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EXECUTIVE SUMMARY 
Recent changes in the U.S. energy market, such as low natural gas prices and increased electricity 

production for variable renewable energy (VRE) sources, have led to financial challenges for existing 
light-water reactor (LWR) nuclear power plants (NPPs). Many owners and operators of LWRs have 
elected to decommission these plants rather than continue using them as consistent sources of clean 
baseload power. This has led to the exploration of various possibilities for increasing the economic 
viability of these units, including market restructuring to monetize the benefits that LWRs already provide 
to the grid through ancillary markets, load following and economic dispatch, and possible integration of 
secondary systems directly with the NPP in order to generate additional products through technologies 
such as hydrogen electrolysis or water desalination. Previous studies have considered the technologies 
associated with these Integrated Energy Systems (IES) activities, as well as market analyses for these 
secondary products. 

To analyze the economic viability of various system configurations such IES, particularly given the 
uncertainty surrounding load demand, electricity prices, and the availability of VRE resources, the 
stochastic technoeconomic analysis package Heuristic Energy Resource Optimization Network (HERON) 
was released earlier this year as an extension of the risk analysis framework Risk Analysis Virtual 
Environment (RAVEN). HERON mostly focuses on making complex tools for uncertainty quantification 
analysis approachable for energy systems analysts, while also providing general dispatch optimization 
algorithms for those workflows. HERON continues to be improved upon and tested as a significant part 
of the IES viability analyses performed in this work. 

HERON, currently has no capacity expansion capabilities. To consider market and grid energy system 
development in a variety of scenarios, HERON is best used when coupled with modeling tools such as 
US-REGEN that sacrifice some of the uncertainty analysis and resolution of HERON’s modeling for the 
ability to efficiently predict changes in the grid energy system’s profile as the result of economic drivers 
over decades. HERON can then use this information to explore the economic viability of introducing 
changes to the predicted outcomes, such as the introduction of an IES. In this work, experts at the Energy 
Power Research Institute (EPRI) used US-REGEN to provide six projection scenarios for use in HERON 
stochastic technoeconomic analysis (STEA) to consider the options available for increasing LWR 
economic viability by introducing a hydrogen-centric IES featuring a high-temperature steam electrolysis 
plant (HTSE), hydrogen storage, and a constant-rate contracted hydrogen consumer. The results obtained 
are differential in nature; they do not report expected profits for any configuration, but rather the possible 
increase in the NPV of a configuration with respect to a baseline no-IES configuration. Due to the 
uncertainty captured in the variable net load of the systems, there is likewise uncertainty in the mean 
values reported. We consider this viability both in terms of a regulated market, in which the energy 
producers and IES are owned and operated by a single entity, as well as a deregulated market, in which 
the IES chooses its bid for electricity generation and is then dispatched by the grid system operator. 

The main goal of this report is to test the capability of HERON to coherently model economic 
performances of flexible nuclear power utilization in both regulated and deregulated markets. Making 
actual and specific predictions of the market evolution is outside the scope of this report. Instead, the 
report focuses on testing the tool and proving its capability to perform such analysis. Given the market 
structure represented and the assumptions used, the HERON model results were explainable and coherent 
with expectations. Results indicate that, for deregulated markets, inclusion of the IES is often statistically 
beneficial. This is especially true in regard to policies unfavorable towards nuclear, as nuclear is less often 
dispatched and must deal with frequent idle capacity. In the nominal case as well as in the case of carbon 
tax policies, inclusion of the IES clearly benefited the economic performance of the NPP. In the regulated 
case, however, there was a trend towards minimizing the IES, likely due to US-REGEN’s optimal sizing 
of the NPP within the system, as well as the lack of penalties for idle NPP capacity in the regulated 
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market analyses. While these conclusions are not general, they are coherent with the assumptions made 
and therefore substantiate the proper development of the HERON software. 
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1. INTRODUCTION 
For decades in electricity markets around the world, nuclear power generation has been a competitive 

resource for baseload power generation. In recent years, historically low costs for natural gas energy 
production have challenged economic energy generation from nuclear power. Furthermore, many areas of 
the U.S. are expanding their variable renewable energy (VRE) portfolios, such as through solar 
photovoltaic (PV) and wind generation. These VRE sources are not available on demand; rather, they 
align with uncertain, time-dependent weather phenomena such as global horizontal irradiance and local 
wind speeds. This stretches the net load duration curves, requiring less baseload generation and more on-
demand peak-following generation. Such developments have put pressure on nuclear power plants (NPPs) 
to find more flexible approaches to energy generation in order to increase economic viability. 

One potential solution is to operate NPPs flexibly, ramping up power production during times of low 
VRE production and ramping down at others. This method has been successful in some parts of the world 
[25] but has not been demonstrated to always offer significant benefits to NPP operators in the U.S. [3], 
due to operation strategies such as fixed refueling contracts and existing license limitations. However, it is 
possible for NPPs to participate in expanding ancillary markets, depending on their region and 
characteristics. 

Another potential solution is to closely couple the NPPs to secondary systems such as hydrogen 
production or water desalination [26]. This would allow the NPP to produce a different product (e.g., 
hydrogen or water) for most of the time while being available to the electric grid in moment of high 
electricity demand. Introducing storage for the secondary product allows for some flexibility in NPP 
operations while also ensuring consistent product availability for secondary markets. 

In this work, we perform Stochastic TechnoEconomic Analyses (STEA) of potential Integrated 
Energy Systems (IES) in existing energy markets, using state-of-the-art software tools to determine 
whether the economic viability of NPPs is likely to increase by being included in IES—both from an 
Independent System Operators (ISO) and Regional Transmission Organizations (RTO) perspective in a 
regulated market sense, as well as from an independent NPP operator perspective in a deregulated market 
sense. We do this by first establishing several baseline capacity expansion possibilities under a variety of 
possible assumptions and policies, without including IES. We then consider the impact of introducing IES 
into this system, comparing the change in economic outlook. 

1.1 Simulation Tools Review and Design Overview  
To perform this analysis, two distinct modeling steps are required. First, capacity expansion analysis 

without including IES provides a baseline representation of the expected energy system evolution over a 
multi-decade project life. This requires a macro-level model capable of comprehending the potential 
driving policies and assumptions that could lead to capacity expansion phenomena in an energy market 
For this analysis, capacity expansion modeling was performed by experts at the Energy Power Research 
Institute (EPRI), using the U.S. Regional Economy, Greenhouse Gas, and Energy Model (US-REGEN). 
With the capability to enable and adjust a wide variety of energy policies and economic development 
outlooks, US-REGEN is a powerful resource for considering many possible outcomes stemming from a 
particular germination scenario. 

In the second modeling step, the baseline scenarios produced by the macro model are used as 
boundary conditions for a set of STEA that includes IES. The optimal sizing of the components in the IES 
is explored for a wide variety of potential scenarios based on uncertainties in load and weather data. 
These uncertainties require a more detailed analysis than deterministic problems since there is an intrinsic 
uncertainty associated with stochastic input data. The STEA in this work is performed using the Risk 
Analysis Virtual Environment (RAVEN) framework plugin Holistic Energy Resource Optimization 
Network (HERON). HERON leverages RAVEN’s synthetic history production algorithms to train models 
for producing unique synthetic scenarios, each sharing statistical similarity but having numerical 
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uniqueness. This allows uncertainty to be introduced in the economic metrics for any given energy mix 
and propagated through the optimization of IES capacities. 

1.2 Report Purpose and Organization 
The objective of this report is to demonstrate real-market application of the STEA using HERON 

software in conjunction with the EPRI capacity expansion analysis software US-REGEN for performing 
an economic assessment of Flexible Plant Operations and Generation (FPOG) dispatch in regulated and 
deregulated markets. We demonstrate this by considering the potential economic benefits of introducing 
IES into an existing energy market to enable flexible operation of NPPs in the system. Notably, we do 
this in the presence of electricity market feedback; that is, we do not make the simplifying assumption 
that IES power usage is negligible relative to the electricity market. Without this assumption, IES are not 
free to dispatch based only on electricity and hydrogen prices [2] and instead must interact with the 
ISO/RTO through production bids in the deregulated market cases. 

The remainder of this report is organized as follows. In Section 2, we discuss the capacity expansion 
modeling projections performed by EPRI using US-REGEN, including the various policy options and the 
outlooks produced. In Section 3, we discuss the markets worthy of consideration for NPPs in the U.S., 
including both electricity and ancillary markets in the electricity sector. In Section 4, we consider the 
possible hydrogen market for IES that include NPPs as well as loosely coupled hydrogen production via 
high-temperature steam electrolysis (HTSE). In Section 5, we discuss capacity and dispatch optimizations 
performed by HERON, along with improvements to that software as a result of this work. In Section 6, 
we discuss the specific analysis cases targeted by this work, including the technologies, geographical 
location, system compositions, and system definitions. In Sections 7 and 8, we discuss the results of both 
the capacity optimization and dispatch optimization for the regulated and deregulated markets, 
respectively. Finally, in Section 9, we summarize the conclusions drawn from this work and speculate on 
future opportunities presented as a result. 
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2. CAPACITY EXPANSION MODELING IN US-REGEN  
US-REGEN is a deterministic capacity expansion model that allows users to adjust cost, policy, and 
technology inputs to explore their effects on capacity, generation, and system cost throughout the 
modeling time horizon. For this analysis, scenarios were developed to cover a wide range of potential 
decarbonization schemes. Marginal cost dispatch order, also referred to as a “dispatch stack,” and 
generator capacity outputs from US-REGEN were used as inputs for the main HERON IES dispatch 
analysis. The EPRI team developed scenarios and performed US-REGEN runs. 

The US-REGEN model is a capacity expansion model representing the U.S. electric sector in national-
level to state-level detail. The model finds the economically optimal electricity portfolio for meeting 
electricity system constraints such as serving load, reliability, and policy measures. US-REGEN makes 
decisions about building, upgrading, or retiring electricity generation units. The Integrated Electric & 
End-Use model also adjusts load in response to possible investments in electrification in several sectors of 
the US economy, including light duty vehicles and HVAC. US-REGEN model characteristics are given in 
Table 1. 

 

Table 1. General characteristics of the US-REGEN dynamic model [9]. 
 

Integrated Electric & End-Use 

Optimization Horizon Multi-decadal (35 years) 

Temporal Granularity ~100 segments per year 

Capacity Mix Model driven (Endogenous) 

Existing Unit 
Aggregation 

100+ capacity blocks per region (dispatched together) 

Geographical Detail User-specified regions, up to state-level 

Dispatch Constraints Load balancing 

Optimization Type Linear program 

Sectors Electric 

Energy Demand Model driven (Endogenous), detailed end-use model 
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Fuel Prices User defined (Exogenous), may use supply curves for some inputs 

 

During capacity expansion runs, US-REGEN gives optimal capacity portfolios each year for of the 
specified time horizon. Each year is represented by ~100 segmented time slices. These time slices 
represent different representative periods in the year, such as several hours in shoulder seasons or peak 
demand in the summer. Running with time slices—as opposed to an hourly or sub-hourly time set—
significantly improves the run time. These time periods are chosen to explore the full range of variability 
in load in renewable availability. 

The US-REGEN model is split into 16 regions, with options for using states as regions in order to achieve 
further spatial resolution. Each region’s load is balanced by the optimizer. US-REGEN does account for 
inter-regional transmission, but regions are constrained by the net transfer capacities set in the model. 
Figure 1 shows the standard US-REGEN regions. 

 

 
Figure 1. US-REGEN regions for capacity expansion problems [9]. 

 

This modeling work uses the US-REGEN optimized capacity and marginal dispatch stack from Illinois. 
More details about standard, specific US-REGEN inputs and assumptions can be found in [9]. 

 

2.1 Scenarios and Assumptions  
The goal of this suite of scenarios was to cover several decarbonization possibilities. This included 
changes in nuclear cost, the inclusion of renewable portfolio standards (RPS), and the addition of a carbon 
tax. It is important to note that these scenarios are forecasts, meaning they represent future electric system 
possibilities for these inputs, not firm projections of what will happen in the future. 
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Each scenario has a nuclear cost, renewable cost, and policy assumption. Table 2 shows the matrix of the 
US-REGEN model runs. In total, six individual scenarios were run. Sections 2.1.1 and 2.1.2 detail the 
assumptions made in each of these scenarios.  

 

Table 2. US-REGEN scenario descriptions. 

Name Short Name Nuclear Costs Renewable 
Costs 

Policy 

Default Default Reference Reference Current 

Low Nuclear (LN) + 
High Renewable 
(HR) Costs 

Default.LNHR Lower Higher Current 

100% Renewable 
Portfolio Standard 
(RPS) 

RPS Reference Reference 100% RPS by 
2050 
(Allowing 
Nuclear) 

100% RPS + HN & 
LR 

RPS.LNHR Lower Higher 100% RPS by 
2050 

Carbon Tax CTax. Reference Reference Carbon Tax 
($50 in 2025) 

Carbon Tax + HN & 
LR 

Ctax.LNHR Lower Higher Carbon Tax 
($50 in 2025) 

 

 

2.1.1 Policy Assumptions 

The nominal policy case uses the current policies implemented in US-REGEN. This includes individual 
state RPS that have been implemented, but not a national policy. The nominal policy also includes current 
tax incentives for specific generators, such as the investment tax credit and production tax credit for solar 
and wind, respectively, as well as renewable energy credits from various regions.  

The renewable portfolio standard cases implement national RPS requiring 100% of load be served with 
power from qualifying sources by 2050. The RPS start at 30% in 2030 and increase by 17.5% per year 
until 2050. These cases allow nuclear in the RPS, in addition to standard renewable resources such as 
solar, wind, and hydro. The RPS is treated as a binding constraint, meaning that the model requires the 
RPS target to be met. 

A carbon tax was also implemented for certain scenarios in order to investigate the difference between 
requiring low carbon generation and letting electricity markets drive decisions. The carbon tax starts at 
$50/metric ton CO2 in 2025 and increases by 4% each year. Table 3 shows the price per metric ton of CO2 



 

 
 

6

emissions throughout the modeling horizon. Fifty dollars per ton represents a modest carbon tax that falls 
in the middle of the range of currently levied carbon taxes worldwide ($2–120 per ton).  

 

Table 3. US-REGEN Assumed Carbon price by year. 

Year Carbon Price ($/metric ton CO2) 

2025 $50 

2030 $60.83 

2035 $74.01 

2040 $90.05 

2045 $109.56 

2050 $133.29 

 

Only one of each of these three policy options was used in each model run. This meant that US-REGEN 
runs used either the nominal, RPS, or carbon tax policy, and did not run any combination thereof. 

 

2.1.2 Nuclear and Renewable Cost Assumptions 

The model economic assumptions focused on nuclear and renewable costs. By adjusting the costs, the 
scenarios could represent more extreme cases favorable to nuclear. This became important in the HERON 
IES runs because it allowed for different IES and grid dynamics to create a more complete forecasting 
picture.  

The average default cost cases use the US-REGEN default capital costs for nuclear and renewables. These 
costs are detailed in Table 4. US-REGEN assumes some degree of learning and thus reduces the capital 
costs in later years. Only the generators (nuclear and renewable) whose costs are manipulated are listed 
here. US-REGEN uses detailed geographic information including land and labor costs to establish 
different costs in each state or region across the US.  The costs shown below represent the average costs 
across the US. 
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Table 4. US-REGEN average default capital costs. 

Generator 2025 ($/kW) 2035 ($/kW) 2050+ ($/kW) 

Nuclear (Greenfield) 5640 5480 5160 

Wind – Onshore 1290 1090 1090 

Wind – Offshore 3790 3210 3210 

Solar PV – Fixed 1270 860 620 

Solar PV – Single Axis 1370 920 670 

Solar PV – Dual Axis 1470 980 720 

 

There are two cost options: the nominal and the LNHR. When combined with the three policy options, we 
are left with six US-REGEN scenarios in total. In the low-nuclear, high-renewable (LNHR) cases, the 
capital cost of nuclear is reduced by 25%, and all renewable costs are increased by 50%. These are 
applied consistently throughout every modeled year.  

 

2.2 Capacity Expansion Results  

2.2.1 Capacity Evolution 

In this section, we consider the capacity evolution of the tracked technologies over the 26-year 
project, as divided into 5-year intervals. These outputs are from the US-REGEN runs for each of the six 
scenarios. Figure 2–Figure 7 show the resulting capacities for each model scenario in 5-year increments 
for the state of Illinois. As seen in Figure 2, the majority of Illinois’ capacity at the beginning of the 
modeling period is in the form of thermal (fossil and nuclear) generators. The carbon tax cases do have 
more renewables and zero coal capacity in the beginning, due to the huge penalties incurred by coal for its 
greenhouse gas emissions. A table of legend acronyms used in Figure 2–Figure 9 is given in Table 5. 
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Table 5. Generator acronyms for Figures 2-Figure 9. 

