole new procedures entirely. 

A thorough operating experience review (IAEA, 2018) can identify potential problem areas pertaining 
to the new system and the use of procedures. However, all existing experience may be based on the 
legacy electro-hydraulic control, meaning limited experience with novel systems. Moreover, regarding the 
example given in the previous paragraph, the TCS is one of the first wholly digital control subsystems 
installed as an upgrade at most U.S. NPPs, as it offers a potentially high return on investment through 
possible power uprates. With first-of-a-kind installations of digital systems, there is little operating 
experience to draw upon to ensure that the procedures adequately support operator usage of the new 
system. 

In the absence of adequate operating experience to provide confidence in novel procedures, the next 
course of action is to perform empirical evaluations with operators in the loop. This approach is identical 
to the types of human factors validation activities performed as part of upgrades. Scenarios are identified 
that represent the range of activities performed in regard to the system or procedure, with a particular 
emphasis on any critical safety functions. These scenarios capture the continuum ranging from frequent 
and normal activities to rare and abnormal events. In a TCS, this would cover reactor startup, shutdown, 
and power evolutions under normal operations, along with upset conditions such as failed governor valves 
or grid disturbances. Operators undergo these scenarios using the new system and accompanying new 
procedures, and any performance deficiencies (e.g., confusion, erroneous actions, or response delays) are 
documented and corrected in the system/procedure. Though highly effective, this approach is costly in 
terms of the staffing needed to set up and carry out the studies. In addition, it is only effective to the 
degree that the scenarios anticipate the actual range of use, and the sample size of operators may be 
limited, depending on the plant’s ability to deviate from operating and training schedules so as to support 
development and evaluation activities. 

HUNTER-P3 presents a novel third approach to identifying issues pertaining to new procedures. 
HUNTER is coupled to the plant’s training simulator with the updated control system via the simulator’s 
available API. The API allows for monitoring and controlling all simulated plant parameters. Thus, the 
plant indicators that should be monitored by the virtual operator can be fed into HUNTER, and any 
control actions taken by the virtual operator in HUNTER can be input to the simulator, enabling 
HUNTER to function like an actual operator at the control panels. Typically, the API also affords control 
of instructor station functions, meaning it is possible to start and stop the simulator and insert faults. This 
functionality is used for the Monte Carlo repeated trials. In this manner, HUNTER-P3 controls the plant’s 
new control system by following the new procedures embedded in HUNTER’s Individual module. 

As noted, HUNTER-P3 simulates the proceduralized activities—not in a normative or idealized 
manner, but in a way that incorporates a realistic level of operator fallibility. The Individual module 
accounts for those factors that may impinge on optimal performance. For example, the elevated stress 
PSF may decrease the time it takes to complete a given task, whereas the complexity introduced by 
simultaneously performing multiple tasks may increase the likelihood of skipping a procedure step. 
Hollnagel (Hollnagel, 2017) suggests that a disparity often exists between work as imagined and work as 
done. HUNTER-P3 captures this at two different levels of analysis: 
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• Operator level: Contextual factors hinder the operator from performing the procedures perfectly, 
potentially resulting in less-than-perfect plant performance. 

• Procedure level: The procedure does not adequately cover the use context, meaning that even 
following the procedures perfectly will fail to result in perfect plant performance. 

Operator-level issues in procedure performance result from systematic decrements in work as done. 
HUNTER can account for these via its Individual module. Procedure-level issues arise when work as 
imagined inadequately covers the operating envelope of the system. HUNTER-P3 can account for work 
as imagined by modeling what-if plant contexts in its Environment module (e.g., inserting faults so as to 
stress-test the procedure). To avoid confounding operator-level issues with procedure-level issues, the 
Individual module and Environment module factors can be manipulated separately. 

 

 
Figure 3. Three stages in validating Version Null procedures. 

HUNTER-P3 works to identify overall error traps in the procedures and in how operators use them. 
This enables procedure writers to refine the procedures as necessary prior to deployment. This approach 
inserts a needed procedure analysis tool between operating experience reviews and empirical evaluations. 
Potential problem areas identified in the operating experience reviews can be accounted for in the 
HUNTER-P3 modeling. If HUNTER-P3 reveals such problem areas, this process (see Figure 3) serves as 
a screening tool for identifying those use cases that should be further explored through operator studies. A 
graded approach can be employed in which only one or two of the three phases are performed, and in 
some circumstances the HUNTER-P3 evaluation may be sufficient to preclude operator studies, thanks to 
sufficiently identifying the procedural issues to be resolved. 

As illustrated back in Figure 1, HUNTER models are informed by human performance data. It may 
initially seem paradoxical to suggest HUNTER-P3 modeling be performed prior to the 
operator-in-the-loop evaluation. To forego this step, assume that the HUNTER-P3 model is mature, 
meaning a phase has already been completed to calibrate individual plant operational characteristics to 
HUNTER, and can be generalized to future scenarios. If separate human performance studies are 
necessary prior to running HUNTER, Stages 2 and 3 in Figure 3 may need to be switched. However, once 
a HUNTER model is calibrated to a given plant, ongoing human performance studies should be 
unnecessary for the purpose of model building. 

A current limitation of this approach is that most plant training simulators cannot run at speeds 
greatly exceeding real time, yet their purpose is to allow for human interactions that closely follow plant 
changes. Timing precision stands as a roadblock for accelerated operations, and plant simulators aim to 
reflect actual plant response timings as closely as possible. A so-called “headless” version of Rancor can 
be run that is not linked to any external timing constraints but can pass along timing durations. While 
Rancor may run a particular plant function hundreds of times faster than real time, it logs the time 
required for the plant evolution, enabling HUNTER to respond as if the actual time had passed, allowing 
for its use in faster-than-real-time synchronous coupling. This consideration matters because using Monte 
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Carlo simulation runs to capture the range of human performance in HUNTER may prove dauntingly 
slow for a plant’s actual training simulator. A 20-minute scenario that is run 500 times in Rancor faster 
than real time in under a minute may take 10,000 minutes (i.e., 167 hours) when performed using an 
unoptimized full-scope plant simulator in real time. This limitation can be overcome by parallelizing 
simulator installations for multi-core simultaneous execution, or by optimizing the simulator vendor’s 
software code so as to enable it to run at faster-than-real-time speeds. 

 

3. INVESTIGATION OF TIME DISTRIBUTIONS FOR TASK 
PRIMITIVES TO SUPPORT DYNAMIC HUMAN RELIABILITY 

ANALYSIS USING HUNTERb 
3.1 Background 

Time information on human actions is very important in HRA. HRA methods such as the Technique 
for Human Error Rate Prediction (Swain & Guttmann, 1983), Human Cognitive Reliability (Parry, et al., 
1992), and Korean Standard HRA (Jung, et al., 2005) use time information and time response curves to 
estimate diagnosis HEPs. In the human factors engineering program outlined in NUREG-0711 (O'Hara, et 
al., 2012), HRA methods are used to investigate HFE feasibility by comparing time required against time 
available. “Time required” is the duration needed by operators to perform a task, while “time available” is 
the actual time operators are given to complete said task. If the time required for human actions exceeds 
the time available for an HFE, this is considered a guaranteed failure (HEP = 1.0), and the plant state is 
assumed to be irreversible. 

