

Technoeconomic Analysis of Product Diversification Options for Sustainability of the Monticello and Prairie Island Nuclear Power Plants

#### November 2021

L. Todd Knighton, Daniel Wendt, James Richards, Cristian Rabiti, Abdalla Abou-Jaoude, Tyler Westover, Kurt Vedros, Samuel Bates, and Richard Boardman

Idaho National Laboratory

Amgad Elgowainy, Adarsh Bafana, Krishna Reddi, and Guiyan Zang (ANL) *Argonne National Laboratory* 

In collaboration with Mark Ruth, Bethany Frew, Daniel Levie, Paige Jadun, and Jal Desai *National Renewable Energy Laboratory* 

Sherry Bernhoft, Brittany Westlake, and David McCollum *Electric Power Research Institute* 

Daniel Ludwig, Molly Strasser, and Bryan Ramler *Xcel Energy* 



INL is a U.S. Department of Energy National Laboratory operated by Batelle Energy Alliance, LLC

#### DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

INL/EXT-21-62563 Rev 1

# Technoeconomic Analysis of Product Diversification Options for Sustainability of the Monticello and Prairie Island Nuclear Power Plants

L. Todd Knighton, Daniel Wendt, James Richards, Cristian Rabiti, Abdalla Abou-Jaoude, Tyler Westover, Kurt Vedros, Samuel Bates, and Richard Boardman Idaho National Laboratory

> Amgad Elgowainy, Adarsh Bafana, Krishna Reddi, and Guiyan Zang (ANL) Argonne National Laboratory

In collaboration with Mark Ruth, Bethany Frew, Daniel Levie, Paige Jadun, and Jal Desai *National Renewable Energy Laboratory* 

> Daniel Ludwig, Molly Strasser, and Bryan Ramler *Xcel Energy*

Sherry Bernhoft, Brittany Westlake, and David McCollum *Electric Power Research Institute* 

November 2021

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared Under DOE Award DE-NE0008925

[Page intentionally blank]

### **EXECUTIVE SUMMARY**

The objective of this work was to perform technoeconomic analysis (TEA) of hybrid options that could be integrated with light-water reactor (LWR) nuclear power plants (NPPs) in order to improve the viability and sustainability of existing LWRs through product diversification by using nuclear energy, not only to produce grid electricity, but also to produce carbon-free products, such as hydrogen, ammonia, or synthetic fuels. Much of the analysis herein could be generally applied to any LWR (high-temperature steam electrolysis [HTSE] design), but potential hydrogen demand and the optimization of the HTSE was completed with specific collaboration and data from Xcel Energy's Prairie Island (PI) and Monticello Nuclear Generating Stations and the surrounding market and logistics potential in the greater Minneapolis region. Xcel Energy has set aggressive goals with regards to decarbonization, including an 80% reduction in CO<sub>2</sub> emissions from 2005 levels by 2030 and 100% carbon-free energy by 2050. Other TEAs regarding hydrogen production with nuclear energy have been completed in collaboration with other utility companies previously. Besides being the first TEA in this regard specific to Xcel Energy and the surrounding markets and logistics, this TEA adds to previous work by providing the most up-to-date and state-of-the-art HTSE modeling and optimization of the hydrogen-production plant integrated with nuclear power.

This work has developed the following analyses and conclusions:

- Potential hydrogen market analysis of the greater Minneapolis region and Lifecycle CO<sub>2</sub> emissions analysis of various hybrid product options that can be integrated with an LWR and produced using carbon-free nuclear energy, including:
  - Hydrogen use in fuel-cell electric vehicles versus conventional transportation fuels.
  - Co-firing of hydrogen in a 30 vol% mixture with natural gas in combustion turbine power plants versus 100% natural gas firing.
  - Hydrogen use in petroleum refineries as an alternative to steam methane reforming (SMR).
  - Hydrogen use in direct reduced iron steel-making process versus conventional coke usage.
  - Hydrogen use in ammonia production versus conventional SMR.
  - Hydrogen and CO<sub>2</sub> feedstock to synthetic fuels processes versus conventional transportation fuels.
- Detailed state-of-the-art process design and financial analysis of hydrogen production via HTSE integrated with an LWR NPP.
- **Optimization of the NPP-HTSE plant in a regulated grid environment** where HTSE capital expenses (CAPEX), HTSE capacity (hydrogen demand), and a possible hydrogen-production tax credit (PTC) are used as optimization variables and where the NPP can dispatch electricity to either the grid or to the HTSE plant, depending on the locational marginal pricing (LMP) forecast. An "envelope of profitability" to show conditions under which the NPP-HTSE can be profitable is presented.
- Modeling of use case analysis of carbon-free hydrogen produced from nuclear energy such as:
  - Blending of hydrogen in 30 vol% blend
  - Delivery of hydrogen via compression versus liquefaction
  - Ammonia production
  - Synthetic-fuels production (diesel and jet).

Figure E-1 shows an overview of the HTSE and NPP generic design integration with heat off-take via a thermal delivery loop (TDL) from the NPP to the HTSE as designed in the analysis in this report. It is recognized that various iterations of designs for thermal power extraction are being studied, and this configuration may not be the optimal final design. Other design options not included in this report could include removing heat from other areas and adding condensate return to the first NPP feedwater heater

versus the condenser. These alternate design options could prove to be less expensive and more efficient and will be the topic of future studies.

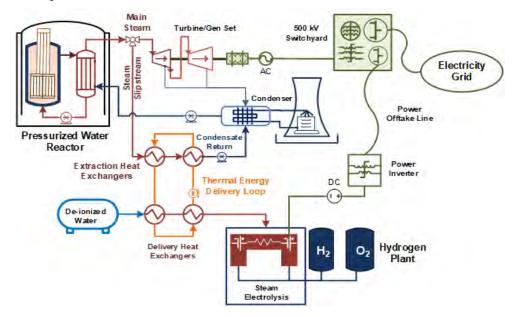



Figure E-1. Overview of HTSE Integrated with an NPP. Equipment added to the NPP include the steam slipstream from the turbine inlet, the TDL, the HTSE hydrogen plant and associated water and electricity supply tie-ins.

A static steady-state levelized cost of hydrogen (LCOH) analysis advanced case, shown in Figure E-2, shows that for a 347 tonne/day hydrogen plant (roughly the size of the output of the Monticello NPP), an NPP-HSTE can produce hydrogen competitively with SMR if the electricity price is just above \$20/MWh with no CO<sub>2</sub> credit and assuming a modified 2021 AEO West North Central (WNC) region reference natural gas price case. NPP-HTSE can only be competitive with SMR at \$30/MWh electricity price if a hydrogen production credit is considered. The advanced case assumes a lower solidoxide electrolyzer cell (SOEC) stack cost than the base case, which is based on the Hydrogen Fuel Cell Technology Office (HFTO) current record. This lower stack cost is based on publicly calculated information on state-of-the-art improvements in SOEC capital costs from various vendors.

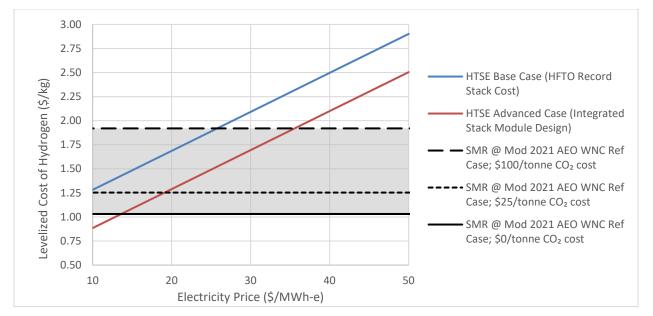



Figure E-2. LCOH of 347 tonne/day HTSE base and advanced cases versus 342 tonne/day SMR with \$0, \$25/tonne, and \$100/tonne CO<sub>2</sub> cost. The HTSE LCOH includes a \$0.16/kg adder for the cost of transporting hydrogen product to an off-site customer. SMR natural gas feedstock pricing based on Modified 2021 AEO West North Central (WNC) Region Reference Case.

From the optimization analysis, Figure E-3 shows the variation of the optimization variables HTSE CAPEX, HTSE capacity ( $H_2$  demand), and a clean hydrogen PTC where an NPP-HTSE plant could be profitable based on the analysis assumptions in this report. The dashed lines represent the high HTSE CAPEX case represented by the HFTO Record and the low HTSE CAPEX represented by the advanced case discussed in this report. Figure E-3a shows the envelope of profitability for Prairie Island.

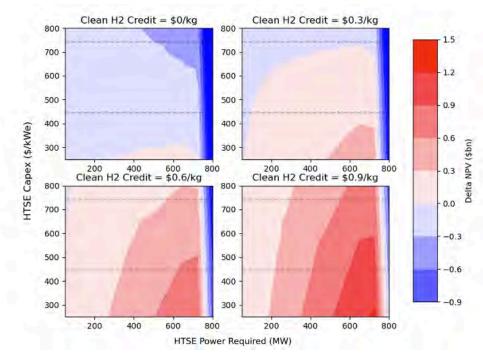



Figure E-3a. HTSE CAPEX (total capital investment),  $H_2$  Demand, carbon-free hydrogen credit and their effect on  $\Delta$ net present value (NPV) for the NPP-HTSE plant versus business-as-usual (BAU) at Prairie Island. For reference, using the full two reactors of output from PI could produce up to 29,290 kg/hr (703 tonne/day) of  $H_2$  and a single 545 MW reactor could produce up to 14,570 kg/hr (350 tonne/day) of  $H_2$ . The horizontal dashed lines show the placement of the base and advanced case HTSE CAPEX corresponding to the high and low scenarios developed in Section 3.

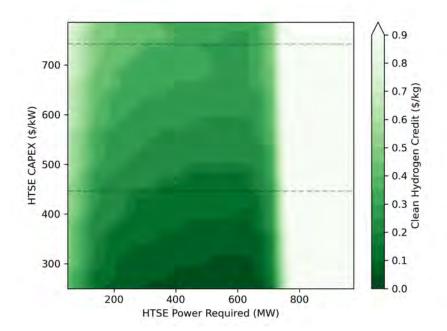



Figure E-3b. Profitable limit surface of HTSE CAPEX (total capital investment), hydrogen demand, and clean-hydrogen credit at Prairie Island. For reference, the maximum energy that PI could provide to an

HTSE could produce up to 29,290 kg/hr (703 tonne/day). A single 545 MW reactor could produce up to 14,570 kg/hr (350 tonne/day). The horizontal dashed lines show the placement of the base and advanced case HTSE CAPEX corresponding to the high and low scenarios developed in Section 3.

The cost of  $NH_3$  production per the NPP-HTSE- $NH_3$  plant analyzed in this report is shown in Figure E-4 assuming an electricity cost of \$30/MWh. The cost of avoided  $CO_2$  is also plotted to show the cost of decarbonization or, alternatively, the hypothetical carbon credit that would make the NPP-HTSE- $NH_3$  on parity with conventional ammonia production.

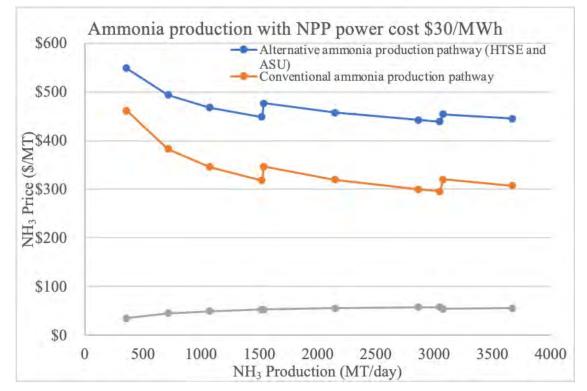



Figure E-4. Conventional and alternative ammonia production price and cost of avoided  $CO_2$  as a function of NH<sub>3</sub> plant capacity (based on an electricity price of \$30/MWh).

The CO<sub>2</sub> reduction impact of hydrogen blending with natural gas in natural gas power plants that can be realized is shown in Figure E-5. A 30 vol% mixture of hydrogen with CO<sub>2</sub> results in just over 10% reduction in CO<sub>2</sub>. This is because 30 vol% H<sub>2</sub> with natural gas represents only ~9% blending by energy because the volumetric heating value of hydrogen is approximately 30% of the corresponding heating value of natural gas. Although, the potential greenhouse-gas (GHG)-emission reduction for this mixing ratio appears small, the amount of potential CO<sub>2</sub> abatement is significant due to the large contribution of natural-gas generating plants to the U.S. national GHG-emissions inventory.

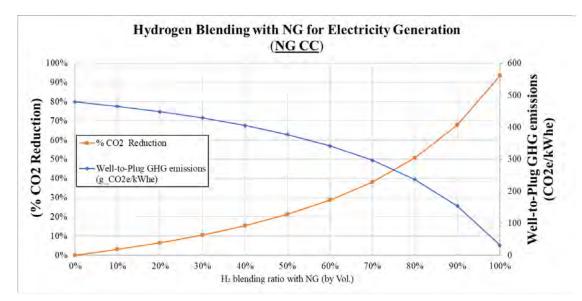



Figure E-5. Hydrogen blending with natural gas at different blending ratios and well-to-pump GHG emissions.

Synthetic fuels analysis using the HTSE + reverse water gas shift (RWGS) + Fischer-Tropsch (FT) pathway is shown below in Figure E-6. This chart shows that with the advanced synfuels case using the advanced HTSE case inputs, a CO<sub>2</sub> feedstock cost of 17/MT (assuming pure CO<sub>2</sub> from ethanol plants), and the 2050 diesel forecast price, synthetic diesel fuel via this pathway could be competitive with conventional diesel if hydrogen were produced at 1.14/kg. Today, producing synthetic fuels would have a cost of avoided CO<sub>2</sub> as shown in Table E-1.

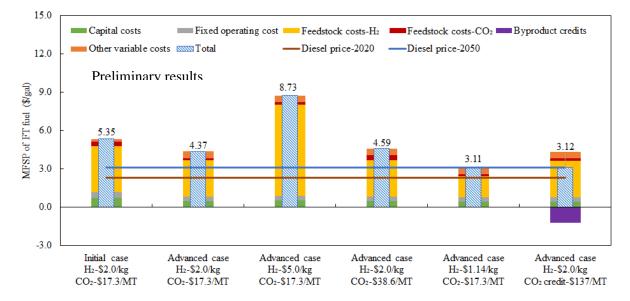



Figure E-6. Synfuels (via HTSE + RWGS + FT) production price at different  $H_2$  and  $CO_2$  price points and break-even scenario

In Table E-1, the hybrid options analyzed in this report are ranked in order of the estimated cost of avoided carbon from lowest to highest.

Cost of avoided of  $CO_2$  is strongly driven by assumptions of key cost drivers such as natural gas prices, nuclear electricity prices, etc. The cost of avoided  $CO_2$  is calculated using the equation below for each application listed in the table. A technology readiness level is estimated for each of the applications provided in the table.

Cost of avoided 
$$CO_2\left(\frac{\$}{MT}\right) = change \ of \ application \ price \ \left(\frac{\$}{MT}\right) / change \ of \ CO_2 \ emissions \ \left(\frac{MT \ CO_2}{MT}\right)$$

| Table E-1. Hybrid options for integration with LWRs ranked in order of least cost of avoided CO2 to | ) |
|-----------------------------------------------------------------------------------------------------|---|
| greatest.                                                                                           |   |

| Nuclear-H <sub>2</sub><br>Applications    | Cost of<br>Avoided CO <sub>2</sub><br>(\$/MT CO <sub>2e</sub> ) | Technology<br>Readiness<br>Level (TRL)<br>(basic = 1, fully<br>commercial =<br>9) | Notes: Nuclear Electricity Price Assumed to be<br>\$30/MWh, Nuclear-H <sub>2</sub> at \$1.93/kg and natural gas<br>pricing based on Modified 2021 AEO West North<br>Central (WNC) Region Reference Case                                                                  |
|-------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ammonia                                   | \$35–58                                                         | 8–9                                                                               | Comparing ammonia production facility using nuclear<br>power for air separation unit for N <sub>2</sub> and high-<br>temperature electrolysis (HTE) for H <sub>2</sub> to a conventional<br>ammonia production plant at different production rate.<br>(Section 4.3).     |
| Refineries                                | \$100                                                           | 9                                                                                 | Comparing Nuclear-H $_2$ to H $_2$ from natural gas SMR at 1.03/kg.                                                                                                                                                                                                      |
| Synfuels                                  | \$137 (Diesel)<br>\$200 (Jet<br>fuel)                           | 2–3                                                                               | Comparing advanced synfuel production to untaxed<br>diesel prices at \$3.1/gal (2050) and untaxed price of jet<br>fuel \$2.6/gal (2050).                                                                                                                                 |
| Natural<br>Gas-H <sub>2</sub><br>blending | \$135–172                                                       | 6–7                                                                               | Comparing nuclear- $H_2$ to energy equivalent price of<br>natural gas on higher heating value (HHV) Btu basis.<br>This cost of avoided $CO_2$ is for the range of natural gas<br>prices for natural gas electricity generators in the<br>Minnesota's Twin Cities region. |
| FCEVs                                     | \$55–270                                                        | 9                                                                                 | Comparing H <sub>2</sub> \$5-7/kg (at dispenser for fuel cell<br>vehicles), per DOE H <sub>2</sub> fueling cost target, to untaxed<br>gasoline price in 2050 (\$2.96/gal), the cost of avoided<br>carbon is very sensitive to assumed H <sub>2</sub> price.              |

| ACF | RONYN | MS     |                                                                             | xxiii |
|-----|-------|--------|-----------------------------------------------------------------------------|-------|
| 1   | INTR  | RODUC  | TION                                                                        | 1     |
| 2   | DEM   | IAND M | IARKETS AND LIFECYCLE CO2 ANALYSIS                                          | 4     |
|     | 2.1   | Nation | nal Potential Hydrogen Demand                                               | 4     |
|     |       | 2.1.1  | Fuel-Cell Electric Vehicles                                                 | 4     |
|     |       | 2.1.2  | Co-Firing of Hydrogen with Natural Gas in Combustion Turbines               | 7     |
|     |       | 2.1.3  | Petroleum Refineries                                                        | 9     |
|     |       | 2.1.4  | Direct Reduced Iron for Metals-Refining and Steel Production                | 11    |
|     |       | 2.1.5  | Ammonia and Fertilizers                                                     | 13    |
|     |       | 2.1.6  | Synthetic Fuels                                                             | 15    |
|     |       | 2.1.7  | Summary of U.S. Potential Hydrogen Demand Forecast                          | 18    |
|     | 2.2   | Region | nal Potential Hydrogen Demand in the Minnesota Region                       |       |
|     |       | 2.2.1  | Prairie Island Nuclear Power Plant                                          |       |
|     |       | 2.2.2  | Monticello Nuclear Power Plant                                              |       |
|     |       | 2.2.3  | Overlapping Demand Between Prairie Island and Monticello NPPs               |       |
|     |       | 2.2.4  | Transportation of Hydrogen Using Pipelines for Xcel Energy's NPPs           | 23    |
|     |       | 2.2.5  | Delivery Cost Adjusted Demand Curves for Prairie Island and Monticello NPPs | 20    |
| 3   | LWR   | -HTSE  | NFFS<br>HYDROGEN PLANT DESIGN MODEL DEVELOPMENT                             |       |
| -   | 3.1   |        | ss-Modeling Design Basis                                                    |       |
|     |       | 3.1.1  | Process Overview                                                            |       |
|     |       | 3.1.2  | Equipment and Operating Condition Specifications                            |       |
|     |       | 3.1.3  | HTSE Process Model Performance Estimates                                    |       |
|     |       | 3.1.4  | HTSE Process Design Considerations                                          |       |
|     | 3.2   |        | Process Capital and Operating Costs                                         |       |
|     |       | 3.2.1  | HTSE Process Capital Costs                                                  |       |
|     |       | 3.2.2  | HTSE Process Operations and Maintenance Costs                               |       |
|     | 3.3   | Consta | ant Hydrogen Production (Non-Grid-Integrated) LCOH Production Analysis.     |       |
|     |       | 3.3.1  | Sensitivity Analyses                                                        | 64    |
|     |       | 3.3.2  | Comparison of HTSE and Steam Methane Reforming                              | 69    |
|     |       | 3.3.3  | Impact of Natural Gas Price                                                 | 70    |
|     |       | 3.3.4  | Impact of Carbon Tax                                                        | 72    |
|     |       | 3.3.5  | Comparison of HTSE and SMR LCOH                                             | 72    |
|     | 3.4   | Summ   | ary of HTSE Process & Status Financial Analysis                             | 75    |
| 4   | LWR   | -HTSE  | ECONOMIC DISPATCH AND OPTIMIZATION                                          | 79    |
|     | 4.1   | Optim  | ization-Model Formulation                                                   |       |
|     |       | 4.1.1  | Optimization Model Inputs                                                   |       |

|      |                            | 4.1.2    | Dispatch Logic                                                                                  |     |
|------|----------------------------|----------|-------------------------------------------------------------------------------------------------|-----|
|      |                            | 4.1.3    | Economic Inputs                                                                                 |     |
|      |                            | 4.1.4    | Optimization Model Assumptions                                                                  |     |
|      | 4.2                        | Dispat   | ch Optimization Results                                                                         |     |
|      |                            | 4.2.1    | Prairie Island                                                                                  |     |
|      |                            | 4.2.2    | Monticello                                                                                      | 91  |
|      |                            | 4.2.3    | Discussion of HTSE Optimization Results                                                         | 94  |
|      |                            | 4.2.4    | Future Work on Economic Dispatch Optimization                                                   |     |
|      |                            | 4.2.5    | Summary                                                                                         | 96  |
| 5    | FINA                       | NCIAL    | EVALUATIONS OF OTHER HYBRID INTEGRATIONS WITH LWRs                                              | 97  |
|      | 5.1                        | Hydrog   | gen Blending with Natural Gas for Use in Natural Gas Power Plants                               | 97  |
|      | 5.2                        | Hydrog   | gen Storage and Delivery                                                                        |     |
|      |                            | 5.2.1    | Gaseous Hydrogen Delivery Using a Pipeline-Delivery Pathway                                     |     |
|      |                            | 5.2.2    | Liquid-Hydrogen Delivery Pathway                                                                | 100 |
|      | 5.3                        | Ammo     | nia-Plant Financial Analysis                                                                    | 102 |
|      |                            | 5.3.1    | Overview of Ammonia Production                                                                  | 102 |
|      |                            | 5.3.2    | Ammonia Synthesis Process Evaluation                                                            | 102 |
|      |                            | 5.3.3    | Process Comparison                                                                              | 115 |
|      |                            | 5.3.4    | Cost of Avoided CO <sub>2</sub> for Ammonia Production Using H <sub>2</sub> from Nuclear Energy | 117 |
|      | 5.4                        | Synthe   | tic Fuels                                                                                       | 119 |
|      |                            | 5.4.1    | Co-electrolysis and Methanol/Ethanol Routes to Synfuels Analysis                                | 119 |
|      |                            | 5.4.2    | HTSE, RWGS, and Fischer-Tropsch Route to Synfuels Analysis                                      | 122 |
|      |                            | 5.4.3    | Optimized FT Fuel Production Scenario (Advanced Case)                                           | 123 |
|      | 5.5                        | Cryoge   | enic Refrigerant Cycle                                                                          | 125 |
|      | 5.6                        | Chlor-   | Alkali                                                                                          | 125 |
|      | 5.7                        | Formic   | c Acid                                                                                          | 126 |
|      |                            | 5.7.1    | Overview of the Current and Near-Future Formic-Acid Market                                      | 126 |
|      |                            | 5.7.2    | Analysis of Nuclear Power Plant Facilities and the Formic Acid Market                           | 127 |
| 6    | SUM                        | MARY     | OF HYBRID OPTIONS INTEGRATION WITH NPPS                                                         | 129 |
| 7    | CON                        | CLUSIC   | DN                                                                                              | 131 |
|      | 7.1                        | HTSE     | Optimization Summary                                                                            | 133 |
|      | 7.2                        | LWR      | Nuclear-H <sub>2</sub> Utilization Scenarios and Carbon Reduction                               | 133 |
| 8    | REFE                       | RENCE    | ES                                                                                              | 135 |
| APPI | ENDIX                      | A THE    | RMAL POWER EXTRACTION FROM NUCLEAR POWER PLANTS                                                 | 143 |
| A-1. | Thern                      | nal Ener | gy Transport Analysis                                                                           | 145 |
|      |                            |          | N                                                                                               |     |
| A-3. | Requirements and Decisions |          |                                                                                                 |     |

| A-4. | Thermal Power Dispatch Design for Steam in the TPD Loop |     |
|------|---------------------------------------------------------|-----|
| A-5. | Thermal Power Delivery Loop Design with Steam           |     |
| A-6. | Heat-Dispatch Model Descriptions                        | 151 |
| A-7. | Heat-Dispatch Model Results                             |     |
| A-8. | Safety Analysis of Thermal-Power Extraction and HTSE    | 155 |
| APPI | ENDIX B ALTERNATIVE MARKET ANALYSIS APPROACH            | 158 |
| B-1. | Alternative Economic Approach                           |     |
|      | B-1.1 Load Response                                     |     |
|      | B-1.2 Battery Equivalence                               |     |
| B-2. | Alternative Approach Limitations                        |     |
| B-3. | Battery Equivalency Results                             |     |
| APPI | ENDIX C ENERGY STORAGE OPTIONS EVALUATION               |     |
| C-1. | Methodology                                             |     |
| C-2. | Batteries                                               |     |
|      | Flow Batteries                                          |     |
|      | Sodium Sulfur Batteries                                 |     |
|      | Lead-Acid Batteries                                     |     |
|      | Lithium-Ion Batteries                                   | 171 |
|      | Summary—Battery Energy Storage                          |     |
| C-3. | Hydrogen Energy Storage                                 |     |
|      | Summary—Hydrogen Energy Storage                         | 176 |
| C-4. | Mechanical                                              |     |
|      | Compressed Air Energy Storage                           |     |
|      | Pumped Hydro Storage                                    | 176 |
|      | Solid Mass Gravitational Energy Storage                 |     |
|      | Liquid Air Energy Storage (LAES)                        |     |
|      | Summary—Mechanical Energy Storage                       |     |
| C-5. | Thermal                                                 |     |
|      | Phase Change                                            |     |
|      | Molten Salt                                             |     |
|      | High-Temperature Concrete                               |     |
|      | Summary—Thermal Energy Storage                          |     |
| C-6. | Summary of Energy Storage Options                       |     |
| APPI | ENDIX D HTSE PROCESS ANALYSIS SUPPLEMENTAL INFORMATION  |     |
| D-1. | HTSE Detailed Process Flow Diagrams                     |     |

| HTSE Process Flow Diagrams194                                   |
|-----------------------------------------------------------------|
| Prairie Island LWR-HTSE Capital Costs                           |
| Monticello LWR-HTSE Capital Costs                               |
| HTSE Process Model Stream Tables                                |
| Comparison of HTSE and SMR LCOH                                 |
| APPENDIX E LWR-HTSE ASU AMMONIA SYNTHESIS PROCESS FLOW DIAGRAMS |
| E-1. Main Process                                               |
| LWR/TDL                                                         |
| High-Temperature Steam Electrolysis                             |
| H <sub>2</sub> Recovery                                         |
| H <sub>2</sub> Product Compression                              |
| Air Separation Unit                                             |
| N <sub>2</sub> Compression                                      |
| NH <sub>3</sub> Synthesis                                       |
| LWR-HTSE ASU Process Model Stream Tables                        |
| Appendix F Market Analyses                                      |
| F-1 Market and Demand Points in the Minnesota Region            |

# FIGURES

| Figure E-1. Overview of HTSE Integrated with an NPP. Equipment added to the NPP include the steam slipstream from the turbine inlet, the TDL, the HTSE hydrogen plant and associated water and electricity supply tie-ins                                                                                                                                                                                                                                                                                                                                                                                                                     | ii |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure E-2. LCOH of 347 tonne/day HTSE base and advanced cases versus 342 tonne/day SMR with \$0, \$25/tonne, and \$100/tonne CO <sub>2</sub> cost. The HTSE LCOH includes a \$0.16/kg adder for the cost of transporting hydrogen product to an off-site customer. SMR natural gas feedstock pricing based on Modified 2021 AEO West North Central (WNC) Region Reference Case                                                                                                                                                                                                                                                               | ii |
| Figure E-3a. HTSE CAPEX (total capital investment), H <sub>2</sub> Demand, carbon-free hydrogen credit<br>and their effect on Δnet present value (NPV) for the NPP-HTSE plant versus business-<br>as-usual (BAU) at Prairie Island. For reference, using the full two reactors of output<br>from PI could produce up to 29,290 kg/hr (703 tonne/day) of H <sub>2</sub> and a single 545 MW<br>reactor could produce up to 14,570 kg/hr (350 tonne/day) of H <sub>2</sub> . The horizontal dashed<br>lines show the placement of the base and advanced case HTSE CAPEX corresponding<br>to the high and low scenarios developed in Section 3 i | v  |
| Figure E-3b. Profitable limit surface of HTSE CAPEX (total capital investment), hydrogen demand, and clean-hydrogen credit at Prairie Island. For reference, the maximum energy that PI could provide to an HTSE could produce up to 29,290 kg/hr (703                                                                                                                                                                                                                                                                                                                                                                                        |    |

| tonne/day). A single 545 MW reactor could produce up to 14,570 kg/hr (350 tonne/day). The horizontal dashed lines show the placement of the base and advanced case HTSE CAPEX corresponding to the high and low scenarios developed in Section 3.           | iv |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure E-4. Conventional and alternative ammonia production price and cost of avoided CO <sub>2</sub> as a function of NH <sub>3</sub> plant capacity (based on an electricity price of \$30/MWh).                                                          | v  |
| Figure E-5. Hydrogen blending with natural gas at different blending ratios and well-to-pump<br>GHG emissions                                                                                                                                               | vi |
| Figure E-6. Synfuels (via HTSE + RWGS + FT) production price at different H <sub>2</sub> and CO <sub>2</sub> price points and break-even scenario                                                                                                           | vi |
| Figure 7. WTW life-cycle GHG emissions results for LDVs.                                                                                                                                                                                                    | 7  |
| Figure 8. WTW life-cycle GHG-emissions results for HDVs, including CIDI diesel engines.                                                                                                                                                                     | 7  |
| Figure 9. Natural gas power plants in the U.S and potential hydrogen demand if hydrogen were blended at 30 vol% H <sub>2</sub> with natural gas                                                                                                             | 8  |
| Figure 10. Life-cycle GHG-emission for natural gas electricity generators, well-to-wall outlet analysis.                                                                                                                                                    | 9  |
| Figure 11. NG-H <sub>2</sub> blending ratio versus achievable percentage of CO <sub>2</sub> reduction and W2W GHG emissions for natural gas power plants                                                                                                    | 9  |
| Figure 12. Projected total hydrogen demand for U.S. refineries by PADD, through 2050                                                                                                                                                                        |    |
| Figure 13. WTG GHG emissions for hydrogen production with SMR and HTE                                                                                                                                                                                       |    |
| Figure 14. LCA of GHG emissions for various steel-making process options                                                                                                                                                                                    |    |
| Figure 15. Estimated H <sub>2</sub> demand for U.S. NH <sub>3</sub> production in 2017.                                                                                                                                                                     | 14 |
| Figure 16. Estimated hydrogen demand for U.S. NH <sub>3</sub> production through 2024 (based on data from Ammonia Industry [2018] through 2024)                                                                                                             | 14 |
| Figure 17. Life-cycle CO <sub>2</sub> emissions for conventional ammonia production versus ammonia production using NE for hydrogen generation and nitrogen separation in an ASU                                                                            | 15 |
| Figure 18. CO <sub>2</sub> sources for use in synfuels production                                                                                                                                                                                           |    |
| Figure 19. WTW total-CO <sub>2e</sub> emissions for gasoline and jet, diesel, and FT fuel (produced using nuclear H <sub>2</sub> ). Before oxygenate blending (BOB), is motor gasoline before the required amounts of oxygenate (ethanol) have been blended |    |
| Figure 20. Prairie Island Nuclear Generating Plant in Welch, Minnesota                                                                                                                                                                                      |    |
| Figure 21. Cumulative potential hydrogen demand by type and distance near the Prairie Island<br>Generating Plant.                                                                                                                                           | 20 |
| Figure 22. Future potential hydrogen demand near the Prairie Island Generating Plant                                                                                                                                                                        | 20 |

| Figure 23. Monticello Nuclear Generating Plant in Monticello, Minnesota                                                                                                                                                     | 21 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 24. Cumulative potential hydrogen demand by type and distance near the Monticello<br>Nuclear Generating Plant                                                                                                        | 21 |
| Figure 25. Future potential hydrogen demand near the Monticello Generating Plant                                                                                                                                            | 22 |
| Figure 26. Overlapping future potential hydrogen demand withing 50 miles of Prairie Island and Monticello power plants.                                                                                                     | 23 |
| Figure 27. Demand locations with labels covered by the pipeline network for Prairie Island<br>Nuclear Power Plant. Red dots: location for H <sub>2</sub> demand).                                                           | 24 |
| Figure 28. Demand locations with labels covered by the pipeline network for Monticello NPP.<br>Red dots: location for H <sub>2</sub> demand                                                                                 | 25 |
| Figure 29. Potential hydrogen demand curve near Prairie Island Nuclear Generating Plant                                                                                                                                     | 28 |
| Figure 30. Potential hydrogen demand curve near Monticello Nuclear Generating Plant                                                                                                                                         | 29 |
| Figure 31. Overview of HTSE integrated with an NPP. Equipment added to the NPP includes the steam slip stream from the turbine inlet, the TDL, the HTSE hydrogen plant, and associated water and electricity supply tie-ins | 31 |
| Figure 32. HTSE-process flow diagram.                                                                                                                                                                                       | 33 |
| Figure 33. Electrical-energy consumption as function of stack operating pressure with steam usage as a parameter.                                                                                                           | 38 |
| Figure 34. Thermal-energy consumption as function of steam usage with stack operating pressure as a parameter.                                                                                                              | 39 |
| Figure 35. HTSE system efficiency as function of stack operating pressure with steam usage as a parameter.                                                                                                                  | 40 |
| Figure 36. Prairie Island LWR-HTSE electrical- and thermal-power requirements (design point)                                                                                                                                | 44 |
| Figure 37. Monticello LWR-HTSE electrical- and thermal-power requirements (design point).                                                                                                                                   | 44 |
| Figure 38. TDL integration with NPP (simplified NPP model)                                                                                                                                                                  | 46 |
| Figure 39. Steam versus synthetic heat transfer oil TDL capital costs for a gigawatt-scale LWR/HTSE plant installation                                                                                                      | 50 |
| Figure 40. TD integration with NPP (detailed NPP model)                                                                                                                                                                     | 50 |
| Figure 41. FOAK- and NOAK-plant capital cost estimates for Prairie Island LWR-HTSE plant (HTSE stack capital cost specification of \$155/kW-dc). <sup>30</sup>                                                              | 57 |
| Figure 42. FOAK- and NOAK-plant cost estimates for Monticello LWR-HTSE plant (HTSE stack capital cost specification of \$155/kW-dc). <sup>30</sup>                                                                          | 57 |
| Figure 43. Total capital investment as a function of plant capacity for a FOAK HTSE plant (HTSE stack capital-cost specification of \$155/kW-dc). <sup>30</sup>                                                             | 58 |

| Figure 44. Total capital investment as a function of plant capacity for an NOAK HTSE plant (HTSE stack capital-cost specification of \$155/kW-dc). <sup>30</sup>                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 45. LCOH cost components for an NOAK constant hydrogen production LWR-HTSE system configuration with 347 tonnes per day actual hydrogen-production capacity (383 tonnes/day design capacity), stack cost of \$155/kW-dc, and an energy price of \$30/MWh-e                                                                                                                                                                         |
| <ul> <li>Figure 46. Sensitivity of LCOH to selected constant hydrogen production case input parameters.<br/>Base high stack cost of \$155/kW-dc results in LCOH value of \$1.93/kg corresponds to<br/>an HTSE plant with design capacity of 383 tonne/day (550 MW-dc stack power,<br/>597 MW-ac system power), which corresponds to the maximum HTSE plant capacity<br/>that could be coupled to Monticello NPP.</li> </ul>               |
| Figure 47. LCOH as function of energy price for an NOAK constant hydrogen production HTSE plant, base high stack cost (\$155/kW-dc stack cost) with 347 tonnes/day actual hydrogen production capacity (383 tonnes/day design capacity)                                                                                                                                                                                                   |
| Figure 48. LCOH sensitivity to HTSE plant capital cost and stack service life. Stack costs specified as 30% of modular equipment costs. HTSE plant design capacity of 383 tonne/day (550 MW-dc) with \$30/MWh-e electricity price (see Table 22 for listing of additional input parameter specifications). Dashed lines correspond to the base and advanced case.                                                                         |
| Figure 49. LCOH as function of LWR plant capacity (NOAK plant type, \$30/MWh-e energy price, \$155/kW-dc stack cost)                                                                                                                                                                                                                                                                                                                      |
| Figure 50. Projected natural gas pricing in the West North Central Region as reported in selected<br>EIA 2021 Annual Energy Outlook Analysis Cases. <sup>48</sup> The basis for the SMR hydrogen<br>production cost analysis presented in this report is a modified natural gas price<br>projection in which the 2021 AEO West North Central Region Reference Case is offset<br>(indicated by the light blue line)                        |
| Figure 51. US Census regions and divisions. <sup>49</sup>                                                                                                                                                                                                                                                                                                                                                                                 |
| Figure 52. LCOH of SMR-based hydrogen production as a function of plant capacity and natural<br>gas pricing. Industrial natural gas pricing based on EIA 2021 AEO WNC Region<br>Reference Case, Low and High Oil and Gas Supply Cases, as well as Modified<br>Reference Case                                                                                                                                                              |
| Figure 53. LCOH of 347 tonne/day HTSE base and advanced cases versus 342 tonne/day SMR with \$0, \$25/tonne, and \$100/tonne CO <sub>2</sub> cost. SMR and HTSE case definitions provided in Table 24 and Table 25, respectively. The HTSE LCOH includes a \$0.16/kg adder for the cost of transporting hydrogen product to an off-site customer. SMR natural gas feedstock pricing based on Modified 2021 AEO WNC Region Reference Case. |
| Figure 55. Economic dispatch and optimization model schematic80                                                                                                                                                                                                                                                                                                                                                                           |
| Figure 56. Hydrogen storage cost curves                                                                                                                                                                                                                                                                                                                                                                                                   |

| Figure 57. Demonstration of model dispatch logic over a 4-day period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 83  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 58. Effect of HTSE capital cost on storage charge and discharge hours on ΔNPV for the project 25-year lifetime at Prairie Island.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 87  |
| Figure 59. HTSE CAPEX (total capital investment), H <sub>2</sub> Demand, carbon-free hydrogen credit and<br>their effect on ΔNPV for the NPP-HTSE plant versus BAU at Prairie Island. For<br>reference, using the full two reactors of output from PI could produce up to<br>29,290 kg/hr (703 tonne/day) of H <sub>2</sub> and a single 545 MW reactor could produce up to<br>14,570 kg/hr (350 tonne/day) of H <sub>2</sub> . The horizontal dashed lines show the placement of<br>the base and advanced case HTSE CAPEX corresponding to the high and low scenarios<br>previously developed. | 88  |
| Figure 60. Limited-surface search exploring $H_2$ delivered, HTSE CAPEX (total capital investment), and clean-hydrogen credits at Prairie Island. The green surface represents a positive $\Delta$ NPV relative to BAU and the red surface represents a negative $\Delta$ NPV relative to BAU.                                                                                                                                                                                                                                                                                                  | 89  |
| Figure 61. Profitable limit surface of HTSE CAPEX (total capital investment), hydrogen demand,<br>and clean-hydrogen credit at Prairie Island. For reference, the maximum energy that PI<br>could provide to an HTSE could produce up to 29,290 kg/hr (703 tonne/day). A single<br>545 MW reactor could produce up to 14,570 kg/hr (350 tonne/day). The horizontal<br>dashed lines show the placement of the base and advanced case HTSE CAPEX<br>corresponding to the high and low scenarios developed in Section 3.                                                                           | 90  |
| Figure 62. Effect of HTSE capital cost on storage charge and discharge hours on ΔNPV for the project's 25-year lifetime at Monticello.                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91  |
| Figure 63. HTSE CAPEX (total capital investment), H <sub>2</sub> demand, clean-hydrogen credit and their<br>effect on ΔNPV versus BAU at Monticello. For reference, the maximum energy that<br>Monticello could provide to an HTSE could produce up to 17,930 kg/hr (430<br>tonne/day). The horizontal dashed lines show the placement of the base and advanced<br>case HTSE CAPEX corresponding to the high and low scenarios developed in<br>Section 3.                                                                                                                                       | 92  |
| Figure 64. Limit surface search exploring $H_2$ delivered, HTSE CAPEX (total capital investment),<br>and clean-hydrogen credit at Monticello. The green surface represents a positive $\Delta NPV$<br>relative to BAU, and the red surface represents a negative $\Delta NPV$ relative to BAU                                                                                                                                                                                                                                                                                                   | 93  |
| Figure 65. Profitable limit surface versus BAU of HTSE CAPEX (total capital investment), hydrogen demand, and clean hydrogen credit at Monticello. For reference, the maximum energy that Monticello could provide to an HTSE could produce up to 17,930 kg/hr (430 tonne/day). The horizontal dashed lines show the placement of the base and advanced case HTSE CAPEX corresponding to the high and low scenarios developed in Section 3.                                                                                                                                                     | 94  |
| Figure 66. Schematic of gaseous hydrogen-delivery pathway with pipeline supply.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98  |
| Figure 67. Construction costs for transmission pipelines of different diameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99  |
| Figure 68. Schematic of the liquid-delivery pathway.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101 |

| Figure 69. A block flow diagram for the conventional natural gas-to-ammonia process. Adapted from TEV-666. <sup>62</sup>                                                                                                                                | 103 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 70. LWR-based anhydrous ammonia production process block flow diagram                                                                                                                                                                            | 110 |
| Figure 71. Sensitivity of ammonia-production cost to electricity price, HTSE and NH <sub>3</sub> CAPEX, plant capacity, and IRR. Oxygen sales come from the separated oxygen from the air separation unit as part of the ammonia production process     | 116 |
| Figure 72. Ammonia production-cost sensitivity to plant capacity and electricity price                                                                                                                                                                  | 117 |
| Figure 73. Conventional and alternative ammonia production price and cost of avoided CO <sub>2</sub> as a function of NH <sub>3</sub> plant capacity (based on an electricity price of \$20/MWh)                                                        | 118 |
| Figure 74. Conventional and alternative ammonia production price and cost of avoided CO <sub>2</sub> as a function of NH <sub>3</sub> plant capacity (based on an electricity price of \$30/MWh)                                                        | 118 |
| Figure 75. Minimum syn-diesel fuel selling-price sensitivity for fuels via a co-electrolysis-derived syngas to methanol to fuels route. Base-case diesel MFSP \$4.45/gal at \$33.3/tonne CO <sub>2</sub> feedstock price and \$3.59/1000 lb steam price | 121 |
| Figure 76. Sensitivity of syn-diesel MFSP to plant scale for the co-electrolysis and MTO fuel process. Electricity (MWe) and thermal power (MWt) were taken from the LWR for use in co-electrolysis and are provided in parentheses.                    | 121 |
| Figure 77. H <sub>2</sub> price effect on minimum fuel selling price of FT fuel production (base case)                                                                                                                                                  | 122 |
| Figure 78. Break-even price for FT fuel production (base case) when compared to diesel prices in 2020 and 2050.                                                                                                                                         | 123 |
| Figure 79. Life-cycle GHG emissions for FT fuel using nuclear H <sub>2</sub> (advanced case)                                                                                                                                                            | 124 |
| Figure 80. H <sub>2</sub> price effect on minimum fuel selling price of FT fuel production                                                                                                                                                              | 124 |
| Figure 81. H <sub>2</sub> Break-even price for jet fuel for the advanced FT fuel production case.                                                                                                                                                       | 125 |
| Figure A-1. LCOH versus heat-transport distance and NPP O&M cost. Plotted data points are<br>based on a TDL capacity of 150 MWth and NPP O&M costs ranging from \$20 to<br>\$30/MWhe. Assumes natural gas is purchased at a price of \$4.04/MMBtu       | 145 |
| Figure A-2. Boundary limits of the thermal power dispatch GPWR simulator (dashed black line)<br>and site boundary of the NPP (dotted grey line)                                                                                                         | 146 |
| Figure A-3. P&ID for the TPE line for the model with steam in the TPD loop.                                                                                                                                                                             | 149 |
| Figure A-4. P&ID for the TPD loop with steam as the HTF.                                                                                                                                                                                                | 151 |
| Figure A-5. RELAP5-3D nodalization for both the TPE line and the TPD loop for Scenario 1 with steam in the TPD loop.                                                                                                                                    | 153 |
| Figure A-6. Aspen HYSYS process model for TPD loop for Scenario 1 with steam in the TPD loop.                                                                                                                                                           | 154 |
| Figure B-1. Block flow diagram of the HTSE charge and discharge modes of operation                                                                                                                                                                      | 160 |

| Figure B-2. Generator bid stack and effect of adding HTSE load to the system. The HTSE load would effectively move the clearing price up the stack by the amount of electric load                                                                                                                                                                                                                   |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| required for hydrogen production and storage, but down by the amount of electricity returned to the grid during peak demand                                                                                                                                                                                                                                                                         | 161 |
| Figure B-3. Battery-equivalence model under charging and discharging conditions, as opposed to flat days under Option 1.                                                                                                                                                                                                                                                                            | 163 |
| Figure C-1. Projected discharge times of various energy-storage options with their approximate applicable scales.                                                                                                                                                                                                                                                                                   | 167 |
| Figure C-2. Diagram of a divided zinc-cerium flow battery                                                                                                                                                                                                                                                                                                                                           | 169 |
| Figure C-3. Photograph of an installed NGK sodium sulfur battery module.                                                                                                                                                                                                                                                                                                                            | 169 |
| Figure C-4. Diagram displaying a common lead-acid battery chemistry.                                                                                                                                                                                                                                                                                                                                | 170 |
| Figure C-5. Tesla 80 MWh lithium-ion battery installation in Mira Loma, CA                                                                                                                                                                                                                                                                                                                          | 171 |
| Figure C-6. Volumetric and specific energy densities for various classes of battery. <sup>4</sup>                                                                                                                                                                                                                                                                                                   | 172 |
| Figure C-7. Concept image of a Highview Power CRYOBattery, their new LAirES technology. <sup>130</sup>                                                                                                                                                                                                                                                                                              | 178 |
| Figure D-1. Process Flow Diagram 1                                                                                                                                                                                                                                                                                                                                                                  | 190 |
| Figure D-2. Process Flow Diagram 2                                                                                                                                                                                                                                                                                                                                                                  | 191 |
| Figure D-3. Process Flow Diagram 3                                                                                                                                                                                                                                                                                                                                                                  | 192 |
| Figure D-4. Process Flow Diagram 4                                                                                                                                                                                                                                                                                                                                                                  | 193 |
| Figure D-5. Process Flow Diagram 5                                                                                                                                                                                                                                                                                                                                                                  | 194 |
| Figure D-6. Process Flow Diagram 6                                                                                                                                                                                                                                                                                                                                                                  | 195 |
| Figure D-7. Process Flow Diagram 7                                                                                                                                                                                                                                                                                                                                                                  | 196 |
| Figure D-8. LCOH of 347 tonne/day HTSE Base and Advanced Cases versus 342 tonne/day<br>SMR with zero cost of CO <sub>2</sub> . Economic model input parameters for SMR and HTSE<br>LCOH calculations provided in Table 24 and Table 25, respectively. A hydrogen<br>transportation cost of \$0.16/kg is included in the HTSE LCOH (the SMR LCOH does<br>not include hydrogen transportation costs). | 225 |
| Figure D-9. LCOH of 347 tonne/day HTSE Base and Advanced Cases versus 342 tonne/day<br>SMR with \$25/tonne cost of CO2. Economic model input parameters for SMR and<br>HTSE LCOH calculations provided in Table 24 and Table 25, respectively. A hydrogen<br>transportation cost of \$0.16/kg is included in the HTSE LCOH (the SMR LCOH does<br>not include hydrogen transportation costs).        | 226 |
| Figure D-10. LCOH of 347 tonne/day HTSE Base and Advanced Cases versus 342 tonne/day<br>SMR with \$100/tonne cost of CO2. Economic model input parameters for SMR and<br>HTSE LCOH calculations provided in Table 24 and Table 25, respectively. A hydrogen                                                                                                                                         |     |

| transportation cost of \$0.16/kg is included in the HTSE LCOH (the SMR LCOH does not include hydrogen transportation costs) | 227 |
|-----------------------------------------------------------------------------------------------------------------------------|-----|
| Figure E-1. Process flow diagram for NPP-HTSE ammonia synthesis, main process.                                              |     |
| Figure E-1. Frocess now diagram for NFF-FITSE ammonia synthesis, main process.                                              | 250 |
| Figure E-2. Process flow diagram for NPP-HTSE ammonia synthesis, reactor with TDL.                                          | 230 |
| Figure E-3. Process flow diagram for NPP-HTSE ammonia synthesis, HTSE                                                       | 231 |
| Figure E-4. Process flow diagram for NPP-HTSE ammonia synthesis, hydrogen recovery                                          | 231 |
| Figure E-5. Process flow diagram for NPP-HTSE ammonia synthesis, hydrogen-product                                           |     |
| compression.                                                                                                                | 232 |
| Figure E-6. Process flow diagram for NPP-HTSE ammonia synthesis, ASU.                                                       | 232 |
| Figure E-7. Process flow diagram for NPP-HTSE ammonia synthesis, nitrogen compression                                       | 232 |
| Figure E-8. Process flow diagram for NPP-HTSE ammonia synthesis.                                                            | 233 |

## TABLES

| Table E-1. Hybrid options for integration with LWRs ranked in order of least cost of avoided CO2 to greatest.                                                                         | vii |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 2. Projected light-duty vehicle stock penetration for the United States in year 2050 by powertrain from MA3T. <sup>5</sup>                                                      | 4   |
| Table 3. United States on-road fuel economy of FCEV and ICEV cars and light trucks by model year. <sup>5</sup>                                                                        | 5   |
| Table 4. Parameters relating to fuel efficiency of MHD fuel cell trucks. <sup>5</sup>                                                                                                 | 6   |
| Table 5. Summary of U.S. hydrogen demand potential in 2050                                                                                                                            | 18  |
| Table 6. Pipeline network covered for transportation near Xcel Energy's Monticello and Prairie         Island NPPs                                                                    | 26  |
| Table 7. Breakeven H <sub>2</sub> prices and CO <sub>2</sub> credits for hydrogen demand markets                                                                                      | 30  |
| Table 8. CO <sub>2</sub> credits per kg of hydrogen for a range of carbon taxes per short ton of CO <sub>2</sub>                                                                      | 30  |
| Table 9. HTSE and related subsystem process operating condition specifications.                                                                                                       | 36  |
| Table 10. BoP equipment specifications.                                                                                                                                               | 37  |
| Table 11. LWR-HTSE process summary.                                                                                                                                                   | 43  |
| Table 12. LWR/HTSE system interface equipment (the list includes NPP water-purification and cooling-system equipment that could potentially be leveraged for HTSE system operations). | 45  |
| Table 13. Indirect-cost multipliers.                                                                                                                                                  |     |
| Tuele 15. Induced cost indupries.                                                                                                                                                     |     |

| Table 14. | Capital cost summary for Prairie Island HTSE plant (NOAK plant type; max HTSE process energy consumption from both nuclear plant units).   | 55  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 15. | Capital cost summary for Monticello HTSE plant (NOAK plant type; max HTSE process-energy consumption from single nuclear plant unit).      | 56  |
| Table 16. | LWR-HTSE capital-cost correlation parameters (HTSE stack capital cost specification of \$155/kW-dc, <sup>30</sup> results in 2016 dollars) | 59  |
| Table 17. | LWR-HTSE capital cost correlation parameters (HTSE stack capital cost specification of \$155/kW-dc, <sup>30</sup> results in 2020 dollars) | 59  |
| Table 18. | HTSE process O&M cost-estimate basis.                                                                                                      | 60  |
| Table 19. | Prairie Island LWR-HTSE annual O&M costs in 2020 dollars                                                                                   | 61  |
| Table 20. | Monticello LWR-HTSE annual O&M costs in 2020 dollars                                                                                       | 62  |
| Table 21. | LWR-HTSE constant hydrogen production LCOH analysis input parameters.                                                                      | 63  |
| Table 22. | Base high-value stack cost and advanced low-value stack cost cases: conditions for HTSE sensitivity analysis.                              | 65  |
| Table 23. | Basis for advanced case low-value stack-cost sensitivity-analysis input specification                                                      | 66  |
| Table 24. | H <sub>2</sub> A model input parameters for SMR LCOH analysis                                                                              | 69  |
| Table 25. | Definition of HTSE cases used for LCOH comparison with natural gas SMR.                                                                    | 73  |
| Table 26. | Summary of Base and Advanced HTSE Model Design Cases                                                                                       | 76  |
| Table 27. | Physical inputs to dispatch and optimization model                                                                                         | 80  |
| Table 28. | Economic inputs to dispatch and optimization model from Section 0                                                                          | 80  |
| Table 29. | Coefficients for storage capital cost                                                                                                      | 81  |
| Table 30. | Cash flows for ΔNPV calculation.                                                                                                           | 84  |
| Table 31. | Financial parameters                                                                                                                       | 84  |
| Table 32. | Relationships used to estimate U.S. pipeline construction cost by component.                                                               | 99  |
| Table 33. | Estimated costs for transmission pipelines.                                                                                                | 99  |
| Table 34. | Estimated cost and key features of liquid hydrogen tankers. <sup>60</sup>                                                                  | 101 |
| Table 35. | Conventional gas-to-ammonia process capital expenses.                                                                                      | 106 |
| Table 36. | Conventional gas-to-ammonia process operating expenses                                                                                     | 108 |
| Table 37. | Financial parameters for ammonia-production analysis.                                                                                      | 109 |
| Table 38. | Conventional gas-to-ammonia process annual revenues.                                                                                       | 109 |
| Table 39. | LWR-HTSE ASU ammonia production process capital expenses.                                                                                  | 112 |

| Table 40. LWR-HTSE ASU ammonia process operating expenses.                                                                                                 | 113 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 41. LWR-HTSE ASU ammonia-production process, annual revenues                                                                                         | 114 |
| Table 42. Comparison of conventional natural gas-to-NH <sub>3</sub> and LWR-HTSE ASU ammonia-<br>production processes                                      | 115 |
| Table 43. Hybrid options for integration with LWRs ranked in order or least cost of avoided CO <sub>2</sub> to greatest                                    | 129 |
| Table 44. Hybrid options for integration with LWRs ranked in order or least Cost of Avoided         CO2 to greatest (Advanced HTSE case for H2 production) | 130 |
| Table 45. Summary of forecasted U.S. hydrogen demand potential in 2050.                                                                                    | 131 |
| Table A-1. Design requirements for the TPE System proposed for a PWR.                                                                                      | 147 |
| Table A-2. Relative advantages and disadvantages of using superheated steam or synthetic oil as the HTF in the TPD loop.                                   | 148 |
| Table A-3. Summary of scenarios for which thermal hydraulic models were developed                                                                          | 152 |
| Table A-4. Results from RELAP5-3D model for Scenario 1 with steam in the TPD loop                                                                          | 155 |
| Table B-1. LCOH under different retail prices, arbitrage returns, and battery CAPEX for Option         1.                                                  | 165 |
| Table B-2. Affordable retail electricity price under different hydrogen sales prices, arbitrage returns, and battery CAPEX for Option 1                    | 165 |
| Table C-1. Summary of key metrics for different battery energy-storage options. Table D-1                                                                  | 173 |
| Table C-2. Financial analysis of battery storage options for 4-hour storage cycled 12 times annually.                                                      | 173 |
| Table C-3. Financial analysis of battery storage options for 4-hour storage cycled 60 times annually.                                                      | 173 |
| Table C-4.Financial analysis of battery storage options for 4-hour storage cycled 200 times annually.                                                      | 174 |
| Table C-5. Financial analysis of battery storage options for 4-hour storage cycled daily                                                                   | 174 |
| Table C-6. Financial analysis of battery storage options for 12-hour storage cycled 12 times annually.                                                     | 174 |
| Table C-7. Financial analysis of battery storage options for 12-hour storage cycled 60 times annually.                                                     | 174 |
| Table C-8. Financial analysis of battery storage options for 12-hour storage cycled 200 times annually.                                                    | 174 |
| Table C-9. Financial analysis of battery storage options for 12-hour storage cycled daily                                                                  | 175 |

| Table C-10. Financial analysis of battery storage options for 100-hour storage cycled bi-annually                         | 175 |
|---------------------------------------------------------------------------------------------------------------------------|-----|
| Table C-11. Summary of key metrics for hydrogen energy-storage                                                            | 176 |
| Table C-12. Summary of key metrics for different mechanical energy-storage options                                        | 179 |
| Table C-13. Financial analysis of mechanical energy-storage options for 4-hour storage cycled 12 times annually.          | 179 |
| Table C-14. Financial analysis of mechanical energy storage options for 4-hour storage cycled 60 times annually.          | 179 |
| Table C-15. Financial analysis of mechanical energy storage options for 4-hour storage cycled         200 times annually  | 179 |
| Table C-16. Financial analysis of mechanical energy storage options for 4-hour storage cycled daily.                      | 180 |
| Table C-17. Financial analysis of mechanical energy storage options for 12-hour storage cycled      12 times annually     | 180 |
| Table C-18. Financial analysis of mechanical energy storage options for 12-hour storage cycled      60 times annually.    | 180 |
| Table C-19. Financial analysis of mechanical energy storage options for 12-hour storage cycled         200 times annually | 180 |
| Table C-20. Financial analysis of mechanical energy storage options for 12-hour storage cycled daily.                     | 181 |
| Table C-21. Financial analysis of mechanical energy storage options for 100-hour storage cycled         bi-annually.      | 181 |
| Table C-22. Summary of key metrics for different thermal energy storage options                                           | 183 |
| Table C-23. Financial analysis of thermal energy storage options for 4-hour storage cycled 12 times annually.             | 183 |
| Table C-24. Financial analysis of thermal energy storage options for 4-hour storage cycled 60 times annually              | 183 |
| Table C-25. Financial analysis of thermal energy storage options for 4-hour storage cycled 200 times annually             | 184 |
| Table C-26. Financial analysis of thermal energy storage options for 4-hour storage cycled daily                          | 184 |
| Table C-27. Financial analysis of thermal energy storage options for 12-hour storage cycled 12 times annually             | 184 |
| Table C-28. Financial analysis of thermal energy storage options for 12-hour storage cycled 60 times annually             | 184 |
| Table C-29. Financial analysis of thermal energy storage options for 12-hour storage cycled 200 times annually.           | 184 |

| Table C-30. Financial analysis of thermal energy storage options for 12-hour storage cycled daily                                   | . 184 |
|-------------------------------------------------------------------------------------------------------------------------------------|-------|
| Table C-31. Financial analysis of thermal energy storage options for 100-hour storage cycled bi-<br>annually.                       | . 184 |
| Table C-32. Summary of key metrics for different energy storage options                                                             | . 185 |
| Table C-33. Financial analysis of energy storage options for 4-hour storage cycled 12 times annually.                               | . 185 |
| Table C-34. Financial analysis of energy storage options for 4-hour storage cycled 60 times annually.                               | . 186 |
| Table C-35. Financial analysis of energy storage options for 4-hour storage cycled 200 times annually.                              | . 186 |
| Table C-36. Financial analysis of energy storage options for 4-hour storage cycled daily.                                           | . 186 |
| Table C-37. Financial analysis of mechanical energy storage options for 12-hour storage cycled      12 times annually.              | . 186 |
| Table C-38. Financial analysis of mechanical energy storage options for 12-hour storage cycled      60 times annually.              | . 187 |
| Table C-39. Financial analysis of mechanical energy storage options for 12-hour storage cycled         200 times annually.          | . 187 |
| Table C-40. Financial analysis of energy storage options for 12-hour storage cycled daily                                           | . 187 |
| Table C-41. Financial analysis of energy storage options for 100-hour storage cycled bi-annually                                    | . 187 |
| Table D-1. PI NPP-HTSE capital-cost breakdown.                                                                                      | . 197 |
| Table D-2. Monticello NPP-HTSE capital-cost breakdown.                                                                              | . 201 |
| Table D-3. Aspentech HTSE process model.                                                                                            | . 207 |
| Table F-1. Hydrogen demand within 100 miles of the Prairie Island Nuclear Power Plant                                               | . 270 |
| Table F-2. Hydrogen demand within 100 miles of the Monticello Nuclear Power Plant                                                   | . 275 |
| Table F-3. Hydrogen demand locations covered for transportation near Xcel Energy's Prairie         Island Nuclear Power Plant       | . 278 |
| Table F-4. Overlapping hydrogen demand within 50 miles of Xcel Energy's Prairie Island and         Monticello Nuclear Power Plants. | . 279 |
| Table F-5. Hydrogen demand locations covered for transportation near Xcel Energy's Monticello         NPP.                          | . 280 |

## ACRONYMS

| AA    | acetic acid                                                          |
|-------|----------------------------------------------------------------------|
| AC    | alternating current                                                  |
| AEO   | Annual Energy Outlook                                                |
| AG    | Aktiengesellschaft                                                   |
| AI    | artificial intelligence                                              |
| ANL   | Argonne National Laboratory                                          |
| APEA  | Aspen Process Economic Analyzer                                      |
| ARES  | advanced rail energy storage                                         |
| ASU   | air-separation unit                                                  |
| ATJ   | alcohol-to-jet                                                       |
| BASF  | Badische Anilin- und SodaFabrik                                      |
| BAU   | business-as-usual                                                    |
| BF    | blast furnace                                                        |
| BOF   | basic oxygen furnace                                                 |
| BoP   | balance-of-plant                                                     |
| BPD   | barrels per day                                                      |
| BWR   | Boiling Water Reactor                                                |
| CAES  | compressed air energy storage                                        |
| CAGR  | compound annual growth rate                                          |
| CAPEX | capital expenses                                                     |
| CC    | carbon capture                                                       |
| CCC   | cryogenic carbon capture                                             |
| CCS   | carbon capture and sequestration                                     |
| CCU   | carbon capture & utilization                                         |
| CCC   | cryogenic carbon capture                                             |
| CCGT  | combined cycle gas-turbine                                           |
| CDF   | cored damage frequency                                               |
| CEA   | Commissionissariat à l'énergie atomique et aux énergies alternatives |
| CEPCI | Chemical Engineering Plant Cost Index                                |
| CFR   | codes of federal regulations                                         |
| CHP   | combined heat and power                                              |
| CIDI  | combustion ignition direct injection                                 |
| CONE  | cost of new entrant                                                  |
| СТ    | combustion turbine                                                   |
| DBA   | design basis accident                                                |
| DCC   | direct capital costs                                                 |
| DME   | dimethyl ether                                                       |
| DOE   | Department of Energy                                                 |
| DRI   | direct reduced iron                                                  |
|       |                                                                      |

| DRR        | demand response resource                             |
|------------|------------------------------------------------------|
| DRTS       | digital real time simulation                         |
|            | 0                                                    |
| DTU<br>EAF | Denmark Technical University<br>Electric arc furnace |
| 2.1        |                                                      |
| EDR        | exchanger design & rating                            |
| EIA        | Energy Information Agency                            |
| EIB        | EU Investment Bank                                   |
| EPA        | Environmental Protection Agency                      |
| EU         | European Union                                       |
| FA         | formic acid                                          |
| FC         | fuel cell                                            |
| FCE        | Fuelcell Energy (a fuel-cell company)                |
| FCEV       | fuel cell electric vehicle                           |
| FCFF       | free cash-flow to the firm                           |
| FCTO       | Fuel Cell Technologies Office                        |
| FCV        | flow control valves                                  |
| FEED       | front end engineering design                         |
| FLC        | federal laboratory consortium                        |
| FOAK       | first-of-a-kind                                      |
| FSAR       | final safety analysis report                         |
| FT         | Fischer-Tropsch                                      |
| GHG        | greenhouse gas                                       |
| GPRA       | government Performance and Reporting Act             |
| GPWR       | generic pressurized water reactor                    |
| HD         | heavy duty                                           |
| HDSAM      | Hydrogen Delivery Scenario Analysis Model            |
| HDV        | heavy-duty vehicle                                   |
| HES        | heat extraction system                               |
| HEV        | hybrid electric vehicles                             |
| HFTO       | Hydrogen Fuel-Cell Technology Office                 |
| HHV        | higher heating value                                 |
| HTE        | high-temperature electrolysis                        |
| HTEF       | high-temperature electrolysis facility               |
| HTF        | heat-transfer fluid                                  |
| HTGR       | high-temperature gas reactor                         |
| HTSE       | high-temperature electrolysis                        |
| ICE        | internal combustion engines                          |
| ICEV       | internal-combustion-engine vehicles                  |
| IE         | initiating events                                    |
| IES        | integrated energy system                             |
| ILS        | Integrated Laboratory Scale                          |
|            |                                                      |

| INL  | Idaho National Laboratory                     |
|------|-----------------------------------------------|
| IRP  | Integrated Resource Plan                      |
| IRR  | internal rate of return                       |
| ISO  | independent system operator                   |
| LAES | liquid Air Energy Storage                     |
| LAR  | Licensing amendment review                    |
| LCA  | life-cycle analysis                           |
| LCOE | levelized cost of energy                      |
| LCOH | levelized cost of hydrogen                    |
| LCOS | levelized cost of storage                     |
| LDT  | light-duty truck                              |
| LDV  | light-duty vehicles                           |
| LERF | large early release frequency                 |
| LMP  | locational marginal pricing                   |
| LMR  | load modifying resource                       |
| LP   | limited partnership                           |
| LS   | liquid state                                  |
| LTE  | low-temperature electrolysis                  |
| LWR  | light-water reactor                           |
| LWRS | Light Water Reactor Sustainability            |
| MDV  | medium-duty vehicles                          |
| MFSP | minimum fuel selling price                    |
| MHD  | medium- and heavy-duty                        |
| MISO | Midcontinent Independent System Operator      |
| MSH  | main steam header                             |
| MSIV | main steam isolation valve                    |
| MT   | metric tonne                                  |
| MTO  | methanol-to-olefins                           |
| MW   | megawatt                                      |
| NaOH | sodium hydroxide                              |
| NASA | National Aeronautics and Space Administration |
| NE   | nuclear energy                                |
| NGCC | natural gas combined cycle                    |
| NHI  | nuclear hydrogen initiative                   |
| NOAK | nth-of-a-kind                                 |
| NPP  | nuclear power plant                           |
| NPV  | net present value                             |
| NRC  | Nuclear Regulatory Commission                 |
| NREL | National Renewable Energy Laboratory          |
| O&M  | Operations and Maintenance                    |
| OEM  | original equipment manufacturers              |
|      |                                               |

| OPEX  | operating expenses                            |
|-------|-----------------------------------------------|
| ORNL  | Oak Ridge National Laboratory                 |
| OTSG  | once-through steam generator                  |
| P&ID  | piping and instrumentation diagram            |
| PADD  | Petroleum Administration for Defense District |
| PEM   | polymer exchange membrane                     |
| PFD   | process flow diagram                          |
| PHEV  | plug-in hybrid electric vehicles              |
| PHS   | Pumped Hydro Storage                          |
| PI    | Prairie Island                                |
| ••    |                                               |
| PNNL  | Pacific Northwest National Laboratory         |
| PRA   | probabilistic risk assessment                 |
| PRMR  | planning reserve margin requirement           |
| PTC   | production tax credits                        |
| PTW   | pump-to-wheels                                |
| PUC   | public utility commission                     |
| PVC   | polyvinyl chloride                            |
| PWR   | Pressurized Water Reactor                     |
| R&D   | research and development                      |
| RAVEN | Risk Analysis Virtual ENvironment             |
| REEDS | Regional Energy Deployment System             |
| RFS   | renewable fuel standard                       |
| RIN   | renewable identification numbers              |
| ROW   | right-of-way                                  |
| RSOFC | reversible solid oxide fuel cell              |
| RWGS  | reverse water gas shift                       |
| SEL   | steam extraction loop                         |
| SMGES | solid mass gravitational energy storage       |
| SMR   | steam methane reforming                       |
| SOEC  | solid oxide electrolysis cell                 |
| SOFC  | solid oxide fuel cell                         |
| SPK   | synthesized paraffinic kerosine               |
| SSC   | system, structure, or component               |
| TCI   | total capital investment                      |
| TDL   | thermal-delivery loop                         |
| TEA   | technoeconomic analysis                       |
| TEAL  | Tool for economic analysis                    |
| TED   | thermal energy delivery                       |
| TEDS  | Thermal Energy Distribution System            |
| TES   | thermal energy storage                        |
| TPD   | thermal-power delivery                        |
|       | · · · · · · · · · · · · · · · · · · ·         |

| TPE   | thermal-power extraction             |
|-------|--------------------------------------|
| TRL   | technology readiness level           |
| U.S.  | United States                        |
| UAN   | urea ammonium nitrate                |
| UFSAR | Updated Final Safety Analysis Report |
| VMT   | vehicle miles traveled               |
| WACC  | weighted average cost of capital     |
| WNC   | West North Central                   |
| WTG   | well to plant gate                   |
| WTP   | well-to-pump                         |
| WTW   | well-to-wheels                       |
| ZEV   | zero-emission vehicles               |
|       |                                      |

# Technoeconomic Analysis of Product Diversification Options for Sustainability of the Monticello and

# **Prairie Island Nuclear Power Plants**

### **1 INTRODUCTION**

With electricity-grid operations undergoing rapid and far-reaching changes as intermittent generation sources such as solar and wind increase, nuclear power plant (NPP) owners and utility companies, as an alternative to turning down plant capacity, need to understand the technical, operational, and human-factors requirements for plant operations that involve varying energy output between electricity production for the grid and providing both thermal and electrical energy directly to an industrial partner to make the best use of NPP capital resources. For example, the NPP could apportion electricity between the grid and an electrolysis plant that produces hydrogen.

Due to off-market incentives supporting the penetration of variable renewables like wind and solar (e.g., production tax credit) and low natural gas prices, in some U.S. regions the average production cost of electricity at times falls below the production cost at NPPs. In these regions, it might be possible for NPPs to recover profitability by using available nuclear power to produce a marketable non-electric product, such as hydrogen. Hydrogen generated in this way may qualify for future credits that would incentivize hydrogen produced with low carbon intensity.

This situation suggests a new paradigm for the use of nuclear energy. With flexible operation and generation, NPPs could distribute energy to an industrial process in a dynamic manner that optimizes the revenue of NPP owners. Studies have shown NPPs may be able to competitively provide the energy required to produce hydrogen and other valuable chemical products.<sup>1,2,3</sup> This may yield a more-advantageous market and revenue position for utilities employed in this market.<sup>3</sup>

The purpose of this work is to provide technoeconomic analysis (TEA) of hybrid configurations to optimize the total system in a regulated market specific to the Monticello and Prairie Island (PI) lightwater reactor (LWR) NPPs located in the greater Minneapolis area and operated by Xcel Energy.

Market demand analysis for hydrogen, ammonia, and synthetic fuels, as well as the carbon dioxide supply market specific to the Minnesota region is presented. Demand sources are reported in the distances located from both NPPs considered, as well as relative demand volume and assumed selling prices. The electric market for the Minnesota region has been modeled in a way that takes assumed generation buildout forecasts and grid interactions into account using REEDS and PLEXOS in a cost/benefit system analysis in a regulated market. REEDS is a custom grid-generation modeling software built by the National Renewable Energy Laboratory (NREL). Grid-electricity pricing forecasts have been calculated. This electric and grid market analysis is being performed in a separately funded, but coordinated analysis by NREL that will be reported separately in the near future.<sup>4</sup> The grid analysis performed by NREL and the analysis presented in this report were coordinated, and inputs and assumptions were shared among the respective models.

Hydrogen production via solid oxide electrolysis cells (SOEC)/high-temperature steam electrolysis (HTSE) has been extensively modeled and evaluated, including stack, balance-of-plant (BoP), and a very limited assumption on NPP thermal tie-in capital expenses (CAPEX), operating expenses (OPEX) including utility and energy consumption, design and performance assumptions, current versus future nth-of-a kind (NOAK) technology—using an assumed learning rate—and operating modes. It is recognized that the assumptions of NPP thermal tie-in expenses are very minimally treated here in relation to simple piping expenses. Other costs associated with thermal tie-in to an existing plant such as exact design, safety and hazard analysis, permitting, regulation reviews etc are out of scope of this work. Sensitivity

analyses on parameters such as HTSE capacity, electricity price, and possible production tax credits (PTCs) for the life-cycle low-carbon-intensity hydrogen that can be produced is presented. The above calculations are presented along with the normalized cost to produce the hydrogen or levelized cost of hydrogen (LCOH) in dollars per kilogram of hydrogen for various scenarios, and the case is made for the profitability and viability of future looking SOEC/HTSE systems integrated with NPPs.

In-depth analysis has been done on the optimization of the NPP-HTSE system by itself and integrated with the electrical-grid to maximize the possible revenue given the input assumptions. Sensitivity analyses on parameters, such as HTSE capacity, electricity price, and possible PTC, have also been run in the optimization models. The net present value (NPV) of the investment for the NPP-HTSE with various assumptions is reported. Because the electricity price is the single largest cost factor involved in both the LCOH calculation and the NPV of the investment, an in-depth discussion is included on alternative scenarios and paradigm shifts under which the HTSE integrated with an NPP could be operated and treated by the electrical-grid operator and the public utility commission (PUC). These alternative proposals for treatment by the electrical-grid operator and PUC are hypothetical only because it will be up to the utility company operating NPPs to determine and negotiate with their respective regulators and paratners any new paradigm related to the interactions with an NPP-HTSE plant.

Specific use cases for the assumed volumes of hydrogen that could be produced by Xcel Energy's NPPs are also analyzed and presented, such as blending hydrogen with natural gas in natural gas power plants, compression, storage, and liquefaction of hydrogen for transportation to the end user, and other follow-on hybrid integrations with NPPs which could consume the hydrogen and produce low carbon ammonia and synthetic fuels (diesel, jet fuel, motor gasoline).

Additionally, separately funded work has analyzed the methods, detailed modeling of equipment and controls, and safety analysis of thermal-power extraction (TPE) from an NPP to be used in a hybrid, integrated industrial process, such as HTSE. Extracting a small portion of thermal power from an NPP at the inlet of the turbine is a novel concept that is being pioneered, including engineering design as well as lab and simulator testing. Thermal power can be transported short distances and used to provide large amounts of low-temperature energy to industrial processes. A discussion on heat-transfer fluid (HTF) options is included. TPE could give NPPs a competitive advantage in the production of low-carbon, value-added products, such as hydrogen, ammonia, synthetic fuels, and others. A preliminary fault-tree safety analysis probabilistic risk assessment (PRA) for TPE from an NPP is summarized. This includes a discussion commenting on the assessment of safety within the existing licenses of LWRs. This section on TPE technical and safety analysis is summarized in the appendix of this report for completeness of this TEA effort, but the reader is referred to separately produced reports on the subject for a more complete analysis.

The following analyses are treated in this study to show the viability of hybrid integrations with nuclear power:

- Market analysis
  - Hydrogen, ammonia, and synfuels market analysis specific to the greater Minneapolis region
  - Minnesota-region regulated electricity-grid market analysis (detailed in separate NREL report).<sup>4</sup>
- NPP-HTSE—Hybrid integration of HTSE with LWR NPPs
  - HTSE integrated full plant design using industry standard modeling software (Aspen, H<sub>2</sub>A), including CAPEX and OPEX, stack and performance assumptions, NOAK technology, operating modes, etc.
  - Optimization of the assumptions and conditions to show the envelope of profitability where HTSE H<sub>2</sub> production, integrated with nuclear power, is viable, including NPV optimization analyses of the HTSE investment integrated with an NPP. Range of valuation of carbon that may increase the viability of NPP-HTSE hydrogen production and other hybrid options

- Hypothetical alternative proposals for the treatment of the NPP-HTSE plant by the electrical-grid operator and PUC (found in the appendix).
- Use cases for low-carbon hydrogen, produced using nuclear energy
  - Blending of hydrogen with natural gas to be burned in natural gas power plants
  - Compression and storage of hydrogen in trucks or pipelines versus liquefaction of hydrogen for transport to an end-user at various distances
  - NPP-HTSE-NH<sub>3</sub>—hybrid integration of the NPP and HTSE with ammonia production versus the standalone NPP-HTSE
  - NPP-HTSE-synfuels—hybrid integration of the NPP and HTSE with synthetic fuels (diesel, jet fuel, motor gasoline) production using low carbon hydrogen.

This work is funded under DOE Office of Nuclear Energy (NE) industry funding opportunity announcement (iFOA), DE-FOA-0001817. Separate funding has also been contributed from the DOE Hydrogen and Fuel Cell Technologies Office (HFTO).

## 2 DEMAND MARKETS AND LIFECYCLE CO<sub>2</sub> ANALYSIS

This section discusses the U.S. market potential, size, and location for value-added products, such as hydrogen, which could be produced in an integrated facility with NPPs. Life-cycle  $CO_2$  emissions reduction associated with nuclear-produced H<sub>2</sub> for these markets are reported in this section. Following, in its own subsection, the potential hydrogen demand around the PI and Monticello NPPs are categorized and discussed.

## 2.1 National Potential Hydrogen Demand

### 2.1.1 Fuel-Cell Electric Vehicles

#### 2.1.1.1 Light-duty vehicle (LDV) applications

For LDV applications, hydrogen demand depends on the size of the vehicle population into which fuel-cell electric vehicles (FCEVs) will be introduced and the success of FCEVs in capturing a share of that population, while assuming simultaneous improvements in battery electric vehicle technologies. Each of these factors contains varying degrees of uncertainty, both in how quickly they may evolve, and how external factors (e.g., vehicle and fuel cost assumptions, availability of hydrogen fueling stations, consumer lifestyles, and preferences) might influence them. Forecasts of future hydrogen demand should be based, to the greatest extent possible, on objective, widely accepted trends, and projections and well-vetted tools and techniques. The analysis utilized a vehicle-choice model to estimate the future market penetration of hydrogen fuel cell vehicles, along with estimates of future fuel economy to calculate potential future hydrogen demand.<sup>5</sup> Hydrogen demand potentials were estimated without considering economic factors, which can be considered an upper bound for the size of the FCEV market and defined as "serviceable consumption potential."

For this analysis, estimates of FCEV car and light-duty truck (LDT) sales, stock, and hydrogen consumption were developed according to the following process:

- Total FCEV Market Penetration and Sales: FCEV car and LDT sales shares were obtained from prior HFTO analyses consistent with HFTO price targets (Table 2) for delivered hydrogen. Annual numbers of FCEVs sold were derived by applying these shares to EIA forecasts of national LDV sales by year.
- Total FCEV Stock and Hydrogen Use: FCEV car and LDT stock, vehicle miles traveled (VMTs), and hydrogen consumption were estimated by year and summed to produce national totals using Argonne's VISION model.<sup>6</sup>

Market penetration of FCEVs was estimated using the Market Acceptance of Advanced Automotive Technologies (MA3T) vehicle-choice model developed and maintained by Oak Ridge National Laboratory (ORNL).<sup>7</sup> MA3T estimates market penetration rates or shares of conventional internal-combustion-engine vehicles (ICEVs), FCEVs, hybrid electric vehicles (HEVs), battery-electric vehicles, and plug-in HEVs (PHEVs) of different range capabilities.<sup>8</sup> For this analysis, MA3T was run assuming that HFTO's FC and hydrogen fuel cost and performance targets will be met in the future (i.e., the "Program Success" case in HFTO's annual reporting as documented by [9].

Table 2. Projected light-duty vehicle stock penetration for the United States in year 2050 by powertrain from MA3T.<sup>5</sup>

|      |     |     | •   | 0 5 | Battery<br>Electric |
|------|-----|-----|-----|-----|---------------------|
| Cars | 18% | 15% | 10% | 21% | 36%                 |
| LDTs | 26% | 11% | 7%  | 20% | 36%                 |

a Includes gasoline, diesel, compressed natural gas, and ethanol flex-fuel ICEVs.

#### 2.1.1.1.1 Potential Hydrogen Demand for Light-Duty FCEV

As shown in Table 3, FCEV average fuel economy increases from 54 and 41 miles per gasoline gallon equivalent (mpgge) for cars and light trucks, respectively, in 2015 to 100 and 64 mpgge, respectively, in 2050. FCEVs are assumed to have equivalent fuel economy and to be driven and scrapped (i.e., retired from use) at the same rates as the conventional vehicles they replace. They are also assumed to have the same survival rate and lifetime VMTs (about 167,370 miles) as their conventional counterparts. Table 3 compares our fuel economy assumptions (in mpgge) for FCEVs with those for comparable ICEVs. Fuel economy for ICEVs also improves between 2015 and 2050, rising from an average of 26–43 mpg for ICEV cars, and from 20–30 mpg for ICEV light trucks. These fuel economy assumptions are based on Autonomie's vehicle simulation model estimates (which reflect HFTO program goals) for mid-sized cars and mid-sized SUVs, adjusted to on-road values using factors applied in the GREET model (see Section 2.1.1.3). Based on the vehicle stock estimates at market equilibrium in Table 2 and vehicle fuel economy estimates in Table 3, the future hydrogen consumption by FCEVs was estimated at 4.3 MMT for cars and 7.4 MMT for LDTs, for a total of 11.7 MMT.

|               | Car mpgge<br>(mi/gasoline gal equiv | valent) | Light Truck mpgge<br>(mi/gasoline gal equivalent) |      |
|---------------|-------------------------------------|---------|---------------------------------------------------|------|
| Model<br>Year | Gasoline (E10) ICEV                 | FCEV    | Gasoline (E10) ICEV                               | FCEV |
| 2015          | 26                                  | 54      | 20                                                | 41   |
| 2020          | 31                                  | 61      | 23                                                | 45   |
| 2025          | 35                                  | 72      | 24                                                | 52   |
| 2030          | 37                                  | 80      | 25                                                | 55   |
| 2035          | 39                                  | 90      | 28                                                | 58   |
| 2050          | 43                                  | 100     | 30                                                | 64   |

Table 3. United States on-road fuel economy of FCEV and ICEV cars and light trucks by model year.<sup>5</sup>

The serviceable consumption potential is estimated as the demand if FCEVs constituted 41% of the LDV fleet in 2050 (i.e., 66 million of 163 million cars and 63 million of 153 million light-duty trucks). Fleet penetration was based on the analysis from [10], which estimates a FCEV sales share of 41% for passenger vehicles in 2050 using favorable assumptions. The fleet penetration is applied to the 2050 LDV stock to estimate FCEV stock and a corresponding annual hydrogen demand of 21.4 MMT/yr (10.0 MMT/yr for cars and 11.4 MMT/yr for light-duty trucks).

#### 2.1.1.2 Medium- And Heavy-Duty Truck Applications

Medium- and heavy-duty (MHD) vehicles (MHDVs) are used to move freight and provide various services. They encompass a wide range of sizes and body types and operate on a variety of duty cycles. Contractors, construction workers, and delivery services use medium duty trucks. These vehicles are sometimes called "last-mile" delivery trucks. Heavy duty (HD) trucks are used for moving heavier and larger cargo within urban areas and over short distances, as well as over long distances. MHD trucks account for a significant portion (20–25%) of the energy consumption and air emissions of the U.S. transportation sector. MHDVs, around 11 million trucks and fewer than 1 million buses, represent only 4.5% of the 260 million vehicles on the road nationally.<sup>6</sup> Although they comprise only a small share of the national vehicle population, MHDVs are the second-largest energy consumers and greenhouse gas (GHG) emitters, behind only light- duty vehicles that include passenger cars, sports-utility vehicles, and pickup trucks.<sup>5</sup>

In the United States, nearly half of MHD trucks are used for urban, local, and short-haul operations, with a daily travel distance of less than 200 miles.<sup>11</sup> To calculate hydrogen use by FCEVs at any given

time, three key parameters are required for each vehicle class: (1) number of vehicles on the road, (2) annual VMT, and (3) fuel economy or fuel consumption per mile. Because of the lack of reliable vehicle-choice models for MHDV classes, we assumed the market penetration of fuel cell MHDVs to be consistent with that of fuel cell LDVs in 2050 (i.e., ~22% penetration). Then, we calculated annual sales of MHDVs and, using the VISION model, computed annual vehicle stocks, VMT, and energy use.

## 2.1.1.2.1 Potential Hydrogen Demand by Medium- and Heavy-Duty Fuel Cell Vehicles

As shown in Table 4, composite fuel economies of 33.0 and 14.7 mi/kgH2 were estimated for Class 4 walk-in delivery trucks and Class 8 long-haul sleeper-cab trucks, respectively. Using the VISION model, total annual VMTs for all MDVs (Classes 2b–6) and HDVs (Classes 7–8) in 2050 were estimated at 212 billion and 252 billion for MDVs and HDVs, respectively. The above estimates of fuel economy and total annual VMT, along with the 22% penetration of FCEVs into the MHDV sector, resulted in potential hydrogen consumption of 1.4 and 3.8 MMT by MD and HD fuel cell trucks, respectively. For the entire MHDV sector, total hydrogen demand was estimated to reach 5.2 MMT in 2050.

We estimate the serviceable consumption potential of the MDV and HDV hydrogen market as equivalent to the hydrogen required if 35% of the fleet operated on hydrogen, based on the 2050 sales share estimate from Roadmap to a U.S. Hydrogen Economy,<sup>10</sup> which uses favorable assumptions for FCEVs. Applying this market penetration to the vehicle stock results in 4.2 million FCEVs of a 12 million MDV stock and 2.0 million FCEVs of a 5.7 million HDV stock in 2050. The corresponding annual hydrogen demand is estimated at 8.2 MMT/yr (2.2 MMT/yr for MDVs and 6.0 MMT/yr for HDVs).

|                 | U          | Vehicle's |                          |                           |
|-----------------|------------|-----------|--------------------------|---------------------------|
|                 |            | Payload   | Weighting Strategy       | Composite Fuel<br>Economy |
| m               |            | 2         | 0 0 0                    | -                         |
| Test Vehicle    | GVWR Class | (tonnes)  | for Computing Efficiency | (mi/kgH <sub>2</sub> )    |
| Walk-in Truck   | 4          | 3.64      | Urban drive cycle        | 33.0                      |
| Long-haul Truck | 8          | 16.3      | EPA 55 drive cycle       | 14.7                      |

Table 4. Parameters relating to fuel efficiency of MHD fuel cell trucks.<sup>5</sup>

## 2.1.1.3 Lifecycle CO<sub>2</sub> emissions analysis of H<sub>2</sub> from nuclear energy for vehicles

GHG emissions associated with hydrogen production and the delivery and dispensing pathway can be estimated using a well-to-wheels (WTW) analysis with the Argonne National Laboratory's (ANL's) Greenhouse gas, Regulated Emissions, and Energy use in Transportation GREET 2019 model to conduct the life-cycle analysis (LCA).<sup>12</sup> The WTW analysis can be further broken down into well-to-pump (WTP) and pump-to-wheels (PTW) stages. The WTP stage includes fuel production from the primary source of energy (feedstock) to its delivery to the vehicle's energy-storage system (fuel tank). The PTW stage includes fuel consumption during the operation phase of the vehicle to power the vehicle's wheels. The results from WTP and PTW analyses are summed to give the WTW energy use and GHG emissions associated with various vehicle-fuel technologies. WTW analysis was carried out using the GREET 2019<sup>12</sup> model for LDVs, including FCEVs, using various hydrogen-production and delivery pathways and baseline gasoline ICEVs. Fuel economy of 26 mpg was assumed for gasoline ICEVs and 55 mpg gasoline equivalent (ge) for H<sub>2</sub> FCEVs. Conventional internal-combustion engines (ICEs) using gasoline and diesel were compared to FCEV's using hydrogen produced from natural gas SMR and nuclear electricity.

The WTW equivalent CO<sub>2</sub> emissions per mile for LDVs compared ICEVs using gasoline, FCEVs using hydrogen from SMR, and FCEVs using nuclear-H<sub>2</sub>. An ICE using gasoline produces 387 g CO<sub>2</sub> eq/mile while FCEV using H<sub>2</sub> from SMR produces 170 g CO<sub>2</sub> eq/mile, and FCEV using H<sub>2</sub> from nuclear electricity produces only 33 g CO<sub>2</sub> eq/mile, on a WTW basis (Figure 7).

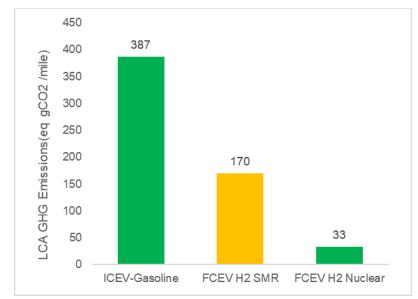



Figure 7. WTW life-cycle GHG emissions results for LDVs.

The WTW eqivalent CO<sub>2</sub> emissions per mile for HDVs were also compared. The conventional heavyduty ICEV using diesel in compression-ignition direct injection (CIDI) engine produces 1.7 kg CO<sub>2</sub> eq/mile while the heavy-duty FCEV using H<sub>2</sub> from SMR is estimated to produce 0.8 kg CO<sub>2</sub> eq/mile, and the heavy-duty FCEV using nuclear-H<sub>2</sub> produces 0.1 kg CO<sub>2</sub> eq/mile (Figure 8).

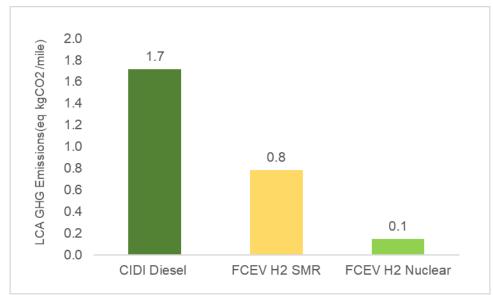



Figure 8. WTW life-cycle GHG-emissions results for HDVs, including CIDI diesel engines.

## 2.1.2 Co-Firing of Hydrogen with Natural Gas in Combustion Turbines

Another potential use of clean hydrogen produced from NE is its injection into natural gas pipelines for use as a low-carbon green component of a natural gas/hydrogen fuel mix for general heating or for exclusive use in combustion turbines (CTs) for power generation. The potential and technical barriers to mixing H<sub>2</sub> with natural gas are discussed elsewhere.<sup>13</sup> It is important to note that, in this use case, the hydrogen should be considered and evaluated as an energy-storage means, rather than as in the other use cases mentioned in this report, where hydrogen is an intermediate, used for upgrading products to a higher value in the product chain. This is due to the hydrogen being produced using electricity and then stored until a later time when it is again converted back to electricity, with all the associated efficiency losses from conversion, storage, and regeneration. Thus, the firing of hydrogen in turbines to produce electricity should be evaluated against other means of energy storage.

For the purposes of this study, potential demand is estimated for hydrogen by assuming it can be used by natural gas CTs with a volume ratio of 30% hydrogen blended with 70% natural gas. Electricity generators were identified using the data sets from the EIA-860 and EIA-923 forms describing electricitygenerator facility locations and fuel use. Figure 9 shows natural gas electricity generators throughout the U.S. and the potential demand if for hydrogen if it were blended at 30 vol% with natural gas. Future planned natural gas green field and coal conversion to natural gas plants are not included.



Figure 9. Natural gas power plants in the U.S and potential hydrogen demand if hydrogen were blended at  $30 \text{ vol}\% \text{ H}_2$  with natural gas.

## 2.1.2.1 Lifecycle CO<sub>2</sub> Emissions Analysis of H<sub>2</sub>/Natural Gas Blending in Natural Gas Power Plants

The LCA was carried out using the GREET 2020 model to estimate GHG emissions for 100% natural gas, as well as a mixture of 30% hydrogen and 70% natural gas by volume, as fuel supply to the electricity generators. The equivalent CO<sub>2</sub> emissions per kWh of electricity produced and transmitted to end use (i.e., at the wall outlet) are compared in Figure 10. The life-cycle GHG emissions are estimated at 493 g CO<sub>2e</sub>/kWh when using only natural gas as the feed, and 442 g CO<sub>2e</sub>/kWh for the mixture of 30% hydrogen and 70% natural gas by volume for different natural gas turbines technology shares. We note that 30 vol% H<sub>2</sub> with natural gas represents only ~9% blending by energy because the volumetric heating value of hydrogen is approximately 30% of the corresponding heating value of natural gas. Although the potential GHG-emission reduction for this mixing ratio appears small, the amount of potential  $CO_2$ abatement is significant due to the large contribution of natural gas generating plants to the U.S. national GHG emissions inventory. Furthermore, future turbine designs that can handle higher mixing ratios, and potentially combust 100% hydrogen, will have the potential to eliminate CO<sub>2</sub> emissions from gas powergeneration units. We also note that mixing hydrogen with natural gas in the near term is attractive compared to other new hydrogen end-use applications because it leverages the existing natural gas infrastructure and application end use (i.e., the gas-turbine); thus, less new capital investment may be needed to be compared to building a new hydrogen delivery infrastructure. Some pipeline modifications and restrictions on the percentage of hydrogen may be needed due to various concerns specific to hydrogen such as hydrogen embrittlement, confined spaces, etc.

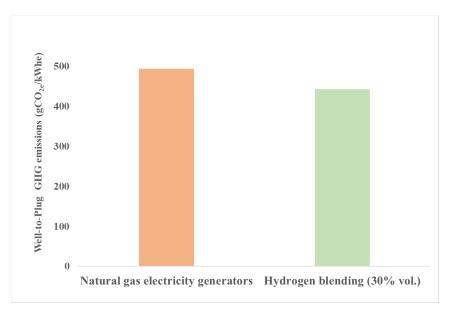



Figure 10. Life-cycle GHG-emission for natural gas electricity generators, well-to-wall outlet analysis.

Figure 11 below shows a trend of the percentage and amount of  $CO_2$  reduction that can be achieved versus the volume percentage mix of  $H_2$  with natural gas in natural gas electricity-generating units.

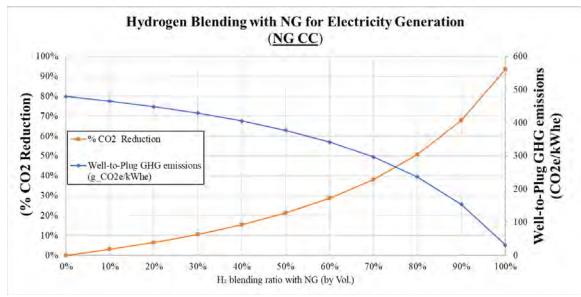



Figure 11. NG-H<sub>2</sub> blending ratio versus achievable percentage of CO<sub>2</sub> reduction and W2W GHG emissions for natural gas power plants.

## 2.1.3 Petroleum Refineries

Petroleum refineries are currently the most significant user of hydrogen in the U.S., consuming approximately 10 MMT of hydrogen annually, including byproduct hydrogen from naphtha reformers.<sup>14</sup> Approximately one-third of refinery hydrogen used is the byproduct of naphtha-reforming processes while most of the rest of the needed hydrogen is typically produced onsite using the SMR process with natural gas as the feedstock. Some refineries also use hydrogen regional pipelines, which are mostly limited to the Gulf Coast in the U.S. Hydrogen is used primarily for hydrocracking and hydrotreating. (Hydrocracking is used to produce diesel from heavy crude, and hydrotreating is used to remove sulfur

from feed, intermediate, and product streams.) Most hydrotreating capacity is used for reducing sulfur in diesel, fluid catalytic cracker feeds, and naphtha streams. Refinery hydrogen demand is, in general, driven by the ratio of gasoline to diesel production, American Petroleum Institute (API) gravity, sulfur content of the petroleum inputs, and the complexity of refinery processing.

Elgowainy et al<sup>5</sup> estimated future hydrogen demand through 2050 for petroleum refining, based on projections of crude inputs and market demand for refinery products from the EIA Annual Energy Outlook,<sup>14</sup> and crude API gravity and sulfur content based on Han and colleague's analysis.<sup>15</sup> The main conclusions are that crude inputs are estimated to increase from 16 to 18 Mbbl/d (with a steeper increase of 9% from 2015 to 2021 and then a more gradual increase to 2050), gasoline output decreases from 8 to 6 Mbbl/d, diesel output increases slightly, and average jet-fuel output increases roughly 0.5 Mbbl/d from about 1.7 to 2.2 Mbbl/d.<sup>4</sup>

Refinery hydrogen demand by Petroleum Administration for Defense District PADD region shown in Figure 12, is projected to increase due to increased ratio of diesel/gasoline demand, stringent sulfur requirements, higher API gravity, and sulfur content for petroleum feedstocks, and increased crude inputs to refineries. In addition to the internal hydrogen production via catalytic reforming of naphtha, the total U.S. hydrogen demand for petroleum refining grows from 5.9 MMT/year in 2017 to an estimated 7.5 MMT/year in 2050. Minnesota fall under PADD 2 region.

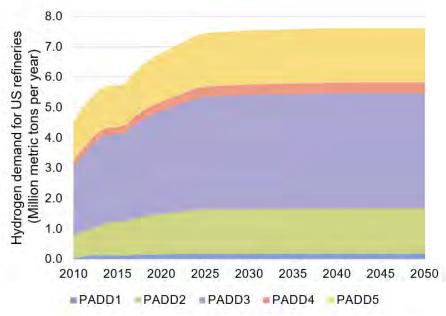



Figure 12. Projected total hydrogen demand for U.S. refineries by PADD, through 2050.

# 2.1.3.1 Life-Cycle CO<sub>2</sub> Emissions Analysis H<sub>2</sub> from Nuclear versus H<sub>2</sub> from SMR for Refinery Use

Life-cycle emissions for hydrogen production from well to plant gate (WTG) were calculated using GREET 2020. The H<sub>2</sub> production from SMR was compared to production from high-temperature electrolysis (HTE) using SOEC with nuclear electricity; this H<sub>2</sub> can later be used for naphtha reforming processes at the refineries. Figure 13 below shows the well-to-gate  $CO_{2e}$  p emissions for H<sub>2</sub> produced from natural gas SMR and HTE (nuclear), which are 9.28 kg  $CO_{2e}$ /kg H<sub>2</sub> and 0.15 kg  $CO_{2e}$ /kg H<sub>2</sub> respectively.

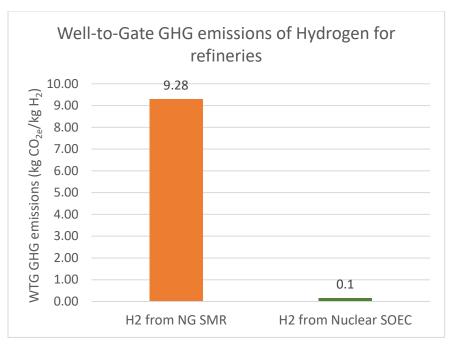



Figure 13. WTG GHG emissions for hydrogen production with SMR and HTE.

## 2.1.4 Direct Reduced Iron for Metals-Refining and Steel Production

The direct reduction of iron (DRI) is a process developed by Midrex Technologies, Inc., for producing high-purity iron from ore at temperatures below the melting point of iron by reducing the iron oxide ore and driving off oxygen in a reactor using a reducing agent. The reducing agent can be carbon coke, hydrogen, or syngas. In the conventional approach to steel making, iron ore is reduced to pig-iron using coking coal as the reducing agent in a blast furnace (BF), and the pig-iron is then refined and converted to steel in a basic oxygen furnace (BOF). In the DRI process, DRI is converted to steel in an electric arc furnace (EAF), allowing reductions in overall energy use and CO<sub>2</sub> emissions compared to the conventional BF-BOF steel-production process. In the U.S., the amount of steel produced by EAF has been increasing and is expected to continue to grow, mainly due to the increased production of scrap, which can be incorporated in the EAF feed, while the amount produced by BOF is expected to remain relatively flat.<sup>16</sup> Product quality dictates the amount of scrap that can be used in an EAF; the remainder must be made up with pig-iron from a BF-BOF or DRI. Due to its high purity, DRI has the potential to increase the amount of scrap which can be used by EAF relative to using pig-iron from a BF-BOF. The DRI process, using 100% hydrogen as the reducing agent, requires up to 100 kg hydrogen per MT of steel—i.e., a mass ratio of approximately 10%. However, using hydrogen in a blend with natural gas up to 30/70 ratio by energy to produce DRI would not require modifications to the original technology which was developed to work solely with natural gas.<sup>17</sup>

Syngas ( $CO_2 + H_2$ ) could alternatively be produced and supplied to metals plants using  $CO_2$  and water in  $CO_2$  or co-electrolysis. There are a few advantages to using a carbon-containing molecule such as CO in addition to hydrogen in the metals-refining process versus using hydrogen alone. First, different grades of steel require varying amounts of carbon as part of the finished alloy in order to obtain the desired material properties, so carbon will need to be incorporated regardless. Second, some carbon can be consumed in the metals-refining process, releasing energy, and resulting in a more-economic process overall due to the reduced outside-heating requirements versus a metals-refining process using only hydrogen as the reducing agent. This use case will not be further analyzed in this report. Nuclear and renewable hydrogen could be used to offset natural gas or other fuels in the DRI process. For this analysis, we estimate the potential hydrogen demand for DRI was based on using 30% hydrogen and 70% natural gas on an energy basis.<sup>17</sup> In 2017, U.S. steel consumption was 106.2 MMT, while production was 81.6 MMT. Based on trends in U.S. iron ore production, imports, and exports, we estimate that 68% of the 81.6 MMT of U.S. steel production was in electric arc furnaces (i.e., only 32% was produced in basic oxygen furnaces). The mass of hydrogen required to fully reduce 1 MT of iron ore ranges from 0.08 to 0.12 MT, depending on the technology employed, reaction temperature, and the reaction off-gas available for hydrogen preheating. Hydrogen price affects economic feasibility more strongly than the capital and operating costs of the DRI process. It is estimated that a hydrogen price of \$1.2/kg would generate a positive NPV for the (MIDREX\_EAF\_H<sub>2</sub>) DRI technology.<sup>18</sup>

EIA's Annual Energy Outlook projects crude steel production growing to approximately 120 MMT.<sup>14</sup> If all this production were converted to MIDREX\_EAF DRI technology using low- cost hydrogen (i.e., no BF plants), the technical potential for hydrogen demand could be on the order of 12 MMT annually.

These estimates are conservative relative to the national estimate of Elgowainy et al. for potential future hydrogen demand of 4 MMT for 30% replacement of natural gas on an energy basis.<sup>5</sup> Their estimates are based on the Annual Energy Outlook projection of 50% growth in U.S. steel production by 2040 and full replacement of iron inputs with those produced by DRI.<sup>16</sup>

## 2.1.4.1 Lifecycle CO<sub>2</sub> Emissions Analysis of Steel-Making Pathways

The GHG emissions associated with using DRI were assessed by comparing it with conventional BF-BOF and MIDREX EAF. These processes were evaluated using the GREET 2019 model for LCA, to estimate the equivalent  $CO_2$  emissions for each process and highlight the benefits of using nuclear-H<sub>2</sub> in DRI production.

Figure 14 compares the equivalent CO<sub>2</sub> emissions per metric tonne (MT) of steel produced for four possible process steps in the steel-making process: 1) blast furnace/BOF (using coal), 2) MIDREX EAF using 100% natural gas, 3) MIDREX EAF using 70% natural gas and 30% Nuclear H<sub>2</sub>, and 4) MIDREX EAF using only nuclear H<sub>2</sub>. The GHG emissions from each respectively is: 1.97-MT eq.CO<sub>2</sub>/MT steel from BF, 1.47-ton eq.CO<sub>2</sub>/MT steel from EAF using 100% natural gas, 1.28-MT eq.CO<sub>2</sub>/MT steel from EAF using 70% natural gas and 30% Nuclear H<sub>2</sub>, and 0.99-MT eq.CO<sub>2</sub>/MT steel from EAF using only nuclear-H<sub>2</sub>.

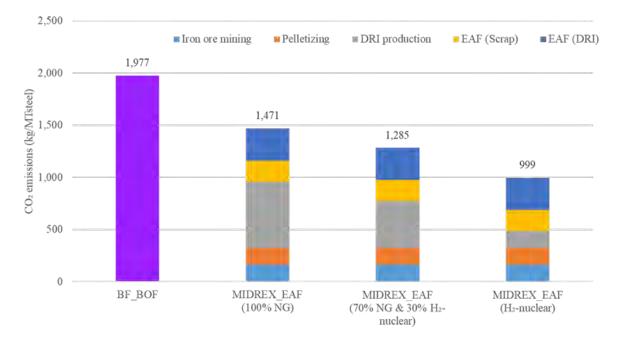



Figure 14. LCA of GHG emissions for various steel-making process options.

## 2.1.5 Ammonia and Fertilizers

Ammonia is produced by the Haber-Bosch process, which reacts hydrogen, usually produced from natural gas via the SMR process, with nitrogen separated from the air. In 2016, 13.6 MMT/year of ammonia were consumed in the U.S., with 9.8 MMT were produced domestically, while 3.8 MMT were imported,<sup>19</sup> with 12% of consumption being for non-agricultural products, and the remainder used to produce fertilizer products, including anhydrous ammonia, urea, diammonium phosphate, monoammonium phosphate, and nitric acid. The Haber-Bosch process uses hydrogen in a molar ratio of 3 moles H<sub>2</sub> to 2 moles of NH<sub>3</sub>; therefore, 0.178 kg of hydrogen are required to produce 1 kg of ammonia. As ammonia is the source of nitrogen in other fertilizer products, we can generalize this as 0.216 kg hydrogen per kilogram of nitrogen in fertilizer.

Currently, 88% of domestic ammonia consumption is associated with fertilizer use. In addition to anhydrous ammonia, fertilizer products that are derived from ammonia include urea, ammonium nitrate, ammonium sulfate, and urea ammonium nitrate (UAN). Ammonia is also used in the production of explosives, plastics, synthetic fibers and resins, and numerous other chemical compounds. Ammonia usage for fertilizer applications is not expected to grow significantly in the coming years; increases in nitrogen fertilizer efficiency contribute to a projected minor decrease in ammonia demand for use in agricultural applications.<sup>20</sup>

A potential ammonia-market growth opportunity exists in the area of ammonia as an energy carrier. Ammonia could be used one day as a transportation fuel in ICEs. Ammonia may be suited for use in marine applications (i.e., industry with requirements for large-scale energy consumption and energy-storage requirements to enable travel of large vessels over long distances; additionally, marine applications would require fewer modifications to fuel-distribution networks to enable distribution of large volumes of an ammonia fuel product to the end user). Ammonia can be stored and transported as a liquid product, which can lead to significant reductions in storage and transportation energy requirements and costs when compared to hydrogen.<sup>20,21</sup>




Figure 15. Estimated H<sub>2</sub> demand for U.S. NH<sub>3</sub> production in 2017.

Industry data on existing and planned NH<sub>3</sub> plants in the United States were used to estimate the input hydrogen required for NH<sub>3</sub> production by region (Ammonia Industry 2018). Figure 16 shows an estimated 25% increase in hydrogen demand for NH<sub>3</sub> production between 2017 and 2024. We assumed that domestic hydrogen demand for NH<sub>3</sub> production beyond 2024 would grow by another 15% by 2050, thus increasing annual hydrogen demand to 3.6 MMT.

The import share for ammonia consumption in the U.S. has been declining from 30% in 2019 to 17% in 2018, reflecting the expectation that domestic production may potentially displace all imports in the U.S. market due to the low-cost natural gas and the potential availability of low-cost green hydrogen.

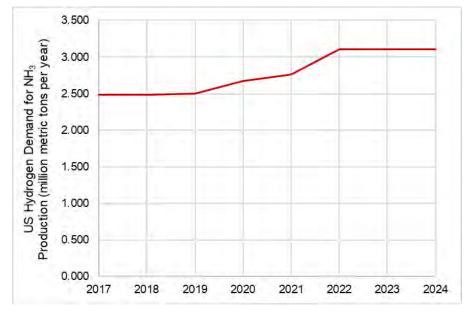
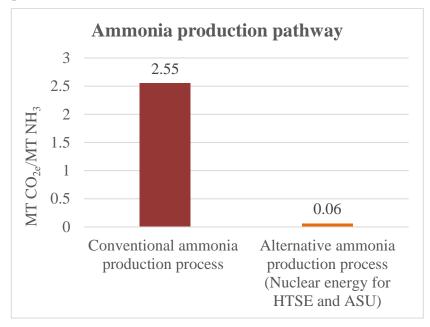




Figure 16. Estimated hydrogen demand for U.S. NH<sub>3</sub> production through 2024 (based on data from Ammonia Industry [2018] through 2024)

## 2.1.5.1 Life-Cycle CO<sub>2</sub> Emissions Analysis of H<sub>2</sub> from Nuclear Energy for Ammonia Production

To evaluate the environmental benefits and trade-offs for using nuclear-H<sub>2</sub> for ammonia production, the Haber-Bosch process was considered. The GREET 2020 model was used to conduct the LCA for ammonia production. Various production pathways for hydrogen were considered to understand the equivalent CO<sub>2</sub> emissions associated with various ammonia-feedstock sources and production pathways. Figure 17 compares CO<sub>2</sub> emissions from the conventional ammonia-production process to an alternative synthesis process using nuclear heat and electricity for H<sub>2</sub> and ASU in terms of eq CO<sub>2</sub> per MT NH<sub>3</sub>. The conventional pathway produces about 2.55 MT CO<sub>2</sub>/MT NH<sub>3</sub> while the nuclear for both H<sub>2</sub> and ASU produce 0.06 MT CO<sub>2</sub>/MT NH<sub>3</sub>, respectively, on a life-cycle basis. Life-cycle analysis results for conventional ammonia production process and alternative ammonia production process (ASU-N<sub>2</sub> and HTE-H<sub>2</sub>) were acquired from Liu et al.<sup>22</sup>





## 2.1.6 Synthetic Fuels

Synthesis gas (syngas) is a mixture of carbon monoxide and hydrogen. It is called syngas because these two molecules can be used to synthesize synthetic fuels (synfuels) and chemicals (synchemicals). The following sections discuss the markets for syngas and synfuels.

Significant quantities of high-purity  $CO_2$  are generated in industry processes such as ethanolproduction, SMR used for hydrogen production from natural gas for refining, and ammonia production. These high-concentration  $CO_2$  sources present opportunities for the production of synfuels and synchemicals using a wide variety of pathways while minimizing the cost and energy penalty to capture  $CO_2$  relative to other dilute  $CO_2$  sources (e.g., from flue gases of coal and natural gas power plants). High-demand products that can be produced using  $CO_2$  as a feedstock include methanol, Fischer-Tropsch (FT) diesel, and dimethyl ether (DME). In many of these processes, synthesis gas or syngas (a mixture of CO and  $H_2$ ) is a key intermediate building block. Depending on the process pathway, hydrogen is used either in the initial reaction with  $CO_2$  or in downstream processes such as refining of the synthetic fuels. In co-electrolysis,  $CO_2$  and water are fed to an electrolyzer to produce CO,  $H_2$  (syngas), and  $O_2$ . The syngas is then reacted to form any of a large variety of molecules. Methanol can also be produced by a variety of processes and presents an opportunity because its manufacturing process is relatively simple, and its global market is expected to grow for multiple uses, such as petrochemicals, fuel blending, or as a blend stock for transportation-fuel production. Methanol produced from waste  $CO_2$  streams and hydrogen from clean NE offers a low-carbon alternative to methanol produced via the conventional process using natural gas. The merchant market for  $CO_2$  is currently underused. Of the 100 MMT of  $CO_2$  generated in concentrated forms from ethanol-production and SMR, only 11 MMT of  $CO_2$  is currently used in merchant markets such as food processing and carbonated beverages. Production of synfuels using this quantity of  $CO_2$  would create a maximum hydrogen demand of 14 MMT/year.<sup>23</sup> This leaves a significant  $CO_2$  resource availability which could be used for methanol and synfuel production, depending on the region and company-specific economics, incentives, and decarbonization goals. In this report, we focus only on the potential hydrogen demand for synfuel production from highly concentrated sources of  $CO_2$ . The potential hydrogen demand for methanol production from the same  $CO_2$  sources will be of a similar magnitude; thus, producing one chemical or fuel in place of the other will result in similar hydrogen demand considering the same  $CO_2$  resources.

The hydrogen demand for synfuel production can be estimated based on the stoichiometric 1:3 mole ratio of CO<sub>2</sub> to H<sub>2</sub> that is required for the synthesis of FT diesel or DME. The availability of high-purity CO<sub>2</sub> from SMR, associated with merchant hydrogen and ammonia production, and the locations of facilities are based on values reported by facilities to the U.S. Environmental Protection Agency's Greenhouse Gas Reporting Program.<sup>24</sup> The H<sub>2</sub> demand reported here for refineries includes only conventional current hydrogen demand (hydrocracking, etc.) and does not include any future hydrogen demand for synfuel production using CO<sub>2</sub> that could be captured from SMRs that operate in these refineries. High-concentration CO<sub>2</sub> sources from ethanol-production are estimated based on the 1:1 mole ratio of ethanol to CO<sub>2</sub> generated during the conversion of glucose and sucrose in the fermentation process.

In 2017, 15.6 billion gal of ethanol were produced in the U.S.,<sup>25</sup> which generates an estimated 44 MMT of high-purity CO<sub>2</sub>. The locations and capacities of ethanol-production facilities are based on an EIA dataset<sup>25</sup> and illustrated in Figure 18, while production by facility is estimated based on the national average capacity-usage rate.



