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Abstract: Operating nuclear power plants (NPPs) generate and collect large amounts of equipment

reliability (ER) element data that contain information about the status of components, assets, and

systems. Some of this information is in textual form where the occurrence of abnormal events or

maintenance activities are described. Analyses of NPP textual data via natural language processing

(NLP) methods have expanded in the last decade, and only recently the true potential of such analyses

has emerged. So far, applications of NLP methods have been mostly limited to classification and

prediction in order to identify the nature of the given textual element (e.g., safety or non-safety

relevant). In this paper, we target a more complex problem: the automatic generation of knowledge

based on a textual element in order to assist system engineers in assessing an asset’s historical health

performance. The goal is to assist system engineers in the identification of anomalous behaviors,

cause–effect relations between events, and their potential consequences, and to support decision-

making such as the planning and scheduling of maintenance activities. “Knowledge extraction”

is a very broad concept whose definition may vary depending on the application context. In our

particular context, it refers to the process of examining an ER textual element to identify the systems

or assets it mentions and the type of event it describes (e.g., component failure or maintenance

activity). In addition, we wish to identify details such as measured quantities and temporal or

cause–effect relations between events. This paper describes how ER textual data elements are first

preprocessed to handle typos, acronyms, and abbreviations, then machine learning (ML) and rule-

based algorithms are employed to identify physical entities (e.g., systems, assets, and components)

and specific phenomena (e.g., failure or degradation). A few applications relevant from an NPP ER

point of view are presented as well.

Keywords: natural language processing; knowledge extraction; machine learning

1. Introduction

To reduce operation and maintenance costs [1,2], existing nuclear power plants (NPPs)
are moving from corrective and periodic maintenance to predictive maintenance strate-
gies [3]. This transition is designed so that maintenance occurs only when a component
requires it (e.g., before its imminent failure). This guarantees that component availability
is maximized and that maintenance costs are minimized. However, these benefits require
changes in the data that need to be retrieved and the type of decision processes to be
employed. Advanced monitoring and data analysis technologies [4–7] are essential for
supporting predictive strategies, as they can provide precise information about the health
of a system, structure, or component (SSC), track its degradation trends, and estimate its
expected time of failure. With such information, maintenance operations can be performed
on a component right before its expected failure time [8].

This dynamic context of operations and maintenance activities (i.e., predictive) re-
quires new methods of processing and analyzing equipment reliability (ER) data [7,8].
One relevant issue is that ER data can be contained in heterogenous data formats: textual,
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numeric, image, etc. An analysis of numeric ER data has been addressed in many previous
works [5–9] and applied to many operational directions including anomaly detection, diag-
nosis, and prognosis. Here we are targeting the analysis of textual ER data. The information
contained in NPP textual ER data can either describe the occurrence of abnormal events
(e.g., system, structure and components [SSC] failure or observed degradation)—with such
documents being referred to here as issue reports (IRs)—or the conduct of maintenance
or surveillance activities (referred to here as work orders [WOs]). Only recently has the
analysis of textual data been investigated via machine learning (ML) methods [10–13]
designed to assess the nature of the data (e.g., safety or non-safety related) by employing
supervised or semi-supervised ML models [14,15].

This paper primarily focuses on applying natural language processing (NLP) meth-
ods [16–19] for ER data analysis in order to support robust decision-making in a plant
operations context. In more detail, our methods are designed to assist system engineers in
the identification of anomalous behaviors that might occur in a system (e.g., the periodic
failure of a pump control board), the possible cause–effect relations between events (e.g., a
lack of adequate flow rate generated by the pump prior to the failure of its control board),
and their potential consequences (e.g., pump taken off line which causes power plant
derate, and a consequent loss of production). The same methods are also designed to
support decision-making such as the scheduling of the appropriate maintenance activities
(e.g., a replacement of the pump control board which requires a specific procurement order)
and planning based on past operational experience (e.g., identify average time to replace
pump control board). In addition, note that trending at the plant level of events of a similar
nature (which requires methods to parse a large amount of data automatically rather than
relying on manual search) provides insights on key performance indicators of the plant
itself, which are under regulatory oversight. All of these tasks are currently performed
manually with all limitations that such processes entail (in terms of resources required
and efficiency).

Here, the objective in analyzing textual ER data is to move away from supervised/semi-
supervised ML model analysis tools [10–13] and to instead automate the extraction of
quantitative knowledge from textual data in order to assist system engineers in assessing
SSC health trends and identify SSC anomalous behaviors. Knowledge extraction [20–24]
is a very broad concept whose definition may vary depending on the application context.
When applied to NPP ER textual data (i.e., IRs or WOs), the knowledge extraction approach
described herein is designed to extract its syntactic and semantic elements. In more
detail, it is designed to identify elements of interest (e.g., types of phenomena described
and types of SSCs affected), extract temporal and location attributes, understand the
nature of the reported event, and extract causal or temporal relationships between events.
This type of NLP analysis has especially been applied in the medical field as shown
in [25,26]. However, recent interest has also emerged in other fields including energetic [27],
chemical [28,29], bioinformatics [30,31], material science [32], arts and humanities [33], and
patent [34] analysis.

Our approach relies on both ML- and rule-based NLP methods designed to identify
specific keywords, sentence architecture relations, and structures within each sentence
and paragraph. The choice of a rule-based system rather than relying on language models
(as, for example, shown in [35]) was dictated by the limitations of the fine-tuning of such
models (e.g., the availability of training data) for a very specific field of application (which
can also be NPP dependent) and also by security reasons (e.g., sharing data on third-party
servers). Applying such analyses to NPP ER textual datasets makes it possible to track the
historical health performance of NPP assets and then use the observed health trends to
adjust the schedule of future surveillance and maintenance operations [7]. Such a process
can have a major impact on the reduction of NPP operational costs. The interest in NLP
knowledge extraction methods applied to NPP ER textual data has started only recently. In
particular, references [36,37] provide an overview of the advantages that can be reached
using technical language processing (TLP) as an iterative human-in-the-loop approach
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to analyze NPP textual data to optimize plant operation and asset management. As a
result of these considerations, reference [38] provides, to our knowledge, the first attempt
to analyze WO textual data using an ontology-based approach. This paper can be seen
as an extension of [38] where it also targets the analysis of IRs and other plant textual
data (e.g., plant outage data elements). Such an extension does not rely on an ontology as
indicated in [38] because of the challenges in constructing a general-purpose ontology that
would encompass all possible use cases in an NPP context. Our approach follows some of
the elements shown in [39–41], especially in terms or relation extraction and it adapts them
into an NPP context.

A relevant observation here is that most of the time, NPP ER textual elements are
composed by short (typically about 6–10 words long) sentences that are not properly
structured from a grammatical point of view. This poses a challenge when applying the
methods described in [21,23,24]. This paper is divided into two parts: Section 2 gives details
on each NLP element that constitutes our knowledge extraction workflow, and Section 3
provides examples of applying the developed methods in order to support decision-making
in an NPP operational context.