To date, time windows for calculating time available have been determined via thermohydraulic 
analysis, which produces accurate values based on simulations. On the other hand, determining time 
required relies on structured interviews with instructors, operators, and other knowledgeable experts. 
Structured interviews would be useful for easily gathering time required estimations pertaining to human 
actions. However, it may be difficult to objectively explain how time required is measured, estimate time 
distributions or uncertainties in light of each individual and/or every trial, and judge whether human 
actions can be completed within the given timeframe if unexpected variables interrupt said actions. 

An important feature of the HUNTER method is its focus on timing data and the overall time duration 
of task performance. Due to the extremely dynamic nature of human performance, this focus is critical for 
ensuring a robust understanding of human error in complex systems. As PSFs impact human performance 
to varying degrees as work on a task continues, inclusion of this timing structure can foster a more precise 
understanding of when human errors are more likely to occur. The HUNTER method uses Goals, 
Operators, Methods, and Selection Rules (GOMS)-HRA to store and manage these task timings and 
durations (Boring & Rasmussen, 2016; Ulrich, et al., 2017). GOMS-HRA enables each task to be broken 
down into subtask primitives that can then be summed at various levels to provide timing data on 
procedure steps or the task performance as a whole. While this allows for capturing instances in which 
task failure is linked to running out of time—as opposed to an error being made—it also provides a 
critical contextual data point for digging into human performance data and better capturing when error 
rates rise/fall and when PSFs trigger human errors. 

Our research team developed an HRA data collection framework called the Simplified Human Error 
Experimental Program (SHEEP) to complement full-scope simulator studies and collect input data for 

 
b Adapted from an article (Park, et al., 2023): Park, J., Yang, T., Kim, J., & Boring, R.L. (2023). An 
investigation of time distributions for task primitives to support the HUNTER dynamic human reliability 
analysis. AHFE Open Access, 117, 21-28. 
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dynamic HRA such as that afforded by HUNTER (Park, et al., 2022). The SHEEP framework infers 
full-scope data based on experimental data collected from simplified simulators—specifically, Rancor and 
the Compact Nuclear Simulator (CNS). Under the SHEEP framework, our research team experimentally 
collected human reliability data from 36 student operators and 36 professional operators using CNS and 
Rancor. The human errors and performance measurements collected from experiments to date have been 
analyzed, and are discussed in previous research (Park, et al., 2022; Park, et al., 2023). 

Under the umbrella of the SHEEP framework, the present study aims to investigate time distributions 
for task primitives defined in the GOMS-HRA method (Boring & Rasmussen, 2016). GOMS-HRA was 
developed to provide cognition-based time and HEP information for dynamic HRA calculations 
performed in the HUNTER framework. Here, we investigate time distributions for GOMS-HRA task 
primitives, based on the SHEEP database, which includes experimental data pertaining to 20 student 
operators and 20 professional operators using Rancor. The experimental data were used as the foundation 
for investigating the time required for GOMS-HRA task primitives in order to satisfy 13 different 
statistical distributions. The resulting time distributions were then compared and discussed. GOMS-HRA 
task level primitives are mapped to procedure level primitives (Boring, et al., 2017), which allows the use 
of GOMS-HRA timing data to inform the task duration for procedure-based activities. 

3.2 GOMS-HRA Task Primitives 
GOMS-HRA (Boring & Rasmussen, 2016) was developed to provide cognition-based time and HEP 

information for dynamic HRA calculations performed within the HUNTER framework. GOMS-HRA has 
been used to model proceduralized activities and evaluate user interactions with HMIs in human factors 
research. As a predictive method, GOMS-HRA is well-equipped to simulate human actions under specific 
circumstances in a particular scenario. The basic approach of GOMS-HRA consists of three steps: (1) 
breaking up human actions into a series of task-level primitives, (2) allocating time and error values to 
each task-level primitive, and (3) predicting human actions or task durations. 

Table 1 lists the GOMS-HRA task primitives. GOMS-HRA originally suggested 12 task primitives, 
performed either in control rooms or in the field. However, the present analysis focuses squarely on the 
five task primitives (i.e., AC, CC, RC, SC, and DP) highlighted in grey in the table. The data were collected 
as part of the SHEEP experiment (see Section 3.1), in which a single operator used procedures to monitor 
and control a simulator in a control room environment, without any field operation. As such, the task 
primitives pertaining to field operations (i.e., AF, CF, RF, and SF), decision-making without procedures 
(i.e., DW), and communication between operators (i.e., IP and IR) were excluded in the present study. 

Table 1. GOMS-HRA task primitives. 
Task Primitives Description 

AC Performing required physical actions on the control boards 
AF Performing required physical actions in the field 
CC Looking for required information on the control boards 
CF Looking for required information in the field 
RC Obtaining required information on the control boards 
RF Obtaining required information in the field 
IP Producing verbal or written instructions 
IR Receiving verbal or written instructions 
SC Selecting or setting a value on the control boards 
SF Selecting or setting a value in the field 
DP Making a decision based on procedures 
DW Making a decision without available procedures 
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3.3 The SHEEP Experiment Data 
The SHEEP data were collected from 36 student operators and 36 professional operators using 

Rancor (Ulrich, et al., 2017). Most of the professional operators were licensed reactor operators currently 
employed at NPPs. They were all operators on shift (i.e., shift supervisor, shift technical advisor, reactor 
operator, or turbine operator) or instructors at the training center. The student operators were all 
undergraduate seniors or graduate students from the Department of Nuclear Engineering at Chosun 
University. They were knowledgeable about NPP systems and operations, having completed a significant 
portion of their coursework, which included courses such as “Introduction to Nuclear Engineering,” 
“Reactor Theory,” “Reactor Control,” and “Simulator Operation.” 

The present analysis investigated time distributions for the GOMS-HRA task primitives, which were 
found in several different procedures and thus pertained to different contexts. In essence, different 
procedures used in NPPs correspond to different goals. For example, OPs are designed to stably achieve 
different operating modes such as startup or hot standby, whereas emergency OPs (EOPs) are mainly 
instructions for rapidly cooling down reactors. Accordingly, this study delineated seven different 
procedure sets, listed in 

Table 2. OP-03/OP-04 and OP-05/OP-06 were combined into single procedural sets because they are 
used in a scenario for achieving a singular goal. OP-04 and OP-06 are parts of OP-03 and OP-05. 

 

Table 2. Procedure information used for the SHEEP experiment. 
Procedure 

Set No. 
Procedures 
Included Description Related Scenario 

1 OP-01 Explains how to start up and operate 
Rancor in auto mode. 

Scenario #1 (fully auto 
startup) 

2 OP-02 Details the process of shutting down 
Rancor. 

Scenario #2 (shutdown) 

3 OP-03 & OP-04 Explains how to start up and operate 
Rancor in control rod manual operation 
mode. 

Scenario #3 (manual rod 
control during startup) 

4 OP-05 & OP-06 Explains how to start up and operate 
Rancor in feedwater manual operation 
mode. 

Scenario #4 (manual 
feedwater flow control during 
startup) 

5 Abnormal 
Operating 
Procedure (AOP)-
01 

Shuts down the plant in an expedient 
manner. 