Figure 18. CO<sub>2</sub> sources for use in synfuels production.

Potential hydrogen demand for high-purity CO2 (~44 MMT) from ethanol plants if converted into to near-carbon-neutral synthetic FT fuels would be about 5 MMT which is approximately 2.3 billion gallon

of FT fuel. Whereas potential hydrogen demand for producing synthetic methanol would be about 6 MMT, as mentioned in Elgowainy, 2020.<sup>5</sup> On the other hand, if all recoverable CO2 from these sources were utilized for synfuel production, the maximum annual supply of synfuels would be approximately 10 billion gallons. Production of this quantity of synfuels would create a maximum hydrogen demand of 14 MMT/year. Of this 14 MMT/year, 6 MMT hydrogen/year would be needed to convert all of the CO2 from ethanol plants into synfuels, 5.9 MMT H<sub>2</sub>/year would be needed to convert all CO2 from refinery SMR plants into synfuels, and 2.1 MMT/year would be needed to convert all CO<sub>2</sub> from NH<sub>3</sub> plants into synfuels.<sup>5</sup>

While most ethanol-production is clustered in Midwest states, ammonia plants are located in a broader area, mainly in the Midwest, Gulf Coast, and Southeast, while other SMR plants are located near petroleum refineries, mostly along the Gulf Coast and near San Francisco, Los Angeles, Chicago, Detroit, Minneapolis, St. Louis, and Toledo. High-purity  $CO_2$  sources for synfuel production are shown in the demand tables at the end of Section 2 for Monticello and PI NPPs, associated with ethanol plants. Ammonia plants are not listed in the demand tables as there are none within 100 miles of the PI and Monticello NPPs.

## 2.1.6.1 Life-Cycle CO<sub>2</sub> emissions analysis of H<sub>2</sub> from nuclear energy for synthetic transportation fuels

The GREET 2020 model was used to estimate GHG emissions assuming captured CO<sub>2</sub> and nuclear- $H_2$  for producing these synfuels. A recently published study on the production of electro-fuels from renewable  $H_2$  and waste CO<sub>2</sub> streams are of increasing interest because of their CO<sub>2</sub> emission-reduction potentials compared to fossil counterparts.<sup>26</sup> This study evaluated the WTW GHG emissions of FT fuels from various electrolytic  $H_2$  pathways and CO<sub>2</sub> sources, using various process designs (i.e., with and without  $H_2$  recycle) and system boundaries. The FT fuel-synthesis process was modeled using Aspen Plus, which showed 45% of the carbon in CO<sub>2</sub> can be chemically bound up or fixed in the FT fuel, with a fuel production energy efficiency of 58%. Using nuclear electricity, stand-alone FT fuel production from various plant designs can reduce WTW GHG emissions by 90–108%, relative to petroleum fuels. The FT fuel nuclear LTE-H<sub>2</sub> recycle case was the base case for producing FT fuel using CO<sub>2</sub> and H<sub>2</sub> from nuclear sources considered.<sup>26</sup>

Figure 19 compares the GHG emission to produce conventional fuels, such as gasoline and jet and diesel fuels, to highlight the benefits of the FT pathway using nuclear  $H_2$ . The GHG emissions per megajoule for various fuels like gasoline, jet fuel, diesel fuel, and FT fuel (using nuclear  $H_2$ ) are 93, 86, 91 and 9 g CO<sub>2</sub> eq./MJ, respectively (referred to as base synfuels case). The land-use change emissions for ethanol are associated with the process by which human activities transform the natural landscape, referring to how the land has been used, usually emphasizing the functional role of land for economic activities.

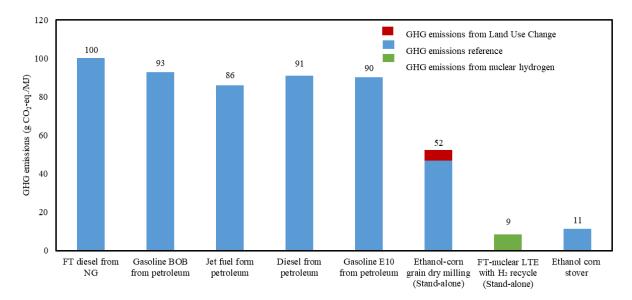



Figure 19. WTW total- $CO_{2e}$  emissions for gasoline and jet, diesel, and FT fuel (produced using nuclear H<sub>2</sub>). Before oxygenate blending (BOB), is motor gasoline before the required amounts of oxygenate (ethanol) have been blended.

## 2.1.7 Summary of U.S. Potential Hydrogen Demand Forecast

Table 5 summarizes the potential hydrogen demand for the U.S. forecasted in the year 2050.

| Application                             | Potential Hydrogen<br>Consumption <sup>5</sup> [MMT/yr.] |
|-----------------------------------------|----------------------------------------------------------|
| Petroleum Refineries                    | 7.5                                                      |
| Ammonia                                 | 2.5                                                      |
| Synfuels from Ethanol - CO <sub>2</sub> | 5                                                        |
| Injection to natural gas Infrastructure | 16                                                       |
| Iron Reduction and Steelmaking          | 8                                                        |
| Light-Duty FCEVs (Cars and Trucks)      | 21                                                       |
| Medium-Duty + Heavy-Duty FCEVs          | 8                                                        |

Table 5. Summary of U.S. hydrogen demand potential in 2050.

## 2.2 Regional Potential Hydrogen Demand in the Minnesota Region

The Xcel Energy Monticello and PI NPPs provide opportunities for producing near-zero-carbon hydrogen and other non-electric products for various potential markets. The potential cumulative current and future hydrogen demands out to 2030 in the regions surrounding these NPPs are examined and evaluated in the following sections leveraging methods used to estimate national potential hydrogen demand in Sections 2.1–2.1.7.

## 2.2.1 Prairie Island Nuclear Power Plant

The PI NPP, shown in Figure 20, is a 1,100 MW facility with two pressurized water reactors (PWRs). It is located about 40 miles southeast of Minneapolis-St. Paul, in Red Wing, Minnesota. Tables in Appendix F show the cumulative potential hydrogen demand within 100 miles of Prairie Island Nuclear Generating Plant.



Figure 20. Prairie Island Nuclear Generating Plant in Welch, Minnesota.

Current hydrogen demand near the Prairie Island Generating Plant is predominantly from the Marathon Petroleum Corp. St. Paul Park and Koch Industries, Inc., Flint Hills Resources, Pine Bend refineries located in Saint Paul, Minnesota, and Rosemont, Minnesota, respectively, within 30 miles of the NPP. The combined hydrogen demand from these two refineries is up to 310 MT/day. The rest of the potential near-term demand, 82 MT/day, is associated with the co-combustion of hydrogen with natural gas in 38 gas-powered electricity generators located within 100 miles driving distance from Prairie Island Generating Plant. The "natural gas electricity generators" in the following tables comprise the hydrogen demand calculated for each of these electricity generators if they were to use a mixture of 30 vol% H<sub>2</sub> mixed with natural gas. The cumulative potential hydrogen demand by type and distance near the Prairie Island Generating Plant are plotted and mapped in Figure 21 and Figure 22.

The future potential hydrogen demand for the Prairie Island Generating Station is about 905 MT/day, from potential markets within 100 miles of the NPP. The majority of the future potential hydrogen demand is from the two refineries previously mentioned and their associated SMRs, which have a combined demand for 400 MT/day of hydrogen for the refining process. Although not considered in this report, note that if CO<sub>2</sub> were to be separated from the SMR effluents at the refineries considered, this could be used as an additional future opportunity to produce synthetic fuels requiring more hydrogen demand. The five ethanol plants, Al-Corn Clean Fuel at Claremont; Guardian Energy, LLC, at Janesville; Pro Corn, LLC, at Preston; Big River Resources Boyceville, LLC, in Boyceville; and Heartland Corn Products in Winthrop are located within 100 miles of the Prairie Island Generating Station. Each of these is a source of high–purity CO<sub>2</sub> from which CO<sub>2</sub> could be separated and used to produce synthetic fuels requiring hydrogen demand is in the area northwest of the Prairie Island Plant, suggesting a potentially large-scale hydrogen infrastructure that could serve multiple demands in that region, thus reducing the cost of hydrogen delivery per unit of hydrogen demand in each location (assuming all demand can be realized within a narrow timeframe).

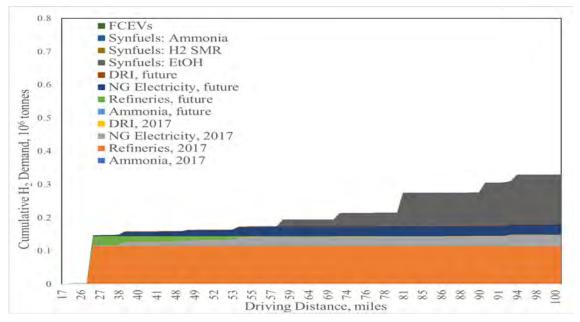



Figure 21. Cumulative potential hydrogen demand by type and distance near the Prairie Island Generating Plant.

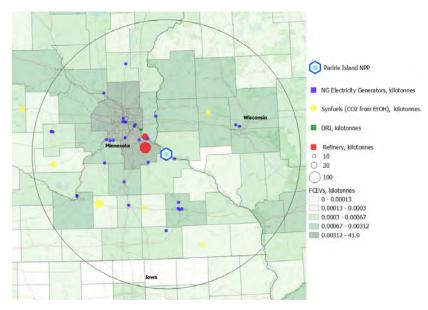



Figure 22. Future potential hydrogen demand near the Prairie Island Generating Plant.

## 2.2.2 Monticello Nuclear Power Plant

The Monticello NPP, shown in Figure 23, is a 647 MW facility with one boiling water reactor (BWR) located along the Mississippi river, northwest of Minneapolis-St. Paul, in Monticello, Minnesota. Figure 24 and Figure 25 show the cumulative potential hydrogen demand within 100 miles of the Monticello Nuclear Generating Plant.



Figure 23. Monticello Nuclear Generating Plant in Monticello, Minnesota.

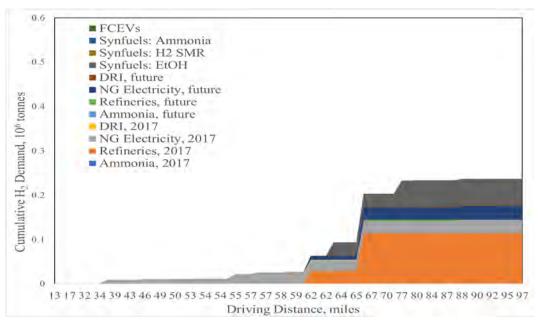
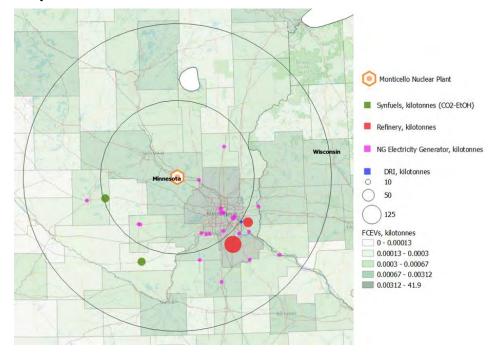




Figure 24. Cumulative potential hydrogen demand by type and distance near the Monticello Nuclear Generating Plant.

Current and near-term hydrogen demand near the Monticello facility depends mainly on the cocombustion of hydrogen with natural gas for electricity generation and on two refineries which add to this demand (assuming such demand will not be satisfied with Prairie Island plant). Tables showing the hydrogen demand surrounding Monticello are found in Appendix F. The cumulative near-term potential hydrogen demand for this location is 400 MT/day. About 27 natural gas electricity generators are located within 100 miles of this facility, and these have a combined potential hydrogen demand of 85 MT/day. Two refineries, Marathon Petroleum Corp. St. Paul Park, and Koch Industries, Inc., Flint Hills Resources, Pine Bend, have an estimated hydrogen demand of 310 MT/day. The cumulative potential hydrogen demand by type and distance near the Monticello generating station are plotted and mapped in Figure 24 and Figure 25 respectively. Future hydrogen demand near Monticello's location would be mostly for synthetic-fuels production, petroleum refineries, and for co-combustion of hydrogen with natural gas. The natural gas electricity generators column reflects the hydrogen demand calculated for each of these electricity generators if they were to use a mixture of 30 vol% H2 with natural gas. Synthetic-fuel-producing facilities using  $CO_2$  only from ethanol facilities within 100 miles would have a combined future potential demand of 164 MT/day. The two refineries increase the potential demand for hydrogen around the Monticello region, with a total of about 400 MT/day. The cumulative future hydrogen potential demand for Monticello NPP will be about 650 MT/day within 100 miles.





## 2.2.3 Overlapping Demand Between Prairie Island and Monticello NPPs

Xcel Energy's nuclear facilities in Minnesota (at Monticello and Prairie Island) were evaluated for potential hydrogen demand for different markets. Because of the proximity of these two power plants, there is significant overlap of the estimated potential H<sub>2</sub> demand for these two NPPs. To recommend which NPP should provide hydrogen to these markets, demand size and distance were assessed for the overlapping markets, so as to facilitate lowest transportation cost, which has major impact on the breakeven cost of hydrogen.

The majority of the potential current and future hydrogen demand near Xcel Energy's plants is in the Minneapolis/St. Paul area. The overlapping demand is presented in Appendix F, with the type and distances within 50 miles of the respective nuclear facilities. As shown in Figure 26, the majority of the overlapping demand is closer to Xcel's PI NPP. This overlapping cumulative potential future demand is about 337 kMT/ year (Figure 26).

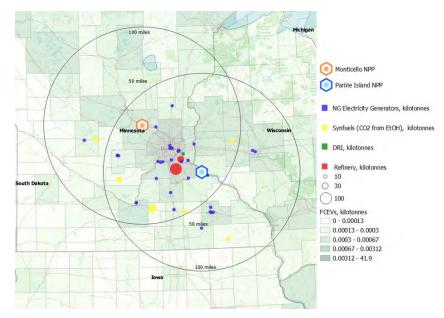



Figure 26. Overlapping future potential hydrogen demand withing 50 miles of Prairie Island and Monticello power plants.

## 2.2.4 Transportation of Hydrogen Using Pipelines for Xcel Energy's NPPs

In order to reach these hydrogen markets, a network of pipelines is proposed, starting from the PI and Monticello NPPs respectively, which can cover these locations and 90% of the total overlapping demand. These pipeline proposals are based on current generating portfolios and may shift as coal power shuts down and other generating sources are added, replaced, or modified. Hypothetical pipelines are planned adjacent to the roads in the region and are sized according to the amount of hydrogen required for these markets. The demand location covered by both pipeline networks is in the table below; labels are used to link these demand points.

Prairie Island NPP's pipeline network covers 17 concurrent demand locations, which include two refineries and several natural gas electricity generators. The total hydrogen demand served by this pipeline network is 172 kMT/year. The pipeline starts from PI NPP goes to Koch Industries, Inc., Flint Hills Resources Pine Bend Refinery (27 mi), continues to Marathon Petroleum Corp., St. Paul Park Refinery (16 mi), and then splits into two branches to serve the rest of the demand locations (see Figure 27).

Monticello NPP's pipeline network covers five concurrent demand locations: synfuel production and natural gas electricity generators with about 60 kMT/year total potential hydrogen demand. The pipeline starts from Monticello NPP and splits at a central location, labeled as 1, to serve all the demand location on its route (see Figure 28). The cost of H2 transportation using these pipelines is calculated using data provided in Appendix F. The network for both pipelines can be traced with link locations in Table 6. The pipeline size and its levelized cost of hydrogen delivery are calculated based on ANL's Hydrogen Delivery Scenario Analysis Model (HDSAM).<sup>27</sup> Depending on the size and location of demand, the hydrogen delivery cost ranges between \$0.05–0.25/kg, assuming that a pipeline network will be built to concurrently serve all potential hydrogen demand locations. The potential hydrogen demand curves for the Prairie Island and Monticello power plants after adjusting to account for the hydrogen pipeline delivery cost are provided below in Figure 27 and Figure 28, respectively.

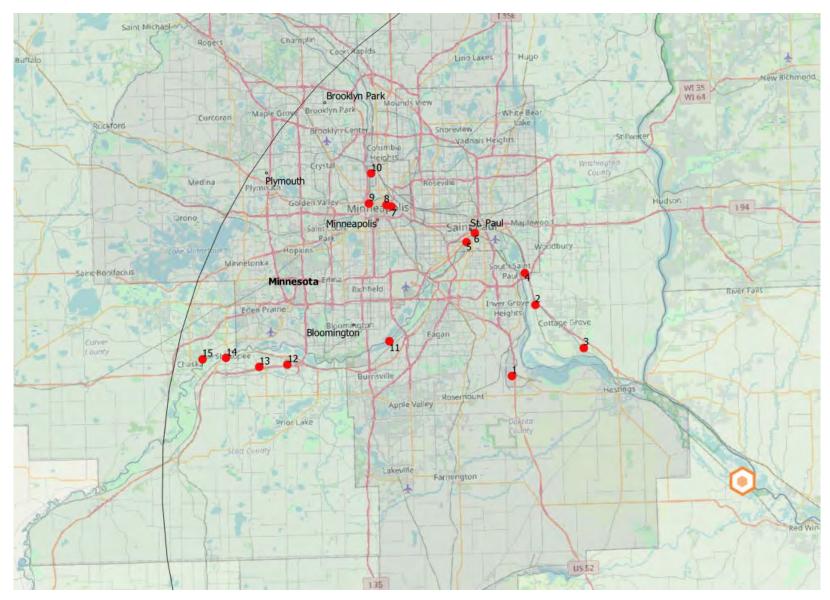



Figure 27. Demand locations with labels covered by the pipeline network for Prairie Island Nuclear Power Plant. Red dots: location for H<sub>2</sub> demand).

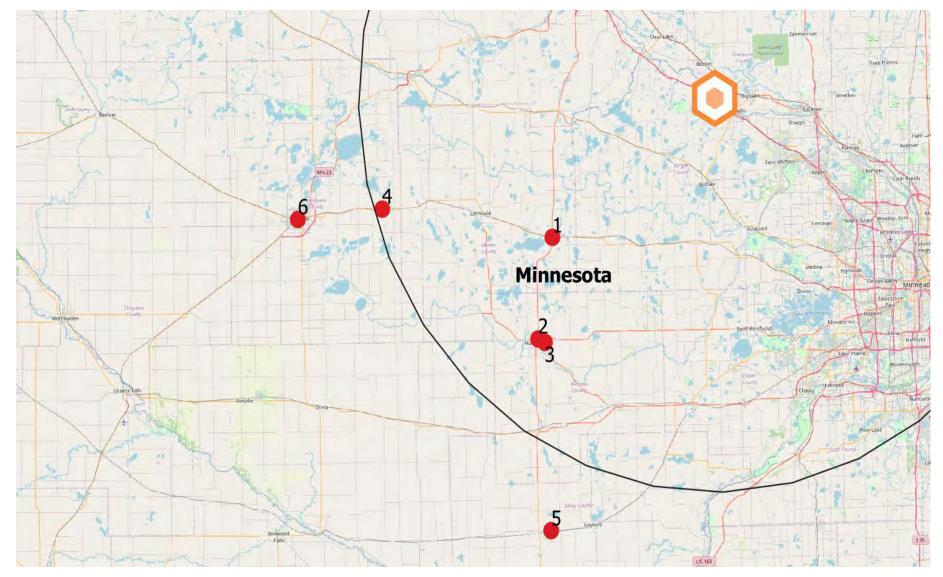



Figure 28. Demand locations with labels covered by the pipeline network for Monticello NPP. Red dots: location for H<sub>2</sub> demand.

| Pipel<br>Link | line<br>Point | From                                                               | То                                                              | Pipeline<br>Distance,<br>Miles | Future Potentia<br>Demand,<br>Kilotonnes |
|---------------|---------------|--------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------|------------------------------------------|
| Prair         | ie Island     | NPP Pipeline network                                               |                                                                 |                                |                                          |
| 0             | 1             | PI NPP                                                             | Koch Industries Inc Flint Hills Resources Pine<br>Bend Refinery | 27                             | 107.8                                    |
| 1             | 2             | Koch Industries, Inc., Flint Hills Resources Pine Bend<br>Refinery | Marathon Petroleum Corp. St. Paul Park Refinery                 | 15                             | 36.6                                     |
| 2             | 3             | Marathon Petroleum Corp. St. Paul Park Refinery                    | LSP-Cottage Grove LP: Cottage Grove Operating Services LLC      | 6.3                            | 1.7                                      |
| 3             | 4             | Marathon Petroleum Corp. St. Paul Park Refinery                    | Gerdau Long Steel North America-St. Paul                        | 3.2                            | 1.4                                      |
| 4             | 5             | Gerdau Long Steel North America, St. Paul                          | High Bridge: Northern States Power Co-Minnesota                 | 10.6                           | 10.2                                     |
| 5             | 6             | High Bridge: Northern States Power Co, Minnesota                   | St. Paul Cogeneration: St. Paul Cogeneration LLC                | 2.3                            | 0.4                                      |
| 6             | 7             | St. Paul Cogeneration: St. Paul Cogeneration, LLC                  | Univ Minnesota CHP Plant: Veolia Energy                         | 10.3                           | 0.83                                     |
| 7             | 8             | Univ Minnesota CHP Plant: Veolia Energy                            | Southeast Steam Plant: Veolia Energy                            | 1.3                            | 0.38                                     |
| 8             | 9             | Southeast Steam Plant: Veolia Energy                               | Covanta Hennepin Energy: Covanta Energy Co                      | 2.4                            | 0.03                                     |
| 9             | 10            | Covanta Hennepin Energy: Covanta Energy Co                         | Riverside (Minnesota): Northern States Power Co–<br>Minnesota   | 3.9                            | 8.48                                     |
| 1             | 11            | Koch Industries Inc, Saint Paul                                    | Black Dog: Northern States Power Co-Minnesota                   | 17.7                           | 3.68                                     |
| 11            | 12            | Black Dog: Northern States Power Co., Minnesota                    | Blue Lake: Northern States Power Co-Minnesota                   | 11.7                           | 0.65                                     |
| 12            | 13            | Blue Lake: Northern States Power Co., Minnesota                    | Shakopee Energy Park: Minnesota Municipal<br>Power Agency       | 4.5                            | 0.06                                     |
| 13            | 14            | Shakopee Energy Park: Minnesota Municipal Power<br>Agency          | Koda Biomass Plant: Koda Energy LLC                             | 3.3                            | 0.16                                     |
| 14            | 15            | Koda Biomass Plant: Koda Energy LLC                                | Minnesota River: Minnesota Municipal Power<br>Agency            | 5.3                            | 0.004                                    |
| Mon           | ticello N     | IPP pipeline network                                               |                                                                 |                                |                                          |
| 0             | 1             | Monticello NPP                                                     | Fictitious Pipeline location/ Link                              | 42                             | NA                                       |
| 1             | 2             | Fictitious Pipeline location                                       | Hutchinson Plant #1: Hutchinson Utilities<br>Commission         | 12.6                           | 0.06                                     |

Table 6. Pipeline network covered for transportation near Xcel Energy's Monticello and Prairie Island NPPs.

| - | eline<br>« Point | From                                                 | То                                                      | Pipeline<br>Distance,<br>Miles | Future Potential<br>Demand,<br>Kilotonnes |
|---|------------------|------------------------------------------------------|---------------------------------------------------------|--------------------------------|-------------------------------------------|
| 2 | 3                | Hutchinson Plant #1: Hutchinson Utilities Commission | Hutchinson Plant #2: Hutchinson Utilities<br>Commission | 1.5                            | 0.14                                      |
| 3 | 5                | Hutchinson Plant #2: Hutchinson Utilities Commission | Heartland Corn Products, Winthrop                       | 36.5                           | 30                                        |
| 1 | 4                | Fictitious Pipeline location                         | Bushmills Ethanol Inc, Atwater                          | 28.8                           | 30                                        |
| 4 | 6                | Bushmills Ethanol Inc, Atwater                       | Willmar: Willmar Municipal Utilities                    | 12.2                           | 0.06                                      |

# 2.2.5 Delivery Cost Adjusted Demand Curves for Prairie Island and Monticello NPPs

Hydrogen-demand curves for Prairie Island and Monticello NPPs are shown in Figure 29 and Figure 30, respectively. The  $H_2$  price for each demand type and location is adjusted to account for carbon credits and delivery costs. The carbon credits were calculated based on an assumed carbon tax of \$22.20 per short ton of CO<sub>2</sub>, based on the Xcel Energy 2019 IRP, and the estimated carbon reduction when using nuclear- $H_2$  to displace the carbon emission for different products through their conventional pathways. The hydrogen prices were calculated by assuming  $H_2$  being delivered to demand points using the pipeline network in Figure 29 and Figure 30 for Prairie Island and Monticello NPPs respectively. The amount of  $H_2$  delivered to each demand location is different; therefore, the cost of  $H_2$  delivery (transmission) is unique to each demand location.

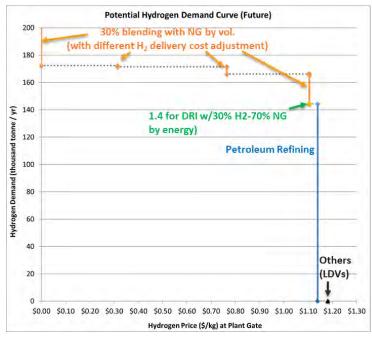



Figure 29. Potential hydrogen demand curve near Prairie Island Nuclear Generating Plant.

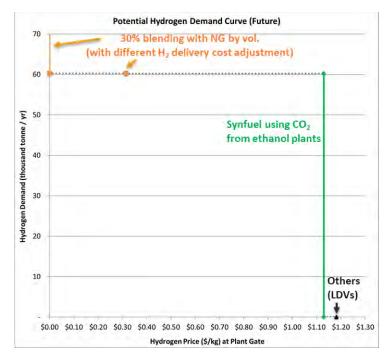



Figure 30. Potential hydrogen demand curve near Monticello Nuclear Generating Plant.

For natural gas generators and DRI, hydrogen is assumed to replace natural gas, so the breakeven price for  $H_2$  has to compete with natural gas pricing on an energy basis. For petroleum refineries, SMR- $H_2$ is assumed to be replaced by LWR-Nuclear- $H_2$  and thus has to compete with natural gas-SMR- $H_2$  price (\$1.03 per kg). For Synfuels produced using Nuclear  $H_2$  it is assumed that these synfuels would replace conventional diesel and will compete with diesel prices (2050, \$3.1 per gal). Similar for FCEVs the Gasoline- ICEVs are assumed to replace FCEVs using Nuclear- $H_2$ .

These breakeven prices were then adjusted to account for carbon credits and hydrogen delivery prices to construct the demand curve for Prairie Island and Monticello NPPs using the equation below. Table 7 shows the breakeven  $H_2$  prices and  $CO_2$  credits for different demand types. As mentioned earlier, the  $H_2$  delivery prices are unique to each demand location depending on the delivered amount and distance from nuclear power plant. The  $H_2$  transmission cost was calculated using ANL's HDSAM by assuming a pipeline network that connects the NPPs to the various surrounding demand location. These demand curves have been used for further analysis in the economic dispatch and optimization section of the report.

The equation for calculating the cost adjusted hydrogen price used in the demand curves.

$$Hydrogen \ price \ \left(\frac{\$}{kg}\right) = Breakeven \ price \ for \ the \ specific \ market \ \left(\frac{\$}{kg}\right) + \ Carbon \ credits \ \left(\frac{\$}{kg}\right) - Hydrogen \ Transmission \ cost \ \left(\frac{\$}{kg}\right)$$

| Demand        | Fuel being               | Breakeven            | *CO <sub>2</sub> Credits | Notes regarding breakeven H <sub>2</sub> price                                     |
|---------------|--------------------------|----------------------|--------------------------|------------------------------------------------------------------------------------|
| Markets       | replaced using           | H <sub>2</sub> Price | (\$/kg)                  |                                                                                    |
|               | Nuclear H <sub>2</sub>   |                      | -                        |                                                                                    |
| NG Generators | Natural Gas              | \$0.53               | \$0.28                   | H <sub>2</sub> vs natural gas on BTU basis                                         |
| DRI           | Natural Gas              | \$0.53               | \$0. 58                  | DRI w/30% H <sub>2</sub> in syngas vs 100% natural gas                             |
| Synfuels      | Conventional<br>Diesel   | \$1.14               | \$0.22                   | H <sub>2</sub> for FT to breakeven with untaxed<br>diesel price (\$3.1/gal) (2050) |
| FCEVs         | Conventional<br>Gasoline | \$1.03               | \$0.27                   | FCEV vs. Gasoline ICEV                                                             |

Table 7. Breakeven H<sub>2</sub> prices and CO<sub>2</sub> credits for hydrogen demand markets.

\*CO<sub>2</sub> credits of \$22.20 per short ton was assumed per the Xcel Energy 2019 IRP.

The transmission cost for  $H_2$  to each demand point was calculated using HDSAM.<sup>27</sup> The CO<sub>2</sub> credits in Table 7 above are calculated based on the assumed carbon tax of \$22.20 per short ton of CO<sub>2</sub> and the difference in life-cycle carbon intensity between conventional products and the equivalent low-carbon products facilitated by nuclear-hydrogen production. Table 8 below shows the magnitude of the CO<sub>2</sub> credits per kilogram of hydrogen for a range of carbon tax between \$0 and \$200 per short ton of CO<sub>2</sub>. This table shows the credit that nuclear-hydrogen can accrue per kilogram of hydrogen used in various applications at various CO<sub>2</sub> prices due to the associated life-cycle carbon-intensity reduction in these applications compared to the carbon intensity of their conventional pathways. As an example, the nuclearhydrogen can be produced competitively with a premium of \$2.43/kg over the cost of SMR-H<sub>2</sub> when the CO<sub>2</sub> price is at \$200/short ton.

| CO <sub>2</sub><br>price/short ton | Nuclear H <sub>2</sub> CO <sub>2</sub><br>vs. natural gas<br>SMR_H <sub>2</sub> | Nuclear H <sub>2</sub> vs.<br>natural gas on<br>energy basis | DRI w/30%<br>H <sub>2</sub> in syngas<br>vs. BF-BOF | Synfuel from<br>Nuclear H <sub>2</sub> vs.<br>conventional<br>diesel | H <sub>2</sub> FCEV vs.<br>conventional<br>gasoline ICEV |
|------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|
| \$0.00                             | \$0.00                                                                          | \$0.00                                                       | \$0.00                                              | \$0.00                                                               | \$0.00                                                   |
| \$22.20                            | \$0.27                                                                          | \$0.28                                                       | \$0.58                                              | \$0.22                                                               | \$0.27                                                   |
| \$50.00                            | \$0.61                                                                          | \$0.63                                                       | \$1.30                                              | \$0.50                                                               | \$0.61                                                   |
| \$100.00                           | \$1.21                                                                          | \$1.27                                                       | \$2.61                                              | \$0.99                                                               | \$1.21                                                   |
| \$150.00                           | \$1.82                                                                          | \$1.90                                                       | \$3.91                                              | \$1.49                                                               | \$1.82                                                   |
| \$200.00                           | \$2.43                                                                          | \$2.54                                                       | \$5.21                                              | \$1.98                                                               | \$2.43                                                   |

Table 8. CO<sub>2</sub> credits per kg of hydrogen for a range of carbon taxes per short ton of CO<sub>2</sub>.

## 3 LWR-HTSE HYDROGEN PLANT DESIGN MODEL DEVELOPMENT

This section presents a detailed engineering plant-design model and analysis for the integration of hydrogen production via SOEC/HTSE with an LWR NPP. This analysis represents original and groundbreaking modeling and analysis of current state-of-the-art HTSE technology integrated with nuclear power as well as forecasted performance improvements of HTSE technology. This section also describes various sensitivity studies on the cost to produce hydrogen (i.e., the LCOH) as well as a detailed optimization and discounted cash flow (DCF) NPV analysis. Thus, not only current and forecasted technologies are modeled, but the sensitivity and optimization studies give a sense for what is possible with the improvement of the process-input parameters. Plant design, analysis, and optimization of the input parameters, results, costs, and benefits of HTSE integrated with nuclear power is the main objective of this report.

A small portion of heat from an LWR is diverted to provide heat to the HTSE process, which can significantly increase its process efficiency. A detailed process and control model of both the thermaldelivery loop (TDL) and the nuclear reactor dynamics for TPE from nuclear power have been separately performed, and the status of this ongoing analysis is summarized in the appendix of this report. For the current analysis, a simplified model of TPE with all the necessary details was used. Figure 31 shows a diagram of the HTSE integrated with an NPP in a generic layout as designed and analyzed in this report. It is recognized that various iterations of designs for thermal power extraction are being studied and this configuration may not be the optimal final design. Other design options not included in this report could include removing after the high-pressure turbine, eliminating the TDL to use NPP steam to directly heat treated HTSE feedwater, decreasing the distance between the steam extraction and the HTSE, and returning condensate to the first NPP feedwater heater versus to the condenser. The scope of the analysis for this report is only for the TPE via the TDL and the hydrogen plant, as shown in Figure 31. The nuclear reactor dynamics and control of the TPE are rigorously modeled elsewhere, as mentioned in the TPE section in the appendix of this report. Other sections of this report deal with hydrogen transportation logistics and downstream use-case analysis of the produced hydrogen.

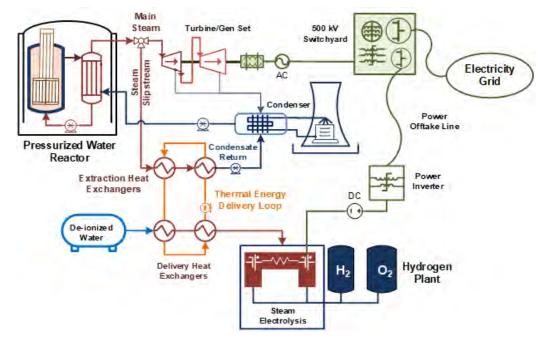



Figure 31. Overview of HTSE integrated with an NPP. Equipment added to the NPP includes the steam slip stream from the turbine inlet, the TDL, the HTSE hydrogen plant, and associated water and electricity supply tie-ins.

A process model of the NPP-HTSE was rigorously developed using AspenTech HYSYS to model the CAPEX and OPEX) as well as energy and utility requirements. This model could be used to provide inputs to front end engineering design (FEED) in a follow-on analysis. Outputs from the process model were used in the hydrogen production analysis model ( $H_2A$ ) to determine the overall costs of hydrogen production.

SOEC/HTSE is a developing technology that is currently at a lower commercial scale than polymer electrolyte membrane (PEM) low-temperature electrolysis (LTE). But HTSE has advantages over LTE that will only amplify as the technology continues to develop. The greatest advantage of HTSE includes higher efficiency of hydrogen production and, therefore, reduction in the cost to produce hydrogen, especially when integrated with nuclear power.

As the name suggests, HTSE is operated at a higher temperature than LTE, which thermodynamically drives a higher reaction rate to the desired hydrogen product. LTE uses expensive catalysts to drive the hydrogen-production reaction rate. When integrated with nuclear power, HTSE can achieve cost reduction by using low-cost heat from the nuclear reactor to overcome the heat of vaporization of the water. Although the NPP heat is considered low grade at a temperature of up to 300°C, the NPP heat is used to overcome the large amount of latent heat energy needed to vaporize large volumes of water. Following vaporization, heat recuperation and topping heaters can be used to supply the sensible heat needed to raise the steam to HTSE operating temperature.

The TDL modeled as part of this study includes only major assumptions of equipment capital costs. It does not include cost allowance for NPP tie-ins, downtime, detailed control equipment for the TDL, or any nuclear reactor controls or regulatory reviews. Thus, the cost of the thermal integration is expected to be higher than estimated here; actual costs of thermal integration with a nuclear reactor will be more accurate coming from a utility company performing a separate study to include those costs.

The following analysis discusses the inputs, assumptions, methodology, and results, as well as various sensitivity studies, and concludes with a detailed optimization of the HTSE integrated with nuclear power in a regulated grid market.

## 3.1 Process-Modeling Design Basis

An LWR-integrated HTSE process model was developed using AspenTech HYSYS simulation software<sup>28</sup> for the purposes of (1) determining HTSE process energy requirements, (2) computing hydrogen production rates and the corresponding feed-water flow rate requirements, (3) establishing equipment-sizing parameters in support of capital-cost analysis, and (4) determining the maximum capacity HTSE plant that could be coupled with a specified LWR NPP.

A process-flow diagram (PFD) of the HYSYS model main HTSE process area is shown in Figure 32. This figure highlights the location of the SOEC stacks, the steam generator used to vaporize process-feedwater stream using nuclear process heat, the high-temperature electrical topping heaters, and the high- and low-temperature recuperators used to provide process-heat integration. Descriptions of the process subsystems included in the process model are included in Section 3.1.1. Process operating conditions and equipment performance specifications are detailed in Section 3.1.2.

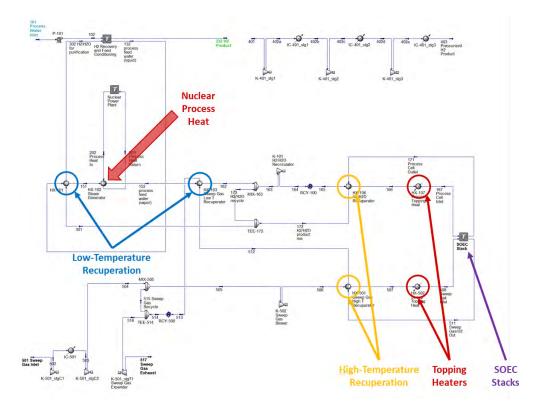



Figure 32. HTSE-process flow diagram.

## 3.1.1 Process Overview

The HTSE system evaluated includes several major process systems. These systems include (1) HTSE system, (2) feed and utility system, (3) air sweep-gas system, (4) hydrogen/steam system, (5) hydrogen purification system, (6) nuclear process-heat delivery system, (7) multistage product compression, and (8) the control system. A description of each of these process systems is included in the sections below. Process-flow diagrams with each of the separate process systems identified are included in the Appendix.

## 3.1.1.1 HTSE system

The HTSE system includes the SOEC stacks, the high-temperature recuperators, the trim heaters, and the insulated containment vessel that houses the stack array and provides pressure containment. The HTSE system also includes electrical-power distribution as well as instrumentation required to maintain the specified stack-operating conditions. The HTSE system recuperating heat exchangers are used to transfer heat from the high-temperature stack's outlet streams to the lower-temperature stack inlet streams; use of recuperators allows the T <300°C heat supplied by the LWR to be used primarily for feedwater vaporization (at temperatures in the 100–200°C range) because this heat is not available at a sufficient temperature to heat the hydrogen/steam stack inlet-gas mixture to the stack operating temperature of the steam/hydrogen mixture entering the stack from the recuperator outlet temperature to the specified operating temperature.

## 3.1.1.2 Feedwater and utility systems

The feed and utility system includes the process components necessary to prepare and stage a clean, demineralized feedwater stream (separate from the NPP's process and steam-cycle water) for use in the HTSE process, including water filtration, purification, and storage, as well as the cooling and electrical-

power-distribution systems needed to support HTSE process operation. Cooling towers are included to provide process cooling duty (used in the hydrogen purification system for cooling the process-gas streams and for providing compressor cooling). The feed and utility system also includes electrical-power transmission and distribution equipment to provide electrical-power connections between the nuclear plant and the HTSE site, transforming the power from the NPP substation voltage to the rectifier input voltage, inverting the AC power from the transmission system to DC power for use in the SOEC stacks and the bus bars for distributing the high-amperage current from the rectifier to the stacks.

## 3.1.1.3 Air sweep-gas system

During HTSE process operation, pure oxygen is generated on the anode side of the SOEC stacks. Because the stacks operate at elevated temperatures (700–800°C), oxidation of the SOEC system materials of construction is an operational issue if the oxygen concentration is not reduced. An air sweepgas stream is used to dilute and evacuate high-concentration oxygen from the HTSE system. The sweepgas system delivers the air sweep-gas stream to the stack at the specified operating temperature and pressure to minimize any thermal or pressure gradients between the anode and cathode sides of each cell, which reduces mechanical stresses on the cells. The enriched-oxygen air sweep-gas stream is released to the atmosphere following expansion through a pressure-recovery turbine to capture the energy in the stream. Because the flow rate of the sweep-gas outlet stream is greater than the flow rate of the sweep-gas inlet stream (due to the addition of oxygen in the stack), the net-power requirements of the sweep-gas compressor/expander are negligible in comparison with other HTSE-system power demands.

## 3.1.1.4 Hydrogen/steam system

The hydrogen/steam system vaporizes the feedwater stream and mixes the resulting steam with the specified quantity of recycled hydrogen exiting the stack. Low-temperature recuperators, the feedwater steam generator, high-temperature gas blowers, and piping/manifolds necessary to recycle a portion of the stack product gas comprise the hydrogen/steam system. (The presence of hydrogen in the stack inlet gas stream maintains reducing conditions important in minimizing SOEC degradation.) The low-temperature recuperators are used to preheat the liquid-phase feedwater while simultaneously cooling the  $H_2/H_2O$  mixture en route to the hydrogen-purification system.

## 3.1.1.5 Hydrogen purification system

The hydrogen/steam process-gas mixture in the stack-outlet stream flows through high- and lowtemperature recuperators in the HTSE and hydrogen/steam systems to cool the stream to a temperature near the dew point. The hydrogen purification system uses multiple stages of cooling and compression to progressively condense a greater fraction of the water from the stream. In addition to using cooling water as a heat sink for the hydrogen purification system's cooling operations, preheating the purified process feedwater provides a useful cooling duty for cooling/condensing steam from the hydrogen/steam process gas mixture. The hydrogen purification system is configured to cool and compress the hydrogen product stream to a temperature of 20°C and a pressure of 20 bar, which results in a 99.9% pure hydrogen product gas stream.

## 3.1.1.6 Nuclear process heat delivery system

In addition to electrical power, the NPP can provide a source of low-cost process heat for use in the HTSE process. Although, as previously mentioned, steam from the existing LWR fleet does not have a sufficiently high temperature to provide direct heat input to the SOEC stack, LWR nuclear process heat is well-suited to provide the thermal energy required to vaporize the clean, demineralized HTSE process feedwater (separate from the NPP's process and steam-cycle water). In the case where a gigawatt-scale HTSE plant is coupled with an NPP such that the HTSE plant consumes all the plants energy output (both thermal and electrical), 5–10% of the nuclear plant steam flow is required to provide the heat duty required for vaporization of the HTSE process feedwater.

NPP steam is diverted from a location upstream of the steam Rankine-cycle high-pressure turbine into the steam-extraction loop (SEL). A series of heat exchangers are used to condense and subcool the nuclear plant steam to transfer heat to a HTF in the TDL. The TDL is a closed-loop heat-transfer system that uses steam or synthetic heat-transfer oil to transfer nuclear process heat between the NPP and the HTSE process. The present analysis specifies the use of a synthetic heat-transfer oil (such as Therminol-66 or DowTherm) in the TDL.

Safety considerations require that the nuclear and HTSE plant sites be physically separated to minimize the risks to the nuclear plant associated with the possible detonation of the hydrogen produced by the HTSE plant. The TDL HTF transports the nuclear process heat from the nuclear plant to the HTSE plant (a distance of 1.0 kilometer is specified in the current analysis), where it is distributed between an array of heat exchangers (one per HTSE modular block) that serve as the HTSE process feedwater steam generators. The cooled TDL HTF is then returned to the nuclear plant via the TDL return piping, where fluid subsequently flows through a pump that provides the pressure differential required to recirculate the HTF through the TDL.

## 3.1.1.7 Multistage product compression

The purified hydrogen product exits the hydrogen-purification system at a pressure of approximately 20 bar, which is not sufficient for cost-effective hydrogen storage or transportation. Additionally, 20 bar is too low a pressure for hydrogen end-use applications, including FCEV refueling stations or input into a Haber-Bosch ammonia-synthesis process. The purified hydrogen product exiting the hydrogen-purification system is therefore sent to the multistage product compression system, where it is compressed to a pressure of 70 bar, which is a suitable pressure for injection into a distribution pipeline, or input to a hydrogen-storage system (additional compression would be required for high-pressure hydrogen-storage applications). Injection into a hydrogen-gas distribution pipeline is the primary application intended for the 70-bar high-pressure hydrogen product specified in this analysis.

## 3.1.1.8 Control system

The control system includes a control building and multiple operator centers for use in monitoring and controlling the HTSE process. Because the instrumentation costs for individual process unit operations are included in the Aspen Process Economic Analyzer's (APEA's) installed-equipment costs (and cost allowances are made for other sensors and instrumentation), the control-system capital costs are limited to those for the control building and operator centers. The HTSE control system will also be required to interface with the NPP control system. In order to avoid conflicts and increased regulations associated with the NPP control system, the HTSE control system will most likely be kept isolated from the NPP control system other than the ability of the NPP operator to shut down the HTSE at any time for any reason.

## 3.1.2 Equipment and Operating Condition Specifications

The HTSE process model is based on a stack operating temperature of 800°C and thermoneutral operating voltage of 1.29 V/cell. The steam inlet concentration is specified as 90 mol%, with 10 mole% hydrogen included to maintain reducing conditions. A detailed listing of HTSE-process operating-condition specifications is provided in Table 9. The stack operating pressure and steam usage are parameters that impact the energy consumption for the BoP operations; Section 3.1.2.1 describes a parametric analysis of the operating pressure and steam usage to obtain system design specifications that result in energy-efficient process operation.

BoP equipment specifications are listed in Table 10. As detailed in Table 10 the system design basis includes purification of the hydrogen product to 99.9 mol% hydrogen and compression to a pressure of 69 bar, which is a pressure suitable for injection into a transportation pipeline. The system design basis specifically does not include hydrogen-storage capacity or storage compressors because the specifications of this equipment are a result of the dispatch optimization analysis discussed in Section 4.

| Parameter                                | Value                                                                           | Reference or Note                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stack operating temperature              | 800°C                                                                           | O'Brien et al 2020 <sup>29</sup>                                                                                                                                                                                                                                                                                                                                                                                                      |
| Stack operating pressure                 | 5 bars                                                                          | See Section 3.1.2.1                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Operating mode                           | Constant V                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cell voltage                             | 1.29 V/cell                                                                     | Thermo-neutral stack operating point                                                                                                                                                                                                                                                                                                                                                                                                  |
| Current density                          | 1.0 A/cm <sup>2</sup>                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Stack inlet H <sub>2</sub> O composition | 90 mol%                                                                         | O'Brien et al 2020 <sup>29</sup>                                                                                                                                                                                                                                                                                                                                                                                                      |
| Steam utilization                        | 80%                                                                             | See Section 3.1.2.1                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HTSE modular-block capacity              | 25 MW-dc                                                                        | 1000x capacity increase <sup>29</sup>                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cell area per modular block              | 1945.4 m <sup>2</sup>                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sweep gas                                | Air                                                                             | O'Brien et al 2020 <sup>29</sup>                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sweep-gas inlet flow rate                | Flow set to achieve 40 mol%<br>O <sub>2</sub> in anode outlet stream            |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Stack service life                       | 4 years                                                                         | HFTO Hydrogen Production Record 20006 <sup>30</sup>                                                                                                                                                                                                                                                                                                                                                                                   |
| Stack degradation rate                   | 1.2%/1000 hr                                                                    | Degradation rate calculated to match<br>stack end-of-life performance of 67%<br>projected from H <sub>2</sub> A v3.101 future central<br>SOEC default case. 1.2%/1000 hr<br>degradation rate is very conservative as<br>current indications are that suppliers may<br>be able to achieve at least half this rate of<br>degradation, this would lead to an<br>increased service life and decreased<br>maintenance and replacement cost |
| Stack replacement schedule               | Annual stack replacements<br>completed to restore design<br>production capacity | Based on H <sub>2</sub> A model stack replacement cost calculations                                                                                                                                                                                                                                                                                                                                                                   |

Table 9. HTSE and related subsystem process operating condition specifications.

Table 10. BoP equipment specifications.

| Parameter                                                                                                          | Value                                                     | <b>Reference or Note</b>                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Heat Exchangers                                                                                                    |                                                           |                                                                                                                                              |
| Heat exchanger $\Delta P$ :<br>TDL, feedwater heating, low<br>temp recuperators                                    | $\Delta P$ set using inlet pressure dependent correlation | ΔP correlation adapted from<br>AspenTech Exchanger Design &<br>Rating (EDR) software allowable<br>pressure drop specification                |
| Heat exchanger $\Delta P$ :<br>High-temperature recuperators,<br>intercoolers, cooling water<br>utility exchangers | $\Delta P$ set to 2% of exchanger inlet pressure          |                                                                                                                                              |
| Heat exchanger minimum<br>temperature approach                                                                     | 20°C in TDL;<br>15°C in HTSE process                      | Larger $\Delta T$ specified in TDL<br>exchangers to provide additional<br>flexibility for varying LWR<br>and/or HTSE operating<br>conditions |
| Cooling water utility                                                                                              | 20°C supply T;<br>34°C return T                           |                                                                                                                                              |
| Compression                                                                                                        |                                                           |                                                                                                                                              |
| Compressor adiabatic efficiency                                                                                    | 80%                                                       |                                                                                                                                              |
| Compressor pressure ratio per stage                                                                                | ~1.5 max                                                  |                                                                                                                                              |
| Product Recovery                                                                                                   |                                                           |                                                                                                                                              |
| H <sub>2</sub> product recovery stage pressures (approximate)                                                      | 5, 10, 20 bars                                            | Approximately equal<br>compression ratios between<br>stages                                                                                  |
| H <sub>2</sub> product purity                                                                                      | 99.9 mol%                                                 |                                                                                                                                              |
| H <sub>2</sub> product pressure                                                                                    | 69 bars (1000 psi)                                        | Purified hydrogen product<br>compressed to final pressure<br>using high-pressure multistage<br>compressor                                    |
| Thermal-Delivery Loop                                                                                              |                                                           |                                                                                                                                              |
| TDL HTF                                                                                                            | Therminol-66                                              | O'Brien et al 2017 <sup>31</sup> ; Frick et al 2019 <sup>32</sup>                                                                            |
| TDL transport distance                                                                                             | 1.0 km                                                    | Vedros et al 2020 <sup>33</sup>                                                                                                              |
| Maximum HTF velocity                                                                                               | 3.0 m/s                                                   | Basis for pipe diameter calculations                                                                                                         |

## 3.1.2.1 Stack operating conditions selection

Because the majority of hydrogen production costs are generally associated with energy input, it is important for the HTSE system normal-operating mode to correspond to operating conditions that minimize process-energy costs and, also, equipment capital costs. Steam usage and stack operating pressure are two parameters that have a significant impact on the system energy consumption.

Increases in the stack operating pressure decrease the compression-energy requirements in the hydrogen purification system. Because the steam-generator pressure can be elevated through the use of liquid-phase pumps, the energy requirements for increasing the stack operating pressure are low. However, increases in the stack operating pressure will require process vessels to be rated for higher operating pressures, which increases capital costs. Additionally, increasing the stack operating pressure increases the Nernst (open cell) potential, which has the effect of increasing the stack input power requirements.

The steam usage has a direct impact on the HTSE system cooling and thermal-energy input requirements. References [31], [34], [35], [36], and [37] indicate that HTSE steam usage typically ranges anywhere from 40 to 90%. The lower the steam usage, the greater the quantity of unreacted steam exiting the stack. Because the unreacted steam must be condensed in the hydrogen-purification system and is then recycled to the steam generator, a low steam-usage value results in increased system cooling and thermal-energy input requirements. Although the use of a very high steam-usage operating specification would minimize the process-cooling and thermal-energy input requirements, there are practical upper limits on this parameter due to mass-transfer limitations associated with delivering the steam reactant to the active sites on the electrolysis cathode. Additionally, the presence of excess steam in the cells has the effect of lowering the Nernst potential, which has the effect of reducing the stack's input-power requirements.

A parametric analysis of the impact of the stack operating pressure and steam usage on processenergy requirements was completed using the HYSYS HTSE process model. In this analysis, the stack operating pressure was varied from 1 to 10 bar absolute pressure, and the steam usage was varied from 60 to 80%. Current technology steam utilization could already be as high as 80%. Not considering improvements to the technology itself but only improvements to process controls and process optimization, the steam utilization could possibly increase to nearly 90% in the near future.

The effect of the stack operating pressure and steam usage on the system's electrical-energy consumption are shown in Figure 33. Over the range of conditions evaluated, the stack operating pressure has the greatest effect on electrical-energy consumption. Increases in stack operating pressure result in decreases in the electrical-energy consumption. Higher steam usage results in lower energy consumption for all pressures evaluated. At a stack operating pressure of approximately 5 bar, the energy savings associated with increasing the stack operating pressure become less pronounced.

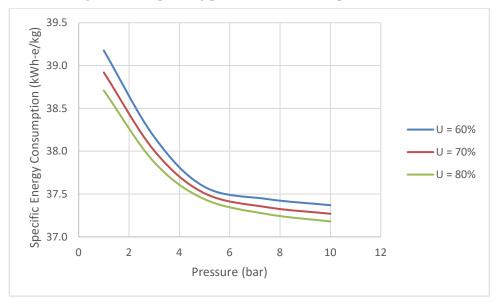



Figure 33. Electrical-energy consumption as function of stack operating pressure with steam usage as a parameter.

The system's thermal-energy consumption is most strongly affected by steam usage, as shown in Figure 34. As previously described, increased steam usage decreases the quantity of unreacted steam exiting the stack that must be condensed and revaporized. Increasing the steam usage (and thereby decreasing the steam-recycle rate) therefore has a direct impact on reducing the thermal-energy requirements of the process, as well as reducing its cooling requirements. Increases in the steam usage result in a nearly linear decrease in the thermal-energy consumption over the range of values evaluated.

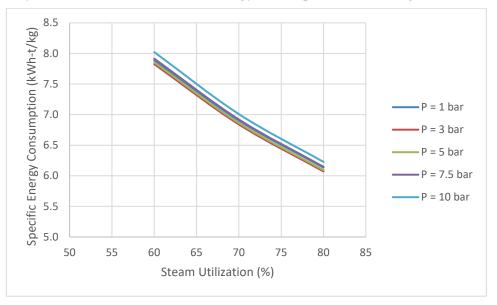



Figure 34. Thermal-energy consumption as function of steam usage with stack operating pressure as a parameter.

The HTSE system efficiency is a metric that includes both thermal- and electrical-energy consumption. The impact of the stack operating pressure and steam usage on the HTSE system efficiency is plotted in Figure 35. Increases in steam usage increase system efficiency at all conditions evaluated. Increases in system pressure result in a significant increase in system efficiency up to a pressure of approximately 5 bar, where there is a "knee" in the curve, and further increases in system pressure return a lower increase in system efficiency.

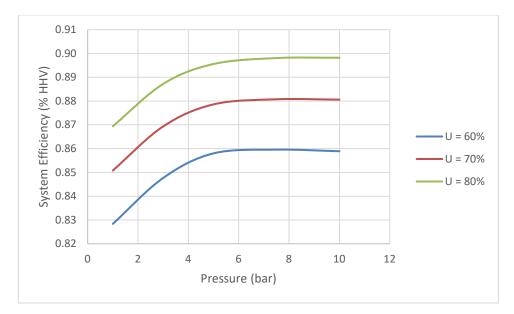



Figure 35. HTSE system efficiency as function of stack operating pressure with steam usage as a parameter.

The HTSE system, hydrogen/steam system, and air sweep-gas system will all be required to have components rated for the specified stack operating pressure. Therefore, a 5-bar operating pressure was selected as the system design point; this operating pressure will achieve near-optimal system efficiency without incurring the additional capital costs that would be incident to further increases in pressure ratings of the relevant process equipment. A steam usage of 80% was selected as the system design point, based on the significant decreases in system thermal-energy consumption associated with elevated steam usage predicted by the parametric analysis. The value of 80% steam usage is within the range of conditions that have been demonstrated and/or are suggested as practical by numerous literature sources.<sup>31,34,35,36,37</sup>

#### 3.1.2.2 Normal operation

The HTSE plant's normal operating mode is used for hydrogen production. HTSE-system normal operation is characterized by the conditions specified in Table 9. During normal operations, the LWR plant dispatches a rated quantity of electrical power and process heat to the HTSE plant to support hydrogen-production operations. The HTSE most likely will be operated to produce hydrogen during periods of off-peak electrical-market demand.

#### 3.1.2.3 Hot-standby mode

A grid-integrated HTSE plant is expected to operate in the normal operating mode for the majority of the time, with interruptions in hydrogen production generally occurring for up to several hours per day during peak electricity-demand periods. During the interruptions in hydrogen production, the HTSE plant would be operated in a hot-standby mode. The hot-standby mode would cease hydrogen-production operations in order that maximal energy output from the nuclear plant could be dispatched to the electrical-grid. Because the HTSE plant would need to be quickly brought back online at the end of the period of peak-electrical demand, the hot-standby mode is designed to maintain HTSE process conditions necessary to support a rapid resumption of hydrogen-production operations. This involves the continued circulation of process fluids to keep the process equipment operational and at temperatures, pressures, etc. Because the hot-standby operating mode continues to circulate process and HTFs, the HTSE process-energy requirements are not eliminated during hot-standby mode. Instead, both electrical power and thermal power input requirements remain, albeit at a much lower rate than during normal operations.

A dedicated HTSE plant would not be expected to use the hot-standby operating mode. Instead, a dedicated HTSE plant would maximize the time spent operating in the normal operating mode (resulting in a high capacity factor) in order to fully use the capital investment and provide a steady supply of hydrogen to customers. The hot-standby mode is, therefore, only applicable in the evaluation of grid-integrated HTSE plant-operating scenarios (e.g., RAVEN model-optimization analyses).

To estimate hot-standby mode electrical- and thermal-energy demands, the HYSYS model was modified with a set of operating conditions representative of the hot-standby energy mode. The HYSYS model hot-standby energy-requirement estimates represent steady-state operation of hot-standby mode. The process model hot-standby operating mode was configured using the following specifications:

- Stack operating temperature, pressure, inlet composition maintained at nominal values using TDL steam generator, process, and sweep-gas blowers, electric topping heaters, and recycle of stack outlet H<sub>2</sub>/H<sub>2</sub>O process gas and H<sub>2</sub> from product recovery.
- All of the design-point stack-inlet flow rate (process gas and sweep gas); stack process gas inlet composition maintained at design point specification (10 mol% hydrogen in process gas-inlet stream to maintain reducing process conditions; process-gas recycle provides a source of hydrogen in stack inlet stream).
- None of the stack power during hot-standby mode; stack outlet composition is equal to stack inlet composition during hot-standby operating mode (no steam usage); since greater than 90% of design point process electrical power requirements are used to power stack operations. This specification represents the largest single reduction in process-energy consumption associated with the hot-standby operating mode.
- The flow rate of steam entering the product-purification area is maintained at the design point value (the total H<sub>2</sub> + H<sub>2</sub>O flow rate entering the product-purification area during hot-standby operations decreases because no hydrogen production occurs). Maintaining the design-point steam-inlet flow rate minimizes changes in heat load to the product-recovery area condensing equipment. Because the steam condensate collected in the product recovery area serves as the steam-generator feedwater source during hot-standby mode, the steam-generator thermal load is decreased accordingly (the net process feedwater input requirements are zero during hot-standby mode because no hydrogen is produced; the hot-standby process thermal-energy demands correspond to the heat needed to vaporize the process water that is recirculated between the stack and the product-recovery area).
- The high-pressure product compressor is shut down because no hydrogen is produced during hotstandby operation, and all hydrogen exiting the product purification area is recycled to the stack inlet.

#### 3.1.2.4 SOEC performance degradation

Actual annual hydrogen production may vary from the design production capacity for several reasons. In a grid-integrated HTSE system, annual production will be reduced in proportion to the time that the HTSE plant is taken offline so that power generation from the nuclear plant can be dispatched to the electrical-grid. In a dedicated hydrogen-production HTSE system, any plant outages (due to maintenance, NPP refueling, etc.) will reduce the HTSE plant capacity factor such that the actual annual production rate is less than the design production rate. In addition to plant outages and/or interruptions in production activities, the HTSE plant's hydrogen-production capacity is also affected by cell-performance degradation that occurs over the service life of each SOEC stack.

The design basis specifies constant voltage mode; therefore, cell degradation results in a decrease in the electrical current that passes through the cell during normal operations. Decreased current results in decreased stack power consumption and a proportional decrease in stack hydrogen production. Therefore, cell degradation results in a decrease in the overall HTSE operating-capacity factor beyond the reductions in capacity factor associated with HTSE plant standby and outage periods.

The HFTO Hydrogen Production Record used as the data source for the base case HTSE analysis specifies a 4-year stack service life.<sup>30</sup> A degradation rate of 1.2%/1000 hr with an end-of-life stack performance of 67% was specified in this analysis; this value corresponds to the stack end-of-life performance projected from the degradation rate specified in the H<sub>2</sub>A future central SOEC model version  $3.101.^{38}$ 

Based on the specified degradation rate, the production capacity would be reduced to 90.6% at the end of 1 year of operation. The system design basis specifies that annual stack replacements will be performed to restore design production capacity. When the stack performance is averaged over the annual replacement schedule, the actual system production rate is calculated as 95.3% of the design production rate. Multiplication of this factor with the percentage of time within each operating year that the HTSE plant is online provides the net operating capacity factor.

#### 3.1.3 HTSE Process Model Performance Estimates

The LWR-HTSE process-material balances, process-energy requirements, and process efficiency are summarized in Table 11. LWR-HTSE process summaries are provided for a design based on use of both Prairie Island nuclear units as well as for a design based on the single Monticello nuclear unit.

| Table II. LWR-HTSE    | 1                            |                             |                                                     |
|-----------------------|------------------------------|-----------------------------|-----------------------------------------------------|
|                       | Prairie Island 2             | Monticello 1                |                                                     |
| _                     | Nuclear Unit                 | Nuclear Unit                |                                                     |
| Parameter             | Design                       | Design                      | Notes                                               |
| Plant Design          | 1032 MW-e                    | 597.3 MW-e                  |                                                     |
| Capacity              |                              |                             |                                                     |
| Design Hydrogen       | 662 tonnes/day               | 383 tonnes/day              |                                                     |
| Design Capacity       |                              |                             |                                                     |
| Availability Factor   | 95%                          | 95%                         | HTSE plant operating time; corresponds to           |
|                       |                              |                             | availability of nuclear plant [time]/[time]         |
| Cell Degradation      | 95.3%                        | 95.3%                       | Adjustment to production rate due to cell           |
| Factor                |                              |                             | degradation                                         |
| Operating Capacity    | 90.5%                        | 90.5%                       | Ratio of actual production rate to design           |
| Factor                |                              |                             | production rate. Calculated as product of           |
|                       |                              |                             | availability and cell degradation factors.          |
| Actual Hydrogen-      | 599 tonnes/day               | 347 tonnes/day              |                                                     |
| Production Rate       |                              |                             |                                                     |
| Process Power         |                              |                             |                                                     |
| Requirement,          |                              |                             |                                                     |
| Normal                | 1032 MW-e                    | 597.3 MW-e                  |                                                     |
| Electrical (design    | 177.5 MW-t                   | 102.7 MW-t                  |                                                     |
| condition)            |                              |                             |                                                     |
| Thermal (design       |                              |                             |                                                     |
| condition)            |                              |                             |                                                     |
| Process Power         |                              |                             |                                                     |
| Requirement, Hot-     |                              |                             |                                                     |
| Standby               | 8.8 MW-e                     | 5.1 MW-e                    |                                                     |
| Electrical            | 33.7 MW-t                    | 19.5 MW-t                   |                                                     |
| Thermal               | 55.7 WIVE                    | 17.5 101 00 0               |                                                     |
| Specific Energy       |                              |                             |                                                     |
| Consumption           | 37.4 kWh-e/kg H <sub>2</sub> | 37.4 kWh-e/kg               |                                                     |
| Electrical            | $6.4 \text{ kWh-t/kg H}_2$   | $H_2$                       |                                                     |
| Thermal               | 0.7 KWII-UKg 112             | 6.4 kWh-t/kg H <sub>2</sub> |                                                     |
| System H <sub>2</sub> | 88.9% higher                 | 88.9% HHV                   | Energy content of product H <sub>2</sub> divided by |
| Production            | heating value                | basis                       | electrical energy equivalent input                  |
| Efficiency            | (HHV) basis                  | Uasis                       | electrical energy equivalent input                  |
| •                     | (ITH V) Dasis                |                             |                                                     |
| Utilities             | $(0.1 m)_{0} [1.1.1 m]_{1}$  | $40 \ln a \ln 50 c$         |                                                     |
| Process Water         | 69 kg/s [1.1 k gpm]          | 40 kg/s [0.6                |                                                     |
| Feed Rate             | 1334 kg/s [21 k              | kgpm]                       |                                                     |
| Cooling Water         | gpm]                         | 772 kg/s [12                |                                                     |
| Circulation Rate      |                              | kgpm]                       |                                                     |

Table 11. LWR-HTSE process summary.

Electrical and thermal power requirements by equipment type are shown for the Prairie Island LWR-HTSE process design in Figure 36 and for the Monticello LWR-HTSE design in Figure 37.

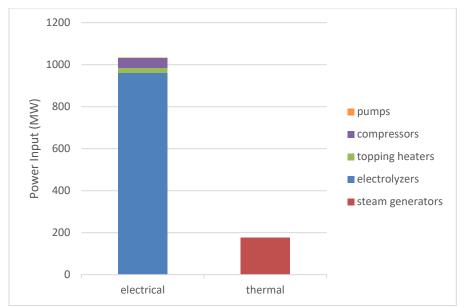



Figure 36. Prairie Island LWR-HTSE electrical- and thermal-power requirements (design point).

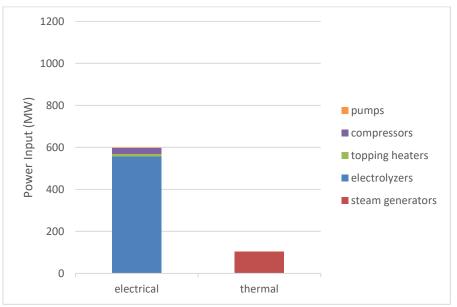



Figure 37. Monticello LWR-HTSE electrical- and thermal-power requirements (design point).

# 3.1.4 HTSE Process Design Considerations

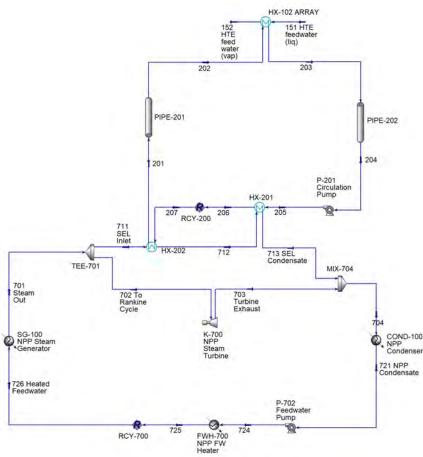
# 3.1.4.1 LWR/HTSE integration

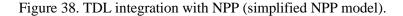
# 3.1.4.1.1 Design Basis (for Preliminary Design and Cost Estimation Purposes)

In the appendix is found a full listing of the equipment used to establish estimates of the system's capital costs. A subset of the HTSE system design equipment that exists at the interface of the LWR/HTSE systems is listed in Table 12. Table 12 also includes equipment with functionality that may exist separately in both the LWR and the HTSE plant. Although this equipment is included in the INL HTSE system design basis, it is possible that the LWR systems identified (water purification, process

cooling, and process control) may be modified for use with the HTSE installation such that purchase and installation of separate HTSE-specific equipment items is not required.

The HTSE design basis described herein is subject to change based on NPP facility selection, TDL HTF, and SOEC technology selected for prospective final system design. Considerations which may impact the final system design, including the reinjection point for the SEL condensate, the number of LWR units from which nuclear process heat is extracted, and the TDL HTF selection are discussed in additional detail in Section 3.1.4.2.


| system equipment that could potentially be to verage |                                                  |
|------------------------------------------------------|--------------------------------------------------|
| Equipment                                            | System                                           |
| Backup Electric Boiler                               | Nuclear Process Heat Delivery System             |
| PIPE-201 Nuclear Process Heat Piping (supply)        | Nuclear Process Heat Delivery System             |
| PIPE-202 Nuclear Process Heat Piping (return)        | Nuclear Process Heat Delivery System             |
| P-201 Nuclear Process Heat Circulation Pump          | Nuclear Process Heat Delivery System             |
| HX-201 Nuclear Process Heat TDL HX                   | Nuclear Process Heat Delivery System             |
| HX-202 Nuclear Process Heat TDL HX                   | Nuclear Process Heat Delivery System             |
| Therminol-66 HTF                                     | Nuclear Process Heat Delivery System             |
| Rectifier/Power Supply                               | Electrical Power Transport & Distribution System |
| Disconnect Switch                                    | Electrical Power Transport & Distribution System |
| Transformer                                          | Electrical Power Transport & Distribution System |
| Switch Board                                         | Electrical Power Transport & Distribution System |
| DC Bus Power Distribution                            | Electrical Power Transport & Distribution System |
| Power Pole Lines                                     | Electrical Power Transport & Distribution System |
| Purified Water Storage Tank                          | Feedwater Purification & Storage System          |
| PIPE-801 Feed Water Supply Piping                    | Feedwater Purification & Storage System          |
| P-801 Feed Water Supply Pump                         | Feedwater Purification & Storage System          |
| Water Pretreatment Filter/Softener System            | Feedwater Purification & Storage System          |
| Water Treatment RO/EDI System                        | Feedwater Purification & Storage System          |
| PIPE-901 Cooling Water Supply Piping                 | Process Cooling System                           |
| PIPE-902 Cooling Water Return Piping                 | Process Cooling System                           |
| P-901 Cooling Water Recirculation Pump               | Process Cooling System                           |
| CT-901 Cooling Tower                                 | Process Cooling System                           |
| CB-101 Control Building                              | Control System                                   |
| OC-101 Operator Center                               | Control System                                   |


Table 12. LWR/HTSE system interface equipment (the list includes NPP water-purification and cooling-system equipment that could potentially be leveraged for HTSE system operations).

## 3.1.4.1.1.1 Nuclear Process Heat

The TDL and associated heat exchangers are included in the INL HTSE system design basis. The TDL heat exchangers transfer heat from the NPP steam to the TDL HTF. The SEL piping on the NPP side of the TDL heat exchangers (and the costs of installing this system or modifying existing systems to establish this functionality) is NOT included in the INL HTSE system design basis. Figure 38 provides a simplified diagram of a nuclear plant power block with an SEL (Streams 711, 712, and 713), the TDL

heat exchangers (HX-201 and HX-202), the TDL (200 number category streams) and the interface with the HTSE-process feedwater-heating system (Streams 151 and 152, HX-102).





INL analysis indicates that approximately 5% of the total steam flow rate produced by the NPP steam generators would be required to meet the HTSE thermal demands (187 MW-t of the  $2 \times 1684$  MW-t thermal output from the two reactor units comprising the Xcel Energy Prairie Island Nuclear Power Plant<sup>39</sup> would be required for a full-scale 1086 MW-ac HTSE plant installation). A full-scale 1086 MW-ac HTSE plant installation would use the maximal energy output available from both units of the PI NPP. The INL HTSE design basis specifies that a single set of heat exchangers would interface with one unit of the NPP and that an ancillary boiler would be used to provide the HTSE process heat during NPP plant outages (e.g., refueling).

#### 3.1.4.1.1.2 Electrical Power

The INL HTSE system design basis includes electrical transmission lines necessary to deliver power from the NPP to the HTSE site and transformers for stepping down the AC power from 20 kV to the rectifier supply voltage (assumed ~4 kV for equipment costing purposes). Note that 20 kV is the voltage of the PI generator output, and in the current PI plant configuration this power is stepped up to 345/161 kV for transmission.<sup>40</sup> If equipment for distribution of 20 kV power is not present, then this equipment will need to be retrofitted to the PI substation, or the INL system design basis will require modification to include step-down transformers with the proper operating specification. Future work would consider pulling power from the transmission grid at 345/161 kV to keep the hydrogen plant and the NPP generator decoupled and avoid having NPP perturbations affect the hydrogen plant. The INL

HTSE system design basis also includes power inverters (rectifiers) for converting the AC power to DC power and DC bus bars for distributing the power from the inverters to each of the HTSE modules.

## 3.1.4.1.1.3 Control Center

INL's HTSE-system design basis includes the costs of a control building with operator stations for monitoring and control of the HTSE process systems. This system may be redundant in the event that the NPP control system is ultimately used to provide seamless control between NPP and HTSE-system operations. In either case, the additional capability for control of the HTSE system must be considered, and the costs listed in INL's HTSE-system design basis provide an initial estimate for the purposes of the current analysis.

### 3.1.4.1.1.4 Water Purification

INL's HTSE-system design basis includes feedwater pretreatment and purified feedwater storage capacity. If the Xcel Prairie Island or Monticello plants include water-pretreatment equipment and storage capacity sufficient to supply the HTSE plant, these equipment items can be removed from INL's HTSE system cost estimate. However, if the NPP water-treatment system were used to supply purified feedwater to the HTSE plant, an additional pipeline would be required to transport the purified feedwater from the NPP site to the HTSE process site. The cost of such a pipeline is not currently included in INL's HTSE-system design basis.

# 3.1.4.1.1.5 Process Cooling

INL HTSE process-modeling analysis indicates that process-cooling capacity is required to provide a heat sink for the hydrogen-purification subprocess (which removes steam from the  $H_2/H_2O$  mixture exiting the stacks by cooling and compressing the product-gas mixture). INL's HTSE-system design basis includes a cooling-tower installation to provide this capacity. Alternatively, cooling water from the Xcel Prairie Island or Monticello plant cooling systems could be used to provide the required HTSE process cooling duty. If the existing cooling systems were to be used, additional cooling-water supply and return lines would be required to transport the cooling water between the cooling-water source (whether based on use of river water or cooling towers) and the HTSE site.

#### 3.1.4.1.2 Cost Items Excluded from HTSE System Design Basis

The following is a list of cost items that are specifically NOT included in the INL HTSE-system design basis. These items are excluded from the present analysis due to insufficient information and deferral to the expertise of the nuclear plant operators and/or future studies that perform detailed evaluations of the NPP system-modification requirements and costs.

- Nuclear plant modification (pipes/valves to divert steam to TDL heat exchanger)
- NPP instrumentation and control system modifications to enable nuclear plant to vary distribution of steam between the power cycle and nuclear process-heat applications (e.g., HTSE)
- Leak monitoring and detection equipment (i.e., equipment and systems for detection of radioactive components that could have escaped from the NPP primary or secondary steam loops)
- Substation modifications to divert electrical power to the HTSE process instead of, or in addition to, the electrical-grid
- Regulatory costs—i.e., cost of obtaining any additional permits necessary to operate the NPP in variable electricity/hydrogen-dispatch mode
- Expenses and lost revenues due to any NPP shutdown, de-rating, or interruption of service or operations required to implement process modifications.

#### 3.1.4.2 Thermal delivery loop design parameters requiring further investigation

#### 3.1.4.2.1 Options for Steam-Extraction Loop Condensate Return

A detailed diagram of the PI NPP cycle/TDL integration is shown in Figure 40, which illustrates an SEL configuration in which several possible SEL-condensate return points are visible. SEL condensate could be returned upstream of the condenser (MIX-172), to a location in the low-pressure boiler-feedwater heating train (e.g. MIX-184), or to a location in the high-pressure boiler-feedwater heating train (e.g., MIX-188). The INL system design basis specifies return of the SEL condensate to the point upstream of the condenser because NPP condensers are built with excess design capacity, suitable for handling excess steam input associated with plant startup and shutdown, plant trips, etc., and are designed to be able to robustly absorb heat release associated with transient plant operations. Although the nuclear plant's operating efficiency could be incrementally improved by returning the SEL condensate to a point in the feedwater heating train with similar temperature and pressure (which would avoid cooling the SEL condensate in the condenser only to reheat it in the feedwater heating train), this configuration would increase the system's operating complexity as well as retrofit costs; therefore, it was not considered in the current analysis.

#### 3.1.4.2.2 Nuclear Process Heat Extraction from Multiple Reactor Units

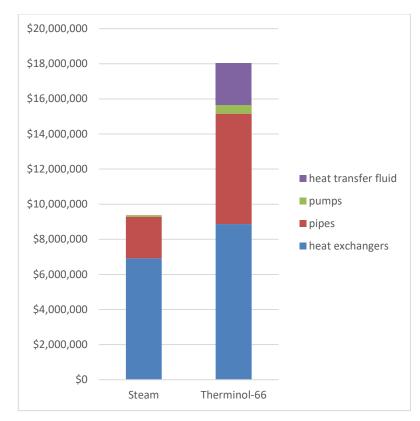
This analysis specifies TDL heat-exchanger equipment with heat-transfer capacity to remove the quantity of nuclear process heat required by an HTSE plant during normal operations. Because several heat exchangers operating in parallel comprise the nuclear plant side of the TDL, these heat exchangers could be distributed between both units of the PI NPP to use approximately 5% of the steam flow from each unit, thereby providing the HTSE plant with the required nuclear process heat. The approximate value of 5% of the steam flow from each nuclear unit assumes that the HTSE plant is sized to use near maximal thermal- and electrical-power output from the nuclear plant during normal operations.

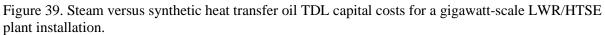
Alternatively, all heat exchangers on the nuclear plant side of the TDL could be assigned to a single unit of the PI NPP, which would result in approximately 10% of the steam from the nuclear unit being used to supply HTSE thermal demands (with the second nuclear unit being used to supply only electrical power to the HTSE plant). Although this configuration would reduce the nuclear plant's retrofit costs for HTSE installation (by only modifying one nuclear unit, instead of two), there are several operational disadvantages associated with a configuration that extracts heat from only one nuclear unit. First, because nuclear process heat would only be provided by a single nuclear unit, a greater fraction of the unit's total steam generation would have to be diverted to the TDL to meet the HTSE-process's thermal energy demands. Diverting a larger fraction of the steam output from a single nuclear unit away from this unit's steam turbines is expected to have a larger impact on steam-cycle efficiency than would diverting a smaller fraction of steam output from two separate nuclear units. Second, if all nuclear process heat were sourced from a single unit, the HTSE plant would be left without a nuclear process heat source during that unit's refueling shutdown period, which occurs approximately every 24 months and may last for several weeks. If the nuclear plant side of the TDL were configured such that the nuclear process heat could be extracted from either unit of a two-unit nuclear plant, the staggered nature of the refueling operations would allow the nuclear plant to continue to provide nuclear process heat to the HTSE plant during refueling (although electricity required to operate the HTSE plant at full capacity would have to be sourced from the grid).

This analysis specifies capital costs for TDL heat-exchange equipment necessary to meet the HTSE thermal demands at the design point (i.e., the capital costs include heat exchangers with only the surface area required to meet HTSE thermal demands during NPP normal operations). The analysis assumes that the heat exchangers on the nuclear plant side of the TDL would be distributed between all units of the nuclear plant (two units in the case of Prairie Island or one unit in the case of Monticello). Because no excess heat-exchanger area is specified in this analysis (i.e., the nuclear process-heat load could not be fully shifted to Unit 2 of Prairie Island during refueling of Unit 1), the HTSE process design

specifications presented in this report include ancillary electric steam-generator equipment for use during nuclear plant refueling. For Prairie Island, the ancillary electric steam generator could replace nuclear process-heat output of one unit during refueling of the second. For Monticello, the ancillary electric steam generator could provide all thermal-energy input needed for HTSE-process feedwater vaporization during refueling. The capital costs for the ancillary steam-generator capacity are included in the cost estimates. As mentioned above, it is anticipated that the electrical-grid would provide the power to operate the ancillary steam generators during nuclear plant refueling.

### 3.1.4.2.3 HTF Selection and Implications on System Design, Cost, and Operations


Therminol-66 was selected as the HTF for non-proprietary system design. Use of Therminol-66 or another synthetic heat-transfer oil (such as DowTherm) decreases the operational complexity of the system because the TDL heat exchangers will not experience phase change on both the hot and cold sides of the TDL heat-exchanger network.


Although use of steam as the TDL HTF would present process-control challenges due to phase change on both the hot and cold sides of the TDL heat exchanger network, a water and steam-based design could decrease TDL capital costs (Figure 34):

- Heat-transfer coefficients associated with steam vaporization and condensation are generally higher than those for sensible heat transfer associated with a heat-transfer oil, resulting in reduced heat exchanger area (and cost) for the water and steam system
- HTF costs are significantly lower for a water and steam system than for a synthetic heat-transfer oilbased system
- The enthalpy flow associated with water and steam vaporization and condensation is significantly higher than that for the synthetic-oil sensible heat transfer; therefore, the mass-flow rate required to transport a specified quantity of nuclear process heat can be significantly lower for water and steam than for a synthetic oil. The lower HTF mass-flow rate for a water and steam design results in a TDL system with smaller-diameter, less-expensive piping.

A water and steam TDL design is compatible with methods used for detection of radioactive contaminants that may have escaped from the NPP primary or secondary loops. Equivalent protocols for detection of radioactive components in synthetic heat-transfer oils would have to be determined in engineering design of an actual system.

INL is currently investigating heat-exchanger network configurations and control strategies that could be implemented to allow use of a water and steam based TDL design. It is anticipated that successful development and testing of a robust water and steam TDL-system design would result in the HTSE system's design being adapted to use water and steam as the TDL working fluid.





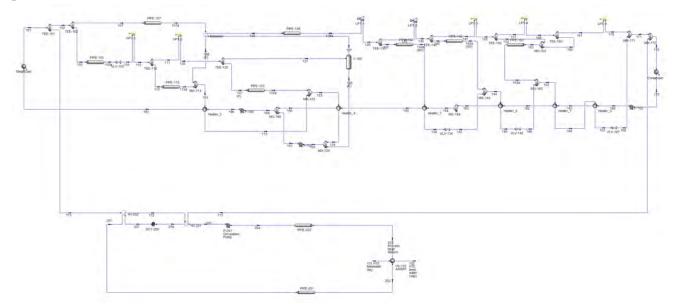



Figure 40. TD integration with NPP (detailed NPP model).

# 3.2 HTSE Process Capital and Operating Costs

#### 3.2.1 HTSE Process Capital Costs

### 3.2.1.1 Capital cost estimation methodology

#### 3.2.1.1.1 Modular Equipment

The analysis assumes that the HTSE plant is constructed using a modular concept. This concept involves use of multiple HTSE modular units operating in parallel to achieve the specified hydrogen-production capacity. The basis for this analysis specifies each modular unit has an electrolysis capacity of 25 MW-dc. The modular units include the equipment that comprises the HTSE: the air sweep-gas, hydrogen/steam, and hydrogen-purification systems. The HTSE modules, therefore, include the stacks and many BoP system components such as feedwater pumps, feedwater preheating equipment, steam generators, recuperators, topping heaters, product-purification equipment (compressors, gas coolers, knock-out drums), sweep-gas system.

Modular construction is a logical approach for the HTSE process, which inherently involves many individual SOEC stacks operating in parallel. The modular-construction technique provides a way to group each of the SOEC stacks into functional units that can be deployed and serviced practically. It is envisioned that the HTSE modules produced by a given SOEC manufacturer would adhere to a standardized design, and the modules would be mass-produced at an industrial manufacturing facility. The standard design would reduce indirect costs (i.e., engineering and process design) associated with deploying HTSE plants, and mass production of the modules would lead to cost savings through economies of mass production (i.e., use of standardized components purchased in bulk quantities and assembly-line fabrication and construction of modular systems to reduce equipment-installation costs).

The system components included in each of the HTSE modular blocks are identified as modular equipment, and a specific methodology is applied for estimating the modular system-component costs as a function of plant capacity. The BoP equipment components included in each modular HTSE block introduce additional thermal and/or electrical power demands such that the total power requirements for each HTSE block exceed 25 MW-e total power input (e.g., the total power requirements for an HTSE plant configuration with 40 modular units will exceed 1 GW-e of power input). The modular equipment components represent the majority of the plant infrastructure for the design cases considered in the INL HTSE system design analysis.

Cost reductions associated with a large-scale modular HTSE plant are estimated through use a of a learning-curve relationship to account for economies of mass production. A learning rate of 95% (which corresponds to a 5% cost reduction with every doubling of the number of units produced) was specified in the development of the cost-versus-capacity correlation developed in this analysis. The learning curve was applied to the installed costs of the modular process-equipment components. The learning-curve cost reductions are applied on a module-by-module basis, meaning that it is assumed that the economy of mass production cost savings is compounded as a greater number of complete modules have been constructed by the manufacturer.

#### 3.2.1.1.1.1 First- and nth-of-a-kind plant construction

A gigawatt-scale HTSE plant has not yet been constructed; therefore, capital-cost reductions are expected from the first-of-a-kind (FOAK) plant installation to a NOAK plant installation. The cost versus capacity curve for the HTSE modular blocks (the modular components) was determined based on a learning-curve relationship.

For a FOAK HTSE plant, the modules deployed would be among the first manufactured, and it is assumed that cost reductions would be realized immediately (impacting the cost of the second, third, etc. modules deployed in a single large-scale HTSE process installation). For an NOAK plant, many HTSE modules will have been previously manufactured and deployed, and the most significant learning-curve-

related cost savings will have been realized. Therefore, for the NOAK plant, the learning curve has "flattened out" such that there are minimal cost savings between the successively installed modules that comprise the overall HTSE plant.

Different modular system component costs apply for FOAK vs NOAK plants. To estimate the modular equipment costs for each of these cases, the following methodology was used: First, equipment-sizing parameters were determined based on the results of the AspenTech HYSYS HTSE process simulation. Next, installed equipment costs were estimated using APEA software<sup>41</sup> and/or scaled based on data reported in previous HTSE process evaluations.<sup>3042434445</sup> The costs of the HTSE modular block components were evaluated at a capacity of 25 MW. Finally, a learning curve was applied to determine how the installed capital costs could decrease as a function of the number of modular HTSE units manufactured for the FOAK and NOAK scenarios. For both scenarios, a learning rate of 95% was specified.

#### 3.2.1.1.1.2 First-of-a-Kind Plant Construction

For the FOAK scenario, the modular system component costs are the cumulative sum of all 25 MWe HTSE modular blocks installed to achieve the specified plant capacity. The cost of each HTSE modular block is lower than the previous due to the learning effects, so the total cost is equal to the sum of all blocks installed. As an example, a FOAK plant with  $8 \times 25$  MWe HTSE modular blocks would pay the cumulative cost for all eight HTSE blocks, where the eighth HTSE block is characterized by three doublings in the number of units produced ( $2^3 = 8$ ), such that the unit cost of the eighth HTSE block is  $8^{\log^2}(0.95) = 0.95^3 = 85.7\%$  of the first unit. This cost relationship is applied to each of the HTSE blocks that comprise the FOAK plant such that, in the eight modular-block example case, the cumulative cost of all eight units is 7.26 times the cost of the first unit. The FOAK equipment cost vs plant capacity curve is provided in Section 3.2.2.

#### 3.2.1.1.1.3 Nth-of-a-Kind Plant Construction

For a NOAK plant, the most significant learning effects have been realized in the production of the previous modules, such that each additional module manufactured has essentially the same cost for a given large-scale HTSE process installation; i.e., each modular HTSE block has an equal cost due to the low slope of the learning curve at large N. For this analysis, the NOAK plant is assumed to correspond to N = 100 previous HTSE block installations (i.e., 2.5 GWe of HTSE plant capacity previously installed). All HTSE blocks installed for the NOAK plant therefore have the same cost; i.e., the modular equipment unit cost is independent of plant scale. In this analysis the SOEC stack costs are assumed to remain constant at the specified value; the learning-curve cost reductions are applied to all other balance-of-module and/or BoP equipment components identified as "modular." The NOAK equipment cost vs plant capacity curve is provided in Section 3.2.2.

#### 3.2.1.1.2 Scalable Equipment

The feed and utility, NPH delivery, multistage product compression, and control systems are constructed of equipment classified as "scalable" equipment components.

Scalable equipment design and costs will be dependent on the overall scale of the HTSE process installation. As noted above, the TDL used to transport thermal energy from the NPP to the array of HTSE modules is a scalable plant component. The size and capacity of the TDL heat exchangers, pipes, and pump used to circulate the fluid will depend on the capacity of the HTSE plant. In contrast to the HTSE modules, it is envisioned that one TDL, instead of multiple parallel units, will be used to transport the thermal energy from the NPP to the HTSE plant. The capital costs of the TDL equipment will therefore scale in the conventional sense: equipment with increased capacity is more cost-effective on a unit-cost basis.

To determine the dependence of the scalable equipment component costs on the HTSE plant capacity, several steps were performed. First, HYSYS process-modeling software was used to establish multiple sets of HTSE plant-design specifications over a range of plant capacities (25 to 1150 MW). This activity provided equipment-sizing parameters (heat-exchanger area, pipe diameter, pump-driver power, etc.) for each of the scalable equipment components as a function of plant capacity. Next, APEA software was used to evaluate scalable equipment installed costs for each of the plant capacities evaluated (which ranged, as mentioned, from 25 to 1150 MW). Item-specific scaling exponents for each of the scalable-equipment components were then determined from the capacity vs installed capital-cost analysis (based on the APEA estimates of equipment costs as a function of capacity), or specified per the corresponding data source (for components with costs obtained from sources other than APEA). Finally, the individual scalable-equipment component costs were summed to establish a total scalable equipment cost versus capacity data set, and this data set was then used to derive a power-law correlation to predict total scalable equipment costs as a function of plant capacity.

#### 3.2.1.1.2.1 Purified Hydrogen Product Compressor Capital Costs

The HTSE plant design includes compressor costs associated with pressurizing the purified hydrogen product from ~20 to ~70 bar. Storage and transportation compressor costs are derived from ANL's HDSAM model. The compressor-cost equation included below for low-pressure storage or transportation compression is used to determine the cost of the purified product compressors.

$$CAPEX_{comp} = \$40,500 \times (P_{comp})^{0.46}$$

In this equation,  $P_{comp}$  is the compressor-power input in units of kW and the predicted CAPEX is the uninstalled equipment cost. An installation factor of 1.3 is applied to the uninstalled compressor cost to obtain the total installed equipment cost.

Report INL/EXT-20-57885,<sup>46</sup> which also references the HDSAM compressor-cost correlations, indicates that low-pressure storage is characterized by pressures ranging from 150 to 500 bar. The process-model-specified outlet pressure of ~70 bar is well below this pressure range, and the low-pressure storage and transportation compressor-cost correlation is therefore applicable.

#### 3.2.1.1.2.2 Sweep-Gas System and Hydrogen/Steam System Compressor Capital Costs

The HTSE process model also includes compressors for compression of the  $H_2/H_2O$  mixture and sweep gas to the stack. Because these compressors are not specific to storage or transportation applications the APEA compressor-cost estimates were used for the compressors internal to the HTSEprocess design. The APEA cost estimates used for the  $H_2/H_2O$  compression are somewhat more conservative (i.e., represent higher estimated cost) than the HDSAM cost estimates.

#### 3.2.1.1.3 Indirect Costs

An indirect cost multiplier of 1.294 is applied to the installed capital costs predicted by the equation (see Table 13). The indirect costs include site preparation, engineering and design, project contingency, contractor's and legal fees, and land. The engineering and design and process-continency values assumed were reduced from the default  $H_2A$  values on the basis that reductions to these costs would be realized as a result of the use of modular process construction technology (use of a standardized design would decrease engineering and design costs as well as the risks associated with the deployment of a standardized design).

| Indirect Cost Category | HFTO Hydrogen-<br>Production Record | INL HTSE Process<br>Analysis |
|------------------------|-------------------------------------|------------------------------|
| Site Preparation       | 2%                                  | 2%                           |
| Engineering and Design | 10%                                 | 2.3%*                        |
| Process Contingency    | 15% total                           | 1.6%*                        |
| Project Contingency    |                                     | 7.2%                         |
| Contractor's Fee       | 15% total                           | 10%                          |
| Legal Fee              |                                     | 5%                           |
| Land                   | <1%                                 | 1%                           |
| Cumulative Multiplier  | 1.421                               | 1.294                        |

Table 13. Indirect-cost multipliers.

\* NOAK plant specifications were obtained by applying an 80% learning curve to value in HFTO Record.

#### 3.2.1.1.4 Total Capital Investment

A total capital-investment cost versus plant-capacity correlation was derived by evaluating seven data points within the specified range of HTSE plant capacities. Each data point includes the sum of all modular installed-equipment costs, scalable installed-equipment costs, and indirect costs. A correlation for the total capital investment was derived by fitting the resulting cost versus capacity data set using a power law relation.

#### 3.2.1.2 Prairie Island and Monticello LWR-HTSE Estimated Process Capital Costs

As described above in Section 3.1 the HTSE system evaluated includes several major process systems. Individual equipment components included in each of these systems are identified in the equipment table included in the Appendix.

Capital costs reported correspond to the maximum HTSE plant capacity that could be supported by the two Prairie Island and one Monticello NPP units. For PI, this corresponds to  $38 \times 25$  MW HTSE units or 950 MW-dc of electrolysis capacity, with total plant power consumption of 1032 MW-ac (accounting for the power consumption associated with the BoP equipment) and a design point hydrogen-production rate of 662 tonnes/day. For Monticello this corresponds to  $22 \times 25$  MW-dc HTSE units (550 MW-dc of electrolysis capacity) with 597.3 MW-ac total power consumption and a design point hydrogen-production rate of 383 tonnes/day.

Capital cost summary tables for the Prairie Island and Monticello LWR-HTSE process designs are included in Table 14 and Table 15, respectively. The LWR-HTSE capital cost estimates for FOAK and NOAK plant types are presented graphically in Figure 41 for Prairie Island and Figure 42 for Monticello. Capital costs for each of the equipment components within the LWR/HTSE plant boundary limits are obtained from sources.<sup>30,41,42,43,44,45</sup> All capital costs were indexed to 2020 dollars using the Chemical Engineering Plant Cost Index (CEPCI).

| energy consumption from bour i   |                                        | 2020 Dollar<br>Basis | % of total | % of total |
|----------------------------------|----------------------------------------|----------------------|------------|------------|
| Direct capital costs             | HTSE system <sup>α</sup>               | \$275,993,520        | 47.4%      | 36.7%      |
| •                                | Balancing gas system                   | \$0                  | 0.0%       | 0.0%       |
|                                  | Feed and utility system                | \$143,204,425        | 24.6%      | 19.0%      |
|                                  | Sweep gas system                       | \$49,801,557         | 8.6%       | 6.6%       |
|                                  | Hydrogen/steam system                  | \$16,099,161         | 2.8%       | 2.1%       |
|                                  | Hydrogen purification                  | \$69,107,918         | 11.9%      | 9.2%       |
|                                  | Nuclear steam delivery                 | \$21,733,877         | 3.7%       | 2.9%       |
|                                  | H <sub>2</sub> compression and storage | \$5,336,379          | 0.9%       | 0.7%       |
|                                  | Control center                         | \$828,104            | 0.1%       | 0.1%       |
|                                  | Total                                  | \$582,104,942        | 100.0%     | 77.3%      |
| Indirect depreciable capital     | Site preparation                       | \$11,642,099         |            | 1.5%       |
| costs                            | Engineering and design                 | \$13,217,372         |            | 1.8%       |
|                                  | Contingencies and contractor's fee     | \$109,453,559        |            | 14.5%      |
|                                  | Legal fee                              | \$29,105,247         |            | 3.9%       |
|                                  | Total                                  | \$163,418,277        |            | 21.7%      |
| Total depreciable capital costs  |                                        | \$745,523,219        |            | 99.0%      |
| Non-depreciable capital costs    | Land                                   | \$7,455,232          |            | 1.0%       |
| Total capital investment         |                                        | \$752,978,451        |            | 100%       |
| Total capital investment (\$/kW) |                                        | 730                  |            |            |

Table 14. Capital cost summary for Prairie Island HTSE plant (NOAK plant type; max HTSE process energy consumption from both nuclear plant units).

<sup> $\alpha$ </sup> Based on HTSE stack capital cost specification of \$155/kW-dc.<sup>30</sup>

|                                          |                                    | 2020 Dollar Basis | % Of Total | % Of Total |
|------------------------------------------|------------------------------------|-------------------|------------|------------|
| Direct capital costs                     | HTSE systemα                       | \$159,785,722     | 46.6%      | 36.0%      |
|                                          | Balancing gas system               | \$0               | 0.0%       | 0.0%       |
|                                          | Feed and utility system            | \$85,246,759      | 24.9%      | 19.2%      |
|                                          | Sweep gas system                   | \$28,832,481      | 8.4%       | 6.5%       |
|                                          | Hydrogen/steam system              | \$9,320,567       | 2.7%       | 2.1%       |
|                                          | Hydrogen purification              | \$40,009,847      | 11.7%      | 9.0%       |
|                                          | Nuclear steam delivery             | \$14,850,478      | 4.3%       | 3.3%       |
|                                          | H2 compression and storage         | \$3,839,465       | 1.1%       | 0.9%       |
|                                          | Control center                     | \$828,104         | 0.2%       | 0.2%       |
|                                          | Total                              | \$342,713,423     | 100.0%     | 77.3%      |
| Indirect<br>depreciable capital<br>costs | Site preparation                   | \$6,854,268       |            | 1.5%       |
|                                          | Engineering and design             | \$7,781,708       |            | 1.8%       |
|                                          | Contingencies and contractor's fee | \$64,440,621      |            | 14.5%      |
|                                          | Legal fee                          | \$17,135,671      |            | 3.9%       |
|                                          | Total                              | \$96,212,268      |            | 21.7%      |
| Total depreciable capital costs          |                                    | \$438,925,691     |            | 99.0%      |
| Non-depreciable capital costs            | Land                               | \$4,389,257       |            | 1.0%       |
| Total capital investment                 |                                    | \$443,314,948     |            | 100%       |
| Total capital<br>investment (\$/kW)      | -:                                 | 742               |            |            |

Table 15. Capital cost summary for Monticello HTSE plant (NOAK plant type; max HTSE processenergy consumption from single nuclear plant unit).

<sup>α</sup> Based on HTSE stack capital cost specification of \$155/kW-dc.<sup>30</sup>

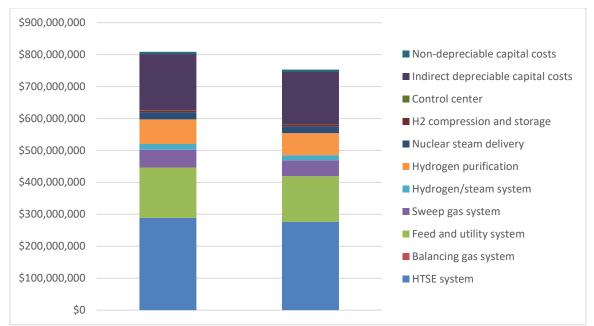



Figure 41. FOAK- and NOAK-plant capital cost estimates for Prairie Island LWR-HTSE plant (HTSE stack capital cost specification of \$155/kW-dc).<sup>30</sup>

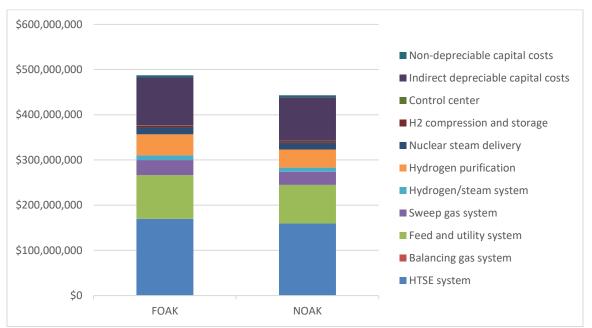



Figure 42. FOAK- and NOAK-plant cost estimates for Monticello LWR-HTSE plant (HTSE stack capital cost specification of \$155/kW-dc).<sup>30</sup>

# 3.2.1.3 Generalized HTSE Process Capital Cost Correlation

A generalized HTSE cost correlation was developed to estimate plant capital costs as a function of plant capacity. This capital cost correlation is a key input to the grid-integrated LWR-HTSE plant-optimization analyses described elsewhere in this report. Figure 43 and Figure 44, are graphical representations of the unit capital costs for FOAK and NOAK LWR-HTSE plants, respectively. The capital cost curves include contributions from modular equipment, scalable equipment, and indirect costs (see Section 3.2.1.1 above for more information on these equipment categorizations). The capital cost

correlation estimates the capital costs of the HTSE process areas described in Section 3.1.1. Note that retrofit costs required for the LWR to interface with the TDL system are not included in the cost estimates (see Section 3.1.4.1.2 for additional information).

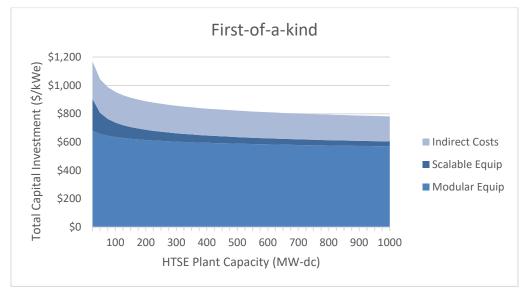



Figure 43. Total capital investment as a function of plant capacity for a FOAK HTSE plant (HTSE stack capital-cost specification of \$155/kW-dc).<sup>30</sup>

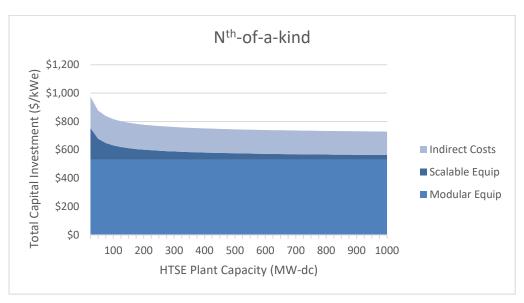



Figure 44. Total capital investment as a function of plant capacity for an NOAK HTSE plant (HTSE stack capital-cost specification of \$155/kW-dc).<sup>30</sup>

Data from the capital-cost evaluation of FOAK and NOAK plant types over a range of plant capacities was regressed to develop an equation for use in estimating HTSE plant total capital investment as a function of plant capacity (in MW-ac). The correlation includes terms to account for capital-cost contributions from modular- and scalable-equipment components. The indirect-cost multiplier includes contributions from the cost categories already described. HTSE system direct capital costs can be estimated by setting the indirect-cost multiplier equal to a value of one. The HTSE capital-cost correlation

based on the HTSE process analysis is presented below. The values of each of the cost-correlation parameters are included in Table 16 and Table 17.

$$TCI = m(a_{scalable}P^{n_{scalable}} + a_{modular}P^{n_{modular}})$$

where

TCI= Total Capital Investment (\$/kWe)

P = HTSE system power (MWe)

m = indirect cost multiplier = 1.2383

 $a_{scalable} = scalable equipment cost coefficient$ 

 $n_{scalable} = scalable$  equipment scaling exponent

 $a_{modular} = modular$  equipment cost coefficient

 $n_{modular} = modular$  equipment scaling exponent,

Table 16. LWR-HTSE capital-cost correlation parameters (HTSE stack capital cost specification of \$155/kW-dc,<sup>30</sup> results in 2016 dollars).

|                       | FOAK   | NOAK   |  |  |  |  |
|-----------------------|--------|--------|--|--|--|--|
| a <sub>scalable</sub> | 719.2  | 719.2  |  |  |  |  |
| n <sub>scalable</sub> | -0.504 | -0.504 |  |  |  |  |
| a <sub>modular</sub>  | 542.7  | 377.3  |  |  |  |  |
| n <sub>modular</sub>  | -0.043 | 0      |  |  |  |  |

Table 17. LWR-HTSE capital cost correlation parameters (HTSE stack capital cost specification of \$155/kW-dc,<sup>30</sup> results in 2020 dollars).

|                       | FOAK   | NOAK   |
|-----------------------|--------|--------|
| ascalable             | 799.1  | 799.1  |
| n <sub>scalable</sub> | -0.505 | -0.505 |
| a <sub>modular</sub>  | 596.4  | 414.5  |
| n <sub>modular</sub>  | -0.043 | 0      |

#### 3.2.1.3.1 SOEC Technology Readiness Level Represented by Capital Cost Analysis

Capital-cost analysis was performed using publicly available and vendor-specific proprietary stackcost estimates. The public data case uses the projected current hydrogen-production case from the DOE HFTO Hydrogen-Production Record #20006<sup>30</sup> as the basis for stack capital cost (\$155/kW) and stack service life (4 years). The HFTO Hydrogen-Production Record projected current hydrogen-production case capital costs apply to SOEC stack technology available at the present time (technology year 2019 in the HFTO Record) for a 50 tonne H<sub>2</sub> per day HTSE plant. While these costs were used as the basis for the public stack-cost analysis, it is worth noting that SOEC stack-manufacturing capacity would need to support installation of a gigawatt-scale (>600 tonne/day hydrogen production) HTSE plant by year 2026 to support startup of an HTSE plant in year 2027 as specified in the dedicated hydrogen-production LCOH analysis presented below (Section 3.3).

The BoP components are, in general, commercial technology, and the pricing information specified for these components corresponds to the current time. Therefore, the technology readiness level schedule questions apply primarily to the stacks (e.g., commercial realization of the specified prices and degradation rates specified).

# 3.2.2 HTSE Process Operations and Maintenance Costs

HTSE process operations and maintenance (O&M) costs were calculated according to the input specifications listed in Table 18. The O&M cost calculations include a stack service life of 4 years, with annual stack replacements to restore the plant's production capacity to the design value at the start of each operating year. Plant-maintenance costs also include an annual cost of 0.5% of the total direct depreciable costs for unplanned equipment replacements (stack and BoP equipment). The O&M costs do not include an allowance for the 100% replacement of the BoP after 20 years since the cash-flow analyses in this report specify a 20-year project duration.

|                         | Prairie Island      | Monticello LWR-    |                                              |
|-------------------------|---------------------|--------------------|----------------------------------------------|
| Category                | LWR-HTSE plant      | HTSE plant         | Reference or Note                            |
| Fixed Operating         |                     |                    |                                              |
| Costs                   |                     |                    |                                              |
| Total Plant Staff       | 15 (corresponds to  | 13 (corresponds to | 8 person plant staff for a 50                |
|                         | 662 tonne/day       | 383 tonne/day      | tonne/day plant assumed <sup>30</sup> ; 0.25 |
|                         | design hydrogen-    | design hydrogen-   | scaling exponent for varying                 |
|                         | production          | production         | plant capacity <sup>49</sup>                 |
|                         | capacity)           | capacity)          |                                              |
| Burdened labor cost     | \$60/hr             | \$60/hr            |                                              |
| G&A rate/costs          | 20% of labor        | 20% of labor       |                                              |
| Licensing, permits, and | N/A                 | N/A                |                                              |
| Fees                    |                     |                    |                                              |
| Property Tax and        | 2% of TCI per year  | 2% of TCI per year |                                              |
| Insurance               |                     |                    |                                              |
| Rent                    | N/A                 | N/A                |                                              |
| Maintenance and         | 0.5% of direct      | 0.5% of DCC per    |                                              |
| Repairs                 | capital costs (DCC) | year               |                                              |
|                         | per year            |                    |                                              |
| Replacement Costs       | 0.5% total capital  | 0.5% total capital | 0.5% unplanned replacement                   |
|                         | for annual          | for annual         | costs per year. Full stack                   |
|                         | unplanned           | unplanned          | replacement every 4 years at                 |
|                         | replacements.       | replacements;      | specified stack capital cost. Full           |
|                         | 25% annual stack    | 25% annual stack   | system replacement at inflated               |
|                         | replacement         | replacement        | DCC value every 20 years                     |
| Process Water           | \$2.00/k-gal        | \$2.00/k-gal       | Cooling water cost is for make-              |
| Cooling Water           | \$0.02/k-gal        | \$0.02/k-gal       | up and chemical treatment                    |

Table 18. HTSE process O&M cost-estimate basis.

O&M cost estimates for the Prairie Island LWR-HTSE plant and the Monticello LWR-HTSE plant are provided in Table 19 and Table 20, respectively. O&M estimates for both plants correspond to the HTSE plant capacities detailed in Table 11 (both cases correspond to maximal hydrogen-production based on the use of energy available from both Prairie Island nuclear units and the single Monticello nuclear unit).

| Fixed O&M Costs                                                                                                                  |                                 |                                          |             |                           |                                 |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------|-------------|---------------------------|---------------------------------|
| Burdened labor cost, including overhead                                                                                          | \$60.00                         | \$/hour                                  | 15          | FTEs                      | \$1,904,331                     |
| G&A rate                                                                                                                         | 20%                             | % of labor of                            | cost        | •                         | \$380,866                       |
| Property Tax and Insurance                                                                                                       | 2%                              | % of total c                             | apital inve | stment                    | \$15,032,015                    |
| Production Maintenance and Repairs                                                                                               | 0.50%                           | % of install                             | ed direct c | apital costs              | \$2,905,199                     |
| Total Fixed O&M                                                                                                                  |                                 |                                          |             |                           | \$20,222,411<br>(\$19.6/kWe-yr) |
| Variable O&M Costs                                                                                                               |                                 |                                          |             |                           |                                 |
| Replacement Costs                                                                                                                |                                 |                                          |             |                           |                                 |
| Annual Stack Replacement<br>Percentage <sup>a</sup>                                                                              | 25.00%                          | % of design capacity                     |             | \$36,812,500 <sup>α</sup> |                                 |
| Total Unplanned Replacement                                                                                                      | 0.50%                           | % of total direct depreciable costs/year |             | \$3,720,796               |                                 |
| Electricity                                                                                                                      | 30                              | \$/MWh-e                                 | 1,032       | MW-e                      | \$245,435,321                   |
| Nuclear process heat                                                                                                             | 10.4 <sup>β</sup>               | \$/MWh-t                                 | 177         | MW-t                      | \$14,606,972                    |
| Process Water                                                                                                                    | 2                               | \$/k-gal                                 | 1,566       | k-gal/day                 | \$1,034,528                     |
| Cooling Water (make-up and chemical treatment)                                                                                   | 0.02                            | \$/k-gal                                 | 30,504      | k-gal/day                 | \$201,577                       |
| Total Variable O&M (including                                                                                                    |                                 |                                          |             |                           | \$301,811,695                   |
| energy costs)                                                                                                                    |                                 |                                          |             |                           | (\$36.89/MWe-hr)                |
| Total Variable O&M (excluding                                                                                                    |                                 |                                          |             |                           | \$41,769,401                    |
| energy costs)                                                                                                                    |                                 |                                          |             |                           | (\$5.11/MWe-hr)                 |
| $^{\alpha}$ Based on HTSE stack capital cost specification of $^{\beta}$ Based on a thermal-to-electrical conversion efficiency. | of \$155/kW-d<br>eiency of 34.6 | c <sup>30</sup><br>%                     |             |                           |                                 |

Table 19. Prairie Island LWR-HTSE annual O&M costs in 2020 dollars.

| Fixed O&M Costs                                                    |                   |                                          |             |              |                                |
|--------------------------------------------------------------------|-------------------|------------------------------------------|-------------|--------------|--------------------------------|
| Burdened labor cost, including overhead                            | \$60.00           | \$/hour                                  | 13          | FTEs         | \$1,661,125                    |
| G&A rate                                                           | 20%               | % of labor                               | cost        |              | \$332,225                      |
| Property Tax and Insurance                                         | 2%                | % of total c                             | apital inve | estment      | \$8,873,918                    |
| Production Maintenance and Repairs                                 | 0.50%             | % of install                             | ed direct c | apital costs | \$1,715,040                    |
| Total Fixed O&M                                                    |                   |                                          |             |              | \$12,582,307<br>(\$21.1/kWe-yr |
| Variable O&M Costs                                                 |                   |                                          |             |              |                                |
| Replacement Costs                                                  |                   |                                          |             |              |                                |
| Annual Stack Replacement Percentage <sup><math>\alpha</math></sup> | 25.00%            | % of design                              | n capacity  |              | \$21,312,500                   |
| Total Unplanned Replacement                                        | 0.50%             | % of total direct depreciable costs/year |             | \$2,196,514  |                                |
| Electricity                                                        | 30                | \$/MWh-e                                 | 597         | MW-e         | \$142,094,133                  |
| Nuclear process heat                                               | 9.69 <sup>β</sup> | \$/MWh-t                                 | 103         | MW-t         | \$7,894,520                    |
| Process Water                                                      | 2                 | \$/k-gal                                 | 906         | k-gal/day    | \$598,93                       |
| Cooling Water (make-up and chemical treatment)                     | 0.02              | \$/k-gal                                 | 17,660      | k-gal/day    | \$116,703                      |
| Total Variable O&M (including                                      |                   |                                          |             |              | \$174,213,307                  |
| energy costs)                                                      |                   |                                          |             |              | (\$36.78/MWe-hr                |
| Total Variable O&M (excluding                                      |                   |                                          |             |              | \$24,224,654                   |
| energy costs)                                                      |                   |                                          |             |              | (\$5.11/MWe-hr                 |

Table 20. Monticello LWR-HTSE annual O&M costs in 2020 dollars.