2. Knowledge Extraction Methods

Figure 2 provides an overview of the NLP methods that together constitute the knowledge
extraction workflow. These methods are grouped into the following three main categories:

• Text preprocessing: The provided raw text is cleaned and processed in order to identify
specific nuclear entities and acronyms (e.g., HPI in reference to a high-pressure injec-
tion system), and to identify and correct typos (i.e., through a spell check method) and
abbreviations (e.g., “pmp” meaning “pump”).

• Syntactic analysis: The goal of this analysis is to identify the relationship between words
contained within a sentence, the focus being on understanding the logical meaning of
sentences or parts of sentences (e.g., subjects, predicates, and complements).

• Semantic analysis: We rely on the results of this analysis to identify the nature of
the event(s) described in the text, along with their possible relationships (temporal
or causal).

In the following sections, we provide details on each different NLP method. The
methods presented here have been coded in a Python-based coding environment and they
leverage a few openly available NLP libraries: SpaCy [42], PySBD [43], and nltk [44]. The
choice of the coding environment was also suggested based on current configurations of
operating U.S. nuclear plant equipment reliability software suites which store IRs and WOs
and allow externally developed data analytics methods to be easily interfaced.

2.1. Spellcheck, Acronym, and Abbreviation Handling

NPP IRs and WOs are often comprised of short sentences that often contain abbrevia-
tions. The presence of abbreviations negatively impacts our ability to extract knowledge
from such texts. Thus, abbreviations must be identified and then replaced with the com-
plete form of the words. The starting point is a library of word abbreviations collected
from documents available online. This library is basically a dictionary that contains the
corresponding set of words for each identified abbreviation. A challenge here is that a
single abbreviation may have multiple words associated with it. Similarly, a word may be
abbreviated in multiple different ways.

In each sentence, abbreviations are handled by first identifying any misspelled words.
Each misspelled word is then searched for in the developed library. If an abbreviation in
the library matches the misspelled word, the abbreviation is replaced by the complete form
of the word. If no abbreviation is found, we proceed by searching for the closest one by
employing the Levenshtein distance as a metric. If multiple words match the obtained
abbreviation, the one that best fits the context of the sentence is selected.

Acronyms represent another class of textual elements often seen in ER textual data,
and typically refer to specific NPP SSCs. They are handled similarly to abbreviations,



Energies 2024, 17, 1785 4 of 25

with a library of acronyms having been compiled based on publicly available U.S. Nuclear
Regulatory Commission (NRC) and Electric Power Research Institute (EPRI) documents.

Once the abbreviations and acronyms have been handled, the remaining misspelled
words are run through our spell-checking methods for a final round of corrections. Figure 1
shows an example of spell checking and acronym/abbreviation handling being used to
clean up specific words in the raw text.

Figure 1. Example of spell checking (“pmp”) and acronym (HPI) and abbreviation (“refurb”) handling.

 

Figure 2. Graphical illustration of the NLP elements that comprise the knowledge extraction workflow.

2.2. Sentence Segmentation

The next important step is to determine the sentence boundaries; that is, segment
the text into a list of sentences. This is a key underlying task for NLP processes. For
the present work, we employed PySBD—a rule-based sentence boundary disambiguation
Python package—to detect the sentence boundaries. We developed a custom method
that uses PySBD and SpaCy to split raw text into a list of sentences. In general, there are
three different approaches to segmenting sentences [16,17]: (1) rule-based, requiring a
list of hand-crafted rules; (2) supervised ML, requiring training datasets with labels and
annotations; and (3) unsupervised ML, requiring distributional statistics derived from raw
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text. We chose the rule-based approach since the errors are interpretable and the rules
can be adjusted incrementally. Moreover, the resulting performance can exceed that of the
ML models. For example, PySBD passes 97.93% of the Golden Rule Set exemplars (i.e., a
language-specific set of sentence boundary exemplars) for English—a 25% improvement
over the next-best open-source Python 3.9 tool (43).

2.3. Tokenization

The next step in textual processing is to tokenize the text [16,17], a process basically
designed to segment the text into a list of words or punctuations (see Figure 3). First, the
raw text is split based on the whitespace characters. The tokenizer then processes the text
from left to right. On each substring, it performs two checks:

(1) Does the substring match a tokenizer exception rule? For example, “don’t” does not
contain whitespace but should be split into two tokens, “do” and “n’t”.

(2) Can a prefix, suffix, or infix be split off (e.g., punctuation such as commas, periods,
hyphens, or quotation marks)?

 

 ffi ff

tt

tt

ffi

tt
tt

Figure 3. Tokenization process: The tokens obtained from the provided text are highlighted in blue.

If a match is found, the rule is applied and the tokenizer continues its loop, starting
with the newly split substrings. In this manner, the tokenizer can split complex, nested
tokens such as combinations of abbreviations and multiple punctuation marks.

2.4. Part of Speech

After the correct segmentation of sentences, we rely on the SpaCy tagger to parse each
sentence and tag each token therein. The “TAG” and “POS” (part of speech) attributes
are generated for each token (see Section 2.3). “POS” is the simple universal POS tag
(https://universaldependencies.org/u/pos/ [accessed on 4 February 2024]) that does not
include information on any morphological features and only covers the word type (e.g.,
adjectives, adverbs, verbs, and nouns). The morphology is the process by which a root form
of a word is modified by adding prefixes or suffixes that specify its grammatical function
but do not change its POS. These morphological features are added to each token after the
POS process, and can be accessed through the token’s “morph” attribute.

The “TAG” attribute expresses both the POS and some amount of morphological
information. For example, the POS “VERB” tag is expanded into six “TAG” tags: “VB”
(verb, base form), “VBD” (verb, past tense), “VBG” (verb, gerund, or present participle),
“VBN” (verb, past participle), “VBP” (verb, non-third-person singular present), and “VBP”
(verb, third-person singular present). In this work, we heavily relied on these POS and
TAG tags to determine the nature of a given IR or WO (see Section 2.14).

2.5. Dependency Parsing

POS [18] tagging provides information on word types and morphological features but
not dependency information between words. Some examples of dependencies are nominal
subject (nsubj), direct object (dobj), and indirect object (iobj). The parser uses a variant of
the non-monotonic arc-eager transition system described in [42]. The parser uses the terms
“head” and “child” to describe those words connected by a single arc in the dependency
tree. The dependency labels are used for the arc label, which describes the type of syntactic
relation that connects the child to the head. Figure 4 shows a graphic representation
of a dependency tree created using SpaCy’s built-in displaCy visualizer, with the POS
tag placed below each word. In the present work, we employed the dependency tree to

https://universaldependencies.org/u/pos/
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develop rules for identifying health information and causal relationships between events
(see Sections 2.14 and 2.15, respectively).

ff

Figure 4. POS tagging and dependency parsing.