Scenarios #5–#10 (failure of a 
reactor coolant pump, failure 
of a control rod, failure of a 
feedwater pump, turbine 
failure, SGTR, and LOFW) 

6 EOP-01 Provides actions to minimize reactor 
coolant leakage into the secondary system 
following a SGTR. 

Scenario #9 (SGTR) 

7 EOP-02 Provides actions to diagnose and mitigate 
LOFW. 

Scenario #10 (LOFW) 
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3.4 Time Distribution Analysis Results 
Table 3 and Table 4 show, respectively, the number of tasks used for the time distribution analysis 

and the goodness-of-fit test results for the 13 statistical elapsed time distributions pertaining to the five 
GOMS-HRA task primitives in the OP01 procedure, in regard to both participant types (i.e., student 
operators vs. professional operators). A total of 1,591 tasks were performed by 20 student operators and 
20 professional operators in executing procedure OP-01 within Rancor. The number of tasks observed for 
the student operators (808) exceeded that for the professional operators (783). Differences in the number 
of tasks when comparing the two participant types result from situations in which a participant performs 
additional steps that can be omitted within the procedure context, or cannot continue a scenario because 
the reactor has abnormally tripped. Ultimately, the task types generated statistically significant results, as 
shown in Table 4. 

Table 3. The number of tasks used for time distribution analysis (OP-01). 

Participant 
Type 

GOMS-HRA Task Primitive Number of Tasks per 
Participant Type 

Total Number of 
Tasks AC CC RC SC DP 

Student 
operators 122 396 117 75 98 808 

1,591 
Professional 
operators 112 388 117 73 93 783 

 
Table 4. Time distribution analysis for the five GOMS-HRA task primitives in the OP-01 procedure, in 
regard to both participant types (student vs. operator). 

Distribution 

P-value of Goodness-of-Fit Test 
Student Operator 

AC CC RC SC DP AC CC RC SC DP 
Normal <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Normal (after Box-Cox 
transformation) 

<0.005 <0.005 <0.005 <0.005 <0.005 0.005 <0.005 <0.005 0.022 <0.005 

Lognormal <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.022 <0.005 
Exponential <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 0.007 <0.003 <0.003 
2-parameter exponential <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 
Weibull <0.010 <0.010 0.016 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 
3-parameter Weibull <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Smallest extreme value <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 
Largest extreme value <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 
Gamma <0.005 <0.005 0.018 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Logistic <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Loglogistic <0.005 <0.005 <0.005 <0.005 <0.005 0.015 <0.005 <0.005 0.006 <0.005 
Normal (after Johnson 
transformation) 

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
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Table 5 and Table 6 show, respectively, the number of tasks used for the time distribution analysis 
and the goodness-of-fit test results for the 13 statistical elapsed time distributions pertaining to the five 
GOMS-HRA task primitives in the OP-02 procedure, in regard to both participant types. A total of 763 
tasks were performed by 20 student operators and 20 professional operators in executing procedure OP-02 
within Rancor. The number of tasks for the student operators (374) was lower than that for the 
professional operators (389). For the student operators, the task primitive elapsed time for SC was 
statistically significant on the normal (after Johnson transformation) distribution. For the professional 
operators, on the other hand, the elapsed time for SC proved statistically significant on the normal (after 
Box-Cox transformation) distribution, the largest extreme value distribution, the gamma distribution, the 
loglogistic distribution, and the normal (after Johnson transformation) distribution. 

Figure 4 and Figure 5 summarize the most optimal time distributions representing the highest 
p-values from among the time distributions for each task primitive. The figures show the normal (after 
Johnson transformation) distributions of SC for student operators and professional operators carrying out 
the OP-02 procedure. Based on these time distributions, the student operator data reflected an elapsed 
time of 20.68 seconds for SC, while the professional operator data reflected 12.49 seconds. 

Table 5. The number of tasks used for the time distribution analysis (OP-02). 

Participant 
Type 

GOMS-HRA Task Primitive Number of Tasks per 
Participant Type 

Total Number of 
Tasks AC CC RC SC DP 

Student 
operators 

70 90 56 75 83 374 
763 

Professional 
operators 75 83 60 82 89 389 

 
Table 6. Time distribution analysis for the five GOMS-HRA task primitives in the OP-02 procedure, in 
regard to both participant types (student vs. operator). 

Distribution 

P-value of Goodness-of-Fit Test 
Student Operator 

AC CC RC SC DP AC CC RC SC DP 
Normal <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Normal (after Box-Cox 
transformation) 

<0.005 <0.005 <0.005 0.009 <0.005 0.005 <0.005 <0.005 0.160 <0.005 

Lognormal <0.005 <0.005 <0.005 0.009 <0.005 <0.005 <0.005 <0.005 0.009 <0.005 
Exponential <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 
2-parameter exponential <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 
Weibull <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 
3-parameter Weibull <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Smallest extreme value <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 
Largest extreme value <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 0.073 <0.010 
Gamma <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.122 <0.005 
Logistic <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Loglogistic <0.005 <0.005 <0.005 0.024 <0.005 <0.005 <0.005 <0.005 0.155 <0.005 
Normal (after Johnson 
transformation) 

N/A N/A N/A 0.102 N/A N/A N/A N/A 0.788 N/A 
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Figure 4. Normal (after Johnson transformation) distribution of SC for student operators carrying out the 
OP-02 procedure. 

 
Figure 5. Normal (after Johnson transformation) distribution of SC for professional operators carrying out 
the OP-02 procedure. 

Table 7 and Table 8 show, respectively, the number of tasks used for time distribution analysis and 
the goodness-of-fit test results for the 13 statistical elapsed time distributions pertaining to the five 
GOMS-HRA task primitives in the OP-03 and OP-04 procedures, in regard to both participant types. A 
total of 1,728 tasks were performed by 20 student operators and 20 professional operators in executing the 
OP-03 and OP-04 procedures within Rancor. The number of tasks for student operators (893) exceeded 
that for professional operators (835). Based on the professional operator data, the elapsed time for SC 
proved statistically significant on the normal (after Johnson transformation) distribution. Figure 6 shows 
the normal (after Johnson transformation) distribution of SC for professional operators carrying out the 
OP-03 and OP-04 procedures. Per the time distribution, the average SC value reflected in the professional 
operator data was 45.16 seconds. 

Table 7. The number of tasks used for the time distribution analysis (OP-03 & OP-04). 

Participant 
Type 

GOMS-HRA Task Primitive Number of Tasks per 
Participant Type 

Total Number of 
Tasks AC CC RC SC DP 

Student 
operators 182 385 112 47 167 893 

1,728 
Professional 
operators 148 368 113 45 161 835 
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Table 8. Time distribution analysis for the five GOMS-HRA task primitives in the OP-03 & OP-04 
procedures, in regard to both participant types (student vs. operator). 