# 3.3 Constant Hydrogen Production (Non-Grid-Integrated) LCOH Production Analysis

One business case for LWR-HTSE plants is to operate in a constant hydrogen-production (non-gridintegrated) mode. The analysis presented here does not account for grid impacts or interactions. It considers the LWR-HTSE plant isolated and standalone as a limiting case. Even if a utility company does not intend to operate in this manner to produce hydrogen, this analysis, and these results are still useful in that they show the bounding / limiting scenario of full hydrogen production without grid interactions. It should be noted that operating in this manner would affect local grid node pricing and therefore the reader should understand that electricity pricing of the regional area would be affected in ways that are not presented or accounted for in this section. The dispatch optimization in Section 4 and a separate forthcoming report that will later be released by NREL provide insight into the NPP-HTSE profitability with grid interactions taken into account when the NPP is allowed to switch between sending electricity to the grid and hydrogen production.

An LWR-HTSE plant configured for constant hydrogen production requires that the LWR nuclear plant provide a constant supply of heat and power to the HTSE plant; therefore, the LWR plant would no longer dispatch electrical power to the grid as part of routine operations. The constant hydrogen-production configuration would simplify the HTSE process-operating scheme and reduce capital expenditures required prior to HTSE plant startup (use of hot-standby operating mode, hydrogen storage, and replacement of removed electrical generation capacity are not required or considered in this analysis). Because the nuclear plant would no longer dispatch electrical power to the grid, transient operating

conditions associated with entering and exiting HTSE process hot-standby mode (and the associated transient system operations) would also be significantly reduced.

While there are advantages associated with a simplified, non-grid-integrated LWR-HTSE process operating scheme, it provides fewer potential revenue streams—i.e., electrical power dispatch is no longer an option, which also eliminates potential income from capacity-market payments—and decreased ability to operate the plant in a manner that allows the production of the product (hydrogen or electrical power) with the highest profit margin in any given time period.

Hydrogen-production costs for an LWR-HTSE system configured for constant hydrogen (non-gridintegrated) production were evaluated. The DOE  $H_2A$  model<sup>48</sup> was configured with the LWR-HTSE process-performance parameters described in Section 3.1.3, the capital costs described in Section 3.2.1.2, the O&M costs described in Section 3.2.2, and the project financial-input parameters listed in Table 21 to calculate the non-grid-integrated LWR-HTSE plant LCOH.

| Parameter                                          | Value                                                                                           |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Start-up year                                      | 2027                                                                                            |
| Length of construction period                      | 1 year                                                                                          |
| Start-up time                                      | 1 year                                                                                          |
| Plant life                                         | 20 years                                                                                        |
| Depreciation schedule                              | 15-year MACRS                                                                                   |
| % Equity financing                                 | 40%                                                                                             |
| Interest rate on debt                              | 5%                                                                                              |
| Debt period                                        | 20 years                                                                                        |
| % of fixed operating costs during start-up         | 75%                                                                                             |
| % of revenues during start-up                      | 75%                                                                                             |
| % of variable operating costs during start-up      | 75%                                                                                             |
| Decommissioning costs (% of TDC)                   | 10%                                                                                             |
| Salvage value (% of TCI)                           | 10%                                                                                             |
| Inflation rate                                     | 1.9%                                                                                            |
| After-tax real internal rate of return (IRR)       | 9.9%                                                                                            |
| State taxes                                        | 6%                                                                                              |
| Federal taxes                                      | 21%                                                                                             |
| Indirect costs                                     |                                                                                                 |
| Site preparation (% of DCC)                        | 2%                                                                                              |
| Engineering and design (% of DCC)                  | 2.3%                                                                                            |
| Process contingency (% of DCC)                     | 1.6%                                                                                            |
| Project contingency (% of DCC)                     | 7.2%                                                                                            |
| Contractor's fee (% of DCC)                        | 10%                                                                                             |
| Legal fee (% of DCC)                               | 5%                                                                                              |
| Land (% of TDC)                                    | 1%                                                                                              |
| Plant type (NOAK)                                  | NOAK                                                                                            |
| Learning rate for modular equipment cost reduction | 95%                                                                                             |
| NOAK plant stack cost                              |                                                                                                 |
| Base HTSE Case: HFTO Record Current Technology     | <ul> <li>\$155/kW-dc stack cost "Current Case" in reference<sup>41</sup></li> </ul>             |
| Advanced HTSE case: Integrated stack module design | n \$35/kW-dc stack module (stack and<br>balance-of-module components<br>included) <sup>56</sup> |

Table 21. LWR-HTSE constant hydrogen production LCOH analysis input parameters.

The LCOH analysis results for a baseline case with an HTSE plant providing actual hydrogenproduction capacity of 347 tonnes hydrogen per day (with a design capacity of 383 tonnes/day) and an energy price of \$30/MWh-e are presented in Figure 45. An HTSE plant of this capacity would use 597 MW-ac of total power input (550 MW-dc stack power input) and would use the majority of the Monticello NPP energy output. The LCOH for this baseline case is \$1.93/kg (in 2020 dollars). It is apparent from this figure that the largest contributor to the LCOH is the energy cost.

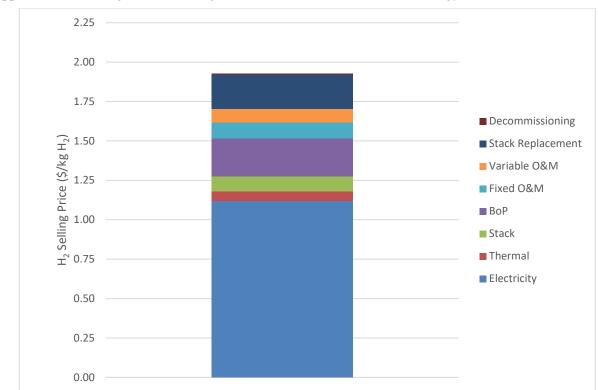



Figure 45. LCOH cost components for an NOAK constant hydrogen production LWR-HTSE system configuration with 347 tonnes per day actual hydrogen-production capacity (383 tonnes/day design capacity), stack cost of \$155/kW-dc, and an energy price of \$30/MWh-e.

# 3.3.1 Sensitivity Analyses

Sensitivity analysis was performed to evaluate the impact of energy price and other key variables on the LCOH production. Again, as described at the first of Section 3.3, this analysis is a limiting/bounding analysis that shows the resulting possibilities if an NPP were completely dedicated to hydrogen production. The impacts to the regional grid market pricing of dedicating an LWR to hydrogen production is not considered in this analysis. The interactions of an NPP-HTSE complex that is able to dispatch between sending electricity to the grid and to the hydrogen plant is not considered here but is considered in the optimization of Section 4. A set of base conditions for the sensitivity analysis is listed in Table 22. These correspond to an HTSE plant with high-value stack costs and a stack service life consistent with the HFTO Hydrogen Production Record<sup>30</sup> and a design capacity that would use a total energy input similar to that provided by using the Xcel Energy Monticello NPP as a dedicated energy source. Also discussed in this section, and the next is an advanced case that has a low-value stack cost based on publicly available information and calculations that represent the state-of-the-art technology performance based on predictions by various SOEC suppliers for the near term.

| Parameter                                              | Base Case,<br>High Stack Cost                                                       | Advanced Case,<br>Low Stack Cost |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------|
| Electricity Price                                      | \$30/MWh-e                                                                          | -                                |
| Stack Cost                                             | \$155/kW-dc                                                                         | \$27/kW-dc                       |
| IRR                                                    | 9.9%                                                                                | -                                |
| Learning Rate for Modular<br>Equipment Cost Reductions | 95%                                                                                 | -                                |
| Stack Service Life                                     | 4 years                                                                             | 7 years                          |
| Previous HTSE Plant Installations                      | 100 (NOAK plant type)                                                               | -                                |
| Plant Design Capacity                                  | 383 tonnes/day<br>(550 MW-dc stack power input;<br>597 MW-ac system power<br>input) | -                                |

Table 22. Base high-value stack cost and advanced low-value stack cost cases: conditions for HTSE sensitivity analysis.

Figure 46 is a tornado chart that illustrates the LCOH sensitivity to the variables listed in Table 22 for the base high stack value case. Each of the sensitivity variables shown in the tornado chart is manipulated individually while all other variables are kept constant at the base values listed in Table 22. The sensitivity-variable lower bound, base value, and upper bound are listed in brackets next to the chart axis labels. The upper and lower bounds selected for each of the variables are expected to bracket the conditions that could characterize an LWR-based HTSE plant installation within an approximately 5-year timeline (or once the manufacturing capacity to support HTSE plant installations of the specified size are available). The results presented in Figure 46 are sorted such that the variables that result in the largest net change in LCOH are positioned at the top of the chart.

It can be observed from Figure 46 that, as expected, the specified changes in electricity price and stack cost have the largest impact on LCOH. Note that the range of electricity prices evaluated represents expected trends in future electricity market pricing (as well as typical LWR O&M costs). A higher value for the stack price is not included in the sensitivity analysis since the base value corresponds to the HFTO Hydrogen Production Record<sup>30</sup> current technology case and is already considered a high case. The low value of \$27/kW corresponds to the advanced case value computed from costs reported by Tang et al.<sup>44</sup> for an SOEC stack module designed for manufacture in a mass production facility. The basis for the \$27/kW stack cost calculation is included in Table 23.

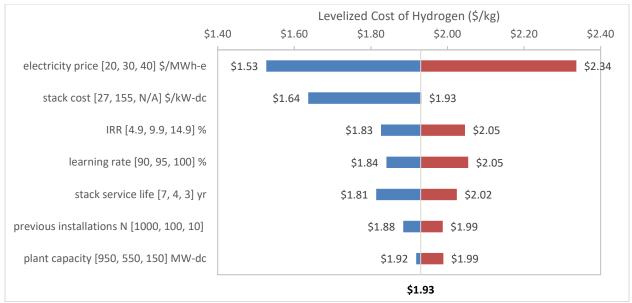



Figure 46. Sensitivity of LCOH to selected constant hydrogen production case input parameters. Base high stack cost of \$155/kW-dc results in LCOH value of \$1.93/kg corresponds to an HTSE plant with design capacity of 383 tonne/day (550 MW-dc stack power, 597 MW-ac system power), which corresponds to the maximum HTSE plant capacity that could be coupled to Monticello NPP.

| Parameter     | Value                     | Note                                        |
|---------------|---------------------------|---------------------------------------------|
| Stacks/module | 40                        |                                             |
| Cells/stack   | 350                       |                                             |
| Cells/module  | 14,000                    | Calculated based on values reported in [48] |
| Cell area     | 81 cm <sup>2</sup>        |                                             |
| Current       | 1.25 A/cm <sup>2</sup>    |                                             |
| Density       |                           |                                             |
| Operating     | 1.35 V/cell               |                                             |
| voltage       |                           |                                             |
| Current       | 101.25 A                  | Calculated based on values reported in [48] |
| Stack power   | 47.8 kW                   | Calculated based on values reported in [48] |
| Module        | 1913.6 kW                 | Calculated based on values reported in [48] |
| Power         |                           |                                             |
| Stack cost    | \$1300/stack (\$27/kW)    | Value read from Tang et al Figure 26 [48]   |
| Module cost   | \$15,000/module           | Value read from Tang et al Figure 27 [48]   |
| System cost   | \$67,000/system (\$35/kW) | System includes 40 stacks and one module    |

Table 23. Basis for advanced case low-value stack-cost sensitivity-analysis input specification.

Figure 47 provides additional information on the sensitivity of LCOH to the energy price. It can be observed from this figure that a \$10/MWh-e decrease in the price of the energy obtained from the LWR results in approximately a \$0.40/kg decrease in hydrogen-production cost. The LWR energy cost available to the HTSE plant is therefore a key variable in determining the economic viability of an LWR-HTSE hydrogen-production plant. The thermal-energy unit price is calculated by applying the nuclear plant thermal-conversion efficiency to the electrical-power price.

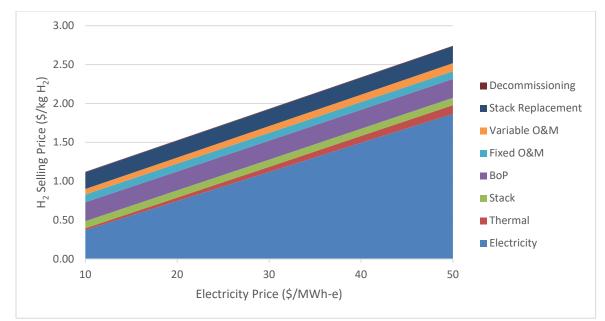



Figure 47. LCOH as function of energy price for an NOAK constant hydrogen production HTSE plant, base high stack cost (\$155/kW-dc stack cost) with 347 tonnes/day actual hydrogen production capacity (383 tonnes/day design capacity).

In addition to the energy costs, Figure 46 indicates that the HTSE system capital costs also have a significant impact on the LCOH. The HTSE system capital costs provide a direct contribution to the LCOH via the initial capital investment associated with the stack and BoP, but also result in an indirect contribution to the LCOH by affecting the magnitude of the O&M costs as described in Section 3.2.2 (stack-replacement costs, maintenance costs, property tax and insurance costs, etc., are a function of the capital costs).

Figure 48 provides a plot of the LCOH sensitivity to HTSE plant capital costs. In this figure, the upper horizontal axis displays the HTSE plant total capital investment while the lower horizontal axis displays the corresponding modular-equipment capital costs. The total capital investment (upper horizontal axis) includes the capital costs of the HTSE plant, TDL, electrical transmission from the nuclear plant to the HTSE plant, feed/utility system costs, as well as indirect costs. The modular equipment (lower horizontal axis) includes the modular HTSE and BoP units that are expected to be manufactured offsite before being transported to the LWR site for installation and integration with the site-specific LWR-HTSE infrastructure (i.e., the equipment and services that account for the additional costs represented by the total capital investment).

The capital-cost sensitivity analysis shown in Figure 48 is based on a stack-cost specification equal to 30% of the modular-equipment costs (the stack cost provides contributions to the LCOH from both the initial cost of plant construction as well as through recurring stack-replacement costs). Stack service life determines the frequency with which stacks must be replaced. Figure 48 includes curves that indicate the estimated LCOH for HTSE plants constructed using SOEC stacks with 4 and 7-year service lives. The data identify a point that corresponds to the LCOH and total capital investment of an HTSE plant with specifications that correspond to sensitivity-analysis base values identified in Table 22 (e.g., 550 MW-dc HTSE plant design capacity, \$155/kW stack price, 4-year stack service life, \$30/MWh-e electricity price).



Figure 48. LCOH sensitivity to HTSE plant capital cost and stack service life. Stack costs specified as 30% of modular equipment costs. HTSE plant design capacity of 383 tonne/day (550 MW-dc) with \$30/MWh-e electricity price (see Table 22 for listing of additional input parameter specifications). Dashed lines correspond to the base and advanced case.

Another HTSE-process design specification that impacts LCOH is the HTSE plant capacity. As shown in Section 3.2.1.2, the HTSE process unit capital costs (reported in \$/kW-e) decrease with increasing plant capacity. Increasing HTSE plant capacity by addition of a single HTSE modular block unit (25 MW-dc per block) will result in a larger decrease in the unit (\$/kW) HTSE capital costs for a small-capacity plant than for a large-capacity plant due to the effect of economies of scale becoming less significant at larger plant capacity. This effect results in a decrease in the slope of the unit capital cost versus plant capacity curves with increasing plant capacity as shown for FOAK plant types in Figure 43 and NOAK plant types in Figure 44. A plot of LCOH versus plant capacity is provided in Figure 49. While increased unit capital costs are a contributing factor behind elevated LCOH for small capacity HTSE plants, the primary driver for the higher LCOH observed for small capacity plants is the increased fixed O&M cost associated with the proportionately higher number of plant staff members per unit of hydrogen production (the total number of plant staff members is adjusted for plant capacity according to a scaling exponent of 0.25 per the H<sub>2</sub>A centralized SOEC hydrogen production demo models). The LCOH sensitivity to plant capacity shown in Figure 46 indicates that there is a greater impact from decreasing the plant capacity than from increasing the plant capacity (relative to the base-capacity value). This is consistent with the decrease in the slope of the LCOH versus plant capacity shown in Figure 49.

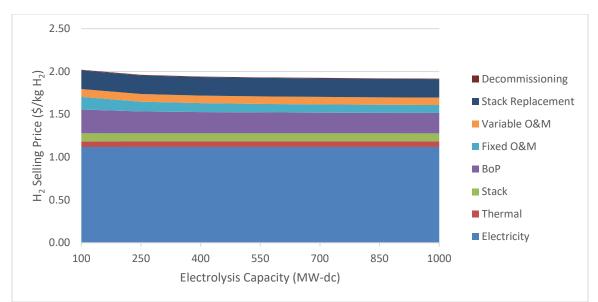



Figure 49. LCOH as function of LWR plant capacity (NOAK plant type, \$30/MWh-e energy price, \$155/kW-dc stack cost)

# 3.3.2 Comparison of HTSE and Steam Methane Reforming

#### 3.3.2.1 Natural Gas Steam Methane Reforming

The incumbent competitor to an NPP-HTSE hydrogen plant is natural gas SMR. As a result, the highest hydrogen price as a function of demand size will be determined by the economies of scale that an SMR plant can achieve. It should be noted, however, that the economics of natural gas plants are very different from those of an NPP-HTSE. SMR LCOH costs were calculated using the  $H_2A$  model<sup>38</sup> with input parameters defined in Table 24. Baseline SMR plant installed capital costs of \$132,500,000 (in 2020 dollars) for a 380 tonne hydrogen/day production plant were scaled using a scaling exponent of 0.6. The SMR plant capital costs include an additional hydrogen-product compressor to provide a product gas with an output pressure of 69 bar, which is equivalent to that specified for the HTSE plant.

| Input Parameter                         | Value         |
|-----------------------------------------|---------------|
| Natural gas price                       | Varies        |
| Plant capacity                          | Varies        |
| Startup year                            | 2030          |
| Construction period                     | 3 years       |
| Startup period                          | 1 year        |
| Plant life                              | 20 years      |
| Depreciation schedule                   | 15-year MACRS |
| Equity financing                        | 60%           |
| Interest rate on debt                   | 3.70%         |
| Fixed operating costs during startup    | 75%           |
| Variable operating costs during startup | 75%           |
| Revenues during startup period          | 50%           |
| Decommissioning costs                   | 10%           |

Table 24. H<sub>2</sub>A model input parameters for SMR LCOH analysis.

| Input Parameter    | Value  |
|--------------------|--------|
| Salvage value      | 10%    |
| Inflation rate     | 1.9%   |
| After-tax real IRR | 7.0%   |
| State tax rate     | 6%     |
| Federal tax rate   | 21%    |
| Total tax rate     | 25.74% |

SMR-plant capital costs were extrapolated (using the 6/10 scaling factor) outside the H<sub>2</sub>A recommended range for plant capacity values below 235 tonne/day. For plant capacities above, the H<sub>2</sub>A recommended upper limit for scaling capacity of 425 MT H<sub>2</sub>/day; the capital-cost calculations were modified to account for use of multiple process trains; i.e., the economic benefits associated with economies of scale are limited to the equipment sizes associated with a 425 tonne/day plant capacity. This modification prevents economy-of-scale capital-cost reductions from being applied to predict costs for equipment that would be impractical to construct or transport.

# 3.3.3 Impact of Natural Gas Price

While fuel costs are low for an NPP, they are the main contributor for a natural gas plant. While natural gas prices are currently very low, they have historically seen much variability. As a result, four conditions are considered in this subsection: (1) a medium gas price (which corresponds to the U.S. EIA 2021 Annual Energy Outlook (AEO)<sup>48</sup> West North Central (WNC) Region Reference Case), (2) a low price corresponding to the EIA 2021 AEO WNC Region High Oil and Gas Supply Case, (3) a high natural gas price corresponding to the 2021 AEO WNC Region Low Oil and Gas Supply Case, and (4) a modified version of the 2021 AEO West North C Region Reference Case. A plot of each of these natural gas price projections versus time is shown in Figure 50.

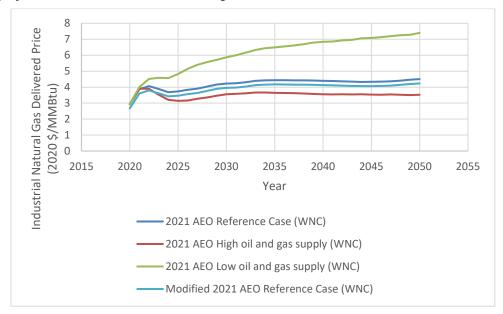



Figure 50. Projected natural gas pricing in the West North Central Region as reported in selected EIA 2021 Annual Energy Outlook Analysis Cases.<sup>48</sup> The basis for the SMR hydrogen production cost analysis presented in this report is a modified natural gas price projection in which the 2021 AEO West North Central Region Reference Case is offset (indicated by the light blue line).



Figure 51. US Census regions and divisions.<sup>49</sup>

Figure 52 includes plots of SMR LCOH for each of the EIA 2020 AEO natural gas price cases as a function of SMR plant capacity. The plant-capacity scaling range recommended by the H<sub>2</sub>A model falls between the vertical dotted lines. As previously described, the H<sub>2</sub>A model was modified to account for use of multiple process trains for SMR plant capacities above the suggested plant capacity. As a result of the H<sub>2</sub>A model modification, minimal additional LCOH reductions due to economies of scale are realized for plant design capacities exceeding 425 MT/day (382.5 MT/day actual production). The LCOH values corresponding to SMR plant actual production capacities of 382.5 MT/day, therefore, represent the SMR price floor, at which point the economies of scale have been maximized and minimal LCOH reductions can be achieved from increases in plant capacity. Beyond this point, the natural gas price is the primary driver of the SMR LCOH.

The SMR H<sub>2</sub>A model-default plant-design capacity of 380 MT/day (342 MT/day actual production) was chosen as the basis for comparison with HTSE plant LCOH. This SMR plant capacity is very near the point on the LCOH vs capacity curve where the SMR LCOH price floor is achieved. It provides a comparable level of hydrogen production to the 550 MW-dc HTSE plant (383 MT/day design capacity, 347 MT/day actual production) specified in the sensitivity-analysis base case.



Figure 52. LCOH of SMR-based hydrogen production as a function of plant capacity and natural gas pricing. Industrial natural gas pricing based on EIA 2021 AEO WNC Region Reference Case, Low and High Oil and Gas Supply Cases, as well as Modified Reference Case.

# 3.3.4 Impact of Carbon Tax

The current and future price of hydrogen is tied to the natural gas industry, specifically the availability of natural gas in the U.S. market and the possible future implementation of a carbon tax or credit system. While the impact of the price of natural gas was considered previously, this section will investigate the implementation of carbon taxes. In theory, this could be both in the form of a traditional tax, or as a function of the cost of carbon sequestration. A low value of \$25/tonne-CO<sub>2</sub> corresponds to the 2025 anticipated rate in the Minnesota market.<sup>50</sup> Some studies even envision prices as high as \$100/tonne-CO<sub>2</sub> to reach deep decarbonization.<sup>51</sup> This was selected as the high value.

The values specified for the cost of  $CO_2$  were applied to the SMR LCOH to translate this cost to an increase in the market price for hydrogen (based on SMR production). Using estimates from NREL/TP-570-27637, the life-cycle emissions from an SMR plant can be calculated at around 8.9 kg-CO<sub>2</sub>/kg-H<sub>2</sub>.<sup>52</sup> For the low and high carbon-tax rates, this corresponds to an added \$0.22/kg-H<sub>2</sub> and \$0.89/kg-H<sub>2</sub>, respectively.

If SMR plants were to implement carbon capture (CC) the resulting LCOH of SMR + CC could be in the range of 0.48 to  $0.99/kg-H_2$  or a carbon capture cost of  $0.25/kg-CO_2$  to  $0.90/kg-CO_2$ .

#### 3.3.5 Comparison of HTSE and SMR LCOH

Two HTSE cases were defined for the purposes of comparing HTSE and SMR LCOH. The HTSE cases include (1) a Base Case identical to the case defined by the base condition for the sensitivity analyses in Section 3.3.1 and (2) an Advanced Case that incorporates improvements to the stack cost and stack service life. Specifications for the HTSE cases are provided in Table 25. The SMR LCOH based on a modified version of the 2021 AEO West North Central Region Reference Case, in which all years of the AEO WNC Region Reference Case projection are offset, is plotted with zero, \$25/tonne, and \$100/tonne cost of CO<sub>2</sub> in Figure 53. The LCOH for both HTSE cases is plotted as a function of the electricity cost (the sensitivity variable with the greatest impact on HTSE LCOH). Hydrogen transportation costs of \$0.16/kg are included in the HTSE LCOH shown in Figure 53. No transportation costs are included for the SMR cases based on the assumption that the hydrogen produced by an SMR plant would be consumed by a customer co-located with the SMR plant (e.g., a petroleum refinery).

|                                                              | HTSE Base Case:<br>HFTO Record<br>Stack Cost <sup>α</sup> | HTSE<br>Advanced<br>Case:<br>Integrated<br>Stack Module<br>Design <sup>β</sup> | Reference or Note                                                                                     |
|--------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| HTSE plant design capacity (MW-e)                            | 550 (stacks)<br>597 (system)                              | 550 (stacks)<br>597 (system)                                                   | Corresponds to maximum<br>Monticello HTSE plant capacity                                              |
| HTSE Plant Hydrogen<br>Production Rate (tonnes/day)          | 383 (design)<br>347 (actual)                              | 383 (design)<br>347 (actual)                                                   | Net capacity factor of 90.5%<br>(includes contributions from plant<br>down time and cell degradation) |
| Electricity price (\$/MWh-e)                                 | varies                                                    | varies                                                                         | Electricity price is a sensitivity analysis input parameter                                           |
| Stack cost (\$/kW-dc)                                        | 155                                                       | 35                                                                             | Base Case cost is for stack only;<br>advanced case is stack module<br>(stack plus balance-of-module)  |
| Direct capital cost (\$/kW-ac)                               | 574                                                       | 345                                                                            | Based on a 95% learning rate per<br>Table 21                                                          |
| Total capital investment<br>(\$/kW-ac)                       | 742                                                       | 446                                                                            | Based on a 95% learning rate per<br>Table 21                                                          |
| Real IRR (%)                                                 | 9.9%                                                      | 9.9%                                                                           | Table 21                                                                                              |
| Stack Service Life (years)                                   | 4                                                         | 7                                                                              | Correspond to Current and Future<br>Cases                                                             |
| Number of previous HTSE plant installations, N               | 100                                                       | 100                                                                            | NOAK Plant Type                                                                                       |
| LCOH with energy price of \$30/MWh-e (\$/kg-H <sub>2</sub> ) | 1.93                                                      | 1.53                                                                           | Nuclear plant thermal efficiency<br>used to derive corresponding<br>thermal energy price              |

Table 25. Definition of HTSE cases used for LCOH comparison with natural gas SMR.

 $^{\alpha}$  The HTSE Base Case is equivalent to the sensitivity analysis base conditions listed in Table 22

<sup>β</sup> The HTSE Advanced Case incorporates improvements to both the stack cost and stack service life relative to the sensitivity analysis base conditions; this case is therefore not represented in the sensitivity analyses presented in Section 3.3.1.

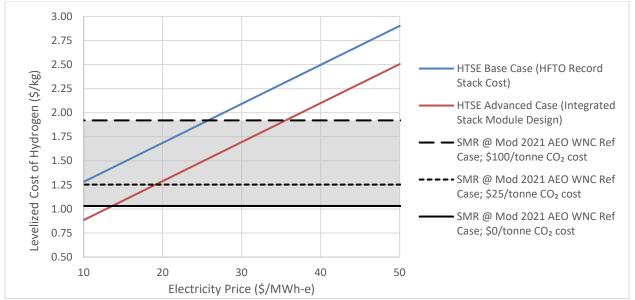



Figure 53. LCOH of 347 tonne/day HTSE base and advanced cases versus 342 tonne/day SMR with 0, 25/tonne, and 100/tonne CO<sub>2</sub> cost. SMR and HTSE case definitions provided in Table 24 and Table 25, respectively. The HTSE LCOH includes a 0.16/kg adder for the cost of transporting hydrogen product to an off-site customer. SMR natural gas feedstock pricing based on Modified 2021 AEO WNC Region Reference Case.

It is apparent from Figure 53 that, with electricity pricing of \$30/MWh-e, an SOEC stack cost of \$155/kW (HTSE base case), and no cost for SMR CO<sub>2</sub> emissions, it would not be possible for a constanthydrogen-production mode LWR-HTSE plant to complete with an SMR plant purely on a hydrogenproduction cost basis. Availability of SOEC technology consistent with the HTSE Advanced Case would allow the HTSE plant to produce hydrogen at a cost competitive with SMR if the nuclear plant could sell electricity to the HTSE plant at a price of \$13.6/MWh-e. This electricity price is lower than the current or projected future O&M costs for existing LWRs, suggesting that it is unlikely that an LWR powered HTSE plant could produce hydrogen at a lower price than SMR for scenarios in which natural gas pricing is aligned with the modified 2021 AEO WNC Region price projection and no carbon tax and/or clean hydrogen production credit exists.

An HTSE production credit for avoided carbon emissions, or a cost of carbon added to the SMR hydrogen-production cost could significantly change the economic favorability of hydrogen production via LWR-HTSE. As indicated in Figure 53, the presence of a \$25/tonne or \$100/tonne carbon tax would increase the range of electricity pricing for which an LWR-HTSE plant could be cost competitive with natural gas SMR.

At natural gas pricing consistent with the modified 2021 AEO WNC Reference Case natural gas price projection with a 25/tonne CO<sub>2</sub> tax, an HTSE plant could produce hydrogen at a price competitive with SMR at an electricity price of 9.2/MWh-e for the HTSE Base Case or 19/MWh-e for the HTSE Advanced Case (the HTSE LCOH includes a 0.16/kg transportation adder). Although these electricity prices are lower than current O&M costs for many LWR nuclear plants and are also lower than the average electricity pricing in many markets—if the LWR provides power to the HTSE plant it does so at the opportunity cost of not selling this power to the electricity market—both LWR NPP O&M costs and future electricity prices are expected to decrease in the coming decade. Based on recent analyses, however, it is unlikely that LWR O&M costs are likely to decrease significantly below 20/MWh-e such that a 25/tonne CO<sub>2</sub> penalty or production credit would be insufficient to enable cost competitive LWR/HTSE-based hydrogen production. An increase in the clean hydrogen production credit or  $CO_2$  emission penalty to \$100/tonne  $CO_2$  would increase the electricity price at which an LWR could sell power to an HTSE plant for cost competitive hydrogen production to \$25.9/MWh-e for the base HTSE Base Case and \$35.7/MWh-e for the HTSE Advanced Case (the HTSE LCOH includes a \$0.16/kg transportation adder). Many LWR plants could operate profitably today by selling power to an HTSE plant at a price greater than \$30/MWh-e, and as additional cost saving measures are implemented at LWR plants it is expected that many could operate profitably with future electricity sales prices of around \$25/MWh-e or greater.

If future natural gas pricing is higher than the modified 2021 AEO WNC Region Reference Case projection used in this analysis SMR hydrogen production costs would increase, and the electricity prices at which HTSE could be cost competitive with SMR would increase accordingly. However, if future natural gas pricing is lower than the modified 20201 AEO WNC Region Reference Case projection used in this analysis, decreases to the electricity prices identified above would be required to enable the HTSE plant to produce hydrogen at a cost competitive with natural gas SMR. Plots of LWR-HTSE LCOH versus natural gas SMR LCOH that include the 2021 AEO WNC Region Low Oil & Gas Availability Case (high natural gas prices), Modified 2021 AEO WNC Region Reference Case, and 2021 AEO WNC Region High Oil & Gas Availability Case are included in Section F-6 of Appendix D.

# 3.4 Summary of HTSE Process & Status Financial Analysis

A gigawatt-scale LWR-HTSE process design model was built and used to evaluate some basic steady state constant hydrogen production scenarios. The evaluation determined that an HTSE, scaled to match the energy output of an LWR plant of 597 MW-e, would require approximately 5% of the LWR total steam flow to provide the process-heat input needed to vaporize the HTSE process feedwater. The analysis specified use of Therminol-66 as the HTF to transfer nuclear process heat an assumed distance of 1 km to the HTSE plant. The HTSE plant was determined to have specific electricity and thermal energy requirements of 37.4 kWh-e/kg-H<sub>2</sub> and 6.4 kWh-t/kg-H<sub>2</sub> respectively. The HTSE plant efficiency was calculated as 88.9% on an HHV basis. Two SOEC technology cases were considered in evaluating HTSE LCOH, under basic steady state constant hydrogen production:

- 1. The HTSE Base Case is projected from an assumed stack-cost specification of \$155/kW-dc consistent with that reported for current SOEC technology in the DOE HFTO Hydrogen Production Record [30]. The base case also uses the HFTO Record stack service life specification of 4 years. This analysis includes annual stack replacements to restore the HTSE plant design-capacity rating at the start of each operating year. The base case NOAK HTSE plant with a hydrogen-production design capacity of 383 tonne H2/day (597 MW-e) has DCC of \$574/kW-ac (includes assumptions on HTSE plant equipment and nuclear plant heat- and power-delivery equipment) and a total capital investment of \$742/kW-ac (includes project indirect costs in addition to DCCs listed above). When energy from the LWR is purchased at a price of \$30/MWh-e (the nuclear plant's thermal efficiency is used to derive corresponding thermal-energy price), the base case HTSE plant is able to produce hydrogen at an LCOH of \$1.93/kg, which does not include product storage or transportation costs.
- 2. The HTSE Advanced Case uses a stack module (stack plus balance-of-module) cost specification of \$35/kW by comparison of publicly available information from various SOEC vendors. The advanced-case stack service life is specified as 7 years, consistent with current best-in-class SOEC technology. The advanced case NOAK HTSE plant with a hydrogen-production design capacity of 383 tonne/day (597 MW-e) has DCC of \$345/kW-ac and a total capital investment of \$446/kW-ac. When energy from the LWR is purchased at a price of \$30/MWh-e, the advanced case HTSE plant is able to produce hydrogen at an LCOH of \$1.53/kg (excluding storage and transport costs).

A summary of the assumptions and results for the Base and Advanced HTSE cases is shown below in Table 26.

| Table 20. Summary of Ba                                | Base Case                                              | Advanced Case                                          | Notes                                                                                                                                                                                                                                                         |
|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Utilization                                      | 587 MW-e                                               | 587 MW-e                                               |                                                                                                                                                                                                                                                               |
| H <sub>2</sub> Production                              | 347 tonne/day<br>production<br>383 tonne/day<br>design | 347 tonne/day<br>production<br>383 tonne/day<br>design |                                                                                                                                                                                                                                                               |
| Efficiency (HHV)                                       | 88.9%                                                  | 88.9%                                                  | Includes both thermal- and electrical-energy consumption                                                                                                                                                                                                      |
| Operating Pressure                                     | 5 bar                                                  | 5 bar                                                  | Based on maximizing system<br>efficiency by trending operating<br>pressure and steam utilization<br>versus system efficiency                                                                                                                                  |
| Steam Utilization<br>(conversion of reactant<br>steam) | 80%                                                    | 80%                                                    |                                                                                                                                                                                                                                                               |
| Electricity Required                                   | 37.4 kWh-e/kg-H <sub>2</sub>                           | 37.4 kWh-e/kg-H <sub>2</sub>                           |                                                                                                                                                                                                                                                               |
| Thermal Energy<br>Required                             | 6.4 kWh-t/kg-H <sub>2</sub>                            | 6.4 kWh-t/kg-H <sub>2</sub>                            |                                                                                                                                                                                                                                                               |
| Technology Horizon                                     | NOAK, 95%<br>learning rate                             | NOAK, 95%<br>learning rate                             | 95% corresponds to a 5% cost<br>reduction with every doubling of<br>the number of units produced                                                                                                                                                              |
| Stack Cost                                             | \$155/kW-dc                                            | \$35/kW-dc                                             |                                                                                                                                                                                                                                                               |
| Service Life                                           | 4 years                                                | 7 years                                                | Assumes annual stack<br>replacements to restore the HTSE<br>plant design-capacity rating at the<br>start of each operating year                                                                                                                               |
| Direct Capital Cost                                    | \$574/kW-ac                                            | \$345/kW-ac                                            |                                                                                                                                                                                                                                                               |
| Total Capital<br>Investment                            | \$742/kW-ac                                            | \$446/kW-ac                                            |                                                                                                                                                                                                                                                               |
| Levelized Cost of H <sub>2</sub><br>(HTSE)             | \$1.93/kg                                              | \$1.53/kg                                              | At \$30/MWh electricity cost.<br>Excluding storage and transport<br>costs. If a carbon tax of \$25/ton<br>or \$100/ton were in place, this<br>would raise the competitor SMR<br>LCOH by \$0.22/kg-H <sub>2</sub> and<br>\$0.89/kg-H <sub>2</sub> respectively |

Table 26. Summary of Base and Advanced HTSE Model Design Cases.

The advanced HTSE case represents SOEC-vendor stack-pricing estimates and best-in-class celldegradation-rate performance. It is expected that SOEC technology will be aligned with the advanced HTSE case within the HTSE plant construction schedule evaluated in this analysis (i.e., start of plant construction in 2026, with plant startup in 2027). The LCOH corresponding to the advanced LCOH case is, therefore, most applicable for the purposes of comparison with natural gas SMR. The combination of decreased stack-module cost and increased stack service life enables the HTSE Advanced Case to achieve a \$0.40/kg reduction in LCOH relative to the HTSE base case across the range of electricity prices evaluated (Figure 53). A sensitivity analysis was completed to evaluate the impact of several key process and economic parameters on the HTSE LCOH. The upper and lower bounds for each of the input parameters were selected to correspond to expected technology advancement and/or variation in market conditions. Based on the selected range over which the sensitivity variables were perturbed, the parameters that have the greatest impact on LCOH are energy price and SOEC stack cost. A second set of variables including the learning rate (for decreases in modular equipment costs as a function of the number of units produced by the equipment manufacturer), stack service life, and IRR have a medium impact on the LCOH. Once NOAK plant status has been achieved (defined as previous deployment of N = 100 count of 25 MW-e modular blocks, or 2.5 GW-e of production capacity) and a base plant capacity of several hundred MW is considered, perturbations to these variables have a less-pronounced impact on LCOH than the sensitivity variables identified above. Additional results and observations from the sensitivity analysis are listed below:

- Electricity price is a major cost driver of HTSE LCOH. A decrease of \$10/MWh-e in the price of the energy obtained from the LWR would result in approximately a \$0.40/kg decrease in the HTSE hydrogen production cost.
- Stack costs are also a major driver of the HTSE LCOH. The stack costs contribute to the initial plant construction costs as well as the HTSE plant O&M costs (for stack replacement). There is a significant difference between the values of the stack cost specified by DOE HFTO for a current-technology hydrogen-production cost evaluation [30] versus the stack cost that specific SOEC vendors have reported would be possible using current technology with manufacturing capacity of several hundred megawatts per year. Therefore, a prospective HTSE plant developer could significantly reduce uncertainties in hydrogen-production cost by obtaining competitive project-specific stack and system pricing information from SOEC vendors.
- The learning rate affects the HTSE plant modular-equipment capital costs. Variation in the learning rate of ±5% have a moderate impact on LCOH relative to the other sensitivity variables evaluated. Planned expansions in vendor-specific manufacturing capacity could affect the learning rate that is realized as establishment of large-scale SOEC manufacturing capacity continues in the coming years.
- Provided a NOAK HTSE plant is installed at a large scale (several hundred megawatts), scalable plant components (nuclear process-heat delivery, electrical-power distribution, utilities, etc.) will have achieved sufficient economies of scale and modular HTSE process components will have obtained cost reductions through economies of mass production. Therefore, a relatively minor impact to the LCOH is obtained from the HTSE plant capacity specification over a range from several hundred megawatts to gigawatt-scale HTSE.

A comparison of LWR-HTSE and natural gas SMR LCOH was performed to identify cases where HTSE could produce hydrogen at a cost competitive with SMR. The SMR LCOH is highly dependent on natural gas pricing. Use of a modified 2021 AEO WNC Region Reference Case natural gas price projection results in an LCOH estimate of \$1.03/kg for a natural gas SMR plant with a design capacity of 380 tonne/day (342 tonne/day actual production rate).

Because hydrogen produced via SMR is associated with significant carbon emissions, some customers may be willing to pay a price premium for carbon-free, "green" hydrogen or that a price on carbon could increase the effective cost of SMR-derived hydrogen. The natural gas SMR LCOH is increased by approximately 0.01/kg for every  $1/MT-CO_2$  tax that is applied. Specifically, the calculations described in Section 3.3.2 indicate that a carbon tax of  $25/tonne-CO_2$  would result in an increase in the natural gas SMR LCOH of 0.22/kg. In addition to the electricity price and SOEC stack cost/service life, the presence of a CO<sub>2</sub> tax is one of the most significant drivers that could determine the profitability of hydrogen production via HTSE relative to SMR.

The analysis concludes that advanced HTSE technology (e.g., the advanced HTSE case), a low electricity price (e.g., the advanced HTSE case requires an electricity price of \$13.6/MWh-e to compete with natural gas SMR in the absence of a carbon tax), and/or a green hydrogen production credit or carbon tax on  $CO_2$  emissions from natural gas SMR would be required for HTSE to be cost competitive with SMR. The following section goes beyond the basic steady state constant hydrogen production scenarios presented here and uses the HTSE model outputs developed here to run an optimization in order to further characterize the conditions under which profitability with LWR-HTSE hydrogen production can be obtained.

As mentioned in the introduction to this section, the design and analysis approach in this section represents a generic snapshot of the possible design configuration of integrating an HTSE hydrogen plant with an NPP. Other configurations are possible and could be analyzed in future work. These future iterations of designs for thermal power extraction from an NPP are being. Other design options not included in this report could include removing after the high-pressure turbine, eliminating the TDL to utilize NPP steam to directly heat treated HTSE feedwater, decreasing the distance between the steam extraction and the HTSE and condensate return to the first NPP feedwater heater versus to the condenser. Also, hydrogen storage may be located offsite. These alternate design options could prove to be less expensive and more efficient and will be the topic of future studies. One of these possible designs is shown in Figure 54.

Additionally, the design and control has not been optimized in this report but that would happen as the design matures towards commercialization.

Future work would also consider pulling power from the transmission grid at 345/161 kV in order to keep the hydrogen plant and the NPP generator decoupled and avoid having NPP perturbations affecting the hydrogen plant.

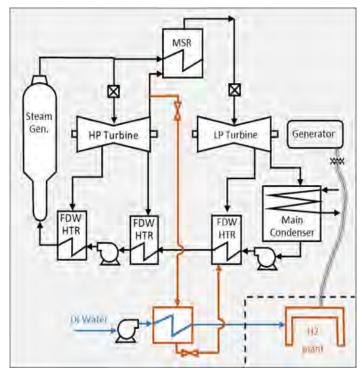



Figure 54. Alternate design configurations for thermal power extraction from NPP to HTSE. This design as marked in orange is not addressed in this report but could be the topic of future studies.

# **4 LWR-HTSE ECONOMIC DISPATCH AND OPTIMIZATION**

The previous sections developed and characterized the HTSE design model, including process design conditions, power and utility requirements and capital and OPEX. The previous section also showed the results of a static steady-state constant hydrogen production sensitivity analysis. This section is a further and more detailed analysis which uses the HTSE model parameters developed in the previous section as well as the hydrogen demand curves for the Minnesota region developed in Section 2 as well as grid electricity locational marginal pricing (LMP) forecasts separately developed by NREL. This section develops the optimization of the NPP-HTSE plant results which show the envelope of profitability—i.e., the conditions under which the system can be profitable.

In the optimization model, parameters are varied within certain constraints, and the effect on the NPV is recorded. The system is economically dispatched by allowing the model to send NPP electricity to either the grid or the HTSE plant, depending on LMP forecasts and other parameters in order to maximize the NPV. NPP-HTSE NPV is calculated and compared to a business-as-usual (BAU) NPP NPV. The advantage of the  $\Delta$ NPV approach is that the economics of the HTSE system can easily and quickly be compared to the BAU. Conveniently, only cash flows that change between the BAU NPP and NPP-HTSE cases need to be represented. It should be noted that this type of analysis only quantifies profitability relative to BAU, not the overall profitability of the NPP-HTSE.

The purpose of the economic dispatch and optimization portion of this project is to quantify the effects of economic parameters on the overall profitability of the nuclear with HTSE system. A model was developed to perform the yearly economic dispatch, track all the economic parameters, and explore several variables and assess their effect on NPV. The dispatcher looks at the LMP and decides to dispatch in one of three dispatch modes, 1) fill H<sub>2</sub> storage (charge mode), 2) deplete H<sub>2</sub> storage (discharge mode), 3) meet H<sub>2</sub> demand only (meet demand mode). The HTSE system is effectively acting as a demandresponse system that can shift its load to hours of low electricity price and maximize electricity production in high-price hours. The current analysis assumes the NPP-HTSE plant is a price taker, meaning that the model does not change the price of electricity as the amount of HTSE load changes. Future work may involve modeling assuming price feedback in price maker scenarios.

Optimization variables that were allowed to be varied by the model include 1) HTSE capital cost (total capital investment), 2) HTSE capacity (hydrogen demand), and 3) possible PTCs for producing carbon-free hydrogen with NE.

In this analysis, it is assumed that the hydrogen demand set forth must be met in each hour of the year. This is a capacity contract scenario where hypothetically the amount of hydrogen to be produced and delivered has been agreed to ahead of time between the HTSE plant and the  $H_2$  users. Another scenario not considered here would be an intermediate gas company fulfilling  $H_2$  demand contracts and supplementing  $H_2$  from the NPP-HTSE into the supply.

# 4.1 Optimization-Model Formulation

The dispatch and optimization model was developed using the Risk Analysis Virtual Environment (RAVEN) framework which has been developed at INL<sup>a</sup>. RAVEN is a multipurpose code for regression analysis, optimization, uncertainty quantification, and data analysis. This dispatch model uses RAVEN's conjugate gradient optimization, sensitivity analysis, and multi-level run features. The model also leverages an economic plugin called the TEAL (Tool for Economic AnaLysis) to track financial parameters throughout the lifetime of an HTSE facility. TEAL is a plugin to extend RAVEN's economic capabilities with the ability to track and discount cash flows, apply taxes or depreciation, and calculate economic parameters such as NPV or IRR.

<sup>&</sup>lt;sup>a</sup> For more information on RAVEN, see https://github.com/idaholab/raven/wiki.

The model operates in a two-loop configuration. The outer loop varies HTSE capital cost, HTSE demand, and a clean hydrogen credit. This allows the user to explore the intersection of these three variables and their effect on profitability. The model inner loop performs the economic dispatch of electricity vs hydrogen, optimizes hydrogen-storage parameters, and calculates the NPV. A schematic of the model architecture is shown in Figure 55. The optimization model is explained in more depth in subsequent sections.

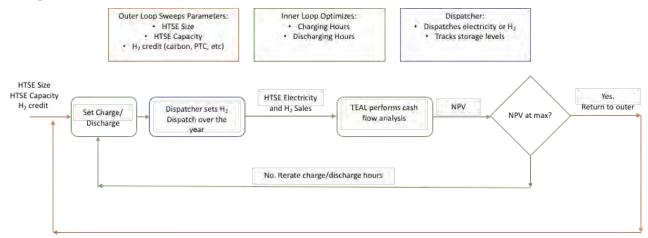



Figure 55. Economic dispatch and optimization model schematic.

## 4.1.1 Optimization Model Inputs

The optimization model inputs can be put into two parameters: physical and economic. The physical inputs come from the HTSE model developed in Section 0.details the physical inputs to the optimization model.

| Input Parameter           | Value                        |
|---------------------------|------------------------------|
| Electricity Requirement   | 37.4 kWh-e/kg H <sub>2</sub> |
| Thermal Requirement       | 6.4 kWh-t/kg H <sub>2</sub>  |
| Electrical Hot-Standby    | 0.9% of HTSE MW <sub>e</sub> |
| Thermal Hot-Standby       | 3.2% of HTSE MWth            |
| Cell Degradation Factor   | 0.953                        |
| NPP Thermal Efficiency    | 0.346                        |
| NPP Capacity (PI)         | 1096 MW                      |
| NPP Capacity (Monticello) | 671 MW                       |

Table 27. Physical inputs to dispatch and optimization model.

The HTSE economic inputs already discussed are given in Table 28.

| Table 28. Economic in | puts to dispat | ch and optimizatio | n model from Section 0. |
|-----------------------|----------------|--------------------|-------------------------|
|-----------------------|----------------|--------------------|-------------------------|

| Input Parameter                                          | Value or Equation                      |
|----------------------------------------------------------|----------------------------------------|
| HTSE CAPEX (\$/kW)<br>(Total Capital Investment)         | Varied between 250 and 850<br>\$/kW    |
| HTSE Variable Operating and<br>Maintenance Cost (\$/MWh) | 5.20 * HTSE_Capacity <sup>-0.004</sup> |

| HTSE Fixed Operating and Maintenance | 75.51 * HTSE_Capacity <sup>-0.208</sup> |   |
|--------------------------------------|-----------------------------------------|---|
| Cost (\$/kW-yr)                      |                                         | ĺ |

Hydrogen-storage costs were taken from the DOE Hydrogen HFTO Record.<sup>30</sup> Figure 56 shows the cost of various hydrogen storage technologies. Underground pipe storage is assumed. The correlation for the underground pipe storage is shown in Equation 3.5.1 with the coefficients in Table 29.

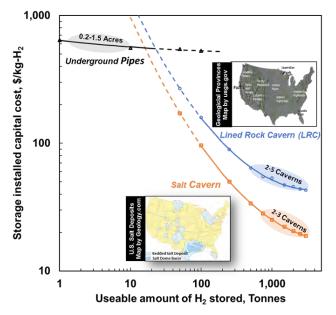



Figure 56. Hydrogen storage cost curves.

Storage Capex = 
$$\exp(a(\ln(m))^2 - b\ln(m) + c)$$

|                          | se cupital cost. |          |        |
|--------------------------|------------------|----------|--------|
| Storage                  | a                | b        | с      |
| Underground pipe storage | 0.0041617        | 0.060369 | 6.4581 |
| Underground lined rock   |                  |          |        |
| caverns                  | 0.095803         | 1.5868   | 10.332 |
| Underground salt caverns | 0.092548         | 1.6432   | 10.161 |

Table 29. Coefficients for storage capital cost

In addition to economic inputs, electricity- and hydrogen-market prices need to be provided to perform the dispatch between electricity and hydrogen. The electricity LMPs were output by several PLEXOS dispatch model runs by NREL. PLEXOS is a commercial dispatch software that can use an input set of electricity-generating units in a given region to find the LMP at various nodes in the optimization model, accounting for electricity-generator clearing price and transmission-congestion effects. The specific LMP profiles that are input into the optimization model represent three different model years, 2026, 2030, and 2034, at an hourly resolution. The LMPs represent wholesale electricity prices. There are different sets of LMP time histories for the two different plant locations.

The hydrogen market is quantified for each plant location by the demand curves from Figure 29 Figure 30 given in Section 2.2.4. The hydrogen sale price is correlated with demand based on the hydrogen users in the area and their distance from the specific NPP. Prairie Island has more hydrogen demand in the area, meaning that PI could sell hydrogen at a higher price relative to Monticello. The

hydrogen markets are very shallow, meaning that if the demand reaches a certain point, the sale price drops dramatically due to hydrogen market saturation.

## 4.1.2 Dispatch Logic

Within the inner loop, the dispatch routine receives the hydrogen demand, HTSE capital costs (in \$/MW), and clean-hydrogen credit from the outer loop, as well as the input physical and economic parameters discussed in Section 4.1.1. The inner loop also introduces the hydrogen storage charge and discharge hours to be optimized by RAVEN. Charge hours are the number of hours the HTSE expects to overproduce and send excess hydrogen to storage. Conversely, the discharge hours represent the amount of time expected that the HTSE will reduce its load and use storage to meet hydrogen demand. It is assumed that the hydrogen demand must be met in each hour of the year.

The dispatcher in the model first sets the physical sizes of  $H_2$  storage and HTSE according to the inputs. The HTSE total capacity is the hydrogen demand plus any oversize that will be used to fill hydrogen storage during grid electricity off-peak hours. The total HTSE capacity is constrained by the capacity of the nuclear plant with which it is associated. The oversize excess capacity corresponds to the ratio of storage charge to discharge hours. The HTSE must meet the amount of hydrogen required to meet demand while also filling the hydrogen storage. Additionally, the storage size is set by the discharge hours, where the system will need to have the storage capacity to meet demand in the all the discharge hours. An adder of 4 hours is used in the dispatch model to increase the storage margin in case of multiple discharge events in a row. Equations for each of these calculated physical parameters are given below, where  $D_{H_2}$  is the  $H_2$  demand passed into the dispatch by the outer loop.

$$Cap_{HTSE} = D_{H2}(MW) + D_{H2}(MW) * \frac{hrs_{charge}}{hrs_{discharge}}$$
$$Oversize = D_{H2}(MW) * \frac{hrs_{charge}}{hrs_{discharge}}$$
$$Cap_{storage} = D_{h2}(kg) * (hrs_{discharge} + hrs_{margin_{adder}})$$

The dispatcher looks at the LMP and decides to dispatch in one of three dispatch modes, 1) fill H<sub>2</sub> storage (charge mode), 2) deplete H<sub>2</sub> storage (discharge mode), 3) meet H<sub>2</sub> demand only (meet demand mode). When the LMP is low, the dispatcher will choose charge mode and produce more hydrogen than is required to meet demand, prioritizing producing and storing hydrogen over sending electricity to the grid. When the LMPs are high, the dispatcher will operate in discharge mode, using hydrogen from storage to meet demand and maximizing the amount of electricity sold to the grid. In meet demand mode, the HTSE only produces the amount of hydrogen required to meet hydrogen demand, selling the remaining electricity from the NPP to the grid. This means that the HTSE system is effectively acting as a demand-response system that can shift its load to hours of low electricity price and maximize electricity production in high-price hours.

To decide when the charge and discharge events occur, the dispatcher searches LMPs over a 24-hour period looking for the minimum and maximum. The dispatcher sets a block of hours surrounding the maximum LMP equal to the number of discharge hours. The dispatcher then looks to set a block around the minimum LMP equal to the number of charge hours. The charge is allowed to happen in multiple blocks of time, but the discharge block must be contiguous. This means that in a 4-hour discharge scenario, the dispatcher finds the highest LMP hours and backfills in another 3 hours around it, for a total of four. The charge hours then use the same process around the lowest LMP. It is possible for the discharge event to happen before or after the charge event. In the case in which sufficient storage is not

available to meet hydrogen demand, the dispatcher prioritizes meeting hydrogen demand and reduces the amount of electricity sold to the grid. This scheme effectively works as peak-shaving arbitrage.

Figure 57 shows this dispatch strategy over a 4-day period. Note that when the LMP is high, the storage flows are negative, meaning hydrogen is leaving the storage tank to be sold. At that same time, hydrogen generation goes to zero and the electricity sold to the grid is maximized. Surrounding the times of low electricity price, the HTSE overproduces hydrogen and sends the excess to storage. The duration of these charge and discharge periods is optimized by the model and made consistent throughout the year.

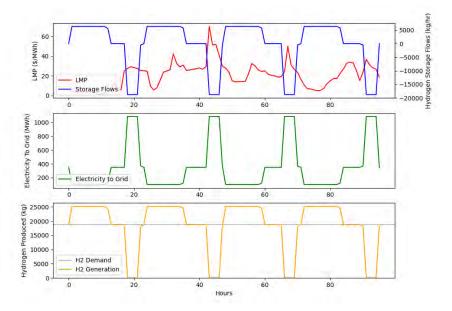



Figure 57. Demonstration of model dispatch logic over a 4-day period.

This approach assumes the NPP-HTSE plant is a price taker, meaning that the model does not change the price of electricity as the amount of HTSE load changes. Future work may involve modeling assuming price feedback in price maker scenarios. The LMPs were generated with the nuclear plant in a standard operating mode without the HTSE. In reality, the load of the HTSE, and thus the reduction in capacity that the nuclear plant has available to bid into the day-ahead electricity market, could change the clearing price of electricity, i.e. become a price maker. This price taker assumption is generally less error prone in changing generators that are small in comparison to all generators that bid.

### 4.1.3 Economic Inputs

With the yearly dispatch for each of the three input years (2026, 2030, 2034), the hourly electricity production profile, hourly hydrogen-production profile, and the equipment costs are used to compare NPP-HTSE NPV to a BAU nuclear NPV. This comparison provides a  $\Delta$ NPV value that can be used to assess profitability. A positive  $\Delta$ NPV means that the NPP-HTSE combined system is more profitable relative to running the NPP as usual. A negative  $\Delta$ NPV means that the NPP + HTSE makes less money than the NPP running in standard operation. An  $\Delta$ NPV equal to 0 is the breakeven point at which the operation of the NPP-HTSE is roughly equivalent in value to the BAU case.

$$\Delta NPV = NPV_{NPP+HTSE} - NPV_{BAU}$$

The advantage of the  $\Delta$ NPV approach is that the economics of the HTSE system can easily and quickly be compared to the BAU. Conveniently, only cash flows that change between the BAU NPP and NPP-HTSE cases need to be represented. Nuclear plant cash flows that do not change between cases, such as nuclear fixed-O&M or capital expenditures, do not need to be quantified. This simplifies the simulation

and reduces the uncertainty that would be present in a standard, absolute NPV analysis. It should be noted that this type of analysis only quantifies profitability relative to BAU, not the overall profitability of the NPP-HTSE.

The cash-flow parameters in Table 30 are fed to the RAVEN plugin TEAL to calculate the NPV. Hydrogen sales are calculated according to the amount delivered and the demand curve for the corresponding plant. The electricity sales are calculated by multiplying the amount of electricity to the grid in each hour by the respective LMP.

| NPV w/ Nuclear + HTSE                   | NPV w/ Nuclear BAU                   |
|-----------------------------------------|--------------------------------------|
| HTSE Capital Cost                       | Electricity Sales (2026, 2030, 2034) |
| HTSE Fixed Operating and Maintenance    | Extra Capacity Payment               |
| HTSE Variable Operating and Maintenance |                                      |
| Hydrogen Storage CAPEX                  |                                      |
| Electricity Sales (2026, 2030, 2034)    |                                      |
| Hydrogen Sales (2026, 2030, 2034)       |                                      |

Table 30. Cash flows for  $\triangle NPV$  calculation.

An extra capacity payment is accounted for in BAU NPV. This payment is meant to quantify the amount of capacity lost to HTSE hot standby. Regardless of hydrogen-production level, some hot-standby amount will decrease the capacity of the nuclear plant. This lost capacity will require a different generator to replace the capacity.

To quantify the value of lost capacity, several capacity-expansion cases were run to find system cost for various scenarios.<sup>4</sup> These scenarios varied the level of nuclear capacity lost and let the resourceplanning model replace capacity. Scenarios where nuclear capacity was replaced, and carbon goals were met, were fit to a curve in order to back out the approximate cost per MW-yr of replacing capacity. This number is higher than the cost of new entrant (CONE) because it requires low- or zero-carbon replacements rather than a simple gas-turbine replacement. As an example, the range of HTSE capacities for Prairie Island generally requires less than 20 MW hot standby.

The financial parameters are shown in Table 31. The project life is 25 years, starting in 2026. The 2026 LMPs are applied for the first 4 years, 2030 for the next 4 years, and the remaining years use the 2034 LMPs.

| Tuble 51.1 manetal parameters. |              |
|--------------------------------|--------------|
| Parameter                      | Value        |
| WACC                           | 7.09%        |
| Federal Tax Rate               | 21.0%        |
| State Tax Rate                 | 9.8%         |
| Tax Deduction                  | -2.06%       |
| Capital Depreciation           | MACRS, 15yrs |
| Project Lifetime               | 25 years     |

| Table 31. Financial | parameters. |
|---------------------|-------------|
|---------------------|-------------|

## 4.1.4 Optimization Model Assumptions

Several key assumptions that went into this optimization model are itemized here.

• **Storage arbitrage operation**: The hydrogen storage operates in a daily arbitrage fashion. The model dispatcher finds the highest LMP in the day and depletes hydrogen storage (discharges) according to

the number of determined discharge hours. Conversely, the model dispatcher finds the lowest LMP in the day and fills hydrogen storage (charges) during those hours according to the charge duration. This effectively shifts the load from high-electricity-price times to low-price times so that electricity sale during high-price hours can be maximized.

- **Price-taker dispatch**: The dispatch model operates in a price-taker fashion, assuming that the change in electricity delivery due to HTSE load does not change electricity prices. Future work will be ongoing to quantify the effect of this assumption and extend the model to make it more consonant with the price-maker approach.
- NPP refueling: NPP refueling assumes that each plant operates at 50% capacity during the refueling period (3 weeks, exact time dependent on the NPP). During refueling, the HTSE uses as much energy from the NPP as it can and buys the remaining electricity from the grid. Additional capital cost is associated with the extra resistance heaters needed to make this possible. The arbitrage is not performed during refueling, meaning the HTSE meets hydrogen demand but does not produce excess for storage or shift load to storage. The storage amount in the refueling period is held static. Refueling is also accounted for in the BAU case.
- Wholesale electricity prices: The dispatch is performed with wholesale electricity price LMPs. Any buying or selling of electricity is based on these wholesale prices.
- **Model dispatch prioritizes hydrogen**: The model dispatcher prioritizes meeting hydrogen demand over selling electricity. This is to simulate something like a hydrogen purchase agreement or a consumer who uses the hydrogen for chemical or industrial processes that needs hydrogen at all times.
- Hydrogen demand is a constant hourly amount through lifetime.
- **Hydrogen price is a single price, based on demand:** The hydrogen price is founded on the demand curves developed in Section 2, based on the input hydrogen demand parameter. Those demand curves include a \$22/ton CO<sub>2</sub> credit already baked into the hydrogen price per the Xcel Energy IRP planning for a CO<sub>2</sub> credit in this amount. The demand sets the price, and that price remains constant throughout the optimization lifetime. Sensitivities on hydrogen market selling price can be inferred by studying the clean hydrogen credit sensitivities.
- **Clean-hydrogen credit:** A clean-hydrogen credit is applied as a sensitivity. In the model, this is applied as an adder to the sale price. In reality, this would have the same effect as a PTC or a carbon tax on competitor hydrogen that raises hydrogen prices in the market. Sensitivities on hydrogen market selling price can be inferred by studying the clean hydrogen credit sensitivities.
- **Degradation as a capital cost adder:** The year-over-year electrolysis-cell degradation was found to effectively reduce the capacity of the hydrogen production facility to 95.3% of the starting value at the beginning of the year. The O&M costs account for the replacement year over year. This degradation was accounted for in the optimization model by scaling the capacity up 4.9% (HTSE Capacity/0.953) in the cost and O&M calculations. The capacity available for producing hydrogen is fixed at the degraded value, rather than quantifying the complexity of degradation effects from hour to hour. This has the effect of producing a more-conservative estimate because the capacity in the beginning of the year would be able to produce slightly more than this model accounts for.
- Capacity payment and/or replacement covers changes from HTSE hot standby only: It is assumed that the rated capacity of the nuclear plant is only decremented by the constant hot-standby amount. The plant operates in a different mode from a baseline BAU case, but the capacity (minus HTSE hot standby) is still available, especially in high-price hours when it draws on the storage. This is semi-idealized because there may be instances that storage is insufficient, and hydrogen is

prioritized, causing the NPP to miss electricity sale in high-price, high-demand events. Further work should be done to provide insights on this issue.

• No down time for HTSE cells: Downtime for HTSE cell replacement or other maintenance is not included in the hourly dispatch.

# 4.2 Dispatch Optimization Results

The optimization model facilitated the exploration of several parameters to understand their effects on profitability when comparing the NPP-HTSE with the BAU case. The storage-dispatch hours were optimized in the inner loop to maximize  $\Delta$ NPV. The hydrogen demand, hydrogen CAPEX, and clean-hydrogen credit were varied in the outer loop to understand the area where the system is profitable or the 'envelope of profitability'.

The outer loop used an advanced sampling technique called the limit-surface search, which is available in RAVEN. This technique zeros in on areas where the  $\Delta$ NPV changes from negative to positive. As it does, the model bounds the actual points where the transition from unprofitable to profitable occurs. This means that a projection of the profitable region of this surface can quickly show what combination of the three variables—HTSE CAPEX, hydrogen demand (HTSE capacity), and green-hydrogen credit—will yield a profitable system. This envelope of profitability will show the tradeoff between these three variables in a profitable system. This is valuable for the decision-maker to study these charts and to analyze hypothetical scenarios where these variables will change and be able to infer the rough  $\Delta$ NPV under those scenarios.

## 4.2.1 Prairie Island

## 4.2.1.1 Storage Dynamics and Size

First, it is important to understand the underlying optimization that occurs under each combination of capacity, CAPEX, and clean hydrogen credit. The hydrogen storage charge and discharge hours are optimized by RAVEN in each run. The hydrogen discharge hours effectively set the storage size and the ratio of discharge to charge sets the HTSE oversize that, with hydrogen demand, sets overall HTSE capacity.

The plots show the effect of HTSE capital cost on both charge and discharge hours. The  $\Delta$ NPV was maximized at 4 discharge hours in the lower HTSE CAPEX case and 2 hours in the high. The system trades higher HTSE capacity and storage capital costs for selling more electricity at high-price hours. The high CAPEX plot shows that the system prefers to miss high electricity price times and minimize HTSE size when the HTSE capital cost is high. Lower capital cost creates more value in storage arbitrage; thus, building a slightly larger HTSE to facilitate a larger storage capacity is advantageous. This is true to a point, seen after the  $\Delta$ NPV peaks and starts to drop, for example, in the 5<sup>th</sup> and 6<sup>th</sup> discharge hours in the lower-CAPEX case. The value of arbitrage is diminished with each additional discharge hour because each subsequent hour will have a lower LMP than the previously captured one. This means that selling electricity in that time is not worth the increase in HTSE size and storage size.

While the charge hours have a peak, the optimization shows that it is advantageous to maximize discharge hours. In Figure 58, each line corresponds to a different number of charge hours. In both capital-cost cases, the  $\Delta$ NPV is maximized with the largest number of charge hours. This dynamic is observed because charge hours are inversely proportional to HTSE capacity oversize. If there are more hours to overproduce and store H<sub>2</sub>, then the requirement for discharge can be met with less capacity. Minimizing HTSE capacity was advantageous to system economics because it is such a large driver of cost.

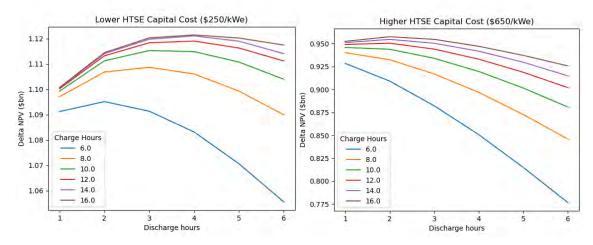



Figure 58. Effect of HTSE capital cost on storage charge and discharge hours on  $\Delta$ NPV for the project 25-year lifetime at Prairie Island.

The plots in Figure 58 were run with two different HTSE capital costs, but with the same greenhydrogen credit and the same hydrogen demand. The green credit does not affect storage size because the hydrogen sale is dictated by hydrogen demand, not arbitrage. The dispatch prioritizes hydrogen, so the same amount is sold in cases with different hydrogen credits, regardless of arbitrage. Similarly, different hydrogen demand does not have an effect on the storage because hydrogen is prioritized and sold at the same rate regardless of arbitrage.

This effect of capital cost on storage charge and discharge lengths could create a tradeoff if there are so few discharge hours that the nuclear capacity requires more replacement capacity. That effect is not quantified in this analysis but should be considered when deciding on HTSE operational modes. In some cases, there may be enough margin to build larger storage systems and flex the HTSE at a non-optimal configuration to avoid extra replacement capacity. This ultimately will depend on the operational mode, the HTSE CAPEX provided by manufacturers, and how much extra capacity might need to be built elsewhere in the system.

### 4.2.1.2 Demand, CAPEX, and Clean Credit

Understanding the relationship between HTSE CAPEX, hydrogen demand, and clean-hydrogen sale credits are important to understanding when the PI NPP-HTSE system is profitable compared to BAU. Figure 59 shows four different static cases for a hypothetical HTSE plant installed at PI. These four cases help illustrate several important effects. Note that for each combination of the three variables, storage charge, and discharge hours are optimized in the inner loop.

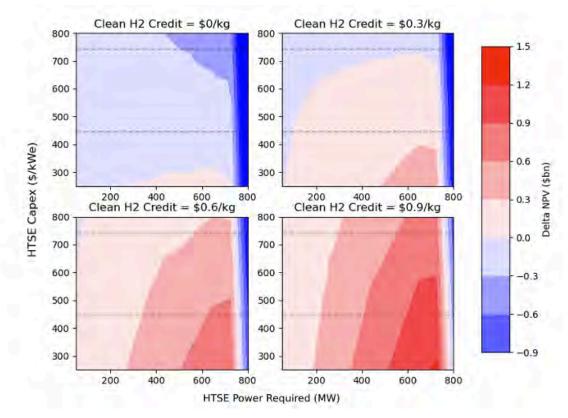



Figure 59. HTSE CAPEX (total capital investment), H<sub>2</sub> Demand, carbon-free hydrogen credit and their effect on  $\Delta$ NPV for the NPP-HTSE plant versus BAU at Prairie Island. For reference, using the full two reactors of output from PI could produce up to 29,290 kg/hr (703 tonne/day) of H<sub>2</sub> and a single 545 MW reactor could produce up to 14,570 kg/hr (350 tonne/day) of H<sub>2</sub>. The horizontal dashed lines show the placement of the base and advanced case HTSE CAPEX corresponding to the high and low scenarios previously developed.

Adding an HTSE to PI yields a profitable system in a small region at a very low capital cost. This region is where the H<sub>2</sub> demand is maximized, but the market is not saturated. In the hydrogen-demand curve for the region surrounding PI, a drop off occurs when hydrogen supply saturates the demand market as the demand market goes to the next lowest price tier, pushing the price of hydrogen from \$1.14/kg to \$1.10/kg. At \$1.10/kg, there is insufficient profit from hydrogen sales to justify larger HTSE facilities. At even higher hydrogen demands, the H<sub>2</sub> is sold for even less, driving  $\Delta$ NPV even lower at higher demand values. The lower sale price makes the system unable to recover the capital and other costs, meaning the system is less profitable than BAU. This effect can still be seen in cases with clean hydrogen credits.

By adding a clean hydrogen credit, the system becomes more profitable with higher CAPEX values as shown in Figure 59. With credits of 0.70/kg, the system is more profitable than BAU for every tested CAPEX before the market is saturated. The optimal  $\Delta$ NPVs are still found in the region where the hydrogen demand maximizes the amount sold at the 1.32/kg base-hydrogen price. It is conceivable that small hydrogen credits below 0.50/kg would flip a large portion of possible HTSE facilities at PI from not profitable to profitable relative to BAU.

Figure 59 also demonstrates that the HTSE at PI will be limited by market size rather than NPP capacity. The shallow  $H_2$  market causes a significant drop off in profitability before the HTSE is large enough to take all the energy that PI can provide (recall this is up to 29,290 kg/hr of hydrogen), but as mentioned before, the price of hydrogen drops significantly after supply exceeds 17,600 kg/hr. This

means that there is still capacity at PI to provide electricity to the grid 100% of the time. At a hydrogenproduction rate of 17,600 kg/hr, PI still has approximately 340 MW to send to the grid on a consistent basis, depending on storage capacity and extra HTSE capacity used for flexing. Keep in mind that these results apply to existing  $H_2$  demand as presented in the assumptions in Section 2 of this report. If larger amounts of carbon free  $H_2$  market demand materialize then the assumptions of the  $H_2$  market and thus this analysis would change.

## 4.2.1.3 Envelope of Profitability

The previous section gives an example of the economic implications of three varied parameters, but the coarseness of sampling does not quantify what exact combinations would make the system profitable. To remedy this coarseness in sampling, RAVEN's limit-surface search capability was used. The limitedsurface search creates boundaries around the actual points where the  $\Delta$ NPV changes from positive to negative. The search is shown in Figure 60. The plot is a three-dimensional (3D) figure in which the varied parameters exist, each on its own axis. The red dots represent a negative  $\Delta$ NPV, and the green represents a positive  $\Delta$ NPV. The limited-surface sampling strategy explored the space and honed in on the transitionary spots at which the sign of  $\Delta$ NPV changes. This sign change means the system went from not profitable (negative) to profitable (positive) compared to BAU.

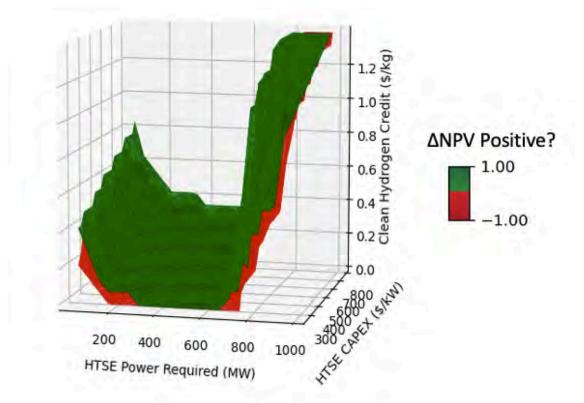



Figure 60. Limited-surface search exploring  $H_2$  delivered, HTSE CAPEX (total capital investment), and clean-hydrogen credits at Prairie Island. The green surface represents a positive  $\Delta NPV$  relative to BAU and the red surface represents a negative  $\Delta NPV$  relative to BAU.

While the 3D visualization is useful for seeing the shape of the profitability transition region, it is difficult to understand the detailed interaction between the three degrees of freedom. To visualize this, the green surface can be projected onto a two-dimensional (2D) plane, as shown in Figure 61. This surface represents the boundary of profitable configurations. Representing the limit surface in this manner allows

for a visualization of the relationship between the sampled variables. A reader can quickly see what is required for a profitable NPP- HTSE system relative to BAU.

Observing one or two parameters in Figure 61 gives an indication as to what the remaining degrees of freedom should be. For example, if a manufacturer is able to build the HTSE system at \$500/kW total capital investment, and the hydrogen demand that Prairie Island expects to meet is 10,000 kg, then a modest production tax or other clean credit of ~\$0.05/kg or greater is required to be profitable when compared to nuclear plant BAU. Because Figure 61 is the projection of a profitable limit surface, every combination of points on this plot is a break-even point. Any improvement on these degrees of freedom, such as lower than expected capital cost at the fixed demand and credit price, will improve the overall  $\Delta$ NPV. For comparison purposes, Figure 61 also displays the two HTSE CAPEX scenarios (base case and advanced case) considered in the HTSE model development in Section 3. The high value, \$742/kW, represents the public HFTO Record value (base case). The low value, \$446/kW, is a near term forecasted capability based on an aggregate of publicly available data from HTSE stack manufacturers (advanced case).

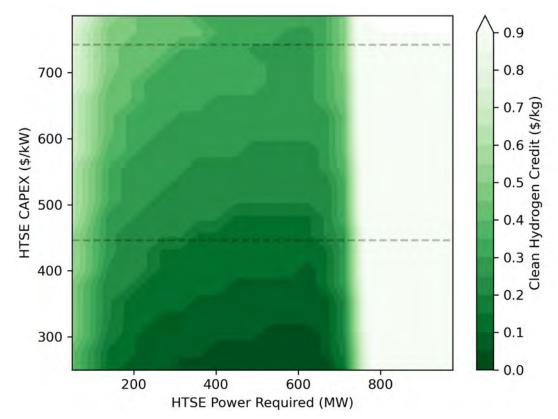
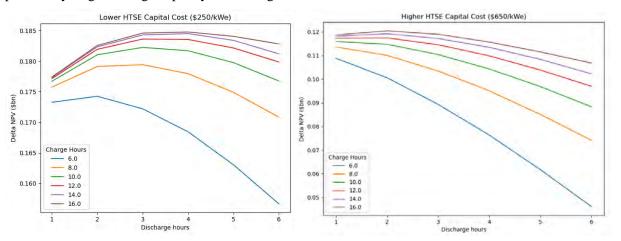
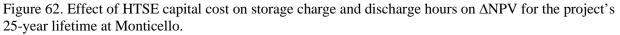



Figure 61. Profitable limit surface of HTSE CAPEX (total capital investment), hydrogen demand, and clean-hydrogen credit at Prairie Island. For reference, the maximum energy that PI could provide to an HTSE could produce up to 29,290 kg/hr (703 tonne/day). A single 545 MW reactor could produce up to 14,570 kg/hr (350 tonne/day). The horizontal dashed lines show the placement of the base and advanced case HTSE CAPEX corresponding to the high and low scenarios developed in Section 3.


These results show that an HTSE at PI could be profitable versus BAU without any hydrogen credits at lower HTSE total capital-cost values. The dynamic where maximizing demand without saturating the market is shown in Figure 61, similar to what was discussed in the previous section. Once the HTSE provides more than 17,600 kg/hr (422 tonne/day), the price of hydrogen drops, and hydrogen credits are required to bring the system to profitability. This result suggests that new hydrogen demand development


in excess of all existing possible hydrogen demand would have to be created in order to use the full capacity of PI to produce hydrogen. Note also that this analysis assumes that PI could fill all existing demand when in reality this demand will be shared by other sources. Hydrogen credits are also required to make the system profitable at total HTSE system capital costs over \$500/kW at the largest hydrogen delivery before saturation. It is possible to be competitive to BAU at lower hydrogen-delivery rates without any hydrogen credit, but lower capital costs are required. Clean credits of \$1/kg or less are required in each configuration before the market saturation occurs to make the system profitable compared to BAU. Larger clean hydrogen credits are required if the hydrogen demand requires over 740 MW and the hydrogen price decreases.

## 4.2.2 Monticello

## 4.2.2.1 Storage Dynamics and Size

Monticello produces storage sizing dynamics similar to PI's. Figure 62 shows that lower HTSE capital costs facilitate more discharge hours. Lower capital costs would lead to more hydrogen storage capacity and a larger HTSE to overproduce and store hydrogen. The hydrogen production amount and clean-hydrogen credit were fixed for both of these plots. Much like Prairie Island, lower capital costs lead to hydrogen storage-tank sizes capable of meeting the demand for 4 hours while higher capital-cost cases point to hydrogen storage capacity in the range of 2–3 hours of demand as more desirable.





## 4.2.2.2 Demand, CAPEX, and Clean Credit

Similar to PI, the hydrogen delivery, CAPEX, and clean hydrogen credit were varied for the Monticello NPP. These three parameters and their effect on  $\Delta$ NPV is shown in Figure 63. Monticello has a much-smaller potential hydrogen market, which means that profitability is only possible in much-smaller HTSE sizes.

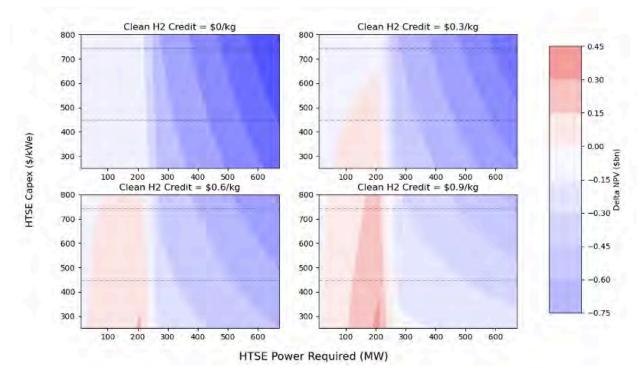



Figure 63. HTSE CAPEX (total capital investment),  $H_2$  demand, clean-hydrogen credit and their effect on  $\Delta$ NPV versus BAU at Monticello. For reference, the maximum energy that Monticello could provide to an HTSE could produce up to 17,930 kg/hr (430 tonne/day). The horizontal dashed lines show the placement of the base and advanced case HTSE CAPEX corresponding to the high and low scenarios developed in Section 3.

No combination of CAPEX and hydrogen production amount made the Monticello plant profitable versus BAU without a PTC or clean hydrogen credit. The system started to see profitability at low CAPEX and optimal demand with a credit of \$0.30/kg. This differed from PI, where a small range of CAPEX and demands were profitable without any PTC due to the higher demand with more room before saturation for the area surrounding PI.

### 4.2.2.3 Envelope of Profitability

The envelope of profitability for the Monticello NPP was developed with the same limit surface search approach that was used in the Prairie Island analysis. Figure 64 shows the limit surface for the Monticello NPP produced by varying the amount of hydrogen delivered, HTSE CAPEX (total capital investment), and clean-hydrogen credit. Adding an HTSE has a smaller band of profitability at Monticello versus BAU than at Prairie Island. The analysis shows that some type of PTC or clean credit is required to make Monticello profitable at all demand and CAPEX points investigated. This is due to the smaller hydrogen market and a slightly lower hydrogen sale price.

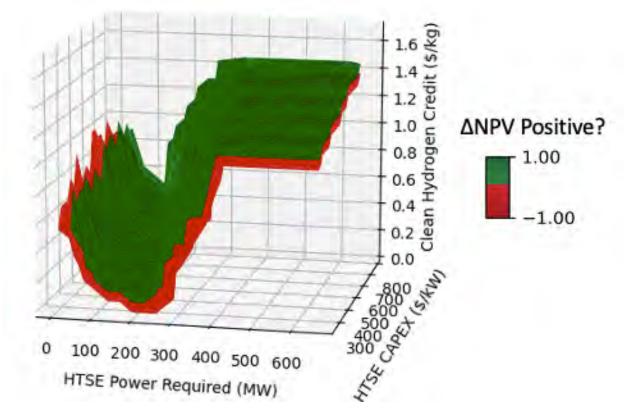



Figure 64. Limit surface search exploring  $H_2$  delivered, HTSE CAPEX (total capital investment), and clean-hydrogen credit at Monticello. The green surface represents a positive  $\Delta NPV$  relative to BAU, and the red surface represents a negative  $\Delta NPV$  relative to BAU.

As was done for PI, the profitable surface was extracted from Figure 64 and plotted on Figure 65, which shows the combinations of credit, total HTSE system CAPEX, and hydrogen delivery amount that make the system break even relative to BAU. For comparison purposes, Figure 65 also displays the two HTSE total CAPEX values used in the constant hydrogen production sensitivity analysis in Section 3. The high base case value of 742/kW represents the public HFTO Record value. The low advanced case value of 446/kW is an aggregate of publicly available data from HTSE stack manufacturers. The white space represents no break-even configurations for the combination of parameters investigated. This plot shows that even at hydrogen-delivery amounts prior to market, a PTC of between 0.07/kg and 0.50/kg is required for positive  $\Delta$ NPV versus BAU.

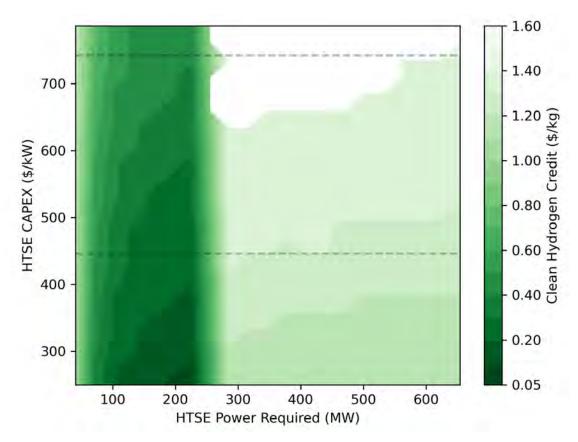



Figure 65. Profitable limit surface versus BAU of HTSE CAPEX (total capital investment), hydrogen demand, and clean hydrogen credit at Monticello. For reference, the maximum energy that Monticello could provide to an HTSE could produce up to 17,930 kg/hr (430 tonne/day). The horizontal dashed lines show the placement of the base and advanced case HTSE CAPEX corresponding to the high and low scenarios developed in Section 3.

## 4.2.3 Discussion of HTSE Optimization Results

The results of the economic and dispatch-optimization modeling show that a hybrid nuclear and HTSE approach can be profitable versus BAU at Prairie Island and Monticello NPPs. The tradeoff between the amount of hydrogen delivered, HTSE CAPEX, and any clean-hydrogen credits is important in each instance to understand what sizes and economic parameters are needed to be profitable over BAU.

HTSE profitability is highly dependent on the local hydrogen market. The optimal hydrogen delivery was to commit as much hydrogen as possible per hour without saturating the market and reducing the sale price of hydrogen. The hydrogen market surrounding Prairie Island was found to be larger than that around Monticello, so hydrogen delivery amounts and, thus, HTSE sizes could be larger at PI than Monticello. Monticello optimal hydrogen-delivery amounts were nearly three times less than PI on a kg/hr basis. This hydrogen market result could be further investigated by looking at hydrogen market sensitivities or understanding the hydrogen sale contracts into which the hybrid nuclear and hydrogen system might enter. This simulation could be extended into the future to include more hydrogen-market and demand projections throughout the 25-year life of the plant, rather than using a static hydrogen curve. That would allow the model to capture increases in hydrogen demand from new users that may come online in the 2030s.

In addition to dependance on the hydrogen market, system profitability is driven by the total sale price of hydrogen. The plants general required some type of adder above what the hydrogen could be sold for in the market. This adder could come in the form of a PTC, a carbon tax on competitors, or simply an end user willing to pay more for carbon-free hydrogen. Adder amounts ranged from \$0-\$0.9/kg at Prairie Island and \$0.07-\$1.6/kg at Monticello. For context, the Wyden energy tax credit bill that cleared the senate finance committee seeks to implement up to \$3/kg in a PTCs or 30% tax break on capital as an investment tax credit.<sup>56</sup> Either option would make both PI and Monticello profitable versus BAU in this analysis. While this bill is not law, it serves as an example that current legislative efforts for hydrogen PTCs would be enough to make the systems profitable in this analysis.

HTSE capital costs had a large effect on profitability, and the limited-surface search captured a large range of possibilities. The DOE-HTFO record suggests a total capital investment cost around ~\$700/kW, which would require some type of clean-hydrogen credit in all configurations at both plants. Several electrolyzer manufacturers maintain that their capital costs could be less than \$500/kW in the near term, meaning that Prairie Island could run without a PTC or clean-hydrogen credit and be profitable versus BAU. This was not the case in Monticello, where a credit of \$0.60/kg would still be needed for profitable operations versus BAU. The amount of credits that the NPP-HTSE system needs would be highly dependent on HTSE capital costs, but credits of more than \$1.00/kg and \$1.50/kg at PI and Monticello, respectively, would make the hybrid system competitive in all total CAPEX values under \$800/kW prior to the saturation of their respective hydrogen markets.

Monticello and PI have differences in their profitability mainly due to their hydrogen markets and their sizes. The capital cost, on a \$/kW basis, is reduced as the plant gets larger (see Figure 44). If the hydrogen market can handle the delivery from the bigger plant, then it is advantageous to maximize the size of the plant. This could change if hydrogen demand grows in the region around Monticello, but would still be limited to its smaller thermal output compared to PI.

## 4.2.4 Future Work on Economic Dispatch Optimization

Several extensions of this work are either ongoing or proposed. One focuses on the interaction and feedback between the cycling HTSE load and the LMPs used for making the dispatch decision. As the HTSE uses energy load from the NPP, the price that the NPP bids into the wholesale electrical market changes, potentially changing the electricity clearing price. That electricity price is what is used to make the dispatch decision between electricity and hydrogen, so a variable LMP creates a feedback loop in the dispatch. Capturing this feedback loop would move this optimization analysis away from a price-taker approach to more of a price-maker simulation. Modeling each node via standard PLEXOS production modeling on the system is complex and would hamper the ability to optimize storage components or sample many different options for the economic parameters. Large-scale electric system dispatch models such as PLEXOS also lack the capability to have a secondary hydrogen market with storage. Modeling price-maker scenarios in the modeling platform described in this report would be more straightforward and more agile to test various conditions.

Two efforts are currently underway to investigate the price-taker model assumption and move toward capturing the HTSE feedback on LMP. The first approach is to use a large-scale dispatch model, such as PLEXOS, that can capture the clearing price and transmission congestion at many nodes in the system and then use these outputs to bias the LMPs in the more-nimble optimization model detailed in this report. This approach will use new hourly LMP profiles produced from PLEXOS by varying the amount of nuclear plant bids adjusted for HTSE runtime and will be contained in the forthcoming NREL report. These LMP profiles can be compared to the previous ones to understand the degree to which LMP changes due to HTSE energy usage. If the effect is large, then the dispatch model's input LMPs can be biased according to the LMP changes between the original LMP and the new adjusted LMP.

A more-robust method at INL is currently in development to capture the change in LMP using artificial intelligence (AI). The AI uses a recurrent neural network and long short-term memory structure to capture the interaction between changes in NPP electricity sales and the LMP. The training data set comes from several large PLEXOS runs over the entire Northern States power region. This AI can then be

iteratively queried in each hour of dispatch by the optimization model. This will be able to capture any change in LMP while still being able to track and apply hydrogen storage and run the optimization quickly to optimize inputs.

In addition to moving from a price-taker to a price-maker approach, this work could be extended to quantify the effect on the overall system cost and the effect of more flexible NPPs on other generators, like renewables. This would require a more-complete modeling of the rest of the system, rather than just modeling the NPP and HTSE as in the current optimization. This could be done by running the optimization as is, then feeding the dynamics into a large-scale capacity expansion or dispatch model, depending on the desired time horizons. Running with existing capacity expansion or dispatch models would likely require some structuring within their respective code bases to allow for nuclear to be run in this operational mode and to track the value of the hydrogen sold. The effect of the HTSE on the overall system would be helpful for stakeholders to understand the impact this system would have on variable-renewable-energy deployment, battery deployment, and clean-energy goals.

Analysis of this system in the context of the entire system would also be interesting as a means of investigating the inverse correlation between HTSE capital costs and storage usage. The most profitable configurations have low HTSE capital costs, which lower the investment capital, but also create a more-flexible system because oversizing the HTSE to facilitate storage is more advantageous. This flexibility could be an asset for reducing overall system costs and deploying more variable renewable energies. The systemwide analysis could quantify the value of flexibility and potentially justify building larger storage systems.

## 4.2.5 Summary

A summary of the findings of this optimization section is reported here.

- A PTC at Prairie Island is not needed to be profitable versus BAU when CAPEX is below \$300/kw for varied amounts of hydrogen delivery.
- HTSE at Monticello is a more difficult economic proposition mostly due to the smaller hydrogen market near the plant. The smaller hydrogen market means that PTC of at least \$0.07/kg is required to make the system more profitable than BAU.
- The profitability of both systems is highly dependent on the hydrogen market that surrounds the plant. Providing too much hydrogen saturates the market and drops the price of hydrogen, making it difficult for the NPP-HTSE to be profitable versus BAU.
- A matrix of profitable configurations was provided for both PI and Monticello. This matrix provides minimum requirements of HTSE CAPEX, hydrogen demand, and clean-hydrogen credit for the system to be profitable compared to BAU.
- Storage-tank sizes for both systems fluctuate between 2–3 and 5 hours of storage, depending on CAPEX. A higher CAPEX depresses storage because more storage requires a larger HTSE. One hour of storage is assumed to cover hydrogen-demand requirements for 1 hour.
- This analysis is from the perspective of an NPP-HTSE plant. Extending this analysis to a systemwide approach to investigate the value of flexible operation on other generators and their deployment and overall system cost would be advantageous. This could be done by extending this optimization structure to perform dispatch with other generators modeled. Another approach would be to use a capacity expansion model with PI and Monticello integrated energy system (IES) included.

# 5 FINANCIAL EVALUATIONS OF OTHER HYBRID INTEGRATIONS WITH LWRs

The analyses presented in this section show evaluations further down the hydrogen value chain by presenting use-case scenarios for the hydrogen generated from the NPP-HTSE plant already analyzed and presented. These use-case scenarios for hydrogen include:

- Blending of hydrogen with natural gas to be burned in natural gas power plants
- Compression and storage of hydrogen in trucks or pipelines versus liquefaction of hydrogen for transport to an end user at various distances
- NPP-HTSE-NH<sub>3</sub>: hybrid integration of the NPP and HTSE with ammonia production versus the standalone NPP-HTSE
- NPP-HTSE-Synfuels: hybrid integration of the NPP and HTSE with synthetic fuels—diesel, jet fuel, and motor gasoline—production using low-carbon hydrogen versus the standalone NPP-HTSE.

Other integrations—such as using nuclear power for running a cryogenic refrigerant cycle, chloralkali process, and formic-acid production-are introduced here briefly, but will be analyzed more fully in efforts separate from this project. These integrations approach the idea of an "energy park" by using nuclear power as the central element. High density baseload electricity and thermal energy from an NPP could be highly integrated with various industrial facilities in close proximity to create maximum synergy and efficiency of operations. This concept is already used extensively in large industrial settings—e.g., petrochemical facilities. In modern petrochemical facilities, heat and material streams are passed from one unit to another to the extent possible, such that one unit's waste material or heat is another unit's treasure, so to speak. In this way, waste in the form of heat or material, is minimized to the greatest extent possible to create a much more-efficient and profitable facility overall. In order for this concept to work, there must be an established general interest among the facilities. For example, if each process unit in the complex were to maximize their own profitability without regard for profitability of the complex as a whole, then the complex would lose to the benefit of individual-unit profitability. Thus, the energy park analyzes the profitability of the complex of integrated process units to assure maximum profitability of the whole, not necessarily the parts at the expense of the whole. Since LWR's provide very large amounts of energy and already have their CAPEX fully depreciated, they make excellent candidates for exploring advantageous energy-park configurations.

# 5.1 Hydrogen Blending with Natural Gas for Use in Natural Gas Power Plants

To better understand this scenario, natural gas and  $H_2$  blending can be evaluated in terms of cost of avoided  $CO_{2e}$  per MT. The cost of avoided  $CO_{2e}$  was calculated using the equation below, the change in life cycle GHG emissions are from the Section 2.2.1. The energy equivalent prices of  $H_2$  from the natural gas prices (Xcel owned natural gas power generators) were compared with the nuclear  $H_2$  price of \$1.93/kg (from the HTSE modeling). Energy equivalent price were considered as we are replacing natural gas energy with  $H_2$ , so  $H_2$  price is about \$0.2-\$0.5/kg for the natural gas price of \$2-\$4/1000 ft<sup>3</sup>.

Natural gas prices were compared to energy equivalent prices of hydrogen and avoided cost of  $CO_{2e}$  (replacing natural gas by nuclear H<sub>2</sub>) for Xcel Energy's High Bridge Generating Plant. Natural gas prices were provided by Xcel energy for their natural gas electricity generation plants in the Twin Cities area. The avoided cost of  $CO_{2e}$  was calculated using a H<sub>2</sub> price of \$1.89/kg, estimated using the HTSE model from the previous section.

Cost of avoided 
$$CO_2\left(\frac{\$}{MT}\right) = change of price of energy \left(\frac{\$}{MT}\right) / change of CO_2 emissions \left(\frac{MT CO_2}{MT}\right)$$

The cost of avoided  $CO_2$  per ton is about \$150 over a period of 2 years; similar results were also obtained for Cannon Falls and LS power stations.

# 5.2 Hydrogen Storage and Delivery

When hydrogen is produced in large quantities at central locations, a reliable hydrogen-delivery infrastructure is needed to transport it from the production plant to the demand location or other points of use, like refueling stations. Hydrogen is currently transported in two physical forms, liquid and gaseous. It is delivered in gaseous form using tube-trailers and pipelines, and in liquid form using cryogenic tankers. Three major pathways that are considered commercially viable options for hydrogen delivery were discussed in a recently published book chapter.<sup>57,58</sup>

## 5.2.1 Gaseous Hydrogen Delivery Using a Pipeline-Delivery Pathway

It is economical to have a pipeline delivery pathway when there is a large enough demand to warrant the construction of dedicated transmission and distribution pipelines. Figure 66 shows the gaseous delivery pathway of hydrogen with pipeline supply. A gaseous pipeline-delivery pathway receives hydrogen from a central production plant, along with a geologic/physical storage facility which provides backup supply in the event of production plant outages and acts as a buffer against seasonal demand variations. A compressor conveys hydrogen from the production plant and geologic storage to the transmission pipeline, which in turn transports hydrogen to the city gate or distribution terminal. The distribution pipeline brings hydrogen to the demand locations. If hydrogen is produced at the city gate or distribution terminal, a compressor is needed to pressurize hydrogen from what is called a semi-central production plant to the distribution-pipeline network.

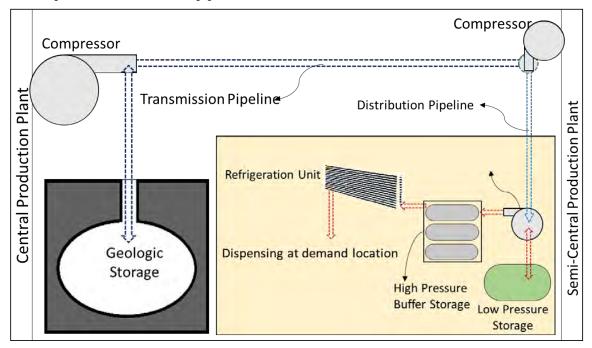
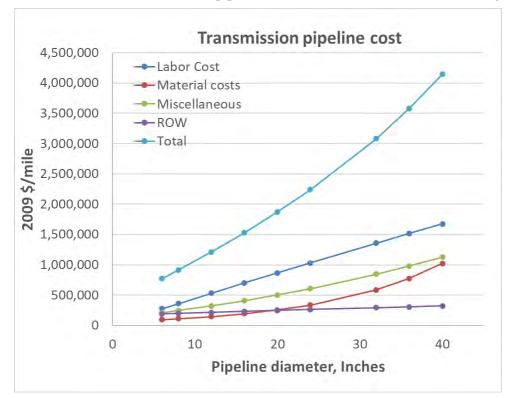
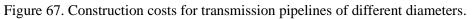



Figure 66. Schematic of gaseous hydrogen-delivery pathway with pipeline supply.


## 5.2.1.1 Cost estimates


Pipeline construction is a major investment that depends on large and consistent demand to recover the cost. Pipeline construction costs include material costs, labor costs, right-of-way (ROW) cost and miscellaneous costs. A team from Pacific Northwest National Laboratory (PNNL) has developed equations for material, labor, and ROW costs, based on published data for natural gas pipeline construction. While the equations have been developed for each region, average costs for the entire U.S. can be obtained from the relationships shown in Table 32.<sup>59</sup>

| Tuble 52. Relationships used to estimate 0.5. pipelin                                                                                                                                                |                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Cost Component                                                                                                                                                                                       | Cost Estimating Equation (in 2009 dollars)       |
| Material                                                                                                                                                                                             | 63027*e^(0.0697*D)                               |
| Labor                                                                                                                                                                                                | -51.393 * D <sup>2</sup> + 43523 * D + 16171     |
| ROW                                                                                                                                                                                                  | -9E-13 * D <sup>2</sup> + 4417.1 * D + 164241    |
| Miscellaneous Costs                                                                                                                                                                                  | 37% of the sum of material, labor, and ROW costs |
| D represents Pipeline diameter and should be defined in inches<br>The resulting cost estimates are in 2009 dollars<br>Assumes a 10% cost premium for hydrogen pipelines versus natural gas pipelines |                                                  |

Table 32. Relationships used to estimate U.S. pipeline construction cost by component.

For hydrogen pipelines, cost is assumed to be about 10% higher than the estimates shown in Table 33. Construction costs for transmission pipelines of different diameters are shown in Figure 67.<sup>60</sup>





Most pipelines used to transport industrial and domestic gas are constructed of steel. The estimated costs of transmission pipelines are shown in Table 33.<sup>61</sup>

Table 33. Estimated costs for transmission pipelines.

| Pipeline                                                        | 2011 Status  |  |
|-----------------------------------------------------------------|--------------|--|
| Transmission (\$ per mile for 6-40 in pipelines, excluding ROW) | \$765–4,500K |  |

## 5.2.1.2 Attributes

## 5.2.1.2.1 High Cost

As mentioned above, the labor cost of pipeline construction is about 50% of the total cost and is a major barrier to installing hydrogen pipelines.<sup>61</sup> Labor costs are a function of the time required to lay and weld pipe sections. Steel is limited by its weight; hence, a given expanse of steel pipeline will require more pipe sections to be transported to the job site and more welds. Innovative packaging and joining techniques are required to bring down construction time and, consequently, labor costs.

## 5.2.1.2.2 Hydrogen and Material Interactions

The interaction between hydrogen and pipe materials is not well understood at high operating pressures, especially when pressure cycling is involved. High pressures and pressure cycling also affect the durability of materials. Efforts should be made to develop new coatings to prevent the embrittlement of steel pipelines.

## 5.2.1.2.3 Compression

Reciprocating compressors are currently used to provide high throughput for the transmission of hydrogen to industrial sites. The reciprocating compressors presently used are costly and can contaminate hydrogen with lubricants, thereby degrading fuel-cell performance. The embrittlement associated with hydrogen service equipment requires special materials. Possible solutions include new lubricant-free compression technologies that can provide high throughput and avoid contamination or low-cost hydrogen-purification processes that reduce the impact of purification on delivery cost.

## 5.2.1.2.4 Geologic Storage

Though hydrogen has been stored at low cost and in large quantities in geologic storage facilities, leakage and contamination are significant risks, high pressures may create operational challenges, and development costs can be high. Geologic storage needs a cushion gas (minimum amount of gas that must be left in storage) which for natural gas is about 15% of the storage capacity.<sup>61</sup> Leakage due to permeation into the surrounding rock may be unavoidable and may result in significant increases in storage cost. Contamination may require a post-withdrawal purification step. The low energy density of hydrogen requires higher storage pressures than typically maintained for natural gas. The effects of those pressures per se, of cycling (i.e., filling and withdrawing hydrogen) at higher pressure, and of the reactivity of hydrogen with rock formations are not known. Another major challenge is the lack of suitable geologic formations in certain regions, potentially limiting the feasibility of geologic storage in certain geographic locations.

## 5.2.2 Liquid-Hydrogen Delivery Pathway

Figure 68 shows that hydrogen produced at a central production plant may be transported to the distribution terminal via transmission pipelines, where it is liquefied and loaded into liquid tankers. In the case of semi-central production, hydrogen is produced and liquefied at the distribution terminal. The daily capacity of the liquefier equals or exceeds the average daily demand. Cryogenic storage tanks usually hold 5–7 days of liquefier production. A pump draws liquid hydrogen from the cryogenic storage tank to the liquid tankers. The liquid tanker is transported to the demand location, where it is emptied into a cryogenic storage tank and used further.

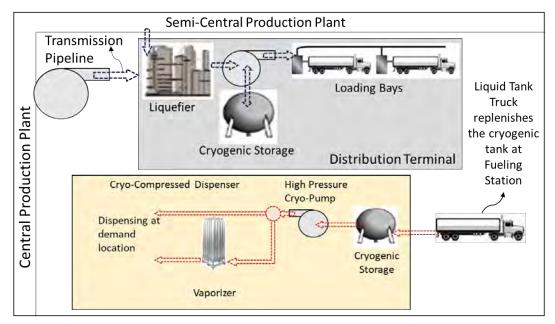



Figure 68. Schematic of the liquid-delivery pathway.

## 5.2.2.1 Cost estimates

Hydrogen exists in liquid state below 20 K at atmospheric pressure. Achieving such low temperatures is energy intensive and expensive. The liquefaction energy represents about 1/3 of the total energy content of the liquefied hydrogen. The liquefaction process accounts for more than \$1 per kg of hydrogen cost. The liquid hydrogen must be stored at 20 K in jacketed stainless steel vacuum tanks. Heat leaks through the tank walls, resulting in the vaporization of liquid hydrogen (also called boil-off). The boil-off can be recovered or vented to the atmosphere to avoid pressure buildup in the storage tank. The boil-off rate from the tank can be minimized with a high volume-to-surface ratio. Most stationary liquid-hydrogen tanks are spherical in shape to minimize the boil-off rate. The boil-off rate varies from 0.4% to 0.06% per day for 50 m<sup>3</sup> and 20,000 m<sup>3</sup> volume tanks, respectively.<sup>61</sup> Additionally, there is significant boil-off loss during unloading at the demand location (pumping hydrogen from the liquid tanker to an on-site cryogenic tank). To minimize these boil-off losses, the number of deliveries should be limited, and delivery routes should be planned accordingly.

Liquefying hydrogen increases its volumetric mass and energy densities many-fold. The capacity of the liquid tanker is about 4 metric tons, 5–6 times the capacity of a composite tube-trailer and 15–20 times the capacity of a steel tube-trailer. DOE's 2011 estimate of the cost of liquid-hydrogen tankers is shown in Table 34.<sup>60</sup> It should be noted that liquid-tanker technology is considered mature; hence, DOE sets no 2020 targets.

Table 34. Estimated cost and key features of liquid hydrogen tankers.<sup>60</sup>

| Liquid Tanker <sup>a</sup>  | 2011 Status |
|-----------------------------|-------------|
| Operating Pressure (bar)    | 5           |
| Capacity (kg)               | 4300        |
| Capital Cost (2007 dollars) | \$720K      |

<sup>a</sup> Cryogenic tank and trailer (excludes truck cab)

## 5.2.2.2 Attributes

Boil-off is unavoidable, and methods must be developed to either minimize it or reuse the captured energy elsewhere. Boil-off from pumps unloading fuel from the tanker to site storage tanks can account for an up to 5% loss (by volume) in the amount transferred.<sup>61</sup> These losses should be minimized by more-efficient component designs and improvements such as submerged pistons.

Underground storage minimizes setback distances and is a preferred option. However, its high cost may offset the savings associated with lower land areas.

During the liquefaction of hydrogen,  $H_2$  is cooled to 20 K in a multistage process, which is energyintensive. The exothermic conversion of ortho- to para-hydrogen consumes a significant amount of energy as well. The total energy consumption to liquefy gaseous hydrogen from atmospheric conditions is approximately 10–15 kWh/kgH<sub>2</sub>.<sup>61</sup> Technologies like magnetic or acoustic liquefaction may reduce the energy required, and they need to be investigated. Other storage options, like high-pressure cryocompressed storage tanks, can reduce the energy demand by avoiding the exothermic conversion of orthoto para-hydrogen by allowing hydrogen storage at temperatures between 80 and 200 K.<sup>61</sup>

## 5.3 Ammonia-Plant Financial Analysis

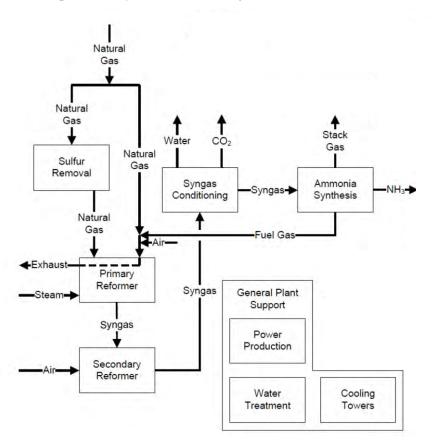
## 5.3.1 Overview of Ammonia Production

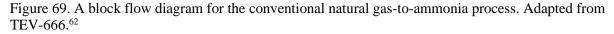
The markets and demand for ammonia have been previously discussed in the demand-analysis section of this report. In the Haber-Bosch  $NH_3$  synthesis process, 3 moles  $H_2$  are combined with 1 mole  $N_2$  to produce 2 moles  $NH_3$ . The synthesis of ammonia using low-carbon-intensity hydrogen represents an opportunity to carry hydrogen further down the value chain at the NPP. Ammonia is more easily stored and transported as a liquid than hydrogen.

The Haber-Bosch process uses a heterogeneous metal catalyst to overcome the high activation energy associated with the dissociation of triple-bonded  $N_2$  molecules. The process is operated at high temperature (i.e., 400–500°C) to increase the rate of reaction and high-pressure (>100 bar) to shift the reaction equilibrium in favor of the products (the net ammonia synthesis reaction produces two moles of gaseous product from four moles of gaseous reactants). Multiple passes through the synthesis reactors are required to achieve the targeted overall conversion level. The reaction of nitrogen and hydrogen to produce ammonia is exothermic; for this reason, process cooling is required to maintain the target reaction equilibrium. As a side note, an approximate analysis was carried out to determine whether exothermic heat from an ammonia plant receiving a hydrogen feed from an HTSE could supply the full heat requirements to the HTSE. It was found that the ammonia plant could supply roughly 40% of the energy. Thus, an NPP is still valuable to provide heat to the HTSE versus the ammonia plant. This was a very rough preliminary analysis and will not be discussed further.

### 5.3.2 Ammonia Synthesis Process Evaluation

For ammonia process modeling, a detailed and previously completed model by Rick Wood in TEV-666<sup>62</sup> was used. The model was recreated from the documentation and validated in Aspen HYSYS. Wood investigated ammonia synthesis and ammonia-derivative production using several process configurations, including conventional gas-to-ammonia as well as a configuration using a high-temperature gas reactor (HTGR) as the primary energy source. Results from the conventional gas-to-ammonia process design are used as a baseline case in this analysis. The nuclear-integrated process design is modified to evaluate use of an LWR as the primary energy source for ammonia production.


The reference ammonia synthesis plant has a daily ammonia-production capacity of 3,048 metric tonnes per day.<sup>62</sup> This quantity of ammonia-production requires an H<sub>2</sub> feed rate of 550 metric tonnes per day and an N<sub>2</sub> feed rate of 2,532 metric tonnes per day. This plant capacity is used as the baseline value for the conventional and nuclear-integrated ammonia-synthesis process designs discussed below.


### 5.3.2.1 Conventional Natural Gas to Ammonia

#### 5.3.2.1.1 Overview

Conventional ammonia production was evaluated based on processes using natural gas to provide the energy and material feedstocks. SMR is used to generate hydrogen for use in the process, and excess heat from SMR, water-gas shift, ammonia synthesis, and ammonia-derivative synthesis processes is used to generate steam for electrical-power generation. The electrical-power generation does not fully offset the process electrical-power requirements. The electrical power needed to balance the net process electrical-power demand must be purchased from the electrical-grid.

The SMR process is associated with significant carbon emissions. The conventional gas-to-ammonia process design based on the analysis is presented in TEV-666.<sup>62</sup> A portion of the carbon released by the SMR process is there described as being used as a carbon source for the production of urea; however, the anhydrous ammonia process design evaluated herein does not include production of ammonia derivatives (e.g., urea and ammonium nitrate) produced by the process analysis reported in TEV-666. Therefore, carbon emitted by the SMR process is released to the atmosphere, resulting in a significant carbon footprint for the ammonia produced by the conventional gas-to-ammonia case.





#### 5.3.2.1.2 Process Area Descriptions<sup>62</sup>

#### 5.3.2.1.2.1 Natural gas purification and reforming

A description of the natural gas purification and steam reforming process areas is provided in TEV-666.<sup>62</sup> The process description from TEV-666 is quoted below for the reader's convenience:

Two-step reforming consisting of primary steam reforming followed by secondary autothermal reforming was selected for syngas generation. Air is used as the oxidant in the autothermal reforming step, as this provides nitrogen to the process for downstream ammonia synthesis (Eggeman 2010). By carefully controlling process parameters, such as the steam-to-carbon inlet molar ratio, primary reformer temperature, amount of preheat to the secondary reformer, and secondary reformer temperature, a syngas containing the appropriate  $H_2/N_2$  ratio for ammonia synthesis can be produced. Additionally, if the steam-to-carbon ratio is set high enough, additional water will not be required prior to downstream shift conversion. For this case, key parameters were set as follows:

| Preformer steam-to-carbon ratio         | 3.30              |
|-----------------------------------------|-------------------|
| Primary reformer exit temperature       | 1,454 °F (790 °C) |
| Autothermal reformer outlet temperature | 1,750 °F (954 ℃)  |

Natural gas is split into two streams. Of the total natural gas flow, 22.7% is burned to provide heat for the primary reformer. The remaining 77.3% of the natural gas flow is compressed to 615 psi and then preheated to 329°F and saturated with hot water. After saturation, the gas is further heated to 662°F and mixed with a small amount of hydrogen. Sulfur is removed from the gas and then mixed with steam to achieve the desired steam-to-carbon molar ratio of 3.3. Because the resulting natural gas/steam mixture is preheated to only 1000°F, a preformer is not included in this flowsheet.

The natural gas/steam mixture is fed to the primary reformer, where methane is converted over a catalyst to CO,  $H_2$ , and CO<sub>2</sub>. Methane conversion in this reactor is approximately 53%. A separate feed of the natural gas is mixed with fuel gas and burned to provide heat for the endothermic reforming reactions. The hot offgas from the reformer is exchanged with inlet syngas, water, air, and steam to provide preheat for these streams.

The effluent from the primary reformer and a preheated air stream are fed to the autothermal reformer where conversion of the remaining methane to syngas is accomplished. The oxygen-to-carbon molar ratio is set at 0.28, resulting in an exit temperature of 1,750°F. The hot syngas is cooled rapidly by exchange with boiler feed water to create high-pressure steam. The resulting syngas has a H<sub>2</sub>/CO ratio of 4.4 and contains 5 mol% CO<sub>2</sub> and 0.5 mol% unreacted CH<sub>4</sub>.

#### 5.3.2.1.2.2 Syngas conditioning

The following description of the syngas conditioning process area is provided in TEV-666.62

Syngas cleaning and conditioning for the natural gas-fed case is similar to the coal-fed case. However, the following changes are made for the natural gas-fed case:

- 1. Water saturation is not necessary prior to shift conversion. By introducing sufficient steam to the reforming section of the plant, the syngas entering the high-temperature shift converter contains sufficient moisture for shift conversion. The steam-to-dry gas ratio of the syngas is 0.54, which is above the minimum requirement for the catalyst (0.40).
- 2. The mercury sorbent bed is not required.
- 3. Because sulfur has been removed prior to reforming, Selexol is used for CO<sub>2</sub> removal only. The Selexol unit is operated to remove the majority of the CO<sub>2</sub>; hence, a [pressure swing adsorption] unit is not required.
- 4. The resulting syngas contains H<sub>2</sub> and N<sub>2</sub> in a molar ratio of 3:1. Small amounts of argon (0.3 mol%) and methane (1.1%) are also present in the cleaned syngas.