2.6. Lemmatization

A lemma is the base form of a token. For example, the word “fail” is the lemma of
“failing”, “fails”, and “failed”. Lemmatization is the process of reducing words to their base
forms (or lemmas). For the present study, we employed the SpaCy lemmatizer to reduce
inflectional or derivationally related forms of words to a common base form. In this case,
we only needed to provide the keyword base forms that would significantly reduce the
total number of keywords.

2.7. Coreference Resolution

Coreferences often occur in texts in which pronouns (e.g., it, they) are used to reference
elements previously mentioned in the text. Coreference resolution is aimed at identify-
ing the textual element linked to the given pronoun. For an example, see Figure 5, in
which the pronoun “they” refers to the previously defined textual element “cracks”. From
our analysis tools, we employed Coreferee to resolve coreferences within English texts.
Coreferee uses a mixture of neural network and programmed rules to identify potential
coreference mentions.

ff

Figure 5. Example of coreference resolution (indicated as an arrow): the pronoun “they” (highlighted

in green) refers to the previously defined textual element “cracks” (highlighted in blue).

2.8. Identification of Temporal Quantities

Temporal quantities, which indicate time instances when specific events have occurred,
can come in different forms. For the scope of this article, we partitioned these forms into
four classes (see Table 1) that specify the occurrence of an event in absolute terms (i.e., date
or time) or in relative terms (i.e., duration or frequency). A relevant observation is that
the provided temporal information may contain some uncertainty (e.g., an approximated
estimate of the temporal occurrence of an event). Such situations were handled by defining
a specific list of keywords that indicate approximation, as well as their corresponding set
of relations based on observed datasets (see Table 2). The set of temporal relations shown
in Table 3 was developed based on [45] and by relying on the large TimeBank corpus [46].
Figure 6 shows an example outcome of our identification methods.
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Table 1. Examples of date, time, duration, and frequency temporal expression.

Date Time Duration Frequency

11/3/2005
3 November 2005

Yesterday
Tomorrow
Thursday
Last Week

Friday morning
12:30 a.m.

3 p.m.
12:30

12:00 a.m.
20 min ago

10 h
last 5 months

2 days
2 days

couple of days
1988–1992

every Friday
every 4 h

every month
twice a year
thrice a day

Table 2. Portion of the list of approximations that might be associated with a temporal attribute.

Approximation

About Around
Almost Closely
Nearly Circa

Roughly Close
Approximately More or less

Nearly Roughly

Table 3. List of relations that indicate a temporal attribute.

Relations

[verb] + [at, on] + “time instance”
[verb] + [at, on] + [approximation] + “time instance”

[verb] + for + “time duration”
[verb] + for + [approximation] + “time duration”

[noun] + [verb] + “time duration”
[noun] + [verb] + [approximation] “time duration”

tt

tt

tt

 
 
 

tt

Figure 6. Example identification of temporal (blue) and approximation (orange) attributes.

2.9. Identification of Temporal Sequencing of Events

Another class of textual data elements that can often be retrieved from NPPs is found
in IRs covering multiple events linked by temporal relations. Temporal relations can be
either quantitative (e.g., an event that occurred two hours after another event) or qualitative
(e.g., an event that occurred prior to another event). Note that a temporal relation does not
necessarily imply a causal relation. In this paper, we build on the work in [47], which lists
the major temporal relations between events:

• Order: sequential occurrence of events
• Concurrency: (nearly) simultaneous occurrence of events from beginning to end
• Coincidence: temporal intersection of events.

Note that event duration is considered a temporal attribute (see Section 2.8). An
analysis of sentences containing temporal relations involves identifying specific keywords,
relations, and grammatical structures in each sentence—similarly to what was presented in
Section 2.8. In this respect, Tables 4 and 5 provide the set of keywords (i.e., verbs, adjectives,
and adverbs) that were identified for order, concurrence, and coincidence of events. A set of
grammatical structures that indicate the order and coincidence of events was also developed
(see Tables 6 and 7, respectively). The example provided in Figure 7 shows two identified
temporal attributes that indicate a temporal sequence and concurrency of events.
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Table 4. Example of keywords and structures that indicate the order of events.

Keywords
Structures

Verbs Adjectives Adverbs

Antedate
Follow

Postdate
Precede
Predate
Succeed

After
Before

Consecutive
Earlier

Following
Former
Later
Next
Past

Precedent
Previous

Afterward
Consecutively
Consequently

Directly
Hereafter

Later
Next

Previously
Subsequently
Successively

Then

Soon after
After that

After a while

Table 5. List of sample keywords that indicate the concurrence and coincidence of events.

Keywords
Structures

Verbs Adjectives Adverbs

Accompany
Conform

Correspond
Harmonize

Parallel

Accompanying
Attending
Coexistent

Concomitant
Concurrent
Imminent

Simultaneous
Synchronic

When
Thereupon

While
During

At that point
At that moment

At that time
At that instant

In the end
On that occasion

Table 6. List of relations that indicate the order of events.

Relations

Event_1 + [order verb] + Event_2
Event_1 + [verb] + [adverb] + Event_2

Event_1 + [verb] + [adjective] + Event_2

Table 7. List of relations that indicate the concurrence and coincidence of events.

Relations

Event_1 + [verb] + [adverb] + Event_2
Event_1 + [verb] + [adjective] + Event_2

 

Figure 7. Example analysis of sentences containing temporal entities (highlighted in purple) identified

from https://www.nrc.gov/docs/ML2320/ML23207A076.pdf (accessed on 4 February 2024).

https://www.nrc.gov/docs/ML2320/ML23207A076.pdf
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2.10. Identification of Measured Quantities

Next, we aimed to identify a precise observation (i.e., a measured point value or delta
estimate) of a measured variable. This observation required a numeric value followed by its
unit; however, it is not unusual for the unit to be missing. Note that, based on the observed
NPP ER textual data, measured quantities can be specified in a large variety of ways (see
Table 8 for examples), and not solely in the classic form “number + unit of measure”.

Table 8. Examples of quantitative observations.

one half
three halves

0.1
10%
3 cm

multiplied by 2
75–80%

4:1 ratio
5th percentile

within 5th and 95th percentile
the 3rd quartile

scored 6 on a 7 point scale
between three and four

This list was based on [48] and it was tested using openly available scientific literature.
We leverage quantulum3 and text syntactic relations listed in Table 9 to extract measured
quantities. The tool quantulum3 can identify all possible numerical, values either with
or without units, whereas syntactic information helps disambiguate the units from the
natural language.

Table 9. List of sentence relations for quantitative observation.