Distribution 

P-value of Goodness-of-Fit Test 
Student Operator 

AC CC RC SC DP AC CC RC SC DP 
Normal <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Normal (after Box-Cox 
transformation) 

<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.023 0.023 

Lognormal <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.023 0.023 
Exponential <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 0.003 <0.003 <0.003 
2-parameter exponential <0.010 <0.010 0.015 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 
Weibull <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 
3-parameter Weibull <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Smallest extreme value <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 
Largest extreme value <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 
Gamma <0.005 <0.005 0.009 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Logistic <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Loglogistic <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.013 0.013 
Normal (after Johnson 
transformation) 

N/A N/A N/A N/A N/A N/A N/A N/A 0.193 N/A 

 

 
Figure 6. Normal (after Johnson transformation) distribution of SC for professional operators carrying out 
the OP-03 & OP-04 procedures. 

 

Table 9 and Table 10 show, respectively, the number of tasks used for time distribution analysis and 
the goodness-of-fit test results for the 13 statistical elapsed time distributions pertaining to the five 
GOMS-HRA task primitives in the OP-05 and OP-06 procedures, in regard to both participant types. A 
total of 1,632 tasks were performed by 20 student operators and 20 professional operators in executing the 
OP-05 and OP-06 procedures within Rancor. The number of tasks for student operators (789) was lower 
than that for professional operators (843). No statistically significant results were uncovered by this time 
distribution analysis. 
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Table 9. The number of tasks used for the time distribution analysis (OP-05 & OP-06). 

Participant 
Type 

GOMS-HRA Task Primitive Number of Tasks per 
Participant Type 

Total Number of 
Tasks AC CC RC SC DP 

Student 
operators 130 368 105 71 115 789 

1,632 
Professional 
operators 129 397 117 78 122 843 

 
Table 10. Time distribution analysis for the five GOMS-HRA task primitives in the OP-05 & OP-06 
procedures, in regard to both participant types (student vs. operator). 

Distribution 

P-value of Goodness-of-Fit Test 
Student Operator 

AC CC RC SC DP AC CC RC SC DP 
Normal <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Normal (after Box-Cox 
transformation) 

<0.005 <0.005 <0.005 0.009 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

Lognormal <0.005 <0.005 <0.005 0.009 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Exponential <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 0.005 <0.003 <0.003 
2-parameter exponential <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 
Weibull <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 
3-parameter Weibull <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Smallest extreme value <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 
Largest extreme value <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 
Gamma <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Logistic <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Loglogistic <0.005 <0.005 <0.005 0.036 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Normal (after Johnson 
transformation) 

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 
Table 11 and Table 12 show, respectively, the number of tasks used for time distribution analysis and 

the goodness-of-fit test results for the 13 statistical elapsed time distributions pertaining to the five 
GOMS-HRA task primitives in the AOP-01 procedure, in regard to both participant types. A total of 
2,068 tasks were performed by 20 student operators and 20 professional operators in executing the 
AOP-01 procedure within Rancor. The number of tasks for student operators (1,055) exceeded that for 
professional operators (1,013). Per the student-operator task primitive data, the elapsed time for CC 
proved statistically significant on the normal (after Box-Cox transformation) distribution, the lognormal 
distribution, the loglogistic distribution, and the normal (after Johnson transformation) distribution. In 
addition, for both the student operators and professional operators, the data showed the elapsed time for 
SC to be statistically significant on the normal (after Box-Cox transformation) distribution and the 
lognormal distribution. 
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Figure 7, Figure 8, and Figure 9 summarize the most optimal time distributions, as indicated by the 
time distribution analysis results. Figure 7 and Figure 8 include the normal (after Johnson transformation) 
distribution of CC and the lognormal distribution of SC, as generated based on the student operator tasks 
performed in accordance with the AOP-01 procedure. Figure 9 shows the lognormal distribution of SS 
that was generated based on professional operator tasks performed in accordance with the AOP-01 
procedure. Per the time distributions, the student operator data showed an average of 17.19 seconds for 
CC and 19.58 seconds for SC, while the professional operator data showed an average of 8.00 seconds for 
SC. 

Table 11. The number of tasks used for the time distribution analysis (AOP-01). 

Participant 
Type 

GOMS-HRA Task Primitive Number of Tasks per 
Participant Type 

Total Number of 
Tasks AC CC RC SC DP 

Student 
operators 222 54 212 143 424 1,055 

2,068 
Professional 
operators 222 58 200 154 379 1,013 

 
Table 12. Time distribution analysis for the five GOMS-HRA task primitives in the AOP procedure, in 
regard to both participant types (student vs. operator). 

Distribution 

P-value of Goodness-of-Fit Test 
Student Operator 

AC CC RC SC DP AC CC RC SC DP 
Normal <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Normal (after Box-Cox 
transformation) <0.005 0.205 <0.005 0.062 <0.005 <0.005 <0.005 <0.005 0.068 <0.005 
Lognormal <0.005 0.205 <0.005 0.062 <0.005 <0.005 <0.005 <0.005 0.068 <0.005 
Exponential <0.003 0.009 <0.003 <0.003 <0.003 <0.003 0.007 <0.003 <0.003 <0.003 
2-parameter exponential <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 0.013 <0.010 
Weibull <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 
3-parameter Weibull <0.005 0.019 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.014 <0.005 
Smallest extreme value <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 
Largest extreme value <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 
Gamma <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Logistic <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
Loglogistic <0.005 0.174 <0.005 0.013 <0.005 <0.005 <0.005 <0.005 0.015 <0.005 
Normal (after Johnson 
transformation) N/A 0.658 N/A N/A N/A N/A N/A N/A N/A N/A 
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Figure 7. Normal (after Johnson transformation) distribution of CC for student operators carrying out the 
AOP-01 procedure. 

  
Figure 8. Lognormal distribution of SC for student operators carrying out the AOP-01 procedure. 

  
Figure 9. Lognormal distribution of SC for professional operators carrying out the AOP-01 procedure. 
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Table 13 and Table 14 show, respectively, the number of tasks used for the time distribution analysis 
and the goodness-of-fit test results for the 13 statistical elapsed time distributions pertaining to the five 
GOMS-HRA task primitives in the EOP-01 procedure, in regard to both participant types. A total of 490 
tasks were performed by 20 student operators and 20 professional operators in executing the EOP-01 
procedure within Rancor. The number of tasks for student operators (248) exceeded that for professional 
operators (242). Per the student-operator task primitive data, the elapsed time for AC proved statistically 
significant on the normal (after Box-Cox transformation) distribution, the lognormal distribution, the 
2-parameter exponential distribution, the loglogistic distribution, and the normal (after Johnson 
transformation) distribution. And the elapsed time for SC proved statistically significant on the normal 
(after Box-Cox transformation) distribution, the lognormal distribution, the exponential distribution, the 
2-parameter exponential distribution, the Weibull distribution, the 3-parameter Weibull distribution, the 
gamma distribution, the loglogistic distribution, and the normal (after Johnson transformation) 
distribution. In addition, the elapsed time for DP proved statistically significant on the normal (after 
Box-Cox transformation) distribution, the lognormal distribution, and the exponential distribution. On the 
other hand, per the professional operator data, the elapsed time for AC proved statistically significant on 
the normal (after Box-Cox transformation) distribution, the lognormal distribution, the 3-parameter 
Weibull distribution, the largest extreme value distribution, the loglogistic distribution, and the normal 
(after Johnson transformation) distribution. The elapsed time for SC proved statistically significant on the 
normal distribution, the normal (after Box-Cox transformation) distribution, the Weibull distribution, the 
3-parameter Weibull distribution, the smallest and largest extreme value distributions, the gamma 
distribution, the logistic distribution, and the loglogistic distribution. 