#### 5.3.2.1.2.3 Ammonia synthesis

Ammonia-synthesis operations are consistent with the process design provided in TEV-666. Error! B ookmark not defined. The ammonia-synthesis process description from TEV-666 is reproduced for the reader's convenience:

Syngas feeding the ammonia synthesis unit has been previously adjusted to achieve the  $H_2/N_2$  molar ratio 3.0. Incoming feed gas is compressed to 3,000 psi. Unreacted recycle gas is mixed with the fresh feed gas and preheated by cross exchanging with hot reactor effluent gases. Equilibrium conversion is assumed in the ammonia converters for the following reaction:<sup>63</sup>

 $N_2 + 3H_2 \rightarrow 2NH_3$ 

Effluent from the first ammonia converter is cooled by cross exchange with the reactor influent, followed by cooling in a steam generator. Additional steam is generated from the hot syngas downstream of the second and third ammonia conversion stages. Final cooling of the third stage effluent gas is accomplished using cooling water and recuperation with the cool recycle gas stream. Ammonia product is recovered in an ammonia separator. Effluent gas from this separator is further cooled using refrigeration. Additional ammonia is recovered in a second separator downstream of the refrigeration unit. Effluent gas from the second separator is recycled to the ammonia converters. Before entering the ammonia converters, the recycle gas is recompressed using a boost compressor and mixed with fresh syngas. Due to the very low concentrations of methane and argon entering the synthesis loop, inerts are removed from the synthesis loop with the ammonia product due to solubility alone.

Recovered ammonia is flashed to atmospheric pressure for storage. Ammonia in the flash gas is recovered in a wash column and subsequently distilled to remove water from the recovered product.

### 5.3.2.1.2.4 Power generation

High- (1515 psi), medium- (165 psi) and low-pressure (30 psi) steams generated throughout the plant are sent to steam turbines to generate electrical power. The turbine exhaust is condensed and mixed with condensate return from the plant. Makeup water is added to provide the necessary flow to boiler feedwater pumps.<sup>62</sup>

### 5.3.2.1.2.5 Process cooling

Process cooling is provided using conventional cooling towers. The evaporation rate, drift, and blowdown are based on values suggested by [73].

### 5.3.2.1.2.6 Water treatment

Water treatment is simplistically modeled using a variety of separation blocks. The process model accounts for water inlet and outlet flows in each of the process areas to maintain a water balance for the overall plant.<sup>62</sup>

#### 5.3.2.1.3 Material and Energy Balances

Conventional gas-to-ammonia process material and energy balances were derived from TEV-666 for a modified plant configuration that produces anhydrous ammonia as the final product. Process areas and unit operations required for the production of ammonia derivatives (urea and ammonium nitrate) and intermediate products (nitric acid) are not included in the conventional gas-to-ammonia process design. The conventional natural gas-to-ammonia process design operates in a continuous operating mode with a specified capacity factor of 0.92 (consistent with TEV-666).

### 5.3.2.1.4 Capital Costs

Capital-cost estimates for all conventional gas-to-ammonia production process areas are obtained from TEV-666. The capital costs for process areas associated with the production of ammonia derivatives (urea and ammonium nitrate) and intermediate products (nitric acid) were excluded from the analysis

because anhydrous ammonia is the final product of the conventional gas-to-ammonia process design evaluated. The capital costs reported in TEV-666 were adjusted to 2020 dollars using the CEPCI composite plant index.

The conventional gas-to-ammonia process design is based on an ammonia production rate equal to that specified in TEV-666 (Table 35). For sensitivity analyses of ammonia production costs as a function of plant design capacity, capital costs were estimated by scaling the capital costs reported in TEV-666 by the capacity ratio with a 0.6 scaling exponent. The capacity of each subprocess area train was limited to the maximum value listed in TEV-666.

| Process Area                                 | Capacity |          | Direct Capital<br>Cost | Total Capital<br>Cost | Note or Reference                                     |
|----------------------------------------------|----------|----------|------------------------|-----------------------|-------------------------------------------------------|
| Steam Methane<br>Reforming                   | 88       | MM SCFD  | \$103,300,000          | \$134,090,000         |                                                       |
| Water Gas Shift<br>Reactor                   | 57,039   | lbmol/hr | \$34,134,000           | \$44,306,000          |                                                       |
| Selexol                                      | 41,720   | lbmol/hr | \$40,344,000           | \$52,366,000          |                                                       |
| Methanation                                  | 3,360    | ton/day  | \$8,271,200            | \$10,736,000          |                                                       |
| Subcritical CO <sub>2</sub><br>Compression   |          |          | \$0                    | \$0                   |                                                       |
| Supercritical CO <sub>2</sub><br>Compression |          |          | \$0                    | \$0                   |                                                       |
| Ammonia Synthesis                            | 3,360    | ton/day  | \$258,220,000          | \$335,170,000         |                                                       |
| Urea Synthesis                               |          |          | \$0                    | \$0                   |                                                       |
| Nitric Acid Synthesis                        |          |          | \$0                    | \$0                   |                                                       |
| Ammonium Nitrate<br>Synthesis                |          |          | \$0                    | \$0                   |                                                       |
| Steam Turbines                               | 29       | MW       | \$15,332,000           | \$19,900,000          | Scaled based on values reported in [62]*              |
| Cooling Tower                                | 93,964   | gpm      | \$2,835,000            | \$3,680,000           | Scaled based on values reported in [62]*              |
| Water Systems                                |          |          | \$32,833,000           | \$42,618,000          | 7.1% of TDCC                                          |
| Piping                                       |          |          | \$32,833,000           | \$42,618,000          | 7.1% of TDCC                                          |
| Instrumentation and Control                  |          |          | \$12,024,000           | \$15,607,000          | 2.6% of TDCC                                          |
| Electrical Systems                           |          |          | \$36,995,000           | \$48,020,000          | 8.0% of TDCC                                          |
| Civil/Structural/<br>Buildings               |          |          | \$42,545,000           | \$55,223,000          | 9.2% of TDCC                                          |
| Ammonia Pipeline                             |          |          | \$0                    | \$0                   | Cost of ammonia<br>transport pipeline not<br>included |
| Total                                        |          |          | \$619,666,20<br>0      | \$804,334,000         |                                                       |

| <b>T</b> 11 25 C · 1   |                |             | • 1             |
|------------------------|----------------|-------------|-----------------|
| Table 35. Conventional | gas-to-ammonia | process cap | pital expenses. |

\* Conservatively scaled only by plant scaling factor (reduction in process area capacity due to alternative plant configuration not considered)

## 5.3.2.1.5 Operating Costs

Conventional gas-to-ammonia process direct and indirect operating costs were calculated using the methodology of TEV-666 (Table 36). Direct operating costs include materials (natural gas feedstock, water treatment chemicals, solvent, and catalyst replacement), utilities (electrical power, process, and cooling water makeup), royalties, and labor and maintenance. Indirect operating costs include overhead, insurance, and taxes. Carbon sequestration costs are not included.

The cooling water makeup and treatment costs were adjusted from those reported in TEV-666 to account for the decrease in cooling load associated with the process configuration that produces only anhydrous ammonia (the cooling loads associated with the urea synthesis, nitric-acid synthesis, and ammonium nitrate synthesis process areas were excluded from this analysis).

|                                    | r     | - r                | -penses. |           |               |                                                   |
|------------------------------------|-------|--------------------|----------|-----------|---------------|---------------------------------------------------|
| Direct Costs Materials             | Price | Unit               | Consumed | Unit      | Annual Cost   | Notes                                             |
| Average Natural Gas                | 4.11  | \$/MSCF            | 88       | MMSCFD    | \$121,307,000 |                                                   |
| Makeup H2O Treatment               | 0.02  | \$/k-gal           | 2695     | k-gal/day | \$18,000      |                                                   |
| Wastewater Treatment               | 1.32  | \$/k-gal           | 1179     | k-gal/day | \$522,000     |                                                   |
| H2S Catalyst                       | 700   | \$/ft <sup>3</sup> | 0.04     | ft³/day   | \$9,000       |                                                   |
| Zinc Oxide                         | 300   | \$/ft <sup>3</sup> | 0.344    | ft³/day   | \$35,000      |                                                   |
| Preforming Catalyst                | 2350  | \$/ft <sup>3</sup> | 0        | ft³/day   | \$0           |                                                   |
| Primary SMR Catalyst               | 750   | \$/ft <sup>3</sup> | 0.16     | ft³/day   | \$40,000      |                                                   |
| Secondary SMR Catalyst             | 650   | \$/ft <sup>3</sup> | 0.04     | ft³/day   | \$9,000       |                                                   |
| HTS Catalyst                       | 380   | \$/ft <sup>3</sup> | 0.19     | ft³/day   | \$24,000      |                                                   |
| LTS Catalyst                       | 600   | \$/ft <sup>3</sup> | 0.15     | ft³/day   | \$30,000      |                                                   |
| Selexol Solvent                    | 2.57  | \$/gal             | 8.14     | gal/day   | \$7,000       |                                                   |
| Methanation Catalyst               | 700   | \$/ft <sup>3</sup> | 0.042    | ft³/day   | \$10,000      |                                                   |
| Ammonia Synthesis Catalyst         | 775   | \$/ft <sup>3</sup> | 0.029    | ft³/day   | \$8,000       |                                                   |
| Utilities                          |       |                    |          |           |               |                                                   |
| Electricity                        | 30    | \$/MW-h            | 60.66    | MW-e      | \$14,660,000  |                                                   |
| Consumption                        |       |                    | 80.32    | MW-e      |               |                                                   |
| Generation                         |       |                    | -19.66   | MW-e      |               |                                                   |
| Water                              | 0.05  | \$/k-gal           | 2696     | k-gal/day | \$45,000      |                                                   |
| Royalties                          |       |                    |          |           | \$1,213,000   |                                                   |
| Labor and Maintenance, non-nuclear |       |                    |          |           | \$33,380,000  | 1.15% of TCI for labor, 3% of TCI for maintenance |
| Indirect Costs                     |       |                    |          |           |               |                                                   |
| Overhead                           |       |                    |          |           | \$21,697,000  | 65% of labor and maintenance costs                |
| Insurance and Taxes                |       |                    |          |           | \$12,065,000  | 1.5% of TCI                                       |
| Total Manufacturing Costs          |       |                    |          |           | \$205,079,000 |                                                   |

Table 36. Conventional gas-to-ammonia process operating expenses.

\* TCI does not include costs associated with LWR or HTSE systems.

## 5.3.2.1.6 Revenues

No ammonia derivatives, such as urea or ammonium nitrate, are produced by the conventional gas-toammonia process design. Therefore, no revenue streams are included for ammonia-derivative products. The anhydrous ammonia selling price was determined by manipulating the ammonia price to the value that resulted in an NPV equal to zero. This represents the minimum ammonia selling price that would have to be realized for the plant to meet the financial obligations associated with recovering the capital investment costs, covering the operating costs, and providing the specified return on investment to the project financial investors (as compared conventional revenues, see Table 37 and Table 38).

| Parameter               | Value    | Note                                                               |
|-------------------------|----------|--------------------------------------------------------------------|
| WACC                    | 7.09%    | Value provided by Xcel during project kickoff meeting in Minnesota |
| Minnesota corporate tax | 9.80%    |                                                                    |
| Federal tax             | 21.00%   |                                                                    |
| Tax deductibility       | -2.06%   |                                                                    |
| Inflation               | 2.50%    |                                                                    |
| Startup year            | 2027     |                                                                    |
| Plant operating life    | 20 years |                                                                    |

Table 37. Financial parameters for ammonia-production analysis.

|                        |                |         | -        |           |
|------------------------|----------------|---------|----------|-----------|
| Table 38 Conventional  | and to ammonia | procoss | onnual   | rovonuos  |
| Table 38. Conventional | 2as-10-ammonia | DIUCESS | aiiiiuai | revenues. |

| Product | Price          | Produced        | Annual Revenue |
|---------|----------------|-----------------|----------------|
| Oxygen  | \$45.86/tonne  | 0 tonne/day     | \$0            |
| Ammonia | \$295.67/tonne | 3048 tonnes/day | \$302,581,000  |
| Total   |                |                 | \$302,581,000  |

## 5.3.2.2 Nuclear-integrated ammonia production

### 5.3.2.2.1 Overview

Green-ammonia production was evaluated using hydrogen sourced from HTSE, as designed and presented in this report, and nitrogen sourced from cryogenic ASUs. An LWR is specified as the energy source for the ammonia production process (including the heat and power for the HTSE process and the power for the ASU). Because water, air, and energy from the LWR are the primary process inputs, the nuclear ammonia-production process produces carbon-free green-ammonia. Figure 70 provides a block flow diagram of the LWR-based ammonia-production process. The proposed process includes unit operations for hydrogen generation via HTSE, nitrogen generation via cryogenic air separation, syngas purification, ammonia synthesis, power generation, cooling towers, and water treatment. Because excess heat from the ammonia synthesis process is used in the HTSE process for feedwater vaporization, the process design requires that the HTSE and ammonia plants be located at the same site.

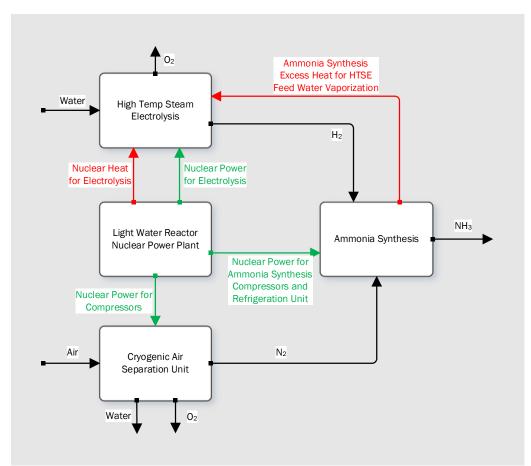



Figure 70. LWR-based anhydrous ammonia production process block flow diagram.

## 5.3.2.2.2 Process Descriptions

The following section provides descriptions of each of the process areas included in the LWR- HTSE ASU ammonia-production process. HYSYS model process flow diagrams and the accompanying stream tables are included in Appendix E.

## 5.3.2.2.2.1 Hydrogen production via high-temperature steam electrolysis

HTSE is implemented to generate hydrogen and oxygen from water. Thermal energy and electrical power required to drive the HTSE process are provided by an LWR NPP. The SOEC stacks operate at an elevated temperature of ~750°C, which exceeds the temperature at which heat can be supplied by the LWR. Therefore, heat from the LWR is used to vaporize the HTSE process feedwater at a temperature below the LWR process-heat supply temperature. Electrical power from the LWR is used to power HTSE process pumps, compressors, topping heaters, and SOEC stacks.

Following vaporization of the feedwater, recuperators heat the feed stream via heat exchange with the high-temperature SOEC-stack outlet stream. Electrical topping heaters are used to provide the final heating required to bring the feed stream to the specified SOEC-stack operating temperature. The SOEC stack is assumed to operate at the thermoneutral voltage such that electrolysis operations do not lead to heating or cooling of the products, and no heat addition or removal is required to maintain the specified stack operating temperature.

Use of an air sweep-gas stream is specified for removal of the oxygen product from the SOEC stack. The oxygen enriched sweep-gas stream exiting the process is vented to the atmosphere. Hydrogen produced via electrolysis exits the SOEC stack along with unreacted steam. The hydrogen product is separated from the steam by cooling (using recuperation and cooling water) and pressurizing the stack outlet stream to condense the unreacted steam, which is subsequently recycled back to the process feedwater inlet. The purified hydrogen product is compressed to a pressure of 49 bar specified for blending with nitrogen to produce the ammonia synthesis-gas feed stream.

### 5.3.2.2.2.2 Nitrogen production via cryogenic air separation unit

Nitrogen and oxygen are produced via a standard cryogenic Linde-type ASU that uses two distillation columns and extensive heat exchange in a cold box.<sup>65</sup> The ASU capacity is defined by  $N_2$  demand for ammonia synthesis. The excess  $O_2$  produced could potentially be sold as an end product from this process.

## 5.3.2.2.2.3 Ammonia synthesis

Ammonia synthesis for LWR-HTSE ASU case is identical to the conventional natural-gas-fed case.

### 5.3.2.2.2.4 Process cooling

The cooling-water system for the LWR-HTSE ASU ammonia-process design is identical to that of the conventional natural-gas-to-ammonia process design.

### 5.3.2.2.2.5 Water treatment

Water treatment for the LWR-HTSE ASU ammonia-process design is identical to that of the conventional natural-gas-fed ammonia production process design.

## 5.3.2.2.3 Material and Energy Balances

A HYSYS LWR-HTSE ASU ammonia-production process model was developed based on the ammonia-production process design reported in TEV-666.<sup>62</sup> The LWR-HTSE ASU ammonia-production process configuration is modified from the process design presented in [62] in order to produce anhydrous ammonia as the final product. The process areas and unit operations required for production of urea and ammonium nitrate (i.e., ammonia derivatives) are not included in the LWR-HTSE ASU process configuration.

In [62], steam generation associated with ammonia synthesis is used for power generation; in the current analysis, all excess steam generation from ammonia-production operations is sent to the HTSE process area to supplement the LWR heat input for HTSE process-feedwater vaporization. The quantity of steam available from the ammonia-synthesis process operation is not sufficient to fully replace the heat input from the LWR power plant, but it does significantly reduce the quantity of nuclear process heat that must be exported from the LWR to provide HTSE process heat input.

The LWR-HTSE ASU ammonia-process design operates in a continuous operating mode, with a specified capacity factor of 90.5% (consistent with the HTSE plant operations).

## 5.3.2.2.4 Capital Costs

HTSE-process capital-cost estimates are obtained from the analysis presented in Section 3.2.1 of this report. Capital-cost estimates for all other process areas are obtained from [62]. The capital costs reported in TEV-666 are adjusted to 2020 dollars using the CEPCI composite plant index. Additionally, costs for process areas in which the production rate differs from that specified by [62] were estimated by scaling the capital costs by the capacity ratio with a 0.6 scaling exponent. The capacity of each subprocess area train was limited to the maximum value listed in [62].

The capital costs for process areas associated with ammonia derivatives production were excluded from the analysis because anhydrous ammonia is the final product of the LWR-HTSE ASU process.

Because all excess steam generated by the ammonia-synthesis process is used for HTSE process-feedwater heating, the non-nuclear steam turbines present in [62] are not included in the LWR-HTSE ASU process design. This eliminates the capital costs associated with this equipment.

Anhydrous ammonia synthesis plant capital costs for a baseline process size corresponding to 852 MW-e of HTSE capacity (3048 tonnes per day  $NH_3$  production) are presented in Table 39. The total capital cost for each process area includes multipliers for engineering (10%) and contingency (18%).

| Process Area                                                                    | Capacity                      | Direct<br>Capital Cost | Total Capital<br>Cost | Note or Reference                                     |
|---------------------------------------------------------------------------------|-------------------------------|------------------------|-----------------------|-------------------------------------------------------|
| High-Temperature Steam<br>Electrolysis                                          | 852 MWe                       | \$341,890,000          | \$568,850,000         |                                                       |
| H <sub>2</sub> Storage                                                          |                               | \$0                    | \$0                   |                                                       |
| H <sub>2</sub> Transport                                                        | 0.1 mile                      | \$68,000               | \$68,000              |                                                       |
| N <sub>2</sub> Compression                                                      | 29.7 kg/s                     | \$3,225,000            | \$3,225,000           |                                                       |
| Air Separation Unit                                                             | 65700 lb/hr<br>O <sub>2</sub> | \$43,908,000           | \$56,992,000          | Scaled based on values reported in TEV-666            |
| Ammonia Synthesis                                                               | 3360<br>ton/day               | \$253,330,000          | \$328,830,000         | Scaled based on values reported in TEV-666            |
| Steam Turbines (no<br>excess heat from<br>ammonia process is used<br>for power) |                               | \$0                    | \$0                   | Scaled based on values reported in TEV-666*           |
| Cooling Tower                                                                   | 146000 gpm                    | \$5,053,000            | \$6,559,000           | Scaled based on values reported in TEV-666*           |
| Water Systems                                                                   |                               | \$21,463,000           | \$27,859,000          | 7.1% of TDCC                                          |
| Piping                                                                          |                               | \$21,463,000           | \$27,859,000          | 7.1% of TDCC                                          |
| Instrumentation and<br>Control                                                  |                               | \$7,859,600            | \$10,202,000          | 2.6% of TDCC                                          |
| Electrical Systems                                                              |                               | \$24,183,000           | \$31,390,000          | 8.0% of TDCC                                          |
| Civil/Structural/Buildings                                                      |                               | \$27,811,000           | \$36,099,000          | 9.2% of TDCC                                          |
| Ammonia Pipeline                                                                |                               | \$0                    | \$0                   | cost of ammonia<br>transport pipeline not<br>included |
| Total                                                                           |                               | \$750,253,600          | \$1,097,933,000       |                                                       |

| Table 39. LWR-HTSE ASU ammonia | production | process cap | ital expenses. |
|--------------------------------|------------|-------------|----------------|
|--------------------------------|------------|-------------|----------------|

## 5.3.2.2.5 Operating Costs

LWR-HTSE ASU ammonia-production process's direct and indirect operating costs were calculated using the methodology of TEV-666.<sup>62</sup> Direct operating costs include materials (catalyst replacement, water-treatment chemicals), utilities (electrical power, process, and cooling-water makeup), and labor and maintenance. Indirect operating costs include overhead, insurance, and taxes.

Because no excess steam from the ammonia-production process is available for power generation, all electrical power required to operate the ammonia-production process is obtained from the LWR power plant (this power could also be sourced from the electrical-grid, but would then be associated with the

carbon emissions representative of the electrical power-generation technologies used in the regional market).

The cooling-water makeup and treatment costs were adjusted from those reported in [62] to account for the decrease in cooling load associated with the process configuration that produces anhydrous ammonia only (the cooling loads associated with the urea synthesis, nitric-acid synthesis, and ammonium nitrate synthesis process areas were excluded from this analysis).

Anhydrous ammonia synthesis-process operating costs are presented in Table 40. The costs reported correspond to an operating capacity factor of 90.5%, which is consistent with HTSE plant operations. Materials prices were left unchanged from those reported in [62]. A baseline electricity price of \$30/MWh-e was selected as the energy cost of power obtained from the LWR. It is assumed that no royalty fees are required for the LWR/HTSE-based anhydrous-ammonia-production process. Anhydrous-ammonia synthesis-process labor and maintenance costs are calculated as 1.15 and 3%, respectively, of the total capital-investment costs. The labor and maintenance costs are based on the TCI for the anhydrous-ammonia process and do not include the costs for the LWR and/or HTSE systems (the O&M costs for the LWR and HTSE systems are accounted for in the hydrogen analysis). Overhead costs are set equal to 65% of the labor and maintenance costs. Insurance and taxes are calculated as 1.5% of the ammonia-synthesis process TCI (excludes LWR and HTSE system costs).

Table 40. LWR-HTSE ASU ammonia process operating expenses.

| Direct Costs                            |                |                            |               |                                                               |
|-----------------------------------------|----------------|----------------------------|---------------|---------------------------------------------------------------|
| Materials                               | Price          | Consumed                   | Annual Cost   | Notes                                                         |
| Makeup H <sub>2</sub> O Treatment       | 0.02 \$/k-gal  | 1072 k-gal/day             | \$7,000       |                                                               |
| Wastewater Treatment                    | 1.32\$/k-gal   | 354.9 k-gal/day            | \$155,000     |                                                               |
| Methanation Catalyst                    | 700 \$/ft3     | 0 ft³/day                  | \$0           |                                                               |
| Ammonia Synthesis<br>Catalyst           | 775 \$/ft3     | 0.029 ft <sup>3</sup> /day | \$7,000       |                                                               |
| Utilities                               |                |                            |               |                                                               |
| Electricity                             | 30 \$/MW-h     | MW-e                       | \$16,557,000  |                                                               |
| consumption                             |                | MW-e                       |               |                                                               |
| generation                              |                | MW-e                       |               |                                                               |
| Water                                   | 0.05 \$/k-gal  | 1072 k-gal/day             | \$18,000      |                                                               |
| Royalties                               |                |                            |               |                                                               |
| O&M, Nuclear                            |                |                            |               |                                                               |
| Labor and Maintenance, non-nuclear      |                |                            | \$21,820,000  | 1.15% of TCI for labor, 3% of TCI for maintenance             |
| Indirect Costs                          |                |                            |               |                                                               |
| Overhead                                |                |                            | \$14,183,000  | 65% of labor and maintenance costs                            |
| Insurance and Taxes                     |                |                            | \$7,887,000   | 1.5% of TCI                                                   |
| HTSE Fixed O&M Costs                    | 18.55 \$/kW-yr | 852 MWe                    | \$15,809,000  |                                                               |
| HTSE Variable O&M Costs<br>(non-energy) | 5.06 \$/MWh    | 852 Mwe                    | \$34,201,000  | includes stack<br>replacements, process, and<br>cooling water |
| HTSE Variable O&M Costs<br>(energy)     | 30 \$/MWh      | 852 Mwe                    | \$209,212,000 | Cost includes electrical and thermal power input              |
| Total Manufacturing Costs               |                |                            | \$319,856,000 |                                                               |

#### 5.3.2.2.6 Revenues

Oxygen from the ASU is specified to be sold at a fixed price of \$45.86/tonne, as reported in [62]. Although the HTSE process also produces oxygen, the HTSE process configuration evaluated previously specifies the use of an air sweep-gas stream that releases an oxygen-enriched air steam. The oxygen-enriched air stream contains approximately 40 mol% oxygen and is therefore not suitable for sale as a final project. The use of an HTSE process configuration that supports the production of a purified oxygen stream would allow this byproduct of the HTSE process to be sold alongside the oxygen product produced by the ASU.

All hydrogen produced by the HTSE plant is used in the production of the anhydrous-ammonia product; thus, the economic analysis does not include revenue from hydrogen-product sales (i.e., the hydrogen is an internal process stream with production costs determined by the HTSE process-capital and operating-cost input specifications). No ammonia-derivative revenue streams are included because urea and ammonium nitrate are not produced by the plant configuration evaluated.

The anhydrous-ammonia selling price was determined using the same methodology as for the conventional gas-to-ammonia case; i.e., for each sensitivity case evaluated, the ammonia selling price was manipulated to the value that resulted in a project NPV equal to zero.

| Product | Price             | Produced          | Annual Revenue |
|---------|-------------------|-------------------|----------------|
| Oxygen  | \$45.86 \$/tonne  | 715 tonne/day     | \$10,840,000   |
| Ammonia | \$438.97 \$/tonne | 3048<br>tonne/day | \$442,106,000  |
| Total   |                   |                   | \$452,946,000  |

Table 41. LWR-HTSE ASU ammonia-production process, annual revenues.

### 5.3.3 Process Comparison

A summary comparison of the conventional gas-to-ammonia and LWR-HTSE ASU ammoniaproduction process is provided in Table 42.

Table 42. Comparison of conventional natural gas-to-NH<sub>3</sub> and LWR-HTSE ASU ammonia-production processes.

|                                                                               | Conventional natural gas-to-<br>Ammonia                                                                     | LWR-HTSE ASU<br>Ammonia<br>Production                                                                                                       | Reference or Note                                      |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Design Production Capacity                                                    | 3048 tonne NH <sub>3</sub> /day                                                                             | 3048 tonne<br>NH <sub>3</sub> /day                                                                                                          | Based on TEV-666 <sup>62</sup>                         |
| Natural Gas Consumption                                                       | 88 MMSCFD                                                                                                   | 0 MMSCFD                                                                                                                                    | Design point value                                     |
| Baseline Natural Gas Price                                                    | \$4.11/MSCF                                                                                                 | N/A                                                                                                                                         | Corresponds to<br>modified natural gas<br>pricing case |
| Net Electrical Power Input                                                    | 60.6 MW-e                                                                                                   | 921.6 MW-e net                                                                                                                              | Design point value                                     |
|                                                                               |                                                                                                             | (852 MW-e HTSE;<br>69.6 MW-e ASU,<br>NH <sub>3</sub> synthesis, etc.)                                                                       |                                                        |
| Baseline Electricity Price                                                    | \$30/MWh-e                                                                                                  | \$30/MWh-e                                                                                                                                  |                                                        |
| Net Thermal Power Input                                                       | 0 MW-t                                                                                                      | 81.5 MW-t supplied by LWR                                                                                                                   | Design point value                                     |
| Application For Steam<br>Generated in Ammonia<br>Synthesis Process Operations | Process heat applications (e.g.,<br>product purification) with<br>excess steam used for power<br>generation | Process heat<br>applications (e.g.,<br>product<br>purification) with<br>excess steam used<br>for HTSE process<br>feed water<br>vaporization |                                                        |
| HTSE Process Thermal Input                                                    | N/A                                                                                                         | 147.5 MW-t net<br>(81.5 MW-t from<br>LWR; 66 MW-t<br>from NH <sub>3</sub> synthesis<br>excess process<br>heat)                              |                                                        |
| CO <sub>2</sub> Emissions                                                     | 2.55 kg CO <sub>2e</sub> per kg NH <sub>3</sub>                                                             | 0.06 kg CO <sub>2</sub> per kg<br>NH <sub>3</sub>                                                                                           |                                                        |
| Capacity Factor                                                               | 92%                                                                                                         | 90.5%                                                                                                                                       |                                                        |
| Actual Production Rate                                                        | 2804 tonne NH <sub>3</sub> /day                                                                             | 2760 tonne<br>NH <sub>3</sub> /day                                                                                                          |                                                        |
| Ammonia Production Cost                                                       | \$296/tonne                                                                                                 | \$439/tonne                                                                                                                                 |                                                        |

The sensitivity of the LWR-HTSE ASU ammonia-production cost to several key parameters is shown in Figure 71. This figure indicates the change in ammonia-production cost that could be expected from perturbations to a single input parameter (e.g., the results do not include the compounding or canceling effects that would result from simultaneous perturbation of multiple sensitivity variables). The sensitivity analysis results are presented as a tornado chart in which the variables that have the greatest impact on the ammonia-production cost are listed at the top of the chart. Over the range of input-variable perturbations considered, the price of electricity has the greatest impact on ammonia-production costs, followed by the HTSE capital cost. Changes to the IRR and ammonia-synthesis plant capital cost may also have a significant impact on ammonia-production costs (changes to either of these variables can affect the  $NH_3$  cost by a value ranging from plus or minus \$20–25 per tonne). Changes to the plant capacity or oxygen-byproduct selling price up to 50% different from the base value would be expected to result in a change in ammonia-production cost of less than \$10/tonne.



Figure 71. Sensitivity of ammonia-production cost to electricity price, HTSE and  $NH_3$  CAPEX, plant capacity, and IRR. Oxygen sales come from the separated oxygen from the air separation unit as part of the ammonia production process.

Figure 72 is a plot of predicted ammonia-production cost as a function of plant capacity and electricity price. This plot provides additional insight regarding the dependence of the ammonia-production cost to two variables that would be highly likely to inform the decision as to where to site an LWR-HTSE ASU ammonia-production facility. Note that the step changes in the curves are attributed to the step changes in capital cost associated with the requirement to add additional process trains as the plant NH<sub>3</sub> production capacity increases; i.e., production capacity for a single train is maximized (which maximizes the capital-cost economies of scale) at a production capacity of around 1525 tonne/day, and two smaller process trains, each of which has not achieved an optimal economy of scale, are then installed in parallel at a plant capacity greater than 1525 tonne/day. A similar transition from two to three process trains occurs at an NH<sub>3</sub> production capacity of 3050 tonne/day.

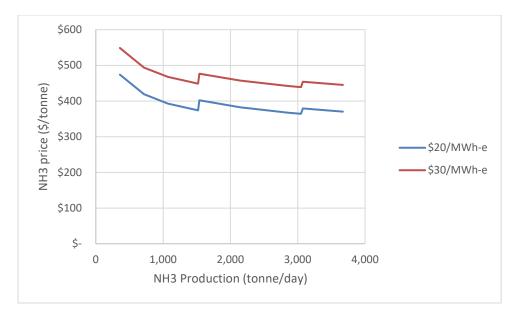



Figure 72. Ammonia production-cost sensitivity to plant capacity and electricity price.

#### 5.3.4 Cost of Avoided CO<sub>2</sub> for Ammonia Production Using H<sub>2</sub> from Nuclear Energy

Ammonia process modeling and financial analysis were carried out in the above section for conventional and alternative ammonia production using NPP-(HTSE & ASU)plant. The ammonia-production rate and price for the alternative process were compared to the price of the conventional production process at different electricity costs. This difference was used to calculate the cost of avoided  $CO_2$  per MT in the equation below.

Cost of avoided 
$$CO_2\left(\frac{\$}{MT}\right) = change in ammonia price \left(\frac{\$}{MT}\right) / change of CO_2 emissions \left(\frac{MT CO_2}{MT}\right)$$

This will be the cost that would make the NPP-integrated technology on price parity with conventional ammonia production pathway with the emissions of NPP integrated NH<sub>3</sub> production pathways as seen in the Figures below. The cost of avoided CO<sub>2</sub> for nuclear electricity cost of \$20/MWh is between \$5 and \$28/MT of CO<sub>2</sub> and for \$30/MWh is between \$35 and \$58/MT of CO<sub>2</sub>, depending on the NH<sub>3</sub> production rate. The life cycle CO<sub>2</sub> emissions for both these pathways are discussed in section 2. The margins for transporting and selling ammonia were not included and could change the cost of CO<sub>2</sub> avoided when compared to the conventional baseline. For utilizing power from a single unit (520 MW) of PI NPP, approximately 1800 MT of NH<sub>3</sub> can be produced using the alternative ammonia synthesis process at a production cost of \$570/MT NH<sub>3</sub>.



Figure 73. Conventional and alternative ammonia production price and cost of avoided  $CO_2$  as a function of NH<sub>3</sub> plant capacity (based on an electricity price of \$20/MWh).

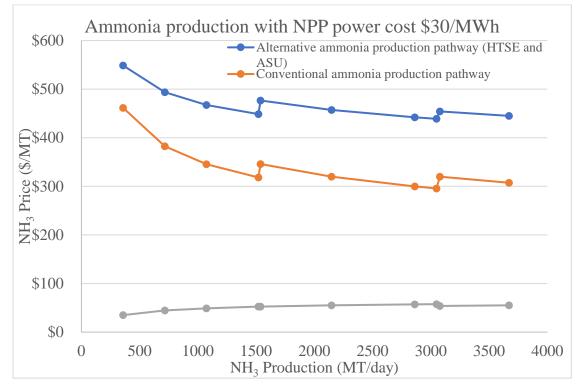



Figure 74. Conventional and alternative ammonia production price and cost of avoided  $CO_2$  as a function of NH<sub>3</sub> plant capacity (based on an electricity price of \$30/MWh).

#### 5.4 Synthetic Fuels

Synfuels and synchemicals are produced by synthesis from chemical building blocks, rather than from conventional petroleum refining. Syngas (carbon monoxide and hydrogen) is a common intermediate building block in the production of synfuels and synchems. Syngas can be produced by many processes, including biomass or fossil-fuel gasification and co-electrolysis. In co-electrolysis, CO<sub>2</sub> is reacted with water to produce syngas. The CO<sub>2</sub> can be sourced from processes that would otherwise eject the CO<sub>2</sub> to the atmosphere, but the cost of CO<sub>2</sub> capture depends on the purity of the source. Ethanol plants, including dozens of large plants in the U.S., ferment corn to make ethanol that is subsequently blended with motor gasoline. Ethanol plants provide a high-purity source of CO<sub>2</sub>, they therefore provide a CO<sub>2</sub> source that is low-hanging fruit in terms of cost and ease of capture of large amounts of CO<sub>2</sub>. Fossilfuel processes, such as SMR and natural gas combined cycle (NGCC) power plants, can be other sources of CO<sub>2</sub>, but these sources have much lower CO<sub>2</sub> concentrations than ethanol plants; therefore, the CO<sub>2</sub> is more expensive to separate and concentrate. CO<sub>2</sub> is also emitted from biofuels gasification plants.

Conversion of  $CO_2$ , which would have otherwise been released to the atmosphere, to synfuels using NE is a potential avenue for adding value to existing LWR facilities while producing lower-carbonintensity transportation fuels, considered drop-in fuels: those that are compatible with conventional fuels produced via petroleum refining. In the case of  $CO_2$  sourced from ethanol plants, this carbon comes from a biological source (corn), so the transportation fuels thus produced may be able to be considered as biofuels under the existing EPA Renewable Fuel Standard. In the case of CC and usage from fossil-fuel processes, such as SMR and NGCC, the making of transportation fuels using that carbon is giving the carbon a second life and avoiding new carbon release from fossil fuels coming out of the ground; thus, the carbon intensity of the fuels is reduced.

Low-carbon-intensity diesel and jet fuel could be synthesized using electrolysis powered by nuclear power. In the case of jet fuel, the aviation original equipment manufacturers (OEMs) have stringent standards for testing and approval of any fuel produced by a process other than conventional petroleum refining. The path has already been paved for the introduction of percentages of synthetically produced jet fuels with conventional jet fuel in the Specification ASTM D-7566. This specification is in addition to ASTM D-1655 Jet A/A1 Fuel Specification, which covers only jet fuels produced from conventional oil refining. To be allowed to be used to power aircraft, the jet fuel must not only meet the specifications of D-1655, but the process used to make the jet fuel must also be qualified by an ASTM board of aircraft OEMs. The qualification of the synthetic-fuel process is rigorous and analyzes not just the composition of the fuel in detail, but also the process used to make the fuel and any possible contaminants or incompatibilities that could be introduced to the aircraft fuel system which might cause previously unknown issues. After approval, the new synthetic-fuel process can be qualified and written as an annex into Specification D-7566 as an approved alternative jet fuel. Various synthetic-jet-fuel pathways have been approved and included in D-7566, including FT hydroprocessed, synthesized paraffinic kerosene (SPK) and alcohol-to-jet (ATJ) in mixtures of up to 50% with conventionally refined jet fuel. The following sections analyze the ATJ and FT pathways.

#### 5.4.1 Co-electrolysis and Methanol/Ethanol Routes to Synfuels Analysis

A TEA and comparison of two possible synfuel production routes using CO<sub>2</sub> as the feedstock and the co-electrolysis process has been performed in a separately funded effort and is summarized here.<sup>66</sup> The high-level conclusions are summarized for completeness.

Heat from an LWR nuclear plant was integrated to the process wherever possible to positively affect the economics of the LWR by converting power to fuels during times of low grid demand for electricity. Process and economic modeling for a conceptual synfuel production plant co-located with, or in near proximity to an LWR was presented, including the cost of CO<sub>2</sub> captured from an ethanol plant, compressed, and transported to the LWR hybrid plant, co-electrolysis of the CO<sub>2</sub> with water in a SOEC system to produce syngas, and thermocatalytic conversion of the syngas to transportation fuel. The hybrid

LWR/synfuels plant was assumed to be located within 50–150 miles of an ethanol plant (e.g., located in the Midwest region of the U.S.). Performance and NOAK plant economics for the co-electrolysis-based processes were evaluated and compared with biomass-gasification-based technology for the synfuel routes considered. Sensitivity analysis around the price of CO<sub>2</sub> and electricity, two of the major cost drivers, was presented for each case. Consideration of a carbon credit is also included in the sensitivity analysis. The primary results and conclusions of the analysis are the following:

For a plant producing 3,195 barrels per day (BPD) hydrocarbon synfuels via a methanol intermediate with LWR electricity and steam usage of 326 MWe and 133 MWt respectively:

- The modeled minimum fuel selling price (MFSP) of diesel (91%) and gasoline (9%) blend stock with conservative assumptions is \$4.45/gallon for the base case using a CO<sub>2</sub> cost of \$33.3/tonne and an electricity price of \$30/MWh. This is compared to the biomass gasification route to syngas, with its MFSP of \$3.28/gallon. Note that co-electrolysis has a much larger maximum scale of production that can be reached compared to the availability of land competing with food production as in the case of biomass gasification. Also, the scale of the analysis is only about 1/3 of the available energy from a typical LWR but was chosen so that a direct comparison with a biorefinery could be made.
- There are innovative cryogenic carbon capture (CCC) processes that claim to produce CO<sub>2</sub> for a cost as low as \$20–60/tonne CO<sub>2</sub> (SES 2020), which could also have a significant impact on the viability of an LWR/synfuels plant using methanol as the intermediate. Further, the refrigerant used in the CCC process could be produced using LWR energy. The synergies of the LWR with the CCC process and technoeconomic modeling of the CCC process will be explored in detail in future studies.
- Sensitivity analysis (Figure 75) shows that, with optimal CO<sub>2</sub> and electricity prices and inclusion of carbon credits through incentives or mandates, this process could be more cost competitive with petroleum fuels, especially after COVID-19, when oil prices recover somewhat from the current historic lows. With a hypothetical carbon tax of \$100/tonne CO<sub>2</sub>, the MFSP is reduced to between roughly \$3.50 and \$3.75/gallon. A renewable-fuel standard (RFS) credit would further aid in the competitiveness of fuels produced via this route. Some states already offer credits for clean fuels, including California and New York. These credits are qualified under the U.S. Environmental Policy Act and are applied to select fuels with the assignment of renewable identification numbers (RINs). Clean-fuel credits in California have ranged upwards from \$0.5 to \$2.5 per gallon of gas equivalent.
- Sensitivity analysis, varying plant scale for the co-electrolysis with a methanol-to-olefins (MTO) fuel process was conducted (Figure 76). At a scale of half the base case (326 MWe; 133 MWt), production cost increases by 9%. At a scale 10 times larger than the base case, the production cost is reduced to about \$3.8/gal. Scaling of the plant up to the entire electrical output of a general 1-GWe LWR of fuel production would result in about 40 cents/gal cost savings. Note that a scaling factor of 1 is assumed for the SOEC stack; therefore, no benefit is gained for this portion of the capital cost.

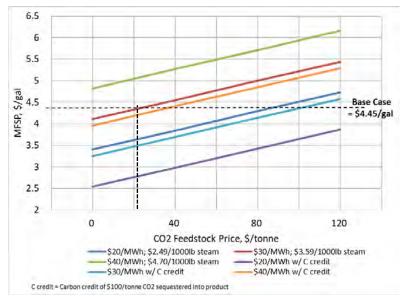



Figure 75. Minimum syn-diesel fuel selling-price sensitivity for fuels via a co-electrolysis-derived syngas to methanol to fuels route. Base-case diesel MFSP \$4.45/gal at \$33.3/tonne CO<sub>2</sub> feedstock price and \$3.59/1000 lb steam price.

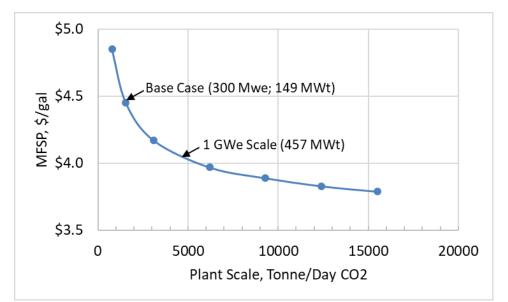



Figure 76. Sensitivity of syn-diesel MFSP to plant scale for the co-electrolysis and MTO fuel process. Electricity (MWe) and thermal power (MWt) were taken from the LWR for use in co-electrolysis and are provided in parentheses.

Co-electrolysis could take all of the energy provided by a single reactor or two reactors to produce the syngas that is converted to methanol. The synfuels could be competitive in price with petroleum fuels if credits for CO<sub>2</sub> emissions reductions reach about \$100/tonne CO<sub>2</sub> or when the price of petroleum fuels rises above the current historic lows. The combination of plant scale-up matching the energy produced by an average NPP, together with clean-energy credits, could make synthetic fuels produced by co-electrolysis using LWR energy competitive with petroleum-derived fuels. Together, biomass gasification and nuclear-derived synfuel could feasibly replace a significant volume of U.S. transportation fuels. The nation currently burns 12 million barrels of gasoline and diesel each day. Biomass gasification and co-electrolysis together can feasibly replace over 25% of petroleum fuels.

Future studies should take into account opportunity sources of  $CO_2$ , their purity, and location, financial investment terms and options, and clean-energy credits. In addition, synergies between NPPs and the biomass gasification synfuels route should be considered, including drying and torrefaction of biomass feedstock and  $CO_2$  by-product from biomass gasification.

#### 5.4.2 HTSE, RWGS, and Fischer-Tropsch Route to Synfuels Analysis

The following analysis has been completed and represents an alternative to the co-electrolysis route to syngas and synfuels. This analysis produces syngas by using separate hydrogen and carbon dioxide feedstocks. The hydrogen in these scenarios is assumed to come from an HTSE plant integrated with a NPP, the design of which was previously explained in this report. The reverse water gas shift (RWGS) process is a well-known and optimized industrial process in which CO<sub>2</sub> and H<sub>2</sub> are reacted to form CO and water. By combining the HTSE and RWGS processes, the desired concentrations of CO and H<sub>2</sub> (syngas) can be produced for subsequent conversion to synfuels via the FT process.

A technoeconomic analysis of FT liquid-fuel production from H<sub>2</sub> and CO<sub>2</sub> has been reported by Zang et al, with the H<sub>2</sub> recycle pathway having better techno economic results.<sup>67</sup> MFSP was estimated for a broad range of H<sub>2</sub> and CO<sub>2</sub> prices and potential CO<sub>2</sub> credits. H<sub>2</sub> prices were reported to have the largest impact on the MFSP of FT fuel. The analysis showed that a hydrogen price of \$0.8/kg was cost competitive with a pretax petroleum-diesel price of \$3.1/gal in 2050 (without CO<sub>2</sub> credits). A CO<sub>2</sub> feedstock price of \$17.3/metric ton was used in this analysis. When the H<sub>2</sub> price was set to \$2.0/kg in the analysis (i.e., at the 2020 DOE target for hydrogen from electrolysis), the minimum selling price of the FT fuel was \$5.4–5.9/gal. Figure 77 shows on the left the price of H<sub>2</sub> (\$0.8/kg) that would make synthetically produced diesel fuel via the process herein described competitive with conventional diesel fuel at the projected 2050 diesel price. The figure also shows sensitivity studies and the resulting FT fuel price for LCOH of \$2.0/kg and \$5/kg.

An optimized case in preliminary-analysis phase suggests that the competitive price for  $H_2$  may be well above \$0.8/kg. This analysis is discussed in the following section.

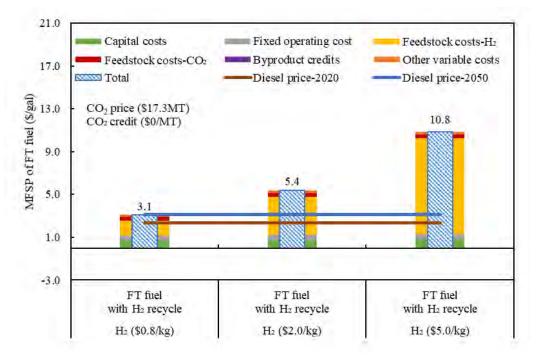



Figure 77. H<sub>2</sub> price effect on minimum fuel selling price of FT fuel production (base case).

Figure 78 shows similar information as is described above, but in trendline form, with the MFSP of diesel contrasted with the cost of hydrogen production.

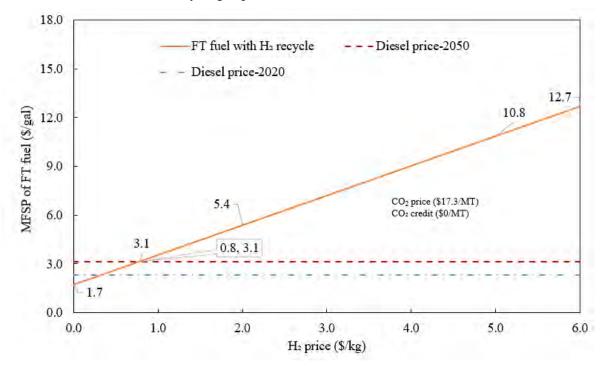
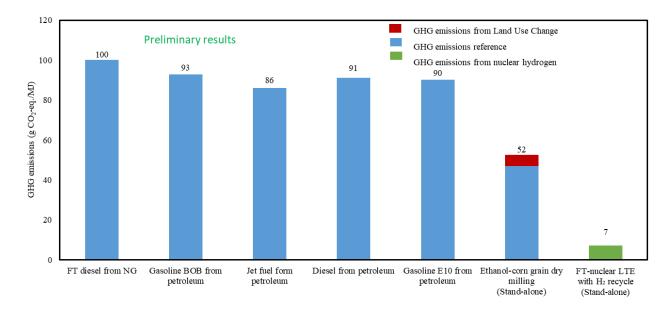




Figure 78. Break-even price for FT fuel production (base case) when compared to diesel prices in 2020 and 2050.

#### 5.4.3 Optimized FT Fuel Production Scenario (Advanced Case)

Preliminary modifications (referred to herein as the advanced case) were implemented to the FT fuel production base case to increase the energy and carbon-conversion efficiency. Modifications included 1) recycling of light-gas from the separator to the FT reactor, 2) capturing pre-combustion  $CO_2$ , and 3) modifying the light-gas separation process. These changes increased the carbon-conversion efficiency from 45.5 to between 91.0 and 93.5% and the energy efficiency from 53.3–57.5% to 66.1–67.9% from the base to the advanced case.

The life-cycle GHG emissions are shown in Figure 79 for the advanced case of FT fuel using nuclear  $H_2$ , which is about 7 g CO<sub>2</sub> eq./MJ versus 9 g CO<sub>2</sub> eq./MJ for the base case Section 2.





Due to the above-mentioned improvements to process modeling and the resulting higher energy and carbon-conversion efficiency, the break-even H<sub>2</sub> price, compared with untaxed 2050 diesel, is 1.14/kg versus 0.8/kg in the base case. The MFSP of the FT fuel reduced from 3.1/gal to 2.5/gal for the advanced case using a H<sub>2</sub> price of 0.8/kg. Similarly, a hypothetical H<sub>2</sub> price of 2/kg MFSP for FT fuel reduced from 5.4/gal for the base case to 4.2/gal for the advanced case. These results are presented in Figure 80. The CO<sub>2</sub> credit shown in figure below is the amount of credit required to breakeven with the diesel price of 2050, essentially the cost of avoided CO<sub>2</sub>.

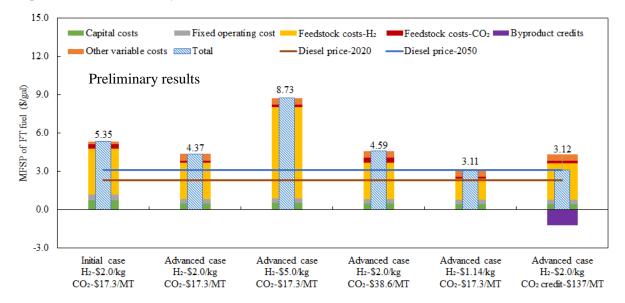
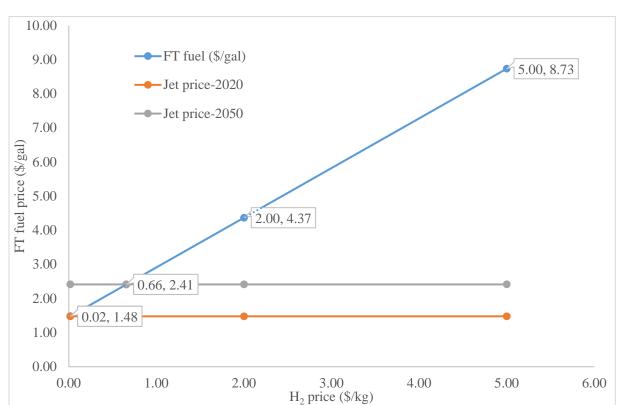




Figure 80. H<sub>2</sub> price effect on minimum fuel selling price of FT fuel production.

The break-even  $H_2$  price for untaxed jet fuel in 2020 is a mere \$0.02/kg due to very low jet-fuel prices while the break-even  $H_2$  price for jet fuel in 2050 is \$0.66/kg, as plotted in Figure A-5. The cost of avoided CO<sub>2</sub> was calculated using the equation below and was compared with untaxed diesel (2050)

3.1/gal and untaxed Jet fuel (2050) 2.6/gal. The cost of avoided CO<sub>2</sub> (using nuclear H<sub>2</sub>) for diesel (in the advanced case) in 2050 will be 137/MT CO<sub>2</sub>, and for jet fuel (in the advanced case) in 2050, it would be about 200/MT CO<sub>2</sub>.



Cost of avoided 
$$CO_2\left(\frac{\$}{MT}\right) = change of fuel price \left(\frac{\$}{MT}\right) / change of CO_2 emissions \left(\frac{MT CO_2}{MT}\right)$$

Figure 81. H<sub>2</sub> Break-even price for jet fuel for the advanced FT fuel production case.

### 5.5 Cryogenic Refrigerant Cycle

A separately funded analysis is in progress to show how NE could be used to power a cryogenicrefrigerant cycle during times of grid overgeneration. This could be thought of as a form of energy storage in the form of a usable cryogenic refrigerant, though the intent is not to go backward to create electricity again, but to store the refrigerant for use onsite as needed or to be transported short distances to point of use. The refrigerant could be used for CCC, hydrogen-compression interstage cooling, hydrogen liquefaction, or air separation for ammonia production.

The captured  $CO_2$  could be used as a feedstock for synthetic fuels production, as has been discussed in this report. It would aid in the decarbonization of fossil-energy sectors.

#### 5.6 Chlor-Alkali

A recent study highlighted the potential integration opportunities of various industries with nuclear reactors, including chlor-alkali.<sup>68</sup> Chlorine gas and sodium hydroxide (i.e., caustic soda or NaOH) are produced electrochemically from NaCl-rich brine, and their production represents around 4% of total industrial CO<sub>2</sub> emissions. The chlor-alkali industry manufactures over 11 MMT<sup>69</sup> of chlorine per year, along with a stoichiometric quantity of NaOH. Chlorine is used directly as a chemical or is incorporated into petrochemical products such as polyvinyl chloride (PVC). Strongly alkaline NaOH is widely applied

in industrial processes, and concentration of the NaOH product via evaporation is the major thermal demand in chlor-alkali facilities. Total industry revenue is estimated to be \$8 billion/year,<sup>70</sup> and projected compound annual growth rate (CAGR) is strong at more than 4% through 2025.<sup>71</sup> If this growth rate is consistent through 2030, over 6 MMT/year of added capacity will be required, indicating a need for new chlor-alkali facilities. A large chlor-alkali electrolysis unit could be in large demand for carbon-free energy from a new LWR-centered energy industrial park.

Chlor-alkali electrolysis plants show strong technical potential for integration with an NPP for both heat and electricity. The average chlorine facility requires roughly 140 MWe and 25–35 MWth.<sup>72</sup> Modern chlorine-electrolysis cells consume around 2,500 kWh/tonne Cl<sub>2</sub> produced.<sup>73</sup> The heat duty is mainly used to evaporate water and concentrate the NaOH product. Plants producing aqueous NaOH at 20–35% by mass require less heat than do facilities delivering anhydrous NaOH pellets. The representative temperature for concentration process heat is 175°C, which can be readily provided by an LWR. A large facility producing 2,800 thermal power delivery (TPD) Cl<sub>2</sub> (~0.84 MMT/year) would consume over 300 MWe and 75–100 MWth, or potentially more than 1 GWth total of NPP energy. Based on current growth projections, 5–10 plants of this size could be required within the next 10 years. Chlor-alkali production integrates well with LWR coproduction of electricity and heat, and a large facility could serve as a key demand source for an industrial park, consuming >1 GWth of total NPP energy.

Most chlorine is used for industrial processes, including around 40% for PVC. Less than 5% of chlorine is used for water treatment and pharmaceuticals; the remaining fraction is used to synthesize a wide array of other chemicals. A recent analysis found that chlorine plants are well distributed throughout the country, with a concentration in the Gulf Coast region to provide chlorine to industrial processes.<sup>74</sup> Locating a new chlor-alkali facility near industrial demand is therefore likely to be a driving cost consideration. LWRs in the Southeast region (for access to the Gulf Coast) as well as the Midwest (for access to manufacturing) could be strong candidates for integration with a new chlor-alkali plant.

## 5.7 Formic Acid

Formic acid (FA) can be produced economically using an electrochemical process by baseload lowcarbon NPPs using  $CO_2$  from sources such as local ethanol plants and even SMR plants. This has the potential to be game changing for the chemical industry. FA could serve as a durable liquid (at ambient conditions), and energy-dense hydrogen carrier that could be produced by electrolysis (co-electrolysis of  $CO_2$  and water to make FA).<sup>75,76</sup>

#### 5.7.1 Overview of the Current and Near-Future Formic-Acid Market

FA is defined as a high-volume chemical, with global production totaling 1.2 MMT per year.<sup>77</sup> The total market value is estimated to be \$1.1 B, indicating a global benchmark price of \$1.00/kg; U.S. prices are ~25% higher.<sup>78,79,80</sup> U.S. demand is currently relatively small, around 0.125 MMT/year or ~10% of the global demand, 40% (i.e., 0.05 MMT/y) of which is produced in a single facility in Geismar, Louisiana, operated by Badische Anilin- und SodaFabrik (BASF).<sup>81</sup> The remaining 60% of demand is supplied by imports from China and Germany. Worldwide growth is strong—estimated at nearly 5% CAGR through 2027—and domestic-growth estimates are even more optimistic, ranging from 5–14% CAGR due to emerging applications for FA.<sup>82</sup> Drivers for growth are

- 1. Current commodity chemical use switching from a U.S. import to a U.S. export
- 2. Use as a silage preservant to reduce the need for animal antibiotics
- 3. Fracking/drilling-completion fluids
- 4. Displacement of phosphoric acid for cleaning and descaling applications<sup>83</sup>
- 5. Breaking down and hydrogenating carbonaceous (biomass) feedstock into high-value chemicals and fuels

6. Use of a liquid-hydrogen carrier that is easily stored and transported to distributed users.

At this growth rate, the global market will grow to ~2 MMT/year of capacity by 2030.

Conventional processes produce FA via carbonylation of methanol or carbonylation of oxalic acid. Electrochemical catalytic co-electrolysis of  $CO_2$  and water to make FA is a promising emerging process, and one manufacturer, OCO Chemicals, boasts of a 78% efficient process with high selectivity (99%) with their licensed process that reduces  $CO_2$  with *in situ* generated hydrogen from water to FA or formate salts.<sup>84</sup>

Currently, FA is used to make natural and synthetic leathers, textiles, cleaning products, and rubber, and formate salts are used as deicing agents and additives in oil and gas drilling fluids.<sup>85</sup> Abroad, the major use of FA (accounting for 40% of demand) is as an antimicrobial additive in animal feed, but this practice is uncommon in the U.S. due to "generally low commercial availability of formic acid."<sup>86,87,88</sup> Domestic farmers use antibiotics instead, a practice which has come under scrutiny, presenting an opportunity for increased FA production and use.<sup>89</sup> FA is chemically stable and relatively nontoxic (at concentrations below 90%), making it an attractive chemical product for farming applications. The Food and Drug Administration has denoted FA as "generally recognized as safe," and the European Union (EU) has certified it as a permissible additive for both human and animal food.<sup>89,90</sup> The Midwest (particularly Iowa, Minnesota, and Wisconsin) contains clusters of industrial cattle and pig farms while the Southeast is a center for chicken farming.<sup>92</sup> NPPs in these regions making liquid products like FA would have straightforward access to these markets. FA replacement of antibiotics in animal feed, whether motivated by regulation, public scrutiny, or price, would lead to a significant increase in domestic FA demand.

Other possibilities for replacing current chemicals, specifically acetic acid (AA), are also promising, although at a smaller scale than animal feed. Roughly 15 MMT/year of AA are manufactured worldwide, most commonly to produce vinyl acetate monomers, food-grade vinegar, acetic anhydride (an industrial solvent), and acetate salts. FA cannot replace AA as a monomer or in vinegar, but BASF markets FA as a replacement for AA (and acetate salts) in deicing agents and solvents, indicating the possibility of expanded FA demand.<sup>92</sup> In particular, potassium salt deicing agents represent a growth area, as potassium formate has already replaced potassium acetate for deicing at European and North American airports.<sup>89</sup>

In addition to its use by traditional industries, FA also holds substantial promise as a hydrogen carrier for direct or indirect use in fuel-cell technologies. FA is both energy- (1,760 Wh/kg) and hydrogen-dense (53 g/L, 44 g/kg), containing more hydrogen per volume than compressed hydrogen itself (at moderate pressures).<sup>83,85</sup> It is a liquid at ambient temperature, stable, nontoxic, and durable enough for long-term storage. Further, hydrogen release from FA is exergonic (<0 free-energy change) but not exothermic (>0 enthalpy change). This allows hydrogen release to be performed at low temperatures, but perhaps more importantly, at high pressures that may be suitable for storage in fuel-cell vehicles. Other hydrogen carriers (e.g., ammonia and methanol) do not have this property, and it has been estimated to reduce storage, compression, and dispensing costs of a hydrogen carrier.<sup>95,95</sup> Growth of this market, combined with technological advances in co-electrolysis, could see FA become a major industrial chemical in the long term.

#### 5.7.2 Analysis of Nuclear Power Plant Facilities and the Formic Acid Market

With substantial growth in the market, co-electrolysis to generate FA could play a revenue-generating role in a multipurpose NPP-associated facility. A single 1 GW NPP, using currently available low-efficiency co-electrolysis technology, could produce more than the present global demand for FA each year. INL has previously estimated the required energy input for electrolytic FA synthesis at ~4 MWh/1000 kg, assuming a large overpotential (>2 V) to increase cell current densities.<sup>95</sup> One gigawatt of constant electricity input could therefore produce the current annual demand of FA (1.2 MMT) in

~5000 h, or around 7 months. Assuming an electricity price of 25-40/MWh, the energy input costs are 0.10-0.22/kg FA. Assuming amortized capital expenditures of 0.20-0.25/kg as estimated by OCO, the cost of electrochemical FA production is ~0.30-0.47/kg.<sup>85</sup> These cost targets would make FA cheaper than many alternative chemicals, opening up new markets, such as silage preservation, cleaning agents, and chemicals processing. To achieve these goals, research and development are needed to increase the efficiency and current density of co-electrolysis cells, which would reduce both operating and capital costs. If cell efficiencies are increased, and the market grows significantly, particularly through the adoption of FA as an H<sub>2</sub>-energy carrier, FA production would be very well suited for NPP facility integration, especially when configured as a component of the energy industrial park concept discussed above.

## **6 SUMMARY OF HYBRID OPTIONS INTEGRATION WITH NPPS**

In Table E-1, the hybrid options analyzed in this report are tabulated in order of the cost of avoided carbon from lowest to highest with the TRLs for these options. When carbon reductions are desired, this table provides a useful guide to show those processes that would cost the least, as far as a possible carbon credit is concerned. If there is no credit, then this is the real cost to decarbonize based on the assumptions in this report.

The cost of avoided  $CO_2$  is calculated using the equation below for each application listed in the table. Life cycle  $CO_2$  emissions for all these applications were evaluated in Section 2 wherein NE was considered as an integral power source for all these different pathways. Cost of avoided of  $CO_2$  is very sensitive to underlying assumptions such as natural gas prices, nuclear electricity prices, etc.

Cost of avoided 
$$CO_2\left(\frac{\$}{MT}\right) = change of application price \left(\frac{\$}{MT}\right) / change of  $CO_2$  emissions  $\left(\frac{MT CO_2}{MT}\right)$$$

 Table 43. Hybrid options for integration with LWRs ranked in order or least cost of avoided CO<sub>2</sub> to greatest.

 Nuclear-H<sub>2</sub>
 Cost of

 TBI
 Notes: Nuclear Electricity Price Assumed to be

| Nuclear-H <sub>2</sub>      | Cost of                                              | TRL                                  | Notes: Nuclear Electricity Price Assumed to be<br>\$30/MWh, Nuclear-H <sub>2</sub> at \$1.93/kg and natural ga<br>pricing based on Modified 2021 AEO West North<br>Central (WNC) Region Reference Case                                           |  |
|-----------------------------|------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Applications                | Avoided CO <sub>2</sub><br>(\$/MT CO <sub>2e</sub> ) | (basic = 1, fully<br>commercial = 9) |                                                                                                                                                                                                                                                  |  |
| Ammonia                     | \$35–58                                              | 8-9                                  | Compared ammonia production facility using nuclear power for air separation unit for $N_2$ and HTE for $H_2$ to a conventional ammonia production plant at different production rate. (Section 4.3).                                             |  |
| Refineries                  | \$100                                                | 9                                    | Compared nuclear-H $_2$ to H $_2$ from natural gas SMR at 1.03/kg.                                                                                                                                                                               |  |
| Synfuels                    | \$137 (Diesel)<br>\$200 (Jet fuel)                   | 2-3                                  | Compared advanced synfuel production prices to<br>untaxed diesel prices at \$3.1/gal (2050) and<br>untaxed price of jet fuel \$2.6/gal (2050).                                                                                                   |  |
| natural gas-<br>H2 blending | \$135–172                                            | 6-7                                  | Compared nuclear- $H_2$ to energy equivalent price<br>of natural gas on HHV Btu basis. This cost of<br>avoided $CO_2$ is for the range of natural gas prices<br>for natural gas electricity generators in the<br>Minnesota's Twin Cities region. |  |
| FCEVs                       | \$55–270                                             | 9                                    | Compared $H_2$ \$5–7/kg (at refueling station), per<br>DOE $H_2$ fueling cost target, to untaxed gasoline<br>price in 2050 (\$2.96/gal), the cost of avoided<br>carbon is very sensitive to $H_2$ prices.                                        |  |

Table 44. Hybrid options for integration with LWRs ranked in order or least Cost of Avoided  $CO_2$  to greatest (Advanced HTSE case for  $H_2$  production).

| Nuclear-H <sub>2</sub><br>Applications | Cost of<br>Avoided CO <sub>2</sub><br>(\$/MT CO <sub>2e</sub> ) | TRL<br>(basic = 1, fully<br>commercial = 9) | Notes: Nuclear Electricity Price Assumed to be<br>\$30/MWh, Advanced HTSE Nuclaer-H <sub>2</sub> at<br>\$1.53/kg and natural gas pricing based on<br>Modified 2021 AEO West North Central (WNC)<br>Region Reference Case                                  |
|----------------------------------------|-----------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ammonia                                | \$13-33                                                         | 8-9                                         | Compared ammonia production facility using<br>nuclear power for air separation unit for $N_2$ and<br>HTE for $H_2$ to a conventional ammonia production<br>plant at different production rate. (Section 4.3).                                             |
| Refineries                             | \$55                                                            | 9                                           | Compared nuclear- $H_2$ to $H_2$ from natural gas SMR at 1.03/kg.                                                                                                                                                                                         |
| NG-H <sub>2</sub><br>blending          | \$100–136                                                       | 6-7                                         | Compared nuclear- $H_2$ to energy equivalent price<br>of natural gas on HHV Btu basis. This cost of<br>avoided CO <sub>2</sub> is for the range of natural gas prices<br>for natural gas electricity generators in the<br>Minnesota's Twin Cities region. |

## 7 CONCLUSION

Demand analysis forecasts for hydrogen were completed for the U.S. national market as well as the regional market in the greater Minneapolis area. The forecasted U.S. national demand is shown in the table below. The regional market for the greater Minneapolis area around Prairie Island and Monticello NPPs and the associated demand curves were summarized at the end of Section 2. Demand forecast data for this region is found in Appendix F.

| Application                             | Potential Hydrogen<br>Consumption <sup>97</sup><br>[ MMT/yr.] |
|-----------------------------------------|---------------------------------------------------------------|
| Petroleum Refineries                    | 7.5                                                           |
| Ammonia                                 | 2.5                                                           |
| Synfuels from ethanol-CO <sub>2</sub>   | 5                                                             |
| Injection to natural gas infrastructure | 16                                                            |
| Iron reduction and steelmaking          | 8                                                             |
| Light-duty FCEVs (cars and trucks)      | 21                                                            |
| Medium-duty + heavy-duty FCEVs          | 8                                                             |

Table 45. Summary of forecasted U.S. hydrogen demand potential in 2050.

An LWR-HTSE process evaluation was herein presented. The evaluation determined that an HTSE, scaled to match the energy output of an LWR plant, would require approximately 5% of the LWR steam flow to provide the process-heat input needed to vaporize HTSE-process feedwater. The analysis specified the use of Therminol-66 as the HTF to transfer nuclear process heat a 1 km distance to the HTSE plant. The HTSE plant was determined to have specific energy requirements of 37.4 kWh-e/kg-H<sub>2</sub> and 6.4 kWh-t/kg-H<sub>2</sub>. The HTSE plant efficiency was calculated as 88.9% on a HHV basis. Two SOEC technology cases were considered in evaluating HTSE LCOH:

- 1. The HTSE base case is founded on a stack-cost specification of \$155/kW-dc, consistent with that reported for current SOEC technology in the DOE HFTO Hydrogen Production Record.<sup>30</sup> The base case also uses the HFTO Record stack service-life specification of 4 years. This analysis includes annual stack replacements to restore the HTSE plant design-capacity rating at the start of each operating year. The base case NOAK HTSE plant with a hydrogen production design capacity of 383 tonne/day (597 MW-e) has a DCC of \$574/kW-ac (including HTSE plant equipment and NPP heat- and power-delivery equipment), and the total capital investment of \$742/kW-ac includes project indirect costs in addition to DCC listed above. When energy from the LWR is purchased at a price of \$30/MWh-e (the nuclear plant thermal efficiency is used to derive corresponding thermal-energy price), the base case HTSE plant is able to produce hydrogen at an LCOH of \$1.93/kg; however, this does not include product storage or transport costs.
- 2. The HTSE Advanced Case uses a stack module (i.e., stack plus balance-of-module) cost specification of \$35/kW as derived from the data presented in [44]. The advanced-case stack service life is specified as 7 years, which is consistent with current best-in-class SOEC technology. The advanced case NOAK HTSE plant with a hydrogen-production design capacity of 383 tonne/day (597 MW-e) has DCC of \$345/kW-ac and a total capital investment of \$446/kW-ac. When energy from the LWR is purchased at a price of \$30/MWh-e, the advanced case HTSE plant is able to produce hydrogen at an LCOH of \$1.53/kg (excluding storage and transport costs).

The advanced HTSE case represents SOEC-vendor stack-pricing estimates and best-in-class celldegradation-rate performance. It is expected that SOEC technology will be aligned with the advanced-HTSE case within the HTSE plant-construction schedule evaluated in this analysis (i.e., start of plant construction in 2026, with plant startup in 2027). The LCOH corresponding to the advanced LCOH is therefore most applicable for the purposes of comparison with natural gas SMR. The combination of decreased stack-module cost and increased stack service life enables the HTSE advanced case to achieve the specified \$0.40/kg reduction in LCOH relative to the HTSE base case across the range of electricity prices evaluated (Figure 53).

A sensitivity analysis evaluated the impact of several key-process and economic parameters on the HTSE LCOH. The upper and lower bounds for each of the input parameters were selected to correspond to expected technology advancement and/or variation in market conditions. Based on the selected range over which the sensitivity variables were perturbed, the parameters that have the greatest impact on LCOH are energy price and SOEC-stack cost. The second set of variables—including the learning rate (for decreases in modular equipment costs as a function of the number of units produced by the equipment manufacturer), stack service life, and IRR—have a medium impact on the LCOH. Once NOAK plant status has been achieved, defined as previous deployment of N = 100 count of 25 MW-e modular blocks, or 2.5 GW-e of production capacity, and a base plant capacity of several hundred MW is considered, perturbations to these variables have a less-pronounced impact on LCOH than the sensitivity variables identified above. Additional results and observations from the sensitivity analysis are listed below:

- Electricity price is major cost driver of HTSE LCOH. A decrease of \$10/MWh-e in the price of the energy obtained from the LWR would result in approximately a \$0.40/kg decrease in the HTSE hydrogen-production cost.
- Stack costs are also a major driver of the HTSE LCOH. The stack costs contribute to the initial plant construction costs as well as the HTSE plant O&M costs (for stack replacement). There is a significant difference between the values of the stack cost specified by DOE HFTO for a "current technology" hydrogen-production cost evaluation<sup>30</sup> versus the stack cost that specific SOEC vendors have reported would be possible using current technology with manufacturing capacity of several hundred megawatts per year.<sup>44</sup> Therefore, a prospective HTSE plant developer could significantly reduce uncertainties in hydrogen production cost by obtaining project-specific stack/system pricing information from SOEC vendors.
- The learning rate affects the HTSE plant modular-equipment capital costs. Variation in the learning rate of ±5% has a moderate impact on LCOH relative to the other sensitivity variables evaluated. Planned expansions in vendor-specific manufacturing capacity could affect the learning rate that is realized as establishment of large-scale SOEC manufacturing capacity continues in the coming years.
- Provided an NOAK HTSE plant is installed at large (i.e., several hundred megawatts) scale, scalable plant components (e.g., nuclear process-heat delivery, electrical-power distribution, utilities) will have achieved sufficient economies of scale, and modular HTSE process components will have obtained cost reductions through economies of mass production. Therefore, there is a relatively minor impact to the LCOH from the HTSE plant-capacity specification over a range from several hundred megawatt up to gigawatt-scale HTSE.

A comparison of LWR-HTSE and natural gas SMR LCOH was performed to identify cases where HTSE could produce hydrogen at a cost competitive with SMR. The SMR LCOH is highly dependent on natural gas pricing. Use of a modified 2021 AEO WNC Region Reference Case natural gas price projection results in an LCOH estimate of \$1.03/kg for an natural gas SMR plant with a design capacity of 380 tonne/day (342 tonne/day actual production rate).

Because hydrogen produced via SMR is associated with significant carbon emissions, it is possible that hydrogen consumers would be willing to pay a price premium for carbon-free green hydrogen or that a price on carbon could increase the effective cost of SMR-derived hydrogen. The natural gas SMR LCOH is increased by approximately 0.01/kg for every  $1/MT-CO_2$  tax that is applied. Specifically, the calculations described in Section 3.3.2 indicate that a carbon tax of  $25/tonne-CO_2$  would result in an increase in the natural gas SMR LCOH of 0.22/kg. In addition to the electricity price and SOEC stack cost/service life, the presence of a CO<sub>2</sub> tax is one of the most significant drivers that could determine the profitability of hydrogen production via HTSE relative to SMR.

The analysis concludes that advanced HTSE technology (e.g., the advanced HTSE case), a low electricity price (e.g., the advanced HTSE case requires an electricity price of 21.1/MWh-e to compete with natural gas SMR in the absence of a carbon tax), and/or a green-hydrogen production credit or carbon tax on CO<sub>2</sub> emissions from natural gas SMR would be required for HTSE to be cost competitive with SMR.

## 7.1 HTSE Optimization Summary

The findings of the NPP-HTSE optimization are:

- Adding an HTSE at Prairie Island is competitive at low capital costs. PTC is not needed when CAPEX is below \$300/kw for a few hydrogen delivery levels. CAPEXs above \$300/kW require carbon-free credit or PTC.
- HTSE at Monticello is a more difficult economic proposition. The smaller hydrogen market means that a PTC of at least \$0.6/kg to \$0.7/kg is required to make the system more profitable than BAU.
- The profitability of both systems is highly dependent on the hydrogen market that surrounds the plant. Providing too much hydrogen saturates the market and drops the price of hydrogen, making it difficult for the NPP with HTSE to compete with BAU.
- A matrix of profitable configurations was provided for both PI and Monticello. This matrix provides minimum requirements of HTSE CAPEX, hydrogen demand, and clean-hydrogen credit for the system to be profitable compared to BAU.
- The storage tank sizes for both systems fluctuate between 2–3 hours storage and 5 hours storage, depending on CAPEX. A higher CAPEX depresses storage because more storage requires a larger HTSE. One hour of storage is assumed to cover the required hydrogen demand for 1 hour.
- This analysis is from the perspective of a nuclear-with-HTSE plant. Extending this analysis to a systemwide approach to investigate the value of flexible operation on other generators and their deployment, and overall system cost would be advantageous. This could be done by extending this optimization structure to perform a dispatch with other generators modeled. Another approach would be to use a capacity-expansion model with PI and Monticello IESs included.

## 7.2 LWR Nuclear-H<sub>2</sub> Utilization Scenarios and Carbon Reduction

- The cost of NH<sub>3</sub> production per the NPP-HTSE-NH<sub>3</sub> plant analyzed in this report assumes an electricity cost of \$30/MWh. The cost of avoided CO<sub>2</sub> is also plotted to show the cost of decarbonization or the hypothetical carbon credit that would make the NPP-HTSE-NH<sub>3</sub> on parity with conventional ammonia production.
- The CO<sub>2</sub> reduction impact of hydrogen blending with natural gas in natural gas power plants was evaluated. A 30 vol% mixture of hydrogen with CO<sub>2</sub> results in just over 10% reduction in CO<sub>2</sub>. This is because 30 vol% H<sub>2</sub> with natural gas represents only ~9% blending by energy because the volumetric heating value of hydrogen is approximately 30% of the corresponding heating value of natural gas. Although the potential greenhouse-gas (GHG)-emission reduction for this mixing ratio

appears small, the amount of potential  $CO_2$  abatement is significant due to the large contribution of natural-gas generating plants to the U.S. national GHG-emissions inventory.

• Synthetic fuels production analysis using the HTSE + RWGS + FT pathway was discussed in the above sections. This chart shows that with the advanced synfuels case using the advanced HTSE case inputs, a CO<sub>2</sub> feedstock cost of \$17/MT, and the 2050 diesel forecast price, synthetic diesel fuel via this pathway could be competitive with conventional diesel if hydrogen were produced at \$1.14/kg.

## 8 **REFERENCES**

- 1. Boardman R.D. et al. 2019. Evaluation of Non-electric Market Options for a Light-water Reactor in the Midwest. INL/EXT-19-55090. Idaho National Laboratory. Idaho Falls, ID.
- 2. Frick Konor L. et al. 2019. Evaluation of Hydrogen Production Feasibility for a Light Water Reactor in the Midwest. Report INL/EXT-19-55395. Idaho National Laboratory. Idaho Falls, ID.
- Light Water Reactor Sustainability Program, Integrated Program Plan, INL/EXT-11-23452, Rev 8, May 2020
- 4. Frew B., Levie D, Richards J, Desai Jal, Ruth M. Improved analysis of multi-output hybrid energy systems: a price-maker approach to a nuclear-hydrogen system in the Midwest United States. [pending release]
- 5. Elgowainy, M. Mintz, U. Lee, T. Stephens, P. Sun, K. Reddi, Y. Zhou, G. Zang, M. Ruth, P. Jadun, E. Connelly, R. Boardman. 2020. "Assessment of Potential Future Demands for Hydrogen in the United States," Energy Systems. https://greet.es.anl.gov/publication-us\_future\_h2
- 6. Argonne (Argonne National Laboratory), 2016. VISION Model, Energy Systems Division. Available at https://www.anl.gov/es/vision-model
- 7. ORNL, undated, MA3T Model. Available at https://www.ornl.gov/content/ma3t-model.
- 8. T. Stephens, R. Levinson, A. Brooker, C. Liu, Z. Lin, A. Birkey, and E. Kontou, 2017a. Comparison of Vehicle Choice Models, ANL/ESD-17/19, Argonne National Laboratory, Argonne, IL.
- T. Stephens, A. Birkey, and D. Gohlke, 2017b. Vehicle Technologies and Fuel Cell Technologies Office Research and Development Programs: Prospective Benefits Assessment Report for FY 2018, ANL/ESD-17/22, Argonne National Laboratory, Argonne, IL.
- 10. Roadmap to a US Hydrogen Economy," 2020. http://www.fchea.org/us-hydrogen-study
- 11. EPA, 2016b. 2014 National Emissions Inventory. Available at https://www.epa.gov/airemissions-inventories/national-emissions-inventory-nei, accessed July 10, 2020.
- 12. https://greet.es.anl.gov/
- 13. J. R. Bartels and M. B. Pate. 2008. "A feasibility study of implementing an Ammonia Economy," Iowa State University December 2008.
- 14. EIA, 2018c. "Petroleum & Other Liquids: Refinery & Blender Net Input." https://www.eia.gov/dnav/pet/PET\_PNP\_INPT\_A\_EPOOOH\_YIR\_MBBL\_A.htm.
- J. Han, A. Elgowainy, M.Q. Wang, and V.B. DiVita, 2015. Well-To-Wheels Analysis of High-Octane Fuels with Various Market Shares and Ethanol Blending Levels, ANL/ESD-15/10. Argonne National Laboratory, Argonne, IL.
- 16. https://www.eia.gov/outlooks/aeo/tables\_ref.php
- 17. V. Chevrier, 2018. "Hydrogen Uses in Ironmaking," presented at the H2@Scale Workshop, Chicago, IL (August 1). https://www.energy.gov/sites/prod/files/2018/08/f54/fcto-h2-scalekickoff-2018-8-chevrier.pdf
- 18. AMR 2021: Technoeconomic and Life Cycle Analysis of Synthetic Fuels and Steelmaking Systems Analysis, Argonne National Laboratory, Elgowainy, Amgad, SA174 https://www.hydrogen.energy.gov/amr-presentation-database.html

- 19. USGS, 2017. Mineral Commodity Summaries 2017, U.S. Geological Survey, Reston, VA. https://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/mcs-2017-nitro.pdf.
- 20. Elgowainy. A. "Ammonia (NH3) Production" Personal communication–written excerpt from H2@Scale Analysis. Argonne National Laboratory. October 5, 2020.
- M. J. Palys and Daoutidis, P. (2020) 'Using hydrogen and ammonia for renewable energy storage: A geographically comprehensive technoeconomic study', Computers & Chemical Engineering, 136.
- 22. X. Liu et al. 2020. "Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products." Green Chemistry 22, no. 17: 5751–5761.
- S. D. Supekar and S. J. Skerlos. 2014. "Market-Driven Emissions from Recovery of Carbon Dioxide Gas," Environmental Science & Technology 48, no. 24:14615–14623. doi: 10.1021/es503485z
- 24. EPA, 2017. Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990–2016. Report EPA 430-R-18-003, Washington, DC. https://www.epa.gov/sites/production/files/2018-01/documents/2018\_complete\_report.pdf
- 25. EIA, 2018d. Petroleum & Other Liquids: U.S. Fuel Ethanol Plant Production Capacity Archives. https://www.eia.gov/petroleum/ethanolcapacity/archive/2017/index.php.
- 26. G. Zang et al. 2021a. "Life Cycle Analysis of Electro fuels: Fischer–Tropsch Fuel Production from Hydrogen and Corn Ethanol Byproduct CO2." Environmental Science & Technology 55, no. 6: 3888-3897.
- 27. Hydrogen Delivery Scenario Analysis Model (HDSAM) https://hdsam.es.anl.gov/index.php?content=hdsam
- 28. AspenTech. Aspen HYSYS. V10 (36.0.0.249), 2017. https://www.aspentech.com
- 29. J. E. O'Brien, J. L. Hartvigsen, R. D. Boardman, J. J. Hartvigsen, D. Larsen, and S. Elangovan. 2020. "A 25 kW high-temperature electrolysis facility for flexible hydrogen production and system integration studies," International Journal of Hydrogen Energy 45, no. 32: 15796–15804. doi: 10.1016/j.ijhydene.2020.04.074
- 30. DOE Hydrogen and Fuel Cells Program Record. Hydrogen Production Cost from High Temperature Electrolysis – 2020, Record #20006. https://www.hydrogen.energy.gov/pdfs/20006production-cost-high-temperature-electrolysis.pdf
- 31. J. E. O'Brien, Su-Jong Yoon, Piyush Sabharwall, and Shannon M. Bragg-Sitton. 2017. "High-Pressure, High-Temperature Thermal Hydraulic Test Facility for Nuclear-Renewable Hybrid Energy System Studies; Facility Design Description and Status Report." United States. INL/EXT-17-43269. Doi: 10.2172/1468574
- Frick K, Duenas A, Sabharwall P, Yoo J, Su-Jong Yoon, Stoots C, O'Brien J.E., and O'Brien T. 2018. "Operation and Control of the INL Thermal Energy Delivery System (TEDS)." United States. INL/CON-18-46075. https://www.osti.gov/servlets/purl/1498772
- Kurt G. Vedros, Robby Christian, and Cristian Rabiti. 2020. "Probabilistic Risk Assessment of a Light Water Reactor Coupled with a High Temperature Electrolysis Hydrogen Production Plant. United States," INL/EXT-20-60104. DOI: 10.2172/1691486
- 34. L. Wang et al. 2019. "Power-to-fuels via solid-oxide electrolyzer: Operating window and technoeconomics," Renewable and Sustainable Energy Reviews 110: 174-187.

- J. E. O'Brien et al. 2010. "High Temperature Electrolysis for Hydrogen Production from Nuclear Energy—Technology Summary," Idaho National Laboratory, Idaho Falls, Idaho, INL/EXT-09-16140.
- 36. Buttler and S. Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews 82: 2440–2454.
- 37. A. Al Zahrani and I. Dincer. 2018. "Modeling and performance optimization of a solid oxide electrolysis system for hydrogen production," Applied Energy 225: 471–485.
- 38. U.S. Department of Energy Hydrogen and Fuel Cells Program. DOE H<sub>2</sub>A production Analysis. Available: https://www.hydrogen.energy.gov/h2a\_production.html
- 39. Nuclear Regulatory Commission "Prairie Island, Units 1 and 2, Revision 34 to Updated Safety Analysis Report" Section 11, Plant Power Conversion System. 93 pages, June 3, 2016. Available: https://www.nrc.gov/docs/ML1616/ML16168A358.pdf
- 40. Nuclear Regulatory Commission "Prairie Island, Units 1 and 2, Revision 34 to Updated Safety Analysis Report" Section 8, Plant Electrical Systems. 79 pages. June 3, 2016. Available: https://www.nrc.gov/docs/ML1616/ML16168A332.html
- 41. Aspen Process Economic Analyzer V10 (1st Qtr 2016 Pricing Basis). www.aspentech.com (2017)
- 42. P. Krull, J. Roll, and R. D. Varrin. 2013. HTSE Plant Cost Model for the INL HTSE Optimization Study. Reston (VA): Dominion Engineering, Inc. Report No.:R-6828-00-01.
- 43. Manufacturing Cost Analysis of 100 and 250 kW Fuel Cell Systems for Primary Power and Combined Heat and Power Applications. Department of Energy, Contract No. DE-EE0005250 (2016).
- 44. E. Tang, T. Wood, C. Brown, M. Casteel, M. Pastula, M. Richards, and R. Petri. 2018. Solid Oxide Based Electrolysis and Stack Technology with Ultra-High Electrolysis Current Density (>3A/cm<sup>2</sup>) and Efficiency. FuelCell Energy, DE-EE0006961.
- 45. Argonne National Laboratory. Hydrogen Delivery Scenario Analysis Model (HDSAM) https://hdsam.es.anl.gov/index.php?content=hdsam
- 46. L. Todd Knighton, Daniel Wendt, Abdalla Jaoude, Cristian Rabiti, Richard Boardman, Amgad Elgowainy, Krishna Reddi, Adarsh Bafana, Brian D. James, Brian Murphy, Julia Scheerer, and Fred Peterson. 2020. "Scale and Regionality of Nonelectric Markets for U.S. Nuclear Light Water Reactors." INL/EXT-20-57885. doi 10.2172/1615670.
- 47. Gavin Towler and Ray Sinnott. Chemical Engineering Design–Principles, Practice and Economics of Plant and Process Design, 2nd Edition, Oxford: Butterworth-Heinemann, 2012.
- 48. U.S. EIA. 2021. Annual Energy Outlook 2021. Washington, DC. https://www.eia.gov/outlooks/aeo/
- 49. U.S. EIA. U.S. Census Regions and Divisions. https://www.eia.gov/consumption/commercial/maps.php
- 50. Xcel Energy. 2019. Upper Midwest Integrated Resource Plan 2020-2034, Northern States Power Company Docket No. E002/RP-19-368.
- 51. D. McCollum et al. 2018. "Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals," Nature Energy 3: 589–599.
- 52. P. Spath and M. Mann. 2001. "Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming," NREL/TP-570-27637.

- 53. https://doi.org/10.1021/acs.est.0c08674)
- 54. https://doi.org/10.2172/1556911
- 55. https://royalsocietypublishing.org/doi/10.1098/rsfs.2019.0065)
- 56. https://www.projectfinance.law/publications/2021/june/hydrogen-tax-credits/
- 57. K. Reddi, et al. 2016. 13–Building a hydrogen infrastructure in the United States. Compendium of Hydrogen Energy. M. Ball, A. Basile and T. N. Veziroğlu, eds. Oxford: Woodhead Publishing, 293–319.
- 58. K. Reddi et al. 2017. "Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen," International Journal of Hydrogen Energy 42, no. 34: 21855–21865.
- 59. D. Brown, J. Cabe, and T. Stout. 2011. National lab uses OGJ data to develop cost equations. Oil and Gas Journal, Jan 3, 2011: 108.
- 60. Argonne National Lab, National Renewable Energy Lab, and Pacific Northwest National Lab, 2010. Hydrogen Delivery Scenario Analysis Model. 2.3 edn. Fuel Cell Technology Office, DOE.
- 61. U.S. DRIVE Partnership, 2013, Hydrogen Delivery Technical Team Roadmap, Available: http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/hdtt\_roadmap\_june2013.pdf [01/27/2014].
- 62. R. A. Wood, "Nuclear-Integrated Ammonia Production Analysis," Idaho National Laboratory, Idaho Falls, Idaho, TEV-666, May 2010.
- 63. T. Eggeman, "Ammonia," in Kirk-Othmer Encyclopedia of Chemical Technology, 2010.
- 64. S. A. Leeper, "Wet Cooling Towers: 'Rule-of-Thumb' Design and Simulation," EGG-GTH-5775, 1981, Available: https://www.osti.gov/servlets/purl/5281927.
- 65. Linde Engineering Group. 2008. "Cryogenic Air Separation: History and Technological Process," product brochure.
- 66. L.T. Knighton et al. 2020. "Technoeconomic Analysis of Synthetic Fuels Pathways Integrated with Light Water Reactors" (September 2020). Idaho National Laboratory, INL/EXT-20-59775
- 67. G. Zang et al. 2021b. "Performance and cost analysis of liquid fuel production from H2 and CO2 based on the Fischer-Tropsch process." Journal of CO2 Utilization 46: 101459.
- 68. L.T. Knighton et al. 2020. "Markets and Economics for Thermal Power Extraction from Nuclear Power Plants for Industrial Processes." Idaho National Laboratory, INL/EXT-20-58884.
- 69. American Chemistry Council. 2019. "Chlorine Production." Retrieved May 20, 2020 from https://chlorine.americanchemistry.com/Chlorine/ChlorineProduction/.
- 70. Statista. 2019. "Chlorine production in the United States from 1990 to 2018." Retrieved June 2, 2020 from https://www.statista.com/statistics/974614/us-chlorine-production-volume/.
- 71. Industry Arc. 2020. "Chlorine Marke—Forecast (2020–2025)." Retrieved May 19, 2020 from https://www.industryarc.com/Report/15777/chlorine-market.html.
- 72. McMillan et al. 2016. Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduce its Carbon Emissions. Report NREL/TP-6A50-66763; Report INL/EXT-16-39680.
- 73. Office of Energy Efficiency and Renewable Energy. 2006. "Advanced Chlor-Alkali Technology." Retrieved June 2, 2020 from

https://www1.eere.energy.gov/manufacturing/industries\_technologies/imf/pdfs/1797\_advanced\_c hlor-alkali.pdf.

- 74. L. T. Knighton et al. 2020. Scale and Regionality of Non-Electric Markets for U.S. Nuclear Light Water Reactors (LWRs). Report INL/EXT-20-57885-Rev.000. DOI:10.2172/1615670.
- 75. K. Müller, K. Brooks, and T. Autrey, 2017. "Hydrogen Storage in Formic Acid: A Comparison of Process Options," Energy & Fuels 31: 12603–12611, doi: 10.1021/acs.energyfuels.7b02997.
- X. Lu, D. Y. C. Leung, H. Wang, M. K. H. Leung, and J. Xuan. 2014. "Electrochemical Reduction of Carbon Dioxide to Formic Acid," ChemElectroChem 1: 836–849, doi: 10.1002/celc.201300206.
- 77. Markets and Markets, Inc. 2018. "Formic Acid Market worth \$618,80.7 Thousand by 2019." Summary accessed 10 December 2018 via https://www.marketsandmarkets.com/PressReleases/formic-acid.asp
- 78. S. N. Bizzari and M. Blagoey. 2010. "CEH Marketing Research Report: Formic Acid." Chemical Economics Handbook. SRI Consulting. Accessed 24 March 2020 via https://web.archive.org/web/20110914202313/http://www.sriconsulting.com/CEH/Public/Reports /659.2000/
- 79. BASF. 2016. "BASF raises formic acid price in Europe and the Americas." June 2, 2016, BASF Press Release. Accessed 24 March 2020 via https://www.basf.com/us/en/media/news-releases/2016/06/P-US-16-067.html
- 80. BASF. 2017. "BASF to increase price for formic acid price in North America and South America." Jul. 3, 2017. BASF Press Release. Accessed 24 March 2020 via https://www.basf.com/us/en/media/news-releases/2016/06/P-US-16-067.html
- Market Research Future. 2018. "Formic Acid Market Research Report—Forecast to 2027." Accessed 4 February 2020 via https://www.marketresearchfuture.com/reports/formic-acidmarket-1132
- 82. Transparency Market Research. 2018. "Formic Acid Market—Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2017–2025." Summary accessed 4 February 2020 via https://www.transparencymarketresearch.com/formic-acid-market.html
- 83. BASF. 2020. "Formic Acid: Household & Industrial Cleaning." Promotional material. Accessed 24 March 2020 via https://www.basf.com/us/en/products/General-Business-Topics/formic-acid/cleaning.html
- 84. OCO Chemicals. 2019. "OCOform Technology." December 2019. Accessed 4 February 2020 via https://ocochem.com/technology/
- 85. OCO Chemicals. 2019. "Formic Acid." Accessed 4 February 2020 via https://ocochem.com/formic-acid/
- 86. Mordor Intelligence. 2019. "Formic Acid Market—Growth, Trends, and Forecast (2020–2025)." Accessed 4 February 2020 via https://www.mordorintelligence.com/industry-reports/formic-acidmarket
- 87. BASF. 2018. "Efficient Chemistry. Formic Acid." Accessed 4 February 2020 via https://www.basf.com/us/en/products/General-Business-Topics/formic-acid.html
- 88. United States Department of Agriculture. 2011. "Formic Acid—Livestock." June 2011. Accessed 5 February 2020 via https://www.ams.usda.gov/sites/default/files/media/Formic%20Acid%20TR.pdf

- A. Tullo. 2015. "Why Chemical Makers have Their Eyes on Formic Acid." C&EN Magazine. Dec. 7, 2015. Accessed 8 February 2020 via https://cen.acs.org/articles/93/i48/Chemical-Makers-Eyes-Formic-Acid.html
- 90. U.S. Food & Drug Administration Code of Federal Regulations Title 21. "Sec.186.1316: Formic acid." Apr. 4 1980. Accessed 24 March 2020 via https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=186.1316&SearchT erm=formic%20acid
- 91. European Union Regulation 2017/940. "Document 32017R0940: Concerning the authorization of formic acid as a feed additive for all animal species." June 1, 2017. Accessed 24 March 2020 via https://eur-lex.europa.eu/eli/reg\_impl/2017/940/oj
- 92. S. M. R. Harun and Y. Ogneva-Himmelberger. 2013. "Distribution of Industrial Farms in the United States and Socioeconomic, Health, and Environmental Characteristics of Counties." Geography Journal. doi: 10.1155/2013/385893
- 93. BASF. 2011. "The Efficient Alternative to Acetic Acid: Formic Acid from BASF." Promotional Literature. Accessed 26 February 2020 via https://documents.basf.com
- 94. K. Muller, K. Brooks, and T. Autry. 2017. "Hydrogen Storage in Formic Acid: A Comparison of Process Options." Energy & Fuels 31: 12603-12611. doi: 10.1021/acs.energyfuels.7b02997
- 95. BMT Netherlands B.V., Cargo Handbook. 2009. "Formic Acid." Accessed 5 February 2020 via https://cargohandbook.com/index.php/Formic\_acid.
- 96. H. Yang, J. J. Kaczur, S. D. Sajjad, and R. I. Masel. 2017. "Electrochemical conversion of CO<sub>2</sub> to formic acid using Sustainion<sup>™</sup> membranes." Journal of CO<sub>2</sub> Utilization 20: 208–217, doi: 10.1016/j.jcou.2017.04.011.
- 97. "Assessment of Potential Future Demands for Hydrogen in the United States" https://greet.es.anl.gov/publication-us\_future\_h2
- 98. L. T. Knighton et al. 2020. "Markets and Economics for Thermal Power Extraction from Nuclear Power Plants for Industrial Processes." Idaho National Laboratory, INL/EXT-20-58884.
- 99. S. Hancock, A. Shigrekar, and T. Westover. 2020. "Incorporation of Thermal Hydraulic Models for Thermal Power Dispatch into a PWR Power Plant Simulator," INL-EXT-20-58766.
- 100. INL/EXT-20-60104, "Flexible Plant Operation and Generation Probabilistic Risk Assessment of a Light Water Reactor Coupled with a High-Temperature Electrolysis Hydrogen Production Plant," October 2020.
- 101. 10 CFR 50.59, "Changes, tests and experiments", U.S. Nuclear Regulatory Commission, https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0059.html, August 2017.
- RG-1.174, "An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis", Revision 3, U.S. Nuclear Regulatory Commission, January 2018.
- 103. 10 CFR 50.90, "Application for amendment of license or construction permit at request of holder", U.S. Nuclear Regulatory Commission, https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0090.html, August 2017.
- 104. INL/EXT-19-55884. 2020. "Preliminary Probabilistic Risk Assessment of a Light Water Reactor Supplying Process Heat to a Hydrogen Production Plant," Revision 1, March 2020.
- 105. https://science.sciencemag.org/content/370/6513/eaba6118/tab-pdf

- 106. https://www.sunfire.de/en/company/news/detail/grinhy2-0-sunfire-delivers-the-worlds-largest-high-temperatur-electrolyzer-to-salzgitter-flachstahl
- 107. https://www.sunfire.de/en/products-and-technology/sunfire-hylink
- 108. https://www.energy.gov/ne/articles/us-department-energy-announces-269-million-advancednuclear-technology
- 109. https://www.process-worldwide.com/haldor-topsoe-teams-up-with-denmarks-mega-green-fuel-project-a-959490/?cmp=nl-206&uuid=FC84C93D-A843-4147-B58E69D48005A794
- 110. https://www.bloomenergy.com/newsroom/press-releases/bloom-energy-announces-initialstrategy-hydrogen-market-entry
- 111. https://nexceris.com/solutions/solid-oxide-electrolyser-cell/
- 112. https://www.solidpower.com/en/about-us/history/
- 113. https://www.energy.gov/ne/articles/us-department-energy-announces-269-million-advanced-nuclear-technology
- 114. X. Chen. 2015. Sodium sulfur battery. Retrieved June 25, 2020, from https://ziang.binghamton.edu/sodium-sulfur-battery/
- 115. Shared with Permission: Evan Ture, Chief Revenue Officer, Indie Energy
- 116. Cole, W., & Frazier. (2020). Cost projections for utility-scale BATTERY Storage: 2020 Update (pp. 1-15, Rep.). Golden, CO: NREL.
- R. Fu, T. Remo, R. Margolis (2018). U.S. Utility-scale Photovoltaics-Plus-Energy-Storage System Costs Benchmark, 2018, National Renewable Energy Laboratory. NREL-TP-6A20-71714. Golden, CO. Nov. 2018.
- 118. Cause of NAS battery Fire INCIDENT, Safety Enhancement measures and resumption of operations. (2012, April 25). Retrieved July 16, 2020, from https://www.ngk-insulators.com/en/news/20120425\_9322.html
- 119. N. Johnson. 2016. "Battery Technology for CO2 Reduction." Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance: towards Zero Carbon Transportation, by Richard Folkson, Woodhead Publishing, 2016, 582–631.
- 120. (n.d.). Retrieved from https://afdc.energy.gov/fuels/hydrogen\_production.html (n.d.). Retrieved from http://www.globalconstructionreview.com/news/south-korea-signs-deal-develop-small-modular-react/ Dong Ding, Y. Z. (2013). A Novel Low Thermal Budget Approach for Co-Production of Ethylene and Hydrogen via Electrochemical Non-Oxidative Deprotonation of Ethane. Royal Society of Chemistry, 1-3. M. W. Melaina, O. M. (2013). Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues. NREL. PJM. (2018). 4.2.5 Equivalent Demand Forced Outage Rate (EFORd). In PJM Manual 18: PJM Capacity Market (p. 68).
- 121. Lithium-Ion battery. (2020). Retrieved July 20, 2020, from https://www.cei.washington.edu/education/science-of-solar/battery-technology/
- 122. Brian Eckhouse and Mark Chediak. 2019. "Explosions Threatening Lithium-Ion's Edge in a Battery Race." Bloomberg.com, Bloomberg, 23 Apr. 2019, www.bloomberg.com/news/articles/2019-04-23/explosions-are-threatening-lithium-ion-s-edge-in-a-battery-race.
- 123. Noden. 2018. Can a lithium-ion battery fire be put out on a vessel? Retrieved July 20, 2020, from https://www.governmenteuropa.eu/lithium-ion-battery-fire-vessel/88384/

- 124. IRENA. 2017. Electricity Storage and Renewables: Costs and Markets to 2030, International Renewable Energy Agency, Abu Dhabi.
- 125. D. Laing, C. Bahl, T. Bauer, M. Fiss, N. Breidenbach and M. Hempel, "High-Temperature Solid-Media Thermal Energy Storage for Solar Thermal Power Plants," in Proceedings of the IEEE, vol. 100, no. 2, pp. 516-524, Feb. 2012, DOI: 10.1109/JPROC.2011.2154290.
- 126. "Compressed Air Energy Storage." PNNL, 1 Aug. 2019, caes.pnnl.gov/.
- 127. IEA. 2019. "Will pumped storage hydropower expand more quickly than stationary battery storage? Analysis from Renewables 2018. 4 March 2019. Retrieved June 23, 2020, from https://www.iea.org/articles/will-pumped-storage-hydropower-expand-more-quickly-than-stationary-battery-storage
- 128. O. Galvan-Lopez. 2014. "The Cost of Pumped Hydroelectric Storage." Retrieved July 23, 2020, from http://large.stanford.edu/courses/2014/ph240/galvanlopez2/#:~:text=A%20low%20usage%20factor%20essentially,the%20course%20of%20several% 20years.
- 129. ARES Nevada. (n.d.). Retrieved July 23, 2020, from https://www.aresnorthamerica.com/about-ares-north-america
- 130. Highview Power. 2021. "Cryogenic energy storage." Retrieved July 23, 2020, from https://highviewpower.com/technology/
- 131. Highview Power. 2019. Highview power Unveils CRYOBATTERY, world's first GIGA-SCALE Cryogenic Battery. June 27, 2019. Retrieved June 23, 2020, from https://www.highviewpower.com/news\_announcement/highview-power-unveils-cryobatteryworlds-first-giga-scale-cryogenic-battery/
- 132. Shared with permission: Brett Estep.
- 133. J. Dodaro. 2015. Molten Salt Storage. December 15, 2015. Retrieved July 24, 2020, from http://large.stanford.edu/courses/2015/ph240/dodaro2/#:~:text=The%20salts%20are%20heated% 20and,a%20turbine%2C%20and%20generates%20electricity.
- 134. "Commercializing Standalone Thermal Energy Storage." Renewable Energy World. January 8, 2016Retrieved July 23, 2020, from https://www.renewableenergyworld.com/2016/01/08/commercializing-standalone-thermalenergy-storage/#gref

# APPENDIX A THERMAL POWER EXTRACTION FROM NUCLEAR POWER PLANTS

[Page intentionally blank]

# APPENDIX A THERMAL POWER EXTRACTION FROM NUCLEAR POWER PLANTS

## A-1. Thermal Energy Transport Analysis

This appendix discusses the preliminary results of separately completed analysis to understand the costs of thermal-energy transport from an NPP versus heat from a new installation of a commercial natural gas boiler.<sup>98</sup> These analyses are ongoing and fast developing and as such the below summary is not to be considered state of the art. Heat extraction from the NPP and thermal-energy transport are key analyses for understanding the advantages of integration of industrial processes with nuclear power.

The transportation distance of heat via a TDL from the NPP was analyzed and compared to a natural gas boiler, and the break-even distance was found. The break-even distance bounds the approximate limit that thermal energy could be transported from an NPP and still be competitive with the natural gas boiler. Figure A-1 shows the approximate cost of heat from a stationary onsite natural gas boiler versus heat generated from an NPP and transported at various distances. The dashed black line shows the cost of the natural gas boiler heat. The blue, green, and purple lines, respectively, show the cost of NPP heat at \$20, \$25, and \$30/MWhe, transported various distances. This analysis is preliminary and should be taken as a ballpark estimate of costs. A more-involved design analysis would need to be done for any specific project.

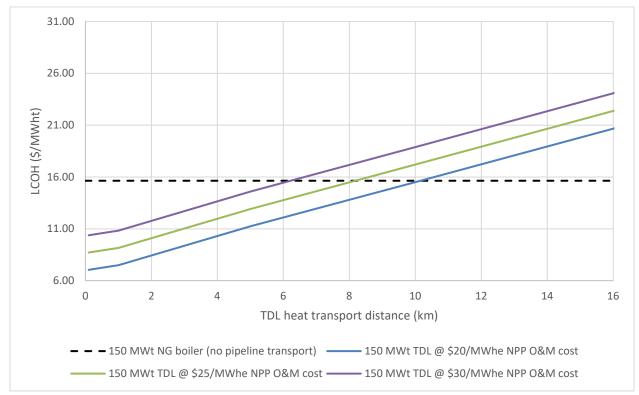



Figure A-1. LCOH versus heat-transport distance and NPP O&M cost. Plotted data points are based on a TDL capacity of 150 MWth and NPP O&M costs ranging from \$20 to \$30/MWhe. Assumes natural gas is purchased at a price of \$4.04/MMBtu.

### A-2. TPE Overview

Thermal-hydraulic modeling and NPP simulation have been performed using separate funding within the Light Water Reactor Sustainability (LWRS) Program at INL to support the development of designs for TPE from NPPs. That work includes modifying full-scope, high-fidelity PWR- and BWR-plant simulators to incorporate thermal- and electric power coupling to HTSE plants. It also includes performing hardware-in-the-loop and human-in-the-loop digital real time simulation (DRTS) tests using validated reduced-order NPP simulators, coupled to pilot scale thermal-hydraulic test systems that represent NPP operations and to greater than 50 kW HTSE units. These DRTS tests with robust NPP simulators and both hardware- and human-in-the-loop are necessary to understand the true coupling between NPPs, the bulk electric grid, and HTSE plants. The brief description below only summarizes the initial development of a full-scope, high-fidelity PWR simulator that was modified to incorporate thermal- and electric power coupling to a HTSE plant.

In 2020, the LWRS Program modified a full-scope generic pressurized water reactor (GPWR) simulator from GSE Systems (Sykesville, MD) to include TPE and delivery to an industrial user.<sup>99</sup> The boundary limits of the TPE simulator are shown by the dashed line in Figure A-2. The simulation includes: (1) a TPE line that extracts steam from the main steam line and passes the steam through extraction heat exchangers before returning the steam to the condenser and (2) a TPD loop that circulates synthetic heat-transfer oil between the extraction heat exchangers and a set of heat exchangers at the site of the industrial user (the first user tested will be a hydrogen plant), which may be as far as 1 km from the NPP. Rigorously simulating the modifications needed for electric power switching at the NPP switchyard and also simulating the complex dynamic behavior of the industrial user will be pursued in 2021.

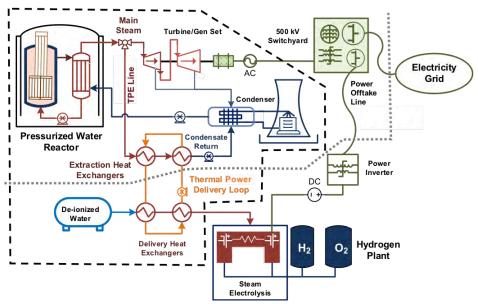



Figure A-2. Boundary limits of the thermal power dispatch GPWR simulator (dashed black line) and site boundary of the NPP (dotted grey line).

## A-3. Requirements and Decisions

As noted above, a TPE system must be incorporated into the nuclear plant to transfer thermal power from the PWR to the hydrogen plant. The TPE system includes a TPE line that removes steam from the main steam header, passes this steam through extraction heat exchangers that condense the steam, and then returns the condensate to the NPP condenser. A separate TPD loop transfers the heat from the

extraction heat exchangers to the industrial heat user, which may be located a kilometer or more away. Design requirements for the TPE system are summarized in Table A-1.

|   | Design Requirement                                                                                                                                                                                                                                                                                                                                                                          |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Use of the TPE system or any connection to the industrial facility will not impact safety operations at the NPP                                                                                                                                                                                                                                                                             |
| 2 | The nuclear plant operators must have full control of the steam flow in the TPE line<br>with prerogative to completely stop steam flow without the possibility of<br>interference from the industrial facility (such as a hydrogen plant)                                                                                                                                                   |
| 3 | Changes in the rate of steam diverted to the TPE system from 0 (0 steam flow) to 5% (2.9 105 kg/hr steam) of total thermal power must not cause total NPP thermal power to exceed 100% reactor power (2900 MWth)                                                                                                                                                                            |
| 4 | Use of the TPE system must not adversely affect the existing updated final safety analysis report (UFSAR) design basis accidents (DBA) analyses (specifically, any effects on the step-load decrease transient)                                                                                                                                                                             |
| 5 | The TPE system will be designed to allow switching of at least 90% of power<br>delivery from the industrial facility to the electric grid in less than 10 minutes, such<br>that the power to the industrial facility can act as a dispatchable load; the integrated<br>system shall be capable of cycling power to and from the hydrogen plant at least<br>two times in each 24-hour period |

Table A-1. Design requirements for the TPE System proposed for a PWR.

Design decisions that follow from the design requirements include:

- I. The TPE System will extract steam from the main steam header (MSH) downstream of the main steam isolation valve (MSIV) so that the extraction point will be outside containment, but prior to the turbine throttle and governor valves, to provide steam with the highest possible temperature (decision to meet Requirement 1).
- II. Isolation flow control valves (FCVs) will be installed in the TPE line that will be operable from the main control room to allow NPP operators to immediately stop the flow at any time (decision to meet Requirement 2).
- III. Reactor controls will be modified such that the reactor remains between 98 and 100% thermal power while steam flow is increased or decreased in the TPE line, preferably without the use of control rods or adjustments to boron concentration in the reactor coolant (decision to meet Requirement 3).
- IV. Steam flow rate in the TPE line is preferred as a control variable because TPE is directly proportional to steam-flow rate (this decision facilitates Requirements 2 and 3).
- V. Reactor controls will be modified such that the control rods will not move during normal operations at 100% reactor power (2900 MWth) due to the operation of the TPE system (decision to meet Requirements 1 and 4).
- VI. Steam in the TPE line will be fully condensed to liquid water in the extraction heat exchangers.
- VII. Condensate from the TPE line will be returned to the condenser. Future work may also consider returning condensate, which has a temperature of approximately 193.3°C, to the feedwater heater system to increase efficiency.

- VIII. A closed-loop TPD loop is used to transport heat to the industrial facility to maintain as much flexibility as possible.
  - IX. The HTF in the TPD loop may be either steam or synthetic oil (see below).

As noted in Design Decision IX, the HTF in the TPD loop may be either superheated steam or synthetic heat-transfer oil. Table A-2 summarizes the relative advantages and disadvantages of these options. Due to the high latent heat of steam, the mass-flow requirement to transport a given quantity of heat is lower for steam than for oil. This is important because the mass momentum of the HTF in a kilometer-long TPD loop will be a limiting factor in starting and stopping flow using valves and pumps. However, if steam is used in the TPD loop, it must be condensed at the delivery heat exchangers to prevent damage to pumps and other equipment in the return condensate line. If steam is used as the HTF, the possibility that an unexpected event could cause a sudden shutdown of the hydrogen plant will require a backup heat sink or heat-storage capacity to mitigate potential damage to the TPD loop pump. Because the vapor pressure of steam at the anticipated operating temperature is much higher than that of synthetic oil, a steam-based TPD loop would have a higher operating pressure. Thermal hydraulic models are developed for both HTF options, and detailed modeling results are presented. A final consideration is that the pump power requirements of a TPD loop with oil are approximately 20 times higher than for a TPD loop with steam, as will be discussed.

| HTF Option           | Potential Advantages                                                                                                                                                                                                                                                                                      | Potential Disadvantages                                                                                                                                                                                                                                                                                                                                      |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Superheated<br>Steam | Low mass flow required due to the<br>high latent heat<br>High heat-transfer coefficients from<br>phase change allow low approach<br>temperatures<br>Steam is compatible with steam in the<br>main steam line in case of leaks<br>across heat exchangers<br>Low TPD loop pump power<br>requirement (36 kW) | All steam in the TPD loop must be<br>condensed at delivery heat<br>exchangers to avoid damaging TPD<br>loop pump and other equipment<br>Vapor pressure of steam requires<br>high operating pressure                                                                                                                                                          |
| Synthetic<br>Oil     | Low vapor pressure of synthetic oil<br>allows low operating pressure<br>Single-phase flow simplifies design<br>and allows greater operational<br>flexibility                                                                                                                                              | High mass flow is required to<br>transport required heat<br>Synthetic oil poses an additional<br>contamination risk if it reaches the<br>condenser due to a leak in the<br>extraction heat exchangers<br>More expensive: the capital cost of<br>the oil is expected to be in the range<br>of \$1,000,000<br>High TPD-loop pump-power<br>requirement (784 kW) |

Table A-2. Relative advantages and disadvantages of using superheated steam or synthetic oil as the HTF in the TPD loop.