Relation

[neutral verb] + “quantity value” “quantity value” + [negative noun]
[neutral verb] + “quantity delta value” “quantity delta value” + [negative noun]

“quantity value” + [neutral noun] [positive verb] + “quantity value”
“quantity delta value” + [neutral noun] [positive verb] + “quantity delta value”

[negative verb] + “quantity value” “quantity value” + [positive noun]
[negative verb] + “quantity delta value” “quantity delta value” + [positive noun]

Figure 8 gives an example of identifying measured quantities. The textual elements
were taken from a few different NRC licensee event reports. The correctly identified
quantities are highlighted in blue, the rest are highlighted in red. As seen, the developed
method leads to issues regarding certain specific situations: namely, unknown units of
measures (e.g., Gy) and unit prefixes (e.g., milliRem instead of mRem). We are currently
working to address such limitations by making new improvements to quantulum3 and
implementing ad-hoc methods whenever these limiting situations are encountered.

ff

 

tt
Figure 8. Example of identifying measured quantities from text taken from https://www.nrc.gov/

reading-rm/doc-collections/event-status/event/2020/index.html (accessed on 4 February 2024).

https://www.nrc.gov/reading-rm/doc-collections/event-status/event/2020/index.html
https://www.nrc.gov/reading-rm/doc-collections/event-status/event/2020/index.html
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2.11. Identification of Location Attributes

As with temporal attributes, location attributes provide qualitative information, in this
case, information on where specific events have occurred. While location information does
not equip system engineers with any additional health information, it might give clues
about the health of a specific component whenever a reported event has occurred nearby
it. For example, the textual report “An oil puddle was found nearby pump MFW-1A”
identifies an element (i.e., oil) that may have a relation to a nearby pump (i.e., MFW-1A
pump). In the literature, this type of attribute search is not of interest; however, from a
safety/reliability standpoint, such information can be crucial for identifying the causes
behind abnormal behaviors observed throughout an NPP.

Location attributes are identified by looking at the specific keywords and relations
listed in Tables 10 and 11, respectively. Regarding the list of keywords listed in Table 10,
we relied on an initial set of keywords that was then expanded using WordNet (WordNet
is a lexical database originally created by Princeton University. It contains words, their
meanings (e.g., synsets), and their semantic relationships, all of which are stored in a
hierarchy-tree-like structure via linked synsets. Each synset denotes the precise meaning
of a particular word, and its relative location to other synsets can be used to calculate
the degree of similarity between them.) [49] synonym search capabilities. Figure 9 shows
an example of identifying location attributes. (The textual elements were taken from a
few NRC licensee event reports.) In this case, the identification of these attributes was
very robust.

 

tt tt
Figure 9. Example of identifying location attributes from text taken from https://www.nrc.gov/

reading-rm/doc-collections/index.html#event (accessed on 4 February 2024).

Table 10. Example keywords that indicate a location attribute.

Proximity Located Above Located Below

Across from
Adjacent

Alongside
Approaching

Beside
Close

Close by
Contiguous
Distant from
In proximity

Near
Nearby
Next to

Above
Anterior

Atop
Beyond

High
On top of

Over
Overhead
Upward

Below
Beneath
Bottom
Deep
Down

Down from
Downward

Low
Posterior

Under
Underneath

https://www.nrc.gov/reading-rm/doc-collections/index.html#event
https://www.nrc.gov/reading-rm/doc-collections/index.html#event
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Table 11. List of relations that indicate a location attribute.

Relations

[verb] + “location keyword” + noun
Subj + “location keyword” + obj

2.12. Identification of Nuclear Entities

NLP knowledge extraction methods require the ability to identify specific entities such
as common SSCs that can be found in any NPP. A library for light water reactors has been
developed in past years using available textual data form the NRC and EPRI. The entities
contained in this library (numbering about 5000 and growing) are arranged into eight main
classes and then subsequently divided into groups (mainly for data management purposes).
Table 12 lists the various classes and groups created so far, along with examples of entities
corresponding to each group.

Table 12. Class and groups of nuclear-related keywords.

Class Group Examples

Mechanical components

Fasteners Anchor bolt, cap screw, latch, pin
Rotary elements Cam, shaft, gear, pulley

Structural Beam, column, sleeve, socket
Purpose-specific Filter, manifold, blade

Non-mechanical components
Electrical/electronic Amplifier, relay, buzzer, capacitor

Hydraulic/Pneumatic Coupler, filter, pipe

Assets

Mechanical Engine, vessel
Electrical AC bus, alternator, generator, transformer

Hydraulic/Pneumatic Pump, valve, condenser, fan
Electronic Computer, tablet, controller

I&C Digital meter, FPGA, transmitter, sensor
Nuclear fuel Fuel rod, control blade

NPP elements
Systems Feedwater, switchyard, feedwater

Architectural Containment, control room, pump house

Tools and treatments
Tools Jigsaw, solder gun, tape, crane

Treatments Bolting, riveting, grinding, infrared testing

Operands
Electrical AC current, electromagnetic

Hydraulic/Pneumatic Compressed air, steam, gasoline, water

Compounds Materials Plastic, plywood, concrete, polyethylene

Reactions

Chemical reaction Combustion, oxidation, evaporation
Degradation mechanism Corrosion, dissolution, fatigue

Failure type Leak, rupture, brittle fracture

Using this list, the goal is now to identify these types of entities within a textual
data element. For the present work, we relied on SpaCy name entity recognition (NER)
functions [50] to perform such searches. Identified entities were flagged with a specific tag
ID and saved as part of the metadata associated with the textual data. Figure 7 provides
an example of the outcome of the developed nuclear entity NER methods, with several
elements, highlighted in blue, having been correctly identified.

2.13. Identification of Conjectures

In this step, we consider textual elements that contain information about future predic-
tions (e.g., an event that may occur in the future) or hypotheses regarding past events (e.g.,
a failure that may have occurred). Even if the reported event has not occurred (or may not
happen), this evaluation might be relevant for future diagnosis (identifying possible causes
from observed events) or prognosis (identifying consequences from observed phenomena)
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purposes. In this context, verb tense plays a role in identifying this kind of report. Future
predictions are characterized by present- and future-tense verbs, whereas hypotheses about
past events are typically characterized by past-tense verbs. Hence, we rely on the outcomes
of the methods presented in Sections 2.4 and 2.5 in order to perform such syntactic analyses.
Additionally, we developed an initial set of specific keywords (see Table 13) and relations
(see Table 14) that can inform our methods whenever we are dealing with a conjecture
observation. Once a conjecture is identified from a textual data element, a conjecture flag is
set to “True” as part of the metadata associated with the textual data.

Table 13. Examples of keywords that indicate a conjecture observation.

Keyword

Expected Hypothetical(ly) Anticipated
Possible Likely Foreseen
Probable Unlikely Impending
Feasible Potential Upcoming
Plausible Uncertain Brewing
Presumed Forthcoming Looming

Table 14. List of relations that indicate a conjecture observation.