Legend Name Generator Name 

Storage Battery, pumped hydro, and other 

Solar Solar PV and solar thermal 

Wind  Onshore and offshore wind 

H2 Hydrogen used for electricity 
production 

NGCCS Natural gas with carbon capture and 
sequestration 

NGCT Natural gas combustion turbine 

BECCS Biomass with carbon capture and 
sequestration 

Other Oil, diesel, and minor generation 
methods that don’t fit other categories 

Coal CCS Coal carbon capture and sequestration 

Coal All types of coal that do not have CCS 

Hydro All hydroelectric  

Nuclear All nuclear facilities 
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Figure 2. Capacity, 2025. 

 
Figure 3. Capacity, 2030. 

 
Model year 2030 still has relatively small deviations between scenarios. Modest retirements in thermal 
generators occur, and not much new capacity is built. By 2035, the effects of the policy and economic 
assumptions begin to manifest. The carbon tax and RPS scenarios start to see renewables build out in 
2035. The LNHR cases suppressed new renewables and kept existing nuclear online for longer. The 
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default case and the default LNHR case continued along a similar track because no nuclear or renewables 
needed to be built, thus dampening the differences between the varying economics. 
 

 
Figure 4. Capacity, 2035. 
 
In the 2040 output, as shown in Figure 5, the negative effect of RPS on nuclear is made clear. All nuclear 
is retired in the RPS case, while most nuclear is retired in the RPS LNHR case. The small amount left on 
the grid in the RPS LNHR case is due to it still being cheaper to run the existing nuclear than build new 
high-cost renewables. All the other scenarios essentially maintain the existing nuclear fleet. From the 
standpoint of fossil fuel reduction, the carbon tax case was the most effective up to this point, since it got 
rid of the coal fleet. The RPS scenario retires nuclear and replaces it with wind. With no economic 
disincentive for fossil fuels, US-REGEN took the nuclear offline before cheaper fossil generators. The 
default case did not change substantially from its initial capacity mix. 
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Figure 5. Capacity, 2040. 

 

 
Figure 6. Capacity, 2045. 
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Figure 7. Capacity, 2050. 

The final two model years, 2045 and 2050, show dramatic differences between the scenarios. The RPS 
case starts to retire coal in 2045 and gets rid of most of it by 2050. The coal is mostly replaced by solar 
and wind. The RPS case is the only scenario with an appreciable amount of solar. The RPS LNHR case 
builds new nuclear to replace the retiring coal and natural gas generation. US-REGEN builds small 
modular reactor (SMR) nuclear plants in the RPS LNHR case to make up for the reduction in coal and 
natural gas. The higher capacity factor nuclear means that the total system capacity of the RPS LNHR 
case is less than half that of the RPS case. The carbon tax cases see a similar trend: the carbon tax case 
adds wind capacity, but the carbon tax LNHR case prefers to add other resources such as natural gas 
combined cycle (NGCC) or biomass. Both carbon tax cases also build ~5 GW of hydrogen capacity.  
 
From the standpoint of carbon reduction, the carbon tax scenarios reduced fossil fuel usage the quickest, 
and the RPS LNHR scenario ended up with the fewest fossil fuels. The carbon tax scenarios immediately 
retired the coal, such that there was no capacity in 2025. By 2050, both carbon tax scenarios had retired 
all their NGCC, and the carbon tax LNHR case retrofit carbon capture and sequestration (CCS) to some 
existing natural gas combustion turbine (NGCT). Beyond that, the carbon tax cases only reduced NGCT a 
few GW from the 2025 levels. The RPS retired coal at a slower rate, without seeing any significant 
reductions in coal until 2040. By 2050, the RPS case had retired most of its coal and all its NGCC. There 
was still a significant portion of NGCT in the RPS case, whereas the RPS LNHR case required less 
backup and, therefore, less natural gas altogether.  
 
The capacity evolution of the carbon tax scenarios is plotted in Figure 8. The plot shows the difference in 
capacity, according to each given year, based on the initial model year. Both the carbon tax case and 
carbon tax LNHR case retired nuclear and NGCC plants at the same rate. The carbon tax scenario built 
wind, ending with an additional 10 GW than in 2025. Because of the large capacity of VRE, the carbon 
tax case also built 4 GW of new NGCT capacity despite the carbon price. The LNHR case did not require 
this, due to the higher ratio of firm to variable resources.  
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(a) 

 

 
(b) 

 
Figure 8. Capacity differences between 2025 and the given year for the (a) carbon tax and (b) carbon tax 
LNHR scenarios. 
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The RPS cases, as shown in Figure 9, are of interest because they trade renewables in the RPS run for 
nuclear in the RPS LNHR run. The RPS case builds out renewables, including both wind and solar. As 
with the carbon tax case, the model builds greater NGCT capacity to back up the additional VRE. In the 
RPS LNHR case, the old nuclear is retired and then replaced by new nuclear built between 2040 and 
2050. This case built only a few MW of NGCT. 
 

 
(a) 

 
(b) 

Figure 9. Capacity differences between 2025 and the given year for (a) RPS and (b) RPS LNHR 
scenarios. 
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The total capacities for each year, as plotted in Figure 10, were the highest in those scenarios friendlier to 
renewables. The LNHR economic assumption usually depressed the total system capacity because the 
model chose resources with higher utilization rates (such as nuclear) rather than VRE with a natural gas 
combustion turbine backup. This phenomenon even occurs in the default case, as wind is added in 2050 in 
the default, but not in the default LNHR. 

 

Figure 10. Total capacities for each scenario by year. 
 

2.2.2 Average LMP Evolution 

As capacity evolves, the average locational marginal price (LMP) changes over time. It is useful to recall 
that LMPs reflect the marginal costs of electricity production not the total costs. A system might have a 
low LMP despite requiring large capital expenditures. This means that scenarios exist in which it is less 
cost effective to have a capital-intensive unit that can operate at lower LMP as opposed to a unit with a 
higher marginal cost but lower capital expenditure. 
US-REGEN’s forecasted LMPs for Illinois are displayed in Figure 11. The general LMP evolution trends 
over the entire US-REGEN time horizon showed that the carbon tax scenarios led to the most expensive 
LMP and the RPS scenarios led to the cheapest. The LNHR cases were generally higher than the default 
economics case, though there was some switching between the default LNHR case and the default case. 

 

0

10

20

30

40

50

60

70

Default Default LNHR Carbon Tax Carbon Tax
LNHR

RPS RPS LNHR

To
ta

l C
ap

ac
ity

 (G
W

)

2025 2030 2035 2040 2045 2050



 

 
 

16

 

Figure 11. Illinois LMP forecast results from US-REGEN. 

The carbon tax LMPs are the highest, increasing steadily over the 35-year horizon. Despite the carbon 
penalty, a significant amount of natural gas remains in the system, driving up the LMPs relative to other 
cases. The carbon tax LNHR case still sees a large buildout of renewables despite their cost increase, 
contributing to the higher system cost relative to the default carbon tax case. In comparing the default and 
LNHR carbon tax cases, nuclear remains fairly consistent without any new builds, meaning that the low 
nuclear cost does not cause any difference between the default and LNHR cases. 
 
The default policy cases represented a middle ground for LMP. The LNHR LMP is higher in the early 
years but cheaper in the later ones. This could be because US-REGEN starts to build storage in the later 
years of the default case, but the LNHR case is almost exclusively served by nuclear, coal, and natural 
gas.  
 
The lowest prices are generally seen in the RPS scenarios. The price in both the default and LNHR 
scenarios drops over the short term, as some excess generation is retired, but then increases between 2030 
and 2040 when large amounts of VRE are built. Once the main VRE buildout is complete, the LMP drops 
back down to near the minimum level. LNHR is more expensive relative to the default RPS case, because 
the system still builds renewables to meet the RPS but does not build new nuclear. 
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3. LIGHT-WATER REACTOR MARKETS 
As discussed, the changing energy scene is causing a reevaluation of NPPs’ role as energy suppliers 

in the energy markets. The quality and reliability of service often taken for granted from NPPs as 
baseload energy suppliers may not be guaranteed from all energy suppliers in those energy markets in 
which VRE plays a significant role. This provides an opportunity to distinguish the various services of an 
energy supplier as being distinct assets (e.g., frequency regulation, on-hand capacity, etc.) beyond simply 
providing energy to the grid. In this section, we discuss some of these existing or potential markets and 
the impact they might have on existing LWRs in the U.S. This activity identifies driving economic factors 
leading to circumstances in which an NPP owner/operator might consider flexible operations, including 
through IES. 

3.1 Electricity Market 

3.1.1 U.S. Electricity Market Structure 

The U.S. energy grid is generally organized into wholesale electricity markets operated by ISOs and 
RTOs. ISOs and RTOs are independent, non-profit organizations tasked with operating the energy 
transmission system reliably and in a just, reasonable manner. The goal of energy markets is to facilitate 
the lowest-cost solution to electricity customers in order to meet energy needs, both short term (months to 
years) and long term (decades). This includes operating the system reliably, with minimal chance of 
failing to meet the required demand, real-time energy balancing, generator and transmission scheduling, 
and assured long-term reliability of the system. The duties of ISOs and RTOs also include coordinating 
and facilitating long-term planning for generation and transmission, as well as operating and 
administering energy markets; however, in general, there is a hands-off policy when it comes to retail 
transactions such as services and electricity rates. Actors within energy markets include ISOs and RTOs, 
vertically integrated utilities, transmission owners, merchant generators and independent power 
producers, load serving entities, municipalities, cooperatives, public power agencies, and privately run 
power trading companies. 

Figure 12 gives a high-level overview of ISOs and RTOs in North America. This demonstrates the 
wide variety in not only capacity and peak load, but also in composition and transmission when it comes 
to the different organizations. Figure 13 shows the fuel mix (by percentage) generated by the North 
American ISOs and RTOs, particularly highlighting the contribution from nuclear power, which ranges 
from 61% in the Ontario IESO to non-existent in the AESO. 

 

Figure 12. High-level overview of select ISOs and RTOs in North America. 
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Figure 13. Fuel mix of North American ISOs and RTOs in 2018. 

The energy markets in North American RTOs and ISOs can be divided into two market strategies: 
regulated and deregulated. In the 1990s, some vertically integrated utilities separated into generation, 
transmission, and distribution companies to increase incentives for efficiency and innovation. 
Furthermore, some states have restructured retail markets, allowing customers to select their energy 
provider. These “deregulated” markets are still regulated by the Federal Energy Regulatory Commission 
and so may be considered organized, restructured, or liberalized markets. Some such markets, particularly 
MISO and SPP, consist nearly entirely of vertically integrated utilities. In the U.S., all ISOs and RTOs 
operate both a day-ahead and real-time auction for electricity and some ancillary service products. Most 
also run a longer-term auction for capacity or have a resource adequacy procurement mechanism. The 
remainder operate under bilateral markets composed of vertically integrated utilities that balance their 
own supply resource with customer demand. 

All U.S. ISOs and RTOs operate both an hourly day-ahead market and a shorter time frame market 
(15, or 5, or 1 minute-markets, with the 5-minute being the most common). Individual producers bid into 
the hourly day-ahead hourly market. These bids consist of three parts: incremental generation cost, no-
load minimum operating costs, and startup costs. Incremental generation, sometimes referred to as 
“marginal cost,” is the cost per kilowatt to produce electricity using the particular unit, including fuel, 
operations and maintenance (O&M), and similar variable costs. No-load minimum operating costs 
represent fixed costs for the unit, including capital and fixed O&M costs. Startup costs reflect any costs 
required to bring the unit online and begin producing electricity on the grid. These resource generators 
provide generator characteristics to the ISO or RTO, including the minimum economic operating level, 
minimum up/down time, ramp rates, hot/warm/cold start time, and maximum weekly starts. The hourly 
day-ahead market typically closes mid-morning. Some markets have offer requirements tied to capacity or 
resource adequacy requirements. Furthermore, ISOs and RTOs run a reliability unit commitment model to 
ensure that sufficient generation is online; this model can commit additional generators. The bidding and 
commitment schedules are summarized in Figure 14. 
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Figure 14. Hourly day-ahead bidding and commitment. 

Because the hourly day-ahead commitment is predictive in nature, the real-time 5-minute market 
serves to make up the difference between predicted and actual load demand. Some ISOs and RTOs use 
multiple intervals between the hourly and 5-minute resolutions, and some perform look-ahead for several 
hours; for example, California operates a 15-minute market. These correction markets close 30–75 
minutes ahead of time. Not all ancillary service products are offered on both the day-ahead and real-time 
markets, and availability depends on the ISO/RTO. 

The interaction between the ISO/RTO and generators for economic dispatch involves a series of 
signals to resource offerings into the market. Day-ahead and real-time markets optimize supply offers and 
demand bids, then send dispatch signals to market participants. These dispatch signals are the economic 
dispatch. Suppliers then follow the load by following the dispatch signal sent by the ISO/RTO. Similarly, 
ancillary services (discussed below) are signals directing resources to respond in ways that support system 
reliability. The key factors impacting the economic dispatch of a supplier are the cost offer, including 
incremental and short-term commitment costs; generator characteristics such as ramp rates, minimum 
economic operating level, and minimum on/off times; and system needs and constraints, such as 
transmission congestion, losses, and demand forecast.  

By way of example, consider the hourly day-ahead and 5-minute real-time market daily averages for 
PJM, as shown in Figure 15. While real-time variations are often small compared to the day-ahead 
pricing, there are notable exceptions. Participation in real-time markets may provide an opportunity for 
NPPs in flexible operation to leverage both of these markets. 

 

Figure 15. Average daily price of day-ahead and real-time energy in PJM in 2019. 
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3.1.2 Regulated and Deregulated Markets 

ISOs and RTOs in the U.S. operate within two major market categories: regulated and deregulated. 
Both are regulated by the Federal Energy Regulatory Commission.  

Regulated markets are those in which the energy generation and transmission utilities are owned by 
the ISO or RTO. As such, meeting energy demand at any time involves strategically dispatching the least 
expensive generation units until the demand is met. This cost-minimization strategy results in a cost to 
consumers that covers the generation costs. Optimization of dispatch for regulated markets involves a 
cost-minimization optimization formulation in which the cost is minimized for the ISO or RTO to meet 
demand. 

Deregulated markets are those in which units bid production costs (dollars per megawatt) and 
available capacity a priori—for example, in hourly day-ahead markets. During each production cycle, the 
ISO/RTO then dispatches the units required to meet the load, from least to most expensive. The bidding 
price of the most expensive generation unit dispatched is then the “clearing price” paid per megawatt 
dispatched to each generation unit during the cycle. Optimization within a deregulated market is usually 
done with a particular generator or technology as the center of focus, the intent being to maximize profit 
for that focus rather than for the ISO/RTO as a whole. 

3.2 Alternative Markets  
Ancillary services are used in electric power systems to ensure the operational reliability of the bulk 

power system. While a relatively small component of overall electric power costs, these services are a 
critical need, and in some regions the types and needs of these services are changing.  

Four major products in U.S. wholesale markets were identified as part of this work: energy, ancillary 
services, capacity, and financial transmission rights. While the policies and nomenclatures surrounding 
each of these market products differ among each ISO and RTO, we can consider them in these loose 
groupings.  

Financial transmission rights are markets used to hedge congestion charges and are purely financial in 
nature. They are sometimes referred to as transmission congestion contracts, transmission congestion 
rights, or congestion revenue rights, and it is not expected that NPPs can play on these markets. Energy 
markets were discussed in Section 3.1. We discuss the other two major market products in turn below. 
The approximate financial volumes of these markets by ISO/RTO are shown in Table 6.  
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Table 6. Market financial volume by ISO/RTO. 

 

3.2.1 Ancillary Services Market 

There are many names for the various services captured by the ancillary services market, and the 
availability of these service markets differs from ISO to ISO and RTO to RTO. Ancillary services are 
defined as “necessary to support the transmission of capacity and energy from resources to loads while 
maintaining reliable operation of the Transmission Service Provider’s transmission system in accordance 
with good utility practice” [10].  

An example breakdown of services is shown in  

Figure 16. A wide variety of system benefits is shown under Operating Reserve services, including 
frequency regulation, regulation, and flexibility. The operating reserve that is required by an ISO or RTO 
can be broken into two sub-categories; reserve used for grid event response and reserve used for non-
events. Contingency and ramping reserve generally exist as units that can be brought online quickly to 
respond to an event such loss of generator or an unexpectedly high load day. The non-event reserve, such 
as flexible following reserve and regulation reserve are used to smooth the smaller fluctuations that occur 
on a given electric grid. These can be used to automatically maintain frequency or remedy an area control 
error (ACE), which is an imbalance between balancing area’s original anticipated electricity needs and 
the actual. 
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Figure 16. Example ancillary services breakdown. 

ISOs/RTOs have ancillary service requirements that differ from organization to organization. For 
example, in ISO-NE, the contingency requirement is a 10-minute reserve greater than or equal to the 
largest first contingency loss times the contingency reserve adjustment factor (a number between 1 and 2, 
representing the previous quarter’s DCS score [with 1 being the perfect score]). In NYISO, the 
requirement is a total 10-minute operating reserve greater than or equal to the largest single contingency. 
In PJM, the requirement is a total contingency reserve greater than or equal to 150% of the largest single 
contingency. The nature of these requirements is critical in understanding the availability and depth of the 
markets for those ancillary services. Further, there appears to be no direct correlation between the size of 
the requirement and the size of the region, requiring local definition for each geographical region’s 
requirements. 