## A-4. Thermal Power Dispatch Design for Steam in the TPD Loop

Analysis have been performed for TPE-system designs that employ both synthetic oil and steam in the TPD loop. Only the simulator using steam in the TPD loop is discussed here for brevity. The piping

and instrumentation diagram (P&ID) of the TPE line for the model with steam in the TPD loop is shown in Figure A-3.

The steam condition available for extraction at the MSH is saturated steam with a total mass flow rate of  $5.8 \times 106$  kg/hr at 69.5 bar. The extraction heat exchangers required for heat transfer to the TPD loop are located at the NPP site to reduce licensing complications. They are also near the turbine system to reduce losses and to minimize the amount of additional steam inventory that is cycled through the NPP. TPE-1 is the main control valve for the TPE line and the control with the largest effect on reactivity control. During steady-state operations, the flow of steam in the TPD loop should be sufficient to fully condense the steam in the TPE line to avoid sending high-pressure steam to the condenser, which would decrease plant operating efficiency. Steam traps in the main extraction line downstream from TPE-1 remove condensate that forms while saturated steam as the heat source to the TPD loop. At a specified condensate level, TPE-3 opens to allow condensate to flow to the TPD-EHX-2. This design ensures that only liquid water can flow to TPD-EHX-2. TPD-EHX-1 has a vent to the condenser for use while the water level is building to the desired level.

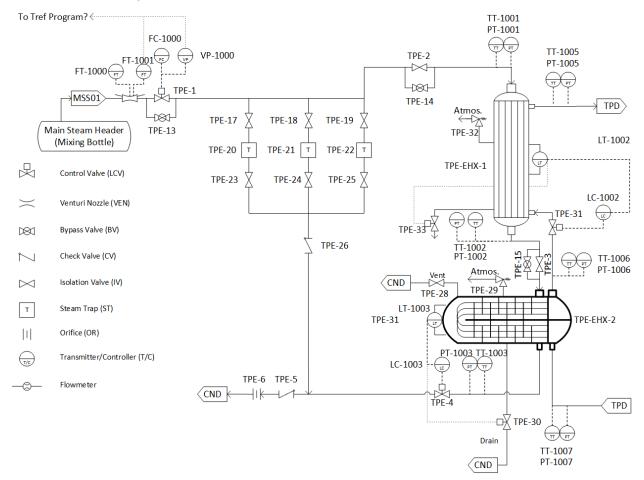



Figure A-3. P&ID for the TPE line for the model with steam in the TPD loop.

For the option in which superheated steam is used in the TPD loop, the extraction heat exchangers comprise a two-stage system because there will be a phase change in both the hot and cold fluids. The first heat exchanger (TPE-EHX-1) is similar to the Babcock and Wilcox once-through steam generator (OTSG). The saturated steam is on the tube side of the heat exchanger, and the delivery steam is evaporated completely and superheated on the shell side. The reason for this design choice is the fact that

the OTSG provides slightly superheated steam from a subcooled liquid inlet in a single heat exchanger. This, combined with the vertical nature of the heat exchanger, makes it reasonable to provide the desired heat-transfer and fluid conditions. The TPD loop steam is superheated by about 25°C to assist thermal delivery to the hydrogen plant, approximately one kilometer away, with minimal condensation.

Sending condensate from the TPE line to the condenser is the simplest engineering design for the system for many reasons. This condensate has a temperature of approximately 193.3°C and could alternatively be sent directly to the feedwater heaters to increase operating efficiency. However, doing so would increase design complexity and could introduce a potential process upset that would need to be evaluated. Considering that the total steam extraction is only 5% of total reactor power, the potential gain in efficiency would be small and is not believed to merit the increased design complexity.

In this model, TPD-EHX-2 has a design similar to a feedwater heater. The wet steam from the NPP enters this heat exchanger on the shell side to be condensed and subcooled by the condensate from the TPD loop. The condensate in the TPD loop is preheated in the tube side of the heat exchanger before being fully evaporated and superheated in TPE-EHX-1. The subcooled liquid is designed to exit TPE-EHX-2 at 193.3°C at a high-pressure of 68.3 bar. This liquid is throttled to condenser pressures through an orifice. A check valve prior to the which requires a high differential pressure to open. This helps to ensure that the TPE line remains pressurized in the event of a system malfunction to protect the chemistry of the nuclear steam in the case of a substantial tube leak in either of the extraction heat exchangers.

#### A-5. Thermal Power Delivery Loop Design with Steam

A P&ID of the proposed TPD loop with steam as the HTF is shown in Figure A-4. As the steam in the TPD loop is pumped through the tubes of TPE-EHX-2, it is preheated to saturation, and then it boils and superheats as it passes through the shell side of TPE-EHX-1. The maximum flow rate of steam exiting the extraction heat exchangers and moving toward the hydrogen plant is  $2.715 \times 10^5$  kg/hr and the temperature is  $252^{\circ}$ C. This steam travels approximately 1 km to the hydrogen plant via a pipe that is equipped with steam traps to ensure that dry steam is sent to the hydrogen plant's steam generator. The delivery-loop heat exchangers (TPD-HX-1 and TPD-HX-2) produce steam for the hydrogen plant by taking in feedwater at saturated conditions (about 5 bars) and producing superheated steam at a rate of  $2.751 \times 10^5$  kg/hr (approximately the same flow as the steam in the TPD loop noted above). The condensate is then pumped back to the TPE heat exchangers, where it is boiled into steam again.

It is envisioned that a sudden loss of power at the hydrogen plant would trigger an alarm at the nuclear plant to tell operators to reduce steam flow into the TPE line. This alarm setpoint would also control the flow rate of the condensate back to the TPE heat exchangers, which would require either a storage tank or an external discharge. An additional, important consideration is that the pressure of the steam in the TPD loop must be significantly lower than that of the steam in the TPE line to limit contamination across the extraction heat exchangers in the event of leaking tubes.

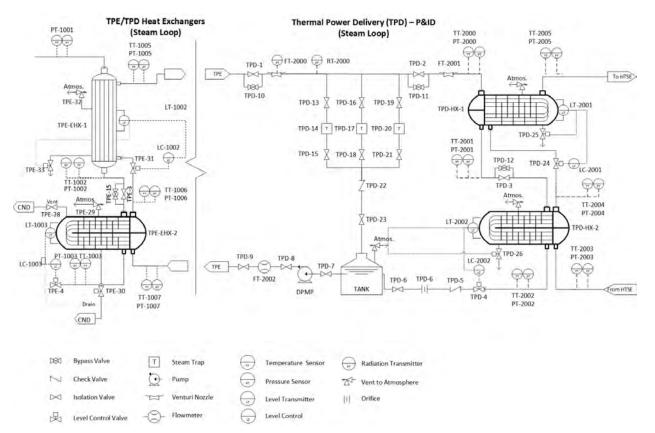



Figure A-4. P&ID for the TPD loop with steam as the HTF.

# A-6. Heat-Dispatch Model Descriptions

Multiple thermal-hydraulic models were developed for different scenarios with specific purposes:

- 1. Provide thermal hydraulic parameters for the heat-dispatch GPWR simulator
- 2. Gain understanding of scalability of thermal power dispatch from 200 kW to 150 MW and for thermal power dispatch distances from 0.1, 0.5, and 1.0 km.

The scenarios for which the thermal-hydraulic models were developed are summarized in Table A-3. The first scenario featured a thermal-power dispatch of 150 MW and a dispatch distance of 1.0 km. The combined steady-state TPE line and TPD loop thermal hydraulics were modeled using RELAP5-3D, and the steady-state thermal hydraulics of the TPD loop were also modeled using Aspen HYSYS using inputs to replace the TPE line that is consistent with results from the RELAP5-3D model. For the other scenarios, the thermal hydraulics of the TPD loop were only modeled using HYSYS because HYSYS is much more suitable for performing parametric studies. The second and third scenarios that were developed also employed a thermal-power dispatch of 150 MW, but featured dispatch distances of 0.5 and 0.1 km, respectively. For Scenarios 4 and 5, the thermal-power dispatch distance was fixed at 0.1 km while the dispatch power was reduced to 15 MW and 200 kW, respectively, approximately matching Thermal Energy Distribution System (TEDS) at INL. The fluid temperatures and pressure in all cases were the same as those in Scenario 1, and the flow rates were adjusted to achieve the appropriate heat balance. For the first five scenarios, the inside pipe diameter of the TPD loop was 57.45 cm, which corresponds to a 24-inch, schedule 40 NPS pipe. The parameters for Scenario 6 were identical to those of Scenario 5, except that the inside pipe diameter of the TPD loop was reduced to approximately 5.08 cm to

match the TED System at INL. Operating conditions of the various simulations are documented separately.

| Scenario | Heat dispatch power | Heat dispatch distance | Software and model extent                                       |
|----------|---------------------|------------------------|-----------------------------------------------------------------|
| 1        | 150 MW              | 1.0 km                 | RELAP5-3D for TPE line and TPD loop;<br>HYSYS for TPD loop only |
| 2        | 150 MW              | 0.5 km                 | HYSYS for TPD loop only                                         |
| 3        | 150 MW              | 0.1 km                 | HYSYS for TPD loop only                                         |
| 4        | 15 MW               | 0.1 km                 | HYSYS for TPD loop only                                         |
| 5        | 200 kW              | 0.1 km                 | HYSYS for TPD loop only                                         |
| 6*       | 200 kW              | 0.1 km                 | HYSYS for TPD loop only                                         |

Table A-3. Summary of scenarios for which thermal hydraulic models were developed.

\* For Scenario 6, the inside pipe diameter was decreased to 2 inches to match that of the TEDS at INL.

Figure A-5 shows a block buildup of the RELAP5-3D model of the TPE line and the TPD loop for the model with steam in the TPD loop. For the RELAP5-3D model with steam in the TPD loop, the heat-delivery heat exchangers were modeled as a simple heat sink, as shown by the solid black bar at the far right of Figure A-5. Another addition is a nitrogen surge tank in the TPD loop to regulate pressure in the closed system. This simple heat sink model is fully valid for steady-state flow as long as the magnitude of the heat sink ensures enthalpy balance at the thermal-delivery heat exchangers.

Figure A-6 shows a PFD of the HYSYS model TPD loop, with steam as the heat-transfer media. Similar to the model developed for the oil-based TPD, the stream operating conditions had to be specified along with appropriate pipe dimensions. For the steam-based TPD loop, superheated steam is produced via the TPE heat exchangers, wherein the bypass steam from the MSH condenses on the primary side and feedwater from the hydrogen plant is vaporized and superheated on the secondary side. This superheated steam is transported 1 km to the hydrogen plant, where it is condensed using by the delivery heat exchangers. The condensate is pumped back to the TPE line to complete the loop. Because there is phase change heat transfer in the steam-based TPD, which allows for more heat to be transferred per unit mass of the HTF, less fluid is required in the steam-based TPD. This results in a smaller pipe-diameter requirement for the TPD loop return line from the hydrogen plant, and also less pumping power. Notably, the TPD loop pumping power for oil is more than 20 times larger than that of steam (784 vs 35.6 kW).

The pipe and surrounding material specifications for both the RELAP5-3D and HYSYS models are summarized. Pressure drop in the TPD loop is modeled assuming an internal pipe diameter of 57.45 cm and a surface roughness of 0.05 cm. Heat loss through the walls of the pipe was calculated assuming stainless steel pipe with a wall thickness of 1.75 cm surrounded by 2 inches of urethane foam insulation and buried 1 m underground.

The design of the TPE lines and TPD loops in the models described above meets the design requirements and decisions described above. The TPE line is restricted to the immediate boundaries of the NPP and can be as short as possible to reduce the amount of additional steam that is cycled through the plant secondary system. The controls of the NPP can be designed such that the operation of the TPE line or any connection to the hydrogen plant will not significantly impact safety operations at the NPP. Steam in the TPE line is fully condensed to liquid water in the extraction heat exchangers and is sent directly to the condenser. Future work may also consider returning condensate, which has a temperature of approximately 193.3°C to the feedwater heater system instead of the condenser to increase the efficiency of the power system. A benefit of having a long TPD loop as an intermediary between the NPP and the hydrogen plant is that it provides mass and thermal inertia to smooth fluctuations in the steam flow in the

TPE line, as well as sudden changes that may occur at the hydrogen plant. The oil or steam transport time would provide operators at either plant an additional window to respond to events at the other plant. A long TPD loop will also prolong the time that is required to reach steady state after conditions are altered at either plant.

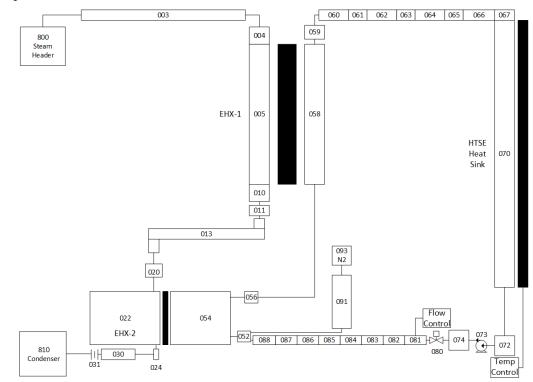



Figure A-5. RELAP5-3D nodalization for both the TPE line and the TPD loop for Scenario 1 with steam in the TPD loop.

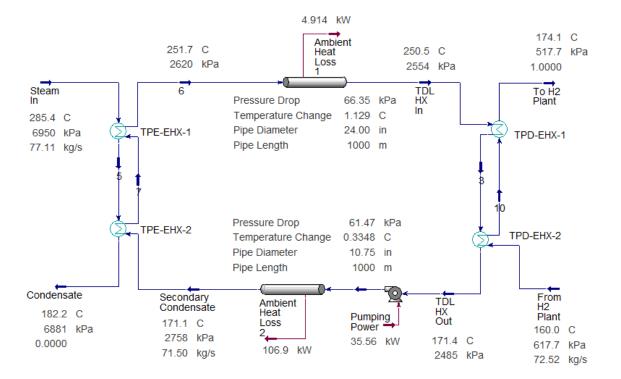



Figure A-6. Aspen HYSYS process model for TPD loop for Scenario 1 with steam in the TPD loop.

## A-7. Heat-Dispatch Model Results

Simulation results from Scenario 1 (with a thermal power dispatch of 150 MW and a dispatch distance of 1.0 km) with steam in the TPD loop are summarized in Table A-4. Key parameters for the TPE line include a maximum temperature of 279°C, a mass flow of steam in the TPE line of 80.3 kg/s, and a temperature of condensate that is returned to the condenser of 192.6°C. The pressure in the TPE line decreases from 6.93 MPA to 6.87 MPA at the outlet from TPE-EHX-2, and then to 0.01 MPA at the condenser. Key parameters for the TPD loop are a mass flow rate of thermal oil of 998 kg/s, a maximum temperature of 250.7°C at the outlet of EHX-1, and a minimum temperature of 177.0°C at the inlet to EHX-2. The highest pressure in the TPD loop with steam is 3.049 MPa. For comparison, the simulations using synthetic oil in the TPD loop indicated a maximum pressure of 0.407 MPa. The required flow rates for the simulations with different HTF are also vastly different. The flow rate in the TPD loop with steam because steam is able to transfer much more heat per unit of mass due to its phase change in the process. The total thermal power dispatch is 156.2 MW, and the total thermal loss in the TPD loop for Scenario 1 is approximately 171 kW (slightly over 1% of the total thermal-power dispatch).

For all scenarios, the fluid temperatures and pressures were consistent with the results from Scenario 1 using RELAP5-3D. These results are important because they confirm that accurate transient models can be developed using shorter thermal-power dispatch distances to reduce computational expense, and then the results can be scaled to any longer-dispatch distance. For Scenario 6, upon maintaining the same operating conditions similar to those of Scenario 5 and simply reducing the pipe diameter, the  $\Delta P$  increased and the  $\Delta T$  decreased as expected. Adjustments were made at the hydrogenplant side to more closely approximate the conditions of the integrated TEDS/HTSE system at INL. The feedwater-inlet temperature and pressure were changed to 20°C and 1 atm, respectively. The flow rate was adjusted such that the outlet conditions of the steam generated was 150°C and 1 atm. Negligible

pressure drop across the heat exchanger was assumed based on a design created specifically for this application by an OEM.

| Node\Description                      | Pressure, MPa<br>(psia)                       | Temperature,*<br>°C (°F)          | Quality      | Mass Flow, kg/s (KPPH)          |  |  |  |
|---------------------------------------|-----------------------------------------------|-----------------------------------|--------------|---------------------------------|--|--|--|
| TPE Line (supersa                     | TPE Line (supersaturated steam to condensate) |                                   |              |                                 |  |  |  |
| 001 (MSH)                             | 6.929 (1004.9)                                |                                   | 1            |                                 |  |  |  |
| 003 (Pipe to<br>EHX)                  |                                               |                                   |              | 80.3 <u>4</u> (637. <u>60</u> ) |  |  |  |
| 004 (EHX-1<br>Inlet)                  | 6.88 <u>0</u> (998.0)                         | (Saturated)                       | 1            |                                 |  |  |  |
| 010 (EHX-1<br>Outlet)                 | 6.8 <u>64</u> (99 <u>5.5</u> )                | 267. <u>7</u> (513. <u>86</u> )   |              |                                 |  |  |  |
| 020 (EHX-2<br>Inlet)                  | 6.8 <u>82</u> (99 <u>8.1</u> )                | 27 <u>9.44 (535.00</u> )          |              |                                 |  |  |  |
| 024 (EHX-2<br>Outlet)                 | 6. <u>874</u> ( <u>997.1</u> )                | 19 <u>2.59 (</u> 3 <u>78.66</u> ) |              |                                 |  |  |  |
| 810 (Condenser)                       | 0.010 (1.5)                                   |                                   |              |                                 |  |  |  |
|                                       | TPI                                           | D Loop (supersatura               | ted steam)   |                                 |  |  |  |
| 070 (HTSE<br>Outlet)                  | <u>2.708 (392.81)</u>                         | 176. <u>96</u> (350. <u>52</u> )  |              |                                 |  |  |  |
| 073 (Pump)                            |                                               |                                   |              | <u>75.26 (597.52)</u>           |  |  |  |
| 052 (EHX-2<br>Inlet)                  | <u>3.067 (444.89)</u>                         | 17 <u>7.05</u> (3 <u>50.69</u> )  |              |                                 |  |  |  |
| 056 (EHX-2<br>Outlet/ EHX-1<br>Inlet) | <u>3.049 (442.19)</u>                         |                                   | <u>0.051</u> |                                 |  |  |  |
| 059 (EHX-1<br>Outlet)                 | <u>2.891 (419.25)</u>                         | 25 <u>4.14 (</u> 48 <u>9.45</u> ) |              |                                 |  |  |  |
| 068 (HTSE Inlet)                      | <u>2.834 (410.97)</u>                         | 2 <u>43.44 (470.20</u> )          |              |                                 |  |  |  |

| Table A-4. Results from      | RELAP5-3D model for Scenario  | 1 with steam in the TPD loop.  |
|------------------------------|-------------------------------|--------------------------------|
| rable if it it is found from | THE I S SD model for Sechario | i with steam in the II D loop. |

\* Reported temperatures are based on liquid water, which causes some irregularities. For example, the temperature of the liquid increases slightly from the outlet of EHX-1 to the inlet of EXH-2, presumably because some steam has condensed (quality has decreased).

# A-8. Safety Analysis of Thermal-Power Extraction and HTSE

There are two over-arching decisions to be made when considering flexible power operations: the economic case and the safety case. The economic case determines the desire to pursue the design change, and the safety case determines whether the design change will be allowed by the regulator. The safety case also affects cost in determining the lowest-cost design configuration that is acceptable to the regulator.

The safety analysis for HTSE has a natural split between the safety case for the heat-extraction system (HES) in the NPP and the external hazards caused by the HTSE that affect the NPP. The study INL/EXT-20-60104, *Flexible Plant Operation and Generation Probabilistic Risk Assessment of a LWR Coupled with a High-Temperature Electrolysis hydrogen Production Plant*<sup>100</sup> analyzed the safety case for

the HES and the external hazards of a high-temperature electrolysis facility (HTEF) by performing a hazard analysis and PRA for both a generic BWR and PWR. The generic BWR was based on a Mark I containment and is applicable to Monticello NPP. The generic PWR model was based on a 2-loop PWR with large dry containment, applicable to the Prairie Island NPP. The internal events for both BWR and PWR generic models match the internal events in the Monticello and Prairie Island NPP licensee and NRC standardized plant analysis risk PRA models. The hazard analysis within<sup>100</sup> identified hazards that were added or modified by the addition of a HES and coupling to a HTEF, recommended design options, and included the minimal safe distance from the HTEF to NPP critical structures. A nominal case where the design assumptions were followed was modeled in a PRA and quantified for the increase in DBA initiating-event frequencies, overall cored damage frequency (CDF), and large early-release frequency (LERF). The DBAs are determined and exhaustively listed and quantified in the existing plant's PRA. They encompass all accidents that can occur within the design basis of the plant's operations. It must be determined what effect any proposed changes have upon the plant's existing DBAs and whether any additional DBAs are introduced. The CDF is the summation of all the sequences of events within the PRA logic model's internal and external events from initiating events (IEs) through a core-damage end state. The LERF applies a set of multipliers (not over 1.0) to those IEs within the PRA which can lead to a large early release to quantify the risk.

The NRC develops various regulatory guides to assist license applicants' implementation of NRC regulations by providing evaluation techniques and data used by the NRC staff. Two distinct pathways through guides and codes of federal regulations (CFRs) are identified for use in the proposed LWR plant-configuration change approval.

One pathway uses 10 CFR 50.59, "Changes Tests and Experiments,"<sup>101</sup> to review the effects on frequencies of DBAs, amendment of the UFSAR, and determination of whether a licensing amendment review (LAR) is required. This pathway is dependent on the IE frequency, which is on the front end of the PRA.

A supporting pathway uses RG-1.174, "An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis,"<sup>102</sup> through use of risk-informed metrics to approve a plant-configuration change based on the effect on the overall CDF of an approved PRA. This pathway is dependent on the tail end, the CDF-resulting metric of the PRA.

The final pathway is the LAR process, which would use PRA results as well; however, the process uses 10 CFR 50.90, "Application for amendment of license or construction permit at the request of the holder,"<sup>103</sup> and should be avoided if possible due to the lengthy review and monetary burden.

Eight criteria are required to be met for licensing through 10 CFR  $50.59^{101}$ :

- 1. Result in more than a minimal increase in the frequency of occurrence of an accident previously evaluated in the final safety analysis report (as updated)
- 2. Result in more than a minimal increase in the likelihood of occurrence of a malfunction of a structure, system, or component important to safety previously evaluated in the final safety analysis report (as updated)
- 3. Result in more than a minimal increase in the consequences of an accident previously evaluated in the final safety analysis report (as updated)
- 4. Result in more than a minimal increase in the consequences of a malfunction of an SSC important to safety previously evaluated in the final safety analysis report (as updated)
- 5. Create a possibility for an accident of a different type than any previously evaluated in the final safety analysis report (as updated)

- 6. Create a possibility for a malfunction of a system, structure, or component (SSC) important to safety with a different result than any previously evaluated in the final safety analysis report (as updated)
- 7. Result in a design basis limit for a fission product barrier as described in the Final Safety Analysis Report (FSAR) (as updated) being exceeded or altered
- 8. Result in a departure from a method of evaluation described in the FSAR (as updated) used in establishing the design bases or in the safety analyses.

The bounding criterion of 10 CFR 50.59 is the "result in more than a minimal increase in the frequency of occurrence of an accident previously evaluated in the FSAR (as updated)." A "minimal increase in the frequency of occurrence" is understood to mean <15%. A preliminary PWR PRA<sup>104</sup> used a conservative estimated increase of over 15% and still met the RG-1.174 criteria. It was the task of the final PRA<sup>100</sup> not only to include a BWR model, but to also remove the conservatisms of the preliminary PRA through increased design knowledge and a thorough hazard analysis. This final PRA presented a realistic set of DBA frequencies for both BWR and PWR NPPs.

The results of <sup>100</sup> were compared to the criteria in U.S, NRC, 10 CFR 50.59<sup>101</sup> and RG-1.174.<sup>102</sup> The conclusion was that none of the DBA IE frequencies do not increase by more than 5.6% for any DBA, which is well within the criteria proposed in 10 CFR 50.59.<sup>101</sup> The report also conclude that both the CDF and the LERF increases were within Region III of RG-1.174,<sup>102</sup> providing further support for risk-informed decision making on design changes.

The generic cases for BWR and PWR NPPs set forth in [100] can be used as a roadmap for the sitespecific safety cases at Monticello and Prairie Island. Site-specific data that will be required to use PRA for licensing include:

- 1. Specific design of the HTEF that affects the external overpressure event on the NPP
  - a. H<sub>2</sub> production capacities
  - b. On-site storage and piping or shipping process
  - c. Presence of dedicated ceiling ventilation and other options shown in [100]
- 2. Specific design of the HES
  - a. Isolation valves configuration, number of bypass trains, and other options discussed in [100]
- 3. Site specifications
  - a. Natural and man-made barriers to blast overpressure
  - b. Other considerations and sensitivities to potential overpressure event
    - i. Pipelines in close proximity to HTEF
    - ii. Significant power lines in close proximity to HTEF
  - c. Other hazards identified as local to the site that can be affected by the addition of HES and HTEF

Safety analysis has only been done for the HES and HTEF thus far. Other possible hybrid integrations, such as an ammonia plant adjacent to an NPP, will require a hazard analysis specific to an ammonia-production facility and modification of the PRA to account for the identified hazards.

# APPENDIX B ALTERNATIVE MARKET ANALYSIS APPROACH

[Page intentionally blank]

# APPENDIX B ALTERNATIVE MARKET ANALYSIS APPROACH

Dispatch and optimization analysis developed in this report was from the viewpoint of the nuclear plant and coupled HTSE system. While this method is valuable, it does not provide insight into the perspective of a grid operator in a regulated system.

In a regulated market, the capacity and the electricity-generating assets are an acquired right of the ratepayer. The production of hydrogen is not currently part of the services provided to the ratepayer; therefore, its future introduction will have to be negotiated between regulators and utilities as to whether electricity sourced for the production of hydrogen could be acquired at the wholesale cost of production (behind the meter) or at the retail price (electricity from the grid).

Production of hydrogen using existing electricity-generating facilities, such as NPPs, is a new paradigm that may require new negotiation and out-of-the-box thinking in order to reach a novel, mutually beneficial state for all parties involved. Various alternative approaches may be found to framing the benefit of hydrogen co-generation and shifting an asset from baseload generation to a responsive one. The following describes one potential approach to framing this concept for a grid operator. The analysis intends to provide insight on valuing the production of hydrogen as a grid service.

# **B-1.** Alternative Economic Approach

One possible demonstration of an IES's value to the grid would be to classify the system as a load response. The HTSE procures electricity at retail price in times of low electricity demand to produce hydrogen and use that storage during peak demand, turning off the HTSE load. Because this load response also acts in a similar fashion to a battery, it provides inherent value to the grid. This could be paid out by a grid operator or independent system operator. A differential cash-flow analysis will be investigated to show some cases that compare IES flexibility to other load-response measures.

Figure B-1 provides an illustration of how the HTSE could be operated in an optimal fashion to minimize the cost of hydrogen and impact (increase in cost) to the grid as a system. During nominal conditions (i.e., charging), the NPP provides electricity to the grid and purchases it back to generate H<sub>2</sub> at the HTSE ( $e^- + \Delta e^-$ ). A fraction of the NPP steam is diverted to the HTSE. This feed allows for both enough hydrogen for the market (H<sub>2</sub>) and enough for storage ( $\Delta$ H<sub>2</sub>). During high-demand conditions (i.e., discharging), only the hot-standby capacity is taken from the grid ( $e^-$ <sub>HS</sub>). This can be equated to "roundtrip" efficiency losses. The accumulated  $\Delta$ H<sub>2</sub> in storage is then discharged to the market (at the nominal H<sub>2</sub> rate).

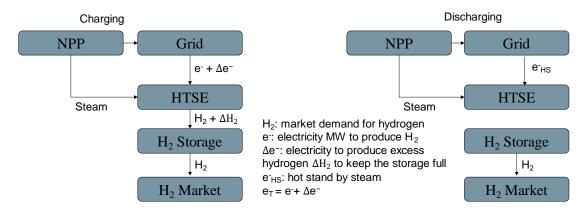



Figure B-1. Block flow diagram of the HTSE charge and discharge modes of operation.

Two main analogies can be made toward already-existing grid-asset types and contractual agreements: load-response or battery-like behavior. These analogies can help determine the value of the IES asset to the grid by giving meaningful comparisons. For example, if the IES system can provide the same service to the grid as a battery, then the economics could be compared to a battery to understand the comparability of the configuration.

Each of those analogies starts with the assumption that the electricity and needed steam are bought by the HTSE as an external rate payer. The HTSE load would shift the generator bid stack to the right by the amount of energy required to produce hydrogen for storage and sale. This shift is depicted in Figure B-2. Similarly, by load-following, or operating as a battery, the return of electricity to the grid during peak demand will result in a shift back to the left of the stack during these instances. These dynamics will drive how a regulator would price the types of electricity consumed by the HTSE (e<sup>-</sup> vs.  $\Delta$ e<sup>-</sup>) based on how they impact the stack. The main assumption from a grid-benefit standpoint is that the additional demand for storage during nominal load will cause a minimal shift in the stack; freeing additional capacity during peak demand is likely to shift overall prices down for the ratepayer by decreasing the clearing price.

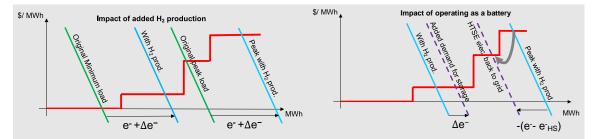



Figure B-2. Generator bid stack and effect of adding HTSE load to the system. The HTSE load would effectively move the clearing price up the stack by the amount of electric load required for hydrogen production and storage, but down by the amount of electricity returned to the grid during peak demand.

#### B-1.1 Load Response

The HTSE operation is analogous to a load-response system or a load-modifying resource (LMR) or demand-response resource as defined by the Midcontinent Independent System Operator (MISO). MISO defines these two load-response categories as:

- Demand Response Resource (DRR) refers to a resource type: one that provides service to the energy and ancillary services market.
- LMR refers to the use of a demand resource toward meeting planning reserve margin requirement.

In either classification, the HTSE would be entitled to a capacity payment. Capacity payments in MISO have been low in recent years. For 2020 and 2021, the average clearing price in MISO was \$5/MW-day with respect to a CONE of around \$90,000/MW-year (i.e., ~\$246/MW-day). The capacity market should, in theory, account for the benefit of not needing a new CONE by providing the equivalent capacity payment to the HTSE system (in terms of electricity returned back to the grid). The CONE payment in this case could be equivalent to the CAPEX payment for a gas-turbine of around \$750/kW.

The requirements for LMR and DRR in MISO have recently changed, but it seems reasonable that, given the ramp rate of the HTSE, it would qualify as an LMR and could possibly be classified as a DRR, Type II. As a reference, the requirements for qualification as an LMR are summarized below:

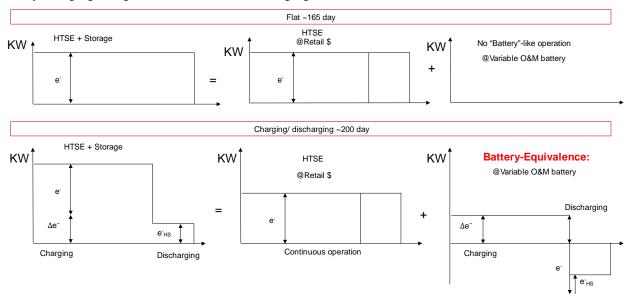
- May be claimed by only one market participant
- $\geq 100 \text{ kW}$  (grouping allowed)
- Schedulable within 12 hours (startup time  $\leq 12$  hours)

- Able to achieve the target level provided during registration
- Maintain target level for four continuous hours
- Able to respond at least five times per year
- Response is an obligation during emergencies
- Submits monthly availability in MWs and notification time for the upcoming planning year.

The amount of power that can be committed from an LMR or DRR is equal to the lowest amount of curtailable consumption which is always available. This electricity returned to the system would correspond to the energy consumed minus hot-standby needs.

As already mentioned, the MISO capacity payment in the last few years (except in Zone 7, which cleared at CONE) has been very low, but considering the long-term investment outlook for the project (25 years) it is likely that most of the CONE revenue could be recovered. Recovering about 60% of the CONE would cover nearly all the capital investment of the HTSE at \$400/kW installed.

#### B-1.2 Battery Equivalence


Intuitively, one could also argue that the HTSE system behaves more closely to a battery, rather than a load response because it consumes excess electricity for storage and discharges it during peak times. The main difference is that hydrogen is physically stored, instead of electricity, and the HTSE system essentially stops consuming electricity during peak demand instead of actually dumping electricity back to the grid.

As a starting point, an HTSE plant providing no load following would purchase a certain amount of electricity (e<sup>-</sup>) at the retail rate to generate H<sub>2</sub> for its customer (this includes the steam-equivalent consumption as well). However, if this HTSE plant purchased a slight excess of electricity ( $\Delta e^-$ ) to generate an excess of hydrogen that was subsequently stored in order to allow flexible operations during peak demand, then it is also providing a service to the grid, not dissimilar to a battery. This mode of operation can be compared to charging a battery. While the electricity purchased to generate sold hydrogen (e<sup>-</sup>) is purchased at the retail rate, this excess electricity is assumed to be equivalent to the variable battery O&M costs. Following consultation with Xcel, a value of -\$5/MWh was deemed representative for variable battery costs. The negative value reflects the difference between the low electricity purchase price during the day and the higher sales price during peaks.

During periods of high demand, electricity from the HTSE is diverted back to the grid, with some roundtrip efficiency losses. In this context, these losses equate to the hot-standby requirements ( $e_{HS}$ ) of the HTSE plant. The resulting electricity sales ( $e^- - e_{HS}$ ) can be returned to the grid at a similar arbitrage rate as a battery system. Conservatively, the equivalent battery capacity (with corresponding CAPEX, O&M, etc.) for such as system would correspond to the net power returned to the grid (i.e.,  $e^- - e_{HS}^-$ ), ignoring roundtrip efficiencies for the battery. For instance, a 300 MW<sub>e</sub> HTSE plant ( $e^- + \Delta e^-$ ), would be equated to something closer to a 220 MW<sub>e</sub> ( $e^- - e_{HS}^-$ ) battery in order to account for these "grid-level losses."

From the perspective of the H<sub>2</sub> market, no change in operation is observed: excess hydrogen produced (from  $\Delta e^{-}$ ) and stored is discharged from the tanks at the nominal rate and provided to the end user. The system will also encounter flat or idle days—i.e., times at which H<sub>2</sub> storage capacity is full and no discharge is required. Under those circumstances, the system only purchases from the grid the electricity needed for nominal hydrogen production. No variable costs or sales occur during those instances. This would be equivalent to an HTSE system that does not load follow.

The different modes of operations are illustrated in Figure B-3. During flat days, the system behaves as a typical grid customer. During all other days, the system is a hybrid: it partially operates as a typical



end user in regards to equivalent electricity purchased to produce sold hydrogen (e<sup>-</sup>), and partially as a battery charging at a given rate ( $\Delta e^{-}$ ) and discharging at another ( $e^{-}-e^{-}_{HS}$ ).

Figure B-3. Battery-equivalence model under charging and discharging conditions, as opposed to flat days under Option 1.

This alternative approach assumes neither that the HTSE can purchase electricity at the NPP O&M cost nor that it receives a specified price at the node; rather, it assumes electricity is bought at the retail price, and steam is paid for at the converted equivalent-electricity retail value. This approach also does not attempt to quantify the value to grid as a whole. Instead, it conducts a differential analysis, comparing this solution to an equivalent battery system. Based on feedback provided by Xcel Energy, a standard battery was assumed to operate under the following conditions:

- Hold storage capacity for roughly 4 hours
- Discharge capacity about 200 times in a year
- Recharge to full capacity within 24 hours.

The fixed battery O&M is specified at 2% of CAPEX. Battery CAPEX will be detailed in a later section, but prices are assumed to decrease between 2020 and 2030. Similarly, a battery lifetime of 10 years is considered for 2020 technology, and 15 years for 2030 technology. As a result, the analysis is conducted for a 25-year timeframe. The HTSE lifetime is assumed to last 25 years with its fixed O&M accounting for stack replacement (leading to their being significantly higher than those of a battery). The remaining parameters are the variable and O&M prices of both systems: i.e., electricity prices. Sensitivity analyses on these parameters will be conducted in Section B-3.

## **B-2.** Alternative Approach Limitations

While these comparisons provide simplified comparison points between very different technologies, the approaches are not without limitations. In the case of the load-response analogy, the main concerns are:

- Ability to be classified as DRR, which depends on ramp rates and the market requirements/constraints
- Predicting MISO capacity payments as a reasonable fraction of the CONE in the future.

For the battery alternative, the concerns surround:

- Ramp rate and capabilities to meet the requirements for participating to the ancillary-services market
- Having a "charging time" over 20 hours, which is not in line with a battery profile.

The prolonged charging time concern has been investigated in other projects. At first level of approximation, a recharging time of 18 hours was found not to alter system cost significantly. Another limitation in both analogies is that they do not capture potential increases in system costs stemming from HTSE hydrogen demand. Currently, this demand is captured via heat sources outside the grid (i.e., SMR). The main justification for neglecting these prices rests on the assumption that the HTSE will be charged at retail price for the cost of electricity used in hydrogen sales. In doing so, the grid is responsible for setting the retail price balancing these system costs.

#### **B-3. Battery Equivalency Results**

The battery-equivalence approach is investigated further in this section, with an attempt to quantify the break-even prices of hydrogen and purchased retail electricity that enable the HTSE cogeneration system to be competitive to an equivalent battery. Both high and low battery-cost predictions are considered, based on conversations with Xcel. Because the battery will need to be replaced during the analysis timeframe, the battery CAPEX estimates are adjusted for 2020 and 2030 values. The study does not account for the necessary capacity expansion as load changes through the years or how the stack would be affected by such expansion.

The analysis compares the cost of flexibly operating an HTSE coupled to a nuclear plant with a battery system. By framing the HTSE as a battery-equivalent service, the economics can be directly compared. Break-even levels essentially determine conditions under which the HTSE system is economically equivalent to a battery in terms of providing the same load shifting to the grid. The arbitrage price is defined as the difference in the electricity prices at procurement (charging) and sale (discharging). This price essentially amounts to the net revenue a storage system generates for each MWh.

Looking at the LCOH—i.e. the break-even price of  $H_2$  for  $\Delta NPV = 0$  relative to the cost of an equivalent battery—a wide range of economically viable cogeneration configurations are possible at different negotiated retail prices (Table B-1). For instance, if the electricity purchased to sell hydrogen stands at \$35/MWh, and the plant is able to generate \$10/MWh in load-shifting arbitrage revenue, the break-even price for hydrogen could be as low as \$1.56/kg-H<sub>2</sub>. Under these conditions, the HTSE would be competitive with a battery system under high-cost assumptions. If, on the other hand, the negotiated electricity price is \$45/MWh, and the arbitrage gains are only \$5/MWh, the break-even point would increase to \$1.98/kg-H<sub>2</sub>. The hydrogen prices required to break even are slightly higher if a lower battery CAPEX is assumed in the analysis.

|                          |                       | Battery Costs | High         | Low          |
|--------------------------|-----------------------|---------------|--------------|--------------|
|                          |                       | 2020 CAPEX    | \$350.00/kWh | \$250.00/kWh |
|                          |                       | 2030 CAPEX    | \$202.50/kWh | \$177.50/kWh |
|                          |                       | -             |              |              |
| Retail Price<br>(\$/MWh) | Arbitrage<br>(\$/MWh) |               | LCOH (\$/kg) | LCOH (\$/kg) |
| 35                       | -10                   |               | 1.56         | 1.72         |
| 40                       | -10                   |               | 1.76         | 1.92         |
| 45                       | -10                   |               | 1.96         | 2.13         |
| 35                       | -5                    |               | 1.57         | 1.74         |
| 40                       | -5                    |               | 1.77         | 1.94         |
| 45                       | -5                    |               | 1.98         | 2.14         |

Table B-1. LCOH under different retail prices, arbitrage returns, and battery CAPEX for Option 1.

Similarly, Table B-2 flips the analysis around by fixing the  $H_2$  price and arbitrage gains to determine what is an affordable retail electricity price. For instance, if the price of hydrogen is in the \$1.66/kg-H<sub>2</sub> range, and the arbitrage rate is \$10/MWh (approximately the current battery gains), then the break-even electricity purchase price for the HTSE would be \$37.5/MWh. In the case of lower battery costs, the break-even retail price of electricity would need to be lower than \$33/MWh. These values are expected to be close to the market rates in light of the known NPP O&M costs at this node.

Table B-2. Affordable retail electricity price under different hydrogen sales prices, arbitrage returns, and battery CAPEX for Option 1.

|                                 | _                      | Battery Costs     | High                                | Low                              |
|---------------------------------|------------------------|-------------------|-------------------------------------|----------------------------------|
|                                 |                        | <b>2020 CAPEX</b> | \$350.00/kWh                        | \$250.00/kWh                     |
|                                 |                        | <b>2030 CAPEX</b> | \$202.50/kWh                        | \$177.50/kWh                     |
|                                 |                        |                   |                                     |                                  |
| H <sub>2</sub> price<br>(\$/kg) | Aribitrage<br>(\$/MWh) |                   | Affordable retail<br>price (\$/MWh) | Affordable retail price (\$/MWh) |
| 1.33                            | -10                    |                   | 29                                  | 25                               |
| 1.66                            | -10                    |                   | 37.5                                | 33                               |
| 2.00                            | -10                    |                   | 46                                  | 42                               |
| 1.33                            | -5                     |                   | 29                                  | 25                               |
| 1.66                            | -5                     | 7                 | 37                                  | 33                               |
| 2.00                            | -5                     | ]                 | 45.5                                | 41                               |

The differential analysis shows the range of conditions that allow the co-generation option to be competitive with a battery system. These estimates essentially account for the system-level costs associated with typical forms of storage. They therefore demonstrate how cogeneration at an NPP could be an attractive value proposition for Minnesota ratepayers.

# APPENDIX C ENERGY STORAGE OPTIONS EVALUATION

# APPENDIX C ENERGY STORAGE OPTIONS EVALUATION

This section is a survey of energy storage options that could be integrated with NPPs as part of a larger solution of providing NE to a hydrogen plant or other hybrid industrial plants integrated with the NPP. The possible options were considered based on their availability, cost, efficiency, lifespan, capacity, TRL, feasibility, and risks (Figure C-1). Due to their low energy capacity, flywheels, ultracapacitors, and superconducting magnetic energy-storage were not considered in this analysis. Other options are discussed briefly, but not in detail because they are judged not to be feasible at this time for utility-scale energy storage. All options were analyzed holistically, considering key metrics, risk factors, expected research progress, and threats to the technology. Key metrics included: 1) installation cost, 2) round-trip efficiency, 3) cycle life, 4) lifespan, 5) self-discharge rates, and 6) rates of degradation.

The options were sorted into various storage classes such as batteries, chemical, mechanical, and thermal. Each option was analyzed both holistically and numerically using data to generate a levelized cost of energy (LCOE) for the storage medium for various scenarios. The options with the lowest LCOE were compared directly against one another. These options are lead-acid batteries, lithium-ion batteries, sodium sulfur batteries, above-ground compressed-air energy storage (CAES), liquid-air energy storage (LAES), and molten-salt energy storage.

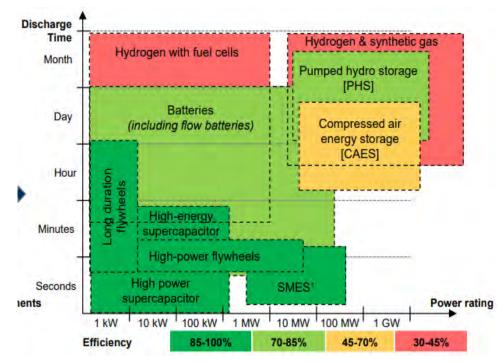



Figure C-1. Projected discharge times of various energy-storage options with their approximate applicable scales.

# C-1. Methodology

The primary metric of comparison used between different energy-storage options is the LCOE. LCOE is the total cost (including initial CAPEX and ongoing OPEX) of operating divided by the total energy over the assumed lifetime of the plant. For this analysis an electricity cost of \$25 per MWh is assumed.

A scenario-dependent degradation schedule was built that factors in both calendric and cyclical degradation in whichever cycling scenario was selected. An end-o-f-life battery health of 50% was used, and calendar life, cycle life, number of cycles annually, scenario length, round-trip efficiency, and self-discharge rate were inputted. Cycle efficiency is the base loss of power in each cycle due to inherent system inefficiencies. Self-discharge rate is the rate at which the energy storage discharges when left completely idle. This model was then used to calculate the total quantity of energy discharged by the energy-storage medium based on these factors. Based on the cycling rate, the losses due to self-discharge were calculated, and the losses due to cycle efficiency were also calculated. These losses were then accounted for in the model to give a final total energy discharge over the storage system's lifetime.

Costs are accounted for with four metrics. First, the capital cost of each energy-storage system is accounted for with a cost per unit power (\$/kw) and cost per unit energy (\$/kWh). These two factors of capital cost are not separate ways of measuring capital costs; rather, they reflect the costs of different parts of a system. The \$/kWh factor measures the incremental cost per additional unit of energy capacity. \$/kW, on the other hand, measures the incremental cost per unit of discharge power. When multiplied by the power output and energy capacity of the system, respectively, they can be added together for a total system cost. Once the capital cost has been accounted for, ongoing expenses must also be, so a maintenance cost in \$/kWh-yr is included. Finally, decommissioning costs were included. Many moremature storage technologies, such as battery installations, have a standard for manufacturer removal and disposal that is functionally included in the installation capital costs, but for less-mature technologies, such costs must be estimated and counted.

## C-2. Batteries

#### **Flow Batteries**

Flow batteries (Figure C-2) use chemical agents dissolved in liquid to store energy. Each of the liquids is stored in a separate container, one serving as the anode, and the other as the cathode. When the battery is charged or discharged, the liquids are pumped into a third container, where ion exchange occurs across a separating membrane to transfer electricity. Vanadium and zinc-bromide are two types of flow batteries currently on the market. Both have very similar performances. These batteries tend to be large and not very energy-dense. They function using many mechanical elements to pump liquid from one section to another.

Flow batteries have much larger operating-temperature ranges than other battery technologies, and they have an extremely low risk of fire. They also see extremely low levels of capacity degradation, only around 0.4% each year, making them much longer-lasting batteries than other available options. They have cycle lives of well over 10,000 cycles as well.

Despite their long lives, flow batteries are more expensive than most comparable batteries due to their low energy density and the auxiliary equipment required. Prices usually sit above \$200 per kW and \$700 per kWh installed. They are also known to be unreliable because a large number of mechanical components wear down and break. This causes a significant increase in maintenance costs. Additionally, flow batteries see low efficiency when compared to other batteries, with roundtrip efficiencies of around 70%.

R&D of flow batteries is ongoing in the areas of more-efficient scale-up of flow geometries, better state-of-charge sensors, and less-expensive membranes. Membrane improvements show promise to significantly improve the technology, but the batteries are not among the best near-term options for an NPP energy-storage system until significant advancements can be made.

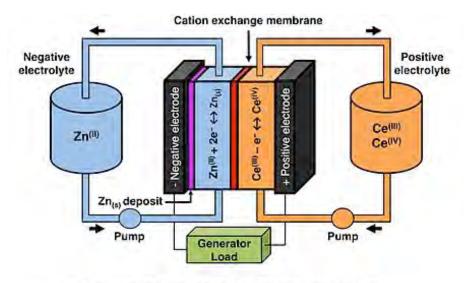
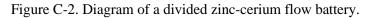




Diagram of the Divided Zinc-Cerium Flow Battery

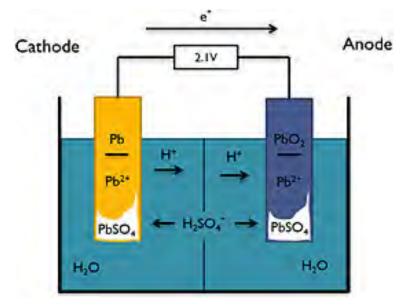


# **Sodium Sulfur Batteries**

Sodium sulfur batteries (Figure C-3) consist of a molten sodium positive electrode and a molten sulfur negative electrode that are kept above  $350^{\circ}$ C. The two liquids are separated by a ceramic barrier that only sodium ions flow through. The ions travel across the barrier and store energy by creating Na<sub>2</sub>S<sub>4</sub>.<sup>114</sup>

Sodium sulfur batteries have efficiencies of around 80%, squarely in the middle of battery options. The batteries are almost exclusively made by NGK Insulators, a Japanese company with a history of excellent service and support throughout the battery's lifetime.<sup>115,116</sup> Sodium sulfur batteries do not self-discharge, unlike other types of batteries. Their typical cycle life is 4,000 cycles, and they suffer an average of just 0.34% annual degradation.<sup>117</sup>




Figure C-3. Photograph of an installed NGK sodium sulfur battery module.

Though these batteries do not self-discharge, they do require a heat source to keep their internal components at the proper temperature, and this function can consume over 20% of the battery's charge each day, a significant maintenance expense. In the case of a pairing with an NPP, the power plant's waste heat could be used to provide this heating. The batteries' insulation must be designed well due to the batteries' high internal temperature, and any defect in the insulation can lead to large fires. NGK has improved its technology to protect against this scenario, but such fires are still a possibility.<sup>118</sup> Any installation would need to be placed at least 200 yards from sensitive structures.

#### Lead-Acid Batteries

Lead-acid batteries store energy using the complex series of chemical reactions that occur when diodes made of lead (Pb) and lead dioxide (PbO<sub>2</sub>) are submerged in sulfuric acid  $(H_2SO_4)^{119}$  as shown in Figure C-4. This chemistry degrades much more quickly than other battery types, giving this class of battery cycle life of around 2,500 cycles.<sup>117</sup> However, this degradation is experienced primarily at lower levels of charge, so if the batteries were infrequently cycled and discharged close to an NPP flex, they would see very little degradation.

Lead-acid batteries are easily the least-expensive class of large batteries, costing an average of only \$250 per installed kWh.<sup>115</sup> This cost is split, with the batteries only costing \$200 per kWh, installed capacity, and \$80 per kW, power. This low cost is due to inexpensive battery chemistry as well as the age and mature nature of the technology. These batteries have been used for decades, and they are the primary type of battery used in the automotive industry. They are widely available because of this fact. Lead-acid batteries' calendric degradation slows dramatically when held at above 80% charge. This fact gives them potential to be very effective as an option for weekly to monthly cycling scenarios in which the batteries could rest charged.<sup>115</sup>





Lead-acid batteries degrade at an average rate of 5.4% annually; this degradation is much faster than any of the other types of batteries discussed in this report.<sup>117</sup> This degradation accelerates rapidly after reaching 80% battery health. Additionally, they have a self-discharge rate of roughly 2% each month. This self-discharge rate decreases efficiency when energy is held for longer periods of time, potentially harming the technology's competitiveness in the long-term storage space. Upon disposal, the toxic

chemicals in these batteries must be handled with care, and the batteries are usually recycled by companies that specialize in their disposal.

Very little research is being done on lead-acid batteries, and they are not expected to advance significantly in the foreseeable future due to the technology's mature state.

## **Lithium-Ion Batteries**

Lithium-ion (Li-ion) batteries (Figure C-5) use lithium as the key component of their electrochemistry. In these batteries, lithium ions travel across the electrolyte.<sup>120</sup> These chemistries, which often rely on cobalt, allow them to be much more energy-dense than other batteries. Already heavily used in automotive and consumer-goods industries, lithium-ion batteries have rapidly penetrated the market to become the primary battery choice of utilities across the U.S., reaching 90% of the new market share in 2017.<sup>117</sup>

These batteries are the most energy-dense battery option available, both volumetrically and by weight, as shown in Figure C-6.<sup>4</sup> They are also among the cheapest and most readily available, with an installation cost that is now close to \$400/kWh according to Indie Energy's Evan Ture.<sup>115</sup> Maintenance expense is only anticipated to be \$8/kWh-yr. Additionally, lithium-ion batteries have an exceptionally low self-discharge rate of only 1–2% per month.<sup>121</sup> This rate allows them to hold energy for much longer than other technologies with minimal losses.



Figure C-5. Tesla 80 MWh lithium-ion battery installation in Mira Loma, CA.

Lithium-ion batteries can spontaneously combust if they overheat or are put under high levels of pressure.<sup>122</sup> These fires burn at temperatures well in excess of 500°C and are extremely difficult to extinguish due to the battery's internal chemistry<sup>123</sup>; these fires have the potential to cause severe damage if the batteries are proximate to other flammable structures. Any pairing with an NPP would need to place the installation a safe distance from sensitive structures.

Materials used in the production of Li-ion batteries are rare and could continue to have geo-political and supply-chain constraints, causing some uncertainty as to the maximum large-scale deployment of these battery systems.

Lithium-ion batteries are one of the most-researched energy-storage options, with technology advancements coming rapidly over the past decade. This progress is expected to continue for the next decade, with prices dropping, cycle lives increasing, and hazards being mitigated. Most predictions foresee prices below \$200 per kWh by 2030, cycle lives of at least 9,000, and the introduction of highly efficient lithium chemistries that exclude cobalt.<sup>124</sup> Additionally, new observation software and stricter construction and fire codes are steadily decreasing the risks that these batteries pose.

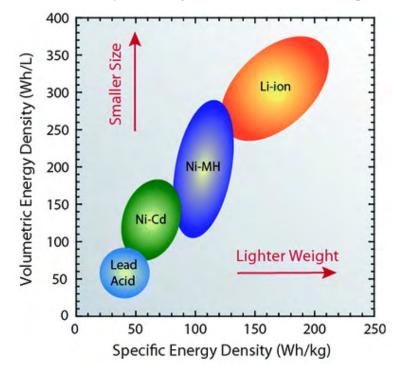



Figure C-6. Volumetric and specific energy densities for various classes of battery.<sup>4</sup>

#### Summary—Battery Energy Storage

Financial analysis was conducted on each battery-storage option to assess its viability to pair with an NPP. The inputs for that analysis are displayed in Table C-1. Data on battery-storage options are readily available, but the rapid technological progress and price changes across the industry render even last year's data on battery installations unrepresentative of the market as it currently stands. Information on battery pricing, efficiency, and lifetime are sourced from the 2020 NREL Cost of Battery Storage Update, and these figures were verified directly by an industry source and are reflective of the state of the technology and markets in 2020.<sup>115,125</sup> These data were supplemented with data from the 2019 PNNL Energy Storage and Technology Cost Characterization Report on these metrics, as well as cycle life and degradation. Finally, data on self-discharge rates were sourced from the University of Washington's Clean Energy Institute, and degradation was assumed to be half calendric and half cyclical per the recommendation.<sup>115,120</sup> An electricity cost of \$25 per MWh is assumed for all modeling.

| Battery<br>storage<br>option | Installation<br>cost*<br>(\$/kW) | Installation<br>cost*<br>(\$/kWh) | Maintenance<br>cost*<br>(\$/kWh) | Round-trip<br>efficiency*<br>(%) | Cycle<br>life* | Lifetime<br>(years)* | Self-<br>discharge<br>rate<br>(%/month)* |
|------------------------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------|----------------------|------------------------------------------|
| Flow                         | 200                              | 700                               | 8                                | 70                               | 10,000         | 20                   | 26                                       |
|                              |                                  | 465-700                           |                                  | 70-75                            |                |                      |                                          |
| Lead                         | 80                               | 200                               | 8                                | 80                               | 2,500          | 15                   | 2                                        |
| Acid                         |                                  | 160-250                           |                                  | 79-84                            |                |                      |                                          |
| Li-ion                       | 120                              | 340                               | 8                                | 85                               | 7,500          | 20                   | 1                                        |
|                              |                                  |                                   |                                  | 90-94                            |                |                      |                                          |
| Sodium                       | 200                              | 700                               | 24                               | 80                               | 4,000          | 15                   | 0                                        |
| Sulfate                      | 500-1000                         | 500-1000                          |                                  | 77-83                            |                |                      |                                          |

Table C-1. Summary of key metrics for different battery energy-storage options. Table D-1

\* Approximated.

Many factors are involved in a company's decisions about the installation of an energy-storage system, but the most important by far is the system's profitability. Below, each of the battery storage options are analyzed, using the data from Table C-1 to output a levelized cost of storage (LCOS) and a LCOE for a 20-year period, where LCOS (\$/MWh) is the cost of the storage system, including both CAPEX and OPEX, per MWh of electricity stored and LCOE (\$/MWh) is the total break-even price of the electricity retrieved from storage per MWh discharged (Table C-2 through Table C-10). While LCOE is a far better metric for overall system evaluation, the inclusion of LCOS in the results should provide a window into the specific effects that system costs, round-trip storage efficiency, and self-discharge have on the cost of the storage system.

The two primary sources of uncertainty surrounding the cost of storage are the frequency with which nuclear plants will be asked to flex and the amount of time that they will move electricity off of the grid in each instance. To account for this uncertainty, nine scenarios are modeled accounting for each of these factors. Four-hour and 12-hour storage are modeled across low-cycle, medium-cycle, high-cycle, and daily-cycle scenarios. Additionally, a 100-hour storage option that completes two full cycles each year is modeled to show the possibility that stored energy is held for seasonal use.

| Battery Storage Option  | LCOS (\$/MWh) | LCOE (\$/MWh) |
|-------------------------|---------------|---------------|
| Flow Batteries          | 4456.99       | 60,461,560.48 |
| Sodium Sulfur Batteries | 6,371.44      | 7,989.30      |
| Lead Acid Batteries     | 1,979.56      | 4,559.59      |
| Lithium-ion Batteries   | 2,599.17      | 4,176.24      |

Table C-2. Financial analysis of battery storage options for 4-hour storage cycled 12 times annually.

| Battery Storage Option  | LCOS (\$/MWh) | LCOE (\$/MWh) |
|-------------------------|---------------|---------------|
| Flow Batteries          | 905.27        | 8100.80       |
| Sodium Sulfur Batteries | 1,323.08      | 1,678.85      |
| Lead Acid Batteries     | 420.27        | 619.04        |
| Lithium-ion Batteries   | 530.63        | 688.63        |

| Battery Storage Option  | LCOS (\$/MWh) | LCOE (\$/MWh) |  |  |
|-------------------------|---------------|---------------|--|--|
| Flow Batteries          | 283.94        | 727.73        |  |  |
| Sodium Sulfur Batteries | 441.50        | 576.87        |  |  |
| Lead Acid Batteries     | 202.39        | 287.39        |  |  |
| Lithium-ion Batteries   | 168.87        | 227.35        |  |  |

Table C-4.Financial analysis of battery storage options for 4-hour storage cycled 200 times annually.

Table C-5. Financial analysis of battery storage options for 4-hour storage cycled daily.

| Battery Storage Option  | LCOS (\$/MWh) | LCOE (\$/MWh) |
|-------------------------|---------------|---------------|
| Flow Batteries          | 163.81        | 341.23        |
| Sodium Sulfur Batteries | 402.98        | 528.73        |
| Lead Acid Batteries     | 190.90        | 268.50        |
| Lithium-ion Batteries   | 99.03         | 142.68        |

Table C-6. Financial analysis of battery storage options for 12-hour storage cycled 12 times annually.

| Battery Storage Option  | LCOS (\$/MWh) | LCOE (\$/MWh) |
|-------------------------|---------------|---------------|
| Flow Batteries          | 4456.99       | 60,461,560.48 |
| Sodium Sulfur Batteries | 6,198.78      | 7,773.47      |
| Lead Acid Batteries     | 1,910.10      | 4439.07       |
| Lithium-ion Batteries   | 2,501.09      | 4,019.59      |

| Table C-7. Financial anal                 | vsis of battery stora | ge options for 12-hour | storage cycled 60 time | s annually  |
|-------------------------------------------|-----------------------|------------------------|------------------------|-------------|
| $1 \text{ abic } C^{-1}$ . I manefal anal | ysis of ballery slora | ge options for 12-nour | storage cyclea oo time | s annuarry. |

| Battery Storage Option  | LCOS (\$/MWh) | LCOE (\$/MWh) |
|-------------------------|---------------|---------------|
| Flow Batteries          | 905.27        | 8,100.80      |
| Sodium Sulfur Batteries | 1,287.22      | 1,634.03      |
| Lead Acid Batteries     | 405.53        | 598.20        |
| Lithium-ion Batteries   | 510.61        | 663.59        |

| Battery Storage Option  | LCOS (\$/MWh) | LCOE (\$/MWh) |
|-------------------------|---------------|---------------|
| Flow Batteries          | 283.94        | 727.73        |
| Sodium Sulfur Batteries | 429.53        | 561.92        |
| Lead Acid Batteries     | 195.29        | 278.28        |
| Lithium-ion Batteries   | 162.50        | 219.71        |

| Battery Storage Option  | LCOS (\$/MWh) | LCOE (\$/MWh) |
|-------------------------|---------------|---------------|
| Flow Batteries          | 163.81        | 341.23        |
| Sodium Sulfur Batteries | 392.06        | 515.07        |
| Lead Acid Batteries     | 184.21        | 259.96        |
| Lithium-ion Batteries   | 95.29         | 130.65        |

Table C-9. Financial analysis of battery storage options for 12-hour storage cycled daily.

Table C-10. Financial analysis of battery storage options for 100-hour storage cycled bi-annually.

| Battery Storage Option  | LCOS (\$/MWh) | LCOE (\$/MWh) |
|-------------------------|---------------|---------------|
| Flow Batteries          | n/a           | n/a           |
| Sodium Sulfur Batteries | 36,447.82     | 45,584.78     |
| Lead Acid Batteries     | 11,135.81     | 555,766.53    |
| Lithium-ion Batteries   | 14,684.27     | 108,170.96    |

\* The option with the lowest LCOE has all of its data listed in bold.

These analyses show that flow batteries are not currently economically competitive with other battery options. Sodium sulfur batteries perform similarly, with the LCOE coming in above Li-ion in almost all scenarios. However, in the long-duration scenario (100 hr of storage cycled bi-annually), Na-S batteries come in with the lowest LCOE.

Lead-acid batteries price competitively in all but the 100-hour storage scenario. Its low CAPEX requirement of only \$200 per kWh installed, \$140 per kWh less expensive than lithium-ion, gives it an advantage in lower cycle scenarios because its low cycle life of 2,500 cycles, 1,500 less than sodium sulfur and 5,000 less than lithium-ion, does not hamper its performance. Its self-discharge rate of 2% per month, higher than lithium's 1%, provides it with a slightly higher LCOE in the 12-cycle scenarios.

Finally, lithium-ion batteries perform competitively in all scenarios, and they produce the lowest LCOE in all four higher-cycle scenarios, as well as in the seasonal storage scenario. The technology's combination of relatively low cost (\$340 per kWh installed) and relatively long cycle life (7,500 cycles) make it significantly less expensive than other options when cycled frequently. Its low cost gives it an advantage over higher-cost options such as flow batteries and sodium sulfur batteries while its long cycle life allows the cost to be distributed over far more cycles than lead acid in a higher-cycle scenario. Lithium-ion batteries also provide the lowest LCOE for the 100-hour seasonal-storage scenario. Lithium-ion batteries have very low self-discharge rates (roughly 1–2% per month). Flow batteries and lead-acid batteries incapable of holding the charge for long enough periods to provide seasonal storage. Although lithium-ion does not reach the 0% self-discharge rate of sodium sulfur technology, its much lower capital and maintenance costs cause it to have a much lower LCOE.

# C-3. Hydrogen Energy Storage

Water electrolysis, the splitting of water into hydrogen and oxygen, has been understood for over a century. However, it is traditionally high-level of the expense compared to other energy sources prevented significant development of the technology. The production of  $H_2$  out of  $H_2O$  using electrolysis received significant research attention over the past decade, and the element's potential use as energy storage has played a key part in that attention. In this section,  $H_2$  will be discussed specifically as a means of storing energy to be later converted back to grid electricity at utility scale. This discussion and analysis does not

apply to the case of  $H_2$  as a value-added product used in downstream industries such as ammonia production, refineries, etc.

Such a storage system uses excess electricity to create  $H_2$  through the electrolysis of  $H_2O$ . The  $H_2$  is then stored in large, highly pressurized vessels. This  $H_2$  is sent through a fuel cell to make electricity when needed, with  $H_2O$  as the only byproduct. For a more in-depth discussion on electrolysis, see Section 0 of this report.

## Summary—Hydrogen Energy Storage

Reversible SOFC/EC electrolyzers that can provide hydrogen energy storage are currently expensive compared to other energy-storage options, with a cost of over \$2400 per kW. Efficiencies are around 35%, dramatically lower than competing storage options (Table C-11). Ongoing research on SOFCs and SOECs has the potential to improve both areas, with capital costs expected to come down to around \$600 per kWh by 2030 and efficiency expected to improve to nearly 60% in the same time frame.

| Hydrogen<br>Storage Option | Installation<br>Cost (\$/kWh) | Round Trip<br>Efficiency (%) | Cycle Life | Self-Discharge<br>Rate (%/Month) |
|----------------------------|-------------------------------|------------------------------|------------|----------------------------------|
| SOE (2020)                 | 2400                          | 30-40                        | 10,000     | 0.1                              |
| SOE (2030)                 | 600                           | 40-60                        | 10,000     | 0.1                              |

Table C-11. Summary of key metrics for hydrogen energy-storage.

## C-4. Mechanical

Mechanical energy storage refers to the use of mechanical processes, such as changes in pressure, gravity, or rotational inertia, to store energy for later use. There are four classes of mechanical-energy storage that might, at present, successfully pair with an NPP: 1) CAES, 2) pumped hydro storage (PHS), 3) solid mass gravitational energy storage, and 4) LAES. The concepts needed to implement these methods have been familiar for a long time, and mechanical-energy storage is by far the most used energy-storage category, both in the U.S. and globally. Due to a lack of requisite geologic structures and terrain in many locations, CAES and PHS are often not options; LAES removes this geographical constraint.

### **Compressed Air Energy Storage**

CAES is the storage of energy by compressing air that can later be released through turbines to produce electricity. This compression can be done either in above-ground tanks or in certain types of basalt subterranean geologic structures, the latter being more economical, but geography dictates whether this option is available. Two large operational below-ground CAES facilities, which take advantage of local underground geologic formations, include one 110 MWe facility in Alabama and one 270 MWe facility in Germany.<sup>126</sup> These facilities see round-trip efficiencies of over 50%.<sup>117</sup> In the Minnesota Twin Cities region, there are no known geologic formations where CAES could be employed; thus, below ground CAES is likely not an option.

There are several smaller above-ground CAES facilities; these facilities usually cost roughly \$400 per kWh. Like underground CAES, round-trip efficiency is usually around 50%.<sup>117</sup>

### Pumped Hydro Storage

PHS is the most commonly used energy-storage method globally, by far—making up 99% of all global energy storage with over 9,000 GWh installed.<sup>127</sup> PHS is simply the act of storing energy as gravitational potential energy. This is usually done by using electricity to pump water uphill, generally

into a lake or pond, and then allowing the water to flow downhill through a turbine when the electricity is needed. Modern PHS systems achieve round-trip efficiencies of around 80%. These systems have a wide range of capital costs, with a high end of over \$3,000 per kW, a low end of \$386 per kW, and a median of \$920 per kW in 2020 dollars.<sup>128</sup> However, PHS is also geographically limited due to the required elevation changes. The lack of substantial changes of elevation in the Twin Cities region makes PHS an unlikely option. Some PHS systems involve underground water storage, but like CAES, these require specific geologic formations.

### Solid Mass Gravitational Energy Storage

Solid mass gravitational energy storage (SMGES) is another option that has received significant interest over the past several years. This method can take many forms, with some of the most popular being advanced rail energy storage (ARES), using cranes to lift large objects, and using old oil wells as tunnels along which weights can be lifted and dropped. Though this technology is proven and can often achieve efficiencies of over 80%,<sup>129</sup> its massive weight and space requirements provide a significant challenge to its use for grid-scale energy storage. A simple calculation finds that moving 1 million pounds 1 mile would store roughly 1.9885 MWh of gravitational potential energy.

ARES is the primary SMGES method in use, with a large facility under construction near Pahrump, Nevada. The rail system has an altitude change of 3000 ft over 5.5 miles and can deliver 50 MW of electricity to the grid. It has a storage capacity of 12.5 MWh. This project cost \$55 million total, an average of \$4,400 per kWh. It is expected to be operational for 40 years.<sup>129</sup>

## Liquid Air Energy Storage (LAES)

LAES is a new concept based on CAES and thermal-storage concepts. The United Kingdom's Highview Power pioneered a LAES concept under the name of CRYOBattery, shown in Figure C-7.<sup>130</sup> In this storage system, the air is cooled to -196°C, its liquefaction point, and stored in insulated, low-pressure vessels. When electricity is needed, exposure to ambient temperatures causes rapid regasification and a 700-fold expansion in volume, which is then used to drive a turbine and create electricity. Highview modularized their technology and is in the process of constructing its first commercial installation, a 50 MW, 250 MWh CRYOBattery in Manchester, United Kingdom. They believe that after the completion of this project, they will be in a position to deploy gigawatt-scale facilities.<sup>131</sup>

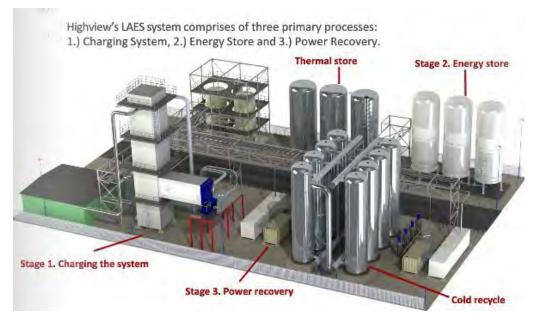



Figure C-7. Concept image of a Highview Power CRYOBattery, their new LAirES technology.<sup>130</sup>

The technology has been successful thus far, achieving round trip efficiencies above 70% when a source of waste heat is present.<sup>130</sup> The CRYOBattery has a high cost on a per-unit power basis of roughly \$1000 per kW, but the system has a very low cost of additional capacity.<sup>132</sup> Above 8 hours of duration, it becomes extremely cost-effective due to the small marginal cost of additional capacity. Additionally, unlike some other storage options, there are no particularly hazardous or exotically expensive materials or components used in these facilities.

All of the construction and processes used by the CRYOBattery have been well understood for some time. Because LAES builds on established and mature technologies of air liquefaction and vaporization and uses primarily off-the-shelf parts, its future development is likely limited, even though Highview is working to make incremental improvements. Despite this, as the technology gains market share, its costs will likely come down.

# Summary—Mechanical Energy Storage

Financial analysis was conducted on each mechanical energy-storage option across all nine of the established scenarios to assess viability. The inputs to the analysis are summarized in Table C-12, with more detailed data regarding cycling regimes in Table C-13 through Table C-21. Data on mechanical energy-storage options is sporadically available depending on the type of storage. Degradation is assumed to be 1/5 that of batteries for all options in this category due to the lack of chemical degradation. This degradation is assumed to be half calendric and half cyclical. An electrical generation cost of \$25 per MWh is assumed for all modeling.

| Mechanical<br>Storage<br>Option | Installation<br>Cost<br>(\$/kW) | Installation<br>Cost<br>(\$/kWh) | Round-Trip<br>Efficiency<br>(%) | Cycle<br>Life | Lifetime | Self-Discharge<br>Rate<br>(%/month) |
|---------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------|----------|-------------------------------------|
| CAES (Above<br>Ground)          | 1,500<br>1050-2544              | 165<br>355-490                   | 52<br>50-55                     | 10,000        | 25       | 0                                   |
| CAES (Below<br>Ground)          | 1,500<br>1050-2544              | 0                                | 52<br>50-55                     | 15,000        | 40       | 0                                   |
| PHS                             | 920                             | 0                                | 80                              | 10,000        | 30       | 1.5                                 |
| ARES                            | 200                             | 3,400                            | 78                              | 10,000        | 40       | 0                                   |
| LAES                            | 1,000                           | 200                              | <b>70</b><br>60-70              | 15,000        | 30       | 1                                   |

Table C-12. Summary of key metrics for different mechanical energy-storage options.

Table C-13. Financial analysis of mechanical energy-storage options for 4-hour storage cycled 12 times annually.

| Mechanical Energy Storage Option | LCOS (\$/MWh) | LCOE (\$/MWh) |
|----------------------------------|---------------|---------------|
| CAES (Above Ground)              | 3,168.36      | 6,118.00      |
| CAES (Below Ground)              | 2,262.01      | 4,375.02      |
| PHS                              | 1,657.10      | 2,096.38      |
| ARES                             | 15,338.84     | 19,690.18     |
| LAES                             | 2,591.27      | 5,050.48      |

Table C-14. Financial analysis of mechanical energy storage options for 4-hour storage cycled 60 times annually.

| Mechanical Energy Storage Option | LCOS (\$/MWh) | LCOE (\$/MWh) |
|----------------------------------|---------------|---------------|
| CAES (Above Ground)              | 640.44        | 1,256.51      |
| CAES (Below Ground)              | 453.26        | 896.66        |
| PHS                              | 332.37        | 440.46        |
| ARES                             | 3,076.51      | 3,969.25      |
| LAES                             | 519.24        | 813.54        |

Table C-15. Financial analysis of mechanical energy storage options for 4-hour storage cycled 200 times annually.

| Mechanical Energy Storage Option | LCOS (\$/MWh) | LCOE (\$/MWh) |
|----------------------------------|---------------|---------------|
| CAES (Above Ground)              | 198.13        | 406.02        |
| CAES (Below Ground)              | 136.73        | 287.95        |
| PHS                              | 100.54        | 150.67        |
| ARES                             | 930.64        | 1,218.12      |
| LAES                             | 156.64        | 252.91        |

| Mechanical Energy Storage Option | LCOS (\$/MWh) | LCOE (\$/MWh) |
|----------------------------------|---------------|---------------|
| CAES (Above Ground)              | 112.52        | 241.38        |
| CAES (Below Ground)              | 75.41         | 170.02        |
| PHS                              | 55.63         | 95.60         |
| ARES                             | 514.93        | 685.16        |
| LAES                             | 86.39         | 149.66        |

Table C-16. Financial analysis of mechanical energy storage options for 4-hour storage cycled daily.

Table C-17. Financial analysis of mechanical energy storage options for 12-hour storage cycled 12 times annually.

| Mechanical Energy Storage Option | LCOS (\$/MWh) | LCOE (\$/MWh) |  |
|----------------------------------|---------------|---------------|--|
| CAES (Above Ground)              | 2,036.80      | 3,941.93      |  |
| CAES (Below Ground)              | 1,205.00      | 2,342.30      |  |
| PHS                              | 1,005.59      | 2,015.58      |  |
| ARES                             | 15,197.21     | 19,508.60     |  |
| LAES                             | 1,883.27      | 3,677.40      |  |

Table C-18. Financial analysis of mechanical energy storage options for 12-hour storage cycled 60 times annually.

| Mechanical Energy Storage Option | LCOS (\$/MWh) | LCOE (\$/MWh) |  |
|----------------------------------|---------------|---------------|--|
| CAES (Above Ground)              | 411.71        | 816.75        |  |
| CAES (Below Ground)              | 241.46        | 489.34        |  |
| PHS                              | 201.69        | 301.39        |  |
| ARES                             | 3,048.11      | 3,932.83      |  |
| LAES                             | 377.37        | 598.09        |  |

| Table C-19. Financial analysis of mechanical energy storage options for 12-hour storage cycled 200 time | es |
|---------------------------------------------------------------------------------------------------------|----|
| annually.                                                                                               |    |

| Mechanical Energy Storage Option | LCOS (\$/MWh) | LCOE (\$/MWh) |
|----------------------------------|---------------|---------------|
| CAES (Above Ground)              | 127.37        | 269.94        |
| CAES (Below Ground)              | 72.84         | 165.08        |
| PHS                              | 61.01         | 103.40        |
| ARES                             | 922.04        | 1,207.11      |
| LAES                             | 113.84        | 190.64        |

| Mechanical Energy Storage Option | LCOS (\$/MWh) | LCOE (\$/MWh) |
|----------------------------------|---------------|---------------|
| CAES (Above Ground)              | 72.33         | 164.10        |
| CAES (Below Ground)              | 40.17         | 102.26        |
| PHS                              | 33.76         | 67.84         |
| ARES                             | 510.17        | 679.07        |
| LAES                             | 62.78         | 115.60        |

Table C-20. Financial analysis of mechanical energy storage options for 12-hour storage cycled daily.

Table C-21. Financial analysis of mechanical energy storage options for 100-hour storage cycled biannually.

| Mechanical Energy Storage Option | LCOS (\$/MWh) | LCOE (\$/MWh) |
|----------------------------------|---------------|---------------|
| CAES (Above Ground)              | 9,213.05      | 17,742.41     |
| CAES (Below Ground)              | 4,437.70      | 8,559.05      |
| PHS                              | 4,311.01      | 85,016.82     |
| ARES                             | 90,755.46     | 116,378.15    |
| LAES                             | 9,426.79      | 84,327.95     |

PHS emerges from this analysis as the clear winner, yielding the lowest LCOE in all but the longduration storage scenario. Its low cost per capacity and relatively low cost per unit power compared to other comparable storage options make it remarkably inexpensive, with LCOE in the 12-hour cycled daily scenario reaching just \$42.95 per MWh. The only aspect of PHS that makes it less competitive in the long-duration scenario is the inevitable evaporation of water from the storage pool, which depletes the storage pool at an average rate of 1–2% monthly. Despite its economic competitiveness, the lack of elevation change in the Twin Cities region makes PHS an unlikely option for this region of study.

Below ground, CAES is also shown to be very competitive, with the second-lowest LCOE in each of the 12-hour scenarios as well as the 4-hour cycled daily. Additionally, below ground CAES easily yields the lowest LCOE in the long-duration scenario. Its 0% self-discharge rate results in an advantage in the long duration scenario. As mentioned, due to geography, this is not an option for the Twin Cities region.

Above ground, CAES is shown to be competitive with LAES for the lowest LCOE out of the geographically feasible options. It has a higher per unit power cost than LAES, but it also has a lower capacity cost due to the decreased complexity of storing compressed air compared to cryogenically liquified air. This combination makes it competitive in LCOE in all but the 12 cycles and 60 cycle 4-hour storage options. However, it only comes in with a lower LCOE than LAES in the long-duration scenario.

LAES seems to be the most economically efficient of the geographically feasible options in eight of the nine scenarios. It's cost per unit power of roughly \$1000 per kWh and high efficiency of 70% compared to above-ground CAES's figures of \$1500 and 52% respectively give LAES an advantage.

This analysis shows that ARES is the least-competitive of the mechanical storage options. Though the technology has no self-discharge, the massive capital requirement of laying rails over long distances is responsible for the bulk of the LCOE in this case. This capital cost is primarily weighted toward capacity instead of power due to the reliance on the cost of rail, making ARES increasingly uncompetitive as scenario duration increases. Additionally, the significant elevation change required for ARES makes it an unlikely option in the Twin Cities region.

#### C-5. Thermal

Interest in the use of advanced materials to store heat in an insulated environment for thermal energy storage (TES) has increased significantly over the past several years. When the stored energy is required, the heated material is commonly used to heat water to create steam, which is then sent to a turbine-generator to make electricity. There are three different types of media that will be discussed in this section: 1) phase change (PC-TES), 2) solid state (SS-TES), and 3) liquid state (LS-TES). Phase-change TES uses a material's phase change to store large amounts of latent heat. These systems are not analyzed in this report, but current research and potential breakthroughs in phase-change TES are discussed. Solid-state TES uses material that remains solid throughout the process, such as concrete, to store energy as sensible heat. Liquid state TES uses liquid to store energy as sensible heat. The most common liquid state TES medium is molten salt.

### **Phase Change**

The use of phase change materials for TES is a relatively simple, yet undeveloped concept. This concept uses the isothermal phase change of materials to store energy as latent heat in addition to that stored as sensible heat as the material heats up. The large amount of heat required to transition a material from one phase to another allows for a very high energy-storage density and allows the use of much less material per unit of energy stored. Though this concept has existed for a long time, very few products have been developed using it, and those that have been primarily aimed at structural heating applications instead of storage for electrical generation. The technology's primary challenge is recovering the latent heat stored in the phase change. The isothermal nature of phase changes causes a large energy loss to entropy. Further research in the area is underway and may find an effective solution.

#### **Molten Salt**

Molten salt generally refers to some combination of potassium nitrate, sodium nitrite, or sodium nitrate. Other salts have been used and experimented with, but these three make up almost the entirety of commercial molten-salt applications.<sup>133</sup> In the case of an NPP, steam would be diverted prior to going through the generator turbine and sent through a heat exchanger where the heat would be transferred to the molten salt.

Molten salts are efficient thermal sinks due to their high boiling points, high heat density, and low vapor pressure. Molten salt TES also has relatively low storage capital costs, with many systems starting close to \$30/kWh.<sup>134</sup> However, they do have significant costs in terms of cost per unit power, with the associated steam turbines, generators, and other equipment costing in the neighborhood of \$500 per kW.<sup>23</sup> Though they have historically been used primarily in concentrated solar plants and for experimental nuclear systems, these salts perform well for energy-storage applications across the board. Round-trip energy efficiency is roughly 70%.<sup>133</sup>

Although molten salts are still being researched as a storage option and are constantly improving, their temperature profile struggles to meet that of most LWR plants, the generating facilities of which operate around 300°C. The melting point of molten salts is nearly always in excess of 265°C. This decreases the available temperatures by over 82% and leaves a very narrow range of temperatures for heating, dramatically decreasing the energy density of the system and significantly increasing the cost. With this change, costs are around \$175 per kWh. Unlike other, more commercially developed energy storage options that have manufacturers which include the cost of removal in the purchase price, molten salt is a newer technology, and any such installation would have to be removed by its user. Thus, end-of-life costs must be accounted for. This change could bring the cost per kW to \$750 and the cost per kWh to \$262.5.

# **High-Temperature Concrete**

Concrete can be used to store energy by heating large concrete blocks to high-temperatures. The heat is used to either boil water or heat air which, in turn, spins a turbine to generate electricity when needed. Research has shown that concrete blocks have been able to cycle to 500°C approximately 2,500 times without unacceptable levels of material degradation.<sup>125</sup> This result indicates the technology's viability as an energy-storage option.

High-temperature concrete also has the potential to be inexpensive, with costs around \$1 per kWh. Costs per unit power are greater due to the cost associated with steam turbines, generators, and other equipment coming out to around \$500 per kW. As with molten-salt storage, the temperature at which a nuclear plant operates is significantly lower than the maximum temperature for high-temperature concrete, shrinking the range of temperatures available for storage by 60%. This change brings the cost per kWh to \$2.50.

Despite these very promising numbers, the technology is still nascent, and it is not feasible to deploy at scale. Significant developments need to be made to increase its heat-transfer rate, and the technology must be demonstrated at scale. Research is funded and ongoing. Should the technology develop, overcome material heat-transfer limitations, and undergo a successful commercial trial, it would be transformative for energy storage.

## Summary—Thermal Energy Storage

Key metrics for TES methods are displayed in Table C-22, and more-detailed data on cycling regimes are provided in Table C-23 through Table C-31.

| Thermal<br>Storage<br>Option     | Installation<br>Cost (\$/kW) | Installation<br>Cost (\$/kWh) | Round-Trip<br>Efficiency<br>(%) | Cycle<br>Life | Lifetime | Self-<br>Discharge<br>Rate<br>(%/month) |
|----------------------------------|------------------------------|-------------------------------|---------------------------------|---------------|----------|-----------------------------------------|
| Molten Salt                      | 750                          | 267.5                         | 70                              | 10,000        | 25       | 26                                      |
| High-<br>Temperature<br>Concrete | 500                          | 2.50                          | 70                              | 2,500         | 30       | 26                                      |

Table C-22. Summary of key metrics for different thermal energy storage options.

Table C-23. Financial analysis of thermal energy storage options for 4-hour storage cycled 12 times annually.

| Thermal Energy Storage<br>Option | LCOS (\$/MWh) | LCOE (\$/MWh) |
|----------------------------------|---------------|---------------|
| Molten Salt                      | 2,601.63      | 35,292,550.76 |
| High-Temperature Concrete        | 1490.31       | 20,216,901    |

Table C-24. Financial analysis of thermal energy storage options for 4-hour storage cycled 60 times annually.

| Thermal Energy Storage<br>Option | LCOS (\$/MWh) | LCOE (\$/MWh) |
|----------------------------------|---------------|---------------|
| Molten Salt                      | 521.81        | 4,680.00      |

Table C-25. Financial analysis of thermal energy storage options for 4-hour storage cycled 200 times annually.

| Thermal Energy Storage Option | LCOS (\$/MWh) | LCOE (\$/MWh) |
|-------------------------------|---------------|---------------|
| Molten Salt                   | 157.84        | 415.64        |
| High-Temperature Concrete     | 145.86        | 320.00        |

Table C-26. Financial analysis of thermal energy storage options for 4-hour storage cycled daily.

| Thermal Energy Storage Option | LCOS (\$/MWh) | LCOE (\$/MWh) |
|-------------------------------|---------------|---------------|
| Molten Salt                   | 87.33         | 193.60        |
| High-Temperature Concrete     | 145.06        | 305.03        |

Table C-27. Financial analysis of thermal energy storage options for 12-hour storage cycled 12 times annually.

| Thermal Energy Storage Option | LCOS (\$/MWh) | LCOE (\$/MWh) |
|-------------------------------|---------------|---------------|
| Molten Salt                   | 2,068.51      | 28,060,475.81 |
| High-Temperature Concrete     | 961.07        | 13,037,432.03 |

Table C-28. Financial analysis of thermal energy storage options for 12-hour storage cycled 60 times annually.

| Thermal Energy Storage Option | LCOS (\$/MWh) | LCOE (\$/MWh) |
|-------------------------------|---------------|---------------|
| Molten Salt                   | 414.88        | 3,726.10      |
| High-Temperature Concrete     | 204.55        | 1,849.74      |

Table C-29. Financial analysis of thermal energy storage options for 12-hour storage cycled 200 times annually.

| Thermal Energy Storage Option | LCOS (\$/MWh) | LCOE (\$/MWh) |
|-------------------------------|---------------|---------------|
| Molten Salt                   | 125.50        | 335.59        |
| High-Temperature Concrete     | 102.49        | 278.66        |

Table C-30. Financial analysis of thermal energy storage options for 12-hour storage cycled daily.

| Thermal Energy Storage Option | LCOS (\$/MWh) | LCOE (\$/MWh) |
|-------------------------------|---------------|---------------|
| Molten Salt                   | 69.44         | 159.05        |
| High-Temperature Concrete     | 99.48         | 217.05        |

Table C-31. Financial analysis of thermal energy storage options for 100-hour storage cycled bi-annually.

| Thermal Energy Storage Option | LCOS (\$/MWh) | LCOE (\$/MWh) |
|-------------------------------|---------------|---------------|
| Molten Salt                   | 10,997.10     | n/a           |

| High-Temperature Concrete 4,669.07 | n/a |  |
|------------------------------------|-----|--|
|------------------------------------|-----|--|

This analysis shows that if high-temperature concrete develops as a technology, it will be a very efficient option. This performance is due to its much lower cost per capacity than molten salt combined with lows in other key areas, such as cost per unit power, efficiency, and self-discharge rate. The relatively low cycle life of high-temperature concrete of 2,500 cycles does cause it to falter against molten salt at higher cycling rates because it is not able to cycle as many times. Despite its economic efficiency in certain scenarios, high-temperature concrete cannot be seriously considered for use at this time due to its current lack of technological development.

Molten salt has a lower LCOE than high-temperature concrete in only the two daily-cycling scenarios, but its much more-progressed technological development makes it an option that can be seriously considered.

# C-6. Summary of Energy Storage Options

The energy storage options that held the lowest LCOE in scenarios for any storage category are considered further in the following final comparison. Sodium-sulfur, lead-acid, and lithium-ion batteries, LAES, above-ground CAES, and molten salt are compared and contrasted in summary in Table C-32 and by cycling regime in Table C-33 through Table C-41.

| Energy<br>Storage<br>Option | Installation<br>Cost (\$/kW) | Installation<br>Cost (\$/kWh) | Round-Trip<br>Efficiency<br>(%) | Cycle<br>Life            | Lifetime | Self-<br>Discharge<br>Rate<br>(%/month) |
|-----------------------------|------------------------------|-------------------------------|---------------------------------|--------------------------|----------|-----------------------------------------|
| Lead Acid<br>Battery        | 80                           | 200<br>160-250                | 80                              | 2500<br><sup>79-84</sup> | 15       | 2                                       |
| Lithium-ion<br>Battery      | 120                          | 340                           | 85                              | 7500<br>90-94            | 20       | 1                                       |
| LAES                        | 1,000                        | 200                           | <b>70</b><br>60-70              | 15,000                   | 30       | 1–2                                     |
| CAES (Above<br>Ground)      | 1,500<br>1050-2544           | 165<br>355-490                | 52<br>50-55                     | 10,000                   | 25       | 0                                       |
| Molten Salt                 | 500                          | 267.5                         | 70                              | 10,000                   | 25       | 26                                      |

Table C-32. Summary of key metrics for different energy storage options.

| Table C-33 | Financial a | nalysis of energ | v storage options | for 4-hour storag | e cycled 12 times an | nually |
|------------|-------------|------------------|-------------------|-------------------|----------------------|--------|
|            | i manciai a | marysis or cherg | y storage options | 101 4-nour storag | e cycleu 12 times an | muany. |

| Energy Storage Option   | LCOS (\$/MWh) | LCOE (\$/MWh) |
|-------------------------|---------------|---------------|
| Sodium Sulfur Batteries | 6,371.44      | 7,989.30      |
| Lead Acid Batteries     | 1,979.56      | 4,559.59      |
| Lithium-ion Batteries   | 2,599.17      | 4,176.24      |
| LAES                    | 2,591.27      | 5,050.48      |
| CAES (Above Ground)     | 3,168.36      | 6,118.00      |
| Molten Salt             | 2,601.63      | 35,292,550.76 |

| Energy Storage Option   | LCOS (\$/MWh) | LCOE (\$/MWh) |  |  |  |  |
|-------------------------|---------------|---------------|--|--|--|--|
| Sodium Sulfur Batteries | 1,323.08      | 1,678.85      |  |  |  |  |
| Lead Acid Batteries     | 420.27        | 619.04        |  |  |  |  |
| Lithium-ion Batteries   | 530.63        | 688.63        |  |  |  |  |
| LAES                    | 519.24        | 813.54        |  |  |  |  |
| CAES (Above Ground)     | 640.44        | 1,256.51      |  |  |  |  |
| Molten Salt             | 521.81        | 4,680.00      |  |  |  |  |

Table C-34. Financial analysis of energy storage options for 4-hour storage cycled 60 times annually.

Table C-35. Financial analysis of energy storage options for 4-hour storage cycled 200 times annually.

| Energy Storage Option   | LCOS (\$/MWh) | LCOE (\$/MWh) |  |  |  |  |
|-------------------------|---------------|---------------|--|--|--|--|
| Sodium Sulfur Batteries | 441.50        | 576.87        |  |  |  |  |
| Lead Acid Batteries     | 202.39        | 287.39        |  |  |  |  |
| Lithium-ion Batteries   | 168.87        | 227.35        |  |  |  |  |
| LAES                    | 156.64        | 252.91        |  |  |  |  |
| CAES (Above Ground)     | 198.13        | 406.02        |  |  |  |  |
| Molten Salt             | 157.84        | 415.64        |  |  |  |  |

Table C-36. Financial analysis of energy storage options for 4-hour storage cycled daily.

| Energy Storage Option   | LCOS (\$/MWh) | LCOE (\$/MWh) |
|-------------------------|---------------|---------------|
| Sodium Sulfur Batteries | 402.98        | 528.73        |
| Lead Acid Batteries     | 190.90        | 268.50        |
| Lithium-ion Batteries   | 99.03         | 142.68        |
| LAES                    | 86.39         | 149.66        |
| CAES (Above Ground)     | 112.52        | 241.38        |
| Molten Salt             | 87.33         | 193.60        |

Table C-37. Financial analysis of mechanical energy storage options for 12-hour storage cycled 12 times annually.

| Energy Storage Option   | LCOS (\$/MWh) | LCOE (\$/MWh) |  |  |  |  |
|-------------------------|---------------|---------------|--|--|--|--|
| Sodium Sulfur Batteries | 6,198.78      | 7,773.47      |  |  |  |  |
| Lead Acid Batteries     | 1,910.10      | 4439.07       |  |  |  |  |
| Lithium-ion Batteries   | 2,501.09      | 4,019.59      |  |  |  |  |
| LAES                    | 1,883.27      | 3,677.40      |  |  |  |  |
| CAES (Above Ground)     | 2,036.80      | 3,941.93      |  |  |  |  |
| Molten Salt             | 2,068.51      | 28,060,475.81 |  |  |  |  |

| Energy Storage Option   | LCOS (\$/MWh) | LCOE (\$/MWh) |  |  |  |  |
|-------------------------|---------------|---------------|--|--|--|--|
| Sodium Sulfur Batteries | 1,287.22      | 1,634.03      |  |  |  |  |
| Lead Acid Batteries     | 405.53        | 598.20        |  |  |  |  |
| Lithium-ion Batteries   | 510.61        | 663.59        |  |  |  |  |
| LAES                    | 377.37        | 598.09        |  |  |  |  |
| CAES (Above Ground)     | 411.71        | 816.75        |  |  |  |  |
| Molten Salt             | 414.88        | 3,726.10      |  |  |  |  |

Table C-38. Financial analysis of mechanical energy storage options for 12-hour storage cycled 60 times annually.

Table C-39. Financial analysis of mechanical energy storage options for 12-hour storage cycled 200 times annually.

| Energy Storage Option   | LCOS (\$/MWh) | LCOE (\$/MWh) |  |  |  |  |
|-------------------------|---------------|---------------|--|--|--|--|
| Sodium Sulfur Batteries | 429.53        | 561.92        |  |  |  |  |
| Lead Acid Batteries     | 195.29        | 278.28        |  |  |  |  |
| Lithium-ion Batteries   | 162.50        | 219.71        |  |  |  |  |
| LAES                    | 113.84        | 190.64        |  |  |  |  |
| CAES (Above Ground)     | 127.37        | 269.94        |  |  |  |  |
| Molten Salt             | 125.50        | 335.59        |  |  |  |  |

| Energy Storage Option   | LCOS (\$/MWh) | LCOE (\$/MWh) |  |  |  |  |
|-------------------------|---------------|---------------|--|--|--|--|
| Sodium Sulfur Batteries | 392.06        | 515.07        |  |  |  |  |
| Lead Acid Batteries     | 184.21        | 259.96        |  |  |  |  |
| Lithium-ion Batteries   | 95.29         | 130.65        |  |  |  |  |
| LAES                    | 62.78         | 115.60        |  |  |  |  |
| CAES (Above Ground)     | 72.33         | 164.10        |  |  |  |  |
| Molten Salt             | 69.44         | 159.05        |  |  |  |  |

| Energy Storage Option   | LCOS (\$/MWh) | LCOE (\$/MWh) |  |  |  |  |
|-------------------------|---------------|---------------|--|--|--|--|
| Sodium Sulfur Batteries | 36,447.82     | 45,584.78     |  |  |  |  |
| Lead Acid Batteries     | 11,135.81     | 555,766.53    |  |  |  |  |
| Lithium-ion Batteries   | 14,684.27     | 108,170.96    |  |  |  |  |
| LAES                    | 9,426.79      | 84,327.95     |  |  |  |  |
| CAES (Above Ground)     | 9,213.05      | 17,742.41     |  |  |  |  |
| Molten Salt             | 10,997.10     | n/a           |  |  |  |  |

When these options are compared directly, four stand out as the most economically efficient option in different scenarios—lead-acid and Li-ion batteries, LAES, and above-ground CAES.

Lead-acid batteries have the lowest LCOE in the 60 cycle, 4-hour scenario. This advantage exists due to their low cost and the inability of their limited cycle lives to impact their performance significantly in low-cycle scenarios. This scenario highlights the low levels of degradation when kept at high levels of charge. Their closest competitor in this scenario is Li-ion batteries, which has an LCOE of \$688.63, compared to lead acid's \$619.04. Lead-acid batteries are also the second lowest LCOE option in the 12 cycle, 4-hour scenario with an LCOE of \$4,559.59, slightly higher than lithium-ion's \$4,176.24. They are held back in this scenario by their slightly higher self-discharge rate: 2% per month to lithium-ion's 1% per month. Self-discharge begins to be a significant factor in lower-cycle scenarios due to the increased spans of time between charging and discharging.

Lithium-ion batteries stand out in the 12-cycle, 200-cycle, and daily cycle 4-hour scenarios. The low cost per unit power of \$120 per kW, moderate cost per kWh capacity of \$320 per kWh, and relatively high cycle life of 7,500 cycles give it an advantage over other options in these categories. In the 12-cycle category, it is trailed by lead-acid batteries for the reasons discussed above. In the other two, it is trailed closely by LAES. Highview Power's new CRYOBattery LAES system has a relatively high efficiency of 70%, with a very low cost per kWh capacity of just \$200. Ultimately, it is LAES's lower efficiency—70% compared to lithium-ion's 85%—and its much-higher cost per unit power of \$1,000 per kW that result in a higher LCOE in these lower duration scenarios.

As duration increases, LAES's low cost of \$200 per kW capacity becomes an increasing advantage. It has the lowest LCOE in all four 12-hour scenarios. In the 12-cycle scenario, it is followed by above-ground CAES, which is lifted above other technologies in this low-cycle scenario by its lack of any self-discharge. In the 60-cycle scenario, lead acid batteries come in with a \$0.11 higher LCOE. It is competitive in this scenario due to its low cost and this scenario's provides an ideal number of cycles to minimize the technology's flaws, like the 4-hour 60-cycle scenario. In the 200 and daily cycle 12-hour scenarios, LAES is followed by lithium-ion batteries, which are competitive for the same reasons they are in a 4-hour scenario. However, in these longer-duration scenarios, LAES's low cost per kWh gives it an edge.

In the long duration scenario, above-ground CAES easily has the lowest LCOE. In this extremely low-cycle scenario, self-discharge rate becomes easily the most important factor.

Above-ground CAES's 0% self-discharge rate allows it to overcome factors such as expensive cost per unit power and lower efficiency. The closest competitor in this scenario is sodium sulfur batteries which also have 0% self-discharge, though the batteries' high maintenance costs and high cost per kWh make it nearly three times as expensive as above-ground CAES.

Energy storage is an important and rapidly developing field in the move toward cleaner energy production. The massive field of technologies has the potential to successfully store energy integrated with NPPs as they begin to flex increasingly due to increased renewables penetration. Though there are hundreds of different developed and potential technologies for energy storage, only a select few standout. While a daily use scenario—such as the 4-hour daily scenario in which lithium-ion comes in at \$142.68 per MWh—might be competitive at MISO wholesale electricity prices, a less frequently cycling scenario, such as the 4-hour 60 annual cycle scenario in which lead-acid batteries come in at \$619.04 per MWh, is less likely to be profitable. Seasonal storage scenarios, such as the 12-hour 12 annual cycle scenario in which LAES comes in at \$3,677.40 or the 100-hour two annual cycle scenario in which above-ground CAES comes in at \$17,742.4, are likely to be compared with the cost of natural gas peaker plants. Decisions on profitability must be made, but if they are successfully achieved, energy storage technologies present a proven and reliable option for the use of excess nuclear electricity.

# APPENDIX D HTSE PROCESS ANALYSIS SUPPLEMENTAL INFORMATION

## APPENDIX D HTSE PROCESS ANALYSIS SUPPLEMENTAL INFORMATION

### D-1. HTSE Detailed Process Flow Diagrams

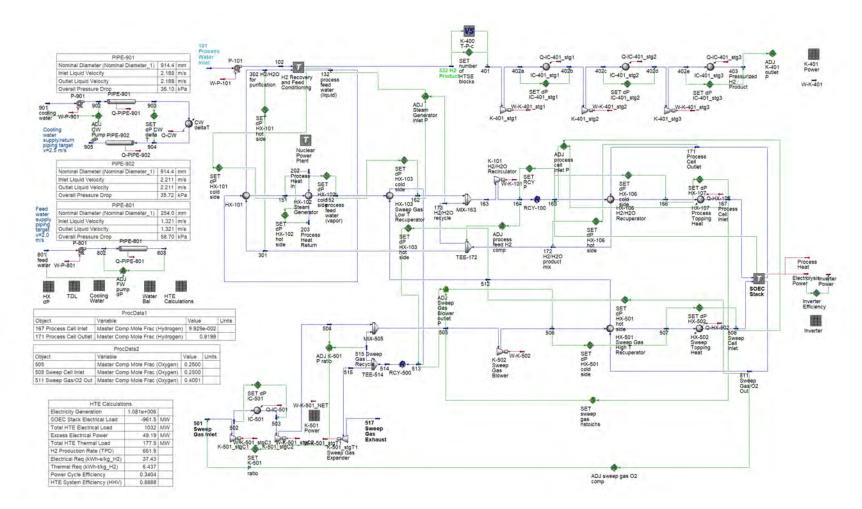



Figure D-1. Process Flow Diagram 1.

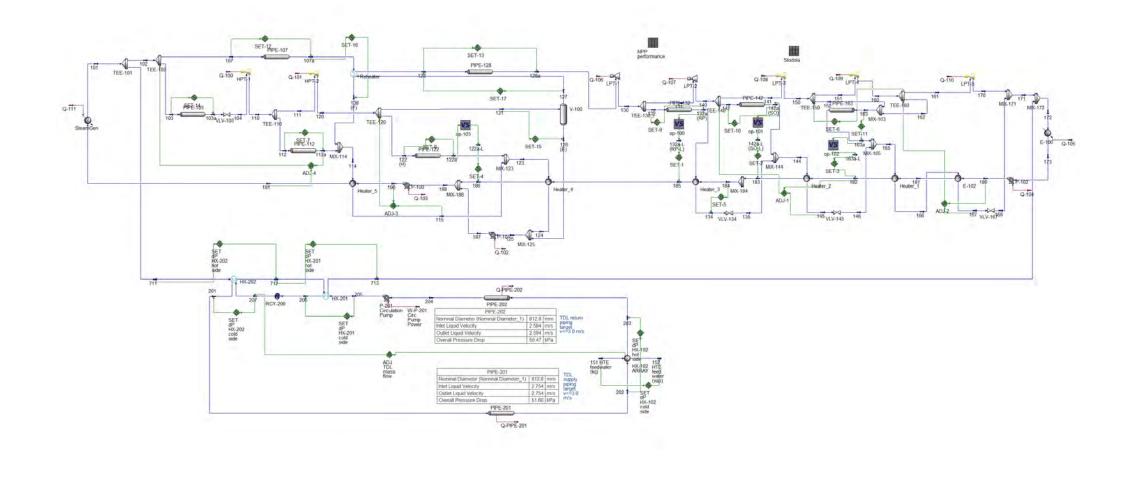



Figure D-2. Process Flow Diagram 2.

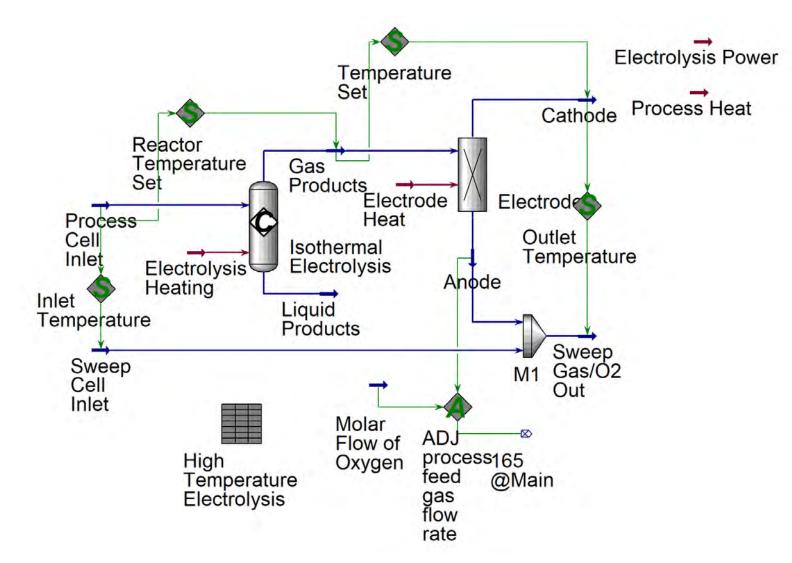



Figure D-3. Process Flow Diagram 3.

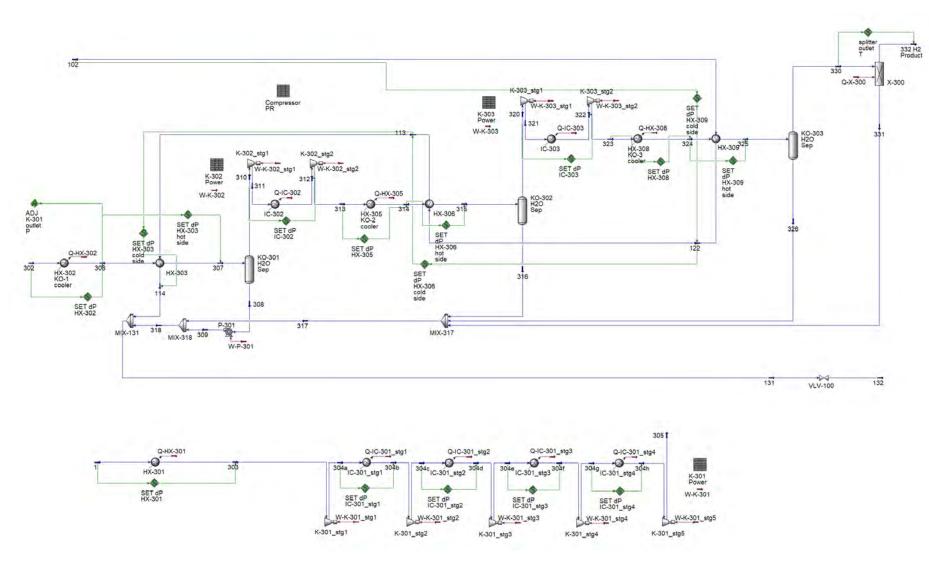
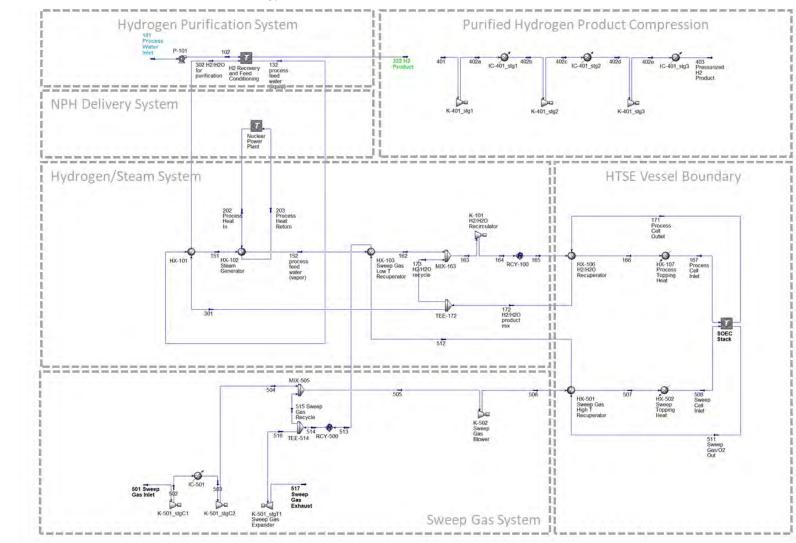




Figure D-4. Process Flow Diagram 4.

## **HTSE Process Flow Diagrams**



Subprocess area boundaries are included; flowsheet controls and energy streams are not shown.

Figure D-5. Process Flow Diagram 5.

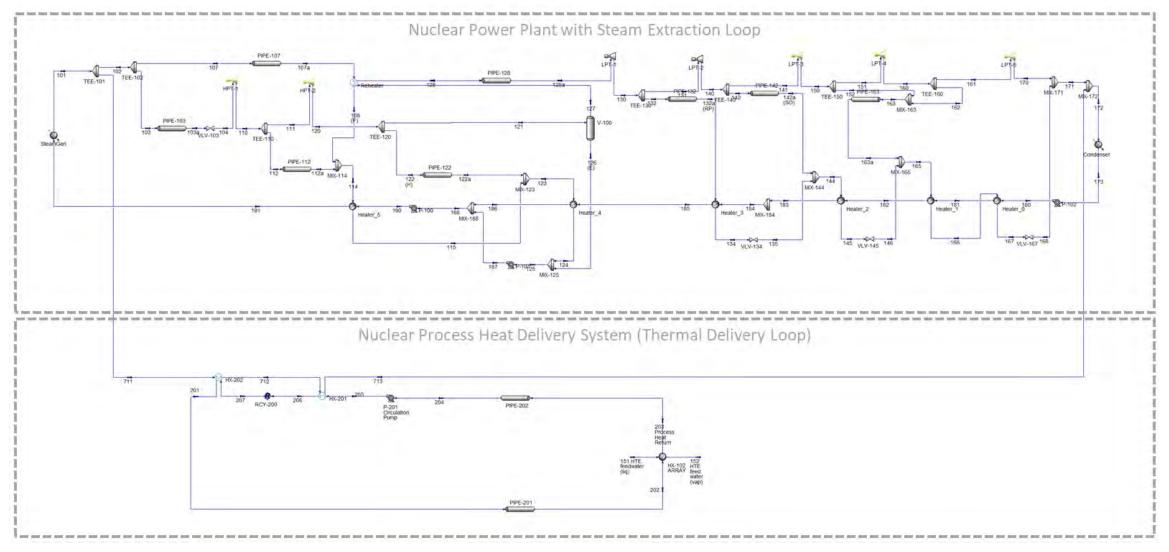



Figure D-6. Process Flow Diagram 6.




Figure D-7. Process Flow Diagram 7.