Figure 10, Figure 11, Figure 12, Figure 13, and Figure 14 reflect the most optimal time distributions 
from the time distribution analysis results. More specifically, Figure 10, Figure 11, and Figure 12 show, 
respectively, the normal (after Johnson transformation) distributions of AC and SC and the lognormal 
distribution of DP for student operators carrying out the EOP-01 procedure. The average elapsed time 
from the time distributions are 11.92 seconds for AC, 9.80 seconds for SC, and 6.14 seconds for DP. 
Figure 13 and Figure 14 show, respectively, the normal distribution (after Johnson transformation) of AC 
and the 3-parameter Weibull distribution of SC for professional operators carrying out the EOP-E0 
procedure. The average elapsed times from these time distributions are 7.21 seconds for AC and 5.30 
seconds for SC. 

Table 13. The number of tasks used for the time distribution analysis (EOP-01). 

Participant 
Type 

GOMS-HRA Task Primitive Number of Tasks per 
Participant Type 

Total Number of 
Tasks AC CC RC SC DP 

Student 
operators 59 80 49 10 50 248 

490 
Professional 
operators 57 78 49 10 48 242 

 
Table 14. Time distribution analysis for the five GOMS-HRA task primitives in the EOP-01 procedure, in 
regard to both participant types (student vs. operator). 

Distribution 

P-value of Goodness-of-Fit Test 
Student Operator 

AC CC RC SC DP AC CC RC SC DP 
Normal <0.005 <0.005 <0.005 0.014 <0.005 <0.005 <0.005 <0.005 0.237 <0.005 
Normal (after Box-Cox 
transformation) 0.374 <0.005 0.010 0.653 0.070 0.340 <0.005 <0.005 0.237 0.041 
Lognormal 0.374 <0.005 0.010 0.404 0.070 0.340 <0.005 <0.005 0.031 0.041 
Exponential 0.023 <0.003 0.018 0.486 0.051 <0.003 <0.003 <0.003 0.021 <0.003 
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Distribution 

P-value of Goodness-of-Fit Test 
Student Operator 

AC CC RC SC DP AC CC RC SC DP 
2-parameter exponential 0.083 <0.010 <0.010 >0.250 0.011 <0.010 <0.010 <0.010 0.012 0.034 
Weibull <0.010 <0.010 <0.010 0.189 <0.010 0.015 <0.010 <0.010 0.236 0.022 
3-parameter Weibull 0.013 <0.005 <0.005 0.404 <0.005 0.084 <0.005 <0.005 0.254 0.006 
Smallest extreme value <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 0.092 <0.010 
Largest extreme value <0.010 <0.010 <0.010 0.037 <0.010 0.088 <0.010 <0.010 0.227 0.016 
Gamma <0.005 <0.005 0.007 0.208 0.006 0.167 <0.005 <0.005 0.182 0.047 
Logistic <0.005 <0.005 <0.005 0.016 <0.005 <0.005 <0.005 <0.005 0.235 <0.005 
Loglogistic >0.250 <0.005 <0.005 >0.250 0.032 0.233 <0.005 <0.005 0.104 0.017 
Normal (after Johnson 
transformation) 0.563 N/A N/A 0.763 N/A 0.364 N/A N/A N/A N/A 
 

  
Figure 10. Normal (after Johnson transformation) distribution of AC for student operators carrying out the 
EOP-01 procedure. 

 
Figure 11. Normal (after Johnson transformation) distribution of SC for student operators carrying out the 
EOP-01 procedure. 
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Figure 12. Lognormal distribution of DP for student operators carrying out the EOP-01 procedure. 

  
Figure 13. Normal (after Johnson transformation) distribution of AC for professional operators carrying 
out the EOP-01 procedure. 

  
Figure 14. 3-parameter Weibull distribution of SC for professional operators carrying out the EOP-01 
procedure. 
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Table 15 and Table 16 show, respectively, the number of tasks used for time distribution analysis and 
the goodness-of-fit test results for the 13 statistical elapsed time distributions pertaining to the five 
GOMS-HRA task primitives in the EOP-02 procedure, in regard to both participant types. A total of 195 
tasks were performed by 20 student operators and 20 professional operators in executing the EOP-02 
procedure within Rancor. The number of tasks for the student operators (114) exceeded that for the 
professional operators (81). Per the student-operator task primitive data, the elapsed time for AC proved 
statistically significant on the normal (after Box-Cox transformation) distribution, the lognormal 
distribution, the 2-parameter exponential distribution, the Weibull distribution, the 3-parameter Weibull 
distribution, the gamma distribution, the loglogistic distribution, and the normal (after Johnson 
transformation) distribution. The elapsed time for SC proved statistically significant on the normal 
distribution, the normal (after Box-Cox transformation) distribution, the lognormal distribution, the 
exponential distribution, the 2-parameter exponential distribution, the Weibull distribution, the 3-
parameter Weibull distribution, the largest extreme value distribution, the gamma distribution, the logistic 
distribution, and the loglogistic distribution. On the other hand, the professional operator data showed the 
elapsed time for AC to be statistically significant on the normal (after Box-Cox transformation) 
distribution, the lognormal distribution, the exponential distribution, the 2-parameter exponential 
distribution, the Weibull distribution, the 3-parameter Weibull distribution, the gamma distribution, the 
loglogistic distribution, and the normal (after Johnson transformation) distribution. The elapsed time for 
DP proved statistically significant on the normal (after Box-Cox transformation) distribution, the 
lognormal distribution, the 2-parameter exponential distribution, the 3-parameter Weibull distribution, the 
loglogistic distribution, and the normal (after Johnson transformation) distribution. 

Figure 15, Figure 16, Figure 17, and Figure 18 list the most optimal time distributions from the time 
distribution analysis results. More specifically, Figure 15 and Figure 16 show, respectively, the normal 
(after Johnson transformation) distribution of AC and the lognormal distribution of SC for student 
operators carrying out the EOP-02 procedure. Per these distributions, the average elapsed times are 8.10 
seconds for AC and 2.67 seconds for SC. Figure 17 and Figure 18 indicate the normal (after Johnson 
transformation) distributions of AC and DP for professional operators carrying out the EOP-02 procedure. 
Per these distributions, the average elapsed times are 4.41 seconds for AC and 5.96 seconds for DP. 

Table 15. The number of tasks used for the time distribution analysis (EOP-02). 