Relation Example

Subj + “future verb” The pump will fail
Subj + “conjecture keyword” + “verb” The pump is likely to fail

Conditional + subj + “verb” + “conjecture
keyword” + “verb”

If the pump overheats, it is expected to fail

Subj + “past verb” + hypothesis The pump failed because it overheated

2.14. Identification of Health Status

So far, we have demonstrated the capability to identify quantitative health information
associated with an SSC when the textual report provides a precise observation (i.e., numeric
value) of a measured variable (see Section 2.10), its proximity location (see Section 2.11),
and its temporal attributes (see Section 2.8). Often, IRs reflect qualitative information on
abnormal observed events (e.g., failures, or precursors to a degradation phenomenon).
From a reliability standpoint, identifying the nature of the reported event plays a major
role, with the goal being to track the health performance of a single SSC or multiple SSCs
operating in similar operating conditions.

Based on the large number of IRs and WOs gathered from operating NPPs in the
United States, and using the methods presented in Sections 2.4 and 2.5, we collected and
extracted the underlying grammatical structures and converted them into relations (see
Table 15). Similarly, a list of keywords (nouns, verbs, adverbs, and adjectives) for indicating
the health status of a generic SSC is shown. These keywords have been partitioned into
three main classes (see Tables 16–18) based on sentiment analysis [51], and then expanded
using the WordNet [49] synonym search capabilities. Thus, identification of the health status
of the textual clause can be assessed by searching in the text for the developed lists of
relations and keywords.

Table 15. List of sentence relations for making qualitative observations.

Relation Example

Subj + “status verb” Pump was not functioning
Subj + “status verb” + “status adjective” Pump performance was acceptable

Subj + “status verb” + “status adverb” + obj Pump was partially working
“status adjective” + subj + “status verb” Unresponsive pump was observed
“status noun” + “prep” + “status verb” Deterioration of pump impeller was observed
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Table 16. Partial list of keywords that indicate negative information.

Nouns Verbs Adjectives Adverbs

Breakdown Disabled Unacceptable Inaccurately
Collapse Reject Improper Erroneously
Decline Stop Inadmissible Wrongly

Deficiency Block Undesirable Inadequately
Deterioration Halt Unsatisfactory Incompletely

Failing Oppose Unacceptable Partially
Decay Inhibit Unsuitable Imperfectly

Table 17. Partial list of keywords that indicate positive information.

Nouns Verbs Adjectives Adverbs

Accomplishment
Achievement
Enhancement
Progression

Solution

Enable
Empower
Facilitate

Permit
Set up
Endow

Let
Make

Ready
Fit

Capable
Apt

Available
Adequate

Competent
Proficient

Accurately
Nicely

Perfectly
Precisely
Properly
Rightly

Accurately
Appropriately

Table 18. Partial list of keywords that indicate neutral information.

Nouns Verbs Adjectives

Analysis
Assessment
Diagnosis
Evaluation
Exploration

Investigation
Probe

Inspect
Monitor
Measure
Witness
Examine

Note
Recognize

View
Watch

Acceptable
Usable

Attainable
Consistent
Constant

Stable
Unaffected

Uninterrupted
Untouched

2.15. Identification of Cause–Effect Relations

An occasional pattern in textual ER data is the reporting of multiple events as well as
the causal relationship among them. In this regard, the simplest type of paragraph found in
textual ER data will refer to an event (i.e., the cause) that triggered a second event (i.e., the
effect). However, variations in such paragraphs do exist (see Figure 10): multiple causes
can trigger a single effect, or a single cause can trigger multiple effects.

 

  

ff ff
ff ff

ff

 

 

ff

 

ff

ff

ff ff

ff

Figure 10. Graphical representation of elemental cause–effect structures: direct cause–effect associa-

tion (left), multiple causes and single effect association (center), multiple effects and single cause

association (right).

Here, we did not employ ML algorithms (e.g., through the utilization of classification
methods [52]), but instead once again relied on rule-based [53] methods, since our goal
was to extract quantitative information from textual data rather than “classify” the nature
of the raw text. In other terms, rather than just classifying the textual data element as to
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whether it does or does not contain a causal statement, we aim to identify which element is
the cause and which is the effect. Similarly to what was described in Section 2.14, these
rules are based on the identification of the following:

• Keywords (e.g., nouns, verbs, and adverbs) that reflect that the sentence may con-
tain a causal relation between its subject(s) and object(s) (see Table 19). We success-
fully expanded out the initial set of keywords by using the WordNet [49] synonym
search capabilities.

• Relations between subjects and verbs contained in a sentence that are designed to recon-
struct the causal relations (see Table 20). The list of these relations was developed by ap-
plying the methods described in Sections 2.4 and 2.5 to a portion of the CausalBank [54]
dataset, which contains about 314 million pairs of cause–effect statements.

• NLP relations composed of multiple words that indicate a casual transition between
clauses contained in a sentence or between sentences (see Table 21).

Table 19. Partial list of keywords that indicate a cause–effect paragraph.

Nouns Verbs Adverbs

Augment
Backfire

Begin
Bring about

Build-up
Cause

Change
Combat

Compensate
Counter
Create

Deactivate
Decelerate
Decrease

Augment
Backfire

Begin
Bring about

Build-up
Cause

Change
Combat

Compensate
Counter
Create

Deactivate
Decelerate
Decrease

Afterwards
Consequently

Eventually
Finally
Hence

So
Subsequently

Then
Therefore

Thus
Ultimately

Table 20. List of relations that indicate a cause–effect paragraph.

Relations DAG

Event_A + “causal verb” (active) + Event_B A → B
Event_A + “causal verb” (passive) + Event_B B → A
Event_A + [to be] a “causal noun” + Event_B A → B
Event_A + [to be] a “effect noun” + Event_B B → A

The “causal noun” of + Event_A + [to be] + Event_B B → A
The “effect noun” of + Event_A + [to be] + Event_B A → B

Clause_A; + “cause/effect structure” + Clause_B A → B or B → A
“Cause/effect structure” + Clause_A; + Clause_B A → B or B → A
Clause_A. “Cause/effect structure” + Clause_B A → B or B → A
Event_A + (verb, “causal adverb”) + Event_B A → B

Table 21. List of structures that indicate a cause–effect paragraphs.

Structures

In response to
Attributed to
As a result of

For this reason
In consequence

In this way
In such a way
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We applied the developed cause–effect identification methods to the publicly available
NRC LER 2021-001-00, “Atmospheric Steam Dump Valves Inoperable Due to Relay Failure”.
In this context, Figure 11 presents a subset of three cause–effect relations that were identified.
In particular, for each of the three identified relations, the figure shows the original text
and details about the relation, per the following format: “(cause, status), cause-effect keyword,
(effect, status)”.

ff








 
 
 



ff

 

ff

ff
ff

ff tt

Investigation revealed that the steam dump control relay had failed, rendering all four atmospheric 
steam dump valves inoperable.