To bid into ancillary service markets, requirements are outlined for each ISO/RTO governing the 
participation of suppliers. If a supplier fails to follow signals, they may be temporarily disqualified from 
supplying a particular resource. Generally, a more flexible asset has more opportunities to participate in 
these markets and, thus, more opportunities for economically viable operation. Based on the requirements 
of many ISOs and RTOs, the minimum set of generator characteristics for participating in ancillary 
service markets should be practical for NPPs in flexible operation. 

3.2.2 Capacity Market 

All U.S. markets except for ERCOT operate a capacity market or ensure long-term resource 
adequacy. ERCOT operates an “energy only” market. These capacity markets have a variety of names, 
such as Reliability Pricing Model in PJM or Installed Capacity Market in NYISO. Most markets operate 
both a day-ahead market (DAM) and a real-time market (RTM). Maximum prices in each ISO or RTO are 
set to some proportion of the cost of new entry (CONE). The characteristics of these markets also differ 

Adapted from Ela et al., An Enhanced Dynamic Reserve Method for Balancing Areas, EPRI, Palo Alto, CA: 2017. 3002010941. 
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from market to market, as shown in Table 7. Most ISOs/RTOs use a loss-of-load-expectation model to 
determine the resource adequacy requirement. Payments from capacity auctions support initial investment 
costs and fixed going-forward costs. Many capacity markets have developed updated designs in 
consideration of state-sponsored resource participation. 

 

Table 7. Capacity markets in several ISOs and RTOs. 

 

 

An NPP in flexible operation, especially one with tight coupling as part of an IES, may find 
opportunities to increase revenue through participation in capacity markets, depending on the ISO or RSO 
they participate in. 
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4. HYDROGEN PROCESSES AND MARKETS 

4.1 IES introduction 
As electricity markets have changed with increases in variable renewable energy within the last few 

decades, NPPs have been investigating ways to increase profitability, flexibility, and efficiency. 
Companies and research entities have looked beyond the sale of electricity to production of other 
commodities such as heat, potable water, hydrogen, or chemical products. These co-generation systems, 
or IES, include a nuclear reactor, electricity generation turbomachinery, and an industrial process for the 
production and/or storage of a secondary commodity. The secondary-commodity production process can 
be coupled to the nuclear reactor via heat, electricity, or a combination of the two. These IES have also 
been proposed for currently operating NPPs and next-generation reactors [2, 11]. 

One IES configuration uses an NPP to generate heat and electricity for hydrogen production. Much of 
the discussion about nuclear-hydrogen IES is driven by their ability to produce carbon-free H2. Producing 
hydrogen via the sulfur-iodine (SI) cycle, copper-chlorine cycle, and steam electrolysis have all been 
discussed in the literature. 

The SI cycle uses a chemical process that converts water into hydrogen and oxygen via a Bunsen 
reaction and then into hydrogen iodide (HI) via heat. Because the SI cycle requires higher temperatures 
(upwards of 850°C) than the U.S. LWR fleet can provide, research in the U.S. has moved away from SI. 
The Japan Atomic Energy Agency, which operates a high-temperature test reactor, has been extensively 
researching the SI cycle with the goal of commercializing the technology and coupling it with a 300-MW 
high-temperature reactor. It is estimated that the SI and a high temperature gas reactor system can achieve 
50% thermal efficiency in this configuration [11]. 

 Figure 17 shows the design schematic for the SI cycle. Heat, as well as electrical topping heat, is 
input from the coupled NPP to maintain correct conditions in the chemical reactors and separation units. 
Water is input, and hydrogen iodine and sulfuric acid are produced. The HI is then split into H2 and I2. 
The H2 product is separated and the I2 recycled. An oxygen byproduct is also produced via the 
decomposition of sulfuric acid [12].  
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Figure 17. Sulfur-iodine cycle process flow diagram [12]. 

The copper-chlorine cycle is similar to the SI cycle in its use of chemical reactions to split water into 
hydrogen and oxygen. With the large bulk of research coming from Canada, the Cu-Cl cycle was 
designed to be coupled with a Generation-IV supercritical water reactor [13]. The Cu-Cl cycle requires 
temperatures of around 500°C, making it is also promising for Generation IV reactors but a poor 
candidate for direct heat coupling with existing LWRs. 

Water is input to the Cu-Cl cycle and converted to HCl via a chemical reaction with CuCl. The HCl 
and CuCl then undergo an electrochemical reaction to create CuCl2 and H2 [14]. As with the SI cycle, a 
separate O2 stream is produced as a usable byproduct. Figure 18 shows a process flow diagram of the Cu-
Cl cycle. A nuclear reactor would provide heat directly to the O2 chemical reactor, and electricity to the 
electrolyzer and other system components. 
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Figure 18. Copper-chlorine cycle process flow diagram [14]. 

Steam electrolysis, both high- (HTSE) and low-temperature (LTE), has been proposed for coupling 
hydrogen with nuclear facilities. An LTE utilizes nuclear heat and some electricity in an electrolysis cell 
to split water into oxygen and hydrogen at an anode and a cathode. The HTSEs split water in a similar 
manner but operate at a higher temperature and require more heat initially, though potentially less 
electricity in the electrolysis cell. NPPs and electrolysis systems can be coupled by using nuclear process 
heat as a preheat, along with electricity from the nuclear reactor, to assist in heating and run electricity 
through the electrolysis cell. Because of this flexibility, electrolysis is a potential candidate for current 
LWRs. The steam electrolysis cells also reduce the system’s chemical complexity when compared to SI 
or copper-chlorine cycles. HTSEs are generally more efficient than LTEs. Of all the reviewed hydrogen 
production methods, HTSE systems are the closest to commercialization within current LWRs.  

In contrast to the Cu-Cl and SI hydrogen production methods, HTSEs do not have complicated 
chemical processes to contend with. Water is passed through various heating and compression stages until 
it reaches optimal pressures and temperatures. The water is then run through a solid oxide electrolysis cell 
(SOEC). An SOEC stack schematic is shown in Figure 19. An electrical current is sent through as water 
passes through the stack. A nickel cermet cathode and a perovskite anode collect hydrogen and oxygen, 
respectively [2]. 
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Figure 19. Cross-section of SOEC stack [15]. 

The IES HTSE generally uses 3–10% of its energy input as heat, 5–20% as electrical topping heat, and 
the balance electricity is run through the SOEC for the electrolysis reaction. This equates to 
approximately 43 kWh consumed per kg H2 produced [2]. A schematic of how the HTSE process would 
be coupled to a nuclear reactor is shown in Figure 20. Heat is input to the HTSE by diverting steam from 
the turbine to the HTSE unit. Electricity is provided to the HTSE via the turbine. 

 
Figure 20. HTSE IES process flow diagram [2]. 

HTSE costs for this research were pulled from Frick et al. [2]. Their estimates used the Aspen Process 
Economic Analyzer in tandem with Aspen HYSYS process models to estimate the capital cost of the 
entire IES HTSE system. The capital expenditures (CAPEX) for a 7.4 kg/s HTSE unit coupled to an NPP 
is $545,263,737. This number was normalized to $73,684,288/kg/s, and an economy of scale factor of 
0.955 was used for plants larger or smaller than 7.4 kg/s. Table 8 breaks down all the HTSE economic 
parameters used in this analysis. Note that the O&M accounts for replacing the SOEC every 3–5 years 
and is applied entirely as fixed O&M. Depreciation occurs on a Modified Accelerated Cost Recovery 
System (MACRS) 15-year schedule. Costs are in 2019 dollars. 
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Table 8. HTSE economic parameters [2]. 
 

Cost 

CAPEX (per year, 
normalized by H2 
production capacity) 

$73,684,288/ kg/s 

O&M (per year, 
normalized by H2 
production capacity) 

$9,561,176/ kg/s 

Economy of Scale 
Factor 

0.955 

Storage CAPEX $500-600/ kg 

Depreciation Scheme MACRS 15 

Lifetime 30 

 

 

4.2 Hydrogen Market Simulation 
The U.S. hydrogen market is a relatively small but quickly changing sector. Development of new 
production techniques, the promise of using hydrogen in industry or transport, and the depression of 
natural gas prices have all played a role in increasing H2 demand and generating projections for increased 
consumption in the future.  
 

4.2.1 Hydrogen Production and Consumption 

Hydrogen is generally produced in one of three ways: merchant, captive, or by-product hydrogen. 
Merchant hydrogen is produced at a dedicated hydrogen production facility and made available for 
transport and sale to a customer. Captive hydrogen is produced and used in the same facility, such as in 
the case of refining processes that produce H2 via methane reforming and use it to reduce sulfur content in 
diesel fuel. Approximately 10 million metric tonnes (MMT) of merchant and captive hydrogen, 
sometimes termed “on-purpose” hydrogen, are produced and sold in the U.S. [16]. Additional hydrogen is 
produced as a byproduct of other chemical processes and sold to reduce the overall process costs. Table 9 
gives three different estimates for U.S. hydrogen production, based on three different sources. Because 
different sources estimate production in different ways, there is a range of production from 8.04 to 15.37 
MMT H2. 
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Table 9. U.S. hydrogen production estimates. 

  

Hydrogen in the industrial sector is mainly consumed in the production of chemicals and metals, 
electronics, and food processing. Petroleum refining and ammonia production are the largest consumers 
of hydrogen, both in the U.S. and worldwide. Other processes such as metal production, food processing, 
and electronics production use only a small amount of hydrogen [20]. Figure 21 shows global hydrogen 
consumption and its growth over time. This plot only encompasses merchant or “pure” hydrogen. 

 

 

Figure 21. Global demand for pure hydrogen [20]. 

Transportation hydrogen, while only accounting for a small amount of the current demand, is expected to 
grow over the next several decades. In Figure 21, the “other” designation includes the transportation 
sector’s hydrogen use, making it a very small percentage of overall hydrogen use, both globally and in the 
U.S. While this number is currently small, it is expected to grow rapidly as countries continue to increase 
their decarbonization efforts, generating higher demand for merchant-produced hydrogen. 

The growth in hydrogen demand has caused governments and utilities to reevaluate how hydrogen is 
produced. The cheapest method of hydrogen production, steam methane reforming, uses natural gas and 
produces CO2 as a byproduct. Meeting hydrogen demand in a low- or zero-carbon emission scenario 

Source Markets & Markets 
[19] 

Brown Procedure [18] IHS Market Capacity 
[17] 

Merchant (MMT) 3.78 3.83 4.30 

Captive (MMT) 5.27 5.86 4.08 

By-product (MMT) - 5.68 0.43 

Total (MMT) 9.04 15.37 8.04 
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requires hydrogen produced from sources other than methane reforming. The IES configurations 
discussed in Section 4.1 provide this low-carbon hydrogen. This research effort assesses the economic 
fitness of IES hydrogen production when compared to steam methane reforming. 

 

4.2.2 Hydrogen Market Modeling 

A well-quantified hydrogen market is important for assessing IES economics. A demand curve is needed 
to relate the price of hydrogen to the size of the hydrogen market. In other words, the price of hydrogen 
should correlate to the amount of hydrogen produced by the IES. The actual supply curve for existing 
hydrogen markets can be difficult to quantify, since hydrogen is produced in so many ways, with varying 
purities and uses.  

One method for developing a hydrogen supply curve would be to compare the IES to the cost of hydrogen 
production via the cheapest producer: steam methane reforming. If IES can produce hydrogen equally or 
less expensively than steam methane reforming, the IES hydrogen will be competitive in the market. In 
this sense, using steam methane reforming to approximate the market is a conservative approach. If the 
IES hydrogen is cheaper than the methane reforming hydrogen, the IES hydrogen will always be the 
cheapest option. 

The H2A production model was used to develop hydrogen market curves. H2A, developed at the National 
Renewable Energy Laboratory, estimates the selling price of hydrogen, based on technology assumptions 
[21]. H2A outputs for this research are based on steam methane reforming default cost assumptions. 
Based on natural gas prices, the selling price of hydrogen for different-sized reforming processes is the 
output. The plot of H2 prices for each natural gas price of note is shown in Figure 22. Each natural gas 
price corresponds to the 2020 EIA annual energy outlook price for 2025–2050, in five-year increments 
[22]. Each of these years shown corresponds to a HERON model run. In this way, the model accounts for 
the projected price evolution over the forecasted years. 
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Figure 22. Hydrogen supply curve by year. 

The hydrogen market function for each solve year is used in the corresponding HERON economic 
optimization. As the inner loop performs the dispatch, the associated IES HTSE capacity is input into the 
market function, and the H2 price is output. This H2 price is then used to determine if electricity or 
hydrogen should be produced, as discussed in Section 5. This dispatch informs the outer loop 
optimization of the HTSE capacity.  
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5. HERON FOR STOCHASTIC TECHNO-ECONOMIC ANALYSIS 

5.1 Introduction  
HERON [4] is a software plugin for the uncertainty framework RAVEN [5]. HERON provides a set 

of tools specifically for using RAVEN to perform STEA for systems of components connected through 
mutual resource production and consumption in the presence of economic drivers. More specifically, it 
was designed to perform uncertainty-centric analysis of generation units (or components) with multiple 
potential resource markets (energy, hydrogen, water, etc.). HERON has previously demonstrated 
performance for regulated markets [3, 24] and deregulated markets [1, 2]. 

HERON has specific strengths regarding stochastic analysis of small or large systems, where large 
numbers of components with similar technologies can be grouped effectively into a small group of 
homogeneous producers. HERON leverages the synthetic history generation tools in RAVEN [23] to 
analyze the distribution of performances for capacity profiles of a grid energy system. This makes it well-
suited for exploratory analysis of the viability of different technologies in both regulated and deregulated 
markets. 

HERON (github.com/idaholab/HERON) is an open-source software available via the RAVEN plugin 
system (github.com/idaholab/raven). HERON is software quality-controlled [4], utilizes continuous 
integration, and maintains a user list as well as issue tracking through its software repository. 

5.2 Simulation Workflow  
Performing STEA with HERON involves a two-layer optimization approach, as shown in Figure 23. 

In the outer layer, macro variables such as component capacity, market sizes, and tuning variables are 
analyzed. In the inner layer, the macro variables are taken as constant, while generations of synthetic 
multiyear scenarios are produced to assess the economic viability of the selected component mix. Each 
inner-layer analysis results in a statistical representation of economic metrics such as the NPV, given 
optimized component dispatch for the generated scenarios. The outer layer is then informed by the 
economic metric distribution to determine how, and if possible, to further improve financial performance 
of the system. The manner of dispatch optimization depends on the nature of the system under analysis. 
Below, we discuss this separately for regulated and deregulated markets. 

 

Figure 23. HERON workflow. 
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5.2.1 Projection: US-REGEN 

HERON itself is not yet capable of long-term projection modeling of interconnected grid systems to 
determine the supplier portfolio evolution. To provide this feature in this study, we utilized the EPRI 
economic modeling tool US-REGEN [9], a capacity expansion economic model for policy and regulation 
analysis up to the year 2050. It provides regional details and takes a representative hourly approach to the 
yearly modeling of wind, solar, and load variability. US-REGEN accepts a large number of input choices 
in order to build a guiding direction for projection analysis, including policy decisions and expected 
technical and economic development directions. The results are periodic (e.g., every 5 years) data 
regarding the installed capacity and operating costs of units or technologies within the simulation, in 
addition to load profiles. 

5.2.2 Synthetic History Scenarios 

Each synthetic history generation represents a multiyear scenario with the same statistical 
characteristics as the data on which it is trained, but with distinct signals [23]. This enables a set of 
components with fixed capacities to be tested under a variety of realistic circumstances and determine the 
system’s statistical economic viability. The synthetic histories represent a series of years as long as the 
desired project life, often 20–60 years. 

For each year in the synthetic histories, the synthetic history generator was trained, on hourly (8760) 
resolution from real-world data. This training is then treated with machine-learning algorithms to 
characterize and cluster the behavior, reducing the required analysis in each year. This reduction factor 
can often be as large as 10–20 without losing meaningful data, and highly depends on the system and 
histories used in the analysis. Furthermore, RAVEN provides mechanics to interpolate the characteristics 
of the signal between years, producing signals that are not direct interpolations between time histories but 
rather statistical interpolations between the histories. This allows the synthetic history algorithm to 
acquire data from long-term projection tools, or higher fidelity grid representation, such as ReEDS [7], 
PLEXOS [8], or US-REGEN [9] and generate statistically interesting yearly samples that are still 
computationally feasible to analyze under uncertainty (see Section 6.1.3). 

 

5.2.3 Regulated Market Analysis Workflow 

The regulated market is somewhat simpler to formulate as an optimization problem than the 
deregulated market. The regulated market desires cost minimization to meet load demands; as in the 
deregulated market, the transmission and generation is owned by the ISO/RTO. This results in a 
straightforward mixed linear optimization problem, with the dispatch of individual components as the 
optimization variables and the system cost as the optimization objective function. In a system with no 
inertial terms (e.g., storage or ramp rates) and a single resource (e.g., electricity), this is as simple as using 
the marginal cost stack to find the minimum cost to cover the load and it does not differentiate with 
respect the deregulated market. However, in the presence of inertial terms and/or multiple resource 
markets, this becomes a more complex optimization problem. 