Participant 
Type 

GOMS-HRA Task Primitive Number of Tasks per 
Participant Type 

Total Number of 
Tasks AC CC RC SC DP 

Student 
operators 30 36 N/A 9 39 114 

195 
Professional 
operators 22 33 N/A 2 24 81 

 
Table 16. Time distribution analysis for the five GOMS-HRA task primitives in the EOP-02 procedure, in 
regard to participant type (student vs. operator). 

Distribution 

P-value of Goodness-of-Fit Test 
Student Operator 

AC CC RC SC DP AC CC RC SC DP 
Normal <0.005 <0.005 N/A 0.200 <0.005 <0.005 <0.005 N/A N/A <0.005 
Normal (after Box-Cox 
transformation) 0.536 <0.005 N/A 0.488 <0.005 0.211 <0.005 N/A N/A 0.422 
Lognormal 0.536 <0.005 N/A 0.488 <0.005 0.211 <0.005 N/A N/A 0.081 
Exponential 0.016 <0.003 N/A 0.094 0.035 0.151 <0.003 N/A N/A 0.005 
2-parameter exponential >0.250 <0.010 N/A >0.250 <0.010 >0.250 <0.010 N/A N/A 0.213 
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Distribution 

P-value of Goodness-of-Fit Test 
Student Operator 

AC CC RC SC DP AC CC RC SC DP 
Weibull 0.052 <0.010 N/A >0.250 <0.010 0.144 <0.010 N/A N/A <0.010 
3-parameter Weibull 0.204 <0.005 N/A >0.500 <0.005 0.140 <0.005 N/A N/A 0.135 
Smallest extreme value <0.010 <0.010 N/A 0.047 <0.010 <0.010 <0.010 N/A N/A <0.010 
Largest extreme value 0.049 <0.010 N/A >0.250 <0.010 0.028 <0.010 N/A N/A <0.010 
Gamma 0.175 <0.005 N/A >0.250 <0.005 0.175 <0.005 N/A N/A <0.005 
Logistic <0.005 <0.005 N/A >0.250 <0.005 <0.005 <0.005 N/A N/A <0.005 
Loglogistic >0.250 <0.005 N/A >0.250 <0.005 0.158 <0.005 N/A N/A 0.185 
Normal (after Johnson 
transformation) 0.611 N/A N/A N/A N/A 0.297 N/A N/A N/A 0.440 
 

  
Figure 15. Normal (after Johnson transformation) distribution of AC for student operators carrying out the 
EOP-02 procedure. 

  
Figure 16. Lognormal distribution of SC for student operators carrying out the EOP-02 procedure. 
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Figure 17. Normal (after Johnson transformation) distribution of AC for professional operators carrying 
out the EOP-02 procedure. 

  
Figure 18. Normal (after Johnson transformation) distribution of DP for professional operators carrying 
out the EOP-02 procedure. 

 

4. EVALUATING TASK PRIMITIVE TIME DISTRIBUTIONS FOR AN 
ELAP SCENARIO 

The present analysis attempted to apply the time distribution data from Section 3 to a dynamic HRA 
model that implements an ELAP scenario within the EMRALD software program. The dynamic HRA 
model was developed based on the Procedure-based Investigation Method of EMRALD Risk Assessment 
– HRA (PRIMERA-HRA) (Park, 2024). To provide initial estimates, HRA elements were modeled in 
EMRALD as a precursor to formal modeling in HUNTER. EMRALD is a PRA software tool that is well 
suited for modeling systems of components for dynamic simulation; however, it was not developed to 
address certain human actions and thus entails certain limitations. Additionally, in prior work, a 
HUNTER module was coupled with EMRALD (i.e., EMRALD-HUNTER) (Lew, et al., 2023) to provide 
more simplified HUNTER functionality. In summary, EMRALD can make overall scenario time 
estimations based on the time distributions derived in Section 3. 

This section mainly describes (1) the ELAP scenario, (2) a dynamic HRA model for application to the 
ELAP scenario, (3) the time input data used in the model, and (4) the simulation results. We compare the 
time required for HFEs when using the existing time information proposed in GOMS-HRA, against using 
the time information introduced in Section 3 of this report. 
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4.1 ELAP Scenario 
ELAP is a station blackout scenario in which offsite power, emergency diesel generators (DGs), and 

alternate AC DGs are all rendered unavailable (Gunther, 2015). In the United States, diverse and flexible 
coping strategies (FLEX) (NEI, 2016) have been suggested, using emergency (i.e., mobile) mitigative 
equipment as a backup for fixed equipment so as to provide plant coping capability to present core 
damage, even under scenarios involving simultaneous ELAP and loss of normal access to the ultimate 
heat sink. In such scenarios, FLEX DGs provide AC power and aid in the reactor cooldown. For the 
present study, we specifically developed an ELAP scenario in which FLEX DGs were deployed and 
connected to the plant. This scenario was developed based on observations made during stress tests (Park, 
et al., 2019). It assumes that upon the occurrence of the initiating event, the MCR panel indicators 
suddenly become unavailable due to a blackout. The operators are assumed to experience a high level of 
disorientation and stress, and are not equipped with any flashlights. The battery power connection is 
delayed for 15 minutes. (In other words, the battery power associated with the MCR indicators and 
emergency light functionality is automatically restored after 15 minutes.) Operators find flashlights at a 
location outside the MCR and bring them inside the MCR. Once some of the indicators have been 
restored and the flashlights are made available, the MCR operators can begin to perform procedures. First, 
they must diagnose the initiating event. Specifically, they follow procedures to evaluate whether the AC 
power sources will be difficult to restore. The evaluation outcome may be to declare an ELAP scenario, at 
which point two operator actions must be performed almost simultaneously. First, the MCR operators 
must perform Direct Current load shedding in collaboration with the local operators. In this scenario, 
although the local operators are required to complete all their tasks onsite, they overlook a couple of 
manipulations. They notice the fault after coming back and communicating with the MCR operators, then 
leave to finalize the manipulations. It is a local recovery process. Second, the MCR operators 
communicate with subcontractors to deploy the FLEX DGs. At this point, the subcontractor personnel 
move to the mobile equipment garage and deploy all relevant equipment to the designated place for 
connecting them with the plant. During deployment under this scenario, the subcontractor personnel may 
probabilistically face three different road conditions: (1) a good road, causing no delay [50%]; (2) a 
damaged road, causing a 30-minute delay [30%]; and (3) a bad road blocked by debris, causing a 60-
minute delay [20%]. With one of these different road conditions, the subcontractor personnel continue to 
deploy the equipment and connect the FLEX DGs to the plant. The scenario concludes when both 
operator actions are successfully carried out within the time window and are successfully reported to the 
MCR operators. 

This ELAP scenario involves three HFEs that are considered critical events in static FLEX HRA 
(Park, et al., 2019; NEI, 2016). Table 17, Table 18, and Table 19 summarize PSF information based on 
SPAR-H PSFs; time information such as time window, delay time, diagnosis time, and execution time; 
and HEP calculations for three HFEs modeled in the ELAP scenario. These were assumed based on the 
relevant literature (Park, et al., 2019; NEI, 2016). 

 



 

 25 

Table 17. PSF information pertaining to three HFEs modeled in the ELAP scenario. 