(investigation, ) revealed (steam dump control relay, failed)
(investigation, ) rendering (atmospheric steam dump valves, inoperable)

(steam dump control relay, failed) rendering (atmospheric steam dump valves, inoperable)

The opening of the fuse resulted in loss of power to the im13 scheme, which disabled the 
automatic fast-open function, as well as the manual operation, of the asdvs.

(fuse, the opening) resulted in (im13 scheme, loss of power)

The cause of the sdcr coil failure is overheating due to the age of the relay coil being beyond the 
vendor recommended life for a normally energized relay.

(relay coil, the age) the cause (sdcr coil, the failure)
(relay, a normally energized) the cause (sdcr coil, the failure)

Figure 11. Example of identifying cause–effect relations (source: NRC LER 2021-001-00, “Atmospheric

Steam Dump Valves Inoperable Due to Relay Failure”).

An initial testing of the capabilities of the developed methods was performed on
an openly available dataset generated within SemEval. In particular, we considered the
SemVal2010_task8 dataset [55] built to test the performance of NLP methods regarding the
discovery of causal relations. The performances were measured in terms of precision (as the
ration between true positives over the sum of true positives and false positives) and recall
(as the ration between true positives over the sum of true positives and false negatives).
The obtained values for precision and recall were estimated as 68% and 88%, respectively.
The performances were measured by looking at the subset of sentences in the dataset that
were originally labeled as “cause-effect”. Through a careful investigation, our methods
were labeling as “cause-effect” some sentences originally labeled as “Product-Producer”.
In some of these cases those sentences were actually containing a cause–effect relation that
we wanted to identify. Thus, the actual performances could be better.

2.16. Identification of Text Similarity

Word, sentence, and document similarity analyses are part of NLP, and play a crucial
role in text analytics (e.g., text summarization and representation, text categorization, and
knowledge discovery). A wide variety of methodologies have been proposed during the
last two decades [56,57], and can mostly be classified into five groups: (1) lexical knowledge
base approaches, (2) statistical corpus approaches (word co-occurrence), (3) ML and deep
learning approaches, (4) sentence-structure-based approaches, and (5) hybrid approaches.
However, a few common major drawbacks stem from these approaches: computational
inefficiency, a lack of automation, and a lack of adaptability and flexibility.

In the present work, we attempted to address these drawbacks by developing a tool
that is generally usable in applications requiring similarity analysis. As shown in Figure 12,
we leverage POS, disambiguation, lexical database, domain corpus, word embedding
and vector similarity, sentence word order, and sentence semantic analysis to calculate
sentence similarity. POS is used to parse a sentence and tag each word and token with a
POS tag and a syntactic dependency (DEP) tag. Such data will provide syntactic structure
information (i.e., negation, conjecture, and syntactic dependency) about the sentence, and
this information can be used to guide the similarity measuring process.
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Figure 12. Illustration of the sentence similarity calculation.

Disambiguation is employed to determine the best sense of the word, especially when
coupled with specific domain corpus. It ensures the right meaning of the words (e.g., the
right synsets of the words in a lexical database) within the sentence is captured. A prede-
fined word hierarchy from a lexical database (i.e., WordNet) is then used to calculate the
degree of word similarity. However, some words are not contained in the lexical database,
as it only connects four POS types: nouns, verbs, adjectives, and adverbs. Moreover, these
words are grouped separately and do not feature any interconnections. For instance, nouns
and verbs are not interlinked (i.e., the similarity score between “calibration” and “calibrate”
is 0.091 when using WordNet). In this case, ML-based word embedding is introduced to
enhance the similarity calculation. Regarding the previous example, the similarity score
then becomes 0.715. The next step is to compute sentence similarity by leveraging both sen-
tence semantic information and syntactic structure. The semantic vectors are constructed
using the previously introduced word similarity approach, whereas syntactic similarity is
measured based on word order similarity. The following sections further describe each of
the steps in more detail.

As mentioned in Sections 2.4 and 2.5, POS data provide information on word types
and morphological features, and dependency parsing provides information on the syn-
tactic dependency between words. Both POS and dependency parsing can help identify
important information such as NOUN, VERB, ADJ, ADV, negation, conjecture, subject, and
object, and this information is then used to compute the sentence syntactic similarity.

Lexical databases such as WordNet consider semantic connections between words,
and this can be utilized to determine their semantic similarity. As summarized by [58],
many different methods can be employed to compute word similarity using WordNet,
and sometimes these methods are combined to enhance the similarity calculation. In this
work, we employ the method proposed by [59,60] to compute the similarity score between
two words/synsets, here indicated as w1 and w2, as presented in Equation (1):

Sw(w1, w2) = flength(l) · gdepth(d) = e−αl ·
eβd − e−βd

eβd + e−βd
(1)

with flength(l) = e−αl gdepth(d) =
eβd − e−βd

eβd + e−βd
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where the following apply:

• l indicates the path length between w1 and w2.
• d indicates the path depth between w1 and w2.
• flength(l) and gdepth(d) are functions which decompose the contribution to Sw respec-

tively for path length and depth between w1 and w2.
• α ∈ [0, 1], β ∈ (0, 1] are scaling parameters for the contribution of the path length and

depth, respectively.

The optimal values of α and β are dependent on the knowledge base used, and can
be determined using a set of word pairs with human similarity ratings. For WordNet, the
optimal parameters for the proposed measure are α = 0.2 and β = 0.45, as reported in [60].

This method combines the shortest path distance between synsets and the depth of
their subsumer (e.g., the relative root node of the compared synsets) in the hierarchy. In
other words, the similarity score is higher when the synsets are close to each other in the
hierarchy, or when their subsumer is located at the lower layer of the hierarchy. This is
because the lower layer contains more specific features and semantic information than does
the upper layer.

The “sense” of a given word represents its precise meaning under a specific context.
Disambiguation is the process used to identify which sense of the word is best in the context
of a particular statement. Without proper disambiguation, errors may be introduced at
the early stage of the similarity calculation when using lexical databases. For example,
in WordNet, synsets denote the senses of the word, and are linked to each other via their
explicit semantic relationships. When different synsets are used to calculate word pair
similarity, their semantic relationship can be drastically different, potentially having a
significant effect on the similarity score. In the present work, we tried to disambiguate the
word sense by considering the context of the word. One way to do this is to account for
the surrounding words, since they can provide contextual information. However, this may
not work for simple or short sentences. In such cases, the domain-specific corpus can be
leveraged to disambiguate the word. Once the best senses are identified for the words, the
word similarity measure can be employed.