In HERON, this regulated market optimization is performed using rolling windows in Pyomo [6]. 
Each window encompasses a 24-hour day-ahead projection and optimizes the dispatch of each component 
to minimize system cost over that 24 hours. For slowly ramping components, this may involve beginning 
a ramp early or deciding not to ramp during a sharp peak. For storage units, this may involve stockpiling 
resources during periods of low demand for use during periods of high demand.  

5.2.4 Deregulated Market Analysis Workflow  

A deregulated analysis seeks to maximize the profit for a subset of components, not to minimize the 
cost of electricity production generally. This results in modeling ISO/RTO behavior separate from the 
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analysis target component(s), as the ISO/RTO minimization of cost has different economic drivers than 
the subset of components (though they often have many drivers in common). 

To accommodate the interplay between the ISO/RTO and the focus subset of components, 
deregulated dispatch optimization consists of three steps. First, the subset of components prepares their 
bid for hourly electricity production during a 24-hour window. This bid includes both a price for 
production and the capacity they will make available at that price, and may potentially involve multiple 
bids for different capacities, especially where multiple opportunity costs are at play for the units 
generating electricity. Of particular note is that the subset of components determines their bid without 
access to knowledge of other components in the system and without knowledge of the expected or real 
load in the bidding period. 

Once the bid is submitted, the focus turns to the ISO/RTO, who collects all the bids and builds the 
electricity stack based on production cost, available capacity, and any other constraints they may have in 
dispatch selection. The ISO/RTO then uses this stack to meet the demand at minimum cost. These 
dispatch instructions are passed back to the subset of components, which can then decide what to do with 
any unused capacity during each hour. 

5.3 Recent Improvements 
HERON’s open-source release [1] has lowered the barrier for acquiring HERON as a plugin of 

RAVEN, resulting in increased user activity. Requests for improvements in code features and interface 
usability, as well as the needs of this STEA activity, resulted in many code developments. We discuss a 
few notable new features here. 

5.3.1 Features 

The following are features added to HERON since the open-source release. 

 Custom Dispatch API 

One of the most common accelerations of the inner-loop optimization dispatch is to write a specific 
algorithm for dispatch decisions based on problem parameters. For example, in previous analyses [2, 3, 
24], custom dispatching was based on single drivers such as the price of electricity vs. the price of 
hydrogen, priority dispatch, or integral load over a 24-hour period. This feature is required in this work 
for representing the deregulated market as an interaction between the IES and ISO/RTO. As such, a 
custom API for including arbitrary dispatch algorithms written in Python was added to HERON. These 
dispatchers have access to information about the energy mix and the synthetic history scenario and are 
expected to return the applicable dispatch of components in the system for the given signals. Otherwise, 
the implementation of individual dispatch algorithms is completely flexible to user input. 

 Validators 

Funded by the Integrated Energy Systems Program, and in collaboration with Argonne National 
Laboratory, a validation system was added to HERON [27]. This validation system enables development 
of custom validation algorithms to check the proposed dispatch setpoints during the HERON inner-loop 
optimization. This allows HERON dispatchers to use simplified process models while being tested 
against more rigorous mechanics. In their initial demonstration, the researchers showed how reduced-
order models could be used to project HERON’s dispatch space (e.g., electricity production) into process 
model state space (e.g., temperature and pressure) for more resilient model validation of the dispatch 
setpoint practicality. 

 Storage Simulation 

As needed for the regulated-market analysis in this work, storage representation was added to the 
Pyomo dispatch optimization algorithm. The storage is somewhat different than the other component 
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archetypes in the system, in that its activity is recorded as levels stored rather than production or 
absorption rates. The dispatch optimization algorithm uses the initial value along with activity during the 
optimization window to use the storage in the most economically viable manner, often to flatten peaks 
and fill valleys in noisy load signals. Proper treatment of storage, especially with respect to the length of 
the rolling windows and its impact on grid capacity needs are still to be fully developed and its treatment 
in this analysis while acceptable could be further improved. The development of better treatments for the 
simulation of storage will be an area of future research. 

5.3.2 User Interface Improvements 

In addition to basic code features, several interface improvements were made to enhance the 
accessibility of HERON for STEA. 

 Executable 

An executable for HERON was added that behaves in a fashion similar to the RAVEN executable. 
This bash executable handles the loading of the appropriate Python libraries before building the RAVEN 
XML inputs based on the user’s input. This reduces the number of steps required between the user 
opening a terminal and running HERON. 

 Automatic switching between sweep and opt modes 

Also, a highly requested user feature, it is now possible to switch between optimizing in the outer 
loop and a parametric study in the outer loop. Both perturb the macro variables (often component 
capacities). The optimization option seeks the ideal set of macro variable values to maximize profit or 
minimize cost, while the parametric option samples the full optimization space in a grid pattern to 
determine the overall behavior of the economic metrics with respect to the macro variable values. 

 Case Labels 

It is common for HERON users (including for this work) to perform multiple STEA with very similar 
input files. To this end, we implemented case labels, which are carried throughout the code at all levels 
and can be inquired in functions and dispatchers, as well as observed in output files. This allows for 
tracking of specific runs through custom labels such as geographic region, policy assumptions, etc. 

 Custom Time, Year Names 

Previously, it was necessary to train synthetic history generators in RAVEN using the name “time” 
for the micro time parameter and “year” for the macro time parameter. This restriction has been lifted, 
allowing the user to specify arbitrary macro and micro time parameters, alleviating an inconvenience in 
data manipulation prior to training synthetic history generators. 

 Minimum Production Levels 

The Pyomo dispatch optimization algorithm in HERON was initially designed to assume a minimum 
production of zero for all components. This feature has been extended, and users can now specify 
minimum production levels for components through the HERON input file. These are then respected in 
the Pyomo dispatch optimization.  
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6. HERON DISPATCH ANALYSIS DESCRIPTION 
The objective of this study is to determine how the introduction of IES for hydrogen production 

coupled to the nuclear generation components could impact the economic viability of the system 
(regulated market) or nuclear power components (deregulated market). We selected the state of Illinois in 
the U.S. from 2025 through 2050 as a baseline case, due to its markets and existing nuclear generation. 
US-REGEN provides long-term load and capacity projections based on a variety of scenarios, yielding 
snapshot data every 5 years for both hourly load and projected component capacity. 

6.1 System Description 

6.1.1 Components 

US-REGEN tracks 40 homogenized technologies in the market region, with retirements and new 
builds optimized over the 26-year project life. These technologies include VREs such as solar and wind, 
natural gas and coal generators, hydro, nuclear, storage assets, etc. Every 5 years, the US-REGEN model 
provides the load for a full year, as well as capacities for each technology and marginal costs for 
producing each technology. US-REGEN provides these for each of the six scenarios described below. 

Once US-REGEN provides its projection scenario results, we consider these scenarios in HERON—
along with the addition of IES—to determine the potential economic viability of such a coupling. The IES 
we use is the high-temperature steam electrolysis (HTSE) hydrogen production plant, which couples 
directly to the NPP for electricity. As with the market for hydrogen described in Section 4, we consider a 
supply contract in which a fixed price of hydrogen is paid to the IES for a constant stream of hydrogen 
throughout the year. To provide flexibility in the volatile energy market, we also include a hydrogen 
storage unit as part of the IES, and this unit can supply hydrogen to the consumer when the NPP is unable 
to provide electricity to the HTSE because it is fully dispatched to the grid. 

The size of the NPP is fixed within each year and comes from the US-REGEN projection. The size of 
the hydrogen consumer contract, HTSE, and hydrogen storage are all macro-optimization variables in the 
outer optimization loop of HERON. 

6.1.2 Scenarios 

For this analysis, six projection scenarios were selected for US-REGEN [9], involving a combination 
of policies (nominal, carbon tax, and renewable energy policy [RPS]) and pricing structures (nominal, 
LNHR]). We discuss each of these scenarios briefly in this section. These scenarios were analyzed in the 
states of Illinois and Ohio, and the Illinois results are discussed in detail in Section 2.1. Table 10 
summarizes the scenarios. 

 Carbon Tax – indicates that a tax is levied on generation components that produce carbon as a 
byproduct of energy generation—in this case $50/metric ton by 2025. 

 RPS – indicates an incentivized strategy to meet 100% renewable penetration by 2050. 

 LNHR – indicates nuclear costs reduced by 25% and renewable costs increased by 50%. 
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Table 10. STEA analysis scenarios. 

Name Short Name Nuclear Costs Renewable Costs Policy 

Default Default Reference Reference Current 

Low Nuclear 
+ High 
Renewable 
Costs 

Default.LNHR Lower Higher Current 

100% RPS RPS Reference Reference 100% RPS by 
2050 
(Allowing 
Nuclear) 

100% RPS + 
HN & LR 

RPS.LNHR Lower Higher 100% RPS by 
2050 

Carbon Tax CTax Reference Reference Carbon Tax 
($50 in 2025) 

Carbon Tax 
+ HN & LR 

CTax.LNHR Lower Higher Carbon Tax 
($50 in 2025) 

 

6.1.3 Synthetic Scenario Training and Validation  

A series of synthetic histories were generated for each scenario discussed in Section 6.1.2. These 
histories represent grid demand for electricity under each scenario’s policies and regulations. By taking 
the snapshots provided by US-REGEN, a continuous history was interpolated and fit as an auto-regressive 
moving-average (ARMA) process. This process generally fits the projections provided by US-REGEN 
but adds elements of uncertainty and randomness that would be expected in the fluctuation of energy 
market demands. The mathematic description of an ARMA process is given as: 

𝑥௧ = ෍ ϕ௜

௣

௜ୀଵ

𝑥௧ି௜ + α௧ + ෍ θ௝

௤

௝ୀଵ

α௧ି௝, 

where x is a vector of dimension n, and ϕ௜ and θ௝ are both n by n matrices. When 𝑞 = 0, the process is 
strictly autoregressive; when 𝑝 = 0, the process is strictly moving average (MA).  

Since the initial representation of grid demand is often non-stationary, a detrending step in the 
training process was required to extract seasonality from the time-series data. The ARMA process 
leveraged detrending via a Fourier series before the actual training began and will be referred to as a 
Fourier-ARMA. The Fourier trend can be described as:  

𝑥௧ = 𝑦௧ − ෍{𝑎௠ 𝑠𝑖𝑛(2π𝑓௠𝑡)

௠

+ 𝑏௠ 𝑐𝑜𝑠(2π𝑓௠𝑡)} 
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where 
ଵ

௙೘
 are the defined bases that can be modified to enhance the fit during the training process. More 

information on this model can be found in Talbot et. Al [23]. 

 In total, six different synthetic histories were generated using data collected from US-REGEN. Each 
history was modeled under a different pricing structure scenario described in Table 10. The synthetic 
histories were generated with an hourly resolution making up the grid-demand for each year from 2025 to 
2050. US-REGEN provided the original market demand signal for years 2025, 2030, 2035, 2040, 2045, 
and 2050. For every year not provided by US-REGEN, the synthetic history was generated through an 
interpolation step in the training process. Therefore, model validation was performed by comparing the 
years provided by US-REGEN with its respective synthetic year. As all scenarios produced similar 
results, this section will detail findings using the Carbon Tax LNHR scenario. The training results for 
each case can be found in APPENDIX E: All ARMA Results. 

To determine an optimal set of bases for the Fourier detrending step, a Fast-Fourier-Transform (FFT) 
was performed on the market data for each respective snapshot from US-REGEN. This analysis provided 
a set of periods with an associated amplitude indicating periods of strong cyclical behavior. It was 
discovered that many of the periods identified by the analysis were natural boundary points that occur 
throughout the year. These periods range from trends occurring on a mid-day, daily, weekly, and 
quarterly basis to a mid-year and yearly basis. Table 11 details the non-normalized amplitudes for each 
significant period discovered through the FFT analysis. 

 

Figure 24. Carbon Tax LNHR, FFT amplitude results.  

Establishing a set of bases leads to a nominally strong initial fit for market demand. The initial 
detrending step can be thought of as the process of describing the deterministic nature of demand; thus, 
leaving the residuals to be modeled as the random process that influences market demand over time. 
Figure 25 displays an example of the initial fit generated by the final chosen bases for all ARMA 
processes. It was determined that the Fourier series required a wide range of basis points to encapsulate 
the cyclical nature of market demand. Changes to base selection greatly affected the initial fit of the time-
series data. Figure 26 shows an initial fit with a limited selection of bases.  

 



 

 
 

39

Table 11. Carbon Tax LNHR, FFT significant periods with amplitudes of greater than 0.10. 

 

 

 

Figure 25. Carbon Tax LNHR, Fourier series with bases of 8760, 4380, 2190, 1251, 973, 515, 438, 172, 
168, 33, 24, 12, 8, and 6. 

 

Figure 26. Carbon Tax LNHR, Fourier series with bases of 8760, 4380, 24, and 12. 

Choosing the model order (e.g., p and q) is another factor of model selection that can heavily 
influence model fit. The US-REGEN data displays highly autocorrelated behavior that suppresses the 
available selection for the p and q terms for training. Given the autocorrelation present in the data, a 
model of order AR(1) was selected for all ARMA processes. The autocorrelation is visualized in Figure 
27. 

6 12 24 33 168 172 438 673 973 1251 1460 2190 4380 8760
2025 819.22 2738.33 3368.05 1473.20 4786.88 1766.52 1712.73 1574.40 1965.83 2738.65 1161.72 1798.67 4715.05 5132.14

2030 1058.85 2646.29 3465.44 1497.23 5245.68 1888.25 1821.47 1640.99 2057.85 3065.33 1435.14 1975.39 4919.79 6632.44

2035 1376.64 2602.23 3598.09 1623.86 5872.33 1946.55 1952.69 1835.51 2211.08 3231.69 1591.97 2131.30 5313.38 8924.66

2040 1793.80 2577.29 3827.11 1824.64 6757.92 2139.50 2121.80 2103.93 2438.49 3699.36 1920.38 2509.07 6052.70 11911.40

2045 2214.22 2494.02 4030.54 x 7719.64 2345.09 2268.81 2257.33 2606.36 4121.71 2246.70 2779.83 6525.42 14104.55

2050 2644.79 x 4224.85 x 8475.90 2518.11 x x 2762.68 4527.77 2561.92 3038.89 6968.94 16218.87

Year
Period



 

 
 

40

 

Figure 27. Carbon Tax LNHR autocorrelation function plot. 

 The hourly residual data was then segmented into 365 portions containing 24 chronological 
observations each. Following a series of normalization steps, an ARMA process was trained on each 
segment, representing a day of the year. After gathering all 365 ARMAs, a KMeans clustering algorithm 
was applied in order to group similar days of the year. The clustering algorithm was trained with a target 
of 30 representative clusters. This allows the entire year generated by the synthetic history to be 
represented by 30 unique processes. A sample year and its associated clusters is shown in Figure 28. 

 

Figure 28. Carbon Tax LNHR, time-series clustering results. 

 Figure 29 displays a heatmap of the clustering results, showing which days were identified as similar 
throughout the year. Several patterns can be observed in this data—primarily that, during the summer 
months projected, grid demand stayed relatively consistent in Illinois. 



 

 
 

41

 

Figure 29. Carbon Tax LNHR clustering results heatmap. 

 After the clustering step is complete, the synthetic histories are generated for each year in each 
scenario. The final histories were then compared with the original market signals, and load duration 
curves were created to display a nominally well-fit history. Figure 30 depicts a histogram comparing the 
original and sampled histories. These distributions match well in descriptive statistics, including skewness 
and kurtosis. The tails of these distributions have the strongest economic implications and are observed to 
match sufficiently.  
 

 

Figure 30. Carbon Tax, LNHR comparative histogram results. 

 Figure 31 displays the sampled synthetic histories plotted beneath the original signal. This is the final 
result of the training process. There are few periods that do not match, as is to be expected. Further 
development in RAVEN will seek to add tools to diagnose model fit and performance. Currently, a few 
parameters accept only global inputs; by adding the ability to tune the model on a local basis, it would 
naturally follow that generated fits would have a tighter bound around the signal.  
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Figure 31. Carbon Tax, LNHR time series comparative results. 

Finally, a plot of the load-duration curves can be seen in Figure 32. These plots depict the cumulative 
probability of producing a certain amount of energy for the year. As mentioned previously, the tail 
probabilities have the largest influence over driving economic factors, so it is critical for the ARMAs to 
match these with some degree of accuracy. Overall, the generated load-duration curves match with their 
counterparts, indicating a well-fit synthetic history. These histories will later be used in the dispatching 
and optimization steps.  

 

 
Figure 32. Carbon Tax, LNHR, load-duration curve results. 