No. HFE 

SPAR-H PSFs 

Task type 
Available 

time 
Stress 

/stressor Complexity 
Experience 

/training Procedures 
Ergonomics 

/HSI 
Fitness for 

duty 
Work 

process 

1 

Operator 
fails to 
declare 
ELAP. 

Diagnosis Expansive 
time (x0.01) 

High (x2) Moderately 
complex 
(x2) 

Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

Execution Time 
available >= 
5 x the time 
required 
(x0.1) 

High (x2) Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

2 

Operator 
fails to 
perform 
FLEX DG 
load shed. 

Diagnosis Nominal 
time (x1) 

High (x2) Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

Execution Nominal 
time (x1) 

High (x2) Moderately 
complex 
(x2) 

Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

3 

Operator 
fails to 
deploy and 
install FLEX 
DG. 

Diagnosis Expansive 
time (x0.01) 

High (x2) Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

Execution Time 
available >= 
5 x the time 
required 
(x0.1) 

Extremely 
High (x5) 

Moderately 
complex 
(x2) 

Low (x3) Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 

Nominal 
(x1) 
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Table 18. Time information pertaining to three HFEs modeled in the ELAP scenario. 

No. HFE 
Time 

Window Delay Time 
Diagnosis 

Time 
Execution 

Time 
1 Operator fails to declare ELAP 1 hr 15 min 1 min 1 min 
2 Operator fails to perform FLEX DG load shed 1.5 hrs 60 min 5 min 15 min 
3 Operator fails to deploy and install FLEX DG 6 hrs 90 min 5 min 30 min 

 
Table 19. HEP calculations pertaining to three HFEs modeled in the ELAP scenario. 

No. HFE Task Type 
HEP for Each Task 

Type Final HEP 

1 Operator fails to declare 
ELAP 

Diagnosis 4.00e-4 
6.00e-4 Execution 2.00e-4 

2 Operator fails to perform 
FLEX DG load shed 

Diagnosis 2.00e-2 
2.40e-2 Execution 4.00e-3 

3 Operator fails to deploy and 
install FLEX DG 

Diagnosis 2.00e-4 
3.20e-3 Execution 3.00e-3 

 

4.2 Dynamic HRA Model for the ELAP Scenario 
The dynamic HRA model for the ELAP scenario modeled within EMRALD-HUNTER consists of 

three smaller models: the (1) main model, (2) heading model, and (3) procedure model. The main model 
gives an overview of the scenario, along with heading events. Figure 19 shows the main model for the 
ELAP scenario. The heading model includes logic for determining the success or failure of heading 
events. If a heading does not split into branches, it need not be modeled. Figure 20 and Figure 21 show 
the heading models for Headings #1 and #2. The procedure model reflects all the information obtained 
from the task primitive analysis (Park, 2024). Figure 22, Figure 23, and Figure 24 show the procedure 
models for Procedure Paths #1, #2, and #3. Details on these models are provided in (Park, 2024). 

 
Figure 19. Main model in EMRALD-HUNTER for the ELAP scenario. 



 

 27 

 
Figure 20. Heading model for Heading #1 in EMRALD-HUNTER. 

 
Figure 21. Heading model for Heading #2 in EMRALD-HUNTER. 
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Figure 22. Procedure model for Procedure Path #1 in EMRALD-HUNTER. 
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Figure 23. Procedure model for Procedure Path #2 in EMRALD-HUNTER. 
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Figure 24. Procedure model for Procedure Path #3 in EMRALD-HUNTER. 

4.3 Time Input Data 
Table 20 summarizes time information updates for task primitives, per each procedure set. The time 

information, which is based on operator data, includes statistically significant results marked with an 
asterisk and introduced in Section 3. For task primitives that proved statistically insignificant on the time 
data, the present study assumed a normal distribution with corresponding time information. In this ELAP 
scenario, the time information for EOP-01 was mainly used as the input for tasks performed in MCRs. 

Table 20. Summary of time information updates for task primitives, per each procedure set. 

Procedure 
Set 

Task 
Primitive Distribution Mean [sec] 

Standard 
Deviation 

[sec] 
Minimum 

[sec] 
Maximum 

[sec] 

OP-01 

AC Normal 14.79 79.41 1.00 844.00 
CC Normal 3.26 4.75 1.00 44.00 
RC Normal 6.42 6.40 1.00 30.00 
SC Normal 62.03 88.11 1.00 393.00 
DP Normal 10.61 19.52 1.00 124.00 

OP-02 

AC Normal 13.48 20.68 1.00 83.00 
CC Normal 2.48 2.21 1.00 12.00 
RC Normal 3.15 2.89 1.00 18.00 

SC 
Normal (after Johnson 

Transformation)* 12.49 11.03 1.00 71.00 
DP Normal 5.79 11.22 1.00 106.00 
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Procedure 
Set 

Task 
Primitive Distribution Mean [sec] 

Standard 
Deviation 

[sec] 
Minimum 

[sec] 
Maximum 

[sec] 

OP-03 & 
OP-04 

AC Normal 29.95 52.46 1.00 252.00 
CC Normal 2.58 2.97 1.00 26.00 
RC Normal 5.85 8.38 1.00 81.00 

SC 
Normal (after Johnson 

Transformation)* 45.16 67.99 1.00 252.00 
DP Normal 13.42 31.69 1.00 193.00 

OP-05 & 
OP-06 

AC Normal 8.33 11.05 1.00 71.00 
CC Normal 3.79 7.35 1.00 87.00 
RC Normal 6.47 8.23 1.00 78.00 
SC Normal 71.12 119.41 1.00 599.00 
DP Normal 16.18 38.26 1.00 345.00 

AOP-01 

AC Normal 6.31 10.29 1.00 130.00 
CC Normal 5.59 6.50 1.00 38.00 
RC Normal 3.39 4.64 1.00 32.00 

SC 
Normal (after Johnson 

Transformation)* 8.01 6.36 1.00 40.00 
DP Normal 5.50 8.02 1.00 65.00 

EOP-01 

AC 
Normal (after Johnson 

Transformation)* 7.21 4.72 1.00 24.00 
CC Normal 2.37 2.30 1.00 19.00 
RC Normal 3.67 6.16 1.00 42.00 
SC 3-Parameter Weibull* 5.30 2.50 1.00 10.00 
DP Normal 4.13 2.60 1.00 13.00 

EOP-02 

AC 
Normal (after Johnson 

Transformation)* 4.41 3.39 1.00 12.00 
CC Normal 2.12 1.80 1.00 10.00 
RC Normal N/A N/A N/A N/A 
SC Normal 3.5 2.12 2.00 5.00 

DP 
Normal (after Johnson 

Transformation)* 5.96 5.12 2.00 23.00 
Note: * = p > 0.05 

 
The ELAP scenario included local actions. The time information reflected in Table 20 may not be 

applicable to these actions, as it specifically pertains to actions performed in MCRs. As a general rule, 
time information regarding local actions will vary depending on the NPP and mitigation strategies 
involved. In the present study, the times required for these local actions were all assumed (see Table 21). 
The mean values were assumed based on observations made during stress tests or relevant reports (Park, 
et al., 2019; NEI, 2016). The standard deviation, minimum, and maximum can be calculated in the 
manner shown below. These assume very wide distributions with high levels of uncertainty. 
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• Standard Deviation = Mean / 3 

• Minimum = Mean – 2 × Standard Deviation 

• Maximum = Mean + 2 × Standard Deviation. 