As proposed in [58], sentence similarity encompasses both semantic and syntactic
similarity. Semantic similarity is captured via word semantic similarity, as discussed
in previous sections, whereas syntactic similarity is measured by word order similarity.
Word order similarity affords a way to assess sentence similarity in consideration of word
order. As is well described in [58], the constructed semantic vectors and word order
vectors can be used to compute sentence similarity. Here, we will briefly introduce the
methods of constructing these vectors, and recommend that the reader refer to [58] for
additional details.

Given two sentences, T1 and T2, a joint word set is formed (e.g., T = T1 ∪ T2) that
incorporates all of the distinct words from T1 and T2. The vectors derived from computing
word similarities in (T, T1) and (T, T2) are called the semantic vectors, and are denoted by
s1 and s2, respectively. Each entry of the semantic vectors corresponds to the maximum
similarity score between a word in T and a word in T1 or T2, such that the dimension equals
the number of words in the joint word set. The semantic similarity between two sentences
is defined as the cosine coefficient between two vectors:

Ss =
s1 · s2

∥s1∥∥s2∥
(2)

As proposed in [58], the word order similarity of two sentences is defined as follows:

Sr = 1 −
∥r1 − r2∥

∥r1 + r2∥
(3)

where the word order vectors r1 and r2 are formed from (T, T1) and (T, T2), respectively.
For example, for each word wi in T, the r1 vector with the same length of T1 is formed as
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follows: if the same word is present in T1, the word index in T1 is used as the value for r1.
Otherwise, the index of the most similar word in T1 will be used in r1. A preset threshold
(i.e., 0.4) can also be used to remove spurious word similarities. In this case, the entry of wi

in r1 is 0.
Both semantic and syntactic information (in terms of word order)Both semantic and

syntactic information (in terms of word order) play a role in measuring sentence similarity.
Thus, the overall sentence similarity is defined in [58] as follows:

S(T1, T2) = δSs + (1 − δ)Sr (4)

where δ ∈ (0, 1] represents the relative contribution of semantic information to the overall
similarity computation.

3. Applications of NLP Knowledge Extraction Methods

In current U.S. nuclear power plants, IRs and WOs are typically generated in digital
form using pre-defined formats and they are stored in databases along with all of the
information about plant operations (e.g., surveillance and maintenance). Such databases
can be filtered depending on the type of analyses to be performed and locally downloaded
in standard formats (typically in a comma separated value format). In our case, plant IRs
and WOs are retrieved from plant databases as comma separated value format data files
and then they are converted into a Pandas DataFrame. Each NLP function described in
Section 2 has been coded as a stand-alone method that acts on a set of sentences which are
stored as a Pandas DataFrame. Each method is designed to sequentially parse all sentences
and either flag text elements (e.g., nuclear-related keyword) or populate a new column of
the database (e.g., an assessment of conjecture or causal relation between events). Thus,
depending on the desired application, the user can create workflows which consist of a set
of methods described in Section 2 that operates sequentially on the same Pandas DataFrame.
Note this modus operandi can be applied directly once a new IR or WO has been generated
(i.e., online mode). Sections 3.1 and 3.2 provide details about the application of the methods
described in Section 2 in two different operational scenarios. The first one focuses directly
on NER and knowledge extraction from textual data to identify anomalous behaviors while
the second one is designed to support the planning of NPP outage.

3.1. Analysis of NPP ER Data

The examples provided here are designed to demonstrate how the methods described
in Section 2 can be used to process NPP IRs. In general, such text preprocessing is manual
and potentially very time-consuming. In these examples, we have collected a list of typical
IR descriptions (see Table 22) to test the effectiveness of such methods.

Table 22 shows the first example, with the extracted SSC entities and their health status
highlighted in blue and yellow, respectively. For a better illustration of the extracted data,
Table 23 presents the pair of extracted SSC entities and their health statuses. Note that there
are two misidentifications highlighted in green. The first, (pump, test), is easily resolved if
we also include the health status keyword “failed” (highlighted in red) in the health status,
as marked in Table 22. Two health status options exist for the second misidentification:
“found in proximity of rcp” and “oil puddle”. To determine the correct health status for
“pump”, we employed word/phrase/sentence similarity (see Section 2.16) in order to
compute the similarity scores between the SSCs and their potential health statuses. The one
with the highest similarity score is selected as the identified health status. In this case, the
similarity score between “puddle” and “pump” is 0.25, whereas that between “proximity”
and “pump” is 0.027. Thus, “puddle”—with the additional information “oil”—is selected
as the final health status for “pump”.
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Table 22. Example of information extraction. The following are identified in the text: nuclear

entities (highlighted in blue), health status (highlighted in yellow), keywords indicating health status

(highlighted in red).

A leak was noticed from the RCP pump 1A. RCP pump 1A pressure gauge was found not operating . RCP pump 1A pressure gauge was found

inoperative . RCP pump 1A had signs of past leakage . The Pump is not experiencing enough flow during test . Slight Vibrations is noticed — likely

from pump shaft deflection . Pump flow meter was not responding . Rupture of pump bearings caused pump shaft degradation . Rupture of

pump bearings caused pump shaft degradation and consequent flow reduction. Power supply has been found burnout . Pump test failed due to

power supply failure . Pump inspection revealed excessive impeller degradation . Pump inspection revealed excessive impeller degradation

likely due to cavitation. Oil puddle was found in proximity of RCP pump 1A. Anomalous vibrations were observed for RCP pump 1A. Several cracks on

pump shaft were observed; they could have caused pump failure within few days. RCP pump 1A was cavitating and vibrating to some degree during test.

This is most likely due to low flow conditions rather than mechanical issues. Cavitation was noticed but did not seem severe. The pump shaft vibration appears to be

causing the motor to vibrate as well. Pump had noise of cavitation which became faint after OPS bled off the air . Low flow conditions most likely causing

cavitation. The pump shaft deflection is causing the safety cage to rattle. The Pump is not experiencing enough flow for the pumps to keep the check valves

open during test. Pump shaft made noise . Vibration seems like it is coming from the pump shaft . Visible pump shaft deflection .

Pump bearings appear in acceptable condition . Pump made noises — not enough to affect performance. Pump shaft has a slight deflection .

Table 23. Extracted SSC entities and their health status from the text provided in Table 22. Misidenti-

fications are highlighted in green.

SSC Entities Status/Health Status SSC Entities Status/Health Status

Pump A leak from rcp Impeller Excessive degradation

Pump Not gauge operating Pump Found in proximity of rcp (Oil puddle)

Pump Gauge inoperative Pump Anomalous vibrations for 1a

Pump 1a signs of past leakage Pump shaft Several cracks

Pump Not enough flow during test Pump Failure

Pump shaft Deflection Pump cavitating

Pump Not meter responding Pump shaft Vibration

Pump bearings Rupture Motor Vibrate

Pump shaft Degradation Pump Noise of cavitation . . .