 

6.1.4 Dispatch Optimization 

As mentioned in Section 5.2.3, optimizing the dispatch of the regulated market case is 
straightforward. For this particular regulated case, the NPP, HTSE, hydrogen storage, hydrogen 
consumer, and grid demand define the system of components. The grid and hydrogen consumer are both 
required demands; that is, both must be completely satisfied during each simulation hour. The grid 
demand is given by the synthetic history, while the hydrogen consumer is a constant flat demand whose 
quantity is determined in the outer optimization and remains constant in the inner. The production of the 
NPP is a constant level of electricity that can either be used to meet the grid demand or produce hydrogen 
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at the HTSE. This makes the hydrogen storage the critical degree of freedom in the dispatch optimization 
problem. The optimization solve determines the best utilization of the storage in order to ensure that as 
much hydrogen is made as possible when the NPP does not need to be dispatched; therefore, when the 
NPP is dispatched, there is sufficient hydrogen to supply to the consumer. 

In the deregulated case, the focus subset of components is the NPP, HTSE, and hydrogen storage. 
Together, these comprise the IES and are assumed to be the financial interests of a single entity. The 
interplay between the IES and the ISO/RTO is as described in Section 5.2.4. The IES determines its 
electricity bid price by considering the marginal cost of producing electricity at the NPP, the opportunity 
cost of producing hydrogen, and an optimization tuning variable called the “bid adjustor.” The 
opportunity cost for producing hydrogen is the value of hydrogen to the consumer, minus the cost of 
producing the hydrogen (marginal costs at the NPP, HTSE, and hydrogen storage). The bid adjustor is a 
constant additive to the IES bid price that represents its ability to balance use at the grid with use as a 
hydrogen producer, and is a variable optimized in the outer macro-optimization. 

As described previously, in the deregulated case, the IES submits a bid for each hour in the 24-hour 
cycle, and the ISO/RTO builds the dispatch stack and dispatches according to marginal cost. The required 
dispatch is then provided to the IES, who is required to provide electricity at the designated times and at 
the designated level. However, it is possible that the required dispatch will disrupt the production of 
hydrogen for the consumer (for example, during many consecutive high-load hours, depleting the 
hydrogen storage)—something obviously unacceptable. In this case, we allow the IES to purchase 
electricity from the imbalance market during the hours in question to provide the HTSE with sufficient 
electricity to meet the hydrogen demand. Rather than directly simulating the imbalance market, we add 
the electricity to the load for the hour in question, find the new “effective clearing price” from the stack, 
and charge a 10% fee as a driver to disincentivize leveraging the imbalance market Furthermore, it is 
possible that, if the NPP is not fully dispatched for many consecutive hours, the hydrogen storage may fill 
up, and the generated electricity may not have a destination. In this case, we charge the NPP a rate of 17 
$/MWh, which is a simplification of the IES bidding at a loss in order to bid sufficiently below the VREs. 
This again serves to disincentivize an inefficient choice of HTSE, storage, and hydrogen consumer 
(market) size. 

6.1.5 Capacity Optimization 

Optimization of the capacity space can cause unexpected complications, depending on how it is 
formulated for the RAVEN optimization algorithms. The optimization variable space for the deregulated 
market analysis has four nominal variables (sizes for HTSE, hydrogen market, hydrogen storage, as well 
as the nuclear bid adjustment scalar), while the regulated market analysis has four (omitting the nuclear 
bid adjustment). These optimization variables have upper and lower bounds. Furthermore, a constraint 
needs to be applied to ensure that the HTSE is always at least the same size as the hydrogen market; 
otherwise, it is quite likely that some hours will result in insufficient hydrogen available to supply to the 
market This leads to an optimization variable space, as shown in Figure 33. 
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Figure 33. Original optimization space, HTSE vs. Hydrogen Market. 

Due to the small optimization variable space for both market types, we employ a stochastic gradient 
descent algorithm in RAVEN for searching the optimization space, with the settings shown in the 
HERON-generated RAVEN input in Appendix C. However, some complications arise from the 
constraint, requiring the HTSE size to at least match the hydrogen market size. If, during the course of the 
optimization search, the algorithm elects to consider a 0-sized IES (meaning a capacity of 0 kg/s for both 
the HTSE and hydrogen market), there are no suitable orthogonal points to use for accurately evaluating 
the gradient. Further, experimenting with the viability of different component configurations suggests that 
over- or underbuilding the IES system has a large impact on the mean NPV, whereas the difference 
between the size of the HTSE and the hydrogen market has a distinct impact. Additionally, the size of the 
hydrogen storage depends less on the absolute size of the HTSE than on the difference in size between the 
HTSE and the hydrogen market. 

We can leverage these characteristics and provide a less valley-like optimization objective response 
space by pursuing a change of coordinates. Rather than optimize for the HTSE size and the hydrogen 
market size separately, we can instead optimize the hydrogen market size, along with the difference 
between the size of the HTSE and that of the hydrogen market (Δ). This transformation of coordinates 
orthogonalizes the viable region (as captured in Figure 34), preventing complications with the 
optimization algorithm and increasing the efficiency of optimization variable space exploration. 
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Figure 34. Projected optimization space, HTSE vs. hydrogen market. 

After making this projection, it is then trivial to retrieve the HTSE size as the hydrogen market size plus 
Δ (the difference between the two). 

The RAVEN optimization algorithm for stochastic models uses an adaptive step sizing strategy based 
on the optimization performance and changes in gradient as the simulation progresses. The process begins 
at a starting point, the choice of which is up to the user. For this case, we initialized component sizes to 
roughly 5% of the total possible size, as we expect a modest-sized IES to be preferable to a very large 
one, based on exploratory simulations. From the starting point, the algorithm samples nearby orthogonal 
points to estimate the magnitude and direction of the local gradient. Based on the initial step size, the 
algorithm then guesses a new optimal point in the direction of the local gradient (climbing towards an 
expected higher mean NPV). The algorithm then samples the mean NPV at that new potential optimal 
point and confirms or rejects the point, based on the amount of improvement relative to the previous step. 

If the new potential optimal point is confirmed, the local gradient direction around the new point is 
estimated. The new step size then adapts based on the scalar product of the two most recent gradient 
directions. If they are aligned (the scalar product is near 1), the step size grows, seeking to follow a long 
gradient trend towards any maxima. If the recent gradients are anti-aligned (the scalar product is near -1), 
the step size is cut, as this indicates there should be a maximum between the two most recent samples. 
This process continues until the convergence criteria (gradience magnitude, minimum step size) are 
achieved. 

If a new potential opt point is rejected due to having a sufficiently less desirable value than the 
previous point, the algorithm returns to the previous optimal point. The algorithm assumes that one of two 
phenomena occurred: either the step size was too large, and the maxima was missed; or, due to the 
stochastic nature of the model, the gradient direction was insufficiently resolved and gave a misleading 
direction. Thus, the local gradient around the previously accepted optimal point (including the optimal 
point itself) is re-evaluated, the step size is cut relative to the step size to get to the rejected point, and the 
new, re-evaluated gradient direction is used. Hence, in reporting iterative results, three types of optimizer 
samples are observed: accepted points, rejected points, and rerun points. A rerun point follows each 
rejection point. 
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When reporting the objective variable, we report a change in mean NPV. This is because the analysis 
is differential; we are not considering the absolute mean NPV, but the change in NPV due to introducing 
an IES. As a result, each scenario was run with a single outer sample setting the IES components to 0 in 
order to establish an NPV baseline and standard deviation for each. These baselines are shown in Table 
12. 

 
Table 12. Baseline NPV values. 

Market 
Type 

Policy Pricing Mean NPV Std. NPV Std/Mean 

Regulated Carbon Tax Default -2.67E+09 1.57E+07 -0.93% 
Regulated Carbon Tax LNHR -1.74E+10 9.13E+07 -0.53% 
Regulated Nominal Default -1.74E+10 6.18E+07 -0.35% 
Regulated Nominal LNHR -1.73E+10 6.04E+07 -0.35% 
Regulated RPS Default -9.24E-09 2.74E+07 -0.30% 
Regulated RPS LNHR -1.50E+10 6.23E+07 -0.43% 
Deregulated Carbon Tax Default 4.56E+09 6.36E+07 1.39% 
Deregulated Carbon Tax LNHR 3.28E+10 1.72E+09 5.27% 
Deregulated Nominal Default 3.39E+09 1.35E+09 39.71% 
Deregulated Nominal LNHR 8.32E+09 1.58E+09 18.95% 
Deregulated RPS Default 4.39E+03 4.39E+03 -0.01% 
Deregulated RPS LNHR 3.16E+10 2.10E+09 6.64% 

 
Since the only source of differential cashflows for the Regulated Market cases is the construction, 

maintenance, and sale of hydrogen and hydrogen producers, the base case represents only the marginal 
costs to produce enough electricity to cover demand. Deregulated cases, however, involve the NPPs being 
dispatched at times (revenue) or carry a penalty for overproduction (cost), leading to a variety of values 
for the base cases. 

Interestingly, the Deregulated Carbon Tax Default and Deregulated RPS Default cases show far lower 
NPV than the other deregulated cases. In both these circumstances, substantially more VRE and natural 
gas are constructed, suggesting that the existing nuclear is in the process of being phased out over the 
scenario and gets dispatched infrequently. This results in paying significant penalties due to 
overproduction, reflected in the low mean NPV values. 

Also of interest: the standard deviation of the NPV for the Deregulated RPS Default case is quite a bit 
smaller than that of the other cases. The RPS Default case is one for which nuclear is quickly phased out 
in the interests of VRE and natural gas, likely leading to a reduced source of stochastic uncertainty in the 
NPV values. 

Note that none of these values should be taken as the expected absolute NPV of the NPP; many 
cashflows have been omitted because they fall out in the differential analysis. These simply provide 
baseline values for each of the scenarios. As pointed out the cash flow between regulated and deregulated 
market and have a very different in meaning. For the deregulated case the cash flow is the relevant cash 
flow of the NPP (revenue), while for the regulated case it is the cost of covering demand by all the 
sources employed. Moreover, penalties for not dispatching VRE (in the form of Tax Production Credit) 
are applied only to deregulated market. 
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7. REGULATED MARKET SIMULATION RESULTS 
Performing analysis with HERON involves a two-level optimization algorithm, as discussed in 

Section 6. In the outer level, optimization is performed to seek the ideal economic metrics by changing 
the built capacity of various components in the simulated system. Each evaluation in the outer-level 
involves performing many inner-level simulations. Each inner-level simulation involves sampling from 
the stochastic history set synthesizers, then optimally dispatching the components in the system to find 
the ideal economic metrics for that system, given the stochastic scenario. 

Given HERON’s two-level optimization structure, in this section we report on both the capacity 
optimization results as well as the representative dispatch optimization results. The capacity optimization 
results show the evolution of the variables representing component capacities over successive iterations of 
the gradient-based optimization process in RAVEN, while the dispatch optimization results show the 
hourly dispatch of components in the IES system over time, as well as some related signals. Of particular 
note is that each capacity optimization step requires thousands of hourly dispatch results, so the dispatch 
results shown are indicative of performance without being a complete set 

7.1 Dispatching 
In this section, we show and briefly discuss one example of a 24-hour dispatch optimization. Since 

each dispatch optimization is part of the solution to one year within one sample, within a single outer 
optimization cycle, the example in Figure 35 is only demonstrative of the dispatch optimization 
mechanics, rather than demonstrative of entire the dispatch dynamics. Note difference in scales between 
the plots. 

 

Figure 35. Regulated, example dispatch optimization. 
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This figure shows the behavior of the system in three parts. In the top plot, we see the routing of 
electricity from the NPP either to the HTSE or the grid; in this particular case, the electricity from the 
NPP to the HTSE was almost always just sufficient to keep the steady stream of hydrogen available to the 
hydrogen customer, while the remainder was used at the grid. Note that this means some of the NPP’s 
capacity may not have been dispatched, as per the ISO/RTO’s discretion. In the second plot, we see the 
behavior of the hydrogen components in the system. In the optimal dispatch found, the storage was hardly 
used, since the NPP was never fully dispatched and always able to run the HTSE to meet the hydrogen 
contract. In an NPV-neutral action, during hour 2, the storage first absorbed and then released a small 
amount of electricity; however, it appears this is economically equivalent to not using the storage at all, as 
no cash flows were impacted by the decision. 

The final plot shows the load throughout the 24-hour cycle along with the storage hydrogen levels, 
overlaid on the same axis. 

7.2 Optimization Results  
For regulated markets, the entire system, including the IES and all electricity generating units, are 

considered owned by a single entity, ostensibly the ISO/RTO. The goal of this owning entity is to 
minimize the cost of providing the demanded electricity. The IES does not represent a new source of 
electricity; however, it does represent a new revenue flow through sales of hydrogen to a secondary 
market. The question posed to regulated markets is as follows: can the sales of hydrogen to a secondary 
market overcome the capital cost of constructing/maintaining the HTSE and hydrogen storage unit, as 
well as the extra electricity required to produce the hydrogen? The extra electricity results in an increase 
of the highest cost-per-gigawatt technology already dispatched, possibly requiring a new, more expensive 
technology to be brought online. 

It appears that, for the cases considered in this work the electricity market model, and with the 
assumptions made about the potential hydrogen market and the capital costs of IES components, none of 
the scenarios results in profitable IES usage. In reality to fully capture the benefit of hydrogen production 
it would be necessary to consider the impact of the nuclear power plant and the HSE becoming a flexible 
source of power. This alteration of the use profile of the nuclear power plant would lead to a change in the 
optimal electricity supply portfolio. This could lead to a decrease of the overall system cost when the 
capacity requirements and cost are also accounted. Future work is planned to include those effects as part 
of the analysis. HERON is already capable, unlike from software such as PLEXOS, to perform long term 
financial analysis, but currently does not optimize the system capacity. In fact, the system capacity was 
actually generated by US-REGEN. 

We consider each of these scenarios in the following sections. A summary of the results is shown in 
Table 13. The capacities of the three optimization targets are shown, along with the optimized mean NPV 
discovered and the change in NPV with reference to the baseline case. We emphasize that the optimal 
mean NPV and baseline mean NPV are calculated statistically, so there is a standard deviation associated 
with both these values. For reference, standard deviations for the baseline cases are given in Table 12. 
Note that in all cases apart from the Nominal Default case, the system drove the IES size to 0, and the 
resulting change in NPV is well within one standard deviation of the mean baseline case. For these cases, 
including an IES did not prove economically justifiable. Given that the NPPs’ total capacities were sized 
to be ideal for each scenario in US-REGEN without considering the possible addition of hydrogen 
production, this is not an unexpected result, since the goal function by US-REGEN and HERON will 
coincide. 

For the Nominal Default case, however, the optimization algorithm yielded a buildout of 0.034 kg/s 
(approx. 3000 kg/d) capacity for both the HTSE and hydrogen market contract, with no storage included. 
This suggests that the hydrogen serves less as a flexibility tool for the ISO/RTO and more as a profitable 
secondary resource. This seems a natural conclusion, as the ISO/RTO was not modeled with a penalty for 
not dispatching the NPP, so it could elect to either generate hydrogen with excess electricity or curtail 
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capacity during low demand hours. As seen in the next chapter, this is different from the deregulated case 
results. 

Table 13. Regulated, final accepted iteration step results.  

Case 
HTSE  

(kg/s) 

H2 Storage  

(kg) 

H2 Market  

Capacity 

Opt. Mean  

NPV 
Δ NPV 

Carbon Tax Default 1.00E-10 0.00E+00 -1.00E-10 -2.67E+09 -2.00E-01 

Carbon Tax LNHR 1.00E-10 0.00E+00 -1.00E-10 -1.74E+10 1.35E+06 

Nominal Default 3.41e-02 0.00E+00 -3.41E-02 -1.74E+10 1.54E+07 

Nominal LNHR 1.00E-10 0.00E+00 -1.00E-10 -1.73E+10 -1.60E+06 

RPS Default 1.00E-10 0.00E+00 -1.00E-10 -9.24E+09 -2.97E+06 

RPS LNHR 1.00E-10 0.00E+00 -1.00E-10 -1.50E+10 3.94E+07 
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7.2.1 Carbon Tax Default 

The Regulated Carbon Tax Default case represents a scenario in which a carbon tax is levied on 
components that release carbon as part of their electricity production. “Default” refers to the current trend 
of technology pricing for both nuclear and VRE. In this case, we see the optimizer quickly drive capacity 
to zero and converge on the no-IES baseline mean NPV value. Since NPPs are not carbon producers, this 
favors nuclear as a dispatchable technology, so the IES does not see opportunity to be of benefit. 

 

Figure 36. Regulated Carbon Tax Default scenario results. 
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7.2.2 Carbon Tax LNHR 

The Regulated Carbon Tax LNHR case also imposes carbon taxes on energy produced by units that 
release carbon as part of their electricity generation, but also includes a trend towards lower nuclear costs 
and higher VRE costs. This case likewise approaches the no-IES case quickly. The low-nuclear, high-
VRE pricing serves to further push the ISO/RTO to dispatch nuclear, and so leaves little room for the IES 
to be leveraged. 

 

Figure 37. Regulated Carbon Tax LNHR scenario results. 
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7.2.3 Nominal Default 

The Regulated Nominal Default case supposes no carbon tax and no renewable penetration strategy 
and uses prices for nuclear and VRE based on their current trajectories. While this case also optimized to 
a minimal IES, it did settle on a nonzero-sized IES, as shown in Table 13. However, the small value of the 
IES suggests that, in a regulated market sense, the IES shows limited benefit for the NPP size optimized 
in the scenario by US-REGEN. 