Table 21. Assumptions regarding the time required for local actions. 

Task Primitive Type Mean (sec) 
Standard 

Deviation (sec) Minimum (sec) Maximum (sec) Distribution 
Local action 300 100 100 500 Normal 
Access to fixed or 
local equipment 600 200 200 1,000 Normal 
Deployment of 
mobile equipment 9,000 3,000 3,000 15,000 Normal 

 

4.4 Simulation Results 
The present study compared the elapsed time for HFEs when using the existing time information in 

GOMS-HRA, as opposed to using the revised time information introduced in Section 3. Figure 25, 
Figure 26, and Figure 27 compare the resulting time required for HFEs #1, #2, and #3. Overall, the time 
required for each HFE decreased with the updated time information. In comparison with HFEs #1 and #2, 
HFE #3 indicated the smallest mean time difference between using the original GOMS-HRA data and 
using the updated data. As a point of fact, HFEs #1 and #2 are actions performed in MCRs, whereas HFE 
#3 includes many local actions. Thus, it was expected that the updated time information would more 
strongly influence HFEs #1 and #2 and cause a greater mean time difference. 

 
Figure 25. Comparison of time required for HFE #1. 
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Figure 26. Comparison of time required for HFE #2. 

 
Figure 27. Comparison of time required for HFE #3. 
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5. DISCUSSION AND CONCLUSION 
5.1 Discussion on HUNTER-P3 Development 

While HUNTER was developed generally as a tool for dynamic HRA—meaning a tool to support risk 
analysis—applying HUNTER-P3 to procedures illustrates its strong potential to benefit non-quantitative 
risk uses. Procedures are essential in the safe operation of NPPs (and, indeed, in many other industries). 
As more digital control systems are introduced into existing control rooms, the concepts of operations at 
these plants will likely change, requiring new or updated procedures. These new/updated procedures can 
be considered via quantitative HRA methods, but many such methods lack nuance in differentiating the 
consequences of changes to important human actions prescribed by those procedures. The HEPs predicted 
for procedures may perhaps go unaltered, as the risk related to general actions and safety impacts do not 
necessarily change just because the HMI has evolved. On a task execution level, the procedures do 
change, and operator reliability in performing procedural tasks may also change in ways perhaps not fully 
reflected in the risk analysis. HUNTER-P3 augments existing methods of evaluating novel procedures. 
By anticipating the types of error traps that can occur at both the procedure and operator levels, it 
represents a unique solution to vetting and optimizing procedures. The outputs of HUNTER-P3 include 
traditional error measures, but being a dynamic modeling tool, it can also capture issues with procedure 
flow—issues that may not escalate into overt errors but could hinder optimal operations nonetheless. It 
also estimates required time, as covered in this report. Required time can have a significant impact on 
procedure execution and therefore be a determiner in success or failure in procedure use. 

5.2 Discussion on Time Distribution Analysis 
This study investigated time distributions for five GOMS-HRA task primitives taken from the seven 

different sets of procedures (each with different goals), comparing them in terms of participant type. 
Several time distributions pertaining to the five GOMS-HRA task primitives were found to be statistically 
significant. Specifically, a greater number of time distributions were found in AOP-01, EOP-01 and 
EOP-02 than in the OPs. Manipulation-related task primitives (i.e., AC [performing required physical 
actions on the control boards] and SC [selecting or setting a value on the control boards]) satisfied a 
relatively large amount of statistical distributions with high confidence levels in comparison with other 
task primitives. 

A relatively smaller number of time distributions proved statistically significant in the OPs. Actually, 
some tasks in the OPs necessitated elapsed time for plant parameters to reach certain values. These may 
make it difficult to obtain time distributions that reach statistical significance. Furthermore, no time 
distributions were found for RC (obtaining required information on the control boards), regardless of 
participant type. In the SHEEP experiment, each participant carried out six scenarios per experimental 
session. Accordingly, learning effects may have come into play when participants worked to obtain 
information from the Rancor interface. Such learning effects may inhibit the satisfying of time 
distributions. 

Our research team continues to analyze the experimental data. Further analyses will be performed to 
clarify these issues and arrive at better time distributions applicable to future implementations of dynamic 
HRA. Already, these data show promise for using GOMS-HRA task-level primitives to arrive at time 
distributions. And such time distributions may eventually prove useful as outright HEP estimations in 
future HRA applications. 
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5.3 Discussion on Applying Timing Data to an ELAP Scenario 
In the ELAP model, this study identified that the mean time for three HFEs when using the time 

information updated from the SHEEP data was shorter than when the original GOMS-HRA data were 
used. Based on this result, two assumptions can be made. First, the timing data in the original 
GOMS-HRA method may be uncertain. Specifically, the time values in GOMS-HRA were derived in 
limited fashion from the small amount of samples by mapping procedure-step-level primitives (not 
task-level primitives) into simulator logs. Second, the updated time information from the SHEEP data 
may be relatively shorter due to simplicity of the simulator. For Rancor, scenarios progress relatively 
faster than for simulators with higher complexity, such as CNS or full-scope simulators. Furthermore, its 
systems and interfaces are simpler as well, potentially decreasing the time required for task primitives. 

Using time information that is experimentally collected and analyzed within statistical significance 
level enables more realistic modeling of human actions in dynamic HRA. Dynamic HRA modeling based 
on timing data can be useful when developing new procedures and investigating the feasibility of human 
actions to execute them. Here we find that the ELAP scenario can be completed quicker than earlier 
HUNTER modeling suggested. This gives higher confidence in the corresponding procedures as written 
leading to successful mitigation of ELAP. Further experimental research is required to acquire timing data 
that are statistically significant. In the future, more experiments are proposed under the SHEEP 
framework by using more complex simulators (e.g., CNS) for comparison against the timing data 
obtained via Rancor, then to explore time distribution differences stemming from expertise and simulator 
complexity. The future study would help guarantee ample sample sizes and aid in acquiring more 
adequate timing data that are statistically significant. Additionally, future modeling in HUNTER will seek 
to demonstrate the HUNTER-P3 concept for control room upgrades, providing a screening tool for 
benchmarking new procedures against existing ones. 

5.4 Concluding Remarks 
HUNTER continues to evolve as a modeling tool for human performance, with our research team 

having used it to explore new analyses and applications of dynamic HRA. These efforts pave the way for 
HUNTER applications that do not duplicate existing static HRA, but instead unlock new HRA 
capabilities and benefits. As development of HUNTER continues, these features will be demonstrated 
using plant-specific examples. Whereas HUNTER can complement existing HRA applications, its 
greatest value lay in helping answer emerging risk analysis topics for which legacy HRA may not be 
optimal. Applications such as evaluating operator performance with digital systems, evaluating procedure 
performance, and more accurately capturing the various facets of balance-of-plant activities lead to new 
methods and grant added value to the tools available to human reliability analysts. 
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