# Prairie Island LWR-HTSE Capital Costs

#### Table D-1. PI NPP-HTSE capital-cost breakdown.

| Equipment                                              |               | Process System         |        | Equipment<br>Capacity Unit | Equipment Description                                                                                                                   | APEA model           | Equipment<br>Costs<br>(uninstalled<br>costs of<br>equipment in<br>one HTE block) | Quantity<br>Scaling Factor<br>[or Progress Rate] | Uninstalled Cost<br>(scaled, FOAK<br>plant, 2020\$) | Uninstalled Cost<br>(scaled, NOAK<br>plant, 2020\$) | Installation Cost<br>Factor | Installed Cost<br>(scaled, FOAK<br>plant, 2020\$) | Installed Cost<br>(scaled, NOAK<br>plant, 2020\$) |
|--------------------------------------------------------|---------------|------------------------|--------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------|---------------------------------------------------|---------------------------------------------------|
| HTSE Module (stacks + balance-of-<br>module)           | modular       | HTSE system            | 17,416 | 25,300kW-dc                | SOEC Module (electrolysis stacks, module assemb recuperators, topping heaters)                                                          | oly, high & low temp | \$0                                                                              | 38 [1.000]                                       | \$0                                                 | \$0                                                 | 1.00                        | \$0                                               | \$0                                               |
| HTSE Vessel Shell                                      | modular       | HTSE system            | 17,416 | o 1unit                    | Horizontal drum (L 84" × D 42", 500°C, 500 kPa)                                                                                         | HT HORIZ DRUM        | \$360,978                                                                        | 38 [0.936]                                       | \$10,867,822                                        | \$9,755,814                                         | 5.13                        | \$55,781,743                                      | \$50,074,088                                      |
|                                                        |               |                        |        |                            |                                                                                                                                         |                      |                                                                                  |                                                  |                                                     |                                                     |                             |                                                   | 4,598,39                                          |
| HTSE Vessel Isolation Valves                           | modular       | HTSE system            | 17,416 |                            | Isolation Valves, 4 per module                                                                                                          |                      | \$135,040                                                                        | 38 [0.936] \$                                    | 4,065,596                                           | \$3,649,599                                         | 4.00                        | \$16,262,384                                      | 7                                                 |
| SOE Cells                                              | modular       | HTSE system            | 17,416 | 25,300kWdc                 |                                                                                                                                         |                      | \$4,297,787                                                                      | 38 [1.000]                                       | \$163,315,924                                       | \$163,315,924                                       | 1.00                        | \$163,315,924                                     | \$163,315,924                                     |
| SOEC Module Assembly                                   | modular       | HTSE system            | 17,416 | m² (cell<br>195.84area)    |                                                                                                                                         |                      | \$425,161                                                                        | 38 [0.936]                                       | \$12,800,133                                        | \$11,490,408                                        | 1.00                        | \$12,800,133                                      | \$11,490,408                                      |
| SOEC Electrical Connector                              | modulor       |                        | 17 /1/ |                            |                                                                                                                                         |                      | ¢24.070                                                                          | 20 [0 024]                                       | ¢1 004 007                                          | ¢075.045                                            | 2.00                        | ¢2.2E0.420                                        | ¢2.025.104                                        |
| Assemblies                                             | modular       | HTSE system            |        | 2.516544MWe                |                                                                                                                                         |                      | \$36,079                                                                         | 38 [0.936]                                       | \$1,086,207                                         | \$975,065                                           | 3.00                        | \$3,258,620                                       | \$2,925,194                                       |
| Sleeved Process Connections                            | modular       | HTSE system            | 17,416 | o 1unit                    |                                                                                                                                         |                      | \$394,796                                                                        | 38 [0.936]                                       | \$11,885,957                                        | \$10,669,771                                        | 1.00                        | \$11,885,957                                      | \$10,669,771                                      |
| HX-501 Sweep Gas High-Temperatu<br>Recuperator         | re<br>modular | HTSE system            | 17,416 | 382.7kW                    |                                                                                                                                         |                      | \$188,161                                                                        | 38 [0.936]                                       | \$5,664,891                                         | \$5,085,252                                         | 1.00                        | \$5,664,891                                       | \$5,085,252                                       |
| HX-106 H <sub>2</sub> /H <sub>2</sub> O Recuperator    | modular       | HTSE system            | 17,416 | 200.9kW                    |                                                                                                                                         |                      | \$217,395                                                                        | 38 [0.936]                                       | \$6,545,031                                         | \$5,875,336                                         | 1.00                        | \$6,545,031                                       | \$5,875,336                                       |
| HX-502 Sweep Gas Topping Heater                        | modular       | HTSE system            | 17,416 | 9 10kW                     |                                                                                                                                         |                      | \$15,925                                                                         | 38 [0.936]                                       | \$479,435                                           | \$430,379                                           | 5.77                        | \$2,767,107                                       | \$2,483,973                                       |
| HX-107 H <sub>2</sub> /H <sub>2</sub> O Topping Heater | modular       | HTSE system            | 17,416 | 51.9kW                     |                                                                                                                                         |                      | \$51,223                                                                         | 38 [0.936]                                       | \$1,542,154                                         | \$1,384,359                                         | 5.77                        | \$8,900,694                                       | \$7,989,965                                       |
| HTSE Block Container (shipping                         |               |                        |        |                            |                                                                                                                                         |                      |                                                                                  |                                                  |                                                     |                                                     |                             |                                                   |                                                   |
| container)                                             | modular       | HTSE system            | 17,416 |                            |                                                                                                                                         |                      | \$9,000                                                                          | 38 [0.936]                                       | \$270,959                                           | \$243,234                                           | 1.00                        | \$270,959                                         | \$243,234                                         |
| grid interconnect                                      | modular       | HTSE system            | 17,416 | o 17,416kg/day H           | 2                                                                                                                                       |                      | \$0                                                                              | 38 [0.936]                                       | \$0                                                 | \$0                                                 | 1.00                        | \$0                                               | \$0                                               |
| control module                                         | modular       | HTSE system            | 17,416 | o 17,416kg/day H           | 2                                                                                                                                       |                      | \$0                                                                              | 38 [0.936]                                       | \$0                                                 | \$0                                                 | 1.00                        | \$0                                               | \$0                                               |
| thermocouples                                          | modular       | HTSE system            | 17,416 | o 17,416kg/day H           | 2                                                                                                                                       |                      | \$0                                                                              | 38 [0.936]                                       | \$0                                                 | \$0                                                 | 1.00                        | \$0                                               | \$0                                               |
| pressure sensors                                       | modular       | HTSE system            | 17,416 | o 17,416kg/day H           | 2                                                                                                                                       |                      | \$0                                                                              | 38 [0.936]                                       | \$0                                                 | \$0                                                 | 1.00                        | \$0                                               | \$0                                               |
| plumbing and fittings                                  | modular       | HTSE system            | 17,416 | o 17,416kg/day H           | 2                                                                                                                                       |                      | \$0                                                                              | 38 [0.936]                                       | \$0                                                 | \$0                                                 | 1.00                        | \$0                                               | \$0                                               |
| hardware                                               | modular       | HTSE system            | 17,416 | o 17,416kg/day H           | 2                                                                                                                                       |                      | \$0                                                                              | 38 [0.936]                                       | \$0                                                 | \$0                                                 | 1.00                        | \$0                                               | \$0                                               |
| frame/housing                                          | modular       | HTSE system            | 17,416 | o 17,416kg/day H           | 2                                                                                                                                       |                      | \$45,955                                                                         | 38 [0.936]                                       | \$1,383,544                                         | \$1,241,978                                         | 1.00                        | \$1,383,544                                       | \$1,241,978                                       |
| Destifier/Dewer Supply                                 | modulor       | Food & Litility System | 17 /1/ |                            | One rectifier unit per HTSE block                                                                                                       |                      | ¢2 070 404                                                                       |                                                  | 116,801,6                                           | ¢104 0E0 202                                        | 1.00                        |                                                   | 04,850,3                                          |
| Rectifier/Power Supply<br>Disconnect Switch            | modular       | Feed & Utility System  | 17,416 |                            | •                                                                                                                                       |                      | \$3,879,606                                                                      | 38 [0.936]                                       |                                                     | \$104,850,393                                       | 1.00                        | \$116,801,682                                     | 93<br>¢111.240                                    |
|                                                        | modular       | Feed & Utility System  | 17,416 |                            | 20 kV                                                                                                                                   | BELSDISCNCT SV       |                                                                                  | 38 [0.936]                                       | \$123,919                                           | \$111,240                                           | 1.00                        | \$123,919                                         | \$111,240                                         |
| Transformer                                            | modular       | Feed & Utility System  | 17,416 |                            | 25 MVA load, 20 kV primary voltage                                                                                                      | BELSTRANSFORM        |                                                                                  |                                                  | \$13,805,594                                        | \$12,392,989                                        | 1.00                        | \$13,805,594                                      | \$12,392,989                                      |
| Switch Board                                           | modular       | Feed & Utility System  | 17,416 |                            | 25 MVA                                                                                                                                  | BELSSWITCH BRI       |                                                                                  | 38 [0.936]                                       | \$2,149,223                                         | \$1,929,311                                         | 1.00                        | \$2,149,223                                       | \$1,929,311                                       |
| DC Bus Power Distribution                              | modular       | Feed & Utility System  | 17,416 | o 25.2MVA                  | 25 MVA, 20 m                                                                                                                            | BELSBUS DUCT         | \$137,875                                                                        | 38 [0.936]                                       | \$4,150,949                                         | \$3,726,219                                         | 1.00                        | \$4,150,949                                       | \$3,726,219                                       |
| DC Bus Power Distribution                              | modular       | Feed & Utility System  | 17,416 | 5760A                      | one inlet and one outlet DC bus bar per HTSE bloc<br>DC power distribution to each of the four stack<br>columns within each SOEC module | К;                   | \$0                                                                              | 38 [0.936]                                       | \$0                                                 | \$0                                                 | 3.00                        | \$0                                               | \$0                                               |

| Equipment                                    |                | Process System                  | (TPD H <sub>2</sub> ) C | quipment<br>apacity Unit | Equipment Description                                                                    | APEA model    | Equipment<br>Costs<br>(uninstalled<br>costs of<br>equipment in<br>one HTE block) | Ouantity<br>Scaling Factor<br>[or Progress Rate] | Uninstalled Cost<br>(scaled, FOAK<br>plant, 2020\$) | Uninstalled Cost<br>(scaled, NOAK<br>plant, 2020\$) | Installation Cost<br>Factor | Installed Cost<br>(scaled, FOAK<br>plant, 2020\$) | Installed Cost<br>(scaled, NOAK<br>plant, 2020\$) |
|----------------------------------------------|----------------|---------------------------------|-------------------------|--------------------------|------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------|---------------------------------------------------|---------------------------------------------------|
| Power Pole Lines                             | conventional   | Feed & Utility System           | 661,792                 | 1000m                    | 1000 MVA, 1 km                                                                           | BELSPOLE LINE |                                                                                  | 1 [0.000]                                        | \$928,884                                           | \$928,884                                           | 1.00                        | \$928,884                                         | \$928,884                                         |
| Purified Water Storage Tank                  | modular        | Feed & Utility System           | 17,416                  | 311.3m <sup>3</sup>      | 48 hrs storage (Shaw Report, 2009) @ 1.8 kg/s                                            | VT STORAGE    | \$97,482                                                                         | 38 [0.936]                                       | \$2,934,847                                         | \$2,634,550                                         | 2.13                        | \$6,257,799                                       | \$5,617,493                                       |
| PIPE-801 Feed Water Supply Piping            | conventional   | Feed & Utility System           | 661,792                 | 250mm                    | 1000 m length; nominal pipe diameter selected to achieve ~2.0 m/s average fluid velocity | BPIPIPE       |                                                                                  | 1 0.325                                          | \$0                                                 | \$0                                                 | 4.00                        | \$0                                               | \$0                                               |
| P-801 Feed Water Supply Pump                 | conventional   | Feed & Utility System           | 661,792                 | 67.2L/s                  | 7.5 kW driver                                                                            | CP CENTRIF    |                                                                                  | 1 0.217                                          | \$0                                                 | \$0                                                 | 5.15                        | \$0                                               | \$0                                               |
| Water Pretreatment Filter/Softener<br>System | conventional   | Feed & Utility System           | 661,792                 |                          |                                                                                          |               |                                                                                  | 1 0.600                                          | \$2,241,667                                         | \$2,241,667                                         | 1.00                        | \$2,241,667                                       | \$2,241,667                                       |
| Water Treatment RO/EDI System                | conventional   | Feed & Utility System           | 661,792                 |                          |                                                                                          |               |                                                                                  | 1 0.600                                          | \$9,881,831                                         | \$9,881,831                                         | 1.00                        | \$9,881,831                                       | \$9,881,831                                       |
| PIPE-901 Cooling Water Supply Pipin          | g conventional | Feed & Utility System           | 661,792                 | 900mm                    | 1000 m length; nominal pipe diameter selected to achieve ~2.5 m/s average fluid velocity | BPIPIPE       |                                                                                  | 1 0.690                                          | \$0                                                 | \$0                                                 | 4.00                        | \$0                                               | \$0                                               |
| PIPE-902 Cooling Water Return Piping         | g conventional | Feed & Utility System           | 661,792                 | 900mm                    | 1000 m length; nominal pipe diameter selected to achieve ~2.5 m/s average fluid velocity | BPIPIPE       |                                                                                  | 1 0.690                                          | \$0                                                 | \$0                                                 | 4.00                        | \$0                                               | \$0                                               |
| P-901 Cooling Water Recirculation            |                |                                 | Г                       |                          | 7                                                                                        |               |                                                                                  |                                                  |                                                     |                                                     |                             |                                                   |                                                   |
| Pump                                         | conventional   | Feed & Utility System           | 661,792                 | 1319.2L/s                | 1000 kW driver                                                                           | CP CENTRIF    |                                                                                  | 1 0.625                                          | \$0                                                 | \$0                                                 | 2.41                        | \$0                                               | \$0                                               |
| CT-901 Cooling Tower                         | conventional   | Feed & Utility System           | 661,792                 | 1319.2L/s                | 14°C range, 4°C approach, 20°C wet bulb                                                  | CTWCOOLING    |                                                                                  | 1 0.572                                          | \$1,037,055                                         | \$1,037,055                                         | 1.47                        | \$1,524,397                                       | \$1,524,397                                       |
| Air Filter                                   | modular        | Air Sweep Gas System            | 17,416                  | 17,416kg/day H           |                                                                                          |               | \$2,298                                                                          | 38 [0.936]                                       | \$69,177                                            | \$62,099                                            | 1.00                        | \$69,177                                          | \$62,099                                          |
| K-501C Sweep Gas Compressor                  | modular        | Air Sweep Gas System            | 17,416                  | 13647.4m³/hr             | 800 kW driver; 2 stage intercooled centrifugal air<br>compressor                         | AC CENTRIF M  | \$666,684                                                                        | 38 [0.936]                                       | \$20,071,566                                        | \$18,017,819                                        | 1.33                        | \$26,726,165                                      | \$23,991,512                                      |
| K-501T Sweep Gas Exhaust Turbine             | modular        | Air Sweep Gas System            | 17,416                  | 6865m³/hr                | 880 kW power output                                                                      | TURTURBOEXP   | \$470,594                                                                        | 38 [0.936]                                       | \$14,167,966                                        | \$12,718,283                                        | 1.95                        | \$27,685,963                                      | \$24,853,102                                      |
| K-502 Sweep Gas Blower                       | modular        | Air Sweep Gas System            | 17,416                  | 5675.4m³/hr              | 107 kW driver                                                                            | FN PROPELLER  | \$1,342                                                                          | 38 [0.936]                                       | \$40,413                                            | \$36,277                                            | 24.67                       | \$996,843                                         | \$894,845                                         |
| P-101 Water Pump                             | modular        | Hydrogen/Steam System           | n 17,416                | 1.8L/s                   | 2.2 kW driver                                                                            | CP CENTRIF    | \$5,145                                                                          | 38 [0.936]                                       | \$154,891                                           | \$139,043                                           | 6.70                        | \$1,037,098                                       | \$930,981                                         |
| F-101 Water Filter                           | modular        | Hydrogen/Steam System           | n 17,416                | 1.8L/s                   |                                                                                          | F CARTRIDGE   | \$5,812                                                                          | 38 [0.936]                                       | \$174,970                                           | \$157,067                                           | 2.36                        | \$412,665                                         | \$370,440                                         |
| DI Polisher                                  | modular        | Hydrogen/Steam System           | n 17,416                | 17,416kg/day H           | 2                                                                                        |               | \$6,893                                                                          | 38 [0.936]                                       | \$207,532                                           | \$186,297                                           | 1.00                        | \$207,532                                         | \$186,297                                         |
| Water Flow Meter                             | modular        | Hydrogen/Steam System           | n 17,416                | 17,416kg/day H           | 2                                                                                        |               | \$11,489                                                                         | 38 [0.936]                                       | \$345,886                                           | \$310,495                                           | 1.00                        | \$345,886                                         | \$310,495                                         |
| HX-101 Condenser & Water Preheate            | r modular      | Hydrogen/Steam System           | n 17,416                | 15.8m²                   | BEM exchanger, 1 × 300 mm dia shell, 67<br>tubes/shell × 25 mm × 3 m                     | HE TEMA EXCH  | \$27,381                                                                         | 38 [0.936]                                       | \$824,338                                           | \$739,991                                           | 4.70                        | \$3,877,916                                       | \$3,481,123                                       |
| HX-102 Feed Water Vaporizer                  | modular        | Hydrogen/Steam System           | n 17,416                | 165.9m²                  | BEM exchanger, 1 × 650 mm dia shell, 352<br>tubes/shell × 25 mm × 6 m                    | HE TEMA EXCH  | \$38,568                                                                         | 38 [0.936]                                       | \$1,161,140                                         | \$1,042,331                                         | 3.61                        | \$4,189,085                                       | \$3,760,453                                       |
| HX-103 Sweep Gas Low Temp<br>Recuperator     | modular        | Hydrogen/Steam System           | n 17,416                | 163.5m²                  | BEM exchanger, 1 × 650 mm dia shell, 347<br>tubes/shell × 25 mm × 6 m                    | HE TEMA EXCH  | \$38,461                                                                         | 38 [0.936]                                       | \$1,157,922                                         | \$1,039,442                                         | 5.99                        | \$6,937,909                                       | \$6,228,014                                       |
| K-101 hydrogen Recycle Blower                | modular        | Hydrogen/Steam System           | n 17,416                | 4973.9m³/hr              | 52 kW driver                                                                             | FN PROPELLER  | \$1,342                                                                          | 38 [0.936]                                       | \$40,413                                            | \$36,277                                            | 22.92                       | \$926,121                                         | \$831,359                                         |
| HX-303 Feedwater Heater #1                   | modular        | Hydrogen Purification<br>System | 17,416                  | 8.5m²                    | BEM exchanger, 1 × 250 mm dia shell, 36<br>tubes/shell × 25 mm × 3 m                     | HE TEMA EXCH  | \$12,252                                                                         | 38 [0.936]                                       | \$368,867                                           | \$331,124                                           | 5.30                        | \$1,953,392                                       | \$1,753,519                                       |
| HX-306 Feedwater Heater #2                   | modular        | Hydrogen Purification<br>System | 17,416                  | 7.5m²                    | BEM exchanger, 1 × 200 mm dia shell, 32<br>tubes/shell × 25 mm × 3 m                     | HE TEMA EXCH  | \$11,080                                                                         | 38 [0.936]                                       | \$333,584                                           | \$299,451                                           | 5.60                        | \$1,866,788                                       | \$1,675,776                                       |
| HX-309 Feedwater Heater #3                   | modular        | Hydrogen Purification<br>System | 17,416                  | 15.6m²                   | BEM exchanger, 1 × 300 mm dia shell, 66<br>tubes/shell × 25 mm × 3 m                     | HE TEMA EXCH  | \$14,702                                                                         | 38 [0.936]                                       | \$442,641                                           | \$397,349                                           | 5.01                        | \$2,219,618                                       | \$1,992,504                                       |

| Equipment                                                     |                    | Process System                  | Scale of<br>supported<br>system<br>(TPD H <sub>2</sub> ) | Equipment<br>Capacity Unit | Equipment Description                                                                                                  | APEA model          | Equipment<br>Costs<br>(uninstalled<br>costs of<br>equipment in<br>one HTE block) | Ouantity<br>Scaling Factor<br>[or Progress Rate] | Uninstalled Cost<br>(scaled, FOAK<br>plant, 2020\$) | Uninstalled Cost<br>(scaled, NOAK<br>plant, 2020\$) | Installation Cost<br>Factor | Installed Cost<br>(scaled, FOAK<br>plant, 2020\$) | Installed Cost<br>(scaled, NOAK<br>plant, 2020\$) |
|---------------------------------------------------------------|--------------------|---------------------------------|----------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------|---------------------------------------------------|---------------------------------------------------|
| HX-301 Product Purification Area Inle<br>Stream Cooler        | et<br>modular      | Hydrogen Purification<br>System | 17,410                                                   | 5 20.3m <sup>2</sup>       | BEM exchanger, 1 × mm dia shell, 43 tubes/shell<br>25 mm × 6 m                                                         | × HE TEMA EXCH      | \$0                                                                              | 38 [0.936]                                       | \$0                                                 | \$0                                                 | 5.59                        | \$0                                               | \$0                                               |
| HX-302 Separation Vessel #1<br>Precooler                      | modular            | Hydrogen Purification<br>System | 17,416                                                   | 5 8m²                      | BEM exchanger, 1 × 150 mm dia shell, 17<br>tubes/shell × 25 mm × 6 m                                                   | HE TEMA EXCH        | \$11,932                                                                         | 38 [0.936]                                       | \$359,244                                           | \$322,486                                           | 5.56                        | \$1,998,298                                       | \$1,793,829                                       |
| HX-305 Separation Vessel #2<br>Precooler                      | modular            | Hydrogen Purification<br>System | 17,410                                                   | 5 3.3m <sup>2</sup>        | BEM exchanger, 1 × 100 mm dia shell, 7 tubes/sh<br>× 25 mm × 6 m                                                       | ell<br>HE TEMA EXCH | \$10,760                                                                         | 38 [0.936]                                       | \$323,962                                           | \$290,813                                           | 6.05                        | \$1,959,807                                       | \$1,759,277                                       |
| HX-308 Separation Vessel #3<br>Precooler                      | modular            | Hydrogen Purification<br>System | 17,416                                                   | 5 44.3m <sup>2</sup>       | BEM exchanger, 1 × 350 mm dia shell, 94<br>tubes/shell × 25 mm × 6 m                                                   | HE TEMA EXCH        | \$11,187                                                                         | 38 [0.936]                                       | \$336,792                                           | \$302,331                                           | 5.90                        | \$1,985,467                                       | \$1,782,312                                       |
| P-301 KO-1 Outlet Pump                                        | modular            | Hydrogen Purification<br>System | 17,416                                                   | 6 0.2L/s                   | 0.2 kW driver                                                                                                          | CP CENTRIF          | \$4,921                                                                          | 38 [0.936]                                       | \$148,157                                           | \$132,997                                           | 6.48                        | \$959,652                                         | \$861,459                                         |
| K-301 H <sub>2</sub> Purification Multistage<br>Compressor #1 | modular            | Hydrogen Purification<br>System | 17,416                                                   | 5 0m³/hr                   | 900 kW driver; 3 stage reciprocating gas compres                                                                       | sorGC RECIP MOTR    | \$0                                                                              | 38 [0.936]                                       | \$0                                                 | \$0                                                 | 1.09                        | \$0                                               | \$0                                               |
| K-302 H <sub>2</sub> Purification Multistage<br>Compressor #2 | modular            | Hydrogen Purification<br>System | 17,416                                                   | 5 2509.1m³/hr              | 300 kW driver; 2 stage reciprocating gas compres                                                                       | sorGC RECIP MOTR    | \$869,261                                                                        | 38 [0.936]                                       | \$26,170,493                                        | \$23,492,696                                        | 1.13                        | \$29,683,017                                      | \$26,645,815                                      |
| K-303 H <sub>2</sub> Purification Multistage<br>Compressor #3 | modular            | Hydrogen Purification<br>System | 17,416                                                   | 5 1027.6m³/hr              | 250 kW driver; 2 stage reciprocating gas compres                                                                       | sorGC RECIP MOTR    | \$724,179                                                                        | 38 [0.936]                                       | \$21,802,570                                        | \$19,571,705                                        | 1.14                        | \$24,887,394                                      | \$22,340,886                                      |
| KO-301 H <sub>2</sub> Separation Vessel #1                    | modular            | Hydrogen Purification<br>System | 17,410                                                   | 6 3.4m <sup>3</sup>        | L/D = 3                                                                                                                | VT CYLINDER         | \$19,603                                                                         | 38 [0.936]                                       | \$590,177                                           | \$529,789                                           | 5.50                        | \$3,245,973                                       | \$2,913,841                                       |
| KO-302 $H_2$ Separation Vessel #2                             | modular            | Hydrogen Purification<br>System | 17,410                                                   | 6 3.4m <sup>3</sup>        | L/D = 3                                                                                                                | VT CYLINDER         | \$20,029                                                                         | 38 [0.936]                                       | \$603,007                                           | \$541,306                                           | 5.20                        | \$3,136,918                                       | \$2,815,945                                       |
| KO-303 H <sub>2</sub> Separation Vessel #3                    | modular            | Hydrogen Purification<br>System | 17,410                                                   | 6 3.4m <sup>3</sup>        | L/D = 3                                                                                                                | VT CYLINDER         | \$23,438                                                                         | 38 [0.936]                                       | \$705,646                                           | \$633,444                                           | 4.38                        | \$3,088,806                                       | \$2,772,756                                       |
| Hydrogen H <sub>2</sub> O Adsorber Regen Cool                 | er modular         | Hydrogen Purification<br>System | 17,410                                                   | 6 17,416kg/da              | H <sub>2</sub>                                                                                                         |                     | \$0                                                                              | 38 [0.936]                                       | \$0                                                 | \$0                                                 | 2.91                        | \$0                                               | \$0                                               |
| Regen Water Knockout Drum                                     | modular            | Hydrogen Purification<br>System | 17,410                                                   | 6 17,416kg/da              | H <sub>2</sub>                                                                                                         |                     | \$0                                                                              | 38 [0.936]                                       | \$0                                                 | \$0                                                 | 1.41                        | \$0                                               | \$0                                               |
| X-300 hydrogen H <sub>2</sub> O Adsorbers                     | modular            | Hydrogen Purification<br>System | 17,410                                                   | 6 17,416kg/da              | H <sub>2</sub>                                                                                                         |                     | \$0                                                                              | 38 [0.936]                                       | \$0                                                 | \$0                                                 | 3.59                        | \$0                                               | \$0                                               |
| Hydrogen H2O Adsorber Regen Heat                              | er modular         | Hydrogen Purification<br>System | 17,410                                                   | 6 17,416kg/da              | H <sub>2</sub>                                                                                                         |                     | \$0                                                                              | 38 [0.936]                                       | \$0                                                 | \$0                                                 | 2.91                        | \$0                                               | \$0                                               |
| Backup Electric Boiler                                        | modular            | NPH Delivery System             | 17,410                                                   | 6 17,416kg/da              | H <sub>2</sub>                                                                                                         |                     | \$241,530                                                                        | 38 [0.936]                                       | \$7,271,650                                         | \$6,527,606                                         | 1.00                        | \$7,271,650                                       | \$6,527,606                                       |
| Backup natural gas Boiler                                     | conventional       | NPH Delivery System             | 661,792                                                  | 2                          |                                                                                                                        |                     |                                                                                  | 1 [1.000]                                        | \$0                                                 | \$0                                                 | 1.31                        | \$0                                               | \$0                                               |
| PIPE-201 Nuclear Process Heat Pipir<br>(supply)               | ng<br>conventional | NPH Delivery System             | 661,792                                                  | 2 800mm                    | 1000 m length; nominal pipe diameter selected to<br>achieve <30 m/s average vapor or <3.0 m/s avera<br>liquid velocity |                     |                                                                                  | 1 0.483                                          | \$1,224,911                                         | \$1,224,911                                         | 4.00                        | \$4,899,643                                       | \$4,899,643                                       |
| PIPE-202 Nuclear Process Heat Pipir<br>(return)               | ng<br>conventional | NPH Delivery System             | 661,792                                                  | 2 800mm                    | 1000 m length; nominal pipe diameter selected to achieve <3.0 m/s average fluid velocity                               | BPIPIPE             |                                                                                  | 1 0.483                                          | \$1,224,911                                         | \$1,224,911                                         | 4.00                        | \$4,899,643                                       | \$4,899,643                                       |
| P-201 Nuclear Process Heat<br>Circulation Pump                | conventional       | NPH Delivery System             | 661,792                                                  | 2 88.7L/s                  | 80 kW driver                                                                                                           | CP CENTRIF          |                                                                                  | 1 0.285                                          | \$282,257                                           | \$282,257                                           | 2.72                        | \$767,403                                         | \$767,403                                         |

| Equipment                                                  |              | Process System                |         | quipment<br>apacity Unit | Equipment Description                                                   | APEA model    | Equipment<br>Costs<br>(uninstalled<br>costs of<br>equipment in<br>one HTE block) | Ouantity<br>Scaling Factor<br>[or Progress Rate] | Uninstalled Cost<br>(scaled, FOAK<br>plant, 2020\$) | Uninstalled Cost<br>(scaled, NOAK<br>plant, 2020\$) | Installation Cost<br>Factor | Installed Cost<br>(scaled, FOAK<br>plant, 2020\$) | Installed Cost<br>(scaled, NOAK<br>plant, 2020\$) |
|------------------------------------------------------------|--------------|-------------------------------|---------|--------------------------|-------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------|---------------------------------------------------|---------------------------------------------------|
| HX-201 Nuclear Process Heat TDL HX                         | conventional | NPH Delivery System           | 661,792 | 237m <sup>2</sup>        | BEM exchanger, 1 × 775 mm dia shell, 503<br>tubes/shell × 25 mm × 6 m   | HE TEMA EXCH  |                                                                                  | 1 0.700                                          | \$174,881                                           | \$174,881                                           | 2.20                        | \$384,483                                         | \$384,483                                         |
| HX-202 Nuclear Process Heat TDL HX                         | conventional | NPH Delivery System           | 661,792 | 4122.4m <sup>2</sup>     | BEM exchanger, 4 × 1600 mm dia shell, 2187<br>tubes/shell × 25 mm × 6 m | HE TEMA EXCH  |                                                                                  | 1 0.700                                          | \$1,030,967                                         | \$1,030,967                                         | 1.53                        | \$1,573,716                                       | \$1,573,716                                       |
| Therminol-66 HTF                                           | conventional | NPH Delivery System           | 661,792 | 700,000kg                | 2 × 1000 m × 700 mm × 900 kg/m <sup>3</sup>                             |               |                                                                                  | 1 1.000 \$                                       | 52,681,383                                          | \$2,681,383                                         | 1.00                        | \$2,681,383 \$2                                   | 2,681,383                                         |
| K-401 High-Pressure Multistage<br>Reciprocating Compressor | conventional | Product Compression<br>System | 661,792 | 17,650m³/hr              | 18,000 kW driver; 3 stage intercooled reciprocating gas compressor      | GC RECIP MOTR |                                                                                  | 1 0.602                                          | \$4,104,907                                         | \$4,104,907                                         | 1.30                        | \$5,336,379                                       | \$5,336,379                                       |
| H <sub>2</sub> Product Storage                             | conventional | Product Compression<br>System | 661,792 |                          |                                                                         |               |                                                                                  | 1 0.570                                          | \$0                                                 | \$0                                                 | 1.41                        | \$0                                               | \$0                                               |
| CB-101 Control Building                                    | conventional | Control System                | 661,792 |                          | 15 m × 25 m                                                             | BCIVBUILDING  |                                                                                  | 1 0.000                                          | \$498,879                                           | \$498,879                                           | 1.00                        | \$498,879                                         | \$498,879                                         |
| OC-101 Operator Center                                     | conventional | Control System                | 661,792 |                          | 5 operator display units                                                | BINSOPER CENT |                                                                                  | 1 0.000                                          | \$329,225                                           | \$329,225                                           | 1.00                        | \$329,225                                         | \$329,225                                         |
|                                                            |              |                               |         |                          |                                                                         |               |                                                                                  |                                                  | \$483,388,625                                       | \$453,262,096                                       |                             | \$625,742,826                                     | \$582,104,942                                     |

# Monticello LWR-HTSE Capital Costs

### Table D-2. Monticello NPP-HTSE capital-cost breakdown.

| Equipment                                                 |           | Process System | system | d Equipme<br>nt<br>Capacity |                       | Equipment Description                                                                       | APEA Mode        | Equipment<br>Costs<br>(uninstalled<br>costs of<br>equipment in<br>one HTE<br>block) | Quantity | Scaling Factor<br>[or Progress<br>Rate] | Uninstalled Cost<br>(scaled, FOAK<br>plant, 2020\$) | Uninstalled Cost<br>(scaled, NOAK<br>plant, 2020\$) | Installation Cost<br>Factor | Installed Cost<br>(scaled, FOAK<br>plant, 2020\$) | Installed Cost<br>(scaled, NOAK<br>plant, 2020\$) |
|-----------------------------------------------------------|-----------|----------------|--------|-----------------------------|-----------------------|---------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------|----------|-----------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------|---------------------------------------------------|---------------------------------------------------|
| HTSE Module (stacks +<br>balance-of-module)               | modular   | HTSE system    | 17,416 | 25,300                      | kW-dc                 | SOEC Module (electrolysis stacks, r<br>assembly, high & low temp recupe<br>topping heaters) |                  | \$0                                                                                 | 22       | [1.000]                                 | \$0                                                 | \$0                                                 | 1.00                        | \$0                                               | \$0                                               |
| HTSE Vessel Shell                                         | modular   | HTSE system    | 17,416 | 1                           | unit                  | Horizontal drum (L 84" x D 42",<br>500°C, 500 kPa)                                          | HT HORIZ<br>DRUM | \$360,978                                                                           | 22       | [0.936]                                 | \$6,515,911                                         | \$5,648,103                                         | 5.13                        | \$33,444,497                                      | \$28,990,261                                      |
| HTSE Vessel Isolation Valve                               | s modular | HTSE system    | 17,416 | 1                           | unit                  | Isolation Valves, 4 per module                                                              |                  | \$135,040                                                                           | 22       | [0.936]                                 | \$2,437,568                                         | \$2,112,926                                         | 4.00                        | \$9,750,273                                       | \$8,451,703                                       |
| SOE Cells                                                 | modular   | HTSE system    | 17,416 | 25,300                      | kWdc                  |                                                                                             |                  | \$4,297,78<br>7                                                                     | 22       | [1.000] \$                              | 94,551,325 \$                                       | \$94,551,325                                        | 1.00                        | \$94,551,325                                      | \$94,551,325                                      |
| SOEC Module Assembly                                      | modular   | HTSE system    | 17,416 | 195.84                      | m² (cell<br>area)     |                                                                                             |                  | \$425,161                                                                           | 22       | [0.936]                                 | \$7,674,446                                         | \$6,652,341                                         | 1.00                        | \$7,674,446                                       | \$6,652,341                                       |
| SOEC Electrical Connector<br>Assemblies                   | modular   | HTSE system    | 17,416 | 2.51654 <sup>,</sup>        | 4 MWe                 |                                                                                             |                  | \$36,079                                                                            | 22       | [0.936]                                 | \$651,246                                           | \$564,511                                           | 3.00                        | \$1,953,738                                       | \$1,693,533                                       |
| Sleeved Process Connection                                | nsmodular | HTSE system    | 17,416 | 1                           | unit                  |                                                                                             |                  | \$394,796                                                                           | 22       | [0.936]                                 | \$7,126,343                                         | \$6,177,236                                         | 1.00                        | \$7,126,343                                       | \$6,177,236                                       |
| HX-501 Sweep Gas High-<br>Temperature Recuperator         | modular   | HTSE system    | 17,416 | 382.7                       | kW                    |                                                                                             |                  | \$188,161                                                                           | 22       | [0.936]                                 | \$3,396,441                                         | \$2,944,093                                         | 1.00                        | \$3,396,441                                       | \$2,944,093                                       |
| HX-106 H <sub>2</sub> /H <sub>2</sub> O Recuperato        | r modular | HTSE system    | 17,416 | 200.9                       | kW                    |                                                                                             |                  | \$217,395                                                                           | 22       | [0.936]                                 | \$3,924,138                                         | \$3,401,510                                         | 1.00                        | \$3,924,138                                       | \$3,401,510                                       |
| HX-502 Sweep Gas Topping<br>Heater                        | modular   | HTSE system    | 17,416 | 10                          | kW                    |                                                                                             |                  | \$15,925                                                                            | 22       | [0.936]                                 | \$287,450                                           | \$249,167                                           | 5.77                        | \$1,659,046                                       | \$1,438,090                                       |
| HX-107 H <sub>2</sub> /H <sub>2</sub> O Topping<br>Heater | modular   | HTSE system    | 17,416 | 51.9                        | kW                    |                                                                                             |                  | \$51,223                                                                            | 22       | [0.936]                                 | \$924,614                                           | \$801,471                                           | 5.77                        | \$5,336,499                                       | \$4,625,769                                       |
| HTSE Block Container<br>(shipping container)              | modular   | HTSE system    | 17,416 | 1                           | unit                  |                                                                                             |                  | \$9,000                                                                             | 22       | [0.936]                                 | \$162,456                                           | \$140,820                                           | 1.00                        | \$162,456                                         | \$140,820                                         |
| grid interconnect                                         | modular   | HTSE system    | 17,416 | 17,416                      | kg/day H <sub>2</sub> |                                                                                             |                  | \$0                                                                                 | 22       | [0.936]                                 | \$0                                                 | \$0                                                 | 1.00                        | \$0                                               | \$0                                               |
| control module                                            | modular   | HTSE system    | 17,416 | 17,416                      | kg/day H <sub>2</sub> |                                                                                             |                  | \$0                                                                                 | 22       | [0.936]                                 | \$0                                                 | \$0                                                 | 1.00                        | \$0                                               | \$0                                               |

| Equipment                            |              | Process System           | system  | d Equipme<br>nt<br>Capacity | Unit                  | Equipment Description                                                                                                                        | APEA Mode          | Equipment<br>Costs<br>(uninstalled<br>costs of<br>equipment in<br>one HTE<br>block) | Quantity | Scaling Factor<br>[or Progress<br>Rate] | Uninstalled Cost<br>(scaled, FOAK<br>plant, 2020\$) | Uninstalled Cost<br>(scaled, NOAK<br>plant, 2020\$) | Installation Cost<br>Factor | Installed Cost<br>(scaled, FOAK<br>plant, 2020\$) | Installed Cost<br>(scaled, NOAK<br>plant, 2020\$) |
|--------------------------------------|--------------|--------------------------|---------|-----------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------|----------|-----------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------|---------------------------------------------------|---------------------------------------------------|
| thermocouples                        | modular      | HTSE system              | 17,416  | 17,416                      | kg/day H <sub>2</sub> |                                                                                                                                              |                    | \$0                                                                                 | 22       | [0.936]                                 | \$0                                                 | \$0                                                 | 1.00                        | \$0                                               | \$0                                               |
| pressure sensors                     | modular      | HTSE system              | 17,416  | 17,416                      | kg/day H <sub>2</sub> |                                                                                                                                              |                    | \$0                                                                                 | 22       | [0.936]                                 | \$0                                                 | \$0                                                 | 1.00                        | \$0                                               | \$0                                               |
| plumbing and fittings                | modular      | HTSE system              | 17,416  | 17,416                      | kg/day H <sub>2</sub> |                                                                                                                                              |                    | \$0                                                                                 | 22       | [0.936]                                 | \$0                                                 | \$0                                                 | 1.00                        | \$0                                               | \$0                                               |
| hardware                             | modular      | HTSE system              | 17,416  | 17,416                      | kg/day H <sub>2</sub> |                                                                                                                                              |                    | \$0                                                                                 | 22       | [0.936]                                 | \$0                                                 | \$0                                                 | 1.00                        | \$0                                               | \$0                                               |
| frame/housing                        | modular      | HTSE system              | 17,416  | 17,416                      | kg/day H₂             |                                                                                                                                              |                    | \$45 <i>,</i> 955                                                                   | 22       | [0.936]                                 | \$829,518                                           | \$719,040                                           | 1.00                        | \$829,518                                         | \$719,040                                         |
| Rectifier/Power Supply               | modular      | Feed & Utility<br>System | 17,416  | 25                          | MVA                   | One rectifier unit per HTSE block                                                                                                            |                    | \$3,879,60<br>6                                                                     | 22       | [0.936] \$                              | 70,029,606 \$                                       | 60,702,859                                          | 1.00                        | \$70,029,606                                      | \$60,702,859                                      |
| Disconnect Switch                    | modular      | Feed & Utility<br>System | 17,416  | 20                          | kV                    | 20 kV                                                                                                                                        | BELSDISCNO<br>T SW | \$4,116                                                                             | 22       | [0.936]                                 | \$74,297                                            | \$64,402                                            | 1.00                        | \$74,297                                          | \$64,402                                          |
| Transformer                          | modular      | Feed & Utility<br>System | 17,416  | 25.2                        | MVA                   | 25 MVA load, 20 kV primary voltag                                                                                                            | BELSTRANS<br>e ORM | F<br>\$458,557                                                                      | 22       | [0.936]                                 | \$8,277,281                                         | \$7,174,888                                         | 1.00                        | \$8,277,281                                       | \$7,174,888                                       |
| Switch Board                         | modular      | Feed & Utility<br>System | 17,416  | 25.2                        | MVA                   | 25 MVA                                                                                                                                       | BELSSWITCI<br>BRD  | H<br>\$71,387                                                                       | 22       | [0.936]                                 | \$1,288,588                                         | \$1,116,970                                         | 1.00                        | \$1,288,588                                       | \$1,116,970                                       |
| DC Bus Power Distribution            | modular      | Feed & Utility<br>System | 17,416  | 25.2                        | MVA                   | 25 MVA, 20 m                                                                                                                                 | BELSBUS<br>DUCT    | \$137,875                                                                           | 22       | [0.936]                                 | \$2,488,743                                         | \$2,157,285                                         | 1.00                        | \$2,488,743                                       | \$2,157,285                                       |
| DC Bus Power Distribution            | modular      | Feed & Utility System    | 17,416  | 5760                        | А                     | one inlet and one outlet DC bus bar per<br>HTSE block; DC power distribution to<br>each of the four stack columns within<br>each SOEC module |                    | \$0                                                                                 | 22       | [0.936]                                 | \$0                                                 | \$0                                                 | 3.00                        | \$0                                               | \$0                                               |
| Power Pole Lines                     | conventional | Feed & Utility System    | 383,143 | 1000                        | m                     | 1000 MVA, 1 km                                                                                                                               | Belspole<br>Line   |                                                                                     | 1        | [0.000]                                 | \$928,884                                           | \$928,884                                           | 1.00                        | \$928,884                                         | \$928,884                                         |
| Purified Water Storage Tank          | modular      | Feed & Utility System    | 17,416  | 311.3                       | m³                    | 48 hrs storage (Shaw Report, 2009) @<br>1.8 kg/s                                                                                             | VT<br>STORAGE      | \$97,482                                                                            | 22       | [0.936]                                 | \$1,759,616                                         | \$1,525,266                                         | 2.13                        | \$3,751,925                                       | \$3,252,233                                       |
| PIPE-801 Feed Water Supply<br>Piping | conventional | Feed & Utility System    | 383,143 | 250                         | mm                    | 1000 m length; nominal pipe diameter<br>selected to achieve ~2.0 m/s average<br>fluid velocity                                               | BPIPIPE            |                                                                                     | 1        | 0.325                                   | \$0                                                 | \$0                                                 | 4.00                        | \$0                                               | \$0                                               |
| P-801 Feed Water Supply<br>Pump      | conventional | Feed & Utility System    | 383,143 | 38.9                        | L/s                   | 7.5 kW driver                                                                                                                                | CP CENTRIF         | -                                                                                   | 1        | 0.217                                   | \$0                                                 | \$0                                                 | 5.15                        | \$0                                               | \$0                                               |

| Equipment                                    |              | Process System           | system    | d Equipme<br>nt<br>Capacity | Unit                  | Equipment Description                                                                          | APEA Mode      | Equipment<br>Costs<br>(uninstalled<br>costs of<br>equipment in<br>one HTE<br>el block) | Quantity | Scaling Factor<br>[or Progress<br>Rate1 | Uninstalled Cost<br>(scaled, FOAK<br>plant, 2020\$) | Uninstalled Cost<br>(scaled, NOAK<br>plant, 2020\$) | Installation Cost<br>Factor | Installed Cost<br>(scaled, FOAK<br>plant, 2020\$) | Installed Cost<br>(scaled, NOAK<br>plant, 2020\$) |
|----------------------------------------------|--------------|--------------------------|-----------|-----------------------------|-----------------------|------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------|----------|-----------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------|---------------------------------------------------|---------------------------------------------------|
| Water Pretreatment<br>Filter/Softener System | conventional | Feed & Utility System    | n 383,143 |                             |                       |                                                                                                |                |                                                                                        | 1        | 0.600                                   | \$1,614,933                                         | \$1,614,933                                         | 1.00                        | \$1,614,933                                       | \$1,614,933                                       |
| Water Treatment RO/EDI<br>System             | conventional | Feed & Utility System    | n 383,143 |                             |                       |                                                                                                |                |                                                                                        | 1        | 0.600                                   | \$7,119,031                                         | \$7,119,031                                         | 1.00                        | \$7,119,031                                       | \$7,119,031                                       |
| PIPE-901 Cooling Water Supp<br>Piping        |              | Feed & Utility Systen    | n 383,143 | 900                         | mm                    | 1000 m length; nominal pipe diameter selected to achieve ~2.5 m/s average fluid velocity       | BPIPIPE        |                                                                                        | 1        | 0.690                                   | \$0                                                 | \$0                                                 | 4.00                        | \$0                                               | \$0                                               |
| PIPE-902 Cooling Water Retur<br>Piping       |              | Feed & Utility System    | n 383,143 | 900                         | mm                    | 1000 m length; nominal pipe diameter<br>selected to achieve ~2.5 m/s average<br>fluid velocity | BPIPIPE        |                                                                                        | 1        | 0.690                                   | \$0                                                 | \$0                                                 | 4.00                        | \$0                                               | \$0                                               |
| P-901 Cooling Water<br>Recirculation Pump    | conventional | Feed & Utility System    | n 383,143 | 763.7                       | L/s                   | 1000 kW driver                                                                                 | CP CENTRI      | F                                                                                      | 1        | 0.625                                   | \$0                                                 | \$0                                                 | 2.41                        | \$0                                               | \$0                                               |
| CT-901 Cooling Tower                         | conventional | Feed & Utility Systen    | n 383,143 | 763.7                       | L/s                   | 14°C range, 4°C approach, 20°C wet<br>bulb                                                     | CTWCOOLI<br>G  | N                                                                                      | 1        | 0.572                                   | \$758,726                                           | \$758,726                                           | 1.47                        | \$1,115,274                                       | \$1,115,274                                       |
| Air Filter                                   | modular      | Air Sweep Gas<br>System  | 17,416    | 17,416                      | kg/day H <sub>2</sub> |                                                                                                |                | \$2,298                                                                                | 22       | [0.936]                                 | \$41,476                                            | \$35,952                                            | 1.00                        | \$41,476                                          | \$35,952                                          |
| K-501C Sweep Gas<br>Compressor               | modular      | Air Sweep Gas<br>System  | 17,416    | 13647.4                     | m³/hr                 | 800 kW driver; 2 stage intercooled centrifugal air compressor                                  | AC CENTRI<br>M | F<br>\$666,684                                                                         | 22       | [0.936]                                 | \$12,034,106                                        | \$10,431,369                                        | 1.33                        | \$16,023,937                                      | \$13,889,823                                      |
| K-501T Sweep Gas Exhaust<br>Turbine          | modular      | Air Sweep Gas<br>System  | 17,416    | 6865                        | m³/hr                 | 880 kW power output                                                                            | TURTURBO<br>XP | E<br>\$470,594                                                                         | 22       | [0.936]                                 | \$8,494,544                                         | \$7,363,216                                         | 1.95                        | \$16,599,394                                      | \$14,388,638                                      |
| K-502 Sweep Gas Blower                       | modular      | Air Sweep Gas<br>System  | 17,416    | 5675.4                      | m³/hr                 | 107 kW driver                                                                                  | FN<br>PROPELLE | R \$1,342                                                                              | 22       | [0.936]                                 | \$24,230                                            | \$21,003                                            | 24.67                       | \$597,667                                         | \$518,068                                         |
| P-101 Water Pump                             | modular      | Hydrogen/Steam<br>System | 17,416    | 1.8                         | L/s                   | 2.2 kW driver                                                                                  | CP CENTRI      | F \$5,145                                                                              | 22       | [0.936]                                 | \$92,867                                            | \$80,498                                            | 6.70                        | \$621,802                                         | \$538,989                                         |
| F-101 Water Filter                           | modular      | Hydrogen/Steam<br>System | 17,416    | 1.8                         | L/s                   |                                                                                                | F<br>CARTRIDGI | E \$5,812                                                                              | 22       | [0.936]                                 | \$104,905                                           | \$90,933                                            | 2.36                        | \$247,417                                         | \$214,465                                         |
| DI Polisher                                  | modular      | Hydrogen/Steam<br>System | 17,416    | 17,416                      | kg/day H₂             |                                                                                                |                | \$6,893                                                                                | 22       | [0.936]                                 | \$124,428                                           | \$107,856                                           | 1.00                        | \$124,428                                         | \$107,856                                         |

| Equipment                                                     |              | Process System                  | Scale of<br>supported<br>system<br>(TPD H <sub>2</sub> ) | nt     |                       | Equipment Description                                                 | APEA Mode          | Equipment<br>Costs<br>(uninstalled<br>costs of<br>equipment in<br>one HTE<br>block) | Quantity | Scaling Factor<br>[or Progress<br>Rate] | Uninstalled Cost<br>(scaled, FOAK<br>plant, 2020\$) | Uninstalled Cost<br>(scaled, NOAK<br>plant, 2020\$) | Installation Cost<br>Factor | Installed Cost<br>(scaled, FOAK<br>plant, 2020\$) | Installed Cost<br>(scaled, NOAK<br>plant, 2020\$) |
|---------------------------------------------------------------|--------------|---------------------------------|----------------------------------------------------------|--------|-----------------------|-----------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------|----------|-----------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------|---------------------------------------------------|---------------------------------------------------|
| Water Flow Meter                                              | modular      | Hydrogen/Steam<br>System        | 17,416                                                   | 17,416 | kg/day H <sub>2</sub> |                                                                       |                    | \$11,489                                                                            | 22       | [0.936]                                 | \$207,379                                           | \$179,760                                           | 1.00                        | \$207,379                                         | \$179,760                                         |
| HX-101 Condenser & Water<br>Preheater                         | modular      | Hydrogen/Steam<br>System        | 17,416                                                   | 15.8   | m²                    | BEM exchanger, 1 × 300 mm dia shell,<br>67 tubes/shell × 25 mm × 3 m  | HE TEMA<br>EXCH    | \$27,381                                                                            | 22       | [0.936]                                 | \$494,240                                           | \$428,416                                           | 4.70                        | \$2,325,043                                       | \$2,015,387                                       |
| HX-102 Feed Water Vaporizer                                   | modular      | Hydrogen/Steam<br>System        | 17,416                                                   | 165.9  | m²                    | BEM exchanger, 1 × 650 mm dia shell,<br>352 tubes/shell × 25 mm × 6 m | HE TEMA<br>EXCH    | \$38,568                                                                            | 22       | [0.936]                                 | \$696,173                                           | \$603,455                                           | 3.61                        | \$2,511,607                                       | \$2,177,104                                       |
| HX-103 Sweep Gas Low Temp<br>Recuperator                      | modular      | Hydrogen/Steam<br>System        | 17,416                                                   | 163.5  | m²                    | BEM exchanger, 1 × 650 mm dia shell,<br>347 tubes/shell × 25 mm × 6 m | HE TEMA<br>EXCH    | \$38,461                                                                            | 22       | [0.936]                                 | \$694,244                                           | \$601,782                                           | 5.99                        | \$4,159,692                                       | \$3,605,692                                       |
| K-101 hydrogen Recycle Blowe                                  | ermodular    | Hydrogen/Steam<br>System        | 17,416                                                   | 4973.9 | m³/hr                 | 52 kW driver                                                          | FN<br>PROPELLEF    | R \$1,342                                                                           | 22       | [0.936]                                 | \$24,230                                            | \$21,003                                            | 22.92                       | \$555,265                                         | \$481,313                                         |
| HX-303 Feedwater Heater #1                                    | modular      | Hydrogen Purification<br>System | 17,416                                                   | 8.5    | m²                    | BEM exchanger, 1 × 250 mm dia shell,<br>36 tubes/shell × 25 mm × 3 m  | HE TEMA<br>EXCH    | \$12,252                                                                            | 22       | [0.936]                                 | \$221,158                                           | \$191,703                                           | 5.30                        | \$1,171,175                                       | \$1,015,195                                       |
| HX-306 Feedwater Heater #2                                    | modular      | Hydrogen Purification<br>System | 17,416                                                   | 7.5    | m²                    | BEM exchanger, 1 × 200 mm dia shell,<br>32 tubes/shell × 25 mm × 3 m  | HE TEMA<br>EXCH    | \$11,080                                                                            | 22       | [0.936]                                 | \$200,004                                           | \$173,367                                           | 5.60                        | \$1,119,251                                       | \$970,186                                         |
| HX-309 Feedwater Heater #3                                    | modular      | Hydrogen Purification<br>System | 17,416                                                   | 15.6   | m²                    | BEM exchanger, 1 × 300 mm dia shell,<br>66 tubes/shell × 25 mm × 3 m  | HE TEMA<br>EXCH    | \$14,702                                                                            | 22       | [0.936]                                 | \$265,390                                           | \$230,044                                           | 5.01                        | \$1,330,794                                       | \$1,153,555                                       |
| HX-301 Product Purification<br>Area Inlet Stream Cooler       | modular      | Hydrogen Purification<br>System | 17,416                                                   | 20.3   | m²                    | BEM exchanger, 1 × mm dia shell, 43<br>tubes/shell × 25 mm × 6 m      | HE TEMA<br>EXCH    | \$0                                                                                 | 22       | [0.936]                                 | \$0                                                 | \$0                                                 | 5.59                        | \$0                                               | \$0                                               |
| HX-302 Separation Vessel #1<br>Precooler                      | modular      | Hydrogen Purification<br>System | 17,416                                                   | 8      | m²                    | BEM exchanger, 1 × 150 mm dia shell,<br>17 tubes/shell × 25 mm × 6 m  | HE TEMA<br>EXCH    | \$11,932                                                                            | 22       | [0.936]                                 | \$215,389                                           | \$186,703                                           | 5.56                        | \$1,198,099                                       | \$1,038,533                                       |
| HX-305 Separation Vessel #2<br>Precooler                      | modular      | Hydrogen Purification<br>System | 17,416                                                   | 3.3    | m²                    | BEM exchanger, 1 × 100 mm dia shell,<br>7 tubes/shell × 25 mm × 6 m   | HE TEMA<br>EXCH    | \$10,760                                                                            | 22       | [0.936]                                 | \$194,234                                           | \$168,366                                           | 6.05                        | \$1,175,022                                       | \$1,018,529                                       |
| HX-308 Separation Vessel #3<br>Precooler                      | modular      | Hydrogen Purification<br>System | 17,416                                                   | 44.3   | m²                    | BEM exchanger, 1 × 350 mm dia shell,<br>94 tubes/shell × 25 mm × 6 m  | HE TEMA<br>EXCH    | \$11,187                                                                            | 22       | [0.936]                                 | \$201,927                                           | \$175,034                                           | 5.90                        | \$1,190,407                                       | \$1,031,865                                       |
| P-301 KO-1 Outlet Pump                                        | modular      | Hydrogen Purification<br>System | 17,416                                                   | 0.2    | L/s                   | 0.2 kW driver                                                         | CP CENTRIF         | <sup>-</sup> \$4,921                                                                | 22       | [0.936]                                 | \$88,829                                            | \$76,998                                            | 6.48                        | \$575,369                                         | \$498,740                                         |
| K-301 H <sub>2</sub> Purification Multistage<br>Compressor #1 | e<br>modular | Hydrogen Purification<br>System | 17,416                                                   | 0      | m³/hr                 | 900 kW driver; 3 stage reciprocating ga compressor                    | ISGC RECIP<br>MOTR | \$0                                                                                 | 22       | [0.936]                                 | \$0                                                 | \$0                                                 | 1.09                        | \$0                                               | \$0                                               |

| Equipment                                                             | Process System                  | system      | d Equipme<br>nt<br>Capacity |                       | Equipment Description                                                                                                   | APEA Mode         | Equipment<br>Costs<br>(uninstalled<br>costs of<br>equipment in<br>one HTE<br>block) | Quantity | Scaling Factor<br>[or Progress<br>Rate] | Uninstalled Cost<br>(scaled, FOAK<br>plant, 2020\$) | Uninstalled Cost<br>(scaled, NOAK<br>plant, 2020\$) | Installation Cost<br>Factor | Installed Cost<br>(scaled, FOAK<br>plant, 2020\$) | Installed Cost<br>(scaled, NOAK<br>plant, 2020\$) |
|-----------------------------------------------------------------------|---------------------------------|-------------|-----------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------|----------|-----------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------|---------------------------------------------------|---------------------------------------------------|
| K-302 H <sub>2</sub> Purification Multistage<br>Compressor #2 modular | Hydrogen Purificatior<br>System | า<br>17,416 | 2509.1                      | m³/hr                 | 300 kW driver; 2 stage reciprocating ga compressor                                                                      | sGC RECIP<br>MOTR | \$869,261                                                                           | 22       | [0.936]                                 | \$15,690,778                                        | \$13,601,035                                        | 1.13                        | \$17,796,747                                      | \$15,426,524                                      |
| K-303 H <sub>2</sub> Purification Multistage<br>Compressor #3 modular | Hydrogen Purificatior<br>System | n<br>17,416 | 1027.6                      | m³/hr                 | 250 kW driver; 2 stage reciprocating ga compressor                                                                      | sGC RECIP<br>MOTR | \$724,179                                                                           | 22       | [0.936]                                 | \$13,071,947                                        | \$11,330,987                                        | 1.14                        | \$14,921,484                                      | \$12,934,197                                      |
| KO-301 H <sub>2</sub> Separation Vessel<br>#1 modular                 | Hydrogen Purificatior<br>System | n<br>17,416 | 3.4                         | m <sup>3</sup>        | L/D = 3                                                                                                                 | VT<br>Cylinder    | \$19,603                                                                            | 22       | [0.936]                                 | \$353,846                                           | \$306,720                                           | 5.50                        | \$1,946,155                                       | \$1,686,960                                       |
| KO-302 H <sub>2</sub> Separation Vessel<br>#2 modular                 | Hydrogen Purificatior<br>System | า<br>17,416 | 3.4                         | m <sup>3</sup>        | L/D = 3                                                                                                                 | VT<br>CYLINDER    | \$20,029                                                                            | 22       | [0.936]                                 | \$361,539                                           | \$313,388                                           | 5.20                        | \$1,880,770                                       | \$1,630,284                                       |
| KO-303 H <sub>2</sub> Separation Vessel<br>#3 modular                 | Hydrogen Purificatior<br>System | า<br>17,416 | 3.4                         | m <sup>3</sup>        | L/D = 3                                                                                                                 | VT<br>CYLINDER    | \$23,438                                                                            | 22       | [0.936]                                 | \$423,077                                           | \$366,731                                           | 4.38                        | \$1,851,924                                       | \$1,605,280                                       |
| Hydrogen H <sub>2</sub> O Adsorber Regen<br>Cooler modular            | Hydrogen Purificatior<br>System | n<br>17,416 | 17,416                      | kg/day H <sub>2</sub> |                                                                                                                         |                   | \$0                                                                                 | 22       | [0.936]                                 | \$0                                                 | \$0                                                 | 2.91                        | \$0                                               | \$0                                               |
| Regen Water Knockout Drum modular                                     | Hydrogen Purificatior<br>System | า<br>17,416 | 17,416                      | kg/day H <sub>2</sub> |                                                                                                                         |                   | \$0                                                                                 | 22       | [0.936]                                 | \$0                                                 | \$0                                                 | 1.41                        | \$0                                               | \$0                                               |
| X-300 hydrogen H <sub>2</sub> O Adsorbers modular                     | Hydrogen Purificatior<br>System | า<br>17,416 | 17,416                      | kg/day H <sub>2</sub> |                                                                                                                         |                   | \$0                                                                                 | 22       | [0.936]                                 | \$0                                                 | \$0                                                 | 3.59                        | \$0                                               | \$0                                               |
| Hydrogen H <sub>2</sub> O Adsorber Regen<br>Heater modular            | Hydrogen Purificatior<br>System | n<br>17,416 | 17,416                      | kg/day H <sub>2</sub> |                                                                                                                         |                   | \$0                                                                                 | 22       | [0.936]                                 | \$0                                                 | \$0                                                 | 2.91                        | \$0                                               | \$0                                               |
| Backup Electric Boiler modular                                        | NPH Delivery System             | n 17,416    | 17,416                      | kg/day $H_2$          |                                                                                                                         |                   | \$241,530                                                                           | 22       | [0.936]                                 | \$4,359,790                                         | \$3,779,140                                         | 1.00                        | \$4,359,790                                       | \$3,779,140                                       |
| Backup natural gas Boiler convention                                  | al NPH Delivery System          | n 383,143   |                             |                       |                                                                                                                         |                   |                                                                                     | 1        | [1.000]                                 | \$0                                                 | \$0                                                 | 1.31                        | \$0                                               | \$0                                               |
| PIPE-201 Nuclear Process Heat<br>Piping (supply) convention           | al NPH Delivery System          | n 383,143   | 800                         | mm                    | 1000 m length; nominal pipe diameter<br>selected to achieve <30 m/s average<br>vapor or <3.0 m/s average liquid velocit | yBPIPIPE          |                                                                                     | 1        | 0.483                                   | \$940,838                                           | \$940,838                                           | 4.00                        | \$3,763,351                                       | \$3,763,351                                       |
| PIPE-202 Nuclear Process Heat<br>Piping (return) convention           | al NPH Delivery System          | n 383,143   | 800                         | mm                    | 1000 m length; nominal pipe diameter<br>selected to achieve <3.0 m/s average<br>fluid velocity                          | BPIPIPE           |                                                                                     | 1        | 0.483                                   | \$940,838                                           | \$940,838                                           | 4.00                        | \$3,763,351                                       | \$3,763,351                                       |
| P-201 Nuclear Process Heat<br>Circulation Pump convention             | al NPH Delivery System          | n 383,143   | 88.7                        | L/s                   | 80 kW driver                                                                                                            | CP CENTRII        | :                                                                                   | 1        | 0.285                                   | \$241,600                                           | \$241,600                                           | 2.72                        | \$656,864                                         | \$656,864                                         |

| Equipment                                               |                   | Process System                | Scale of<br>supported<br>system<br>(TPD H <sub>2</sub> ) |         |       | Equipment Description                                                 | APEA Mode           | Equipment<br>Costs<br>(uninstalled<br>costs of<br>equipment in<br>one HTE<br>el block) | Quantity | Scaling Factor<br>[or Progress<br>Rate] | Uninstalled Cost<br>(scaled, FOAK<br>plant, 2020\$) | Uninstalled Cost<br>(scaled, NOAK<br>plant, 2020\$) | Installation Cost<br>Factor | Installed Cost<br>(scaled, FOAK<br>plant, 2020\$) | Installed Cost<br>(scaled, NOAK<br>plant, 2020\$) |
|---------------------------------------------------------|-------------------|-------------------------------|----------------------------------------------------------|---------|-------|-----------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------|----------|-----------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------|---------------------------------------------------|---------------------------------------------------|
| HX-201 Nuclear Process Heat<br>TDL HX                   | conventional      | NPH Delivery System           | า 383,143                                                | 237     | m²    | BEM exchanger, 1 × 775 mm dia shell,<br>503 tubes/shell × 25 mm × 6 m | , HE TEMA<br>EXCH   |                                                                                        | 1        | 0.700                                   | \$119,260                                           | \$119,260                                           | 2.20                        | \$262,197                                         | \$262,197                                         |
| HX-202 Nuclear Process Heat<br>TDL HX                   | conventional      | NPH Delivery System           | า 383,143                                                | 4122.4  | m²    | BEM exchanger, 4 × 1600 mm dia she<br>2187 tubes/shell × 25 mm × 6 m  | II, HE TEMA<br>EXCH |                                                                                        | 1        | 0.700                                   | \$703,067                                           | \$703,067                                           | 1.53                        | \$1,073,194                                       | \$1,073,194                                       |
| Therminol-66 HTF                                        | conventional      | NPH Delivery System           | า 383,143                                                | 700,000 | kg    | 2 × 1000 m × 700 mm × 900 kg/m <sup>3</sup>                           |                     |                                                                                        | 1        | 1.000                                   | \$1,552,380                                         | \$1,552,380                                         | 1.00                        | \$1,552,380                                       | \$1,552,380                                       |
| K-401 High-Pressure Multistage Reciprocating Compressor | e<br>conventional | Product Compressior<br>System | ו<br>383,143                                             | 17,650  | m³/hr | 18,000 kW driver; 3 stage intercooled reciprocating gas compressor    | GC RECIP<br>MOTR    |                                                                                        | 1        | 0.602                                   | \$2,953,435                                         | \$2,953,435                                         | 1.30                        | \$3,839,465                                       | \$3,839,465                                       |
| H <sub>2</sub> Product Storage                          | conventional      | Product Compressior<br>System | ו<br>383,143                                             |         |       |                                                                       |                     |                                                                                        | 1        | 0.570                                   | \$0                                                 | \$0                                                 | 1.41                        | \$0                                               | \$0                                               |
| CB-101 Control Building                                 | conventional      | Control System                | 383,143                                                  |         |       | 15 m × 25 m                                                           | BCIVBUILDI<br>G     | N                                                                                      | 1        | 0.000                                   | \$498,879                                           | \$498,879                                           | 1.00                        | \$498,879                                         | \$498,879                                         |
| OC-101 Operator Center                                  | conventional      | Control System                | 383,143                                                  |         |       | 5 operator display units                                              | BINSOPER<br>CENT    |                                                                                        | 1        | 0.000                                   | \$329,225                                           | \$329,225                                           | 1.00                        | \$329,225                                         | \$329,225                                         |
|                                                         |                   |                               |                                                          |         |       |                                                                       |                     |                                                                                        |          | \$2                                     | 89,781,408 \$                                       | 266,270,764                                         |                             | \$376,768,283                                     | \$342,713,423                                     |

## **HTSE Process Model Stream Tables**

#### Table D-3. Aspentech HTSE process model.

| Image: Control (MA)         Lunch (MA)         Lunc Set:         HTSE PFD           Date/Time:         Mon Apr 05 15 00.37 2021         Date/Time:         Mon Apr 05 15 00.37 2021           Image: Control (MA)         Mon Apr 05 15 00.37 2021         Mon Apr 05 15 00.37 2021           Image: Control (MA)         Mon Apr 05 15 00.37 2021         Mon Apr 05 15 00.37 2021           Image: Control (MA)         Image: Control (MA)         Mon Apr 05 15 00.37 2021           Image: Control (MA)         Image: Control (MA)         Image: Control (MA)         Image: Control (MA)           Image: Control (MA)         Image: Control (MA)         Image: Control (MA)         Image: Control (MA)         Image: Control (MA)           Image: Control (MA)         Image: Control (MA)         Image: Control (MA)         Image: Control (MA)         Image: Control (MA)         Image: Control (MA)           Image: Control (MA)         Image: Control (MA)         Image: Control (MA)         Image: Control (MA)         Image: Control (MA)         Image: Control (MA)           Image: Control (MA)         Image: Control (MA)         Image: Control (MA)         Image: Control (MA)         Image: Control (MA)         Image: Control (MA)         Image: Control (MA)         Image: Control (MA)         Image: Control (MA)         Image: Control (MA)         Image: Control (MA) <thimage: (ma)<="" control="" th=""> <thimage: (<="" control="" th=""><th>1</th><th></th><th></th><th></th><th>Case Name:</th><th>Generic HTSE PFD_v4</th><th>00_Therm66_5bar_U80</th><th>38×25 MVVe unit [detaile</th></thimage:></thimage:> | 1        |                                       |             |                        | Case Name:        | Generic HTSE PFD_v4    | 00_Therm66_5bar_U80 | 38×25 MVVe unit [detaile |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------|-------------|------------------------|-------------------|------------------------|---------------------|--------------------------|
| Date/Time:         Mon Apr 05 15:00:37 2021           Workbook:         Case (Main)           Name         Puid Pag         Puid Pag           Name         Difference         Puid Pag         Puid Pag           Name         Difference         Puid Pag         Puid Pag           Name         Difference         Difference         Puid Pag         Puid Pag           Name         Difference         Difference         Difference         Difference         Difference           Name         Difference         Difference         Difference         Difference         Difference         Difference         Difference           Name         Difference         Difference         Difference         Difference                                                                                                                                                                                                                                                                                                                                                                                                   | 2<br>3   | ( aspentech                           | Bedford, MA |                        | Unit Set:         | HTSE PFD               |                     |                          |
| Image: space (Main)         Material Streams         Fuid Prog.           1         Name         10         Material Streams         Fuid Prog.           1         Name         10         Process Water Inf.         102 process feed waterial         151         152 process feed waterial           1         Troppearum         (C)         1000         0.000         120 process feed waterial         151         152 process feed waterial           1         Mark Sinew         (bp)         6.111         1138         6.400         6.800         5.41           1         Mark Sinew         (bp)         6.811         1138         6.400         6.809         6.413           1         Mark Sinew         (bp)         6.837         0.88         6.848         731         7711         779           1         Actual Valume Feu         (mdh)         6.837         0.88         6.839         6.499         6.299         1000           20         Process Mark         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4<br>5   |                                       | USA         |                        | Date/Time:        | Mon Apr 05 15:00:37 20 | 21                  |                          |
| B         Plud Pict         Plud Pict           I         Name         Plud Pict         Plud Pict           II         Name         Plud Pict         Plud Pict           II         Name         Plud Pict         Plud Pict           II         Plud Pict         Plud Pict         Plud Pict           III         Plud Pict         Plud Pict         Plud Pict           III         Plud Pict         Plud Pict         Plud Pict         Plud Pict           III         Plud Pict         Plud Pict         Plud Pict           Plud Pict         Plud Pict         Plud Pict         Plud Pict           Plud Pict         Plud Pict         Plud Pict         Plud Pict         Plud Pict           Plud Pict         Plud Pict         Plud Pict         Plud Pict         Plud Pict         Plud Pict         Plud Pict           Plud Pict          Plud Pict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                       |             |                        |                   |                        |                     |                          |
| Interview         Utal Fragment         101 Process Water inf         102 process field         101 Process         101 Pr                                                                                                                                                                                                             | 7<br>8   | VVC                                   | orkbook:    | Case (Maii             | 1)                |                        |                     |                          |
| Di         Name         101 Process Voter Inf         102         132 process feed wate         151         152 process feed           12         Vapour Fraction         0.000         0.0000         0.0000         0.0000         10.05           13         Temperature         (C)         0.10.00*         10.05         59.40         15.25         154           14         Pressure         (bar)         6.171*         11.38         6.400*         6.500         5.41           15         Mata Flow         (bar)         6.886         0.4855         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711         7.711                                                                                                                                                                                                                                                                                                                                                                                                            | 9        |                                       |             |                        | Material Stream   | s                      | Fluid Pko           | r. All                   |
| 17         Vasou Fraction         0.000         0.0000         0.0004         0.0030         1.00           12         Terregrature         (C)         10.00         1.00         1.00         5.171         1.138         6.400         5.500         5.541           13         Mass Flow         (kgm)         6.800         3.800         4.383         4.483         4.433           14         Mass Flow         (kgm)         6.816         6.848         1.841         7.811         7.91           17         Actual Volume Flow         (kgm)         6.101         1.000         1.000         1.000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000                                                                                                                                                                                                                                                                                                                                                                                                            | 10<br>11 | Name                                  |             | 101 Process \A/ater In |                   |                        |                     |                          |
| Image Rate         (C)         10.07         10.05         99.40         152.5         153           IP Pressure         (bar)         5.17.1         11.9         6.00.9         5.60.0         5.60.0         5.60.0         5.60.0         5.60.0         5.60.0         5.60.0         5.60.0         5.60.0         5.60.0         5.60.0         5.60.0         5.60.0         5.60.0         5.60.0         5.60.0         5.60.0         5.60.0         5.60.0         5.60.0         5.60.0         5.60.0         5.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0         7.70.0                                                                                                                                                                                                                                                                                                                                                                      | 12       |                                       |             |                        |                   |                        |                     | 1.0000 *                 |
| Image         Pressure         (bar)         (fight)         (fight) <th(fight)< th=""> <th(fight)< th=""> <th(fig< th=""><th>-</th><th></th><th>(C)</th><th></th><th></th><th></th><th></th><th>154.8</th></th(fig<></th(fight)<></th(fight)<>                                                                                                                                                                                        | -        |                                       | (C)         |                        |                   |                        |                     | 154.8                    |
| Instruction         (ign)         B485         P485         P311         T711         T711         T711           17         Actual Volume Flow         (ingn)         6.387         6.386         8.839         116.4         16.4         16.2         7.8           18         Mass Dennialy         (ingn)         10.100         10.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000                                                                                                                                                                                                                                                                                                                                                                                                         | 14       |                                       |             |                        |                   |                        |                     | 5.400                    |
| In         Actual Volume Flow         (m3r)         0.837         0.836         0.839         0.1042         228           IS         Mase         182         183         184         185         186           20         Vapour Fraction         1.000         1.000         1.000         1.000         1.000         1.000         1.000           21         Terregrature         (C)         315.7         318.3         328.9         320.7         327           22         Pressure         (Ba)         4.4900         4.900         5.206         4.538.6         4.998           23         Maiar Flow         (group)         7711         8207         8207         8207         8207           24         Attual Voure Flow         (m3r)         1.823         4.986         4.498         4.495         4.797           25         Attual Voure Flow         (m3r)         1.823         1.862         1.724         1.724         1.62           24         Mass Density         (igroup)         1.87 Process Cell rule         171 Process Cell rule         172 H2H2O product r171 H2H2O recycle         202 Process Heal           24         Vapour Fraction         1.0000         1.0000         1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15       | Molar Flow                            | (kgmole/h)  | 360.0                  | 360.0             | 439.3                  | 439.3               | 439.3                    |
| In         Mass Density         (lig/m)         1019         1019         1019         1019         1019         1019         1019         1019         1019         1019         1019         1019         1019         1019         1019         1019         1019         1010         1000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000                                                                                                                                                                                                                                                                                                                                                                                               | 16       | Mass Flow                             | (kg/h)      | 6485                   | 6485              | 7911                   | 7911                | 7911                     |
| Name         162         183         164         185         186           20         Vagour Fraction         1 0000         1 0000         1 0000         1 0000         1 0000           21         Temperture         (C)         3167         3113         3 224.9         322.9           22         Pressure         (bar)         4 90.0         4 90.0         5 20.6         5 20.6         5 11           23         Molar Flow         (ligmolefh)         4 90.0         4 90.0         5 20.6         5 11           24         Astaal Volume Flow         (ligmolefh)         4 333         4 98.6         4 498.6         4 498.6           24         Astaal Volume Flow         (ligmolefh)         4 333         4 98.6         1 172.4         1 72.4         1 72.4           21         Name         107 Process Cell riset         1 71 Process Cell riset         1 72.4         1 72.4         1 72.4         1 72.4         1 72.4         1 72.4         1 72.4         1 72.4         1 72.4         1 72.4         1 72.4         1 72.4         1 72.4         1 72.4         1 72.4         1 72.4         1 72.4         1 72.4         1 72.4         1 72.4         1 72.4         1 72.4         1 72.5         72.7                                                                                                                                                                                                                                                                                                                                                                                                                 | 17       | Actual Volume Flow                    | (m3/h)      | 6.367                  | 6.366             | 8.839                  | 16.42               | 2801                     |
| 20         Vapour Fraction         Interperature         Interperature <th>-</th> <th>Mass Density</th> <th>(kg/m3)</th> <th>1019</th> <th>1019</th> <th>895.1</th> <th>481.8</th> <th>2.825</th>                                                  | -        | Mass Density                          | (kg/m3)     | 1019                   | 1019              | 895.1                  | 481.8               | 2.825                    |
| 1         Temperature         (C)         315.7         318.3         230.8         328.9         707           22         Pressure         (Bar)         4.4900         4.200         5.200         5.200         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.700         5.70                                                                                                                                                                                                                                                                                                                                                                                                | -        | Name                                  |             | 162                    | 163               | 164                    | 165                 | 166                      |
| 22         Pressure         (bar)         4 490         4 900         5 206         5 208         6 5 1           23         Mass Flow         (kgm)         7911         6207         8207         8207         8227           24         Atas Flow         (kgm)         7911         6207         8207         8207         8207         8207         8207         8207         8207         8207         8207         8207         8207         8207         8207         8207         8207         8207         8207         8207         8207         8207         8207         8207         8207         100         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         333 3         247           20         Temperature         (C)         8000         800.0         8408         80.8         80.8         8438         8428         80.8         2438         3439         247           30         Pressure         (bar)         0.2212         0.2743         0.4676         8022         433         4401         123         430         4424         1500         150         150         151         1                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -        |                                       |             |                        |                   |                        |                     | 1.0000                   |
| Maiar Flow         (kgmolefn)         4333         498 B         499 B         499 B         499 B         499 B           24         Actual Volume Flow         (kgm)         711         6207         8207         6207*         620           25         Actual Volume Flow         (kgm)         1.823         1.852         1.724         1.724         1.724         1.724         1.724         2.724         1.724         2.724         1.724         2.724         1.724         2.724         1.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.724         2.725         2.725         7.725         2.7264         2.725         2.725         7.72764         2.726         2.725         7.72764         7.                                                                                                                                                                                                                                                                                                                                                                                               | н        |                                       |             |                        |                   |                        |                     | 707.8                    |
| 22         Actas Flow         (kg/m)         7911         807         927         8207         9207*         927           22         Actas Volume Flow         (rdm)         4339         4486         4175         1724         1724         7174           21         Mass Density         (kg/m3)         1623         1714         1724         1724         1724         1724         1724           21         Name         167 Process Cell Unet         171 Process Cell Unet         172 Process Heat         173 Process 172         1724         2447         2453         1110Pro1           31         Actual Volume Flow         (m3/h)         8099         8021         20213         0.4678         0.4676         0.676         662           33         Anase Density         (kg/m3)         9212         0.2743         0.4678         0.4676         0.676         662           34         Mass Density         (kg/m3)         9212         0.2743         0.4676         0.4676         0.4676                                                                                                                                                                                                                                                                                                                                                                 | 22       |                                       |             |                        |                   |                        |                     | 5.102                    |
| Actual Volume Flow         (m3/m)         4339         4488         44759         44759         4759         173           20         Mass Densty         (kg/m)3         1233         1.652         1.724         1.724         1.714         1.010           21         Name         167 Process Cell Outil         171 Process Cell Outil         172 H2/H2O product         173 H2/H2O procesche         202 Process Heat           20         Pressure         (bar)         5.000         6.000         343.8         343.8         2447           31         Molar Flow         (kg/m)         499.6         499.6         499.6         0.023         433           32         Mass Tensw         (kg/m)         692.7         2.4447         2.447         2.945.3         1.100-e0           33         Mass Densty         (kg/m)         0.9212         0.2443         0.4676         0.4676         682           34         Mass Densty         (kg/m)         0.9212         0.2443         0.4676         0.4676         682           35         Name         203 Process Heat         301         30212+27roduct         401         1.000         1.000         1.0000         1.0000         1.0000         1.000         1.000                                                                                                                                                                                                                                                                                                                                                                                                                    | 23       |                                       |             |                        |                   |                        |                     | 499.6                    |
| Mass Density         (kg/m3)         1823         1862         1.724         1.724         1.724         1.724           Vame         167 Process Cell Intel         171 Process Cell 0.000         1.0000         1.0000         0.000           20         Temperature         (C)         800.0         800.0         1.0000         1.0000         0.000           20         Temperature         (C)         800.0         600.0         343.9         343.9         343.9           31         Molar Flow         (kg/mole/h)         499.6         499.6         499.6         60.29         433           32         Mass Flow         (kg/m)         6207         2.447         2.447         2.925.3         11.00e-01           33         Actual Volume Flow         (m3/h)         6909         8921         5.233         631.4         129           34         Mass Density         (kg/m)         0.9212         0.2743         0.4676         0.4776         652           35         Name         203 Process Heat Ret         301         302 H2/Product         401         1000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000 <th>24</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>8207</th>                                                                                                                                                                                                                                                                                                                                              | 24       |                                       |             |                        |                   |                        |                     | 8207                     |
| 22         Name         167 Process Cell Intel         171 Process Cell Outs         172 P24/20 product         173 H2H2O recycle         202 Process Heat           23         Vapour Fraction         10000         10000         10000         10000         0.000           30         Pressure         (bar)         5.000         5.000         44.900         4.900         3.43.9         247           31         Molar Flow         (kgmole/h)         4.998         4.998         4.908         6.0.28         4.438           33         Actual Volume Flow         (hg/h)         8.207         2.447         2.447         2.047         0.4976         0.4476         6.923           34         Mass Density         (kg/m3)         0.9212         0.2743         0.4976         0.4476         6.923           35         Name         203 Process Heat Ret         301         302 H2/H2O for punific         332 H2 Product         401           36         Vapour Fraction         0.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.000                                                                                                                                                                                                                                                                                                                                                                                          | -        |                                       |             |                        |                   |                        |                     |                          |
| 20         Vapour Fraction         1 0000         1 0000         1 0000         1 0000         1 0000         0 0.00           27         Terregretature         (C)         800.0 *         800.0         343.9         343.9         247           29         Pressure         (bar)         5.000         5.000         4.400.         4.490.         34.43.9           31         Molar Flow         (kg/mole/h)         4.498.6         4.498.6         6.0.28         4.438           32         Mass Flow         (kg/m)         8.207         2.447         2.447         2.447         2.447         2.447         2.447         2.447         2.447         0.4676         0.4676         0.852           34         Mass Density         (kg/m)         8.090         0.301.4         102         9.324         0.4876         0.4676         0.4676         0.457           35         Name         2.03 Process Heat Ret         301         302 H2/Product         401         3.000         1.1000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000                                                                                                                                                                                                                                                                                                                                                                                                                      | -        | •                                     | (кулпа)     |                        |                   |                        |                     |                          |
| 22         Temperature         (C)         0000*         8000         343.9         343.9         247           30         Pressure         (bar)         5.000         5.000         4.900         3.44           31         Molar Flow         (kgmoleh)         498.6         499.6         499.8         60.28         4.88           32         Mass Flow         (kg/h)         8207         2.447         2.447         2.95.3         1.100e+00           33         Actual Volume Flow         (m3/h)         8080         8821         6.233         63.14         1.29           34         Mass Density         (kg/m3)         0.9212         0.2743         0.4676         0.4676         6.52           35         Name         203 Process Heat Ret         301         302 H2/H2O for punfit         332 H2 Product         401           36         Vapour Fraction         0.0000         1.0000         1.0000         1.000         1.000         1.000           37         Temperature         (C)         172.8         343.9         94.24         15.00         1.868           39         Molar Flow         (kg/m)         1.100e+005         2.152         2.757.7         2.756.70                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -        |                                       |             |                        |                   |                        |                     |                          |
| Description         (b)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th0< th="">         0         0         <t< th=""><th>-</th><th></th><th>(0)</th><th></th><th></th><th></th><th></th><th>247.1</th></t<></th0<>                                                                                                                                                                                                                                                                                                                                                                                                                                             | -        |                                       | (0)         |                        |                   |                        |                     | 247.1                    |
| 31         Molar Flow         (kgm)         498.6         499.6         499.6         499.8         60.28         433           32         Mass Flow         (kgm)         8207         2447         2447         2423         1.100e-01           34         Mass Density         (kgm3)         0.9212         0.2743         0.4676         0.4676         6623           35         Mass Density         (kgm3)         0.9212         0.2743         0.4676         0.4676         6623           36         Vapour Fraction         0.0000         1.0000         1.0000         1.0000         1.000         1.000           37         Temperature         (C)         1.72.9         343.8         94.24         15.00         1.15.0           38         Molar Flow         (kgmole/h)         43.67         439.3         439.3         380.0         1.388-0           40         Mass Density         (kgm3)         90.49         0.4676         0.7451         1.867         1.888           41         Actual Volume Flow         (m3/h)         121.8         402e         402d         402e           42         Mass Density         (kgm3)         90.49         0.4676         0.7451                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                       |             |                        |                   |                        |                     | 3.484                    |
| 32         Mass Flow         (kg/n)         8207         2447         2447         2447         295 3         1.100+00           33         Actual Volume Flow         (m3/n)         8909         8921         5233         881.4         129           34         Mass Density         (kg/m3)         0.9212         0.2743         0.4676         0.4676         6852           3         Name         203 Process Hear Ret         301         302 H2/H2O for purific         332 H2 Product         401           36         Vapour Fraction         0.0000         1.0000         1.0000         1.0000         1.0000         1.0000           37         Temperature         (C)         172.9         343.9         94.24         15.00         15.0           38         Molar Flow         (kg/m)         1.100e+005         2152         2152         725.7         2.756e+004           41         Actual Volume Flow         (m3/n)         121.8         4402b         402c         402d         402d           42         Mass Density         (kg/m3)         904.9         0.4676         0.7451         1.867         1.86           43         Name         402a         402b         402c         4                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        |                                       |             |                        |                   |                        |                     | 436.7                    |
| 33         Actual Volume Flow         (m3/h)         8909         9921         5233         631.4         129           34         Mass Density         (kg/m3)         0.9212         0.2743         0.4676         0.4676         0.852           35         Name         203 Process Heat Ret         301         302 H2/H2O for punfri         322 H2 Product         401           36         Vapour Fraction         0.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000                                                                                                                                                                                                                                                                                                                                                                             | 32       |                                       |             |                        |                   |                        |                     | 1.100e+005               |
| 34         Mass Density         (kg/m3)         0.9212         0.2743         0.4676         0.4676         0.952           35         Name         203 Process Heat Ret         301         302 H2/H2O for purific         332 H2 Product         401           36         Vapour Fraction         0.0000         1.0000         1.0000         1.0000         1.0000         1.0000           37         Temperature         (C)         1.72.9         343.9         0.44.24         1.5.00         1.5.1           38         Molar Flow         (kg/m)         3.22.4         4.900         4.840         1.9.95         1.9.8           39         Molar Flow         (kg/m)         4.36.7         4.39.3         4.39.3         360.0         1.368e+00           40         Mass Elow         (kg/m3)         90.49         0.4676         0.7451         1.867         1.867           41         Actual Volume Flow         (m3/h)         1.110e+0.05         2.152         7.27.57         2.756e+0.04           402         402b         402c         402d         402e         402e         402e           41         Astae Density         (kg/m3)         9.04.97         0.756.1         1.868e+0.04         1.980e+0.04<                                                                                                                                                                                                                                                                                                                                                                                                                            | 33       |                                       |             |                        |                   |                        |                     | 129.1                    |
| 36         Vapour Fraction         0.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.                                                                                                                                                                                                                                                                                                                                                    | 34       |                                       |             |                        |                   |                        |                     | 852.2                    |
| 37         Temperature         (C)         172.9         343.9         94.24         15.00         15.1           38         Pressure         (bar)         3.224         4.900         4.640         19.95         19.9           39         Molar Flow         (kgrnole/h)         436.7         439.3         439.3         360.0         1.368e+00.           40         Mass Flow         (kg/h)         1.100e+005         2.152         2.752.7         2.758e+00.           41         Actual Volume Flow         (m3/h)         1.21.6         4602         2.888         435.4         1.656e+00.           42         Mass Density         (kg/m3)         904.9         0.4676         0.7451         1.687         1.68           43         Name         402a         402b         402c         402d         402e           44         Vapour Fraction         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0                                                                                                                                                                                                                                                                                                                                                                                                                              | 35       | Name                                  |             | 203 Process Heat Ret   | 301               | 302 H2/H2O for purific | 332 H2 Product      | 401                      |
| Byresure         (bar)         3.324         4.900         4.840         19.95         19.95           39         Molar Flow         (kgmole/h)         438.7         439.3         438.3         380.0         1.388e+00           40         Mass Flow         (kg/h)         1.100e+005         2152         2152         725.7         2.758e+00           41         Actual Volume Flow         (m3/h)         121.8         4802         2888         435.4         1.855e+00           42         Mass Density         (kg/m3)         904.9         0.4676         0.7451         1.667         1.667           43         Name         402a         402b         402c         402d         402e           44         Vapour Fraction         1.0000         1.0000         1.0000         1.0000         1.0000           45         Temperature         (C)         63.78         50.00*         104.6         50.00*         104.6           46         Pressure         (bar)         30.78         30.18         46.53         45.60         77.0.3           47         Malar Flow         (kg/h)         2.758e+004         2.758e+004         2.758e+004         2.758e+004         2.758e+004         2.                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36       | Vapour Fraction                       |             | 0.0000                 | 1.0000            | 1.0000 *               | 1.0000              | 1.0000                   |
| Instant         Instant <thinstant< th=""> <thinstant< th=""> <thi< th=""><th>37</th><th>Temperature</th><th>(C)</th><th>172.9</th><th>343.9</th><th>94.24</th><th>15.00</th><th>15.00</th></thi<></thinstant<></thinstant<>                                                                                                                                                           | 37       | Temperature                           | (C)         | 172.9                  | 343.9             | 94.24                  | 15.00               | 15.00                    |
| 40         Mass Flow         (kg/h)         1.100e+005         2152         2152         725.7         2.758e+00           41         Actual Volume Flow         (m3/h)         121.6         4602         2888         435.4         1.855e+00           42         Mass Density         (kg/m3)         904.9         0.4676         0.7451         1.667         1.667           43         Name         402a         402b         402c         402d         402e           44         Vapour Fraction         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000           45         Temperature         (C)         6.378         5.0.00*         104.8         55.0.00*         104.8           46         Pressure         (bar)         3.0.78         30.16         46.53         45.60         70.3           47         Molar Flow         (kg/ma)         2.758e+004         2.758e+004         2.758e+004         2.758e+004         2.758e+004         2.758e+004         2.758e+004         2.758e+004         2.758e+004         3.366         4.44           50         Mass Density         (kg/m3)         2.191         2.239         2.940         3.366         4.44                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38       | Pressure                              | (bar)       | 3.224                  | 4.900             | 4.640                  | 19.95               | 19.95                    |
| 41       Actual Volume Flow       (m3/h)       121.6       4602       2888       4435.4       1.655+00         42       Mass Density       (kg/m3)       904.9       0.4676       0.7451       1.667       1.667         43       Name       402a       402b       402c       402d       402e         44       Vapour Fraction       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000         45       Temperature       (C)       63.78       50.00*       104.6       50.00*       104.4         46       Pressure       (bar)       30.78       30.16       48.53       46.60       70.3         47       Molar Flow       (kg/mole/h)       1.368e+004       1.368e+004       1.368e+004       1.368e+004       1.368e+004       1.368e+004       1.368e+004       1.368e+004       2.758e+004       1.630e+004       1.630e+004       1.630e+004       1.630e+004       1.630e+004       1.630e+004       1.630e+004                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39       | Molar Flow                            | (kgmole/h)  | 436.7                  | 439.3             | 439.3                  | 360.0               | 1.368e+004               |
| 42         Mass Density         (kg/m3)         904.9         0.4676         0.7451         1.667         1.667           43         Name         402a         402b         402c         402d         402e           44         Vapour Fraction         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000           45         Temperature         (C)         63.78         50.00*         104.6         50.00*         1044           46         Pressure         (bar)         30.78         30.16         46.53         45.60         770.7           47         Molar Flow         (kg/nh)         1.368e+004         1.368e+004         1.368e+004         1.368e+004         1.368e+004         2.758e+004         3.366         4.44           50         Mass Density         (kg/n)         2.191         2.239         2.940         3.386         4.44           51         Name         403 Pressurized H2 P         501 Sweep Gas Inlet         502         503         504         504           52                                                                                                                                                                                                                                                                                                                                                                                                                           | 40       | Mass Flow                             | (kg/h)      | 1.100e+005             |                   |                        |                     | 2.758e+004               |
| 43         Name         402a         402b         402c         402d         402e           44         Vapour Fraction         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000           45         Temperature         (C)         63.78         50.00*         1044.6         50.00*         1044           46         Pressure         (bar)         30.78         30.16         46.53         45.60         70.3           47         Molar Flow         (kgmole/h)         1.368e+004         2.758e+004         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000                                                                                                                                                                                                                                                                                                                                                         | 41       |                                       | (m3/h)      |                        |                   |                        |                     | 1.655e+004               |
| 44         Vapour Fraction         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.368e+004         1.368e+004         1.368e+004         2.758e+004         3.368         4.44         4.44         4.44         4.44         4.44         4.44         4.44         4.44         4.44         4.44         4.44         4.44 <th>-</th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th>(kg/m3)</th> <th></th> <th></th> <th></th> <th></th> <th>1.667</th>                                                                                                                                                                                                                              | -        | · · · · · · · · · · · · · · · · · · · | (kg/m3)     |                        |                   |                        |                     | 1.667                    |
| Inspective         Inspeci                                                                                                                                                                                                                                        | -        |                                       |             |                        |                   |                        |                     |                          |
| 46         Presure         (bar)         30.78         30.16         46.53         45.60         70.3           47         Molar Flow         (kgmole/h)         1.368e+004         2.758e+004         1.368e+004         502         503         504         504         504         504         504         504         504         504         504         503         504         504         504         504         504         504         504         504         504         504         504         504         504         504         504         504         504                                                                                                                                                                                                                                                                                                                                        | ы        |                                       | (0)         |                        |                   |                        |                     | 1.0000                   |
| Molar Flow         (kgmole/h)         1.368e+004         2.758e+004         1.368e+004         9379         8193         622           40         Mass Density         (kg/m3)         2.191         2.239         2.940         3.366         4.4           51         Name         403 Pressurized H2 P         501 Sweep Gas Inlet         502         503         504           52         Vapour Fraction         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.00                                                                                                                                                                                                                                                                                                                      | -        |                                       |             |                        |                   |                        |                     | 104.7                    |
| Mass Flow         (kg/h)         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         2758±004         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000 <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                   | -        |                                       |             |                        |                   |                        |                     |                          |
| 49       Actual Volume Flow       (m3/h)       1.259e+004       1.232e+004       9379       8193       622         50       Mass Density       (kg/m3)       2.191       2.239       2.940       3.866       4.40         51       Name       403 Pressurized H2 P       501 Sweep Gas Inlet       502       503       504         52       Vapour Fraction       1.0000       1.0000       1.0000       1.0000       1.0000         53       Temperature       (C)       50.00*       20.00*       109.4       50.00*       147         54       Pressure       (bar)       68.95       1.013*       2.190       2.146       4.66         55       Molar Flow       (kg/ma)       2.758e+004       1.639e+004*       1.639e+004       1.639e+004       1.639e+004       1.639e+004       1.639e+004       1.639e+004       1.639e+004       1.639e+004       1.639e+004       4.24       56         56       Mass Density       (kg/m3)       5.045       1.200       1.987       2.306       3.85         57       Actual Volume Flow       (m3/h)       5.045       1.200       1.987       2.306       3.85         58       Mass Density       (kg/m3)       5.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                       |             |                        |                   |                        |                     |                          |
| 50         Mass Density         (kg/m3)         2.191         2.238         2.940         3.368         4.44           51         Name         403 Pressurized H2 P         501 Sweep Gas Inlet         502         503         504           52         Vapour Fraction         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000           53         Temperature         (C)         50.00*         20.00*         109.4         50.00*         147           54         Pressure         (bar)         68.95         1.013*         2.190         2.146         4.66           55         Molar Flow         (kg/mole/h)         1.368e+004         568.1         568.1         568.8           56         Mass Flow         (kg/h)         2.758e+004         1.839e+004*         1.839e+004         1.839e+004 <td< th=""><th>⊢</th><th></th><th></th><th></th><th></th><th></th><th></th><th>6256</th></td<>                                                                                                                                                                                                                                                                                  | ⊢        |                                       |             |                        |                   |                        |                     | 6256                     |
| 51         Name         403 Pressurized H2 P         501 Sweep Gas Inlet         502         503         504           52         Vapour Fraction         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000           53         Temperature         (C)         50.00*         20.00*         109.4         50.00*         147           54         Pressure         (bar)         68.95         1.013*         2.190         2.146         4.64           55         Molar Flow         (kgmole/h)         1.368e+004         568.1         568.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         5688.1         56888.1         5688.1         56888.1                                                                                                                                                                                                                                                                                                                                                                                              |          |                                       |             |                        |                   |                        |                     | 4.408                    |
| 52         Vapour Fraction         1.0000         1.0000         1.0000         1.0000         1.0000           53         Temperature         (C)         50.00*         20.00*         109.4         50.00*         147           54         Pressure         (bar)         68.95         1.013*         2.190         2.146         4.64           55         Molar Flow         (kgmole/h)         1.368e+004         568.1         568.1         568.1         568.5           56         Mass Flow         (kg/h)         2.758e+004         1.639e+004*         1.639e+004         420           58         Mass Density         (kg/m3)         5.045         1.200         1.987         2.306         3.85           60         Flow         Flow         Flow         Flow         Flow         Flow         5.045         5.045         5.045         5.045         5.045         5.045         5.045                                                                                                                                                                                                                                                                                                                                                                                                | -        |                                       | (grino)     |                        |                   |                        |                     |                          |
| 53       Temperature       (C)       50.00*       20.00*       109.4       50.00*       147         54       Pressure       (bar)       68.95       1.013*       2.190       2.146       4.64         55       Molar Flow       (kgmole/h)       1.368e+004       558.1       568.1       568.1       568.1       568         56       Mass Flow       (kg/h)       2.758e+004       1.639e+004*       1.639e+004       1.6                                                                                                                                                                                                                                                                                                                                                                           | -        |                                       |             |                        |                   |                        |                     | 1.0000                   |
| 54         Presure         (bar)         688.95         1.013*         2.190         2.146         4.66           55         Molar Flow         (kgmole/h)         1.368e+004         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1         568.1                                                                                                                                                                                                                                                                                                                                                                                                |          |                                       | (C)         |                        |                   |                        |                     | 147.7                    |
| 55         Molar Flow         (kgmole/h)         1.368e+004         568.1         568.1         568.1         568.8           56         Mass Flow         (kg/h)         2.758e+004         1.639e+004*         1.639e+004         4.22         1.639e+004         1.639e+004         4.22         1.639e+004         4.22         1.639e+004         1.639e+004         1.639e+014         1.639e+014         1.                                                                                                                                                                                                                                                                                                      | 54       |                                       |             |                        |                   |                        |                     | 4.640                    |
| 56         Mass Flow         (kg/h)         2.758e+004         1.639e+004*         1.839e+004         1.639e+004         1.639e+004         1.639e+004           57         Actual Volume Flow         (m3/h)         5466         1.366e+004         8249         7106         424           58         Mass Density         (kg/m3)         5.045         1.200         1.987         2.306         3.82           59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55       | Molar Flow                            |             |                        | 568.1             |                        |                     | 568.1                    |
| 58 Mass Density (kg/m3) 5.045 1.200 1.987 2.306 3.82<br>59<br>60<br>61<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56       | Mass Flow                             |             | 2.758e+004             | 1.639e+004 *      | 1.639e+004             | 1.639e+004          | 1.639e+004               |
| 59<br>60<br>61<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57       | Actual Volume Flow                    | (m3/h)      | 5466                   | 1.366e+004        | 8249                   | 7106                | 4287                     |
| 60<br>61<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -        | Mass Density                          | (kg/m3)     | 5.045                  | 1.200             | 1.987                  | 2.306               | 3.823                    |
| 61<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -        |                                       |             |                        |                   |                        |                     |                          |
| 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _        |                                       |             |                        |                   |                        |                     |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -        |                                       |             |                        |                   |                        |                     |                          |
| Aspen Technology Inc. Aspen HYSYS Version 10 Page 1 of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 62       | A                                     | _           |                        |                   | - 40                   |                     | Dans 1-545               |
| Licensed to: BATTELLE ENERGY ALLIANCE * Specified by user.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63       |                                       |             | , A                    | spen HYSYS Versio | 10                     |                     | ý                        |