 

Figure 38. Regulated Nominal Default scenario results. 
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7.2.4 Nominal LNHR 

The Regulated Nominal LNHR case also does not impose a carbon tax or renewable penetration 
strategy but does predict a trend of increasing VRE costs and reducing NPP costs. As expected, since this 
trend favors the dispatch of nuclear, the IES is once again minimized in the optimization. 

 

Figure 39. Regulated Nominal LNHR scenario results. 
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7.2.5 RPS Default 

The Regulated RPS Default case imposes a 100% renewable portfolio strategy by 2050, while still 
allowing nuclear. With the reduction in production from technologies such as natural gas, nuclear power 
becomes a more favorable unit to dispatch, so there is minimal beneficial economic impact from adding 
an IES. 

 

Figure 40. Regulated RPS Default scenario results. 
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7.2.6 RPS LNHR 

Even more so than in the previous case, the Regulated RPS LNHR case benefits nuclear over other 
technologies, causing it to be preferentially dispatched and minimizing the potential benefit of introducing 
an IES. 

 

Figure 41. Regulated RPS LNHR scenario results. 
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8. DEREGULATED MARKET SIMULATION RESULTS 

8.1 Dispatching  
In this section, we show and briefly discuss one example of 24-hour dispatch optimization. Since each 

dispatch optimization is part of the solution to one year within one sample, within a single outer 
optimization cycle, the example in Figure 42 is only demonstrative of the dispatch optimization 
mechanics.  

 

Figure 42. Deregulated, example dispatch optimization. 

In Figure 42, from top to bottom, we show the electricity usage, over/under production penalties, 
hydrogen usage, and storage level overlaid with the load. 

Electricity production has two possible sources: generation at the NPP, which is a constant full-
capacity generation; and the secondary market, which shows up in the second plot as an Underproduction 
Penalty, simulates purchasing electricity on a short-term imbalance market, and is only used when 
insufficient hydrogen is available to meet the hydrogen customer demand. There are three possible 
destinations for the electricity: use at the HTSE to produce hydrogen, sale to the grid so the ISO/RTO can 
meet the load demand, or the Overproduction Penalty, which centers on the VRE production tax credit 
and loosely simulates the cost to sufficiently underbid to use the electricity at the grid. 

The primary hydrogen source is the HTSE but can also be the hydrogen storage. The storage can also 
act as a sink, with the primary sink being the hydrogen market. The production rates of each of these 
components are shown in the third plot. 

For this case, the NPP is frequently not used sufficiently at the grid, and the HTSE is modest in size. 
As a result, over many hours, the NPP overproduces and pays an overproduction penalty. We expect that, 
in the greater optimization, this would result in a larger IES (HTSE and hydrogen market) in the next 
iteration to reduce this penalty. In hour 12, however, the optimized solution pays an underproduction 
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penalty to acquire energy from a secondary market in order to operate the HTSE enough to keep the 
hydrogen stream constant to the hydrogen market. 

On the hydrogen side, there is a consistent buildup of storage until the peak load demands are seen, 
which corresponds to the highest clearing prices and the ISO/RTO fully dispatching the NPP. During 
these hours, the stored hydrogen is used as much as possible, then additional production at the HTSE is 
taking electricity from the secondary electricity market. 

8.2 Optimization Results  
For deregulated markets, we consider the IES and ISO/RTO as independent entities. Unlike in the 

regulated case, the ISO/RTO pays the same price for electricity to all electricity units dispatched in an 
hour, i.e., the clearing price. The clearing price is determined by the costliest per-megawatt electricity 
generator dispatched during the hour. Thus, each component bids their price for production and available 
capacity, and each hour the ISO/RTO dispatches units from cheapest to most expensive to cover the 
demand. Meanwhile, the IES (including the NPP) has an alternative revenue stream in the form of 
hydrogen production, allowing the IES to increase its electricity production bid to ensure more favorable 
electricity prices but still generate useful production when the NPP is not fully dispatched in order to 
cover the demand. The driving question for the NPP owner is, can increasing the electricity bid and 
selling hydrogen result in sufficient profits to overcome the capital costs of constructing and maintaining 
an IES? 

It appears that it is not generally economical for the NPP entity to construct an IES. The cases 
generally show a trend towards reducing the IES size to increase NPP revenue, with many converging on 
a 0-size IES. Gradients near 0-size IES continue to persistently point towards minimizing the IES size. 
Especially for the deregulated case the LPM could be the main reason for this behavior. Referring to 
Figure 11 we can notice that the prices of LMP are quite high and therefore the opportunity cost of 
electricity production versus hydrogen production places the hydrogen generation out of the market in 
order to compete with the electricity. Once more, interaction with industry is providing a different 
projection for the long term LMP, which is notably lower. It is probably worth stressing again that at this 
point we are seeking the proper response from the software rather than zooming in a specific case. So, the 
fact that hydrogen production generally is not built given the high opportunity cost of not supplying 
electricity is a point of coherence of the results that we take as a success. Moreover, the fact that in the 
case “Carbon Tax policy with a LNHR” there is construction of hydrogen production, as discussed below, 
is again a testimony of the proper implementation of the market dynamics. In fact, the scenario has plenty 
of nuclear but an issue with covering the volatility in net demand with the high cost of carbon, preferring 
then using the hydrogen production to absorb the cost of volatility. 

The one exception is the Carbon Tax policy with a LNHR construction cost outlook. This case tends 
to retain more nuclear to cover the load due to the increased bid prices of the carbon-producing units; 
when not dispatched, this nuclear capacity can be used for producing hydrogen at a net profit for the NPP 
owner. Though the RPS LNHR case has similar characteristics, the average nuclear present over the years 
is lower by nearly 10%, thus affording less opportunity to make use of the IES. 

We discuss each of these scenarios specifically in the following sections. A summary of the results is 
shown in Table 14. In contrast to the Regulated Market cases, a wide variety of outcomes were seen for 
the Deregulated Market cases, ranging from no inclusion of the IES (the RPS Default case) to very 
significant gains from including the IES (the Carbon Tax Default and Nominal Default cases). Because 
the perspective is shifted from the ISO/RTO to the benefit to the NPP itself, driving forces such as over- 
or under-production of energy become economically dominating, driving the NPP to find alternative 
options to make use of its capacity. This greatly increases the potential benefit of including the IES. 
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Table 14. Deregulated, final accepted iteration step results. 

Case 
HTSE 

Capacity 
H2 Storage 

Capacity 
H2 Market 
Capacity 

NPP Bid 
Adjust Mean NPV ΔNPV 

Carbon Tax 
Default 3.04E+00 3.69E+04 -2.88E+00 0.00E+00 -1.59E+09 2.97E+09 

Carbon Tax 
LNHR 1.68E-01 2.14E+05 -9.04E-03 7.68E+03 3.28E+10 8.86E+07 

Nominal 
Default 5.04E+00 1.69E+04 -4.70E+00 0.00E+00 7.24E+09 3.85E+09 

Nominal LNHR 9.41E-02 4.74E+05 0.00E+00 9.67E+04 8.62E+09 3.01E+08 

RPS Default 0.00E+00 0.00E+00 0.00E+00 4.39E+03 0.00E+00 0.00E+00 

RPS LNHR 1.51E-01 2.62E+04 -1.15E-01 2.70E+04 3.19E+10 2.65E+08 
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8.2.1 Carbon Tax Default 

This scenario represents the behavior of the IES as a deregulated entity with a policy enacting carbon 
taxes on components that release carbon as part of electricity generation, and with currently expected 
renewable and nuclear construction cost trends. Broadly speaking, this case resulted in significant 
installation of wind and natural gas technologies, along with some nuclear power production. The results 
of the capacity optimization are shown in Figure 43. 

 

Figure 43. Deregulated Carbon Tax Default scenario results. 

In this optimization, we see the algorithm explore a large part of the variable input space, eventually 
landing on a modestly sized IES system with an HTSE sized at 3 kg/s (roughly 260,000 kg/d, or 470 
MW), a contract to deliver 2.88 kg/s to the hydrogen market, and a storage unit with sufficient capacity to 
store 3.37 hours of contracted hydrogen delivery. The improvement in NPV is far larger than the standard 
deviation of the baseline, suggesting a clear benefit in including the IES in this system. 
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8.2.2 Carbon Tax LNHR 

The Deregulated Carbon Tax LNHR case includes the carbon tax for carbon-releasing technologies as 
well as a trend in lower nuclear costs and higher VRE costs. This trend benefits the use of nuclear 
technology over the Carbon Tax Default case, so we expect—and observe—a reduced optimal IES size 
with respect to the non-LNHR case. 

 

Figure 44. Deregulated Carbon Tax LNHR scenario results. 

The optimal point for this case includes an HTSE sized at 0.17 kg/s (14,000 kg/d, or 26 MW) and a nearly 
non-existent market, with surprisingly large storage. This is possibly because the other optimization 
variables (likely HTSE and hydrogen market size) dominated the optimization, leaving little opportunity 
to fine-tune less dominant optimization variables such as storage size. When comparing the change in 
NPV due to the inclusion of the IES, we see a small improvement that is two orders of magnitude smaller 
than the baseline NPV standard deviation; this suggests that the IES may have some impact on this 
system, though this cannot be confirmed without greater resolution of the uncertainty. 
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8.2.3 Nominal Default 

The Deregulated Nominal Default case is one in which no carbon tax or renewable policy is applied, 
and technology costs continue on their current trajectory. This case is arguably the least favored toward 
utilizing nuclear for meeting demand. As such, we see the greatest impact of including the IES to provide 
both a flexible generation tool and a secondary market when the NPP is under-dispatched. 

 

Figure 45. Deregulated Nominal Default scenario results. 

The optimal results show an HTSE sized at 5.04 kg/s (435,000 kg/d, 780 MW) with a market contract just 
below that at 4.7 kg/s, and approximately one hour’s worth of market hydrogen in storage. This results in 
an NPV increase of nearly three standard deviations of the baseline NPV above the baseline, suggesting a 
very likely benefit for IES inclusion in the system. 
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8.2.4 Nominal LNHR 

The Deregulated Nominal LNHR case adjusts the Nominal Default case by assuming a trajectory of 
decreasing nuclear and increasing VRE costs, driving down the potential for leveraging an IES. As shown 
in the figure, the optimizer explores a wide range of possibilities around the no-IES system, without 
finding improvements. 

 

Figure 46. Deregulated Nominal LNHR scenario results. 

The optimization results for this case lead to a very small HTSE and a non-existent market, with 
arbitrarily sized storage and NPP bid. This solution is well within the noise of the baseline NPV and 
suggests minimal benefit from IES inclusion. 
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8.2.5 RPS Default 

The Deregulated RPS Default case includes a policy of 100% renewables by 2050, which allows for 
nuclear. This scenario resulted in phasing out nuclear power early on in the scenario, making IES 
inclusion impractical. In agreement with this expectation, the optimization algorithm immediately 
reduced the size of the IES to zero and consistently agreed with that conclusion until persistence was 
reached. 

 

Figure 47. Deregulated RPS Default scenario results. 
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8.2.6 RPS LNHR 

As with the case above, the Deregulated RPS LNHR scenario is one in which a policy of 100% 
renewables by 2050 is applied, but with a trend toward increasing VRE costs and decreasing NPP costs. 
This scenario retained, and even constructed, some new nuclear in later years; as a result, there is still 
some room for leveraging an IES in the system, though the desired dispatch of the NPP limits the 
practical IES size. 

 

Figure 48. Deregulated RPS LNHR scenario results. 

The optimal result for this case includes a small HTSE sized at 0.15 kg/s (13,000 kg/d, 23.4 MW) and a 
market of 0.12 kg/s, with sufficient storage to provide 63 hours to the market This solution’s increase in 
NPV is well within one standard deviation of the baseline NPV and is insufficiently resolved to clearly 
indicate the benefit of an IES within this system. 
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9. CONCLUSIONS 
In this work, we demonstrated, from both a deregulated and regulated perspective, the use of HERON 

as a tool for STEA by considering the viability of introducing an IES into an existing grid energy system. 
We considered the impact over six different projection scenarios developed using US-REGEN and 
expertise at EPRI, showing one potential coupling between long-term capacity expansion modeling and 
long-term STEA. This work builds significantly on previous work with HERON by introducing direct 
electricity market feedback based on the activities of the IES in both regulated and deregulated systems. 
The IES is considered in a way that might allow existing NPPs to perform under flexible operation 
without curtailing generation. In the following sections, we discuss the impact of the results obtained in 
this work. Once more, the focus of this work is to assess the viability of the software rather than focusing 
on the results of the analysis. To properly achieve conclusion on the economic viability of hydrogen 
production one should focus on a specific scenario, be sure to represent correctly each possible revenue 
stream from multiple markets, which would require a better treatment of the storage aspects and its 
implication in terms of reduction of necessary capacity. 

Another aspect in this effort that deserves highlighting is the computational achievements of these 
simulations. Thankfully due to recent improvement in the RAVEN infrastructure it was possible to run 
these simulations using ~500 processors in parallel. 96 realization of the NPV were executed in parallel to 
ensure a good statistical sample of each of the 5 points used for the calculation of the gradient to drive the 
optimization. Accounting also for the reduction of computational time due to the use of clustering in the 
selection of representative days, it has been demonstrated that, without loss of accuracy, a combination of 
parallel implementation and AI led to an increase in computational speed by a factor of 5000. Without 
these computational choices, these analyses would not have been feasible, since each run, fully 
accelerated, each took more than few hours. 

 

9.1 HERON for STEA in Regulated and Deregulated Markets 
When considered along with recent demonstrations of HERON for regulated and deregulated market 

analysis [1-4], this work demonstrates the viability of using HERON in a variety of STEA scenarios, 
including regulated and deregulated markets, systems in which the IES is either small or large compared 
to the existing grid energy system, multiple forecasting scenarios, and coupled with a long-term capacity 
expansion model. Through the use of synthetic history generation in RAVEN, HERON can comprehend 
critical stochastic behavior in load, weather, and price data in order to more effectively capture the 
economic viability of various grid profiles, especially when including an IES that delivers secondary 
products with their own market structure. 

Specific to this work, introducing electricity market feedback for IES operation significantly 
increased the ability to capture the real behavior of deregulated market systems, especially given the day-
ahead dispatch requirements of the electricity producing NPP within the IES. Whereas in previous 
HERON demonstrations it was possible to assume the shift of electricity production was negligible for the 
NPP and therefore caused no notable impact in electricity prices, in the majority of cases considered in 
this work, NPPs made up a significant part of the grid energy profile. This necessitated capturing the 
impact of IES operation on the dispatching activities of the ISO/RTO, leading to greater flexibility in 
capturing markets with a strong nuclear presence that may also wish to participate in secondary markets 
via IES. 

During the analyses in this work, the capacities for all electricity-generating components was taken 
from the capacity expansion scenarios in US-REGEN, without the inclusion of the IES. This allowed each 
scenario to have a baseline performance and enabled us to determine the relative economic viability of 
introducing an IES into the scenario. However, this does not answer the question of whether building 
more nuclear capacity could result in an even more profitable opportunity for IES inclusion. The nuclear 
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capacities have been optimized by the capacity expansion model specifically for a grid-energy system 
with no IES in place, and the STEA is trying to see if there is room to insert an IES posteriori. An 
interesting follow up to this set of studies would be to introduce a variable allowing the nuclear capacity 
to increase by some degree and seeing if more nuclear would be built in the interest of building a larger 
IES. 

In the future, this work could be extended to answer questions about building new plants with IES built at 
the beginning. Tighter coupling between the capacity expansion and IES dispatch would allow the 
capacity expansion models to make investment decisions based on IES availability. This could, in turn, 
show the system’s propensity to build larger plants with IES, or whether smaller increments of plants 
(such as small modular or microreactors) would be more useful in building out the nuclear fleet. 

 

 

9.2 Future Work 
While the capability of HERON to optimize dispatch and capacity of co-product production has been 

proven, some of the possible benefits of co-generation are still to be included in the analysis. 

In particular, it is currently possible to add capacity payments in HERON in deregulated markets, but 
this would not be captured as reduction of capacity expansion costs so it would not be seen in regulated 
market. From current ongoing analysis in cooperation with the industry we learned that this could reveal 
itself being a large contribution to establishing the benefits of having flexible power output from NPPs. In 
the current FY it is a goal to improve the treatment of storage in HERON. A large part of properly 
capturing the benefits of storage is to accurately assess its impact on the reduction of the installed 
capacity requirements. 

HERON can be used today to perform revenue forecasts for flexible power operations with a level of 
accuracy above what was available before and while areas of improvement remain, we look forward to 
using the software to perform real case applications. 

During the development of this large set of user case example a few minor desired improvements 
were identified, like the capability to run the simulation directly for the differential NPV instead of post 
processing the results. In addition, a graphical user interface dedicated to the visualization of the data flow 
would be very helpful. 