Pump bearings Rupture Pump shaft Deflection

Pump shaft Degradation Pump Not enough flow for the pumps

Power supply Burnout Pump shaft Noise

Pump Test Pump shaft Vibration

Pump supply Failure Pump shaft Deflection

Pump Inspection Pump bearings Acceptable condition

Impeller Excessive degradation Pump Noises

Pump Inspection Pump shaft A slight deflection

In the second example, the extracted cause–effect relations between SSCs in regard to
the text given in Table 22 are presented in Table 24. We employed a set of rule templates
based on specific trigger words and relations (see Section 2.15). Once the SSCs entities and
their health status were identified, we could apply these rules to identify the cause–effect re-
lations. One cause–effect relation remained uncaptured, as “safety cage” was not originally
listed as the identified SSC entity.
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Table 24. Causal relations identified (nuclear keywords are highlighted in blue while health status

are highlighted in yellow).

Text after Rule-Based NER Identified Cause–Effect Relations

Rupture of pump bearings caused

pump shaft degradation .
(pump bearings: Rupture) “caused” (pump shaft: degradation)

Rupture of pump bearings caused

pump shaft degradation and consequent flow reduction.
(pump bearings: Rupture) “caused” (pump shaft: degradation)

Pump test failed due to power supply failure . (Pump: test failed) “due to” (power supply: failure)

Pump inspection revealed excessive

impeller degradation .
(Pump: inspection) “revealed” (impeller: degradation)

Pump inspection revealed excessive

impeller degradation likely due to cavitation.
(Pump: inspection) “revealed” (impeller: degradation)

Several cracks on pump shaft were observed; they could

have caused pump failure within few days.
(pump shaft: Several cracks) “caused” (pump: failure)

The pump shaft deflection is causing the safety cage to rattle. None

The third example focuses on coreference identification. This process is intended to
find expressions that refer to the same entity in the text—something that is of particular
relevance in light of a lengthy piece of text that refers to an entity by using a pronoun rather
than its proper name. Using our methods, the coreferences in the text presented in Table 22
can be identified, as shown in Table 25.

Table 25. Example of coreference identification.

Coreference Examples Identified Coreference

Several cracks on pump shaft were observed; they could
have caused pump failure within few days.

(Several cracks, they)

Vibration seems like it is coming from the pump shaft. (Vibration, it)

Conjecture means that the information provided by the sentence pertains to a future
prediction (e.g., an event that may occur in the future) or a hypothesis about past events
(e.g., a failure that may have occurred). In this context, verb tense plays a role in identifying
these kinds of attributes. Future predictions are characterized by both present- and future-
tense verbs; hypotheses about past events are typically characterized by past-tense verbs.
Based on the text provided in Table 22, the sentences containing conjecture information
were correctly identified and are listed in Table 26.

Table 26. Identified conjecture sentences.

Pump Inspection Revealed Excessive Impeller Degradation Likely Due to Cavitation.

Several cracks on pump shaft were observed; they could have caused pump failure within few days.

Vibration seems like it is coming from the pump shaft.

3.2. Analysis of Plant Outage Data

Refueling outages are among the most challenging phases in an NPP’s operating cycle.
NPP outages require the scheduling of thousands of activities within an average of 30 days.
During the outage planning phase, the outage schedule is determined via optimization
tools, given the estimated time to perform each activity. Such temporal estimation is
performed manually based on past operational experience.

The goal here is to perform the same task—but by applying the text similarity methods
described in Section 2.16 to past outage data regarding activities performed during past



Energies 2024, 17, 1785 21 of 25

outages and the actual completion time for each activity. In other words, we aim to identify
a subset of activities performed in previous outages that are similar to the activity being
queried. The temporal distribution of the completion time associated with the queried
activity can then be determined by collecting the historical completion time from the
selected subset of (similar) past activities.

We now give an example of temporal distribution estimation—presented here for
the queried activity “valve re-packing”—using a dataset provided by an existing U.S.
NPP. The dataset contains activities performed over the course of five different outages.
Data cleaning was performed for each of these activities. Once the historical plant outage
data were cleaned via the methods presented in Sections 2.1–2.3, the similarity value
between the queried activity and each historical activity was determined using the methods
presented in Section 2.8. This resulted in an array of similarity values having dimensionality
identical to the number of historical activities and the corresponding array (with identical
dimensionality) containing the activity durations (see Figure 13). Note that the temporal
values were intentionally perturbed to disguise proprietary data.

ttFigure 13. Scatter plot of all past outage activities in terms of actual duration and similarity values.

Activities similar to the queried one (i.e., “valve re-packing”) are highlighted in the red box.

The temporal distribution of the queried activity was determined by considering
both the similarity and duration arrays. More precisely, we selected activities such that
the similarity measure exceeded a specified threshold (typically in the 0.7–0.9 range). Of
particular note here is that if a queried activity was never completed in past outages, no
similar past activities will be found. This approach does not in fact perform any type
of regression. The output consists of a histogram representing the duration variance
to complete the queried activity upon being provided past outage data (see Figure 14).
Given these results, the analysis now carries the potential to statistically analyze the
actual duration of similar activities in order to identify possible outliers obtained from the
similarity search, track the historical trend in activity completion time, and evaluate the
impact of employed human resources on completion time.
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Figure 14. Example similarity search results: a histogram representing the duration variance to

complete the queried activity by selecting the activities highlighted in red in Figure 13.

4. Conclusions

This paper presented an overview of a computational tool designed to extract informa-
tion from ER textual data generated by NPPs. This tool consists of several methods aimed
at parsing sentences in search-specific text entities (e.g., measured quantities, temporal
dates, and SSC). The semantic analysis tools are designed to then capture the semantic
meaning of the event(s) described in the provided texts, including health information,
cause–effect relations, or temporal sequences of events. Of importance here is the set of
preprocessing tools devised to clear textual elements from acronyms, abbreviations, and
grammatical errors. Such cleaning methods are essential for improving the performance of
the knowledge extraction methods.

We presented a few applications of the methodology that extended beyond the analysis
of NPP IRs and WOs. In these applications, despite the ER textual elements being short
by nature, our tools successfully extracted the semantic meaning and identified the vast
majority of the specified entities. We also indicated how our sentence similarity measures
can be used to parse past outage databases in order to inform plant outage managers of
the historical durations required to complete specific activities. Analyses of NRC reports
provided a few good examples of how our methods can capture the cause–effect or temporal
relations among different events.

The capabilities of the developed tools are unique in the nuclear arena, and are based
on the parallel development that is taking place in the medical field. As a matter of fact, we
relied on a few libraries initially developed to conduct knowledge extraction from medical
textual data elements (e.g., patients’ medical reports and doctor diagnoses). Extending
such methods to a different field, namely, nuclear energy, required the development of
additional methods and libraries to fit the new use cases.
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