207

| aspentech<br>Wo<br>r Fraction<br>erature<br>ure<br>Flow<br>Flow<br>I Volume Flow<br>Density<br>r Fraction | Bedford, M/<br>USA                                                                                                                          | Case (Main<br>Mate<br>505<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit Set:<br>Date/Time:<br>n) (continue<br>erial Streams (con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21<br>Fluid Pkg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| r Fraction<br>erature<br>rlow<br>Flow<br>Volume Flow<br>Density                                           | (C)<br>(bar)<br>(kgmole/h)                                                                                                                  | 505<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n) (continue<br>erial Streams (con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| r Fraction<br>erature<br>rlow<br>Flow<br>Volume Flow<br>Density                                           | (C)<br>(bar)<br>(kgmole/h)                                                                                                                  | 505<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | erial Streams (con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fluid Pkg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| r Fraction<br>erature<br>rlow<br>Flow<br>Volume Flow<br>Density                                           | (C)<br>(bar)<br>(kgmole/h)                                                                                                                  | 505<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | erial Streams (con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fluid Pkg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ur Fraction<br>erature<br>ure<br>Flow<br>Flow<br>I Volume Flow<br>Density                                 | (bar)<br>(kgmole/h)                                                                                                                         | 505<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tinued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fluid Pkg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ur Fraction<br>erature<br>ure<br>Flow<br>Flow<br>I Volume Flow<br>Density                                 | (bar)<br>(kgmole/h)                                                                                                                         | 505<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | x All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ur Fraction<br>erature<br>ure<br>Flow<br>Flow<br>I Volume Flow<br>Density                                 | (bar)<br>(kgmole/h)                                                                                                                         | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 508 Sweep Cell Inlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 511 Sweep Gas/O2 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| erature<br>ure<br>Flow<br>Flow<br>I Volume Flow<br>Density                                                | (bar)<br>(kgmole/h)                                                                                                                         | 407.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Flow<br>Flow<br>I Volume Flow<br>Density                                                                  | (kgmole/h)                                                                                                                                  | 167.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 184.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 785.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 800.0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Flow<br>I Volume Flow<br>Density                                                                          |                                                                                                                                             | 4.640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| l Volume Flow<br>Density                                                                                  | (ka/h)                                                                                                                                      | 719.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 719.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 719.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 719.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 899.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Density                                                                                                   |                                                                                                                                             | 2.087e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.087e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.087e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.087e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.663e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                                                                                                         | (m3/h)                                                                                                                                      | 5680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.242e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.285e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.607e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                           | (kg/m3)                                                                                                                                     | 3.674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ir Fraction                                                                                               |                                                                                                                                             | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 515 Sweep Gas Recyc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| oroturo                                                                                                   |                                                                                                                                             | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| erature<br>uro                                                                                            | (C)                                                                                                                                         | 330.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 238.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 238.8 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 238.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 238.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ure                                                                                                       | (bar)                                                                                                                                       | 4.900<br>899.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.640 *<br>899.4 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.640<br>151.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Flow                                                                                                      | (kgmole/h)                                                                                                                                  | 2.663e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.663e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.215e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| l Volume Flow                                                                                             | (kg/h)<br>(m3/h)                                                                                                                            | 2.6636+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.6636+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.663e+004<br>8260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.215e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Density                                                                                                   | (h3/h)<br>(kg/m3)                                                                                                                           | 2.886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| benany                                                                                                    | (Kg/III3)                                                                                                                                   | 517 Sweep Gas Exha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 801 feed water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 901 cooling water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ur Fraction                                                                                               |                                                                                                                                             | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| erature                                                                                                   | (C)                                                                                                                                         | 98.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.00*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.00 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ure                                                                                                       | (bar)                                                                                                                                       | 1.013 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.034 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.621 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.034 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Flow                                                                                                      | (kgmole/h)                                                                                                                                  | 748.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.368e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.368e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.368e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.666e+005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Flow                                                                                                      | (kg/h)                                                                                                                                      | 2.215e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.464e+005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.464e+005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.464e+005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.804e+006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| I Volume Flow                                                                                             | (m3/h)                                                                                                                                      | 2.280e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 242.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 242.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 242.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Density                                                                                                   | (kg/m3)                                                                                                                                     | 0.9714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                           |                                                                                                                                             | 902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Anode @Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ur Fraction                                                                                               |                                                                                                                                             | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| erature                                                                                                   | (C)                                                                                                                                         | 20.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34.00 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 800.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ure                                                                                                       | (bar)                                                                                                                                       | 1.781 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Flow                                                                                                      | (kgmole/h)                                                                                                                                  | 2.666e+005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.666e+005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.666e+005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.666e+005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Flow                                                                                                      |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                           |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                           | (kg/m3)                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                           |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Process Cell Inlet @C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                           | (0)                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                           |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 800.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                           |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.000<br>499.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                           |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 499.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                           |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                           |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - Density                                                                                                 | (righting)                                                                                                                                  | Sweep Cell Inlet @Ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 113 @H2rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ur Fraction                                                                                               |                                                                                                                                             | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| erature                                                                                                   | (C)                                                                                                                                         | 800.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 800.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ure                                                                                                       | (bar)                                                                                                                                       | 5.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.38 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Flow                                                                                                      | (kgmole/h)                                                                                                                                  | 719.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 899.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 360.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 360.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Flow                                                                                                      | (kg/h)                                                                                                                                      | 2.087e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.663e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| l Volume Flow                                                                                             | (m3/h)                                                                                                                                      | 1.285e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.607e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Density                                                                                                   | (kg/m3)                                                                                                                                     | 1.624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 996.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Density                                                                                                   |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Density                                                                                                   |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                           | Flow Volume Flow Density r Fraction rrature Flow Volume Flow Volume Flow Density r Fraction rrature Flow Flow Flow Flow Flow Flow Flow Flow | Flow         (kg/h)           Volume Flow         (m3/h)           Density         (kg/m3)           r         Fraction           rrature         (C)           rre         (bar)           Flow         (kg/m3)           Flow         (kg/m4)           Volume Flow         (kg/m3)           Flow         (kg/m3)           rr Fraction         (rrature           rrature         (C)           rre         (bar)           Flow         (kg/m3)           refraction         (kg/m3)           refrac | Iow         (kg/h)         4.804e+006           Volume Flow         (m3/h)         4751           Density         (kg/m3)         1011           Cathode@Cell         1.0000           r Fraction         1.0000           rrature         (C)         800.0           rre         (bar)         5.000           Flow         (kg/m3)         0.2743           Tow         (kg/m3)         0.2743           Density         (kg/m3)         0.2743           Sweep Cell Inlet@Ce         r           r Fraction         1.0000           rrature         (C)         800.0           rrature         (bar)         5.000           Flow         (kg/m3)         0.2743           Sweep Cell Inlet@Ce         r           r Fraction         1.0000           rrature         (C)         800.0           rrature         (bar)         5.000           Flow         (kgrnole/h)         719.5           Flow         (kg/h)         2.087e+004           Volume Flow         (m3/h)         1.285e+004 | Flow         (kg/h)         4.804e+006         4.804e+006           Volume Flow         (m3/h)         4751         4751           Density         (kg/m3)         1011         1011           Cathode @Cell         Gas Products @Cell           r Fraction         1.0000         1.0000           rrature         (C)         800.0         800.0           rre         (bar)         5.000         5.000           Flow         (kg/mb)         499.8         6679.6           Flow         (kg/h)         2447         8207           Volume Flow         (m3/h)         8921         1.214e+004           Density         (kg/m3)         0.2743         0.6762           r Fraction         1.0000         1.0000         1.0000           rrature         (C)         800.0         800.0           r Fraction         1.0000         1.0000         1.0000           rrature         (C)         800.0         800.0           rrature         (C)         800.0         800.0           rrature         (C)         800.0         5.000           rrature         (C)         800.0         5.000           Flow | Flow         (kg/h)         4.804e+006         4.804e+006         4.804e+006           Volume Flow         (m3/h)         4751         4751         4801           Density         (kg/m3)         1011         1011         1001           r Fraction         Cathode @Cell         Gas Products @Cell         Liquid Products @Cell           r Fraction         1.000         1.0000         0.0000           rrature         (C)         800.0         800.0         800.0           rre         (bar)         5.000         5.000         5.000           Flow         (kgmle/h)         499.6         679.6         0.0000           Flow         (kg/h)         2447         8207         0.0000           Flow         (m3/h)         8921         1.214e+004         0.0000           Outme Flow         (m3/h)         8921         1.214e+004         0.0000           Company         (kg/h3)         0.2743         0.6762         0.6762           T Fraction         1.0000         1.0000         1.0000         1.0000           re reaction         1.0000         1.0000         1.0000         1.0000           reaction         (bar)         5.000         5.000 <th>Flow         (kg/h)         4.804e+006         4.804e+006         4.804e+006         4.804e+006         4.804e+006           Volume Flow         (m3/h)         4751         4751         4801         4801           Density         (kg/m3)         1011         1011         10101         1001           r Fraction         Cathode@Cell         Gas Products@Cell         Liquid Products@Cell         Molar Flow of Cxygen           r Fraction         1.0000         1.0000         0.0000         1.0000           rature         (C)         800.0         800.0         800.0         800.0           re         (bar)         5.000         5.000         5.000         5.000           Flow         (kg/mole/h)         449.8         6.679.6         0.0000         180.0           Flow         (kg/m)         2447         8207         0.0000         5.000           Flow         (m3/h)         8921         1.214e+004         0.0000         3215           Outime Flow         (m3/h)         0.2743         0.8762         0.6762         1.731           Ciantity         (kg/m3)         0.2743         0.8760         1.0000         1.0001         1.0001           reture</th> | Flow         (kg/h)         4.804e+006         4.804e+006         4.804e+006         4.804e+006         4.804e+006           Volume Flow         (m3/h)         4751         4751         4801         4801           Density         (kg/m3)         1011         1011         10101         1001           r Fraction         Cathode@Cell         Gas Products@Cell         Liquid Products@Cell         Molar Flow of Cxygen           r Fraction         1.0000         1.0000         0.0000         1.0000           rature         (C)         800.0         800.0         800.0         800.0           re         (bar)         5.000         5.000         5.000         5.000           Flow         (kg/mole/h)         449.8         6.679.6         0.0000         180.0           Flow         (kg/m)         2447         8207         0.0000         5.000           Flow         (m3/h)         8921         1.214e+004         0.0000         3215           Outime Flow         (m3/h)         0.2743         0.8762         0.6762         1.731           Ciantity         (kg/m3)         0.2743         0.8760         1.0000         1.0001         1.0001           reture |

| 1              |                                |                      |                   | Case Name:         | Generic HTSE PFD_v4   | .00_Therm66_5bar_U80 | 38×25 MVVe unit [detail           |
|----------------|--------------------------------|----------------------|-------------------|--------------------|-----------------------|----------------------|-----------------------------------|
| 3              | ( aspentech                    | Bedford, M           | ENERGY ALLIANCE   | Unit Set:          | HTSE PFD              |                      |                                   |
| 4              |                                | USA                  |                   | Date/Time:         | Mon Apr 05 15:00:37 2 | 321                  |                                   |
| 6              | 144                            |                      | 0                 |                    |                       |                      |                                   |
| 7              | VVC                            | orkbook:             | Case (Mai         | n) (continue       | ed)                   |                      |                                   |
| 9<br>10        |                                |                      | Mat               | erial Streams (con | tinued)               | Fluid Pkg            | g: All                            |
| 11             | Name                           |                      | 114 @H2rec        | 122 @H2rec         | 131@H2rec             | 132 @H2rec           | 302 @H2rec                        |
| 12             | Vapour Fraction                |                      | 0.0000            | 0.0000             | 0.0004                | 0.0004               | 1.0000                            |
| 13             | Temperature                    | (C)                  | 60.38             | 20.05              | 59.34                 | 59.40                | 94.25                             |
| 14             | Pressure                       | (bar)                | 9.876             | 10.88              | 9.189                 | 6.400                | 4.640                             |
| 15             | Molar Flow                     | (kgmole/h)           | 360.0             | 360.0              | 439.3                 | 439.3                | 439.3                             |
| 16             | Mass Flow                      | (kg/h)               | 6485              | 6485               | 7911                  | 7911                 | 2152                              |
| 17             | Actual Volume Flow             | (m3/h)               | 6.615             | 6.413              | 8.588                 | 8.839                | 2888                              |
| 18<br>19       | Mass Density                   | (kg/m3)              | 980.4             | 1011               | 921.3                 | 895.1                | 0.7451                            |
| 20             | Name<br>Vepour Freetien        |                      | 303 @H2rec        | 304a @H2rec        | 304b @H2rec           | 304c @H2rec          | 304d @H2rec                       |
| 20<br>21       | Vapour Fraction<br>Temperature | (C)                  | 1.0000 *<br>59.66 | 1.0000<br>59.67    | 1.0000 * 59.23        | 1.0000<br>59.23      | 1.0000<br>58.80                   |
| . 1<br>12      | Pressure                       | (C)<br>(bar)         | 0.9800            | 0.9800             | 0.9604                | 0.9604               | 0.9412                            |
| 23             | Molar Flow                     | (kgmole/h)           | 0.1917            | 0.9800             | 0.9804                | 0.9804               | 0.9412                            |
| 4              | Mass Flow                      | (kg/h)               | 1.000             | 1.000              | 1.000                 | 1.000                | 1.000                             |
| 25             | Actual Volume Flow             | (m3/h)               | 5.410             | 5.410              | 5.513                 | 5.513                | 5.619                             |
| 26             | Mass Density                   | (kg/m3)              | 0.1848            | 0.1848             | 0.1814                | 0.1814               | 0.1780                            |
| 27             | Name                           | (                    | 304e @H2rec       | 304f @H2rec        | 304g @H2rec           | 304h @H2rec          | 305 @H2rec                        |
| 8              | Vapour Fraction                |                      | 1.0000            | 1.0000 *           | 1.0000                | 1.0000 *             | 1.0000                            |
| 9              | Temperature                    | (C)                  | 58.81             | 58.37              | 58.38                 | 57.94                | 57.95                             |
| 0              | Pressure                       | (bar)                | 0.9412            | 0.9224             | 0.9224                | 0.9039               | 0.9039                            |
| 1              | Molar Flow                     | (kgmole/h)           | 0.1917            | 0.1917             | 0.1917                | 0.1917               | 0.1917                            |
| 12             | Mass Flow                      | (kg/h)               | 1.000             | 1.000              | 1.000                 | 1.000                | 1.000                             |
| 3              | Actual Volume Flow             | (m3/h)               | 5.619             | 5.726              | 5.726                 | 5.835                | 5.836                             |
| 34             | Mass Density                   | (kg/m3)              | 0.1780            | 0.1746             | 0.1746                | 0.1714               | 0.1714                            |
| 15             | Name                           |                      | 306 @H2rec        | 307 @H2rec         | 308 @H2rec            | 309 @H2rec           | 310 @H2rec                        |
| 6              | Vapour Fraction                |                      | 0.8822            | 0.8603             | 0.0000                | 0.0000               | 1.0000                            |
| 37             | Temperature                    | (C)                  | 70.38             | 60.00 *            | 60.00                 | 60.05                | 60.00                             |
| 38             | Pressure                       | (bar)                | 4.547             | 4.287              | 4.287                 | 9.189                | 4.287                             |
| 39             | Molar Flow                     | (kgmole/h)           | 439.3             | 439.3              | 61.37                 | 61.37                | 377.9                             |
| 10             | Mass Flow                      | (kg/h)               | 2152              | 2152               | 1106                  | 1106                 | 1046                              |
| 11             | Actual Volume Flow             | (m3/h)               | 2436              | 2445               | 1.128                 | 1.127                | 2444                              |
| 12             | Mass Density                   | (kg/m3)              | 0.8832            | 0.8801             | 980.5                 | 980.7                | 0.4281                            |
| 13             | Name                           |                      | 311 @H2rec        | 312 @H2rec         | 313@H2rec             | 314 @H2rec           | 315 @H2rec                        |
| 4              | Vapour Fraction                |                      | 1.0000            | 1.0000 *           | 1.0000                | 0.9785               | 0.9609                            |
| 15             | Temperature                    | (C)                  | 113.0             | 68.60              | 123.0                 | 64.00                | 40.00                             |
| 16             | Pressure<br>Malar Flow         | (bar)                | 6.495             | 6.365              | 9.642                 | 9.449                | 9.189                             |
| 18             | Molar Flow<br>Mass Flow        | (kgmole/h)<br>(ka/h) | 377.9<br>1046     | 377.9              | 377.9                 | 377.9<br>1046        | 377.9                             |
| 9              | Actual Volume Flow             | (kg/h)<br>(m3/h)     | 1046              | 1689               | 1294                  | 11046                | 1046                              |
| 0              | Mass Density                   | (ma/n)<br>(kg/m3)    | 0.5591            | 0.6193             | 0.8087                | 0.9511               | 1.013                             |
| i1             | Name                           | (rig/mo)             | 316 @H2rec        | 317 @H2rec         | 318@H2rec             | 320 @H2rec           | 321 @H2rec                        |
| 2              | Vapour Fraction                |                      | 0.0000            | 0.0101             | 0.0023                | 1.0000               | 1.0000                            |
| 3              | Temperature                    | (C)                  | 40.00             | 35.71              | 54.56                 | 40.00                | 90.37                             |
| 4              | Pressure                       | (bar)                | 9.189             | 9.189              | 9.189                 | 9.189                | 13.92                             |
| 5              | Molar Flow                     | (kgmole/h)           | 14.77             | 17.95              | 79.32                 | 363.2                | 363.2                             |
| 6              | Mass Flow                      | (kg/h)               | 266.1             | 320.5              | 1426                  | 780.1                | 780.1                             |
| 7              | Actual Volume Flow             | (m3/h)               | 0.2671            | 0.8285             | 1.990                 | 1032                 | 792.1                             |
| i8             | Mass Density                   | (kg/m3)              | 996.2             | 386.8              | 716.6                 | 0.7559               | 0.9849                            |
| 59<br>60<br>61 |                                |                      |                   |                    |                       |                      |                                   |
| 62<br>63       | Aspen Technology In            | IC.                  | /                 | Aspen HYSYS Versio | on 10                 |                      | Page 3 of 18 * Specified by user. |

| 1              |                                                  |                      |                      | Case Name:         | Generic HTSE PFD_v4    | 00_Therm66_5bar_U80   | 38×25 MVVe unit [detaile |
|----------------|--------------------------------------------------|----------------------|----------------------|--------------------|------------------------|-----------------------|--------------------------|
| 2<br>3         | ( aspentech                                      | ) Bedford, M         | ENERGY ALLIANCE<br>A | Unit Set:          | HTSE PFD               |                       |                          |
| 4<br>5         |                                                  | USA                  |                      | Date/Time:         | Mon Apr 05 15:00:37 20 | 21                    |                          |
| 6              | 144                                              | o rikh o o ku        | Case (Mai            |                    | (ام                    |                       |                          |
| 8              | VV                                               | JIKDOOK.             | Case (Mail           | n) (continue       | u)                     |                       |                          |
| 9<br>10        |                                                  |                      | Mat                  | erial Streams (cor | ntinued)               | Fluid Pkg             | g: All                   |
| 11             | Name                                             |                      | 322 @H2rec           | 323 @H2rec         | 324 @H2rec             | 325 @H2rec            | 326 @H2rec               |
| 12             | Vapour Fraction                                  |                      | 1.0000 *             | 1.0000             | 0.9952                 | 0.9927                | 0.0000                   |
| 13             | Temperature                                      | (C)                  | 47.25                | 98.78              | 37.79                  | 15.00 *               | 15.00                    |
| 14             | Pressure                                         | (bar)                | 13.64                | 20.66              | 20.25                  | 19.95                 | 19.95                    |
| 15             | Molar Flow                                       | (kgmole/h)           | 363.2                | 363.2              | 363.2                  | 363.2                 | 2.665                    |
| 16             | Mass Flow                                        | (kg/h)               | 780.1                | 780.1              | 780.1                  | 780.1                 | 48.00                    |
| 17             | Actual Volume Flow                               | (m3/h)               | 712.3                | 547.0              | 464.6                  | 436.0                 | 4.728e-002               |
| 18             | Mass Density                                     | (kg/m3)              | 1.095                | 1.426              | 1.679                  | 1.789                 | 1015                     |
| 19             | Name                                             |                      | 330 @H2rec           | 331 @H2rec         | 332 H2 Product @H2r    | 101 @NPP              | 102 @NPP                 |
| 20             | Vapour Fraction                                  | (0)                  | 1.0000               | 0.3511             | 1.0000                 | 1.0000 *              | 1.0000                   |
| ∠1<br>20       | Temperature                                      | (C)<br>(bar)         | 15.00                | 15.00              | 15.00                  | 267.1<br>52.54 *      | 267.1<br>52.54           |
| 22             | Pressure<br>Molor Flow                           | (bar)<br>(kgmole/h)  | 19.95<br>360.5       | 0.5134             | 19.95<br>360.0         | 52.54 ^<br>3.663e+005 | 52.54<br>3.483e+005      |
| 23<br>24       | Molar Flow<br>Mass Flow                          | (kgmulern)<br>(kg/h) | 732.1                | 6.367              | 725.7                  | 6.599e+006 *          | 6.275e+006               |
| 24             | Actual Volume Flow                               | (kg/h)<br>(m3/h)     | 436.0                | 0.2239             | 435.4                  | 2.469e+005            | 2.348e+005               |
| 26             | Mass Density                                     | (mom)<br>(kg/m3)     | 1.679                | 28.44              | 1.667                  | 2.40384003            | 2.3488+003               |
| 20             | Name                                             | (Kg/III3)            | 103@NPP              | 103a @NPP          | 104@NPP                | 107 @NPP              | 107a @NPP                |
| 28             | Vapour Fraction                                  |                      | 1.0000               | 0.9991             | 0.9979                 | 1.0000                | 0.9989                   |
| 29             | Temperature                                      | (C)                  | 267.1                | 265.2              | 262.0                  | 267.1                 | 264.5                    |
| 30             | Pressure                                         | (bar)                | 52.54                | 50.96              | 48.46                  | 52.54                 | 50.44                    |
| 31             | Molar Flow                                       | (kgmole/h)           | 3.230e+005           | 3.230e+005         | 3.230e+005             | 2.534e+004            | 2.534e+004               |
| 32             | Mass Flow                                        | (kg/h)               | 5.818e+006           | 5.818e+006         | 5.818e+006             | 4.566e+005            | 4.566e+005               |
| 33             | Actual Volume Flow                               | (m3/h)               | 2.177e+005           | 2.247e+005         | 2.367e+005             | 1.709e+004            | 1.782e+004               |
| 34             | Mass Density                                     | (kg/m3)              | 26.72                | 25.89              | 24.58                  | 26.72                 | 25.62                    |
| 35             | Name                                             | (rightio)            | 108 (F) @NPP         | 110 @NPP           | 111@NPP                | 112 @NPP              | 112a @NPP                |
| 36             | Vapour Fraction                                  |                      | 0.0236               | 0.9387             | 0.9387                 | 0.9387                | 0.9391                   |
| 37             | Temperature                                      | (C)                  | 263.9                | 223.6              | 223.6                  | 223.6                 | 222.0                    |
| 38             | Pressure                                         | (bar)                | 49.93                | 24.83              | 24.83                  | 24.83                 | 24.08                    |
| 39             | Molar Flow                                       | (kgmole/h)           | 2.534e+004           | 3.230e+005         | 2.952e+005             | 2.778e+004            | 2.778e+004               |
| 40             | Mass Flow                                        | (kg/h)               | 4.566e+005           | 5.818e+006         | 5.318e+006             | 5.004e+005            | 5.004e+005               |
| 41             | Actual Volume Flow                               | (m3/h)               | 999.1                | 4.401e+005         | 4.022e+005             | 3.785e+004            | 3.902e+004               |
| 42             | Mass Density                                     | (kg/m3)              | 457.0                | 13.22              | 13.22                  | 13.22                 | 12.82                    |
| 43             | Name                                             |                      | 114 @NPP             | 115 @NPP           | 120 @NPP               | 121 @NPP              | 122 (H) @NPP             |
| 44             | Vapour Fraction                                  |                      | 0.5529               | 0.0000             | 0.8948                 | 0.8948                | 0.8948                   |
| 45             | Temperature                                      | (C)                  | 222.0                | 186.9              | 183.4                  | 183.4                 | 183.4                    |
| 46             | Pressure                                         | (bar)                | 24.08                | 24.08              | 10.84                  | 10.84                 | 10.84                    |
| 47             | Molar Flow                                       | (kgmole/h)           | 5.312e+004           | 5.312e+004         | 2.952e+005             | 2.676e+005            | 2.759e+004               |
| 48             | Mass Flow                                        | (kg/h)               | 9.569e+005           | 9.569e+005         | 5.318e+006             | 4.821e+006            | 4.971e+005               |
| 49             | Actual Volume Flow                               | (m3/h)               | 4.441e+004           | 1087               | 8.572e+005             | 7.771e+005            | 8.013e+004               |
| 50             | Mass Density                                     | (kg/m3)              | 21.55                | 880.5              | 6.204                  | 6.204                 | 6.204                    |
| 51             | Name                                             |                      | 122a @NPP            | 122a-L @NPP        | 123@NPP                | 124 @NPP              | 125 @NPP                 |
| 52             | Vapour Fraction                                  |                      | 0.8961               | 0.0000 *           | 0.3148                 | 0.0000                | * 0000.0                 |
| 53             | Temperature                                      | (C)                  | 181.2                | 181.2              | 181.2                  | 181.0                 | 181.2                    |
| 54             | Pressure                                         | (bar)                | 10.30                | 10.30              | 10.30                  | 10.30                 | 10.30                    |
| 55             | Molar Flow                                       | (kgmole/h)           | 2.759e+004           | 2.759e+004         | 8.071e+004             | 8.071e+004            | 1.086e+005               |
| 56             | Mass Flow                                        | (kg/h)               | 4.971e+005           | 4.971e+005         | 1.454e+006             | 1.454e+006            | 1.956e+006               |
| 57             | Actual Volume Flow                               | (m3/h)               | 8.428e+004           | 561.2              | 8.766e+004             | 1641                  | 2208                     |
| 58<br>58       | Mass Density                                     | (kg/m3)              | 5.898                | 885.8              | 16.59                  | 886.0                 | 885.8                    |
| 59<br>60<br>61 |                                                  |                      |                      |                    |                        |                       |                          |
| 62<br>63       | Aspen Technology Ir<br>Licensed to: BATTELLE ENE |                      |                      | Aspen HYSYS Versio | on 10                  |                       | Page 4 of 18             |

| 12         Vapour Fraction         0.0000         1.0000         1.0000         1.0000           13         Temperature         (C)         181.6         181.6         22.2         22.2         22.5         1           4         Pressure         (bar)         10.40         9.88         9.788         1         3           15         Mass Flow         (kgrh)         5.021+005         2.337e+005         2.337e+005         1.032e+006         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042         1.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1VVe unit [detaile              | 80 38×25 | .00_Therm66_5bar_U80                  | Generic HTSE PFD_v4   | Case Name:         |              |            |                                       | 1        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------|---------------------------------------|-----------------------|--------------------|--------------|------------|---------------------------------------|----------|
| Bate/Time         Man Apr 05 15 09 37 2021           Understand         Workbook:         Case (Main) (continued)           Image: Continued in the image of the im |                                 |          |                                       | HTSE PFD              | Unit Set:          |              | Bedford, M | @aspentech                            | 3        |
| Answer         Answer<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |          | J2 1                                  | Mon Apr 05 15:00:37 2 | Date/Time:         |              | USA        |                                       | _        |
| Image         Material Streams (continued)         Fluid Pkig           10         Name         128 (g) @NPP         128 @NPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |          |                                       |                       |                    |              |            |                                       |          |
| Internal Streams (continued)         Fluid Pirz           11         Name         128 (E) @NPP         127 @NPP         128 @NPP         128 @NPP         128 @NPP         120 @NPP           12         Vapour Fraction         0.000         1.000         1.000         1.000         1.000           13         Temperature         (C)         118 16         1.023         2.337+005         2.337+005         2.337+006         2.337+006         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4.319+008         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |          |                                       | ed)                   | n) (continue       | Case (Maii   | rkbook:    | Wo                                    | 7<br>8   |
| Name         126 (E) @NPP         127 @NPP         128 @NPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | All                             | ⊃kg:     | Fluid Pk                              | tinued)               | erial Streams (con | Mate         |            |                                       | _        |
| 13         Temperature         (C)         1816         1916         2229         292.5           14         Pressure         (bar)         10.40         10.40         9.898         9.788           15         Motar Flow         (lgmole/h)         2.787±-004         2.397±-005         4.318±-006         4.318±-006         4.318±-006           16         Mass Density         (kg/m)         6.853         5.343         4.268         4.180           19         Name         131@NPP         132a (RP)@NPP         132a (RP).1000         0.0000         0.0000           2         Vapour Fraction         1.0000         1.0000         1.0000         0.0000         0.0000           21         Pressure         (bar)         3.488         3.344         3.314         3.314           22         Mass Flow         (kg/m)         4.032±006         3.157±005         3.157±005         3.157±005         3.316           24         Mass Density         (kg/m)         2.166±008         1.752±004         1.752±004         1.722±005         3.157±005         3.205±1           22         Name         135@NPP         140@NPP         142@NPP         142@NPP         142         Name         3.548±005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0NPP                            | 130 -    | 128a @NPP                             | 128 @NPP              | 127 @NPP           | 126 (E) @NPP |            | Name                                  |          |
| 12         Pressure         (bar)         10.40         10.40         9.89         9.788           15         Mais Flow         (kgrn)         2.787+005         2.397+005         2.397+005         2.397+005         2.397+005         2.397+005         2.397+005         2.397+005         2.397+005         2.397+005         2.397+005         2.397+005         2.397+005         2.397+005         2.397+005         2.397+005         2.397+005         2.397+005         2.397+005         1.032+006         1.032+006         1.032+006         1.032+006         1.032+006         1.032+006         1.032+006         1.012+000         1.000.0         0.0000         1.000.0         0.0000         1.000.0         1.000.0         0.0000         1.000.0         0.0000         1.000.0         0.0000         1.000.0         0.0000         1.000.0         0.0000.0         0.0000.0         0.000.0         1.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0         0.000.0 <t< th=""><th>1.0000</th><th>)</th><th>1.0000</th><th>1.0000</th><th>1.0000</th><th>0.0000</th><th></th><th>Vapour Fraction</th><th>12</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000                          | )        | 1.0000                                | 1.0000                | 1.0000             | 0.0000       |            | Vapour Fraction                       | 12       |
| Maiar Flow         (kgmole/h)         2.787e+004         2.397e+005         2.387e+005         2.387e+005           11         Atsai Flow         (kgm)         5.021e+005         4.318e+006         4.318e+006         4.318e+006           11         Atsui Volume Flow         (m3n)         688.3         5.343         4.266         4.180           12         Asso Density         (kgm)         688.3         5.343         4.266         4.180           20         Vapour Fraction         1310_0NPP         132a_(RP)_QNPP         1324_(RPL)_QRPP         1324_(RPL)_QRPP           21         Vapour Fraction         (b)         1.468         .3314         .3314           22         Pressure         (bar)         1.408         .488         .3314         .3314           23         Mass Density         (kgm)         1.400         .408=rooos         .157e+005         .3157e+005         .3328           24         Mass Density         (kgm)         1.857         1.867         1.120NPP         1422         .428.9           23         Vapour Fraction         0.0053         0.9584         0.9594         .9594         .9594         .9594         .9594         .9594         .9594         .9594         .9594<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 147.2                           |          | 252.5                                 | 252.9                 | 181.6              | 181.6        | (C)        | Temperature                           | 13       |
| Heat         Mass Flow         (light)         5 021 e-005         4 318-006         4 318-006         4 318-006           Mass Density         (light)         8653         6.543         4 286         4.180           Mass Density         (light)         8653         6.543         4 286         4.180           Mass Teor         132 (RPF) @NPF         132a (RPF) @NPF         132a (RPF) @NPF         132a (RPF) @NPF           Vapour Fracton         0.0000         7.727-000         1.0000         0.0000         0.0000           Mass Flow         (lignolf)         2.222-0005         7.752-004         1.752-005         3.157-005           Mass Flow         (lignolf)         2.158-006         1.700-005         3.157-005         3.157-005         3.157-005           Mass Flow         (lignolf)         1.552-0104         1.1627         1.178         9.28         3.157-005           Mass Flow         (lignolf)         1.557         1.667         1.178         9.0954         9.0954           Vapour Fracton         0.0033         0.9694         0.9594         0.9594         9.0954           Vapour Fracton         0.0001         0.0056         1.1784         0.9614         0.9694           Mass Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.488                           |          |                                       |                       |                    |              |            |                                       | _        |
| 1         Artual Volume Flow         (md/h)         567.2         8.084+005         1.012+006         1.033+006           18         Mass Density         (kg/m)3         865.3         5.343         4.266         4.160           19         Name         131@NPP         132@NPP         132@RP)@NPP         132@RP)@NPP         132_R(P)@NPP         132_R(P)@NPP         132_R(P)@NPP         132_R(P)@NPP         132_R(P)@NPP         134_RPP         144           20         Yapour Fracton         (bar)         1.000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.397e+005                      |          |                                       |                       |                    |              |            |                                       |          |
| Instruction         Construction         Construction         Construction         Construction           Mass Density         (kg/m3)         0863         5.943         1.000         1.0000         1.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0005         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.0594         0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.319e+006                      |          |                                       |                       |                    |              |            |                                       | _        |
| Name         (b)         131 (g)NPP         132 (g)NPP         140 (g)NPP         143 (g)NPP         141 (g)NPP         142 (g)NPP         143 (g)NPP         143 (g)NPP         143 (g)NPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.326e+006                      | _        |                                       |                       |                    |              |            |                                       |          |
| 20         Vapour Fraction         10000         10000         10000         00000*           21         Temperature         (C)         1472         1472         1465         1370           21         Pressure         (bar)         3.488         3.488         3.314         3.314           22         Molar Flow         (kgmle/h)         2.222e-005         1.752e-004         1.752e-004         1.752e-004           23         Actual Volume Flow         (kgmle/h)         2.222e-006         1.700e-005         1.788e-005         3.157e-005           24         Ass Density         (kgml)         1.1657         1.070e-005         1.788e-005         3.157e-001           20         Name         115 @NPP         140 @NPP         141 @NPP         142 @NPP         142           21         Name         (kgmle/h)         1.752e-004         0.222e-005         1.074e-004         1.012           23         Assa Flow         (kgmle/h)         1.752e-004         0.022e-005         1.274e-004         1.274e-004           23         Asta Flow         (kgmle/h)         1.752e-004         0.027e-005         1.274e-004         1.027e-004         1.027e-004         1.027e-004         1.027e-004         1.027e-004         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.857                           |          |                                       |                       |                    |              | (kg/ma)    |                                       |          |
| 1         Temperature         (C)         147.2         147.2         148.5         137.0           21         Pressure         (bar)         3.448         3.448         3.314         3.314           22         Molar Flow         (kgmole/h)         2.222-005         1.752-004         1.752-004         1.752-004         1.752-004           24         Mass Flow         (kgmole/h)         2.156-006         1.706-005         3.157-005         3.157-005           25         Mass Densty         (kgm)         1.152-004         1.857         1.764         9.298           20         Name         135 @NPP         140 @NPP         141 @NPP         142 @MPP         142           21         Temperature         (C)         9.971         1.012         1.012         1.012           23         Temperature         (bar)         1.752-004         2.222-005         2.096+05         1.274+004           33         Molar Flow         (kgm)         3.157-005         4.003-006         3.778-006         2.296+005           34         Mass Densty         (kgm)         3.197         0.001         0.0001         0.0051         1.504           35         Nare         142-L(SO-L)@MPP <t< th=""><th>0.0000</th><th></th><th></th><th></th><th>_</th><th>0</th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000                          |          |                                       |                       | _                  | 0            |            |                                       |          |
| Pressure         (bar)         3 488         3 488         3 488         3 314         3 314           23         Molar Flow         (kgmole/h)         2.222+005         1.752+004         1.752+004         1.752+004           24         Mass Densy         (kg/m3)         2.156+006         1.700+005         3.157+005         3.157+005           26         Actual Volume Flow         (m3/h)         2.156e+006         1.700+005         1.782e+005         3.39.8           26         Mass Densty         (kg/m3)         1.857         1.867         1.748         9.09.9           28         Temperature         (C)         99.71         1012         1012         1011.2           29         Pressure         (kg/m)         1.752+004         2.222+005         2.095e+005         1.274e+004           20         Mass Flow         (kg/m)         3.157+005         4.002+006         5.831+006         5.849e+005           34         Mass Plow         (kg/m)         3.157+005         4.002+006         5.831+006         5.849e+005           34         Mass Plow         (kg/m)         3.157+005         4.002+006         5.831+006         5.831+006           34         Mass Plow         (kg/m) <td< th=""><th>102.5</th><th></th><th></th><th></th><th></th><th></th><th>(C)</th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102.5                           |          |                                       |                       |                    |              | (C)        |                                       |          |
| 22         Molar Flow         (kgmole/h)         2.222+005         1.752+004         1.752+004         1.752+005           24         Mass Flow         (kg/h)         4.003+006         3.157+005         3.157+005         3.157+005           24         Mass Density         (kg/h)         2.156+006         1.700+005         1.789+005         3.93.8         1.422           20         Mass Density         (kg/m)         1.152         1.772+005         3.9564         9.283         1.422           21         Name         135@NPP         140@NPP         141@NPP         142@NPP         142           23         Yapour Fracton         0.053         0.9564         0.9564         0.9564           24         Temperature         (C)         9.97.1         101.2         101.2         101.2           23         Temperature         (C)         9.97.1         1.056         1.056         1.274+004           24         Mass Elow         (kg/m)         3.157+005         4.003e+006         3.373+e005         2.48e+005           23         Mass Elow         (kg/m)         3.157+005         4.003e+006         3.531+e006         3.49e+005           34         Mass Density         (kg/m) <t< th=""><th>3.314</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.314                           |          |                                       |                       |                    |              |            |                                       |          |
| 24         Mass Flow         (kg/h)         4 003e+006         3.157e+005         3.157e+005         3.157e+005           24         Actual Volume Flow         (m3/h)         2.156e+006         1.700e+005         1.768e+005         3.39.8           21         Name         135@NPP         140@NPP         141@NPP         142@NPP         142           22         Name         0.0053         0.9594         0.9594         0.9594         0.9594           23         Temperature         (C)         9.9.1         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2         101.2 <th>1.752e+004</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>, ,</th> <th></th> <th>23</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.752e+004                      |          |                                       |                       |                    |              | , ,        |                                       | 23       |
| Actual Volume Flow         (m3/h)         2.1568+008         1.700+005         1.789+005         339.8           26         Mass Densty         (kg/m3)         1.857         1.857         1.774         929.9           20         Name         135@NPP         140@NPP         141@NPP         142@NPP         142@NPP           20         Vapour Fraction         0.0053         0.9594         0.9594         0.9594         0.9594           21         Temperature         (C)         .99.71         1.01.2         1.01.2         1.01.2         1.01.2           21         Mass Flow         (kg/m)         1.752e+004         2.222e005         2.056e+005         1.274e+004         .           23         Actual Volume Flow         (m3/h)         3.157e+005         4.003e+006         5.831e+006         3.548e+005         .           33         Actual Volume Flow         (m3/h)         10.08         0.471         0.6471         0.6471         0.6471         0.6471           34         Mass Densty         (kg/m)         10.03         0.027e+014         3.027e+014         3.027e+014         3.027e+014         3.027e+014         3.027e+014         3.027e+014         3.027e+014         3.027e+014         3.027e+014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.157e+005                      |          |                                       |                       |                    |              |            |                                       | 24       |
| 28         Mass Density (kgm3)         11857         11867         11764         1208         1208           27         Name         135 @NPP         140 @NPP         141 @NPP         142 @NPP         142           28         Vapour Fraction         0.0053         0.9594         0.9594         0.9594         0.9594         0.9594         0.9594           28         Temperature         (C)         9.9171         1.012         1.012         1.012         1.012         1.012         1.012         1.012         1.012         1.012         1.012         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.014         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 330.0                           |          |                                       |                       |                    |              |            |                                       | 25       |
| Vapour Fraction         0.0053         0.9594         0.9594         0.9594           29         Temperature         (C)         99.71         1012         1012         1012           30         Pressure         (bar)         1.003         1.056         1.066         1.066           31         Molar Flow         (kgmole/h)         1.752+004         2.222+005         2.095+005         1.274+004           32         Mass Flow         (kg/h)         3.157e+005         4.003e+008         3.773e+008         2.296e+005           33         Actual Volume Flow         (m3/h)         3.138         6.186e+006         5.831e+008         3.548e+005           34         Mass Density         (kg/m3)         10.06         0.4075         0.0000         0.04571           35         Mass Censity         (kg/m3)         10.03         1.003         0.03236         70.87           36         Vapour Fraction         0.0000*         0.4075         0.0000         0.0500         3.327e+004           37         Temperature         (C)         99.71         1.93         1.003         0.3236           38         Molar Flow         (kg/m)         1.224e+005         5.453e+005         5.453e+005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 956.7                           | J        | 928.9                                 | 1.764                 | 1.857              | 1.857        |            | Mass Density                          | 26       |
| Dependent         COURT         Court <thcourt< th="">         Court         Court</thcourt<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (SO) @NPP                       | 142a     | 142 @NPP                              | 141@NPP               | 140 @NPP           | 135 @NPP     |            | Name                                  | 27       |
| 30         Pressure         (bar)         1.003         1.056         1.056         1.056         1.056           31         Molar Flow         (kgmole/h)         1.752e+004         2.222e+005         2.056+005         1.274e+004         2.236e+005         1.274e+004         2.236e+005         1.274e+004         2.236e+005         3.451e+006         3.451e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9605                          |          | 0.9594                                | 0.9594                | 0.9594             | 0.0053       |            | Vapour Fraction                       | 28       |
| 31         Molar Flow         (kgmole/h)         1.752e+004         2.222e+005         2.095e+005         1.274e+004           32         Mass Flow         (kg/h)         3.157e+005         4.003e+006         3.773e+006         2.296e+005           33         Actual Volume Flow         (m3/h)         3139         6.186e+006         5.831e+006         3.548e+005           34         Mass Density         (kg/m3)         100.6         0.6471         0.6471         0.6471           35         Name         142a-L (SO-L) @NPP         144 @NPP         145 @NPP         146 @NPP         150           36         Vapour Fraction         0.0000 *         0.4075         0.0000         0.0050         0.0050           37         Temperature         (C)         98.71         98.71         73.65         70.87           38         Pressure         (bar)         1.003         1.003         1.003         0.3027e+004         3.027e+004           40         Mass Flow         (kg/m3)         958.6         1.455         5.453e+005         5.453e+005         5.453e+005           41         Actual Volume Flow         (m3/h)         239.85         3.758e+005         5.453e+014         1.3000           42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99.71                           |          | 101.2                                 | 101.2                 | 101.2              | 99.71        | (C)        | Temperature                           | 29       |
| 32         Mass Flow         (kg/h)         3.157e+005         4.003e+006         3.773e+006         2.296e+005           33         Actual Volume Flow         (m3/h)         3139         6.186e+006         5.831e+006         3.548e+005           34         Mass Density         (kg/m3)         100.6         0.0471         0.6471         0.6471           35         Name         142a-L (SO-L) @NPP         144 @NPP         145 @NPP         146 @NPP         150 or           36         Vapour Fraction         0.0000 *         0.4075         0.0000         0.0050         0.0000           37         Temperature         (C)         99.71         99.71         73.65         70.87           38         Pressure         (bar)         1.274e+004         3.027e+004         3.027e+004         3.027e+004           40         Mass Flow         (kg/m3)         2.296e+005         5.453e+005         5.453e+005         5.453e+005           41         Actual Volume Flow         (m3/r)         2.395         3.758e+005         5.658.9         1.398e+004           42         Mass Density         (kg/m3)         958.6         1.451         976.7         39.25           43         Name         151@NPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.003                           | i        | 1.056                                 | 1.056                 | 1.056              | 1.003        | (bar)      | Pressure                              | 30       |
| 3         Actual Volume Flow         (m3/h)         3139         6.186e+006         5.831e+006         3.548e+005           34         Mass Density         (kg/m3)         100.6         0.8471         0.6471         0.6471         0.6471           35         Name         142a-L (SO-L) @NPP         144 @NPP         145 @NPP         146 @NPP         150           36         Vapour Fraction         0.0000*         0.4075         0.0000         0.0050         0           37         Temperature         (C)         99.71         99.71         77.855         77.07           38         Pressure         (bar)         1.073         1.003         1.003         0.3226         0           39         Molar Flow         (kg/m)         2.296e+005         5.453e+005         5.453e+005         5.453e+005         5.453e+005           40         Mass Density         (kg/m3)         955.6         1.451         97.7         39.25         4           41         Actual Volume Flow         (m3/h)         2.296e+005         1.451         97.7         39.25         4           43         Name         151 @NPP         151 HTE feedwater (in         152 @NPP         152 HTE feed water (v         160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.274e+004                      |          | 1.274e+004                            | 2.095e+005            | 2.222e+005         | 1.752e+004   | (kgmole/h) | Molar Flow                            | 31       |
| 34         Mass Density         (kg/m3)         100.6         0.8471         0.6471         0.6471           35         Name         142a-L (SO-L) @NPP         144 @NPP         145 @NPP         146 @NPP         150 (           36         Vapour Fraction         0.0000 *         0.4075         0.0000         0.0050         0.0000           37         Temperature         (C)         98.71         99.971         73.85         70.87         0.303           38         Pressure         (bar)         1.003         1.003         0.327e+004         3.027e+004         3.028e+004         3.028e+004         3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.296e+005                      | ·        | 2.296e+005                            |                       | 4.003e+006         | 3.157e+005   | (kg/h)     | Mass Flow                             | 32       |
| Instruction         (rg/rd)         142a-L (SO-L) @NPP         144 @NPP         145 @NPP         146 @NPP         150           36         Vapour Fraction         0.0000*         0.4075         0.0000         0.0050         0           37         Temperature         (C)         99.71         99.71         73.85         70.87         0           38         Pressure         (bar)         1.003         1.003         1.003         0.3236         0           39         Molar Flow         (kgmole/h)         1.274e+004         3.027e+004         3.027e+004         3.027e+004         3.027e+004         4           40         Mass Flow         (kg/h)         2.298e+005         5.453e+005         5.453e+005         5.453e+005         4           41         Actual Volume Flow         (m3/h)         239.5         3.758e+005         5.453e+005         4         4           42         Mass Density         (kg/m3)         958.6         1.451         975.7         39.25         4           43         Name         151@NPP         151 HTE feedwater (lit         152 MTE feed water (v         1600           44         Vapour Fraction         0.8362         5.900         0.8362         5.900         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.726e+005                      |          | 3.548e+005                            | 5.831e+006            | 6.186e+006         | 3139         | (m3/h)     | Actual Volume Flow                    | 33       |
| 36         Vapour Fraction         0.0000 *         0.4075         0.0000         0.0050           37         Temperature         (C)         99.71         99.71         73.65         70.87           38         Pressure         (bar)         1.003         1.003         1.003         0.3236           39         Molar Flow         (kgrole/h)         1.274e+004         3.027e+004         3.027e+004         3.027e+004           40         Mass Flow         (kg/h)         2.296e+005         5.453e+005         5.453e+005         5.453e+005           41         Actual Volume Flow         (m3/h)         239.5         3.758e+005         5658.9         1.389e+004           42         Mass Density         (kg/n3)         9.858.6         1.451         975.7         39.25           43         Name         151@NPP         151 HTE feedwater (in         152@NPP         152 HTE feed water (         160.0           44         Vapour Fraction         0.9417         0.0026         0.9417         1.0000         44           49 pour Fraction         0.9417         0.0026         0.9417         1.0000         44           44 vapour Fraction         0.9417         0.0026         0.9417         1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6161                          |          |                                       |                       |                    |              | (kg/m3)    |                                       |          |
| 37         Temperature         (C)         99.71         99.71         73.85         70.87           38         Pressure         (bar)         1.003         1.003         1.003         0.3236         0.3236           39         Molar Flow         (kgmole/h)         1.274e+004         3.027e+004         3.027e+004         3.027e+004         0.3027e+004           40         Mass Flow         (kg/h)         2.296e+005         5.453e+005         5.453e+005         5.453e+004         0.427e+004           41         Actual Volume Flow         (m3/h)         239.5         3.758e+005         5.453e+005         5.453e+004         0.424           42         Mass Density         (kg/m3)         9.958.6         1.451         975.7         39.25         0.43           43         Name         151@NPP         151 HTE feedwater (k         152@NPP         152 HTE feed water (k         160.04           44         Vapour Fraction         0.9417         0.0026         0.9417         1.0000         0.44           44         Vapour Fraction         0.8362         5.900         0.6362         5.400         0.444           45         Temperature         (bar)         3.05e+005         1.689e+004         1.068e+005 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |          |                                       |                       |                    |              |            |                                       |          |
| 38         Pressure         (bar)         1.003         1.003         1.003         1.003         0.033         0.033           39         Molar Flow         (kgmole/h)         1.274e+004         3.027e+004         3.027e+004         3.027e+004         3.027e+004           40         Mass Flow         (kg/h)         2.296e+005         5.453e+005         5.453e+005         5.453e+005         5.453e+005           41         Actual Volume Flow         (m3/h)         2.395e         3.758e+005         5.453e+005         5.453e+005         5.453e+005           42         Mass Density         (kg/m3)         958.8         1.451         975.7         38.25           43         Name         151 @NPP         151 HTE feedwater (lit         152@NPP         152 HTE feed water (lit         1000           44         Vapour Fraction         0.9417         0.0026         0.9417         1.0000         0.8362           45         Temperature         (bar)         0.8362         5.800         0.8362         5.400         0.1056           46         Pressure         (bar)         3.751e+006         3.006e+005         2.288e+004         3.066e+005         2.88e+004         3.066e+005         2.821         1.83a@NPP         163a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9417                          |          |                                       |                       |                    |              |            |                                       |          |
| 33         Molar Flow         (kgmole/h)         1.274e+004         3.027e+004         3.027e+004         3.027e+004           40         Mass Flow         (kg/h)         2.296e+005         5.453e+005         5.453e+005         5.453e+006         4.4           41         Actual Volume Flow         (m3/h)         239.5         3.758e+005         5.453e+005         5.453e+006         4.4           42         Mass Density         (kg/m3)         958.6         1.451         975.7         39.25           43         Name         151@NPP         151 HTE feedwater (in         152@NPP         152 HTE feed water (v         160 molec           44         Vapour Fraction         0.9417         0.0026         0.9417         1.0000         44           45         Temperature         (bar)         0.8382         5.800         0.8382         5.400           46         Pressure         (bar)         0.8382         5.800         0.8382         5.840           47         Molar Flow         (kg/m)         3.751e+008         3.006e+005         2.288e+004         3.006e+005           48         Mass Flow         (kg/m3)         0.4105         5.514.4         0.4105         2.821           50 <th< th=""><th>87.46</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>37</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 87.46                           |          |                                       |                       |                    |              |            |                                       | 37       |
| 40         Mass Flow         (kg/h)         2.296e+005         5.453e+005         5.453e+005         6.453e+006           41         Actual Volume Flow         (m3/h)         239.5         3.758e+005         568.9         1.389e+004         4           42         Mass Density         (kg/m3)         958.6         1.451         975.7         39.25         4           43         Name         151@NPP         151 HTE feedwater (lit         152@NPP         152 HTE feed water (v         160.0           44         Vapour Fraction         0.9417         0.0026         0.9417         1.0000         4           45         Temperature         (C)         87.48         1.52.9         87.46         1.55.3         4           46         Pressure         (bar)         0.6362         5.900         0.6362         5.400         4           48         Mass Flow         (kg/h)         3.751e+008         3.008e+004         1.270         1.668e+004         4           49         Actual Volume Flow         (m3/h)         8.138e+008         5.84.5         5.574e+004         1.066e+005         4           40         Mass Elowity         (kg/m3)         0.4105         5.14.4         0.4105         2.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6362                          |          |                                       |                       |                    |              |            |                                       | 38       |
| 41         Actual Volume Flow         (m3/h)         239.5         3.758e+005         558.9         1.389e+004           42         Mass Density         (kg/m3)         958.8         1.451         975.7         39.25         43           43         Name         151@NPP         151 HTE feedwater (lit         152@NPP         152 HTE feed water (v         160 (v           44         Vapour Fraction         0.9417         0.0028         0.9417         1.0000         44           45         Temperature         (C)         87.46         152.9         87.46         155.3         46           46         Pressure         (bar)         0.08362         5.900         0.6362         5.400         47           48         Mass Flow         (kg/h)         2.082e+005         1.669e+004         1.270         1.669e+004         47           49         Actual Volume Flow         (m3/h)         9.136e+006         3.006e+005         2.288e+004         3.006e+005         4.04105         2.821         4.04105         2.821         4.04105         2.821         4.04105         2.821         4.04105         2.821         4.04105         2.821         4.04105         2.83         4.04105         2.83         4.04105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.095e+005<br>3.773e+006        |          |                                       |                       |                    |              |            |                                       |          |
| Index Density         (kg/m3)         988.6         1.451         975.7         38.25           43         Name         151 @NPP         151 HTE feedwater (it         152@NPP         152 HTE feed water (x)         160           44         Vapour Fraction         0.9417         0.0026         0.9417         1.0000           45         Temperature         (C)         87.48         152.9         87.46         155.3           46         Pressure         (bar)         0.6362         5.900         0.6362         5.400           47         Molar Flow         (kgmole/h)         2.082e+005         1.689e+004         1270         1.689e+004           48         Mass Flow         (kg/h)         3.751e+006         3.006e+005         2.288e+004         3.006e+005           49         Actual Volume Flow         (m3/h)         9.136e+006         584.5         5.574e+004         1.068e+005           40         Mass Density         (kg/m3)         0.4105         514.4         0.4105         2.821           50         Mass Density         (kg/m3)         0.4105         514.4         0.4105         2.821           51         Name         161@NPP         162@NPP         163@NPP         163a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.192e+006                      |          |                                       |                       |                    |              |            |                                       |          |
| Andre stress         151 @NPP         151 HTE feedwater (it         152 @NPP         152 HTE feed water (it         160 dt           44         Vapour Fraction         0.9417         0.0026         0.9417         1.0000         0.44           44         Vapour Fraction         0.9417         0.0026         0.9417         1.0000         0.45           45         Temperature         (C)         87.46         152.9         87.48         155.3         0.46           46         Pressure         (bar)         0.6362         5.900         0.6362         5.400         0.47           47         Molar Flow         (kgrole/h)         2.082e+005         1.668e+004         1270         1.668e+004         0.406e+005         0.48         Mass Flow         (kg/h)         3.751e+006         3.006e+005         2.288e+004         3.006e+005         0.40         4.40         4.4105         2.821         0.4105         2.821         0.4105         2.821         0.4105         2.821         0.4105         2.821         0.4105         2.821         0.4105         2.821         0.4105         2.821         0.4105         2.821         0.4105         2.821         0.4105         2.821         0.4105         2.821         0.4105         2.821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4105                          | _        |                                       |                       |                    |              |            |                                       |          |
| 44         Vapour Fraction         0.9417         0.0026         0.9417         1.0000           45         Temperature         (C)         87.48         152.9         87.48         155.3         4           46         Pressure         (bar)         0.63822         5.900         0.63822         5.400         4           47         Molar Flow         (kgmole/h)         2.082e4005         1.669e4004         1270         1.669e4004         4           48         Mass Flow         (kg/h)         3.751e+006         3.006e+005         2.288e+004         3.006e+005         4           49         Actual Volume Flow         (m3/h)         9.136e+006         584.5         5.574e+004         1.066e+005         2.821           50         Mass Density         (kg/m3)         0.4105         514.4         0.4105         2.821         1           51         Name         161@NPP         162@NPP         163@NPP         163a         0.9255         1           52         Vapour Fraction         0.9216         0.9216         0.9245         0.9255         1           54         Pressure         (bar)         0.3407         0.3407         0.3407         0.3236         1      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2NPP                            | _        |                                       |                       |                    |              | (rightio)  | · · · · · · · · · · · · · · · · · · · |          |
| 45         Temperature         (C)         87.46         152.9         87.46         155.3           46         Pressure         (bar)         0.6362         5.900         0.6362         5.400         4           47         Molar Flow         (kgmole/h)         2.082e+005         1.669e+004         1270         1.669e+004         4           48         Mass Flow         (kg/h)         3.751e+006         3.006e+005         2.288e+004         3.006e+005         4           49         Actual Volume Flow         (m3/h)         9.136e+006         584.5         5.574e+004         1.086e+005         4           50         Mass Density         (kg/m3)         0.4105         514.4         0.4105         2.821         1           51         Name         161@NPP         162@NPP         163@NPP         163@NPP         163           52         Vapour Fraction         0.9216         0.9245         0.9255         1           53         Temperature         (C)         72.07         72.07         72.08         7.0336           54         Pressure         (bar)         0.3407         0.3407         0.3407         0.3407         0.3407         0.3407         0.3407         0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9216                          |          | · · · · · · · · · · · · · · · · · · · | ~                     | · · · · ·          | -            |            |                                       | 10       |
| 46         Pressure         (bar)         0.6362         5.900         0.6362         5.400         4           47         Molar Flow         (kgmole/h)         2.082e+005         1.689e+004         1.270         1.669e+004         4           48         Mass Flow         (kg/h)         3.751e+006         3.006e+005         2.288e+004         3.006e+005         4           49         Actual Volume Flow         (m3/h)         9.136e+006         584.5         5.574e+004         1.066e+005         4           50         Mass Density         (kg/m3)         0.4105         514.4         0.4105         2.821         1           51         Name         161@NPP         162@NPP         163@NPP         163a         163a           52         Vapour Fraction         0.9216         0.9216         0.9245         0.9255         163a           53         Temperature         (C)         72.07         72.07         72.06         70.877           54         Pressure         (bar)         0.3407         0.3407         0.3407         0.3407         0.3407         0.3407         0.3407         0.3407         0.3407         0.3407         0.3407         0.3407         0.3503e+004         1.389e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72.07                           |          |                                       |                       |                    |              | (C)        |                                       | 45       |
| 47         Molar Flow         (kgmole/h)         2.082e+005         1.669e+004         1270         1.669e+004         4           48         Mass Flow         (kg/h)         3.751e+006         3.006e+005         2.288e+004         3.006e+005         4           49         Actual Volume Flow         (m3/h)         9.136e+006         584.5         5.574e+004         1.066e+005         4           50         Mass Density         (kg/m3)         0.4105         514.4         0.4105         2.821         1           51         Name         161@NPP         162@NPP         163@NPP         163@NPP         163a         163a           52         Vapour Fraction         0.9216         0.9216         0.9245         0.9255         163a           53         Temperature         (C)         72.07         72.076         70.807         0.9216         0.9216         0.9216         0.9216         1.03a@NPP         1.03a@NPP         1.03a         1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3407                          |          |                                       |                       |                    |              |            |                                       | 46       |
| 49         Actual Volume Flow         (m3/h)         9.136e+006         584.5         5.574e+004         1.066e+005           50         Mass Density         (kg/m3)         0.4105         514.4         0.4105         2.821           51         Name         161@NPP         162@NPP         163@NPP         163a@NPP         163a           52         Vapour Fraction         0.9216         0.9216         0.9245         0.9255           53         Temperature         (C)         72.07         72.06         70.87           54         Pressure         (bar)         1.956e+005         1.262e+004         1.389e+004         1.389e+004           56         Mass Flow         (kg/h)         3.523e+006         2.274e+005         2.503e+005         2.503e+005           57         Actual Volume Flow         (m3/h)         1.507e+007         9.730e+005         1.074e+006         1.128e+006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.082e+005                      |          | 1.669e+004                            |                       | 1.669e+004         |              |            | Molar Flow                            | 47       |
| 50         Mass Density         (kg/m3)         0.4105         514.4         0.4105         2.821           51         Name         161 @NPP         162 @NPP         163 @NPP         163 @NPP         163 a           52         Vapour Fraction         0.9216         0.9216         0.9245         0.9255         1           53         Temperature         (C)         7.2.07         7.7.2.07         7.7.0.6         0.9236         1           54         Pressure         (bar)         1.956e+005         1.282e+004         1.389e+004         1.389e+004         1.389e+004         1           55         Mass Flow         (kg/m)         3.523e+006         2.274e+005         2.503e+005         2.503e+005         2.503e+006         1.128e+006         1           57         Actual Volume Flow         (m3/h)         1.507e+007         9.730e+005         1.074e+006         1.128e+006         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.751e+006                      | i        | 3.006e+005                            | 2.288e+004            | 3.006e+005         | 3.751e+006   | (kg/h)     | Mass Flow                             | 48       |
| Name         161@NPP         162@NPP         163@NPP         163a@NPP         163a           52         Vapour Fraction         0.9216         0.9216         0.9216         0.9245         0.9255           53         Temperature         (C)         72.07         72.07         72.06         70.87           54         Pressure         (bar)         0.3407         0.3407         0.3407         0.3236           55         Molar Flow         (kgmole/h)         1.958e+005         1.282e+004         1.389e+004         1.389e+004           56         Mass Flow         (kg/h)         3.523e+008         2.274e+005         2.503e+005         2.503e+005           57         Actual Volume Flow         (m3/h)         1.507e+007         9.730e+005         1.074e+006         1.128e+006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.605e+007                      | i        | 1.066e+005                            | 5.574e+004            | 584.5              | 9.136e+006   | (m3/h)     | Actual Volume Flow                    | 49       |
| 52         Vapour Fraction         0.9216         0.9216         0.9216         0.9245         0.9255           53         Temperature         (C)         72.07         72.07         72.06         70.87           54         Pressure         (bar)         0.3407         0.3407         0.3407         0.3407         0.3236           55         Molar Flow         (kgmole/h)         1.958e+005         1.282e+004         1.389e+004         1.389e+004           56         Mass Flow         (kg/h)         3.523e+006         2.274e+005         2.503e+005         2.503e+005           57         Actual Volume Flow         (m3/h)         1.507e+007         9.730e+005         1.074e+006         1.128e+006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2337                          |          |                                       |                       |                    |              | (kg/m3)    | Mass Density                          |          |
| 53         Temperature         (C)         72.07         72.07         72.06         70.87           54         Pressure         (bar)         0.3407         0.3407         0.3407         0.3407         0.3407           55         Molar Flow         (kgmole/h)         1.958e+005         1.282e+004         1.389e+004         1.389e+004           56         Mass Flow         (kg/h)         3.523e+006         2.274e+005         2.503e+005         2.503e+005           57         Actual Volume Flow         (m3/h)         1.507e+007         9.730e+005         1.074e+006         1.128e+006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L@NPP                           |          |                                       |                       |                    | _            |            |                                       |          |
| 54         Pressure         (bar)         0.3407         0.3407         0.3407         0.3407         0.3236           55         Molar Flow         (kgmole/h)         1.956e+005         1.262e+004         1.389e+004         1.389e+004           56         Mass Flow         (kg/h)         3.523e+006         2.274e+005         2.503e+005         2.503e+005           57         Actual Volume Flow         (m3/h)         1.507e+007         9.730e+005         1.074e+006         1.128e+006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000 *                        |          |                                       |                       |                    |              |            |                                       |          |
| 55         Molar Flow         (kgmole/h)         1.956e+005         1.262e+004         1.389e+004         1.389e+004           56         Mass Flow         (kg/h)         3.523e+006         2.274e+005         2.503e+005         2.503e+005           57         Actual Volume Flow         (m3/h)         1.507e+007         9.730e+005         1.074e+006         1.128e+006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70.87                           |          |                                       |                       |                    |              |            |                                       |          |
| 56         Mass Flow         (kg/h)         3.523e+006         2.274e+005         2.503e+005         2.503e+005           57         Actual Volume Flow         (m3/h)         1.507e+007         9.730e+005         1.074e+006         1.128e+006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3236                          |          |                                       |                       |                    |              |            |                                       | -        |
| 57 Actual Volume Flow (m3/h) 1.507e+007 9.730e+005 1.074e+006 1.128e+006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.389e+004                      |          |                                       |                       |                    |              |            |                                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.503e+005                      | 1        |                                       |                       |                    |              |            |                                       | _        |
| 1991 Mass Jonatov (Kulija) i Užaav i Užaav Užaav Užaav (Vžaav Vžena) (Vžena) (V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 256.1<br>977.2                  |          |                                       |                       |                    |              |            |                                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |          |                                       | 0.1000                | 0.2001             | 0.2001       | ((3,110)   | indee Bonony                          | 60       |
| 61 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |          |                                       |                       |                    |              |            |                                       | 61<br>62 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Page 5 of 18<br>cified by user. |          |                                       | on 10                 | spen HYSYS Versio  | A            |            |                                       | 63       |

| IS         Temperature         (C)         70.87         70.87         40.21         34.22         33           IS         Pressure         (bar)         0.3236         0.3236         5.418e-002         5.418e-002         5.418e-002         5.418e-002         5.418e-002         5.418e-002         5.418e-002         5.418e-004         4.416e+004         4.416e+004         4.416e+004         4.416e+004         4.416e+004         4.416e+004         4.416e+004         4.416e+004         4.318e+005         3.323e           IA         Actual Volume Flow         (from)         1.142e+006         0.802e         0.802e <t< th=""><th>1</th><th></th><th></th><th></th><th>Case Name:</th><th colspan="5">Case Name: Generic HTSE PFD_v4.00_Therm66_5bar_U80 38x25 MWe unit [detaile</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        |                     |            |              | Case Name:            | Case Name: Generic HTSE PFD_v4.00_Therm66_5bar_U80 38x25 MWe unit [detaile |            |                      |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|------------|--------------|-----------------------|----------------------------------------------------------------------------|------------|----------------------|--|--|
| Date:Time         Man Apr 05 15 00.27 2021           Workbook:         Case (Main) (continued)           Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3        | <b>@aspen</b> tech  | Bedford, M |              | Unit Set:             | HTSE PFD                                                                   |            |                      |  |  |
| Image: style |          |                     | USA        |              | Date/Time:            | Mon Apr 05 15:00:37 20                                                     | 21         |                      |  |  |
| 0         Material Streams (continued)         Fluid Pice           10         Name         105 @NPP         107 @NPP         108 @NPP         108 @NPP         108 @NPP           12         Vagou Fraction         0.2946         0.0000         0.0000         0.0000         0.0000           12         Vagou Fraction         0.2328         0.0238         0.0238         6.418e-004         4.418e-004         4.418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                     |            |              |                       |                                                                            |            |                      |  |  |
| Inverse         Test Streams (continued)         Fuire Part           10         Name         165 @NPP         187 @NPP         187 @NPP         187 @NPP           12         Vapour Fraction         (C)         70.37         70.037         40.21         44.22         54.18           13         Terrestrute         (Bar)         0.3236         0.3236         0.3236         54.186-020         54.186-020           14         Mass Flow         (Bar)         4.4186-004         44.4186-004         44.4186-004         44.4186-004         44.4186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004         44.186-004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7<br>8   | Wo                  | orkbook:   | Case (Maii   | n) (continue          | d)                                                                         |            |                      |  |  |
| Instance         IBS @NPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _        |                     |            | Mat          | erial Streams (con    | tinued)                                                                    | Fluid Pkg  | j: All               |  |  |
| Image: status         C(C)         70.97         40.21         40.21         94.32         9           IP Pressue         (lan)         0.0236         0.236         0.236         5.110.001         5.418.002           IB Mais Flow         (ligmale/h)         4.418e-004         4.418e-004         4.418e-004         4.418e-004         1.958e-005         9.328e           IB Mass Flow         (ligmale/h)         0.6964         9.72         9821         3.740         4.381e           ID Mare         117 (JNPP         172 (JNPP         172 (JNPP         190 (JNPP         100 (JNPP         117 (JNPP           20 Vapour Fraction         0.1718         0.6627         0.0000         0.0000         161 (JNPP           21 Temperature         (.C)         3.42         9.432         3.32         3.4464         3.32           22 Fressure         (logn)         5.418e-002         5.418e-002         5.417e-005         2.577e-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | Name                |            | 165 @NPP     | 166 @NPP              | 167 @NPP                                                                   | 168 @NPP   | 170 @NPP             |  |  |
| In         Personare         (tran)         0.2238         0.2238         0.2238         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338         0.2338 </th <th>12</th> <th>Vapour Fraction</th> <th></th> <th>0.2946</th> <th>0.0000 *</th> <th>0.0000</th> <th>0.0102</th> <th>0.8715</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12       | Vapour Fraction     |            | 0.2946       | 0.0000 *              | 0.0000                                                                     | 0.0102     | 0.8715               |  |  |
| 15         Mdar Flow         (kgh)         4.418-004         4.418-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005         7.858-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13       | Temperature         | (C)        | 70.87        | 70.87                 | 40.21                                                                      | 34.32      | 34.32                |  |  |
| Is         Mass Flow         (bgf)         7.365e-005         7.966e-005         9.726e-005         9.522e           I         Actual Volume Flow         (mdf)         1.142e-006         814.1         601.9         2.127e-005         8.022e           II         Mass Density         (typh)         0.0864         17.2         0.0821         10.0000         0.0000         0.0000           II         Temperature         (C)         34.32         34.32         34.42         3.444         33           IV         Mass Teor         (C)         34.32         5.416-002         5.018-002         3.008         32           IM         Mass Teor         (typh)         4.318-005         4.512e-002         5.577e-005         2.577e-005         2.577e-005         2.577e-005         4.642e-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                     |            |              |                       |                                                                            |            | 5.419e-002 *         |  |  |
| 11         Actual Volume Flow         (mgm)         1142-008         0.814         0.819         2.127e-005         9.02a+           18         Mass Densty         (mgm)         0.0884         977.2         0.92.1         3.740         4.931           20         Vapour Fraction         0.7128         0.6827         0.0000         0.0000         0.0000         100           21         Temperature         (C)         3.43         2.44.22         3.44.22         3.44.4         3.9           22         Pressure         (ban)         5.418-0.02         5.418-0.02         5.418-0.02         5.418-0.02         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05         2.577-0.05 <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1.956e+005</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        |                     |            |              |                       |                                                                            |            | 1.956e+005           |  |  |
| Mass Density         (typin)         Difference         Difference         Difference         Difference         Difference           11 Name         171 @VPP         172 @VPP         173 @VPP         180 @VPP         181 @VPP           12 Mass Density         (typin)         0.021         0.022         0.0000         0.0000         0.000           21 Temperature         (C)         34.32         34.32         34.42         34.44         33           22 Pressure         (bar)         5.418-002         5.618-002         5.080-002         2.577e-005         2.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                     |            |              |                       |                                                                            |            | 3.523e+006           |  |  |
| Name         171 @NPP         172 @NPP         173 @NPP         180 @NPP         181 @NPP           20         Vagour Fraction         0.7128         0.8827         0.0000*         0.0000         0.0000           21         Temperature         (C)         34 32         34 32         34 32         34 84         33           22         Pressure         (bar)         6.5140e-002         5.5140e-002         2.577e+005         2.277e+005         2.87e+006         4.642e+006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                     |            |              |                       |                                                                            |            |                      |  |  |
| Vapour Fraction         0.7128         0.8277         0.0000*         0.000           1         Temperature         (C)         34.32         34.432         34.432         34.432         34.432         34.432         34.434         34.434           21         Pressure         (bar)         5.418-002         5.418-002         5.418-002         5.418-005         4.4542-005         4.4542-005         4.4542-005         4.4542-005         4.4542-005         4.4542-005         4.4542-005         4.4542-005         4.4542-005         4.4542-005         4.4542-005         4.4542-005         4.4542-005         4.4542-005         4.4542-005         4.4542-005         4.4542-005         4.4542-005         4.4542-005         4.5572-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005         2.5772-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19       |                     | (ky/ma)    |              |                       |                                                                            |            |                      |  |  |
| 21         Temperature         (C)         34.32         34.32         34.33         34.84         33           22         Pressure         (bar)         5.419e-002         5.419e-002         5.419e-002         2.577e+005         4.432e+000         4.443e+000         4.443e+006         4.443e+006         4.443e+006         4.443e+006         4.443e+006         4.443e+006         4.443e+006         4.464e+006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20       |                     |            |              | _                     | _                                                                          |            | 0.0000               |  |  |
| 22         Pressure         (bar)         6.419-002         5.419-002         5.419-002         2.577e+005         4.643e+006         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                     | (C)        |              |                       |                                                                            |            | 39.91                |  |  |
| Notar Flow         (kgmole/n)         2.377+005         2.577e+005         2.577e+005         2.577e+005         4.257re+005         4.643e+006         4.643e+007         6.862e+007         6.862e+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22       |                     |            |              |                       |                                                                            |            | 30.66                |  |  |
| 21         Artual Volume Flow         (m3/h)         8.044e+007         8.282e+007         4870         4870         4864         44           26         Mass Denity         (kg/m)         5.396e-002         5.606e-002         942         9455         985           27         Name         192@NPP         193@NPP         194@NPP         195@NPP         196@NPP           28         Vapour Fraction         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000           29         Temperature         (bar)         3.068         3.068         3.068         3.068         3.068         3.068         3.068         3.068         3.068         3.068         3.068         3.068         3.068         3.068         3.068         3.068         3.068         3.068         3.068         3.068         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000         4.632+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23       | Molar Flow          | (kgmole/h) | 2.397e+005   | 2.577e+005            | 2.577e+005                                                                 | 2.577e+005 | 2.577e+005           |  |  |
| 22         Attual Volume Flow         (ftym)         8 404e+007         8.232e+007         44870         44870           28         Mass Density         (ftym)         5.868e-002         5.660e-002         9942         9855         9897           28         Vapour Fraction         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000           20         Temperature         (C)         6.808         9.844         9.894         9.844         9.894         1.83         0.0000         0.0000         0.0000         0.0000         0.0000         2.577e+005         2.577e+005         2.577e+005         2.577e+005         2.577e+005         2.577e+005         2.577e+005         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.848+000         4.849+000         4.849+000         4.849+000         4.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24       |                     |            |              | 4.643e+006            |                                                                            |            | 4.643e+006           |  |  |
| Name         182 @NPP         183 @NPP         184 @NPP         186 @NPP         186 @NPP           22         Vapour Fraction         0.000         0.0000         0.0000         0.0000         0.0000         0.0000           32         Temperature         (C)         68.09         98.84         98.84         1814.2         11           33         Pressure         (bar)         30.68         30.68         30.68         30.68         30.68         30.68         30.68         30.68         30.68         30.68         30.68         30.68         30.68         30.68         30.68         30.68         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4494:005         4492:005         4496:005         3666:050:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25       | Actual Volume Flow  | (m3/h)     | 8.044e+007   | 8.282e+007            | 4670                                                                       | 4664       | 4673                 |  |  |
| Note         Note <th< th=""><th>26</th><th>Mass Density</th><th>(kg/m3)</th><th>5.369e-002</th><th>5.606e-002</th><th>994.2</th><th>995.5</th><th>993.5</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26       | Mass Density        | (kg/m3)    | 5.369e-002   | 5.606e-002            | 994.2                                                                      | 995.5      | 993.5                |  |  |
| 29         Temperature         (C)         68.09         96.94         96.94         96.94         134.2         11           30         Pressure         (bar)         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         46.432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6432+006         4.6424         4.643         4.6432+006         4.6424         4.6404         4.6432+006         4.6424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27       | Name                |            | 182 @NPP     | 183 @NPP              | 184 @NPP                                                                   | 185 @NPP   | 186 @NPP             |  |  |
| 30         Pressure         (kan)         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         30.66         2.577e+005         2.577e+005         2.577e+005         2.577e+005         2.577e+005         2.577e+005         4.632e+006         4.643e+006         4.653e+005         3.663e+005         3.663e+005         3.663e+005         3.663e+005         3.663e+005         3.663e+005         3.663e+006         4.659e+006         4.162e+006         4.162e+006         4.622e         4.721         77131         1.659e+004         4.624         Mass <donsy< th="" th<=""><th>28</th><th>Vapour Fraction</th><th></th><th>0.0000</th><th>0.0000</th><th>0.0000</th><th>0.000</th><th>0.0000</th></donsy<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28       | Vapour Fraction     |            | 0.0000       | 0.0000                | 0.0000                                                                     | 0.000      | 0.0000               |  |  |
| 1         Molar Flow         (kgmole/h)         2.577e+005         2.577e+005         2.577e+005         2.577e+005         2.577e+005         2.577e+005         2.577e+005         2.577e+005         4.577e+005         4.577e+005         4.577e+005         4.577e+005         4.577e+005         4.577e+005         4.643e+006         4.652e+006         4.652e+006         4.652e+006         4.652e+006         4.652e+006         4.652e+006         4.652e+006         4.653e+005         1.658e+006         4.653e+006         4.653e+006         4.653e+006         4.652e+006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29       |                     |            |              |                       |                                                                            |            | 180.1                |  |  |
| 22         Mass Flow         (kg/n)         4.843e+006         4.842e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                     |            |              |                       |                                                                            |            | 30.66                |  |  |
| 33         Actual Volume Flow         (m3/h)         4737         4826         4826         4978         55           34         Mass Density         (kg/m3)         980.2         961.9         981.9         981.9         983.7.         08           35         Name         187 @NPP         188 @NPP         190 @NPP         191 @NPP         201 @NPP           34         Mass Density         (bar)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         1.659e+006         6.599e+006         6.599e+006         6.599e+006         6.599e+006         4.182e+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                     |            |              |                       |                                                                            |            | 2.577e+005           |  |  |
| Josa Francisco         (terr)         (terr) <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                     |            |              |                       |                                                                            |            |                      |  |  |
| 33         Name         187 @NPP         188 @NPP         190 @NPP         191 @NPP         201 @NPP           36         Vapour Fraction         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         1.659e+         4.4         4.4         4.182e+         4.4         4.182e+         4.4         4.182e+         4.4         4.8         4.4         4.8         4.4         4.8         4.3         Astrona         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _        |                     |            |              |                       |                                                                            |            | 5226                 |  |  |
| 38         Vapour Fraction         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000           37         Temperature         (C)         181.7         180.5         181.3         219.6         22           38         Pressure         (bar)         30.66*         30.66         63.43*         63.43         4           39         Molar Flow         (kgmch)         1.086e+005         3.683e+005         3.683e+005         3.683e+006         4.182e+           40         Mass Flow         (kg/m)         1.956e+006         6.599e+006         6.599e+006         6.599e+006         4.182e+           41         Actual Volume Flow         (m3/h)         2.206         7432         7421         7815         4           42         Mass Density         (kg/m3)         886.7         887.9         889.2         844.4         88           30         Name         202@NPP         203@NPP         204@NPP         205@NPP         206@NPP           44         Yapour Fraction         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000           45         Pressure         (bar)         3.484         3.224         2.719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                     | (Kg/m3)    |              |                       |                                                                            |            | 201 @NDD             |  |  |
| 3         Temperature         (C)         1817         180.5         1813         219.6         22           38         Pressure         (bar)         30.66         30.66         63.43         63.43         63.43         43           39         Molar Flow         (kgmle/h)         1.066e+005         3.663e+005         3.663e+005         3.663e+006         6.599e+006         6.599e+006         6.599e+006         4.162e+           40         Mass Flow         (kg/h)         1.956e+006         6.599e+006         6.599e+006         6.599e+006         4.162e+           41         Actual Volume Flow         (m3/h)         2.026         7432         7421         7815         4           42         Mass Density         (kg/m3)         886.7         887.9         889.2         844.4         8           43         Name         202@NPP         203@NPP         204@NPP         206@NPP         206@NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                     |            |              | ~                     |                                                                            |            | 201 @NFF<br>0.0000   |  |  |
| 38         Pressure         (bar)         30.66*         30.66         6.3.43*         63.43         4           39         Molar Flow         (kgmole/h)         1.086e+005         3.663e+005         3.663e+005         3.663e+005         1.659e+           40         Mass Flow         (kg/h)         1.956e+006         6.599e+006         6.599e+006         6.599e+006         6.599e+006         6.599e+006         4.182e+           41         Actual Volume Flow         (m3/h)         2206         7421         7421         7815         44           42         Mass Density         (kg/m3)         886.7         887.9         889.2         844.4         68           43         Name         202@NPP         203@NPP         204@NPP         205@NPP         206@NPP           44         Vapour Fraction         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         4           45         Pressure         (bar)         3.484         3.224         2.719         5.000*         4         4.182e+006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                     | (C)        |              |                       |                                                                            |            | 247.1                |  |  |
| 33         Molar Flow         (kgmole/h)         1.086e+005         3.663e+005         3.663e+005         3.663e+005         4.659e+006         4.182e+           40         Mass Flow         (kg/h)         1.956e+006         6.599e+006         6.599e+006         6.599e+006         4.182e+           41         Actual Volume Flow         (m3/h)         2206         7.432         7.421         7.815         4.4           42         Mass Density         (kg/m3)         886.7         887.9         889.2         844.4         88           43         Name         202@NPP         203@NPP         204@NPP         206@NPP         206@NPP           44         Vapour Fraction         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000           45         Temperature         (C)         247.1         172.9         173.0         114           46         Pressure         (bar)         3.484         3.224         2.718         5.000*         4.4           40         Mass Flow         (kg/ml)         1.659e+004         1.659e+004         1.659e+004         1.659e+004         1.659e+004         1.659e+004         1.659e+004         1.659e+004         1.659e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38       |                     |            |              |                       |                                                                            |            | 4.000                |  |  |
| 40         Mass Flow         (kg/h)         1.956e+006         6.599e+006         6.599e+006         6.599e+006         4.182e+4           41         Actual Volume Flow         (m3/h)         2206         7432         7421         7815         44           42         Mass Density         (kg/m3)         886.7         887.9         889.2         844.4         68           43         Name         202@NPP         203@NPP         204@NPP         205@NPP         206@NPP           44         Apour Fraction         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000           45         Temperature         (C)         247.1         172.9         173.0         11           46         Pressure         (bar)         3.484         3.224         2.719         5.000*         4           47         Molar Flow         (kg/h)         4.182e+006         4.182e+006 <th< th=""><th>39</th><th></th><th></th><th></th><th></th><th></th><th></th><th>1.659e+004</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39       |                     |            |              |                       |                                                                            |            | 1.659e+004           |  |  |
| Index         (kg/m3)         886.7         887.9         882.2         844.4         88           43         Name         202@NPP         203@NPP         204@NPP         205@NPP         206@NPP           44         Vapour Fraction         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000           44         Vapour Fraction         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000           45         Temperature         (C)         247.1         172.9         173.0         111           46         Pressure         (bar)         3.484         3.224         2.719         5.000*         44           47         Molar Flow         (kg/mole/h)         1.659e+004         1.659e+004         1.659e+004         1.659e+004         1.859e+004         1.0000         0.7914         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40       |                     |            | 1.956e+006   | 6.599e+006            | 6.599e+006                                                                 | 6.599e+006 | 4.182e+006           |  |  |
| 43         Name         202 @NPP         203 @NPP         204 @NPP         205 @NPP         206 @NPP           44         Vapour Fraction         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000           45         Temperature         (C)         247.1         172.9         172.9         173.0         11           46         Pressure         (bar)         3.484         3.224         2.719         5.000*         44           47         Molar Flow         (kgmole/h)         1.659e+004         1.659e+004         1.659e+004         1.859e+004         1.859e+004         1.859e+004         1.859e+004         1.859e+004         1.859e+004         1.859e+004         4.182e+006         4.160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41       | Actual Volume Flow  |            | 2206         | 7432                  | 7421                                                                       | 7815       | 4907                 |  |  |
| 44         Vapour Fraction         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000           45         Temperature         (C)         247.1         172.9         172.9         173.0         111           46         Pressure         (bar)         3.484         3.224         2.719         5.000*         4           47         Molar Flow         (kgmole/h)         1.659e+004         4.182e+006         4.162e+006 <th>42</th> <th>Mass Density</th> <th>(kg/m3)</th> <th>886.7</th> <th>887.9</th> <th>889.2</th> <th>844.4</th> <th>852.2</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42       | Mass Density        | (kg/m3)    | 886.7        | 887.9                 | 889.2                                                                      | 844.4      | 852.2                |  |  |
| Opport Human         Outport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43       | Name                |            | 202 @NPP     | 203 @NPP              | 204 @NPP                                                                   | 205 @NPP   | 206 @NPP             |  |  |
| 46       Presure       (bar)       3.484       3.224       2.719       5.000*       4         47       Molar Flow       (kgmole/h)       1.659e+004       1.659e+004       1.659e+004       1.659e+004       1.859e+004         48       Mass Flow       (kg/h)       4.182e+006       4.182e+006       4.182e+006       4.182e+006       4.182e+006         49       Actual Volume Flow       (m3/h)       4907       4621       4621       4621       4621         40       Mass Density       (kg/m3)       852.2       904.9       904.9       904.8       88         51       Name       207 @NPP       701 Steam Out @NPF       702 To Rankine Cycle       703 Turbine Exhaust @       711@NPP         52       Vapour Fraction       0.0000       1.0000*       1.0000       0.7914       1.0         54       Pressure       (bar)       4.500*       52.54*       52.54       0.4259       55         55       Molar Flow       (kg/ma)       1.659e+004       3.684e+005       3.449e+005       3.449e+005       1.799e+         56       Molar Flow       (kg/m3)       895.8       26.72       2.325e+005       1.852e+007       1.213e+         57       Actual V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44       | Vapour Fraction     |            | 0.0000       | 0.0000                | 0.0000                                                                     | 0.000      | 0.000                |  |  |
| Molar Flow         (kgmole/h)         1.659e+004         4.182e+006         4.1659e+004         4.182e+006         4.1659e+004         4.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                     |            |              |                       |                                                                            |            | 186.2                |  |  |
| 48         Mass Flow         (kg/h)         4.182e+006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                     |            |              |                       |                                                                            |            | 4.500                |  |  |
| 49       Actual Volume Flow       (m3/h)       4907       4821       4621       4621       4421         50       Mass Density       (kg/m3)       852.2       904.9       904.9       904.9       904.8       883         51       Name       207 @NPP       701 Steam Out @NPF       702 To Rankine Cycle       703 Turbine Exhaust @       711 @NPP         52       Vapour Fraction       0.0000       1.0000*       1.0000       0.7914       1.0         53       Temperature       (C)       186.2*       267.1       277.3       22         54       Pressure       (bar)       4.5600*       52.54*       52.54       0.4259       55         55       Molar Flow       (kg/mole/h)       1.659e+004       3.664e+005       3.449e+005       3.449e+005       1.799e+         56       Mass Flow       (kg/h)       4.182e+006*       6.601e+006       6.214e+006       6.214e+006       3.241e+         57       Actual Volume Flow       (m3/h)       4668       2.470e+005       2.325e+005       1.852e+007       1.213e+         58       Mass Density       (kg/m3)       895.8       26.72       26.72       0.3355       20         59       60 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1.659e+004</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                     |            |              |                       |                                                                            |            | 1.659e+004           |  |  |
| 50         Mass Density         (kg/m3)         852.2         904.9         904.9         904.8         88           51         Name         207 @NPP         701 Steam Out @NPF         702 To Rankine Cycle         703 Turbine Exhaust @         711 @NPP           52         Vapour Fraction         0.0000         1.0000 *         1.0000         0.7814         1.00           53         Temperature         (C)         186.2*         267.1         267.1         77.39         22           54         Pressure         (bar)         4.500*         52.54*         52.54         0.4259         52           55         Mass Flow         (kg/m)         1.658e+004         3.664e+005         3.449e+005         3.241e+           56         Mass Flow         (kg/h)         4.182e+006*         6.601e+006         6.214e+006         6.214e+006         3.241e+           57         Actual Volume Flow         (m3/h)         4668         2.470e+005         2.325e+005         1.852e+007         1.213e+           58         Mass Density         (kg/m3)         895.8         28.72         26.72         0.3355         28           59         Flow         Kg/m3)         895.8         28.72         28.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48       |                     |            |              |                       |                                                                            |            |                      |  |  |
| 51         Name         207 @NPP         701 Steam Out @NPF         702 To Rankine Cycle         703 Turbine Exhaust (e         711 @NPP           52         Vapour Fraction         0.0000         1.0000*         1.0000         0.7914         1.0           53         Temperature         (C)         186.2*         267.1         267.1         77.39         22           54         Pressure         (bar)         4.500*         52.54*         52.54         0.4259         55           55         Molar Flow         (kg/mole/h)         1.659e+004         3.664e+005         3.449e+005         3.449e+005         1.799e+           56         Mass Flow         (kg/h)         4.182e+006*         6.601e+006         6.214e+006         6.214e+006         3.241e+           57         Actual Volume Flow         (m3/h)         4668         2.470e+005         2.325e+005         1.852e+007         1.213e+           58         Mass Density         (kg/m3)         895.8         26.72         26.72         0.3355         21           60         Frain         Frain         Frain         Frain         Frain         Frain         Frain           61         Frain         Frain         Frain         Frain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49<br>50 |                     |            |              |                       |                                                                            |            | 4668 895.8           |  |  |
| 52         Vapour Fraction         0.0000         1.0000*         1.0000         0.7914         1.000           53         Temperature         (C)         186.2*         267.1         267.1         77.39         22           54         Pressure         (bar)         4.500*         52.54*         52.54         0.4259         55           55         Molar Flow         (kg/mole/h)         1.659e+004         3.664e+005         3.449e+005         3.449e+005         3.449e+005         3.241e+           56         Mass Flow         (kg/h)         4.182e+006*         6.601e+006         6.214e+006         6.214e+006         3.241e+           57         Actual Volume Flow         (m3/h)         4668         2.470e+005         2.325e+005         1.852e+007         1.213e+           58         Mass Density         (kg/m3)         895.8         26.72         26.72         0.3355         21           60         Set Hamilton         Set Hamilton         Set Hamilton         Set Hamilton         1.213e+           61         Set Hamilton         Set Hamilton         Set Hamilton         Set Hamilton         Set Hamilton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                     | (kynno)    |              |                       |                                                                            |            |                      |  |  |
| 53       Temperature       (C)       188.2*       267.1       267.1       77.39       22         54       Pressure       (bar)       4.500*       52.54*       52.54       0.4259       55         55       Molar Flow       (kgmole/h)       1.859e+004       3.664e+005       3.449e+005       3.449e+005       1.799e+         56       Mass Flow       (kg/h)       4.182e+006*       6.601e+006       6.214e+006       6.214e+006       3.241e+         57       Actual Volume Flow       (m3/h)       4668       2.470e+005       2.325e+005       1.852e+007       1.213e+         58       Mass Density       (kg/m3)       895.8       26.72       26.72       0.3355       21         59       50       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.54       50.55       50.54       50.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                     |            |              |                       |                                                                            | 1          | 1.0000               |  |  |
| 54         Pressure         (bar)         4.500*         52.54*         52.54         0.4259         55           55         Molar Flow         (kgmole/h)         1.659e+004         3.664e+005         3.449e+005         3.449e+005         1.799e+           56         Mass Flow         (kg/h)         4.182e+006*         6.601e+006         6.214e+006         6.214e+006         3.241e+           57         Actual Volume Flow         (m3/h)         4668         2.470e+005         2.325e+005         1.852e+007         1.213e+           58         Mass Density         (kg/m3)         895.8         26.72         26.72         0.3355         22           59         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                     | (C)        |              |                       |                                                                            |            | 267.1                |  |  |
| 55         Molar Flow         (kgmole/h)         1.659e+004         3.64e+005         3.449e+005         3.449e+005         1.799e+           56         Mass Flow         (kg/h)         4.182e+006*         6.601e+006         6.214e+006         6.214e+006         3.241e+           57         Actual Volume Flow         (m3/h)         4668         2.470e+005         2.325e+005         1.852e+007         1.213e+           58         Mass Density         (kg/m3)         895.8         26.72         26.72         0.3355         28           59         Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54       |                     |            |              |                       |                                                                            |            | 52.54                |  |  |
| 57       Actual Volume Flow       (m3/h)       4668       2.470e+005       2.325e+005       1.852e+007       1.213e+         58       Mass Density       (kg/m3)       895.8       26.72       26.72       0.3355       28         60       61       62       64       64       65       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55       | Molar Flow          |            | 1.659e+004   |                       |                                                                            |            | 1.799e+004           |  |  |
| 58 Mass Density (kg/m3) 895.8 26.72 26.72 0.3355 20<br>59<br>60<br>61<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56       | Mass Flow           | (kg/h)     | 4.182e+006 * |                       | 6.214e+006                                                                 | 6.214e+006 | 3.241e+005           |  |  |
| 59<br>60<br>61<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                     |            |              |                       |                                                                            |            | 1.213e+004           |  |  |
| 61<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | Mass Density        | (kg/m3)    | 895.8        | 26.72                 | 26.72                                                                      | 0.3355     | 26.72                |  |  |
| 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _        |                     |            |              |                       |                                                                            |            |                      |  |  |
| Page 6 01 Aspen recimology inc. Aspen ratio version to Page 6 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 62       | Aspen Technology In | <b>c</b>   |              | enen HVSVS Varsia     | n 10                                                                       |            | Page 6 of 19         |  |  |
| Licensed to: BATTELLE ENERGY ALLIANCE * Specified by use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63       |                     |            |              | vaperi mita ta versio |                                                                            |            | * Specified by user. |  |  |

| 1                          |                                                          |                          | Case Name:             | Generic HTSE PFD_v4    | .00_Therm66_5bar_U80 | 38×25 MVVe unit [detaile |
|----------------------------|----------------------------------------------------------|--------------------------|------------------------|------------------------|----------------------|--------------------------|
| 2<br>3                     | ( aspentech Bedford,                                     | LE ENERGY ALLIANCE<br>MA | Unit Set:              | HTSE PFD               |                      |                          |
| 4<br>5                     | USA                                                      |                          | Date/Time:             | Mon Apr 05 15:00:37 20 | 121                  |                          |
| 6                          |                                                          |                          |                        |                        |                      |                          |
| 7<br>8                     | Workbool                                                 | : Case (Mai              | n) (continue           | ed)                    |                      |                          |
| 9<br>10                    |                                                          | Mat                      | erial Streams (con     | tinued)                | Fluid Pkg            | g: All                   |
| 11                         | Name                                                     | 711 SEL Inlet @NPP       | 712 @NPP               | 713@NPP                | 713 SEL Condensate   | 721 NPP Condensate       |
| 12                         | Vapour Fraction                                          | 1.0000                   | 0.0000                 | 0.0000                 | 0.0000               | 0.0000 *                 |
| 13                         | Temperature (C)                                          | 267.1                    | 264.3                  | 193.0                  | 193.0 *              | 76.90                    |
| 14                         | Pressure (bar)                                           | 52.54                    | 51.91                  | 51.29                  | 52.04                | 0.4174                   |
| 15                         | Molar Flow (kgmole/h)                                    | 2.148e+004               | 1.799e+004             | 1.799e+004             | 2.148e+004           | 3.449e+005               |
| 16                         | Mass Flow (kg/h)                                         | 3.869e+005               | 3.241e+005             | 3.241e+005             | 3.869e+005           | 6.214e+006               |
| 17                         | Actual Volume Flow (m3/h)                                | 1.448e+004               | 417.0                  | 370.2                  | 441.9                | 6382                     |
| 18                         | Mass Density (kg/m3)                                     | 26.72                    | 777.2                  | 875.5                  | 875.6                | 973.7                    |
| 19                         | Name                                                     | 722@NPP                  | 723 @NPP               | 724 @NPP               | 725 @NPP             | 726 Heated Feedwate      |
| 20                         | Vapour Fraction                                          | 0.0000                   | 0.0000                 | 0.0000                 | 0.0000               | 0.0000                   |
| 21<br>22                   | Temperature (C)<br>Pressure (bar)                        | 77.31                    | 84.26<br>30.66         | 84.74<br>64.73         | 222.2 *<br>63.43 *   | 222.2 *<br>63.43 *       |
| 22                         | Molar Flow (kgmole/h)                                    | 3.449e+005               | 3.664e+005             | 3.664e+005             | 3.664e+005           | 3.664e+005               |
| 23                         | Mass Flow (kg/h)<br>Mass Flow (kg/h)                     | 6.214e+006               | 6.601e+006             | 6.601e+006             | 6.601e+006           | 6.601e+006 *             |
| 24                         | Actual Volume Flow (m3/h)                                | 6374                     | 6802                   | 6793                   | 7848                 | 7848                     |
| 26                         | Mass Density (kg/m3)                                     | 974.8                    | 970.5                  | 971.7                  | 841.1                | 841.1                    |
| 27                         |                                                          |                          |                        |                        |                      |                          |
| 28                         |                                                          |                          | Compositions           |                        | Fluid Pkg            | g: All                   |
| 29                         | Name                                                     | 101 Process Water Inl    | 102                    | 132 process feed wate  | 151                  | 152 process feed wate    |
| 30                         | Comp Mole Frac (H2O)                                     | 1.0000 *                 | 1.0000                 | 0.9996                 | 0.9996               | 0.9996                   |
| 31                         | Comp Mole Frac (Hydrogen)                                | 0.0000 *                 | 0.0000                 | 0.0004                 | 0.0004               | 0.0004                   |
| 32                         | Comp Mole Frac (Oxygen)                                  | 0.0000 *                 | 0.0000                 | 0.0000                 | 0.0000               | 0.0000                   |
| 33                         | Comp Mole Frac (Nitrogen)                                | 0.0000 *                 | 0.0000                 | 0.0000                 | 0.0000               | 0.0000                   |
| 34                         | Comp Mole Frac (CO2)                                     | 0.0000 *                 | 0.0000                 | 0.0000                 | 0.0000               | 0.0000                   |
| 35                         | Comp Mole Frac (CO)                                      | 0.0000 *                 | 0.0000                 | 0.0000                 | 0.0000               | 0.0000                   |
| 36                         | Comp Mole Frac (DTRM-A)                                  | ***                      | ***                    | ***                    | ***                  | ***                      |
| 37                         | Comp Mole Frac (Therminol-66)                            | ***                      | ***                    | ***                    | ***                  | ***                      |
| 38                         | Name                                                     | 162                      | 163                    | 164                    | 165                  | 166                      |
| 39                         | Comp Mole Frac (H2O)                                     | 0.9996                   | 0.9007                 | 0.9007                 | 0.9007 *             | 0.9007                   |
| 40                         | Comp Mole Frac (Hydrogen)                                | 0.0004                   | 0.0993                 | 0.0993                 | 0.0993 *             | 0.0993                   |
| 41                         | Comp Mole Frac (Oxygen)                                  | 0.0000                   | 0.0000                 | 0.0000                 | * 0.0000             | 0.0000                   |
| 42<br>43                   | Comp Mole Frac (Nitrogen)                                | 0.0000                   | 0.0000                 | 0.0000                 | 0.0000 *             | 0.0000                   |
| 43<br>44                   | Comp Mole Frac (CO2)                                     | 0.0000                   | 0.0000                 | 0.0000                 | 0.0000 *             | 0.0000                   |
| 44<br>45                   | Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)           | 0.0000                   | 0.0000                 | 0.0000                 | * 0.000.0            | 0.0000                   |
| 40                         | Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66) | ***                      | ***                    | ***                    | ***                  | ***                      |
| 40                         | Name                                                     | 167 Process Cell Inlet   | 171 Process Cell Outle | 172 H2/H2O product r   | 173 H2/H2O recycle   | 202 Process Heat In      |
| 48                         | Comp Mole Frac (H2O)                                     | 0.9007                   | 0.1801                 | 0.1801                 | 0.1801               | ***                      |
| 49                         | Comp Mole Frac (Hydrogen)                                | 0.0993                   | 0.8199                 | 0.8199                 | 0.8199               | ***                      |
| 50                         | Comp Mole Frac (Oxygen)                                  | 0.0000                   | 0.0000                 | 0.0000                 | 0.0000               | ***                      |
| 51                         | Comp Mole Frac (Nitrogen)                                | 0.0000                   | 0.0000                 | 0.0000                 | 0.0000               | ***                      |
| 52                         | Comp Mole Frac (CO2)                                     | 0.0000                   | 0.0000                 | 0.0000                 | 0.000                | ***                      |
| 53                         | Comp Mole Frac (CO)                                      | 0.0000                   | 0.0000                 | 0.0000                 | 0.000                | ***                      |
| 54                         | Comp Mole Frac (DTRM-A)                                  | ***                      | ***                    | ***                    | ***                  | ***                      |
| 55                         | Comp Mole Frac (Therminol-66)                            | ***                      | ***                    | ***                    | ***                  | 1.0000 *                 |
| 56<br>57<br>58<br>60<br>61 |                                                          |                          |                        |                        |                      |                          |
| 62                         |                                                          |                          |                        |                        |                      |                          |
| 63                         | Aspen Technology Inc.                                    |                          | Aspen HYSYS Versio     | on 10                  |                      | Page 7 of 18             |
| <u> </u>                   | Licensed to: BATTELLE ENERGY ALLIANCE                    |                          |                        |                        |                      | * Specified by user.     |

| 1              |                                                          |                      | Case Name:          | Generic HTSE PFD_v4.   | 00_Therm66_5bar_U80  | 38×25 MVVe unit [detaile |
|----------------|----------------------------------------------------------|----------------------|---------------------|------------------------|----------------------|--------------------------|
| 2<br>3         | ( aspentech Bedford, M                                   | ENERGY ALLIANCE<br>A | Unit Set:           | HTSE PFD               |                      |                          |
| 4<br>5         | USA                                                      |                      | Date/Time:          | Mon Apr 05 15:00:37 20 | 121                  |                          |
| 6              |                                                          |                      |                     |                        |                      |                          |
| 7<br>8         | Workbook:                                                | Case (Mai            | n) (continue        | ed)                    |                      |                          |
| 9<br>10        |                                                          | Co                   | mpositions (conti   | inued)                 | Fluid Pkg            | j: All                   |
| 10             | Name                                                     | 203 Process Heat Ret | 301                 | 302 H2/H2O for purific | 332 H2 Product       | 401                      |
| 12             | Comp Mole Frac (H2O)                                     | ***                  | 0.1801              | 0.1801                 | 0.0000               | 0.0000                   |
| 13             | Comp Mole Frac (Hydrogen)                                | ***                  | 0.8199              | 0.8199                 | 1.0000               | 1.0000                   |
| 14             | Comp Mole Frac (Oxygen)                                  | ***                  | 0.0000              | 0.0000                 | 0.000                | 0.000                    |
| 15             | Comp Mole Frac (Nitrogen)                                | ***                  | 0.0000              | 0.0000                 | 0.0000               | 0.000                    |
| 16             | Comp Mole Frac (CO2)                                     | ***                  | 0.0000              | 0.0000                 | 0.0000               | 0.000                    |
| 17<br>18       | Comp Mole Frac (CO)                                      | ***                  | 0.0000              | 0.0000                 | 0.0000               | 0.0000                   |
| 19             | Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66) | 1.0000               | ***                 | ***                    | ***                  | ***                      |
| 20             | Name                                                     | 402a                 | 402b                | 402c                   | 402d                 | 402e                     |
| 21             | Comp Mole Frac (H2O)                                     | 0.0000               | 0.0000              | 0.0000                 | 0.0000               | 0.0000                   |
| 22             | Comp Mole Frac (Hydrogen)                                | 1.0000               | 1.0000              | 1.0000                 | 1.0000               | 1.0000                   |
| 23             | Comp Mole Frac (Oxygen)                                  | 0.0000               | 0.0000              | 0.0000                 | 0.000                | 0.0000                   |
| 24             | Comp Mole Frac (Nitrogen)                                | 0.0000               | 0.0000              | 0.0000                 | 0.000                | 0.0000                   |
| 25             | Comp Mole Frac (CO2)                                     | 0.0000               | 0.0000              | 0.0000                 | 0.0000               | 0.0000                   |
| 26             | Comp Mole Frac (CO)                                      | 0.0000               | 0.0000              | 0.0000                 | 0.0000               | 0.0000                   |
| 27             | Comp Mole Frac (DTRM-A)                                  | ***                  | ***                 | ***                    | ***                  | ***                      |
| 28             | Comp Mole Frac (Therminol-66)                            | ***                  | ***                 | ***                    | ***                  | ***                      |
| 29             | Name                                                     | 403 Pressurized H2 P | 501 Sweep Gas Inlet | 502                    | 503                  | 504                      |
| 30             | Comp Mole Frac (H2O)                                     | 0.0000               | 0.0000 *            | 0.0000                 | 0.0000               | 0.0000                   |
| 31<br>32       | Comp Mole Frac (Hydrogen)                                | 1.0000               | 0.0000 *            | 0.0000                 | 0.0000               | 0.0000                   |
| 33             | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)     | 0.0000               | 0.2100 *            | 0.2100                 | 0.2100               | 0.2100                   |
| 34             | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)        | 0.0000               | 0.7900              | 0.0000                 | 0.0000               | 0.7900                   |
| 35             | Comp Mole Frac (CO)                                      | 0.0000               | 0.0000 *            | 0.0000                 | 0.0000               | 0.0000                   |
| 36             | Comp Mole Frac (DTRM-A)                                  | ***                  | ***                 | ***                    | ***                  | ***                      |
| 37             | Comp Mole Frac (Therminol-66)                            | ***                  | ***                 | ***                    | ***                  | ***                      |
| 38             | Name                                                     | 505                  | 506                 | 507                    | 508 Sweep Cell Inlet | 511 Sweep Gas/O2 O       |
| 39             | Comp Mole Frac (H2O)                                     | 0.0000               | 0.0000              | 0.0000                 | 0.0000 *             | 0.0000                   |
| 40             | Comp Mole Frac (Hydrogen)                                | 0.0000               | 0.0000              | 0.0000                 | * 0.000.0            | 0.0000                   |
| 41             | Comp Mole Frac (Oxygen)                                  | 0.2500               | 0.2500              | 0.2500                 | 0.2500 *             | 0.4001                   |
| 42             | Comp Mole Frac (Nitrogen)                                | 0.7500               | 0.7500              | 0.7500                 | 0.7500 *             | 0.5999                   |
| 43             | Comp Mole Frac (CO2)                                     | 0.0000               | 0.0000              | 0.0000                 | * 0.0000             | 0.0000                   |
| 44             | Comp Mole Frac (CO)                                      | 0.0000               | 0.0000              | 0.0000                 | * 0.0000             | 0.0000                   |
| 45<br>46       | Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66) | ***                  | ***                 | ***                    | ***                  | ***                      |
| 40             | Name                                                     | 512                  | 513                 | 514                    | 515 Sweep Gas Recy   | 516                      |
| 48             | Comp Mole Frac (H2O)                                     | 0.0000               | 0.0000              | 0.0000 *               | 0.0000               | 0.0000                   |
| 49             | Comp Mole Frac (Hydrogen)                                | 0.0000               | 0.0000              | 0.0000 *               | 0.0000               | 0.0000                   |
| 50             | Comp Mole Frac (Oxygen)                                  | 0.4001               | 0.4001              | 0.4001 *               | 0.4001               | 0.4001                   |
| 51             | Comp Mole Frac (Nitrogen)                                | 0.5999               | 0.5999              | 0.5999 *               | 0.5999               | 0.5999                   |
| 52             | Comp Mole Frac (CO2)                                     | 0.0000               | 0.0000              | 0.0000 *               | 0.000                | 0.0000                   |
| 53             | Comp Mole Frac (CO)                                      | 0.0000               | 0.0000              | 0.0000 *               | 0.000                | 0.0000                   |
| 54             | Comp Mole Frac (DTRM-A)                                  | ***                  | ***                 | ***                    | ***                  | ***                      |
| 55<br>56       | Comp Mole Frac (Therminol-66)                            | ***                  | ***                 | ***                    | ***                  | ***                      |
| 57<br>58<br>59 |                                                          |                      |                     |                        |                      |                          |
| 60<br>61<br>62 |                                                          |                      |                     |                        |                      |                          |
| 63             | Aspen Technology Inc.                                    |                      | spen HYSYS Versio   | on 10                  |                      | Page 8 of 18             |
| التسا          | Licensed to: BATTELLE ENERGY ALLIANCE                    |                      |                     |                        |                      | * Specified by user.     |

| 1        |                                                   |                      | Case Name:         | Generic HTSE PFD_v4.   | 00_Therm66_5bar_U80  | 38×25 MWe unit [detaile |
|----------|---------------------------------------------------|----------------------|--------------------|------------------------|----------------------|-------------------------|
| 2<br>3   | ( aspentech Bedford, M                            | ENERGY ALLIANCE<br>A | Unit Set:          | HTSE PFD               |                      |                         |
| 4<br>5   | USA                                               |                      | Date/Time:         | Mon Apr 05 15:00:37 20 | 21                   |                         |
| 6        |                                                   |                      |                    |                        |                      |                         |
| 7<br>8   | Workbook:                                         | Case (Maii           | n) (continue       | d)                     |                      |                         |
| 9        |                                                   | Co                   | mpositions (conti  | nued)                  | Fluid Pkg            | a: All                  |
| 10<br>11 | Name                                              | 517 Sweep Gas Exha   | 801 feed water     | 802                    | 803                  | 901 cooling water       |
| 12       | Comp Mole Frac (H2O)                              | 0.0000               | 1.0000 *           | 1.0000                 | 1.0000               | 1.0000 *                |
| 13       | Comp Mole Frac (Hydrogen)                         | 0.0000               | 0.0000 *           | 0.0000                 | 0.0000               | 0.0000 *                |
| 14       | Comp Mole Frac (Oxygen)                           | 0.4001               | 0.0000 *           | 0.0000                 | 0.000                | 0.0000 *                |
| 15       | Comp Mole Frac (Nitrogen)                         | 0.5999               | 0.0000 *           | 0.0000                 | 0.0000               | 0.0000 *                |
| 16       | Comp Mole Frac (CO2)                              | 0.0000               | 0.0000 *           | 0.0000                 | 0.000                | 0.0000 *                |
| 17       | Comp Mole Frac (CO)                               | 0.0000               | 0.0000 *           | 0.0000                 | 0.0000               | 0.0000 *                |
| 18       | Comp Mole Frac (DTRM-A)                           | ***                  | ***                | ***                    | ***                  | ***                     |
| 19       | Comp Mole Frac (Therminol-66)                     |                      |                    |                        |                      |                         |
| 20<br>21 | Name<br>Comp Mole Frac (H2O)                      | 902 1.0000           | 903<br>1.0000      | 904 1.0000             | 905 1.0000           | Anode @Cell<br>0.0000   |
| ∠+<br>22 | Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen) | 0.0000               | 0.0000             | 0.0000                 | 0.0000               | 0.0000                  |
| 23       | Comp Mole Frac (Oxygen)                           | 0.0000               | 0.0000             | 0.0000                 | 0.0000               | 1.0000                  |
| 24       | Comp Mole Frac (Oxygen)                           | 0.0000               | 0.0000             | 0.0000                 | 0.0000               | 0.0000                  |
| 25       | Comp Mole Frac (CO2)                              | 0.0000               | 0.0000             | 0.0000                 | 0.0000               | 0.0000                  |
| 26       | Comp Mole Frac (CO)                               | 0.0000               | 0.0000             | 0.0000                 | 0.0000               | 0.0000                  |
| 27       | Comp Mole Frac (DTRM-A)                           | ***                  | ***                | ***                    | ***                  | ***                     |
| 28       | Comp Mole Frac (Therminol-66)                     | ***                  | ***                | ***                    | ***                  | ***                     |
| 29       | Name                                              | Cathode @Cell        | Gas Products @Cell | Liquid Products @Cell  | Molar Flow of Oxygen | Process Cell Inlet @C   |
| 30       | Comp Mole Frac (H2O)                              | 0.1801               | 0.1324             | 0.1324                 | * 0000.0             | 0.9007                  |
| 31       | Comp Mole Frac (Hydrogen)                         | 0.8199               | 0.6027             | 0.6027                 | 0.0000 *             | 0.0993                  |
| 32       | Comp Mole Frac (Oxygen)                           | 0.0000               | 0.2648             | 0.2648                 | 1.0000 *             | 0.0000                  |
| 33<br>34 | Comp Mole Frac (Nitrogen)                         | 0.0000               | 0.0000             | 0.0000                 | * 0.000 *            | 0.0000                  |
| 34       | Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)       | 0.0000               | 0.0000             | 0.0000                 | * 0.000.0 *          | 0.0000                  |
| 36       | Comp Mole Frac (CC)                               | ***                  | ***                | ***                    | ***                  | ***                     |
| 37       | Comp Mole Frac (Therminol-66)                     | ***                  | ***                | ***                    | ***                  | ***                     |
| 38       | Name                                              | Sweep Cell Inlet @Ce | Sweep Gas/O2 Out @ | 1 @H2rec               | 102 @H2rec           | 113 @H2rec              |
| 39       | Comp Mole Frac (H2O)                              | 0.0000               | 0.0000             | 0.2000 *               | 1.0000               | 1.0000                  |
| 40       | Comp Mole Frac (Hydrogen)                         | 0.0000               | 0.0000             | 0.8000 *               | 0.0000               | 0.0000                  |
| 41       | Comp Mole Frac (Oxygen)                           | 0.2500               | 0.4001             | 0.0000 *               | 0.000                | 0.0000                  |
| 42       | Comp Mole Frac (Nitrogen)                         | 0.7500               | 0.5999             | 0.0000 *               | 0.0000               | 0.0000                  |
| 43       | Comp Mole Frac (CO2)                              | 0.0000               | 0.0000             | 0.0000 *               | 0.0000               | 0.0000                  |
| 44       | Comp Mole Frac (CO)                               | 0.0000               | 0.0000             | 0.0000 *               | 0.0000               | 0.0000                  |
| 45       | Comp Mole Frac (DTRM-A)                           | ***                  | ***                | ***                    | ***                  | ***                     |
| 46<br>47 | Comp Mole Frac (Therminol-66)<br>Name             | 114 @H2rec           | 122 @H2rec         | 131 @H2rec             | 132 @H2rec           | 302 @H2rec              |
| 48       | Comp Mole Frac (H2O)                              | 1.0000               | 1.0000             | 0.9996                 | 0.9996               | 0.1801                  |
| 49       | Comp Mole Frac (Hydrogen)                         | 0.0000               | 0.0000             | 0.0004                 | 0.0004               | 0.8199                  |
| 50       | Comp Mole Frac (Oxygen)                           | 0.0000               | 0.0000             | 0.0000                 | 0.0000               | 0.0000                  |
| 51       | Comp Mole Frac (Nitrogen)                         | 0.0000               | 0.0000             | 0.0000                 | 0.000                | 0.0000                  |
| 52       | Comp Mole Frac (CO2)                              | 0.0000               | 0.0000             | 0.0000                 | 0.000                | 0.0000                  |
| 53       | Comp Mole Frac (CO)                               | 0.0000               | 0.0000             | 0.0000                 | 0.000                | 0.0000                  |
| 54       | Comp Mole Frac (DTRM-A)                           | ***                  | ***                | ***                    | ***                  | ***                     |
| 55       | Comp Mole Frac (Therminol-66)                     | ***                  | ***                | ***                    | ***                  | ***                     |
| 56<br>57 |                                                   |                      |                    |                        |                      |                         |
| 58       |                                                   |                      |                    |                        |                      |                         |
| 59       |                                                   |                      |                    |                        |                      |                         |
| 60       |                                                   |                      |                    |                        |                      |                         |
| 61       |                                                   |                      |                    |                        |                      |                         |
| 62       |                                                   |                      |                    |                        |                      |                         |
| 63       | Aspen Technology Inc.                             | ŀ                    | spen HYSYS Versio  | n 10                   |                      | Page 9 of 18            |
|          | Licensed to: BATTELLE ENERGY ALLIANCE             |                      |                    |                        |                      | * Specified by user.    |

| 1        |                                                   |                      | Case Name:           | Generic HTSE PFD_v4   | .00_Therm66_5bar_U80 | 38×25 MWe unit [detaile |
|----------|---------------------------------------------------|----------------------|----------------------|-----------------------|----------------------|-------------------------|
| 2<br>3   | Caspentech Bedford, M                             | ENERGY ALLIANCE<br>A | Unit Set:            | HTSE PFD              |                      |                         |
| 4        | USA                                               |                      | Date/Time:           | Mon Apr 05 15:00:37 2 | 021                  |                         |
| 6        |                                                   |                      |                      |                       |                      |                         |
| 7<br>8   | Workbook:                                         | Case (Mai            | n) (continue         | ed)                   |                      |                         |
| 9        |                                                   | Co                   | ompositions (cont    | inued)                | Fluid Pk             | q: All                  |
| 10<br>11 | Name                                              | 303 @H2rec           | 304a @H2rec          | 304b @H2rec           | 304c @H2rec          | 304d @H2rec             |
| 12       | Comp Mole Frac (H2O)                              | 0.2000               | 0.2000               | 0.2000                | 0.2000               | 0.2000                  |
| 13       | Comp Mole Frac (Hydrogen)                         | 0.8000               | 0.8000               | 0.8000                | 0.8000               | 0.8000                  |
| 14       | Comp Mole Frac (Oxygen)                           | 0.0000               | 0.000                | 0.0000                | 0.000                | 0.0000                  |
| 15       | Comp Mole Frac (Nitrogen)                         | 0.0000               | 0.0000               | 0.0000                | 0.000.0              | 0.0000                  |
| 16       | Comp Mole Frac (CO2)                              | 0.0000               | 0.0000               | 0.0000                | 0.000.0              | 0.0000                  |
| 17       | Comp Mole Frac (CO)                               | 0.0000               | 0.0000               | 0.0000                | 0.000.0              | 0.0000                  |
| 18       | Comp Mole Frac (DTRM-A)                           | ***                  | ***                  | ***                   | ***                  | ***                     |
| 19       | Comp Mole Frac (Therminol-66)                     | ***                  | ***                  | ***                   | ***                  | ***                     |
| 20       | Name                                              | 304e @H2rec          | 304f @H2rec          | 304g @H2rec           | 304h @H2rec          | 305 @H2rec              |
| 21       | Comp Mole Frac (H2O)                              | 0.2000               | 0.2000               | 0.2000                | 0.2000               | 0.2000                  |
| 22       | Comp Mole Frac (Hydrogen)                         | 0.8000               | 0.8000               | 0.8000                | 0.8000               | 0.8000                  |
| 23       | Comp Mole Frac (Oxygen)                           | 0.0000               | 0.0000               | 0.0000                | 0.000.0              | 0.0000                  |
| 24       | Comp Mole Frac (Nitrogen)                         | 0.0000               | 0.0000               | 0.0000                | 0.0000               | 0.0000                  |
| 25       | Comp Mole Frac (CO2)                              | 0.0000               | 0.0000               | 0.0000                | 0.0000               | 0.0000                  |
| 26       | Comp Mole Frac (CO)                               | 0.0000               | 0.0000               | 0.0000                | 0.0000               | 0.0000                  |
| 27       | Comp Mole Frac (DTRM-A)                           | ***                  | ***                  | ***                   | ***                  | ***                     |
| 28<br>29 | Comp Mole Frac (Therminol-66)                     |                      |                      |                       |                      |                         |
| 29<br>30 | Name                                              | 306 @H2rec<br>0.1801 | 307 @H2rec<br>0.1801 | 308@H2rec<br>1.0000   | 309 @H2rec<br>1.0000 | 310 @H2rec<br>0.0470    |
| 31       | Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen) | 0.8199               | 0.8199               | 0.0000                | 0.0000               | 0.9530                  |
| 32       | Comp Mole Frac (Oxygen)                           | 0.0000               | 0.0000               | 0.0000                | 0.0000               | 0.0000                  |
| 33       | Comp Mole Frac (Oxygen)                           | 0.0000               | 0.0000               | 0.0000                | 0.0000               | 0.0000                  |
| 34       | Comp Mole Frac (CO2)                              | 0.0000               | 0.0000               | 0.0000                | 0.0000               | 0.0000                  |
| 35       | Comp Mole Frac (CO)                               | 0.0000               | 0.0000               | 0.0000                | 0.0000               | 0.0000                  |
| 36       | Comp Mole Frac (DTRM-A)                           | ***                  | ***                  | ***                   | ***                  | ***                     |
| 37       | Comp Mole Frac (Therminol-66)                     | ***                  | ***                  | ***                   | ***                  | ***                     |
| 38       | Name                                              | 311 @H2rec           | 312 @H2rec           | 313 @H2rec            | 314 @H2rec           | 315 @H2rec              |
| 39       | Comp Mole Frac (H2O)                              | 0.0470               | 0.0470               | 0.0470                | 0.0470               | 0.0470                  |
| 40       | Comp Mole Frac (Hydrogen)                         | 0.9530               | 0.9530               | 0.9530                | 0.9530               | 0.9530                  |
| 41       | Comp Mole Frac (Oxygen)                           | 0.0000               | 0.0000               | 0.0000                | 0.0000               | 0.0000                  |
| 42       | Comp Mole Frac (Nitrogen)                         | 0.0000               | 0.0000               | 0.0000                | 0.0000               | 0.0000                  |
| 43       | Comp Mole Frac (CO2)                              | 0.0000               | 0.0000               | 0.0000                | 0.0000               | 0.0000                  |
| 44       | Comp Mole Frac (CO)                               | 0.0000               | 0.0000               | 0.0000                | 0.000                | 0.0000                  |
| 45       | Comp Mole Frac (DTRM-A)                           | ***                  | ***                  | ***                   | ***                  | ***                     |
| 46       | Comp Mole Frac (Therminol-66)                     | ***                  | ***                  | ***                   | ***                  | ***                     |
| 47       | Name                                              | 316 @H2rec           | 317 @H2rec           | 318@H2rec             | 320 @H2rec           | 321 @H2rec              |
| 48       | Comp Mole Frac (H2O)                              | 1.0000               | 0.9900               | 0.9977                | 0.0083               | 0.0083                  |
| 49       | Comp Mole Frac (Hydrogen)                         | 0.0000               | 0.0100               | 0.0023                | 0.9917               | 0.9917                  |
| 50       | Comp Mole Frac (Oxygen)                           | 0.0000               | 0.0000               | 0.0000                | 0.0000               | 0.0000                  |
| 51       | Comp Mole Frac (Nitrogen)                         | 0.0000               | 0.000                | 0.0000                | 0.0000               | 0.0000                  |
| 52       | Comp Mole Frac (CO2)                              | 0.0000               | 0.0000               | 0.0000                | 0.0000               | 0.0000                  |
| 53<br>54 | Comp Mole Frac (CO)                               | 0.0000               | 0.0000               | 0.0000                | 0.0000               | 0.0000                  |
|          | Comp Mole Frac (DTRM-A)                           | ***                  | ***                  | ***                   | ***                  | ***                     |
| 55<br>56 | Comp Mole Frac (Therminol-66)                     |                      |                      |                       | 0.08                 | ***                     |
| 57       |                                                   |                      |                      |                       |                      |                         |
| 58       |                                                   |                      |                      |                       |                      |                         |
| 59       |                                                   |                      |                      |                       |                      |                         |
| 60       |                                                   |                      |                      |                       |                      |                         |
| 61       |                                                   |                      |                      |                       |                      |                         |
| 62       |                                                   |                      |                      |                       |                      |                         |
| 63       | Aspen Technology Inc.                             | 1                    | Aspen HYSYS Versio   | on 10                 |                      | Page 10 of 18           |
|          | Licensed to: BATTELLE ENERGY ALLIANCE             |                      |                      |                       |                      | * Specified by user.    |

| 1                    |                                                          |                      | Case Name:           | Generic HTSE PFD_v4.   | 00_Therm66_5bar_U80  | 38×25 MWe unit [detaile |
|----------------------|----------------------------------------------------------|----------------------|----------------------|------------------------|----------------------|-------------------------|
| 2                    | edford, M                                                | ENERGY ALLIANCE<br>A | Unit Set:            | HTSE PFD               |                      |                         |
| 4<br>5               | USA                                                      |                      | Date/Time:           | Mon Apr 05 15:00:37 20 | 21                   |                         |
| 6                    |                                                          |                      |                      |                        |                      |                         |
| 7<br>8               | Workbook:                                                | Case (Mai            | n) (continue         | ed)                    |                      |                         |
| 9                    |                                                          | Co                   | ompositions (cont    | inued)                 | Fluid Pkg            | r: All                  |
| 10<br>11             | News                                                     |                      |                      | -                      |                      |                         |
| 12                   | Name<br>Comp Mole Frac (H2O)                             | 322 @H2rec<br>0.0083 | 323 @H2rec<br>0.0083 | 324 @H2rec<br>0.0083   | 325 @H2rec<br>0.0083 | 326 @H2rec<br>1.0000    |
| 13                   | Comp Mole Frac (Hydrogen)                                | 0.9917               | 0.9917               | 0.9917                 | 0.9917               | 0.0000                  |
| 14                   | Comp Mole Frac (Oxygen)                                  | 0.0000               | 0.0000               | 0.0000                 | 0.0000               | 0.0000                  |
| 15                   | Comp Mole Frac (Nitrogen)                                | 0.0000               | 0.0000               | 0.0000                 | 0.0000               | 0.0000                  |
| 16                   | Comp Mole Frac (CO2)                                     | 0.0000               | 0.0000               | 0.0000                 | 0.0000               | 0.0000                  |
| 17                   | Comp Mole Frac (CO)                                      | 0.0000               | 0.0000               | 0.0000                 | 0.0000               | 0.0000                  |
| 18                   | Comp Mole Frac (DTRM-A)                                  | ***                  | ***                  | ***                    | ***                  | ***                     |
| 19                   | Comp Mole Frac (Therminol-66)                            | ***                  | ***                  | ***                    | ***                  | ***                     |
| 20                   | Name                                                     | 330 @H2rec           | 331 @H2rec           | 332 H2 Product @H2r    | 101 @NPP             | 102 @NPP                |
| 21                   | Comp Mole Frac (H2O)                                     | 0.0009               | 0.6492               | 0.0000                 | 1.0000 *             | 1.0000                  |
| 22                   | Comp Mole Frac (Hydrogen)                                | 0.9991               | 0.3508               | 1.0000                 | ***                  | ***                     |
| 23                   | Comp Mole Frac (Oxygen)                                  | 0.0000               | 0.0000               | 0.0000                 | ***                  | ***                     |
| 24<br>25             | Comp Mole Frac (Nitrogen)                                | 0.0000               | 0.0000               | 0.0000                 | ***                  | ***                     |
| 25                   | Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)              | 0.0000               | 0.0000               | 0.0000                 | ***                  | ***                     |
| 27                   | Comp Mole Frac (CCO)<br>Comp Mole Frac (DTRM-A)          | ***                  |                      | ***                    | ***                  | ***                     |
| 28                   | Comp Mole Frac (Drivina)                                 | ***                  | ***                  | ***                    | ***                  | ***                     |
| 29                   | Name                                                     | 103@NPP              | 103a @NPP            | 104@NPP                | 107 @NPP             | 107a @NPP               |
| 30                   | Comp Mole Frac (H2O)                                     | 1.0000               | 1.0000               | 1.0000                 | 1.0000               | 1.0000                  |
| 31                   | Comp Mole Frac (Hydrogen)                                | ***                  | ***                  | ***                    | ***                  | ***                     |
| 32                   | Comp Mole Frac (Oxygen)                                  | ***                  | ***                  | ***                    | ***                  | ***                     |
| 33                   | Comp Mole Frac (Nitrogen)                                | ***                  | ***                  | ***                    | ***                  | ***                     |
| 34                   | Comp Mole Frac (CO2)                                     | ***                  | ***                  | ***                    | ***                  | ***                     |
| 35                   | Comp Mole Frac (CO)                                      | ***                  | ***                  | ***                    | ***                  | ***                     |
| 36                   | Comp Mole Frac (DTRM-A)                                  | ***                  | ***                  | ***                    | ***                  | ***                     |
| 37                   | Comp Mole Frac (Therminol-66)                            | ***                  | ***                  | ***                    | ***                  | ***                     |
| 38                   | Name                                                     | 108 (F) @NPP         | 110 @NPP             | 111@NPP                | 112 @NPP             | 112a @NPP               |
| 39                   | Comp Mole Frac (H2O)                                     | 1.0000               | 1.0000               | 1.0000                 | 1.0000               | 1.0000                  |
| 40                   | Comp Mole Frac (Hydrogen)                                | ***                  | ***                  | ***                    | ***                  | ***                     |
| 41                   | Comp Mole Frac (Oxygen)                                  | ***                  | ***                  | ***                    | ***                  | ***                     |
| 42<br>43             | Comp Mole Frac (Nitrogen)                                | ***                  | ***                  | ***                    | ***                  | ***                     |
| 43<br>44             | Comp Mole Frac (CO2)                                     | ***                  | ***                  | ***                    | ***                  | ***                     |
| 44<br>45             | Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)           | ***                  | ***                  | ***                    | ***                  | ***                     |
| 40<br>46             | Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66) | ***                  | ***                  | ***                    | ***                  | ***                     |
| 47                   | Name                                                     | 114 @NPP             | 115 @NPP             | 120@NPP                | 121 @NPP             | 122 (H) @NPP            |
| 48                   | Comp Mole Frac (H2O)                                     | 1.0000               | 1.0000               | 1.0000                 | 1.0000               | 1.0000                  |
| 49                   | Comp Mole Frac (Hydrogen)                                | ***                  | ***                  | ***                    | ***                  | ***                     |
| 50                   | Comp Mole Frac (Oxygen)                                  | ***                  | ***                  | ***                    | ***                  | ***                     |
| 51                   | Comp Mole Frac (Nitrogen)                                | ***                  | ***                  | ***                    | ***                  | ***                     |
| 52                   | Comp Mole Frac (CO2)                                     | ***                  | ***                  | ***                    | ***                  | ***                     |
| 53                   | Comp Mole Frac (CO)                                      | ***                  | ***                  | ***                    | ***                  | ***                     |
| 54                   | Comp Mole Frac (DTRM-A)                                  | ***                  | ***                  | ***                    | ***                  | ***                     |
| 55<br>56             | Comp Mole Frac (Therminol-66)                            | ***                  | ***                  | ***                    | ***                  | ***                     |
| 57<br>58<br>59<br>60 |                                                          |                      |                      |                        |                      |                         |
| 61<br>62             | Aspen Technology Inc.                                    |                      | Aspen HYSYS Versio   | an 10                  |                      | Page 11 of 18           |