In conclusion, HERON today provides capabilities that were needed and not available before for the 
financial analysis of flexible power operations. From a computational and software standpoint the work 
has been very successful. The availability of this tool will help the industry to make more informed 
investment decisions in the near term.    
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APPENDIX A: Example Deregulated HERON Input 
 

This is an example of the HERON input XML file for the Deregulated Carbon Tax Default case. This 
HERON input results in compilation of component characteristics, as well as the generation of RAVEN 
outer and inner input files. 
<HERON> 
  <Case name="D_CarbonTax_Default"> 
    <mode>opt</mode> 
    <label name="state">IL</label> 
    <label name="strategy">CarbonTax</label> 
    <label name="price_struct">Default</label> 
    <label name="regulated">No</label> 
    <label name="rotated">Yes</label> 
    <num_arma_samples>96</num_arma_samples> 
    <time_discretization> 
      <year_variable>YEAR</year_variable> 
      <time_variable>HOUR</time_variable> 
      <end_time>23</end_time> 
      <num_steps>24</num_steps> 
    </time_discretization> 
    <economics> 
      <ProjectTime>26</ProjectTime> 
      <DiscountRate>0.08</DiscountRate> 
      <tax>0.25</tax> 
      <inflation>0.025</inflation> 
      <verbosity>50</verbosity> 
    </economics> 
    <dispatcher> 
      <custom> 
        <location>../../dispatchers/dereg.py</location> 
      </custom> 
    </dispatcher> 
  </Case> 
 
  <Components> 
    <Component name="NPP"> 
      <produces dispatch="fixed" resource="electricity"> 
        <capacity resource="electricity"> 
          <Function method="NPP_cap">functions</Function> 
        </capacity> 
      </produces> 
      <economics> 
        <lifetime>30</lifetime> 
      </economics> 
    </Component> 
    <Component name="HTSE"> 
      <produces dispatch="dependent" resource="H2"> 
        <capacity resource="H2"> 
          <Function method="get_HTSE_cap_from_delta">functions</Function> 
        </capacity> 
        <consumes>electricity</consumes> 
        <transfer> 
          <linear> 
            <rate resource="electricity">-0.043</rate> 
            <rate resource="H2">1</rate> 
          </linear> 
        </transfer> 
      </produces> 
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      <economics> 
        <lifetime>30</lifetime> 
        <CashFlow inflation="none" mult_target="False" name="capex" taxable="True" type="one-time"> 
          <driver> 
            <Function method="get_HTSE_cap_from_delta_driver">functions</Function> 
          </driver> 
          <reference_price> 
            <fixed_value>-545263737</fixed_value> 
          </reference_price> 
          <reference_driver> 
            <fixed_value>7.4</fixed_value> 
          </reference_driver> 
          <scaling_factor_x> 
            <fixed_value>0.955</fixed_value> 
          </scaling_factor_x> 
          <depreciate>15</depreciate> 
        </CashFlow> 
        <CashFlow inflation="none" mult_target="False" name="fixed_OM" period="year" taxable="True" type="repeating"> 
          <driver> 
            <Function method="get_HTSE_cap_from_delta_driver">functions</Function> 
          </driver> 
          <reference_price> 
            <fixed_value>-70752705</fixed_value> 
          </reference_price> 
          <reference_driver> 
            <fixed_value>7.4</fixed_value> 
          </reference_driver> 
          <scaling_factor_x> 
            <fixed_value>0.955</fixed_value> 
          </scaling_factor_x> 
        </CashFlow> 
      </economics> 
    </Component> 
    <Component name="H2_storage"> 
      <stores dispatch="independent" resource="H2"> 
        <capacity resource="H2"> 
          <opt_bounds>0, 1e6</opt_bounds> 
        </capacity> 
        <initial_stored> 
          <fixed_value>0</fixed_value> 
        </initial_stored> 
      </stores> 
      <economics> 
        <lifetime>30</lifetime> 
        <CashFlow inflation="none" mult_target="False" name="capex" taxable="True" type="one-time"> 
          <driver> 
            <variable>H2_storage_capacity</variable> 
          </driver> 
          <reference_price> 
            <fixed_value>-550</fixed_value> 
          </reference_price> 
          <depreciate>15</depreciate> 
        </CashFlow> 
      </economics> 
    </Component> 
    <Component name="grid"> 
      <demands dispatch="dependent" resource="electricity"> 
        <capacity> 
          <Function method="get_load">functions</Function> 
        </capacity> 
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      </demands> 
      <economics> 
        <lifetime>1</lifetime> 
        <CashFlow inflation="none" mult_target="False" name="grid_sales" taxable="True" type="repeating"> 
          <driver> 
            <Function method="e_consume">functions</Function> 
          </driver> 
          <reference_price> 
            <Function method="grid_price">functions</Function> 
          </reference_price> 
        </CashFlow> 
      </economics> 
    </Component> 
    <Component name="H2_market"> 
      <demands dispatch="dependent" resource="H2"> 
        <capacity> 
          <opt_bounds>0, -20</opt_bounds> 
        </capacity> 
      </demands> 
      <economics> 
        <lifetime>1</lifetime> 
        <CashFlow inflation="none" mult_target="False" name="H2_sales" taxable="True" type="repeating"> 
          <driver> 
            <Function method="H2_activity">functions</Function> 
          </driver> 
          <reference_price> 
            <Function method="H2_price">functions</Function> 
          </reference_price> 
        </CashFlow> 
      </economics> 
    </Component> 
    <Component name="Secondary"> 
      <produces dispatch="dependent" resource="electricity"> 
        <capacity resource="electricity"> 
          <fixed_value>1e4</fixed_value> 
        </capacity> 
      </produces> 
      <economics> 
        <lifetime>1</lifetime> 
        <CashFlow inflation="none" mult_target="False" name="secondary_e_fixup" taxable="True" type="repeating"> 
          <driver> 
            <Function method="secondary_activity">functions</Function> 
          </driver> 
          <reference_price> 
            <fixed_value>1</fixed_value> 
          </reference_price> 
        </CashFlow> 
      </economics> 
    </Component> 
    <Component name="E_Penalty"> 
      <demands dispatch="dependent" resource="electricity"> 
        <capacity resource="electricity"> 
          <fixed_value>-1e4</fixed_value> 
        </capacity> 
      </demands> 
      <economics> 
        <lifetime>1</lifetime> 
        <CashFlow inflation="none" mult_target="False" name="penalty_e_fixup" taxable="True" type="repeating"> 
          <driver> 
            <Function method="penalty_activity">functions</Function> 
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          </driver> 
          <reference_price> 
            <fixed_value>1</fixed_value> 
          </reference_price> 
        </CashFlow> 
      </economics> 
    </Component> 
  </Components> 
 
  <DataGenerators> 
    <ARMA evalMode="clustered" name="Load" variable="TOTALLOAD">../../../train/carbontax/IL/arma.pk</ARMA> 
    <Function name="functions">../../functions.py</Function> 
  </DataGenerators> 
</HERON> 
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APPENDIX B: Example Regulated HERON Input 
 

This is an example of the HERON input XML file for the Regulated RPS LNHR case. This HERON 
input results in compilation of component characteristics as well as the generation of RAVEN outer and 
inner input files. 
<HERON> 
  <Case name="R_RPS_LNHR"> 
    <mode>opt</mode> 
    <label name="state">IL</label> 
    <label name="strategy">RPS</label> 
    <label name="price_struct">LNHR</label> 
    <label name="regulated">Yes</label> 
    <label name="rotated">Yes</label> 
    <num_arma_samples>96</num_arma_samples> 
    <time_discretization> 
      <year_variable>YEAR</year_variable> 
      <time_variable>HOUR</time_variable> 
      <end_time>23</end_time> 
      <num_steps>24</num_steps> 
    </time_discretization> 
    <economics> 
      <ProjectTime>26</ProjectTime> 
      <DiscountRate>0.08</DiscountRate> 
      <tax>0.25</tax> 
      <inflation>0.025</inflation> 
      <verbosity>50</verbosity> 
    </economics> 
    <dispatcher> 
      <pyomo /> 
    </dispatcher> 
  </Case> 
 
  <Components> 
    <Component name="Coal"> 
      <produces dispatch="dependent" resource="electricity"> 
        <capacity resource="electricity"> 
          <Function method="get_coal_cap">functions</Function> 
        </capacity> 
      </produces> 
      <economics> 
        <lifetime>30</lifetime> 
        <CashFlow inflation="none" mult_target="False" name="VOM" taxable="True" type="repeating"> 
          <driver> 
            <Function method="get_e_activity">functions</Function> 
          </driver> 
          <reference_price> 
            <Function method="get_coal_mgc">functions</Function> 
          </reference_price> 
        </CashFlow> 
      </economics> 
    </Component> 
    <Component name="Gas"> 
      <produces dispatch="dependent" resource="electricity"> 
        <capacity resource="electricity"> 
          <Function method="get_gas_cap">functions</Function> 
        </capacity> 
      </produces> 
      <economics> 
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        <lifetime>30</lifetime> 
        <CashFlow inflation="none" mult_target="False" name="VOM" taxable="True" type="repeating"> 
          <driver> 
            <Function method="get_e_activity">functions</Function> 
          </driver> 
          <reference_price> 
            <Function method="get_gas_mgc">functions</Function> 
          </reference_price> 
        </CashFlow> 
      </economics> 
    </Component> 
    <Component name="Petrol"> 
      <produces dispatch="dependent" resource="electricity"> 
        <capacity resource="electricity"> 
          <Function method="get_petrol_cap">functions</Function> 
        </capacity> 
      </produces> 
      <economics> 
        <lifetime>30</lifetime> 
        <CashFlow inflation="none" mult_target="False" name="VOM" taxable="True" type="repeating"> 
          <driver> 
            <Function method="get_e_activity">functions</Function> 
          </driver> 
          <reference_price> 
            <Function method="get_petrol_mgc">functions</Function> 
          </reference_price> 
        </CashFlow> 
      </economics> 
    </Component> 
    <Component name="Other"> 
      <produces dispatch="dependent" resource="electricity"> 
        <capacity resource="electricity"> 
          <Function method="get_other_cap">functions</Function> 
        </capacity> 
      </produces> 
      <economics> 
        <lifetime>30</lifetime> 
        <CashFlow inflation="none" mult_target="False" name="VOM" taxable="True" type="repeating"> 
          <driver> 
            <Function method="get_e_activity">functions</Function> 
          </driver> 
          <reference_price> 
            <Function method="get_other_mgc">functions</Function> 
          </reference_price> 
        </CashFlow> 
      </economics> 
    </Component> 
    <Component name="H2gen"> 
      <produces dispatch="dependent" resource="electricity"> 
        <capacity resource="electricity"> 
          <Function method="get_h2gen_cap">functions</Function> 
        </capacity> 
      </produces> 
      <economics> 
        <lifetime>30</lifetime> 
        <CashFlow inflation="none" mult_target="False" name="VOM" taxable="True" type="repeating"> 
          <driver> 
            <Function method="get_e_activity">functions</Function> 
          </driver> 
          <reference_price> 
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            <Function method="get_h2gen_mgc">functions</Function> 
          </reference_price> 
        </CashFlow> 
      </economics> 
    </Component> 
    <Component name="Nuclear"> 
      <produces dispatch="dependent" resource="electricity"> 
        <capacity resource="electricity"> 
          <Function method="get_nuclear_cap">functions</Function> 
        </capacity> 
      </produces> 
      <economics> 
        <lifetime>30</lifetime> 
        <CashFlow inflation="none" mult_target="False" name="VOM" taxable="True" type="repeating"> 
          <driver> 
            <Function method="get_e_activity">functions</Function> 
          </driver> 
          <reference_price> 
            <Function method="get_nuclear_mgc">functions</Function> 
          </reference_price> 
        </CashFlow> 
      </economics> 
    </Component> 
    <Component name="VRE"> 
      <produces dispatch="dependent" resource="electricity"> 
        <capacity resource="electricity"> 
          <Function method="get_VRE_cap">functions</Function> 
        </capacity> 
      </produces> 
      <economics> 
        <lifetime>30</lifetime> 
        <CashFlow inflation="none" mult_target="False" name="VOM" taxable="True" type="repeating"> 
          <driver> 
            <Function method="get_e_activity">functions</Function> 
          </driver> 
          <reference_price> 
            <Function method="get_VRE_mgc">functions</Function> 
          </reference_price> 
        </CashFlow> 
      </economics> 
    </Component> 
    <Component name="HTSE"> 
      <produces dispatch="dependent" resource="H2"> 
        <capacity resource="H2"> 
          <Function method="get_HTSE_cap_from_delta">functions</Function> 
        </capacity> 
        <consumes>electricity</consumes> 
        <transfer> 
          <linear> 
            <rate resource="electricity">-43e-6</rate> 
            <rate resource="H2">1</rate> 
          </linear> 
        </transfer> 
      </produces> 
      <economics> 
        <lifetime>30</lifetime> 
        <CashFlow inflation="none" mult_target="False" name="capex" taxable="True" type="one-time"> 
          <driver> 
            <Function method="get_HTSE_cap_from_delta_driver">functions</Function> 
          </driver> 
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          <reference_price> 
            <fixed_value>-545263737</fixed_value> 
          </reference_price> 
          <reference_driver> 
            <fixed_value>7.4</fixed_value> 
          </reference_driver> 
          <scaling_factor_x> 
            <fixed_value>0.955</fixed_value> 
          </scaling_factor_x> 
          <depreciate>15</depreciate> 
        </CashFlow> 
        <CashFlow inflation="none" mult_target="False" name="fixed_OM" period="year" taxable="True" type="repeating"> 
          <driver> 
            <Function method="get_HTSE_cap_from_delta_driver">functions</Function> 
          </driver> 
          <reference_price> 
            <fixed_value>-70752705</fixed_value> 
          </reference_price> 
          <reference_driver> 
            <fixed_value>7.4</fixed_value> 
          </reference_driver> 
          <scaling_factor_x> 
            <fixed_value>0.955</fixed_value> 
          </scaling_factor_x> 
        </CashFlow> 
      </economics> 
    </Component> 
    <Component name="H2_storage"> 
      <stores dispatch="independent" resource="H2"> 
        <capacity resource="H2"> 
          <opt_bounds>0, 1e6</opt_bounds> 
        </capacity> 
        <initial_stored> 
          <fixed_value>0</fixed_value> 
        </initial_stored> 
      </stores> 
      <economics> 
        <lifetime>30</lifetime> 
        <CashFlow inflation="none" mult_target="False" name="capex" taxable="True" type="one-time"> 
          <driver> 
            <variable>H2_storage_capacity</variable> 
          </driver> 
          <reference_price> 
            <fixed_value>-550</fixed_value> 
          </reference_price> 
          <depreciate>15</depreciate> 
        </CashFlow> 
      </economics> 
    </Component> 
    <Component name="grid"> 
      <demands dispatch="fixed" resource="electricity"> 
        <capacity> 
          <Function method="get_load">functions</Function> 
          <multiplier>-1</multiplier> 
        </capacity> 
      </demands> 
      <economics> 
        <lifetime>1</lifetime> 
      </economics> 
    </Component> 
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    <Component name="H2_market"> 
      <demands dispatch="fixed" resource="H2"> 
        <capacity> 
          <opt_bounds>-1e-10, -20</opt_bounds> 
        </capacity> 
      </demands> 
      <economics> 
        <lifetime>1</lifetime> 
        <CashFlow inflation="none" mult_target="False" name="H2_sales" taxable="True" type="repeating"> 
          <driver> 
            <Function method="H2_activity">functions</Function> 
          </driver> 
          <reference_price> 
            <Function method="H2_price">functions</Function> 
          </reference_price> 
        </CashFlow> 
      </economics> 
    </Component> 
  </Components> 
 
  <DataGenerators> 
    <ARMA evalMode="clustered" name="Load" variable="TOTALLOAD">../../../train/rps_lnhr/IL/arma.pk</ARMA> 
    <Function name="functions">../../functions.py</Function> 
  </DataGenerators> 
</HERON> 
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APPENDIX C: Example RAVEN Outer Input 
The following is an example of one of the HERON-generated RAVEN outer optimization inputs, in 

this instance for the Deregulated Carbon Tax Default case. This input is used to optimize the capacity 
space by running the RAVEN inner optimization input. 

<Simulation verbosity="debug"> 
  <RunInfo> 
    <JobName>D_CarbonTax_Default_o</JobName> 
    <WorkingDir>D_CarbonTax_Default_o</WorkingDir> 
    <Sequence>optimize</Sequence> 
    <batchSize>5</batchSize> 
    <RemoteRunCommand>raven_sawtooth_qsub.sh</RemoteRunCommand> 
    <NumMPI>96</NumMPI> 
    <mode>mpi 
      <runQSUB /> 
      <memory>10gb</memory> 
    </mode> 
    <expectedTime>20:0:0</expectedTime> 
    <clusterParameters>-P lwrs</clusterParameters> 
    <internalParallel>True</internalParallel> 
    <PYTHONPATH>/home/talbpaul/projects/HERON/src</PYTHONPATH> 
  </RunInfo> 
 
  <Steps> 
    <MultiRun name="optimize"> 
      <Input class="Files" type="raven">inner_workflow</Input> 
      <Input class="Files" type="">heron_lib</Input> 
      <Input class="Files" type="">transfers</Input> 
      <Model class="Models" type="Code">raven</Model> 
      <Optimizer class="Optimizers" type="FiniteDifference">cap_opt</Optimizer> 
      <Output class="DataObjects" type="PointSet">opt_eval</Output> 
      <SolutionExport class="DataObjects" type="PointSet">opt_soln</SolutionExport> 
      <Output class="OutStreams" type="Print">opt_soln</Output> 
    </MultiRun> 
  </Steps> 
 
  <VariableGroups> 
    <Group name="GRO_capacities">H2_storage_capacity, H2_market_capacity, Secondary_capacity, E_Penalty_capacity, 
IES_delta_cap, NPP_bid_adjust</Group> 
    <Group name="GRO_outer_results"> 
      mean_NPV, std_NPV, med_NPV, max_NPV, min_NPV, 
      perc_5_NPV, perc_95_NPV, samp_NPV, var_NPV 
    </Group> 
    <Group name="GRO_case_labels">state_label, strategy_label, price_struct_label, regulated_label, rotated_label</Group> 
  </VariableGroups> 
 
  <DataObjects> 
    <PointSet name="opt_eval"> 
      <Input>GRO_capacities</Input> 
      <Output>mean_NPV</Output> 
    </PointSet> 
    <PointSet name="opt_soln"> 
      <Input>trajID</Input> 
      <Output>iteration, accepted, GRO_capacities, mean_NPV</Output> 
    </PointSet> 
  </DataObjects> 
 
  <Models> 
    <Code name="raven" subType="RAVEN"> 
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      <executable>/Users/talbpw/projects/raven/raven_framework</executable> 
      <outputExportOutStreams>disp_results</outputExportOutStreams> 
      <conversion> 
        <input source="../write_inner.py" /> 
      </conversion> 
      <alias type="input" variable="denoises">Samplers|MonteCarlo@name:mc_arma_dispatch|constant@name:denoises</alias> 
      <alias type="input" 
variable="NPP_capacity">Samplers|MonteCarlo@name:mc_arma_dispatch|constant@name:NPP_capacity</alias> 
      <alias type="input" 
variable="HTSE_capacity">Samplers|MonteCarlo@name:mc_arma_dispatch|constant@name:HTSE_capacity</alias> 
      <alias type="input" 
variable="H2_storage_capacity">Samplers|MonteCarlo@name:mc_arma_dispatch|constant@name:H2_storage_capacity</alias> 
      <alias type="input" 
variable="grid_capacity">Samplers|MonteCarlo@name:mc_arma_dispatch|constant@name:grid_capacity</alias> 
      <alias type="input" 
variable="H2_market_capacity">Samplers|MonteCarlo@name:mc_arma_dispatch|constant@name:H2_market_capacity</alias> 
      <alias type="input" 
variable="Secondary_capacity">Samplers|MonteCarlo@name:mc_arma_dispatch|constant@name:Secondary_capacity</alias> 
      <alias type="input" 
variable="E_Penalty_capacity">Samplers|MonteCarlo@name:mc_arma_dispatch|constant@name:E_Penalty_capacity</alias> 
      <alias type="input" variable="state_label">Samplers|MonteCarlo@name:mc_arma_dispatch|constant@name:state_label</alias> 
      <alias type="input" 
variable="strategy_label">Samplers|MonteCarlo@name:mc_arma_dispatch|constant@name:strategy_label</alias> 
      <alias type="input" 
variable="price_struct_label">Samplers|MonteCarlo@name:mc_arma_dispatch|constant@name:price_struct_label</alias> 
      <alias type="input" 
variable="regulated_label">Samplers|MonteCarlo@name:mc_arma_dispatch|constant@name:regulated_label</alias> 
      <alias type="input" 
variable="rotated_label">Samplers|MonteCarlo@name:mc_arma_dispatch|constant@name:rotated_label</alias> 
      <alias type="input" 
variable="IES_delta_cap">Samplers|MonteCarlo@name:mc_arma_dispatch|constant@name:IES_delta_cap</alias> 
      <alias type="input" 
variable="NPP_bid_adjust">Samplers|MonteCarlo@name:mc_arma_dispatch|constant@name:NPP_bid_adjust</alias> 
    </Code> 
  </Models> 
 
  <Distributions> 
    <Uniform name="H2_storage_capacity_dist"> 
      <lowerBound>0.0</lowerBound> 
      <upperBound>1000000.0</upperBound> 
    </Uniform> 
    <Uniform name="H2_market_capacity_dist"> 
      <lowerBound>-20.0</lowerBound> 
      <upperBound>0.0</upperBound> 
    </Uniform> 
    <Uniform name="IES_delta_cap_capacity_dist"> 
      <lowerBound>0</lowerBound> 
      <upperBound>5</upperBound> 
    </Uniform> 
    <Uniform name="NPP_bid_adjust_capacity_dist"> 
      <lowerBound>0</lowerBound> 
      <upperBound>100000.0</upperBound> 
    </Uniform> 
  </Distributions> 
 
  <Optimizers> 
    <GradientDescent name="cap_opt"> 
      <objective>mean_NPV</objective> 
      <!-- <variable> nodes filled by HERON --> 
      <constant name="denoises">96</constant> 
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      <TargetEvaluation class="DataObjects" type="PointSet">opt_eval</TargetEvaluation> 
      <samplerInit> 
        <limit>800</limit> 
        <writeSteps>every</writeSteps> 
        <type>max</type> 
      </samplerInit> 
      <gradient> 
        <FiniteDifference> 
          <gradDistanceScalar>0.005</gradDistanceScalar> 
        </FiniteDifference> 
      </gradient> 
      <stepSize> 
        <GradientHistory> 
          <growthFactor>1.25</growthFactor> 
          <shrinkFactor>1.1</shrinkFactor> 
          <initialStepScale>0.3</initialStepScale> 
        </GradientHistory> 
      </stepSize> 
      <acceptance> 
        <Strict /> 
      </acceptance> 
      <convergence> 
        <gradient>1e-8</gradient> 
        <objective>1e-8</objective> 
        <stepSize>0.01</stepSize> 
      </convergence> 
      <constant name="state_label">IL</constant> 
      <constant name="strategy_label">CarbonTax</constant> 
      <constant name="price_struct_label">Default</constant> 
      <constant name="regulated_label">No</constant> 
      <constant name="rotated_label">Yes</constant> 
      <variable name="H2_storage_capacity"> 
        <distribution>H2_storage_capacity_dist</distribution> 
        <initial>50000.0</initial> 
      </variable> 
      <variable name="H2_market_capacity"> 
        <distribution>H2_market_capacity_dist</distribution> 
        <initial>-1.0</initial> 
      </variable> 
      <constant name="Secondary_capacity">10000.0</constant> 
      <constant name="E_Penalty_capacity">-10000.0</constant> 
      <Constraint class="Functions" type="External">h2_sizing</Constraint> 
      <variable name="IES_delta_cap"> 
        <distribution>IES_delta_cap_capacity_dist</distribution> 
        <initial>0.25</initial> 
      </variable> 
      <variable name="NPP_bid_adjust"> 
        <distribution>NPP_bid_adjust_capacity_dist</distribution> 
        <initial>5000.0</initial> 
      </variable> 
    </GradientDescent> 
  </Optimizers> 
 
  <Files> 
    <Input name="inner_workflow" type="raven">../inner.xml</Input> 
    <Input name="heron_lib">../heron.lib</Input> 
    <Input name="transfers">../../../functions.py</Input> 
  </Files> 
 
  <OutStreams> 
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    <Print name="opt_soln"> 
      <type>csv</type> 
      <source>opt_soln</source> 
      <clusterLabel>trajID</clusterLabel> 
    </Print> 
  </OutStreams> 
 
  <Functions> 
    <External file="../../functions" name="h2_sizing"> 
      <variables>IES_delta_cap, H2_market_capacity</variables> 
    </External> 
  </Functions> 
</Simulation> 
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APPENDIX D: Example RAVEN Inner Input 
This is an example of a generated RAVEN inner input file for synthetic signal sampling and dispatch 
optimization. The blueprint for this file is generated by HERON and subsequently filled in by RAVEN 
outer optimization for each point in the outer optimization space. 
<Simulation verbosity="debug"> 
 <RunInfo> 
  <JobName>D_CarbonTax_Default_i</JobName> 
  <WorkingDir>D_CarbonTax_Default_i</WorkingDir> 
  <Sequence>arma_sampling, summarize</Sequence> 
  <internalParallel>True</internalParallel> 
  <batchSize>96</batchSize> 
 </RunInfo> 
 
 <Steps> 
  <MultiRun name="arma_sampling"> 
   <Input class="DataObjects" type="PointSet">dispatch_placeholder</Input> 
   <Model class="Models" type="EnsembleModel">sample_and_dispatch</Model> 
   <Sampler class="Samplers" type="MonteCarlo">mc_arma_dispatch</Sampler> 
   <Output class="DataObjects" type="DataSet">arma_metrics</Output> 
  </MultiRun> 
  <PostProcess name="summarize"> 
   <Input class="DataObjects" type="PointSet">arma_metrics</Input> 
   <Model class="Models" type="PostProcessor">average</Model> 
   <Output class="DataObjects" type="PointSet">metrics_avg</Output> 
   <Output class="OutStreams" type="Print">disp_results</Output> 
  </PostProcess> 
 </Steps> 
 
 <VariableGroups> 
  <Group name="GRO_dispatch">GRO_dispatch_in, GRO_dispatch_out, _ROM_Cluster, HOUR, YEAR</Group> 
  <Group name="GRO_dispatch_in">GRO_dispatch_in_scalar, GRO_dispatch_in_Time</Group> 
  <Group name="GRO_dispatch_out">NPV</Group> 
  <Group name="GRO_dispatch_in_scalar">GRO_capacities, scaling, GRO_case_labels</Group> 
  <Group name="GRO_dispatch_in_Time">TOTALLOAD</Group> 
  <Group name="GRO_armasamples">GRO_armasamples_in, GRO_armasamples_out</Group> 
  <Group name="GRO_armasamples_in">GRO_armasamples_in_scalar</Group> 
  <Group name="GRO_armasamples_out">GRO_armasamples_out_scalar</Group> 
  <Group name="GRO_armasamples_in_scalar">scaling, time_delta, GRO_capacities, GRO_case_labels</Group> 
  <Group name="GRO_armasamples_out_scalar">NPV</Group> 
  <Group name="GRO_final_return"> 
      mean_NPV, std_NPV, med_NPV, max_NPV, min_NPV, 
      perc_5_NPV, perc_95_NPV, samp_NPV, var_NPV 
    </Group> 
  <Group name="GRO_means">Dispatch__NPP__electricity, Dispatch__HTSE__electricity, Dispatch__HTSE__H2, 
Dispatch__H2_storage__H2, Dispatch__H2_storage__H2, Dispatch__grid__electricity, Dispatch__H2_market__H2, 
Dispatch__Secondary__electricity, Dispatch__E_Penalty__electricity</Group> 
  <Group name="GRO_interp">stepwise</Group> 
  <Group name="GRO_capacities">HTSE_capacity, H2_storage_capacity, H2_market_capacity, Secondary_capacity, 
E_Penalty_capacity, NPP_bid_adjust</Group> 
  <Group name="GRO_init_disp">Dispatch__NPP__electricity, Dispatch__HTSE__electricity, Dispatch__HTSE__H2, 
Dispatch__H2_storage__H2, Dispatch__H2_storage__H2, Dispatch__grid__electricity, Dispatch__H2_market__H2, 
Dispatch__Secondary__electricity, Dispatch__E_Penalty__electricity</Group> 
  <Group name="GRO_case_labels">state_label, strategy_label, price_struct_label</Group> 
 </VariableGroups> 
 
 <DataObjects> 
  <DataSet name="arma_samples"> 
   <Input>GRO_armasamples_in</Input> 
   <Output>GRO_armasamples_out</Output> 
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  </DataSet> 
  <PointSet name="arma_metrics"> 
   <Output>NPV</Output> 
  </PointSet> 
  <PointSet name="metrics_avg"> 
   <Output>GRO_final_return</Output> 
  </PointSet> 
  <DataSet name="disp_avg"> 
   <Output>GRO_means</Output> 
   <Index var="HOUR">GRO_means</Index> 
   <Index var="YEAR">GRO_means</Index> 
  </DataSet> 
  <DataSet name="dispatch_eval"> 
   <Input>GRO_dispatch_in</Input> 
   <Index var="HOUR">GRO_dispatch_in_Time</Index> 
   <Index var="YEAR">GRO_dispatch_in_Time</Index> 
   <Index var="_ROM_Cluster">GRO_dispatch_in_Time</Index> 
  </DataSet> 
  <PointSet name="dispatch_placeholder"> 
   <Input>GRO_dispatch_in_scalar</Input> 
  </PointSet> 
  <DataSet name="Load_meta"/> 
  <PointSet name="Load_placeholder"> 
   <Input>scaling</Input> 
  </PointSet> 
  <DataSet name="Load_samples"> 
   <Input>scaling</Input> 
   <Output>TOTALLOAD</Output> 
   <Index var="HOUR">TOTALLOAD</Index> 
   <Index var="YEAR">TOTALLOAD</Index> 
   <Index var="_ROM_Cluster">TOTALLOAD</Index> 
  </DataSet> 
 </DataObjects> 
 
 <Models> 
  <ExternalModel ModuleToLoad="/Users/talbpw/projects/HERON/src/DispatchManager.py" name="dispatch" subType=""> 
   <variables>GRO_dispatch, GRO_armasamples</variables> 
  </ExternalModel> 
  <ExternalModel ModuleToLoad="/Users/talbpw/projects/HERON/src/DispatchBypass.py" name="dispatch_bypass" 
subType=""> 
   <variables>GRO_dispatch, GRO_armasamples</variables> 
  </ExternalModel> 
  <ExternalModel ModuleToLoad="/Users/talbpw/projects/HERON/src/ArmaBypass.py" name="arma_bypass" subType=""> 
   <variables>TOTALLOAD, YEAR, _ROM_Cluster, HOUR, scaling</variables> 
  </ExternalModel> 
  <EnsembleModel name="sample_and_dispatch" subType=""> 
   <Model class="Models" type="ExternalModel"> 
    dispatch_bypass 
    <Input class="DataObjects" type="PointSet">dispatch_placeholder</Input> 
    <TargetEvaluation class="DataObjects" type="DataSet">dispatch_eval</TargetEvaluation> 
   </Model> 
   <Model class="Models" type="ExternalModel"> 
    arma_bypass 
    <Input class="DataObjects" type="PointSet">Load_placeholder</Input> 
    <TargetEvaluation class="DataObjects" type="DataSet">Load_samples</TargetEvaluation> 
   </Model> 
  </EnsembleModel> 
  <PostProcessor name="average" subType="BasicStatistics"> 
   <expectedValue prefix="mean">NPV</expectedValue> 
   <sigma prefix="std">NPV</sigma> 
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   <median prefix="med">NPV</median> 
   <maximum prefix="max">NPV</maximum> 
   <minimum prefix="min">NPV</minimum> 
   <percentile prefix="perc">NPV</percentile> 
   <samples prefix="samp">NPV</samples> 
   <variance prefix="var">NPV</variance> 
  </PostProcessor> 
  <ROM name="Load" subType="pickledROM"> 
   <clusterEvalMode>clustered</clusterEvalMode> 
  </ROM> 
 </Models> 
 
 <Files> 
  <Input name="libs">heron.lib</Input> 
 </Files> 
 
 <Samplers> 
  <MonteCarlo name="mc_arma_dispatch"> 
   <samplerInit> 
    <initialSeed>42</initialSeed> 
    <limit>96</limit> 
   </samplerInit> 
   <constant name="scaling">1.0</constant> 
   <constant name="HTSE_capacity">10.0</constant> 
   <constant name="H2_storage_capacity">500000.0</constant> 
   <constant name="H2_market_capacity">-10.0</constant> 
   <constant name="Secondary_capacity">10000.0</constant> 
   <constant name="E_Penalty_capacity">-10000.0</constant> 
   <constant name="state_label">IL</constant> 
   <constant name="strategy_label">CarbonTax</constant> 
   <constant name="price_struct_label">Default</constant> 
   <constant name="denoises">3</constant> 
   <constant name="NPP_bid_adjust">50000.0</constant> 
  </MonteCarlo> 
 </Samplers> 
 
 <OutStreams> 
  <Print name="disp_debug"> 
   <type>csv</type> 
   <source>arma_samples</source> 
  </Print> 
  <Print name="disp_results"> 
   <type>csv</type> 
   <source>metrics_avg</source> 
  </Print> 
  <Print name="Load_meta"> 
   <type>csv</type> 
   <source>Load_meta</source> 
  </Print> 
 </OutStreams> 
 
</Simulation> 
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APPENDIX E: All ARMA Results 

APPENDIX E.1 Carbon Tax Default 
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APPENDIX E.2: Carbon Tax LNHR 
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APPENDIX E.3: Nominal Default 
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APPENDIX E.4: Nominal LNHR 
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APPENDIX E.5: RPS 
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APPENDIX E.6: RPS LNHR 
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