| 1        |                                                      |                    | Const Name         | Canada UTCE DED4      | 00 Theres Co. Cherry 1100 | 20. OF MULT with Interview |
|----------|------------------------------------------------------|--------------------|--------------------|-----------------------|---------------------------|----------------------------|
| 2        | BATTELLE                                             | E ENERGY ALLIANCE  | Case Name:         | Generic HTSE PFD_V4   | .00_Therm66_5bar_U80      | 38×25 Mivve unit [detaile  |
| 3        | ( aspentech Bedford, M                               | IA                 | Unit Set:          | HTSE PFD              |                           |                            |
| 4        | USA                                                  |                    | Date/Time:         | Mon Apr 05 15:00:37 2 | 021                       |                            |
| 5        |                                                      |                    |                    |                       |                           |                            |
| 7        | Workbook:                                            | : Case (Mai        | n) (continue       | ed)                   |                           |                            |
| 8        |                                                      |                    | .,(                | ,                     |                           |                            |
| 9        |                                                      | Co                 | mpositions (cont   | inued)                | Fluid Pkg                 | j: All                     |
| 10       | Name                                                 | 122a @NPP          | 122a-L @NPP        | ,<br>123@NPP          | 124 @NPP                  | 125 @NPP                   |
| 12       | Comp Mole Frac (H2O)                                 | 1.0000             | 1.0000             | 1.0000                | 1.0000                    | 1.0000                     |
| 13       | Comp Mole Frac (Hydrogen)                            | ***                | ***                | ***                   | ***                       | ***                        |
| 14       | Comp Mole Frac (Oxygen)                              | ***                | ***                | ***                   | ***                       | ***                        |
| 15       | Comp Mole Frac (Nitrogen)                            | ***                | ***                | ***                   | ***                       | ***                        |
| 16       | Comp Mole Frac (CO2)                                 | ***                | ***                | ***<br>***            | ***                       | ***                        |
| 17       | Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)       | ***                | ***                | ***                   | ***                       | ***                        |
| 19       | Comp Mole Frac (DrRMAR)                              | ***                | ***                | ***                   | ***                       | ***                        |
| 20       | Name                                                 | 126 (E) @NPP       | 127 @NPP           | 128 @NPP              | 128a @NPP                 | 130 @NPP                   |
| 21       | Comp Mole Frac (H2O)                                 | 1.0000             | 1.0000             | 1.0000                | 1.0000                    | 1.0000                     |
| 22       | Comp Mole Frac (Hydrogen)                            | ***                | ***                | ***                   | ***                       | ***                        |
| 23       | Comp Mole Frac (Oxygen)                              | ***                | ***                | ***                   | ***                       | ***                        |
| 24       | Comp Mole Frac (Nitrogen)                            | ***                | ***                | ***                   | ***                       | ***                        |
| 25<br>26 | Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)          | ***                | ***                | ***                   | ***                       | ***                        |
| 20       | Comp Mole Frac (CC)                                  | ***                | ***                | ***                   | ***                       | ***                        |
| 28       | Comp Mole Frac (DHRM-R)                              | ***                | ***                | ***                   | ***                       | ***                        |
| 29       | Name                                                 | 131 @NPP           | 132 @NPP           | 132a (RP) @NPP        | 132a-L (RP-L) @NPP        | 134 @NPP                   |
| 30       | Comp Mole Frac (H2O)                                 | 1.0000             | 1.0000             | 1.0000                | 1.0000                    | 1.0000                     |
| 31       | Comp Mole Frac (Hydrogen)                            | ***                | ***                | ***                   | ***                       | ***                        |
| 32       | Comp Mole Frac (Oxygen)                              | ***                | ***                | ***                   | ***                       | ***                        |
| 33       | Comp Mole Frac (Nitrogen)                            | ***                | ***                | ***                   | ***                       | ***                        |
| 34       | Comp Mole Frac (CO2)                                 | ***                | ***                | ***                   | ***                       | ***                        |
| 36       | Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)       | ***                | ***                | ***                   | ***                       | ***                        |
| 37       | Comp Mole Frac (Therminol-66)                        | ***                | ***                | ***                   | ***                       | ***                        |
| 38       | Name                                                 | 135 @NPP           | 140 @NPP           | 141@NPP               | 142 @NPP                  | 142a (SO) @NPP             |
| 39       | Comp Mole Frac (H2O)                                 | 1.0000             | 1.0000             | 1.0000                | 1.0000                    | 1.0000                     |
| 40       | Comp Mole Frac (Hydrogen)                            | ***                | ***                | ***                   | ***                       | ***                        |
| 41       | Comp Mole Frac (Oxygen)                              | ***                | ***                | ***                   | ***                       | ***                        |
| 42<br>43 | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)    | ***                | ***                | ***                   | ***                       | ***                        |
| 43       | Comp Mole Frac (CO2)                                 | ***                | ***                | ***                   | ***                       | ***                        |
| 45       | Comp Mole Frac (DTRM-A)                              | ***                | ***                | ***                   | ***                       | ***                        |
| 46       | Comp Mole Frac (Therminol-66)                        | ***                | ***                | ***                   | ***                       | ***                        |
| 47       | Name                                                 | 142a-L (SO-L) @NPP | 144 @NPP           | 145@NPP               | 146 @NPP                  | 150 @NPP                   |
| 48       | Comp Mole Frac (H2O)                                 | 1.0000             | 1.0000             | 1.0000                | 1.0000                    | 1.0000                     |
| 49       | Comp Mole Frac (Hydrogen)                            | ***                | ***                | ***                   | ***                       | ***                        |
| 50<br>51 | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen) | ***                | ***                | ***                   | ***                       | ***                        |
| 52       | Comp Mole Frac (CO2)                                 | ***                | ***                | ***                   | ***                       | ***                        |
| 53       | Comp Mole Frac (CO)                                  | ***                | ***                | ***                   | ***                       | ***                        |
| 54       | Comp Mole Frac (DTRM-A)                              | ***                | ***                | ***                   | ***                       | ***                        |
| 55       | Comp Mole Frac (Therminol-66)                        | ***                | ***                | ***                   | ***                       | ***                        |
| 56       |                                                      |                    |                    |                       |                           |                            |
| 57       |                                                      |                    |                    |                       |                           |                            |
| 58<br>59 |                                                      |                    |                    |                       |                           |                            |
| 60       |                                                      |                    |                    |                       |                           |                            |
| 61       |                                                      |                    |                    |                       |                           |                            |
| 62       |                                                      |                    |                    |                       |                           |                            |
| 63       | Aspen Technology Inc.                                | 1                  | Aspen HYSYS Versio | on 10                 |                           | Page 12 of 18              |
|          | Licensed to: BATTELLE ENERGY ALLIANCE                |                    |                    |                       |                           | * Specified by user.       |

| 1        |                                                          |                         | Case Name:             | Generic HTSE PFD_v4   | .00_Therm66_5bar_U80  | 38×25 MVVe unit (detaile |
|----------|----------------------------------------------------------|-------------------------|------------------------|-----------------------|-----------------------|--------------------------|
| 2        | ( aspentech Bedford, M                                   | E ENERGY ALLIANCE<br>IA | Unit Set:              | HTSE PFD              |                       |                          |
| 4        | USA                                                      |                         | Date/Time:             | Mon Apr 05 15:00:37 2 | 021                   |                          |
| 6        |                                                          |                         |                        |                       |                       |                          |
| 7        | Workbook:                                                | : Case (Mair            | n) (continue           | d)                    |                       |                          |
| 8<br>9   |                                                          |                         |                        |                       |                       |                          |
| 10       |                                                          | Co                      | mpositions (conti      | nued)                 | Fluid Pkg             | g: All                   |
| 11       | Name                                                     | 151 @NPP                | 151 HTE feedwater (lic | 152@NPP               | 152 HTE feed water (v | 160 @NPP                 |
| 12       | Comp Mole Frac (H2O)                                     | 1.0000                  | 0.9997                 | 1.0000                | 0.9997                | 1.0000                   |
| 13<br>14 | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)     | ***                     | 0.0003                 | ***                   | 0.0003                | ***                      |
| 14       | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)     | ***                     | 0.0000                 | ***                   | 0.0000                | ***                      |
| 16       | Comp Mole Frac (CO2)                                     | ***                     | 0.0000                 | ***                   | 0.0000                | ***                      |
| 17       | Comp Mole Frac (CO)                                      | ***                     | 0.0000                 | ***                   | 0.0000                | ***                      |
| 18       | Comp Mole Frac (DTRM-A)                                  | ***                     | ***                    | ***                   | ***                   | ***                      |
| 19       | Comp Mole Frac (Therminol-66)                            | ***                     | ***                    | ***                   | ***                   | ***                      |
| 20       | Name                                                     | 161 @NPP                | 162 @NPP               | 163 @NPP              | 163a @NPP             | 163a-L @NPP              |
| 21       | Comp Mole Frac (H2O)                                     | 1.0000                  | 1.0000                 | 1.0000                | 1.0000                | 1.0000                   |
| 22       | Comp Mole Frac (Hydrogen)                                | ***                     | ***                    | ***                   | ***                   | ***                      |
| 23       | Comp Mole Frac (Oxygen)                                  | ***                     | ***                    | ***                   | ***                   | ***                      |
| 24       | Comp Mole Frac (Nitrogen)                                | ***                     | ***                    | ***                   | ***                   | ***                      |
| 25<br>26 | Comp Mole Frac (CO2)                                     | ***                     | ***                    | ***                   | ***                   | ***                      |
| 26<br>27 | Comp Mole Frac (CO)                                      | ***                     | ***                    | ***                   | ***                   | ***                      |
| 27       | Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66) | ***                     | ***                    | ***                   | ***                   | ***                      |
| 29       | Name                                                     | 165 @NPP                | 166 @NPP               | 167 @NPP              | 168 @NPP              | 170 @NPP                 |
| 30       | Comp Mole Frac (H2O)                                     | 1.0000                  | 1.0000                 | 1.0000                | 1.0000                | 1.0000                   |
| 31       | Comp Mole Frac (Hydrogen)                                | ***                     | ***                    | ***                   | ***                   | ***                      |
| 32       | Comp Mole Frac (Oxygen)                                  | ***                     | ***                    | ***                   | ***                   | ***                      |
| 33       | Comp Mole Frac (Nitrogen)                                | ***                     | ***                    | ***                   | ***                   | ***                      |
| 34       | Comp Mole Frac (CO2)                                     | ***                     | ***                    | ***                   | ***                   | ***                      |
| 35       | Comp Mole Frac (CO)                                      | ***                     | ***                    | ***                   | ***                   | ***                      |
| 36       | Comp Mole Frac (DTRM-A)                                  | ***                     | ***                    | ***                   | ***                   | ***                      |
| 37       | Comp Mole Frac (Therminol-66)                            | ***                     | ***                    | ***                   | ***                   | ***                      |
| 38       | Name                                                     | 171 @NPP                | 172 @NPP               | 173@NPP               | 180 @NPP              | 181 @NPP                 |
| 39       | Comp Mole Frac (H2O)                                     | 1.0000                  | 1.0000                 | 1.0000                | 1.0000                | 1.0000                   |
| 40       | Comp Mole Frac (Hydrogen)                                | ***                     | ***                    | ***                   | ***                   | ***                      |
| 41<br>42 | Comp Mole Frac (Oxygen)                                  | ***                     | ***                    | ***                   | ***                   | ***                      |
| 42       | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)        | ***                     | ***                    | ***                   | ***                   | ***                      |
| 43       | Comp Mole Frac (CO2)                                     | ***                     | ***                    | ***                   | ***                   | ***                      |
| 44       | Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)           | ***                     | ***                    | ***                   | ***                   | ***                      |
| 46       | Comp Mole Frac (Therminol-66)                            | ***                     | ***                    | ***                   | ***                   | ***                      |
| 47       | Name                                                     | 182 @NPP                | 183 @NPP               | 184 @NPP              | 185 @NPP              | 186 @NPP                 |
| 48       | Comp Mole Frac (H2O)                                     | 1.0000                  | 1.0000                 | 1.0000                | 1.0000                | 1.0000                   |
| 49       | Comp Mole Frac (Hydrogen)                                | ***                     | ***                    | ***                   | ***                   | ***                      |
| 50       | Comp Mole Frac (Oxygen)                                  | ***                     | ***                    | ***                   | ***                   | ***                      |
| 51       | Comp Mole Frac (Nitrogen)                                | ***                     | ***                    | ***                   | ***                   | ***                      |
| 52       | Comp Mole Frac (CO2)                                     | ***                     | ***                    | ***                   | ***                   | ***                      |
| 53       | Comp Mole Frac (CO)                                      | ***                     | ***                    | ***                   | ***                   | ***                      |
| 54       | Comp Mole Frac (DTRM-A)                                  | ***                     | ***                    | ***                   | ***                   | ***                      |
| 55       | Comp Mole Frac (Therminol-66)                            |                         |                        |                       |                       | ***                      |
| 56<br>57 |                                                          |                         |                        |                       |                       |                          |
| 58       |                                                          |                         |                        |                       |                       |                          |
| 59       |                                                          |                         |                        |                       |                       |                          |
| 60       |                                                          |                         |                        |                       |                       |                          |
| 61       |                                                          |                         |                        |                       |                       |                          |
| 62       |                                                          |                         |                        |                       |                       |                          |
| 63       | Aspen Technology Inc.                                    | Α                       | spen HYSYS Versio      | n 10                  |                       | Page 13 of 18            |
| لل ا     | Licensed to: BATTELLE ENERGY ALLIANCE                    |                         |                        |                       |                       | * Specified by user.     |

| 1        |                                                          |                    | Case Name:         | Generic HTSE PED v/l   | 00_Therm66_5bar_U80   | 38∨25 M\A/e unit [detaile |  |  |
|----------|----------------------------------------------------------|--------------------|--------------------|------------------------|-----------------------|---------------------------|--|--|
| 2        | BATTELLE                                                 | ENERGY ALLIANCE    |                    |                        |                       | JUX20 MAAC drift [detaile |  |  |
| 3        | ( empentech Bedford, M USA                               | IA                 | Unit Set:          | HTSE PFD               |                       |                           |  |  |
| 4        | 034                                                      |                    | Date/Time:         | Mon Apr 05 15:00:37 20 | 121                   |                           |  |  |
| 6        |                                                          |                    | •                  |                        |                       |                           |  |  |
| 7        | Workbook                                                 | 🗆 Case (Maiı       | า) (continue       | d)                     |                       |                           |  |  |
| 8<br>9   |                                                          |                    |                    |                        |                       |                           |  |  |
| 10       |                                                          | Co                 | mpositions (conti  | nued)                  | Fluid Pkg             | j: All                    |  |  |
| 11       | Name                                                     | 187 @NPP           | 188 @NPP           | 190 @NPP               | 191 @NPP              | 201 @NPP                  |  |  |
| 12       | Comp Mole Frac (H2O)                                     | 1.0000             | 1.0000             | 1.0000                 | 1.0000                | ***                       |  |  |
| 13       | Comp Mole Frac (Hydrogen)                                | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 14       | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)     | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 16       | Comp Mole Frac (CO2)                                     | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 17       | Comp Mole Frac (CO)                                      | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 18       | Comp Mole Frac (DTRM-A)                                  | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 19       | Comp Mole Frac (Therminol-66)                            | ***                | ***                | ***                    | ***                   | 1.0000                    |  |  |
| 20       | Name                                                     | 202 @NPP           | 203 @NPP           | 204 @NPP               | 205 @NPP              | 206 @NPP                  |  |  |
| 21       | Comp Mole Frac (H2O)                                     | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 22       | Comp Mole Frac (Hydrogen)                                | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 23       | Comp Mole Frac (Oxygen)                                  | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 24       | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)        | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 25       | Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)              | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 27       | Comp Mole Frac (DTRM-A)                                  | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 28       | Comp Mole Frac (Therminol-66)                            | 1.0000             | 1.0000             | 1.0000                 | 1.0000                | 1.0000                    |  |  |
| 29       | Name                                                     | 207 @NPP           | 701 Steam Out @NPF |                        | 703 Turbine Exhaust ( |                           |  |  |
| 30       | Comp Mole Frac (H2O)                                     | ***                | 1.0000             | 1.0000                 | 1.0000                | 1.0000                    |  |  |
| 31       | Comp Mole Frac (Hydrogen)                                | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 32       | Comp Mole Frac (Oxygen)                                  | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 33       | Comp Mole Frac (Nitrogen)                                | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 34       | Comp Mole Frac (CO2)                                     | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 35       | Comp Mole Frac (CO)                                      | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 37       | Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66) | 1.0000 *           | ***                | ***                    | ***                   | ***                       |  |  |
| 38       | Name                                                     | 711 SEL Inlet @NPP | 712 @NPP           | 713@NPP                | 713 SEL Condensate (  | 721 NPP Condensate        |  |  |
| 39       | Comp Mole Frac (H2O)                                     | 1.0000             | 1.0000             | 1.0000                 | 1.0000                | 1.0000                    |  |  |
| 40       | Comp Mole Frac (Hydrogen)                                | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 41       | Comp Mole Frac (Oxygen)                                  | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 42       | Comp Mole Frac (Nitrogen)                                | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 43       | Comp Mole Frac (CO2)                                     | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 44       | Comp Mole Frac (CO)                                      | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 45<br>46 | Comp Mole Frac (DTRM-A)                                  | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 46<br>47 | Comp Mole Frac (Therminol-66)<br>Name                    | 722@NPP            | 723 @NPP           | 724 @NPP               | 725 @NPP              | 726 Heated Feedwate       |  |  |
| 48       | Comp Mole Frac (H2O)                                     | 1.0000             | 1.0000             | 1.0000                 | 1.0000                | 1.0000 *                  |  |  |
| 49       | Comp Mole Frac (Hydrogen)                                | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 50       | Comp Mole Frac (Oxygen)                                  | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 51       | Comp Mole Frac (Nitrogen)                                | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 52       | Comp Mole Frac (CO2)                                     | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 53       | Comp Mole Frac (CO)                                      | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 54       | Comp Mole Frac (DTRM-A)                                  | ***                | ***                | ***                    | ***                   | ***                       |  |  |
| 55<br>56 | Comp Mole Frac (Therminol-66)                            | ***                | <u> 25 1</u>       | ***                    | ***                   | ***                       |  |  |
| 55       | Energy Streams Fluid Pkg Al                              |                    |                    |                        |                       |                           |  |  |
| 58       | Name                                                     | Electrolysis Power | Inverter Power     | Process Heat           | Q-CW                  | Q-HX-107                  |  |  |
| 59       | Heat Flow (MVV)                                          | -24.80             | -25.30             | 2.755e-002             | 80.50                 | 0.5193                    |  |  |
| 60       | Mass Flow (kg/h)                                         |                    |                    |                        |                       |                           |  |  |
| 61       |                                                          |                    |                    |                        |                       |                           |  |  |
| 62       |                                                          |                    |                    |                        |                       |                           |  |  |
| 63       | Aspen Technology Inc.                                    | , A                | spen HYSYS Versio  | n 10                   |                       | Page 14 of 18             |  |  |
|          | rrsed to: BATTELLE ENERGY ALLIANCE * Specified by user.  |                    |                    |                        |                       |                           |  |  |

| 1        |                              |                                                         |                  |       | Case Name:               | Generic HTSE PFD_v4.     | 00 Therm  | 166 5bar U8O∶            | 38×25 MVVe unit [detaile |  |
|----------|------------------------------|---------------------------------------------------------|------------------|-------|--------------------------|--------------------------|-----------|--------------------------|--------------------------|--|
| 2        | ( aspentech                  | BATTELLE<br>Bedford, M                                  | ENERGY ALLIANC   | Έ     | Unit Set:                | HTSE PFD                 |           |                          |                          |  |
| 4        | G                            | USA                                                     |                  |       | Date/Time:               | Mon Apr 05 15:00:37 20   | 21        |                          |                          |  |
| 5<br>6   |                              |                                                         |                  |       |                          |                          |           |                          |                          |  |
| 7<br>8   | Worl                         | kbook:                                                  | Case (M          | ain   | ) (continue              | d)                       |           |                          |                          |  |
| 9<br>10  |                              |                                                         |                  | Ener  | gy Streams (con          | tinued)                  |           | Fluid Pkg                | ; All                    |  |
| 11       | Name                         |                                                         | Q-HX-502         |       | Q-IC-501                 | Q-IC-401_stg1            | Q-IC-40   | 1 sta2                   | Q-IC-401 stg3            |  |
| 12       | Heat Flow                    | (MVV)                                                   | 0.100            | 03    | 0.2769                   | 1.502                    |           | 5.966                    | 5.997                    |  |
| 13       | Mass Flow                    | (kg/h)                                                  |                  |       | 1.702e+004               | 9.231e+004               |           | 3.668e+005               | 3.687e+005               |  |
| 14       | Name                         |                                                         | Q-PIPE-801       |       | Q-PIPE-901               | Q-PIPE-902               | W-K-10    |                          | W-K-401                  |  |
| 15       | Heat Flow                    | (MVV)                                                   | 1.639e-00        | 06    | 7.534e-003               | 8.385e-003               |           | 5.159e-002               | 17.30                    |  |
| 16       | Mass Flow                    | (kg/h)                                                  |                  |       |                          |                          | 10/1/ 40  |                          |                          |  |
| 17       | Name                         | (54)40                                                  | W-K-502          |       | VV-K-401_stg1<br>5.308   | W-K-401_stg2             | W-K-40    |                          | -9.231e-003              |  |
| 19       | Heat Flow<br>Mass Flow       | (MVV)<br>(kg/h)                                         | 0.10             |       | 0.000                    | 5.977                    |           | 6.018                    | -8.2316-003              |  |
| 20       | Name                         | (19/11)                                                 | W-K-501 stgC1    |       | <br>W-K-501 stgC2        | <br>W-K-501 stgT1        | W-P-10    | 1                        | <br>W-P-801              |  |
| 21       | Heat Flow                    | (MVV)                                                   | 0.414            |       | 0.4563                   | 0.8798                   |           | 1.463e-003               | 5.261e-003               |  |
| 22       | Mass Flow                    | (kg/h)                                                  |                  |       |                          |                          |           |                          |                          |  |
| 23       | Name                         |                                                         | W-P-901          |       | Electrode Heat @Cell     | Electrolysis Heating @   | Electroly | ysis Power @C            | Process Heat @Cell       |  |
| 24       | Heat Flow                    | (MVV)                                                   | 0.13             | 14    | -1.626e-005              | 24.82                    |           | -24.80                   | 2.755e-002               |  |
| 25       | Mass Flow                    | (kg/h)                                                  |                  |       |                          |                          |           |                          |                          |  |
| 26       | Name                         |                                                         | Q-HX-301 @H2re   |       | Q-HX-302 @H2rec          | Q-HX-305 @H2rec          | Q-HX-3    | 08 @H2rec                | Q-IC-302 @H2rec          |  |
| 27       | Heat Flow                    | (MVV)                                                   | 9.542e-01        |       | 0.6934                   | 0.2747                   |           | 0.1975                   | 0.1348                   |  |
| 28       | Mass Flow                    | (kg/h)                                                  | 5.86             |       | 4.262e+004               | 1.689e+004               |           | 1.214e+004               | 8286                     |  |
| 30       | Name                         | (54) 40                                                 | Q-IC-303 @H2red  |       | Q-IC-301_stg1 @H2re      | Q-IC-301_stg2@H2re       |           | 1_stg3 @H2re             | Q-IC-301_stg4 @H2re      |  |
| 30       | Heat Flow<br>Mass Flow       | (MVV)<br>(kg/h)                                         | 0.124            |       | 6.886e-007<br>4.233e-002 | 6.846e-007<br>4.208e-002 |           | 6.882e-007<br>4.230e-002 | 6.864e-007<br>4.219e-002 |  |
| 32       | Name                         | (Kg/H)                                                  | Q-X-300 @H2rec   |       | W-K-301 @H2rec           | W-K-302 @H2rec           |           | 4.230e-002<br>3 @H2rec   | W-K-301_stg1@H2re        |  |
| 33       | Heat Flow                    | (MVV)                                                   | -4 093e-01       |       | 9.210e-008               | 0.3254                   | **-1(-00) | 0.2946                   | 2.003e-008               |  |
| 34       | Mass Flow                    | (kg/h)                                                  | -4.0000-01       |       |                          |                          |           |                          | 2.0000-000               |  |
| 35       | Name                         | ,                                                       | W-K-301_stg2@ł   | H 2re | W-K-301_stg3 @H2re       | W-K-301_stg4 @H2re       | W-K-30    | 1_stg5 @H2re             | W-K-302_stg1@H2re        |  |
| 36       | Heat Flow                    | (MVV)                                                   | 1.136e-00        | 08    | 2.017e-008               | 2.024e-008               |           | 2.031e-008               | 0.1606                   |  |
| 37       | Mass Flow                    | (kg/h)                                                  |                  |       |                          |                          |           |                          |                          |  |
| 38       | Name                         |                                                         | W-K-302_stg2@ł   | H 2re | W-K-303_stg1 @H2re       | W-K-303_stg2@H2re        | W-P-30    | 1 @H2rec                 | Excess Electricity @N    |  |
| 39       | Heat Flow                    | (MVV)                                                   | 0.164            | 48    | 0.1455                   | 0.1491                   |           | 2.047e-004               | 49.19                    |  |
| 40       | Mass Flow                    | (kg/h)                                                  |                  |       |                          |                          |           |                          |                          |  |
| 41       | Name                         |                                                         | Q-100 @NPP       |       | Q-101 @NPP               | Q-102 @NPP               | Q-103 @   | -                        | Q-104 @NPP               |  |
| 42<br>43 | Heat Flow                    | (MVV)                                                   | 165              | 1.3   | 176.1                    | 1.666                    |           | 9.021                    | 5.294                    |  |
| 43<br>44 | Mass Flow<br>Name            | (kg/h)                                                  | Q-105 @NPP       |       | <br>Q-106 @NPP           | Q-107 @NPP               | Q-108 @   |                          | Q-109@NPP                |  |
| 44       | Heat Flow                    | (MVV)                                                   | 21:<br>21:       |       | 236.9                    | 183.1                    | GE100 (c  | BNEE 67.27               | Q-109 Q/NFF<br>77.88     |  |
| 46       | Mass Flow                    | (kg/h)                                                  |                  |       |                          |                          |           |                          |                          |  |
| 47       | Name                         |                                                         | Q-110 @NPP       |       | Q-111 @NPP               | Q-COND-100 @NPP          | Q-FWH     | -700 @NPP                | Q-PIPE-201 @NPP          |  |
| 48       | Heat Flow                    | (MVV)                                                   | 190              |       | 3389                     | 3165                     |           | 1090                     | 7.491e-002               |  |
| 49       | Mass Flow                    | (kg/h)                                                  |                  |       |                          |                          |           |                          |                          |  |
| 50       | Name                         |                                                         | Q-PIPE-202 @NF   |       | Q-SG-100 Thermal En      | Q-TDL @NPP               | Rankine   | e Energy @NPI            | W-K-700 Electricity Ge   |  |
| 51       | Heat Flow                    | (MVV)                                                   | 5.148e-00        |       | 3368                     | 211.6 *                  |           | 3171                     | 1097                     |  |
| 52       | Mass Flow                    | (kg/h)                                                  |                  |       |                          |                          |           |                          |                          |  |
| 53<br>54 | Name                         | (14.4.0                                                 | W-P-201 Circ Pur |       | W-P-701 Condensate       | W-P-702 Feedwater P      |           |                          |                          |  |
| 54<br>55 | Heat Flow<br>Mass Flow       | (MVV)<br>(kg/h)                                         | 0.390            |       | 7.148                    | 8.581                    |           |                          |                          |  |
| 56       |                              |                                                         |                  |       |                          |                          |           |                          |                          |  |
| 57       | - Unit One                   |                                                         |                  |       |                          |                          |           |                          |                          |  |
| 58       | Operation Name               | Ope                                                     | ration Type      |       | Feeds                    | Products                 |           | Ignored                  | Calc Level               |  |
| 59       | ·                            |                                                         |                  | 172   | H2/H2O product mix       |                          |           |                          |                          |  |
| 60       |                              |                                                         |                  |       | 301                      |                          | No        | 500.0 *                  |                          |  |
| 61       | TEE-514                      | Tee                                                     |                  | 514   |                          | 515 Sweep Gas Re         | cycle     | No                       | 500.0 *                  |  |
| 62       |                              | 516                                                     |                  |       |                          |                          |           |                          |                          |  |
| 63       | Aspen Technology Inc.        |                                                         |                  | As    | pen HYSYS Versio         | n 10                     |           |                          | Page 15 of 18            |  |
|          | Licensed to: BATTELLE ENERGY | ensed to: BATTELLE ENERGY ALLIANCE * Specified by user. |                  |       |                          |                          |           |                          |                          |  |

|        |                                   |                                       |                                                | eneric HT6E PFD_v4.00_Therm68                                                         | 8_5bar_U80 38: | <25 MVVe unit [detai |
|--------|-----------------------------------|---------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------|----------------|----------------------|
|        | @aspentech                        | BATTELLE ENERGY ALLIAN<br>Bedford, MA |                                                | ISE PFD                                                                               |                |                      |
|        | 20 - N                            | USA                                   | Date/Time Mi                                   | an Apr 05 15:00 37 2021                                                               |                |                      |
| -      |                                   |                                       | escitive in                                    |                                                                                       | _              |                      |
|        | Work                              | book: Case (N                         | lain) (continued                               | )                                                                                     |                |                      |
| 1      | 1                                 |                                       | Unit Ops (continued                            | )                                                                                     |                |                      |
| 1      | Operation Name                    | Operation Type                        | Feeds                                          | Products                                                                              | Ignored        | Calc Level           |
| 2      | HX-106 H2/H2O Recuperator         | Heat Exchanger                        | 171 Process Cell Outlet<br>185                 | 172 H2/H2O product mix<br>186                                                         | No             | 500.0                |
| 4      | HX-103 Sweep Gas Low T Re         | Heat Exchanger                        | 512<br>152 process feed water (yapo            | 513<br>162                                                                            | Na             | 500.0                |
| 6<br>7 | HX-501 Sweep Gas High T Re        | Heat Exchanger                        | 511 Sweep Gas/O2 Out<br>506                    | 512<br>507                                                                            | Na             | 500.0                |
| 3      | HX-102 Steam Generator            | Heat Exchanger                        | 202 Process Heat In<br>151                     | 203 Process Heat Return<br>152 process feed water (vapo                               | No             | 600.0                |
| 1      | HX-101                            | Heat Exchanger                        | 301<br>132 process feed water (liquid          | 302 H2/H2O for purification                                                           | Na             | 500.C                |
| 2      | MIX-163                           | Mixer                                 | 173 H2/H2O recycle<br>162                      | 163                                                                                   | No             | 500.0                |
| 4      | MIX-505                           | Mixer                                 | 504<br>515 Sweep Gas Recycle                   | 505                                                                                   | No             | 500.0                |
| 6<br>7 | K-502 Sweep Gas Blower            | Compressor                            | 505<br>W-K-502                                 | 506                                                                                   | Na             | 500.0                |
| 3      | K-101 H2/H2O Resirculator         | Compressor                            | 163<br>W-K-101                                 | 164                                                                                   | Na             | 500.0                |
| 1      | K-401_stg2                        | Compressor                            | 402b<br>W-K-401_stg2                           | 402c                                                                                  | Na             | 500.I                |
| 2      | K-401_stg9                        | Compressor                            | 402d<br>W-K-401_stg3                           | 402e                                                                                  | Na             | 500.0                |
| 4      | K-401_stg1                        | Compressor                            | 401<br>W-K-401_stg1                            | 402a                                                                                  | Na             | 500.0                |
| 5<br>7 | K-501_stgC1                       | Compressor                            | 501 Sweep Gas Inlet<br>W-K-501_stgC1           | 502                                                                                   | Na             | 500.0                |
| 3      | K-501_stgC2                       | Compressor                            | 503<br>VV-K-501_stgC2                          | 504                                                                                   | No             | .600.0               |
| )<br>1 | HX-107 Process Topping Hea        | Heater                                | 166<br>Q-HX-107                                | 167 Process Cell Inlet                                                                | No             | 500.0                |
| 2      | HX-502 Sweep Topping Heat         | Heater                                | 507<br>Q-HX-502                                | 508 Sweep Cell Inlet                                                                  | No             | 500,0                |
| 4      | CW deltaT                         | Heater                                | 903<br>Q-CW                                    | 904                                                                                   | No             | 500.0                |
| 57     | SOEC Stack                        | Standard Sub-Flowsheet                | 187 Process Cell Inlet<br>508 Sweep Cell Inlet | 171 Process Cell Outlet<br>511 Sweep Gas/O2 Out<br>Electrolysis Power<br>Process Heat | No             | 2500                 |
| )<br>1 | H2 Recovery and Feed Condi        | Standard Sub-Flowsheet                | 302 H2/H2Q for purification<br>102             | 132 process feed water (liquid<br>332 H2 Product                                      | Ñø             | 250                  |
| 2      | Nuclear Power Plant               | Standard Sub-Flowsheet                |                                                |                                                                                       | Na             | 3600                 |
| 3      | ADJ process feed H2 comp          | Adjust                                |                                                |                                                                                       | Na             | 350                  |
| 1      | ADJ CW Pump dP                    | Adjust                                |                                                |                                                                                       | Na             | 350                  |
| į      | ADJ FW pump dP                    | Adjust                                |                                                |                                                                                       | Na             | 350                  |
| š      | ADJ process cell inlet P          | Adjust                                |                                                |                                                                                       | Na             | 350                  |
|        | ADJ K-401 outlet P                | Adjust                                |                                                |                                                                                       | Na             | 350                  |
| 3      | ADJ Steam Generator Inlet P       | Adjust                                |                                                |                                                                                       | No             | 350                  |
|        | ADJ Sweep Gas Blower outlet       |                                       |                                                |                                                                                       | Yès            | 350                  |
| 1      | ADJ K-501 P ratio                 | Adjust<br>Adjust                      |                                                |                                                                                       | No             | 350                  |
| 1      | ADJ sweep gas O2 comp<br>IRCY-100 | Recycle                               | 164                                            | 165                                                                                   | No             | 3500                 |
| _      | Aspen Technology Inc.             | TROUTE                                | Aspen HYSYS Version *                          |                                                                                       | 140            | Page 16 of 1         |

|        |                                   | BATTELLE ENERGY ALLIANCI   |                                    | Case Name Generic HT6E PFD_v4.00_Therm68_5bar_U80.38x26 MWe unit (detaile Unit Set: HT6E PFD |         |                |  |  |  |
|--------|-----------------------------------|----------------------------|------------------------------------|----------------------------------------------------------------------------------------------|---------|----------------|--|--|--|
|        | ( aspentech                       | Bedford, MA                |                                    |                                                                                              |         |                |  |  |  |
|        | USA                               |                            | Date/Time Mon Apr 05 15:00/97 2021 |                                                                                              |         |                |  |  |  |
| t      | Work                              | book: Case (Ma             | ain) (confinue                     | d)                                                                                           |         |                |  |  |  |
| -      |                                   | book. Case (Ma             |                                    |                                                                                              |         |                |  |  |  |
|        |                                   |                            | Unit Ops (continue                 | 1                                                                                            |         |                |  |  |  |
|        | Operation Name                    | Operation Type             | Feeds                              | Products                                                                                     | Ignored | Calc Level     |  |  |  |
| 2      | RCY-500                           | Recycle                    | 518                                | 514                                                                                          | Na      | 3800           |  |  |  |
|        | HTE Calculations<br>Cooling Water | Spreadsheet                |                                    |                                                                                              | Na      | 500.0<br>500.0 |  |  |  |
|        | K-401 Power                       | Spreadsheet<br>Spreadsheet |                                    | -                                                                                            | Na      | 500.0          |  |  |  |
| 5      | TDL                               | Spreadsheet                |                                    |                                                                                              | Na      | 500.0          |  |  |  |
| 1      | Water Bal                         | Spreadsheet                |                                    |                                                                                              | No      | 500.0          |  |  |  |
|        | Inverter                          | Spreadsheet                |                                    |                                                                                              | No      | 500.0          |  |  |  |
| 1      | HX dP                             | Spreadsheet                |                                    |                                                                                              | No      | 500.0          |  |  |  |
| )      | K-501 Power                       | Spreadsheet                | 1                                  |                                                                                              | No      | 500.0          |  |  |  |
|        |                                   |                            | 802                                | 803                                                                                          | -       |                |  |  |  |
|        | PIPE-801                          | Pipe Segment               | 17                                 | Q-PIPE-801                                                                                   | No      | 500.0          |  |  |  |
| 3      | - C.C                             | T                          | 902                                | 903                                                                                          |         | 1              |  |  |  |
|        | PIPE-901                          | Pipe Segment               |                                    | Q=PIPE-901                                                                                   | No      | 500.0          |  |  |  |
| 5      | Sec. 110                          | The second second second   | 904                                | 905                                                                                          |         |                |  |  |  |
| š      | PIPE-902                          | Pipe Segment               |                                    | Q-PIPE-902                                                                                   | No      | 500.0          |  |  |  |
| 2      | P-101                             | Pump                       | 101 Process Water Inlet            | 102                                                                                          | Na      | 500.           |  |  |  |
| )<br>1 |                                   |                            | W-F-101                            | 000                                                                                          |         |                |  |  |  |
|        | P-801                             | Pump                       | 801 feed water<br>W-P-801          | 602                                                                                          | Na      | 500.           |  |  |  |
| 2      | P-901                             | Pump                       | 901 cooling water<br>W-P-901       | 902                                                                                          | Na      | 500 (          |  |  |  |
| 3      | SET RCY P                         | Set                        |                                    |                                                                                              | Na      | 500.0          |  |  |  |
|        | SET number of HTSE blocks         | Set                        |                                    |                                                                                              | Na      | 500.0          |  |  |  |
| i.     | Inverter Efficiency               | Set                        |                                    |                                                                                              | Na      | 500.           |  |  |  |
|        | SET dP IC-401_stg1                | Set                        |                                    |                                                                                              | Na      | 500.           |  |  |  |
|        | SET dP IC-401_stg2                | Set                        |                                    |                                                                                              | Na      | 500.           |  |  |  |
|        | SET dP IC-401_stg3                | Set                        |                                    |                                                                                              | No      | .500.          |  |  |  |
|        | SET sweep gas notoichs            | Set                        |                                    |                                                                                              | Yes     | 500.           |  |  |  |
|        | SET dP HX-103 cold side           | Set                        |                                    |                                                                                              | No      | 500.           |  |  |  |
|        | SET dP HX-103 hot side            | Set                        |                                    |                                                                                              | No      | 500.           |  |  |  |
|        | SET dP HX-106 cold side           | Set                        |                                    |                                                                                              | No      | .500,          |  |  |  |
| 1      | SET dP HX-106 hot side            | Set                        |                                    |                                                                                              | No      | 500.           |  |  |  |
| -      | SET dP HX-107                     | Set                        |                                    |                                                                                              | No      | 500.           |  |  |  |
| -      | SET dP HX-501 cold side           | Set                        |                                    |                                                                                              | No      | 500.           |  |  |  |
| _      | SET dP HX-501 hot side            | Set                        |                                    |                                                                                              | No      | 500            |  |  |  |
| -      | SET dP HX-502                     | Set                        |                                    |                                                                                              | No      | 500.           |  |  |  |
|        | SET dP CW delta T                 | Set                        |                                    |                                                                                              | No      | 500.           |  |  |  |
| ┞      | SET dP HX-101 cold side           | Set                        |                                    |                                                                                              | Na      | 500.           |  |  |  |
|        | SET dP HX-101 hot side            | Set                        |                                    |                                                                                              | Na      | .500.          |  |  |  |
| ł      | SET dP HX-102 cold side           | Set                        |                                    |                                                                                              | Na      | 500            |  |  |  |
| +      | SET dP HX-102 hot side            | Set                        |                                    |                                                                                              | Na      | 500.           |  |  |  |
| ł      | SET K-501 Piratio                 | Set                        |                                    |                                                                                              | Na      | 500.           |  |  |  |
| -      | SET dP IC-501                     | Set                        | 402c                               | 40.94                                                                                        | Na      | 500.           |  |  |  |
|        | IC-401_stg2                       | Codler                     | 6                                  | 402d<br>Q-IC-401_stg2                                                                        | Na      | 500.           |  |  |  |
|        | IC-401_stg1                       | Cooler                     | 402a                               | 402b<br>Q-IC-401_stg1                                                                        | Na      | 500.           |  |  |  |
| 9      | 10 101                            | (August)                   | 402e                               | 403 Pressurized H2 Product                                                                   |         |                |  |  |  |
| 0      | IC-401_stg3                       | Cooler                     |                                    | Q-IC-401_stg3                                                                                | No      | .500,          |  |  |  |
|        | IC-501                            | Cooler                     | 502                                | 503<br>Q-IC-501                                                                              | No      | 500.0          |  |  |  |
|        |                                   | -                          |                                    |                                                                                              |         |                |  |  |  |

| Beatlord, MA<br>USA         Unit Set:         HTSE PFD           Date/Time:         Mon Apr 05 15:00 97 2021           Workbook: Case (Main) (continued)           Unit Ops (continued)           Unit Ops (continued)           Operation Name         Operation Type         Feeds         Products         Ignored         Calc Level           K:400 T.P-c         Virtual Stream Extn v2.00         32 H2 Product         401         No         501 |                           | DATTELLE ENCLOY ALL'AND    | Case Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Generic HT6E PFD_v4.00_Therm | 168_5bar_U80 38; | x25 MVVe unit [de |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------|-------------------|
| USA<br>Date/Time: Mon Apr 05: 15:00: 37:2021<br>Workbook: Case (Main) (continued)<br>Unit Ops (continued)<br>Operation Name: Operation Type Feeds Products Ignored Calc Level<br>K-400 T-P-c Virtual Stream Extra v2:0.0 332 H2 Product 401 Nb 500<br>K-501 storT Sweep Gas Exp Expander 516 517 Sweep Gas Exhaust Np 500                                                                                                                                 |                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HTSE PFD                     |                  |                   |
| Workbook: Case (Main) (continued)           Unit Ops (continued)           Operation Name         Operation Type         Feeds         Products         Ignored         Calc Level           K400 T-P-c         Virtual Stream Extn v2.0.0         332 H2 Product         401         No         500           K-501 stor1 Sweep Gas Extn         516         517 Sweep Gas Exhaust         Nn         500                                                | 2.3                       | USA                        | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mon Apr 05 15:00:37 2021     |                  |                   |
| Unit Ops (continued)           Operation Name         Operation Type         Feeds         Problects         Ignored         Calc Level           K-400 T-P-c         Virtual Stream Extra v2.0.0         332 H2 Product         401         No         500           K-501 stoT1 Sweep Gas Exhaust         Stream Extra v2.0.0         516         517 Sweep Gas Exhaust         No         500                                                          |                           |                            | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | _                |                   |
| Operation Name         Operation Type         Feeds         Products         Ignored         Calc Level           K-400 T-P-c         Virtual Stream Extr v2.0.0         332 H2 Product         401         No         500           K-501 stoT1 Sweep Gas Extra data         516         517 Sweep Gas Extraust         No         500                                                                                                                   | Work                      | kbook: Case (M             | ain) (continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ed)                          |                  |                   |
| K.400 T-P-c         Virtual Stream Extra v2.0.0         332 H2 Product         401         No         500           K.501 sto T1 Sweep Gas Exhaust         516         517 Sweep Gas Exhaust         No         500                                                                                                                                                                                                                                       |                           |                            | Unit Ops (continu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ued)                         |                  |                   |
| K-501 stoT1 Sweep Gas Exhaust No. 50                                                                                                                                                                                                                                                                                                                                                                                                                      | Operation Name            | Operation Type             | Feeds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Products                     | Ignored          | Calc Level        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K-400 T-P-c               | Virtual Stream Extn v2.0.0 | The second |                              | Na               | 500               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K-501_stgT1 Sweep Gas Exp | e Expander                 | 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | Na               | 500               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |                  |                   |

#### **Comparison of HTSE and SMR LCOH**

The SMR LCOH is plotted for each of the natural gas price cases with zero, \$25/tonne, and \$100/tonne costs of CO<sub>2</sub> in Figure F-8, Figure F-9, and Figure F-10, respectively. The LCOH for both HTSE cases is plotted in each of these figures as a function of the electricity cost (the sensitivity variable with the greatest impact on HTSE LCOH). Hydrogen transportation costs of \$0.16/kg are included in the HTSE LCOH shown in these figures (no delivery costs are included in the SMR LCOH under the assumption that the SMR plant would be co-located with the end-use industrial hydrogen customer).

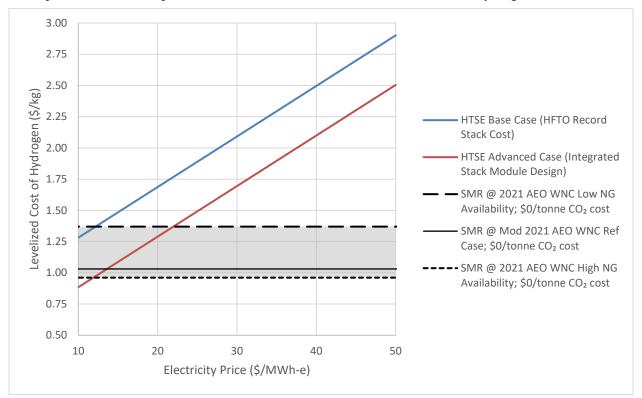



Figure D-8. LCOH of 347 tonne/day HTSE Base and Advanced Cases versus 342 tonne/day SMR with zero cost of CO<sub>2</sub>. Economic model input parameters for SMR and HTSE LCOH calculations provided in Table 24 and Table 25, respectively. A hydrogen transportation cost of \$0.16/kg is included in the HTSE LCOH (the SMR LCOH does not include hydrogen transportation costs).

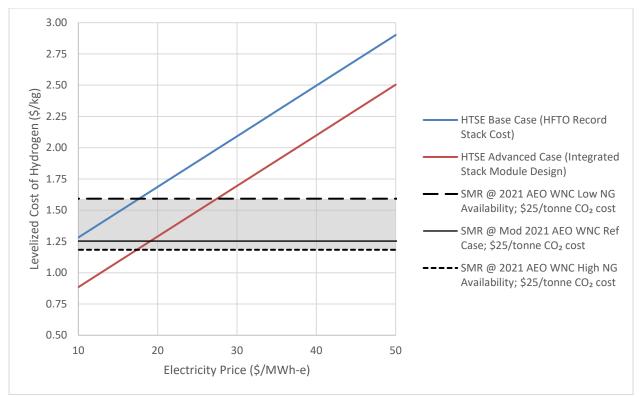



Figure D-9. LCOH of 347 tonne/day HTSE Base and Advanced Cases versus 342 tonne/day SMR with \$25/tonne cost of CO2. Economic model input parameters for SMR and HTSE LCOH calculations provided in Table 24 and Table 25, respectively. A hydrogen transportation cost of \$0.16/kg is included in the HTSE LCOH (the SMR LCOH does not include hydrogen transportation costs).

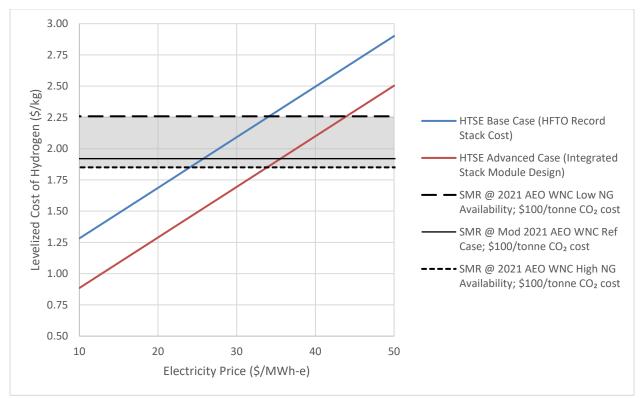
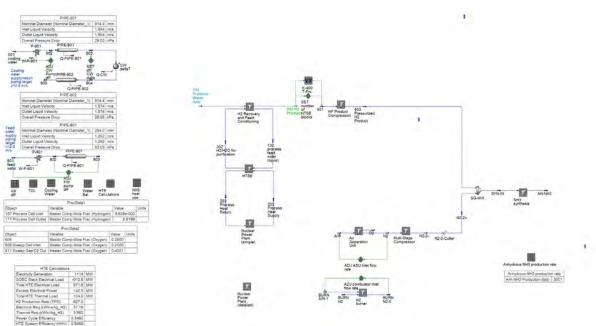




Figure D-10. LCOH of 347 tonne/day HTSE Base and Advanced Cases versus 342 tonne/day SMR with \$100/tonne cost of CO2. Economic model input parameters for SMR and HTSE LCOH calculations provided in Table 24 and Table 25, respectively. A hydrogen transportation cost of \$0.16/kg is included in the HTSE LCOH (the SMR LCOH does not include hydrogen transportation costs).

# APPENDIX E LWR-HTSE ASU AMMONIA SYNTHESIS PROCESS FLOW DIAGRAMS

[Page intentionally blank]

### APPENDIX E LWR-HTSE ASU AMMONIA SYNTHESIS PROCESS FLOW DIAGRAMS



E-1. Main Process

Figure E-1. Process flow diagram for NPP-HTSE ammonia synthesis, main process.



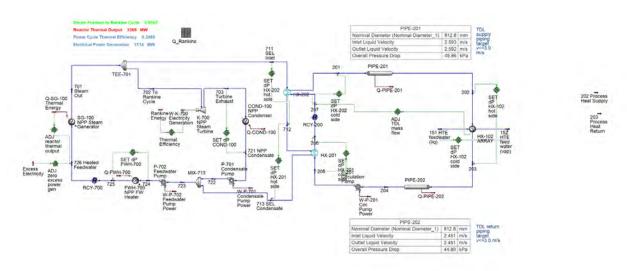
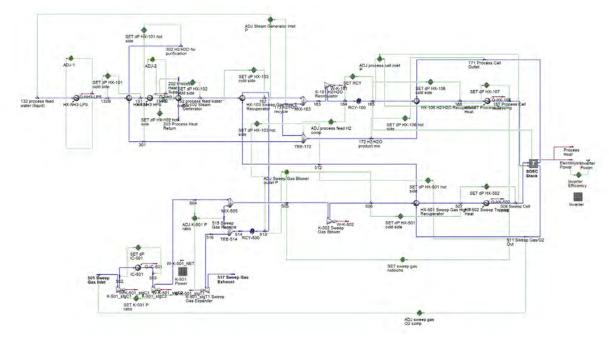




Figure E-2. Process flow diagram for NPP-HTSE ammonia synthesis, reactor with TDL.



### **High-Temperature Steam Electrolysis**

Figure E-3. Process flow diagram for NPP-HTSE ammonia synthesis, HTSE.

H<sub>2</sub> Recovery

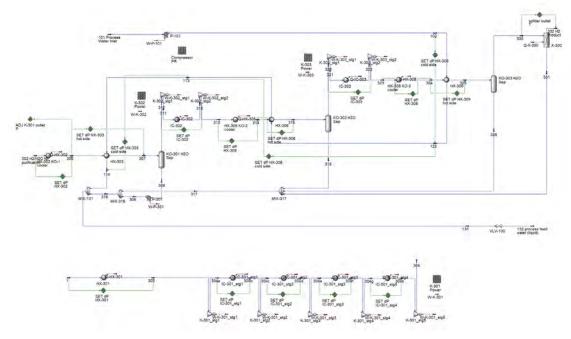



Figure E-4. Process flow diagram for NPP-HTSE ammonia synthesis, hydrogen recovery.

#### H<sub>2</sub> Product Compression

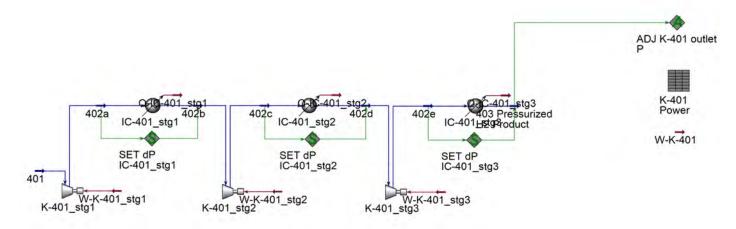
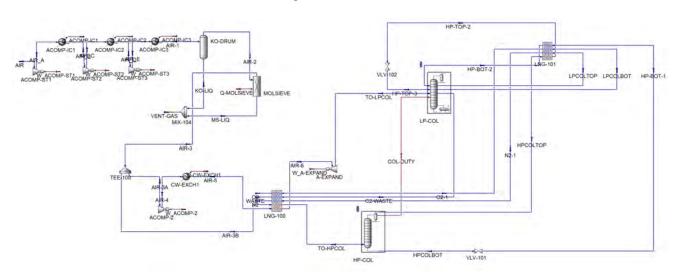




Figure E-5. Process flow diagram for NPP-HTSE ammonia synthesis, hydrogen-product compression.



### **Air Separation Unit**

Figure E-6. Process flow diagram for NPP-HTSE ammonia synthesis, ASU.

### N<sub>2</sub> Compression

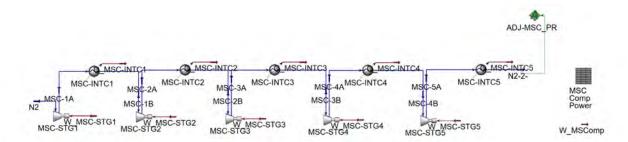



Figure E-7. Process flow diagram for NPP-HTSE ammonia synthesis, nitrogen compression.

# NH<sub>3</sub> Synthesis

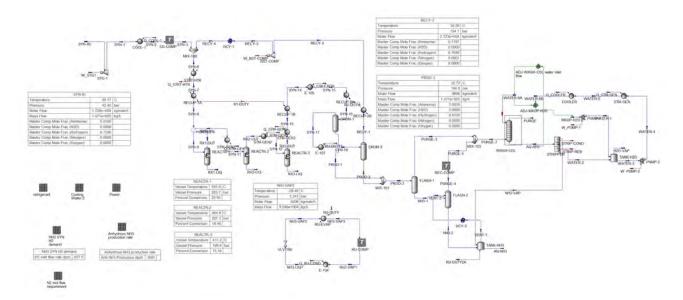



Figure E-8. Process flow diagram for NPP-HTSE ammonia synthesis.

| 1        |                                    |                                   |                                 |                                 |                                |                                |                                  |
|----------|------------------------------------|-----------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------|----------------------------------|
| 2        | 0                                  | BATTELLE                          | ENERGY ALLIANCE                 | Case Name:                      | Generic HTSE+NH3 PF            | D_v3.00_Therm66_5bar           | _080 (3049 tpd NH3)_re           |
| 3        | <b>@aspen</b> tech                 |                                   | Α                               | Unit Set:                       | HTSE PFD                       |                                |                                  |
| 4<br>5   |                                    | USA                               |                                 | Date/Time:                      | Fri Apr 30 14:25:18 202        | 1                              |                                  |
| 6        |                                    |                                   |                                 |                                 |                                |                                |                                  |
| 7<br>8   | Wo                                 | orkbook:                          | Case (Maii                      | n)                              |                                |                                |                                  |
| 9        |                                    |                                   |                                 | Material Stream                 | e                              | Fluid Pkg                      | c All                            |
| 10       |                                    |                                   |                                 |                                 | -                              |                                |                                  |
| 11<br>12 | Name<br>Vapour Fraction            |                                   | 101 Process Water Inl<br>0.0000 | 132 process feed wate<br>0.0004 | 202 Process Heat Sup<br>0.0000 | 203 Process Heat Ret<br>0.0000 | 302 H2/H2O for purifie<br>1.0000 |
| 13       | Temperature                        | (C)                               | 10.00 *                         | 59.40                           | 247.0                          | 178.2                          | 99.24                            |
| 14       | Pressure                           | (bar)                             | 5.171 *                         | 6.400 *                         | 3.870                          | 3.610                          | 4.640                            |
| 15       | Molar Flow                         | (kgmole/h)                        | 360.0                           | 439.3                           | 259.2                          | 259.2                          | 439.3                            |
| 16       | Mass Flow                          | (kg/h)                            | 6485                            | 7911                            | 6.531e+004                     | 6.531e+004                     | 2152                             |
| 17       | Actual Volume Flow                 | (m3/h)                            | 6.367                           | 8.839                           | 76.63                          | 72.46                          | 2927                             |
| 18       | Mass Density                       | (kg/m3)                           | 1019                            | 895.1                           | 852.2                          | 901.3                          | 0.7350                           |
| 19       | Name                               |                                   | 332 H2 Product                  | 401                             | 403 Pressurized H2 P           | 801 feed water                 | 802                              |
| 20       | Vapour Fraction                    |                                   | 1.0000                          | 1.0000                          | 1.0000                         | 0.0000                         | 0.0000                           |
| 21       | Temperature                        | (C)                               | 15.00                           | 15.00                           | 40.00                          | 10.00 *                        | 10.00                            |
| 22       | Pressure                           | (bar)                             | 19.95                           | 19.95                           | 42.40                          | 1.034 *                        | 1.445 *                          |
| 23       | Molar Flow                         | (kgmole/h)                        | 360.0                           | 1.132e+004                      | 1.132e+004                     | 1.132e+004                     | 1.132e+004                       |
| 24       | Mass Flow                          | (kg/h)                            | 725.7                           | 2.282e+004<br>1.369e+004        | 2.282e+004                     | 2.039e+005                     | 2.039e+005                       |
| 25<br>26 | Actual Volume Flow<br>Mass Density | (m3/h)<br>(kg/m3)                 | 435.4<br>1.667                  | 1.369e+004                      | 7057<br>3.233                  | 200.2                          | 200.2                            |
| 26       | ,                                  | (kg/m3)                           | 803                             | 901 cooling water               | 902                            | 903                            | 904                              |
| 28       | Name<br>Vapour Fraction            |                                   | 0.0000                          | 0.0000                          | 0.0000                         | 0.0000                         | 0.0000                           |
| 29       | Temperature                        | (C)                               | 10.01                           | 20.00 *                         | 20.00                          | 20.01                          | 34.00 *                          |
| 30       | Pressure                           | (C)<br>(bar)                      | 1.034                           | 1.034 *                         | 1.504 *                        | 1.280                          | 1.254                            |
| 31       | Molar Flow                         | (kgmole/h)                        | 1.132e+004                      | 2.079e+005                      | 2.079e+005                     | 2.079e+005                     | 2.079e+005                       |
| 32       | Mass Flow                          | (kg/h)                            | 2.039e+005                      | 3.746e+006                      | 3.746e+006                     | 3.746e+006                     | 3.746e+006                       |
| 33       | Actual Volume Flow                 | (m3/h)                            | 200.2                           | 3705                            | 3705                           | 3705                           | 3744                             |
| 34       | Mass Density                       | (kg/m3)                           | 1019                            | 1011                            | 1011                           | 1011                           | 1001                             |
| 35       | Name                               |                                   | 905                             | AIR                             | AN-NH3                         | BURN AIR-1                     | BURN H2                          |
| 36       | Vapour Fraction                    |                                   | 0.0000                          | 1.0000                          | 0.0000                         | 1.0000                         | 1.0000                           |
| 37       | Temperature                        | (C)                               | 34.00                           | 21.11 *                         | -34.44 *                       | 21.11 *                        | 26.11 *                          |
| 38       | Pressure                           | (bar)                             | 1.034                           | 1.034 *                         | 1.034                          | 1.034 *                        | 49.02 *                          |
| 39       | Molar Flow                         | (kgmole/h)                        | 2.079e+005                      | 4910                            | 7460                           | 4776                           | 2060                             |
| 40       | Mass Flow                          | (kg/h)                            | 3.746e+006                      | 1.417e+005 *                    | 1.270e+005                     | 1.378e+005 *                   | 4154 *                           |
| 41       | Actual Volume Flow                 | (m3/h)                            | 3744                            | 1.161e+005                      | 188.3                          | 1.130e+005                     | 1078                             |
| 42       | Mass Density                       | (kg/m3)                           | 1001                            | 1.220                           | 674.8                          | 1.220                          | 3.854                            |
| 43       | Name                               |                                   | BURN N2-5                       | N2                              | N2-2+                          | N2-2-                          | 02                               |
| 44       | Vapour Fraction                    |                                   | 1.0000                          | 1.0000                          | 1.0000                         | 1.0000                         | 1.0000                           |
| 45<br>46 | Temperature                        | (C)<br>(bar)                      | 40.00<br>48.37                  | 36.37                           | 40.00                          | 40.00 *                        | 36.67 *                          |
| 46<br>47 | Pressure<br>Molar Flow             | (bar)<br>(kgmole/h)               | 48.37<br>3837                   | 1.172                           | 42.40                          | 42.40<br>3777                  | 1.172                            |
| 47<br>48 | Mass Flow                          | (kg/h)                            | 1.060e+005                      | 1.058e+005                      | 1.057e+005                     | 1.058e+005                     | 3.409e+004                       |
| 40       | Actual Volume Flow                 | (m3/h)                            | 2079                            | 8.292e+004                      | 2299                           | 2332                           | 2.319e+004                       |
| 50       | Mass Density                       | (http://www.chick.org/<br>(kg/m3) | 50.96                           | 1.276                           | 45.97                          | 45.38                          | 1.470                            |
| 51       | Name                               | (                                 | SYN-IN                          | AIR @ASU                        | AIR-1@ASU                      | AIR-2@ASU                      | AIR-3 @ASU                       |
| 52       | Vapour Fraction                    |                                   | 1.0000                          | 1.0000                          | 1.0000                         | 1.0000                         | 1.0000                           |
| 53       | Temperature                        | (C)                               | 39.17                           | 21.11                           | 40.00 *                        | 40.00                          | 40.00 *                          |
| 54       | Pressure                           | (bar)                             | 42.40                           | 1.034                           | 6.481 *                        | 6.481                          | 6.481                            |
| 55       | Molar Flow                         | (kgmole/h)                        | 1.509e+004                      | 4910                            | 4910                           | 4910                           | 4861                             |
| 56       | Mass Flow                          | (kg/h)                            | 1.285e+005                      | 1.417e+005                      | 1.417e+005                     | 1.417e+005                     | 1.408e+005                       |
| 57       | Actual Volume Flow                 | (m3/h)                            | 9357                            | 1.161e+005                      | 1.971e+004                     | 1.971e+004                     | 1.952e+004                       |
| 58<br>59 | Mass Density                       | (kg/m3)                           | 13.73                           | 1.220                           | 7.188                          | 7.188                          | 7.211                            |
| 59<br>60 |                                    |                                   |                                 |                                 |                                |                                |                                  |
| 61       |                                    |                                   |                                 |                                 |                                |                                |                                  |
| 62       |                                    |                                   |                                 | 111.700-1-0                     | 10                             |                                |                                  |
| 63       | Aspen Technology In                | IC.                               | <i>F</i>                        | spen HYSYS Versio               | n 10                           |                                | Page 1 of 34                     |

| 1        |                            |                       |                      | Case Name:         | Generic HTSE+NH3 PF     | D_v3.00_Therm66_5bar | _U80 (3049 tpd NH3)_re   |
|----------|----------------------------|-----------------------|----------------------|--------------------|-------------------------|----------------------|--------------------------|
| 2<br>3   | <b>@aspen</b> tech         | Bedford, M            | ENERGY ALLIANCE<br>A | Unit Set:          | HTSE PFD                |                      |                          |
| 4        |                            | USA                   |                      | Date/Time:         | Fri Apr 30 14:25:18 202 | 1                    |                          |
| 5        |                            |                       |                      |                    |                         |                      |                          |
| 7<br>8   | Wo                         | orkbook:              | Case (Mai            | n) (continue       | ed)                     |                      |                          |
| 9<br>10  |                            |                       | Mat                  | erial Streams (con | tinued)                 | Fluid Pk             | g: All                   |
| 11       | Name                       |                       | AIR-4 @ASU           | AIR-5 @ASU         | AIR-6 @ASU              | AIR-3A @ASU          | AIR-3B @ASU              |
| 12       | Vapour Fraction            |                       | 1.0000               | 1.0000             | 1.0000                  | 1.0000               | 1.0000                   |
| 13       | Temperature                | (C)                   | 57.97                | 40.00 *            | -170.0 *                | 40.00                | 40.00                    |
| 14       | Pressure                   | (bar)                 | 7.515 *              | 7.515              | 7.033                   | 6.481                | 6.481                    |
| 15<br>16 | Molar Flow<br>Mass Flow    | (kgmole/h)            | 364.6<br>1.056e+004  | 364.6              | 364.6                   | 364.6<br>1.056e+004  | 4496                     |
| 17       | Actual Volume Flow         | (kg/h)<br>(m3/h)      | 1336                 | 1.056e+004<br>1263 | 1.056e+004<br>379.7     | 1464                 | 1.302e+005<br>1.806e+004 |
| 18       | Mass Density               | (ma/n)<br>(kg/m3)     | 7.901                | 8.361              | 27.81                   | 7.211                | 7.211                    |
| 19       | Name                       | (Kg/H0)               | AIR_A @ASU           | AIR B@ASU          | AIR_C@ASU               | AIR D@ASU            | AIR_E@ASU                |
| 20       | Vapour Fraction            |                       | 1.0000               | 1.0000             | 1.0000                  | 1.0000               | 1.0000                   |
| 21       | Temperature                | (C)                   | 95.91                | 40.00 *            | 119.2                   | 40.00 *              | 117.8                    |
| 22       | Pressure                   | (bar)                 | 1.913                | 1.913              | 3.540                   | 3.540                | 6.481                    |
| 23       | Molar Flow                 | (kgmole/h)            | 4910                 | 4910               | 4910                    | 4910                 | 4910                     |
| 24       | Mass Flow                  | (kg/h)                | 1.417e+005           | 1.417e+005         | 1.417e+005              | 1.417e+005           | 1.417e+005               |
| 25       | Actual Volume Flow         | (m3/h)                | 7.877e+004           | 6.680e+004         | 4.530e+004              | 3.610e+004           | 2.467e+004               |
| 26       | Mass Density               | (kg/m3)               | 1.798                | 2.121              | 3.127                   | 3.924                | 5.743                    |
| 27       | Name                       |                       | C2-WASTE@ASU         | HP-BOT-1 @ASU      | HP-BOT-2 @ASU           | HP-TOP-2@ASU         | HP-TOP-3 @ASU            |
| 28       | Vapour Fraction            |                       | 1.0000               | 0.1846             | 0.4058                  | 0.0000               | 0.0358                   |
| 29<br>30 | Temperature<br>Pressure    | (C)                   | -190.9               | -190.8             | -190.0 *                | -191.1 *             | -194.5                   |
| 30       | Molar Flow                 | (bar)<br>(kgmole/h)   | 1.172                | 1.172              | 1.172                   | 5.998                | 1.172                    |
| 32       | Mass Flow                  | (kgriole/h)<br>(kg/h) | 849.6                | 7.228e+004         | 7.228e+004              | 5.794e+004           | 5.794e+004               |
| 33       | Actual Volume Flow         | (m3/h)                | 160.9                | 2578               | 5633                    | 73.78                | 464.9                    |
| 34       | Mass Density               | (kg/m3)               | 5.280                | 28.03              | 12.83                   | 785.3                | 124.6                    |
| 35       | Name                       |                       | HPCOLBOT @ASU        | HPCOLTOP @ASU      | KO-LIQ @ASU             | LPCOLBOT @ASU        | LPCOLTOP @ASU            |
| 36       | Vapour Fraction            |                       | 0.0000               | 1.0000             | 0.0000                  | 0.0000               | 1.0000                   |
| 37       | Temperature                | (C)                   | -172.6               | -176.9             | 40.00                   | - 181.6              | -194.5                   |
| 38       | Pressure                   | (bar)                 | 5.998                | 5.998              | 6.481                   | 1.172                | 1.172                    |
| 39       | Molar Flow                 | (kgmole/h)            | 2429                 | 2067               | 0.0000                  | 1056                 | 3777                     |
| 40       | Mass Flow                  | (kg/h)                | 7.228e+004           | 5.794e+004         | 0.0000                  | 3.409e+004           | 1.058e+005               |
| 41       | Actual Volume Flow         | (m3/h)                | 86.41                | 2359               | 0.0000                  | 29.71                | 2.015e+004               |
| 42       | Mass Density               | (kg/m3)               | 836.4                | 24.56              | 746.9                   | 1147                 | 5.252                    |
| 43       | Name                       |                       | MS-LIQ @ASU          | N2 @ASU            | N2-1@ASU                | 02 @ASU              | 02-1@ASU                 |
| 44       | Vapour Fraction            | (0)                   | 0.0000               | 1.0000             | 1.0000                  | 1.0000               | 1.0000 *                 |
| 45<br>46 | Temperature<br>Pressure    | (C)<br>(bar)          | 40.00 *<br>6.481     | 36.37              | -183.5<br>1.172         | 36.67<br>1.172       | -181.6<br>1.172          |
| 46       | Molar Flow                 | (kgmole/h)            | 49.10                | 3777               | 3777                    | 1056                 | 1.172                    |
| 48       | Mass Flow                  | (kg/h)                | 884.6                | 1.058e+005         | 1.058e+005              | 3.409e+004           | 3.409e+004               |
| 49       | Actual Volume Flow         | (m3/h)                | 0.8880               | 8.292e+004         | 2.326e+004              | 2.319e+004           | 6634                     |
| 50       | Mass Density               | (kg/m3)               | 996.1                | 1.276              | 4.550                   | 1.470                | 5.138                    |
| 51       | Name                       |                       | TO-HPCOL@ASU         | TO-LPCOL@ASU       | VENT-GAS @ASU           | WASTE @ASU           | Anode @Cell              |
| 52       | Vapour Fraction            |                       | 1.0000               | 0.8938             | 0.0000                  | 1.0000               | 1.0000                   |
| 53       | Temperature                | (C)                   | -172.2 *             | -190.5             | 40.00                   | 36.67 *              | 800.0                    |
| 54       | Pressure                   | (bar)                 | 5.998                | 1.172 *            | 6.481                   | 1.172                | 5.000                    |
| 55       | Molar Flow                 | (kgmole/h)            | 4496                 | 364.6              | 49.10                   | 28.72                | 180.0                    |
| 56       | Mass Flow                  | (kg/h)                | 1.302e+005           | 1.056e+004         | 884.6                   | 849.6                | 5760                     |
| 57<br>58 | Actual Volume Flow         | (m3/h)                | 5471                 | 1835               | 0.8880                  | 631.1                | 3215                     |
| 58<br>59 | Mass Density               | (kg/m3)               | 23.80                | 5.752              | 996.1                   | 1.346                | 1.791                    |
| 60<br>61 |                            |                       |                      |                    |                         |                      |                          |
| 62       |                            |                       |                      |                    |                         |                      |                          |
| 63       | Aspen Technology In        | с.                    | /                    | Aspen HYSYS Versio | on 10                   |                      | Page 2 of 34             |
|          | Licensed to: BATTELLE ENER | RGY ALLIANCE          |                      |                    |                         |                      | * Specified by user.     |

| 10         1000         1000         1000         1000           11         Temperature         (C)         800         800         800         600           15         Mais Flow         (igmolef)         488         6786         0.0000         160.0           16         Mais Flow         (igmolef)         2447         6207         0.0000         5700           11         Actal Volume Flow         (igm)         0.821         1.214-004         0.0000         5215           13         Mais Energy         (igm)         0.821         0.8722         0.0000         1.0000           14         Name         Sweep Calinet (2ce         Sweep Calinet (2ce         AcNa 32, COL4         PURCE 7, 21           14         Name         (jum)         0.000         0.0000         1.0000         1.0000           12         Presum         (jum)         7.79         8.894         8.896         0.000         1.0000         1.0000           12         Actual Volume Flow         (igmolef)         7.292         1.644         1.644         0.898         3.17           12         Actual Volume Flow         (igmolef)         7.292         1.644         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1  |                      |            |                      | Case Name:         | Generic HTSE+NH3 PF     | D_v3.00_Therm66_5bar | _U80 (3049 tpd NH3)_re          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------|------------|----------------------|--------------------|-------------------------|----------------------|---------------------------------|
| DateTime         Pri Agr 30 14 25:18 2021           Workbook:         Case (Main) (continued)         Full Pro;           III         Name         Cashode (Scell         Gase Products (Scell         Law Products (Scell         Mater Factor         Progr           10         Name         Cashode (Scell         Gase Products (Scell         Law Products (Scell         Name         Program         Prog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3  | ( aspentech          | Bedford, M |                      | Unit Set:          | HTSE PFD                |                      |                                 |
| Image: state of the s | _  |                      | USA        |                      | Date/Time:         | Fri Apr 30 14:25:18 202 | 1                    |                                 |
| Image: construct biology         Fluid Play           Image: construct biology         Fluid Play           Image: construct biology         Image: construct biology         Fluid Play           Image: construct biology         Construct biology         Construct biology         Process Cell           Image: construct biology         Construct biology         Construct biology         Process Cell           Image: construct biology         Construct biology         Construct biology         Process Cell           Image: construct biology         Construct biology         Construct biology         Process Cell           Image: construct biology         Construct biology         Construct biology         Process Cell           Image: construct biology         Construct biology         Construct biology         Construct biology         Process Cell           Image: construct biology         Construct biology         Construct biology         Construct biology         Construct biology         Process Cell           Image: construct biology         Construct biology         Construct biology         Construct biology         Construct biology         Construct biology           Image: construct biology         Construct biology         Construct biology         Construct biology         Construct biology         Construct biology           Image: con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                      |            |                      |                    |                         |                      |                                 |
| Image: Streams (continued)         Fluid Pkg           11         Name         Cathode @Cell         Gas Products @Cell         Liquid Products @Cell         Malar Flow of Oxygen         Precess Cell           12         Vague Fraction         (.D)         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         6.000         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00 <th>7</th> <th>Wo</th> <th>rkbook:</th> <th>Case (Maii</th> <th>n) (continue</th> <th>d)</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7  | Wo                   | rkbook:    | Case (Maii           | n) (continue       | d)                      |                      |                                 |
| Name         Cathode QCell         Gas Product: QCell         Lique Products QCell         Maint Flow of Doggen         Process Cell           12         Vepour Fracton         10000         10000         00000         10000           13         Temperature         (C)         880.0         680.0         880.0         880.0         10000         10000         10000           14         Pressure         (bar)         5000         5.000         6.800         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9  |                      |            | Mət                  | erial Streams (con | tinued)                 | Eluid Pkr            | a: All                          |
| 1         1000         1000         1000         1000         1000           1         Temperature         (C)         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0         800.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | N1                   |            |                      | · · · ·            | ,                       |                      |                                 |
| Image relation         (C)         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0         880.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11 |                      |            | _                    | _                  |                         |                      | Process Cell Inlet @C<br>1.0000 |
| Image: Pressure (bar)         5 000         5 000         5 000         6 000           10         Mater Flow (egmole/n)         488.6         678.6         0.0000         678.0           11         Actual Volume Flow (egmole/n)         0.274.3         0.0207         0.0000         578.0           11         Mass Clematy (egmole/n)         0.274.3         0.077.2         0.0000         1.0000         1.0000         0.0000         1.0000         1.0000         0.0000         1.0000         1.0000         0.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0100         1.0100         1.0100         1.012         1.17.4         4.000         1.012         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         1.017.8         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13 |                      | (C)        |                      |                    |                         |                      | 800.0                           |
| 11         Mass Flow         (kg/m)         4488         679.6         0.0000         190.0           10         Mass Flow         (kg/m)         0.2441         2027         0.0000         3215           10         Mass Density         (kg/m)         0.6722         0.6722         0.0722         1.731           10         Mare         Sweep CellInter 2/ce         Sweep Sord 2/Cu/de         AVAN3 (CU/de         PURCE 2/C/de           20         Yapour Fraction         1.0000         1.0000         1.0000         1.0000           21         Temperature         (C)         0.8000         5.000         1.724         4.000           22         Mass Flow         (g/m)         1.208+004         1.864+005         8.894         8.888           23         Mass Flow         (g/m)         1.208+004         1.867+004         1.784         8.974           24         Mass Flow         (g/m)         1.288+004         1.807+004         1.788         8.974           23         Mass Flow         (g/m)         1.288+004         1.724         6.868         5.974           24         Mass Flow         (g/m)         1.288+004         1.000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14 |                      |            |                      |                    |                         |                      | 5.000                           |
| 11         Actual Volume Flow         (m3/h)         8921         1.214e-004         0.0000         3215           10         Marse Density         (kg/ms)         Sweep Cell Intel QrCe         Sweep Gas/COULD         ACA-H3 QrCL4         PURCE CCL4         PURCE CCL4           20         Vapour Fraction         1.0000         1.0000         0.0000         1.0000           21         Temperature         (C)         8000         6000         17.44         17.44           22         Molar Flow         (kg/n)         2.007+004         2.062+004         1.544e-005         980.8         3.17           23         Mass Flow         (kg/m3)         1.624         1.667+064         2.062+004         1.644e-005         980.8         3.17           24         Mass Flow         (kg/m3)         1.624         1.657+06855         6.574         1.0000         1.0000         0.0000         1.0000         0.0000         1.0000         0.0000         1.0000         0.0000         1.0000         1.0000         0.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000 <t< th=""><th>15</th><th></th><th></th><th>499.6</th><th></th><th>0.0000</th><th></th><th>499.6</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 |                      |            | 499.6                |                    | 0.0000                  |                      | 499.6                           |
| 18         Mass Density         (kg/m3)         0.2743         0.0772         0.0772         1.711           19         Name         Sweep Cell Initel Opce         Sweep Gas/CO2 Out Ø         AC-NH3 @CCL4         PURGE @CCL4         PURGE ?@CC           21         Terrepertature         (C)         B00.0         6.000         7.457         4.000           21         Terrepertature         (C)         B00.0         5.000         7.74         4.000           21         Terrepertature         (C)         B00.0         5.000         7.74         4.000           22         Pressure         (bar)         5.000         5.000         17.74         17.74           23         Mass Flow         (kg/m)         1.265e-004         1.607e-004         1.6778         167.5           24         Mass Density         (kg/m)         1.265e-004         1.607e-004         1.000         0.0000          25         Terreperature         (C)         4.000         1.172         1.178         1.759           25         Terreperature         (C)         4.000         1.728         5.974         1.25           26         Terreperature         (C)         4.000         1.0000         1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16 | Mass Flow            | (kg/h)     | 2447                 | 8207               | 0.0000                  | 5760                 | 8207                            |
| Name         Sweep Cell Inlet @Ce         Sweep Gas/C2 Out @         AC-NH3 @CCL4         PURGE @CCL4<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17 | Actual Volume Flow   | (m3/h)     | 8921                 | 1.214e+004         | 0.0000                  | 3215                 | 8909                            |
| 20         Vapour Fraction         10000 0         10000 0         10000 0         10000 0         10000 0           21         Temperature         (C)         6000 0         8000 0         7457         4000 0           22         Pressure         (Ba)         6000 0         5000 0         17.24         4000 1           23         Mass Flow         (Bgmole/h)         7115 5         899.4         88680         107.6           24         Mass Density         (Ggmole/h)         1285+004         1567+004         1544+005         800.8         317           26         Mass Density         (Ggmole/h)         1285+004         1667         658.5         574           27         Name         WATER-RA @CCL4         HPCCLEOT @CCL5         FCOLOP @CCL5         Fedux @CCL5         To Gendens           28         Vapour Fraction         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         1.000         1.000         1.000         1.000         1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18 | Mass Density         | (kg/m3)    | 0.2743               | 0.6762             | 0.6762                  | 1.791                | 0.9212                          |
| 21         Temperature         (C)         900.0         800.0         74.57         40.00           22         Pressure         (Bar)         5.000         5.000         17.24         17.24           24         Malar Flow         (Igmole/h)         719.5         6.984         6668         107.6           24         Mass Flow         (Igmole/h)         2.085e+004         1.544e+005         990.8         3.17           26         Actual Volume Flow         (Ingmole/h)         1.295e+004         1.867         686.5         Feature         1.62           21         Mass Density         (Isgmole/h)         1.862         1.867         686.5         Feature         1.76         5.874           21         Name         Vapour Fraction         0.0000         0.0000         0.0000         0.0000         0.0000         1.0000         0.0000         1.0000         0.0000         1.0000         1.0000         1.0000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 | Name                 |            | Sweep Cell Inlet @Ce | Sweep Gas/O2 Out @ | AQ-NH3@COL4             | PURGE @COL4          | PURGE-7@COL4                    |
| 22         Presure         (ba)         5 000         5 000         17.24         17.24           23         Malar Flow         (kgmole/h)         2.087+004         2.083+004         1.844+005         980.8         3.17           24         Assa Flow         (m3/h)         1.324+014         1.857         886.5         5.974           21         Mass Densty         (kg/m3)         1.824         1.857         886.5         5.974           22         Name         WATER-6A_@COL4         HPCOLEOT@COL5         Refux @COL5         To Condens           23         Vapour Fraction         0.000         0.0000         1.000         0.0000           24         Temperature         (C)         4.00         -1.72.6         -1.76.8         1.77.8           24         Temperature         (kg/m)         1.236+005         7.228e+004         5.794+004         7.789+004         1.35           23         Actual Volume Flow         (kg/m)         986.5         832.4         24.56         171.7           25         Mass Flow         (kg/m)         980.5         898.4         1.218         1.218         1.218           35         Actual Volume Flow         (kg/m)         980.5 <td< th=""><th>20</th><th></th><th></th><th></th><th></th><th></th><th></th><th>0.2239</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 |                      |            |                      |                    |                         |                      | 0.2239                          |
| Molar Flow         (kgmole/h)         719.5         898.4         9868         107.6           24         Mass Flow         (kgh)         2.087+004         2.663+004         1.54+005         980.8         3.17           25         Actual Volume Flow         (m3/h)         1.128+004         1.657+004         1.79.8         5.87.4           26         Mass Density         (kg/m3)         1.624         HPCOLBOT @COL5         Refux @COL5         Rot @COL5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21 |                      |            |                      |                    |                         |                      | 32.21                           |
| Mass Flow         (kg/h)         2.087e-004         2.883e-004         1.544e-005         880.8         3.17           22         Attaul Volume Flow         (m3h)         1.524         1.857         865.5         5.974           23         Mass Density         (kg/m3)         1.524         1.857         865.5         5.974           24         Mass Density         (kg/m3)         1.524         1.857         865.5         5.974           25         Vapour Fracton         0.0000         0.0000         1.0000         0.0000           26         Temperature         (C)         40.00         -1.72.6         -1.76.9         -           26         Mass Flow         (kg/m)         1.238e+006         7.228e+004         5.784e+004         7.788e+004         1.35           37         Attaul Volume Flow         (m3h)         1.238e+005         7.228e+004         5.784e+004         7.788e+004         1.36           38         Attaul Volume Flow         (m3h)         1.238e+005         2.248e+004         2.456         711.7           39         Mass Flow         (kg/m3)         9.86.5         6.834.4         2.458         711.1         1.160           39         Presture         (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22 |                      | . ,        |                      |                    |                         |                      | 17.24                           |
| Actual Volume Flow         (m3/n)         1285e+004         1.807e+004         178.8         164.2           28         Mass Density         (kgm3)         1.24         1.857         855.5         5.974           29         Name         WATER-8.8 (CoL4)         HFCOLBOT(@COL5)         HPCOLTOP @COL5)         Feature         5.974           20         Yapour Fraction         0.0000         -172.6         -176.9         -176.9         -177.8           20         Temperature         (C)         40.00         -172.8         -176.9         -177.8           31         Molar Flow         (kgm0H)         6863         2.429         2.027         2.778           32         Mass Density         (kgm0)         1.238         2.246         7.17.78         -1.35           33         Actual Volume Flow         (m3/n)         1.241         8.641         2.359         1.09.4         -1.35           34         Mass Density         (kgm0)         986.5         9.894         2.246.6         711.7         -1.172           35         Name         TO-HPCOL@COL5         Bolup @COL8         C2-WASTE @COL8         Filski @coL8         1.88           36         Pressue         (ba1         5.996<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23 |                      |            |                      |                    |                         |                      | 1913                            |
| 32         Mass Density         (kg/m3)         1.824         1.867         986.5         6.874           21         Name         VMATER-BA@COL4         HPCOLFOT@COL5         Refux@COL5         To Condens           23         Vagour Fraction         0.0000         0.0000         1.0000         0.0000           23         Temperature         (C)         40.00         -172.6         -176.8         -177.8           30         Pressure         (Bar)         17.24         6.989         6.989         6.989           31         Molar Flow         (kg/mb/h)         1238e-005         7.228e+004         5.794e+004         7.788e-004         1.35           33         Actual Volume Flow         (m3/h)         124.1         86.41         2.358         10.94         1.35           34         Mass Density         (kg/m3)         124.1         86.41         2.358         10.00         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24 |                      |            |                      |                    |                         |                      | 3.173e+004                      |
| 21         Name         WATER-BA @COL4         HPCOLBOT @COL5         HPCOLTOP @COL5         Refux @COL5         To Condens           28         Yapour Fraction         0.0000         0.0000         1.0000         0.0000           29         Temperature         (C)         44.000         -172.8         -176.9.         -177.9.           30         Pressure         (bar)         17.2.4         5.998         5.998         5.998           31         Molar Flow         (kgm0Hr)         1.236-000         7.228-004         5.794+004         7.788-004         1.35           32         Ass Density         (kgm3)         986.6         988.4         2.456         711.7         4           34         Mass Density         (kgm3)         986.6         988.4         2.456         711.7         4           35         Name         TO-HPCOL@COL5         Bolup @COL6         C2-WASTE @COL6         Fishv @COL6         HP-BOT2.6           36         Vapour Fraction         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25 |                      |            |                      |                    |                         |                      | 627.3                           |
| 20         Vacue Fraction         0.0000         0.0000         1.0000         0.0000           22         Temperature         (C)         40.00         -172.6         -176.9         -176.9           23         Molar Flow         (kgmole/h)         6863         2428         2067         2778           23         Mass Flow         (kg/h)         1.238e+005         7.228e+004         5.794e+004         7.789e+004         1.35           34         Atsal Volume Flow         (mg/h)         1.241         8.864         24.56         711.7           35         Actual Volume Flow         (mg/h)         1.241         8.864         24.56         711.7           36         Name         TO-HPCOL@COL5         Boilup @COL8         C2-WASTE@COL6         FlshV@COL6         HP-BOT-2 @           37         Temperature         (C)         -172.2         -181.8         -180.9         -181.6           38         Pressure         (bar)         5.988         1.172         1.172         1.172           39         D8.72         1939         28.72         1939         -444           40         Mass Flow         (kg/h)         1.302e+005         6.244e+004         84.96         6.24e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | · · · · ·            | (kg/m3)    |                      |                    |                         |                      | 50.58                           |
| 2         Temperature         (C)         40.00         -172.6         -176.8         -176.9           30         Pressure         (bar)         17.24         5.998         5.998         5.998           31         Molar Flow         (kgmole/h)         6683         2429         2067         2778           32         Mass Flow         (kgmble/h)         1236e+006         7.228e+004         5.794e+004         7.788e+004         1.35           33         Actual Volume Flow         (m3/h)         124.1         88.41         2359         109.4           34         Mass Density         (kgm3)         998.5         836.4         24.456         711.7           34         Mass Density         (kgm3)         998.5         836.4         24.456         711.7           35         Vapour Fraction         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000           37         Temperature         (C)         -172.2         -181.8         -181.8         2.398         1.172         1.172         1.172           39         Molar Flow         (kgmble/h)         1.302e+006         8.24e+004         848.6         6.28e+004         7.22           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                      |            |                      |                    |                         |                      | To Condenser @COL               |
| 30         Pressure         (bar)         17.24         5.988         5.988         5.988           31         Molar Flow         (kg/n)         1.868         2429         2067         2.778           32         Mass Flow         (kg/n)         1.236e4005         7.226e4004         5.794e4004         7.789e4004         1.35           34         Actual Volume Flow         (m3/n)         1.236e4005         7.226e4004         5.794e4004         7.789e4004         1.35           34         Mass Density         (kg/m3)         9.9865         8.86.4         24.56         7.11.7         1.72           35         Name         TO-HPCOL@COL5         Boilup@COL6         C2-WASTE@COL6         FishV @COL6         HP.807.2 @           36         Vapour Fraction         1.0000         1.0000         1.0000         1.0000           37         Temperature         (C)         -172.2         -1818         -181.6         -181.6           39         Molar Flow         (kg/m)         1.302e+005         8.284e+004         8.284e+004         7.22           40         Asse Flow         (kg/m)         1.302e+005         8.284e+004         1.89         -24           42         Mass Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                      |            |                      |                    |                         |                      | 1.0000                          |
| 31         Molar Flow         (kgm)e/n         1236e405         7.28e+004         5.79ke404         7.79e+004         1.35           32         Mass Flow         (kg/n)         1123e405         7.28e+004         5.79ke4004         7.79e+004         1.35           34         Actual Volume Flow         (m3/n)         1124.1         864.1         2356         109.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                      |            |                      |                    |                         |                      | -176.9                          |
| 32         Mass Flow         (kg/h)         1.236±005         7.228±004         5.794±004         7.789±004         1.35           33         Actual Volume Flow         (m3/h)         124.1         86.61         2358         100.4         100.4           34         Mass Density         (kg/m3)         996.5         836.4         224.56         711.7         1.72           35         Vapour Fraction         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.000         1.208±004         7.22         4.414         Actual Volume Flow         (kg/m3)         2.380         5.142         5.280         5.142         5.280         5.142         4.424         Mass Density         (kg/m3)         2.380         5.142         5.280         5.142         5.876         4.44         4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                      |            |                      |                    |                         |                      | 5.998                           |
| 33         Actual Volume Flow         (m3/h)         124.1         88.41         2358         108.4           34         Mass Density         (kg/m3)         986.5         838.4         24.56         711.7           35         Name         TO-HPCOL@COL5         Bolup@COL8         C2-WASTE@COL6         FishV@COL6         HP-BOT.2 @           36         Vapour Fraction         10000         1.0000         1.0000         1.0000         1.0000           37         Temperature         (C)         .172.2         .181.8         .190.9         .181.8           38         Pressure         (bar)         5.998         1.172         1.172         1.172           39         Molar Flow         (kg/h)         1.302e-005         6.284e+004         6.896         6.284e+004         7.22           41         Actual Volume Flow         (kg/m3)         2.30         5.142         5.200         6.142            42         Mass Density         (kg/m3)         2.030         5.142         5.200         5.000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31 |                      |            |                      |                    |                         |                      | 4845                            |
| 34         Mass Density         (tgdm3)         988.5         836.4         24.58         711.7           35         Name         TO-HPCOL@COL5         Boilup@COL6         C2-WASTE@COL8         FIshV@COL6         HP-BOT-2 @           36         Vapour Fraction         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.00172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.0001         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32 |                      |            |                      |                    |                         |                      | 1.358e+005                      |
| 3         Name         TO-HPCOL@COLS         Boilup@COL6         C2-WASTE@COL6         FishV@COL6         HP-BOT-2@           36         Vapour Fraction         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.00000         1.00000         1.0000 <th>33</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>5529<br/>24.57</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33 |                      |            |                      |                    |                         |                      | 5529<br>24.57                   |
| 36         Vapour Fraction         1.0000         1.0000         1.0000         1.0000           37         Temperature         (C)         .172.2         .181.6         .190.9         .181.6           38         Pressure         (bar)         5.998         1.172         1.172         1.172           39         Molar Flow         (kg/n)         1.302e+005         6.264e+004         849.6         6.264e+004         7.22           40         Mass Flow         (kg/n)         1.302e+005         6.264e+004         849.6         6.264e+004         7.22           41         Actual Volume Flow         (m3/n)         5411         1.218e+004         160.9         1.218e+004         7.22           43         Name         HP-TOP-3@COL6         LPCOLBOT@COL6         LPCOLTOP@cOL6         SumpV@cOL8         To Reboiler (           44         Vapour Fraction         0.0358         0.0000         1.0000         1.0000         1.0000           45         Temperature         (C)         -194.5         -181.6         -181.6         -181.6           46         Pressure         (bar)         1.172         1.172         1.172         1.172           47         Molar Flow         (kg/ma) <th>34</th> <th></th> <th>(кулпа)</th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34 |                      | (кулпа)    |                      |                    |                         |                      |                                 |
| 37         Temperature         (C)         -172.2         -181.6         -190.9         -181.6           38         Pressure         (bar)         5.998         1.172         1.172         1.172           39         Molar Flow         (kgmole/h)         4496         1939         28.72         1939           40         Mass Flow         (kg/h)         1.302e+005         6.264e+004         180.9         1.218e+004         7.22           41         Actual Volume Flow         (m3/h)         5.471         1.218e+004         180.9         1.218e+004         7.22           43         Name         HP-TOP-3 @COL6         LPCOLEOT @COL6         SumpV @COL8         To Reboiler (           44         Vapour Fraction         0.0358         0.00000         1.0000         1.0000           45         Temperature         (C)         -194.5         -181.6         -194.5         -181.6           46         Pressure         (bar)         1.172         1.172         1.172         1.172           47         Molar Flow         (kg/mble/h)         2067         1066         3777         8.858e-004           48         Mass Flow         (kg/m3)         124.8         1147         5.252<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36 |                      |            |                      |                    |                         |                      | 0.4058                          |
| 38         Pressure         (bar)         5.998         1.172         1.172         1.172           39         Molar Flow         (kg/m)         1.302+005         6.264+004         648.6         6.284+004         7.22           40         Mass Flow         (kg/m)         1.302+005         6.264+004         648.6         6.284+004         7.22           41         Actual Volume Flow         (m3/h)         5471         1.218+004         160.9         1.218+004         7.22           42         Mass Density         (kg/m3)         23.80         5.142         5.280         5.142           43         Name         HP-TOP-3@COL6         LPCOLBOT@COL6         LPCOLTOP@COL6         SumpV@COL6         To Reboiler of           44         Vapour Fraction         0.0358         0.0000         1.0000         1.0000           45         Temperature         (C)         -194.5         -181.6         -194.5         -181.6           46         Pressure         (bar)         1.172         1.172         1.172         1.172           47         Molar Flow         (kg/ma)         2.067         1056         3777         8.859-004           48         Mass Flow         (kg/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37 |                      | (C)        |                      |                    |                         |                      | -190.0                          |
| 33         Molar Flow         (kgmole/h)         4498         1939         28.72         1939           40         Mass Flow         (kg/h)         1.302e+005         6.264e+004         848.6         6.264e+004         7.22           41         Actual Volume Flow         (m3/h)         64171         1.218e+004         160.9         1.218e+004         7.22           42         Mass Density         (kg/m3)         23.80         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.142         5.280         5.181         5.4181.6         5.4181.6         5.4181.6         5.4181.6         5.4181.6         5.4181.6         5.4181.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38 |                      |            |                      |                    |                         |                      | 1.172                           |
| 40         Mass Flow         (kg/h)         1.302e+005         6.264e+004         848.6         6.264e+004         7.22           41         Actual Volume Flow         (m3/h)         5471         1.218e+004         160.9         1.218e+004         7.22           42         Mass Density         (kg/m3)         23.80         5.142         5.280         5.142           43         Name         HP-TOP-3 @COL6         LPCOLBOT @COL6         LPCOLTOP @COL6         SumpV @COL6         To Reboiler (           44         Vapour Fraction         0.0358         0.0000         1.0000         1.0000         1         0000           45         Temperature         (C)         -194.5         -181.6         -194.5         -181.6           46         Pressure         (bar)         1.172         1.172         1.172         1.172           47         Molar Flow         (kgmole/h)         2067         1056         3777         8.659e-004         -667           48         Actual Volume Flow         (m3/h)         446.9         29.71         2.015e+004         5.62e-003         -67           49         Actual Volume Flow         (m3/h)         142.6         1147         5.262         5.167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39 |                      |            |                      |                    |                         |                      | 2429                            |
| 41       Actual Volume Flow       (m3/h)       5471       1.218e+004       160.9       1.218e+004         42       Mass Density       (kg/m3)       23.80       5.142       5.280       5.142         43       Name       HP-TOP-3 @COL6       LPCOLBOT @COL6       LPCOLTOP @COL6       SumpV @COL6       To Reboiler (         44       Vapour Fraction       0.0358       0.0000       1.0000       1.0000       1.0000         45       Temperature       (C)       .194.5      181.6      194.5      181.6         46       Pressure       (bar)       1.172       1.172       1.172       1.172         48       Mass Flow       (kg/h)       5.784e+004       3.409e+004       1.058e+005       2.874e-002       8.67         49       Actual Volume Flow       (m3/h)       484.9       29.71       2.015e+004       5.682e-003         50       Mass Density       (kg/m3)       124.6       1147       5.252       5.167         51       Name       TO-LPCOL@COL6       ToFkb @COL6       ToSump @COL6       ToTee @CCC         52       Vapour Fraction       0.8938       0.7870       0.0000       0.00000         53       Temperature       (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 |                      |            |                      |                    |                         |                      | 7.228e+004                      |
| 42         Mass Density         (kg/m3)         23.80         5.142         5.280         5.142           43         Name         HP-TOP-3@COL6         LPCOLBOT@COL6         SumpV@COL6         To Reboiler (           44         Vapour Fraction         0.0358         0.0000         1.0000         1.0000           45         Temperature         (C)         -194.5         -181.6         -194.5         -181.6           46         Pressure         (bar)         1.172         1.172         1.172         1.172           47         Molar Flow         (kg/h)         5.784e+004         3.409e+004         1.058e+005         2.874e-002         9.67           49         Actual Volume Flow         (m3/h)         464.9         2.97.1         2.015e+004         5.562e-003           50         Mass Density         (kg/m3)         124.6         1147         5.252         5.167           51         Name         To-LPCOL@COL6         ToFlsh@COL6         ToReb @COL6         ToSump @COL6         ToTee @COL6           52         Vapour Fraction         0.8938         0.7870         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.011.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41 |                      |            |                      |                    |                         |                      | 5633                            |
| 43         Name         HP-TOP-3 @COL6         LPCOLBOT @COL6         LPCOLTOP @COL6         SumpV @COL6         To Reboiler @           44         Vapour Fraction         0.0358         0.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42 |                      |            | 23.80                | 5.142              | 5.280                   | 5.142                | 12.83                           |
| Opport High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43 | Name                 |            | HP-TOP-3@COL6        | LPCOLBOT @COL6     | LPCOLTOP @COL6          | SumpV @COL6          | To Reboiler @COL6               |
| Interview         (bar)         1.172         1.172         1.172         1.172           47         Molar Flow         (kgmole/h)         2067         1056         3777         8.859e-004           48         Mass Flow         (kg/h)         5.794e+004         3.409e+004         1.058e+005         2.874e-002         9.87           49         Actual Volume Flow         (m3/h)         464.9         29.71         2.015e+004         5.652e-003           50         Mass Density         (kg/m3)         124.8         1147         5.252         5.167           51         Name         TO-LPCOL@COL6         ToFlsh@COL6         ToReb@COL6         ToSump@COL6         ToTee@CCC           52         Vapour Fraction         0.8938         0.7870         0.0000         0.0000           53         Temperature         (C)         -190.5         -181.8         -181.6         -181.6           54         Pressure         (bar)         1.172         1.172         1.172         1.172           55         Molar Flow         (kgmole/h)         364.6         2463         2463         524.8           56         Mass Elow         (kg/m3)         5.752         8.521         1147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44 | Vapour Fraction      |            | 0.0358               | 0.0000             | 1.0000                  | 1.0000               | 0.0000                          |
| 46         Pressure         (bar)         1.172         1.172         1.172         1.172         1.172           47         Molar Flow         (kgmole/h)         2067         1056         3777         8.859e-004         4           48         Mass Flow         (kg/h)         5.794e+004         3.409e+004         1.058e+005         2.874e-002         9.87           49         Actual Volume Flow         (m3/h)         464.9         2.9.71         2.015e+004         5.562e-003           50         Mass Density         (kg/m3)         124.8         1147         5.262         5167           51         Name         TO-LPCOL@COL6         ToFlsh@COL6         ToReb@COL6         ToSump@COL6         ToTee @CO           52         Vapour Fraction         0.8938         0.7870         0.0000         0.0000         0.0000           53         Temperature         (C)         -190.5         -181.6         -181.6         -181.6         -181.6           54         Pressure         (bar)         1.172         1.172         1.172         1.172*           55         Molar Flow         (kg/mb)         1.056e+004         7.953e+004         1.890e+004         1.13           56         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45 |                      | (C)        |                      |                    |                         |                      | -181.7                          |
| 48         Mass Flow         (kg/h)         5.784e+004         3.409e+004         1.058e+005         2.874e-002         9.67           49         Actual Volume Flow         (m3/h)         464.9         29.71         2.015e+004         5.562e-003         50           50         Mass Density         (kg/m3)         124.6         1147         5.252         5.167         51           51         Name         TO-LPCOL@COL6         ToFlsh@COL6         ToReb@COL6         ToSump@COL6         ToTe@COC           52         Vapour Fraction         0.8938         0.7870         0.0000         0.0000           53         Temperature         (C)         -190.5         -181.6         -181.6         -181.8           54         Pressure         (bar)         1.172         1.172         1.172         1.172           56         Molar Flow         (kg/mb)         364.8         2463         2463         524.8           56         Mass Density         (kg/h)         1.056e+004         7.953e+004         7.953e+004         1.690e+004         1.13           57         Actual Volume Flow         (m3/h)         1835         1.220e+004         69.32         14.76         144           58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46 | Pressure             | (bar)      | 1.172                | 1.172              | 1.172                   | 1.172                | 1.172                           |
| 49       Actual Volume Flow       (m3/h)       464.9       29.71       2.015e+004       5.562e-003         50       Mass Density       (kg/m3)       124.6       1147       5.252       5.167         51       Name       TO-LPCOL@COL6       ToFlsh@COL6       ToReb@COL6       ToSump@COL6       ToTe@@CO         52       Vapour Fraction       0.8938       0.7870       0.0000       0.0000         53       Temperature       (C)       -190.5       -181.6       -181.6       -181.8         49       Pressure       (bar)       1.172       1.172       1.172       1.172         56       Molar Flow       (kg/m0le/h)       384.6       2463       2463       524.8         56       Mass Flow       (kg/h)       1.056e+004       7.953e+004       7.953e+004       1.890e+004       1.13         57       Actual Volume Flow       (m3/h)       1835       1.220e+004       69.32       14.76       144         58       Mass Density       (kg/m3)       5.752       6.521       1147       1144       144         59       60       60       61       61.521       1147       1144       144       144       144       144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47 | Molar Flow           | (kgmole/h) | 2067                 | 1056               | 3777                    | 8.859e-004           | 2994                            |
| Inasc Tensity         (kg/m3)         124.6         1147         5.252         5.167           51         Name         TO-LPCOL@COL6         ToFlsh@COL6         ToReb@COL6         ToSump@COL6         ToTee @CO           52         Vapour Fraction         0.8938         0.7870         0.0000         0.0000           53         Temperature         (C)         -190.5         -181.6         -181.8         -181.8           54         Pressure         (bar)         1.172         1.172         1.172         1.172           55         Molar Flow         (kg/ma)         364.8         2463         2463         524.8           56         Mass Flow         (kg/h)         1.056e+004         7.953e+004         7.953e+004         1.680e+004         1.13           57         Actual Volume Flow         (m3/h)         1835         1.220e+004         69.32         14.76           58         Mass Density         (kg/m3)         5.752         6.521         1147         1144         54           60         61         62         64.521         14.76         64.521         64.521         14.76         64.521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48 | Mass Flow            | (kg/h)     | 5.794e+004           | 3.409e+004         | 1.058e+005              | 2.874e-002           | 9.672e+004                      |
| 51         Name         TO-LPCOL @COL6         ToFlsh @COL6         ToReb @COL6         ToSump @COL6         ToTee @CO           52         Vapour Fraction         0.8938         0.7870         0.0000         0.0000           53         Temperature         (C)         -190.5         -181.6         -181.6         -181.6         -181.6           54         Pressure         (bar)         1.172         1.172         1.172         1.172           55         Molar Flow         (kgmole/h)         364.6         2463         2463         524.8           56         Mass Flow         (kg/h)         1.056e+004         7.953e+004         1.890e+004         1.13           57         Actual Volume Flow         (m3/h)         1835         1.220e+004         69.32         14.76           58         Mass Density         (kg/m3)         5.752         6.521         1147         1144           59         60         5.752         6.521         1147         1144         56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |                      | (m3/h)     |                      |                    |                         |                      | 84.26                           |
| 52         Vapour Fraction         0.8938         0.7870         0.0000         0.0000           53         Temperature         (C)         -190.5         -181.6         -181.6         -181.6         -           54         Pressure         (bar)         1.172         1.172         1.172         1.172*           55         Molar Flow         (kgmole/h)         364.6         2463         2463         524.8           56         Mass Flow         (kg/h)         1.056e+004         7.953e+004         1.690e+004         1.13           57         Actual Volume Flow         (m3/h)         1835         1.220e+004         69.32         14.76           58         Mass Density         (kg/m3)         5.752         6.521         1147         1144           59         60         5.752         6.521         1147         1144         56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | Mass Density         | (kg/m3)    |                      |                    |                         |                      | 1148                            |
| 53         Temperature         (C)         -190.5         -181.6         -181.6         -181.6           54         Pressure         (bar)         1.172         1.172         1.172         1.172*           55         Molar Flow         (kgmole/h)         364.6         2463         2463         524.8           56         Mass Flow         (kg/h)         1.056e+004         7.953e+004         1.690e+004         1.13           57         Actual Volume Flow         (m3/h)         1835         1.220e+004         69.32         14.76           58         Mass Density         (kg/m3)         5.752         6.521         1147         1144           59         5.752         6.521         1147         1144         54           61         6.521         1.147         1144         54         54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                      |            | ~ ~ ~                |                    |                         |                      | ToTee @COL6                     |
| 54         Pressure         (bar)         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.172         1.13         1.13         1.13         1.13         1.13         1.13         1.13         1.14         1.14         1.14         1144         144         144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _  |                      |            |                      |                    |                         |                      | 0.0000                          |
| Molar Flow         (kg/m)         384.6         2463         2463         564.8           56         Mass Flow         (kg/h)         1.056e+004         7.953e+004         7.953e+004         1.690e+004         1.13           57         Actual Volume Flow         (m3/h)         1835         1.220e+004         69.32         14.76           58         Mass Density         (kg/m3)         5.752         8.521         1147         1144           59         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60 <td< th=""><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th>-181.6</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _  |                      |            |                      |                    |                         |                      | -181.6                          |
| 56         Mass Flow         (kg/h)         1.056e+004         7.853e+004         7.953e+004         1.680e+004         1.13           57         Actual Volume Flow         (m3/h)         1835         1.220e+004         69.32         14.76         14.76           58         Mass Density         (kg/m3)         5.752         6.521         1147         1144         144           59         60         61         62         64         64         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54 |                      |            |                      |                    |                         |                      | 1.172 *                         |
| 57       Actual Volume Flow       (m3/h)       1835       1.220e+004       69.32       14.76         58       Mass Density       (kg/m3)       5.752       6.521       1147       1144         59       60       61       62       63.21       1147       1144         60       61       62       63.21       63.21       1147       1144         62       63.21       63.21       63.21       63.21       63.21       63.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55 |                      |            |                      |                    |                         |                      | 3519                            |
| 58         Mass Density         (kg/m3)         5.752         6.521         1147         1144           59         60         61         62         63         64         64         65         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66 <td< th=""><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th>1.136e+005</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _  |                      |            |                      |                    |                         |                      | 1.136e+005                      |
| 59<br>60<br>61<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |                      |            |                      |                    |                         |                      | 99.03                           |
| 60<br>61<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | Mass Density         | (Kg/m3)    | 5.752                | 6.521              | 1147                    | 1144                 | 1147                            |
| 61<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _  |                      |            |                      |                    |                         |                      |                                 |
| 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _  |                      |            |                      |                    |                         |                      |                                 |
| Aspen Technology Inc. Aspen HYSYS Version 10 Page 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 62 |                      |            |                      |                    |                         |                      |                                 |
| 1490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63 | Aspen Technology Inc |            | £                    | spen HYSYS Versio  | n 10                    |                      | Page 3 of 34                    |
| Licensed to: BATTELLE ENERGY ALLIANCE * Specified by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |                      |            |                      |                    |                         |                      | * Specified by user.            |

| 1              |                         | DATT: -           |                          | Case Name:          | Generic HTSE+NH3 PF      | D_v3.00_Therm66_5bar  | _U80 (3049 tpd NH3)_r |
|----------------|-------------------------|-------------------|--------------------------|---------------------|--------------------------|-----------------------|-----------------------|
| 3              | ( aspentech             | Bedford, M/       | ENERGY ALLIANCE<br>A     | Unit Set:           | HTSE PFD                 |                       |                       |
| 4<br>5         |                         | USA               |                          | Date/Time:          | Fri Apr 30 14:25:18 202  | 1                     |                       |
| 6              |                         |                   | _ / /                    |                     |                          |                       |                       |
| 7<br>8         | Wo                      | orkbook:          | Case (Mai                | n) (continue        | ed)                      |                       |                       |
| 9<br>10        |                         |                   | Mat                      | erial Streams (con  | tinued)                  | Fluid Pkg             | j: All                |
| 11             | Name                    |                   | 1 @H2burn                | 2@H2burn            | 3 @H2burn                | 4@H2burn              | 5 @H2burn             |
| 12             | Vapour Fraction         |                   | 0.0000                   | 0.0000              | 0.0000                   | 1.0000 *              | 1.0000                |
| 13             | Temperature             | (C)               | 40.00                    | 40.00               | 40.01                    | 265.6                 | 265.6                 |
| 4              | Pressure                | (bar)             | 48.37                    | 48.37               | 49.57 *                  | 49.37                 | 49.37                 |
| 5              | Molar Flow              | (kgmole/h)        | 1997                     | 1.030e+004          | 1.030e+004               | 1.030e+004            | 1.030e+004            |
| 6              | Mass Flow               | (kg/h)            | 3.598e+004               | 1.856e+005          | 1.856e+005               | 1.856e+005 *          | 1.856e+005            |
| 7              | Actual Volume Flow      | (m3/h)            | 36.08                    | 186.1               | 186.1                    | 7812                  | 7812                  |
| 8              | Mass Density            | (kg/m3)           | 997.3                    | 997.3               | 997.3                    | 23.75                 | 23.75                 |
| 9              | Name                    |                   | 6 @H2burn                | BURN AIR-1 @H2burr  | BURN AIR-2 @H2burr       | BURN AIR-3 @H2buri    | BURN H2 @H2burn       |
| 20             | Vapour Fraction         |                   | 0.2378                   | 1.0000              | 1.0000                   | 1.0000                | 1.0000                |
| 1              | Temperature             | (C)               | 40.00 *                  | 21.11               | 745.6                    | 160.0 *               | 26.11                 |
| 22             | Pressure                | (bar)             | 48.37                    | 1.034               | 49.64 *                  | 49.64                 | 49.02                 |
| 3              | Molar Flow              | (kgmole/h)        | 1.613e+004               | 4776                | 4776                     | 4776                  | 2060                  |
| 24<br>25       | Mass Flow               | (kg/h)            | 3.275e+005               | 1.378e+005          | 1.378e+005               | 1.378e+005            | 4154                  |
| -              | Actual Volume Flow      | (m3/h)            | 2301                     | 1.130e+005          | 8272                     | 3534                  | 1078                  |
| 26             | Mass Density            | (kg/m3)           | 142.3                    | 1.220               | 16.66                    | 39.00                 | 3.854                 |
| 27<br>28       | Name                    |                   | BURN N2-1 @H2burn        | BURN N2-2 @H2burn   | BURN N2-3 @H2burn        | BURN N2-4 @H2burn     | BURN N2-5 @H2bu       |
| -              | Vapour Fraction         | (0)               | 1.0000                   | 0.9304              | 0.3474                   | 0.2550                | 1.0000                |
| 29<br>80       | Temperature<br>Pressure | (C)               | 981.4                    | 243.6               | 195.0 *                  | 131.1*                | 40.00                 |
| 11             |                         | (bar)             | 49.02                    | 48.81<br>1.613e+004 | 48.61                    | 48.40<br>1.613e+004   | 48.37<br>3837         |
| 12             | Molar Flow<br>Mass Flow | (kgmole/h)        | 1.613e+004<br>3.275e+005 | 3.275e+005          | 1.613e+004<br>3.275e+005 | 3.275e+005            | 1.060e+005            |
| 12             | Actual Volume Flow      | (kg/h)            | 3.444e+004               | 1.196e+004          | 4614                     | 3.2750+005            | 2079                  |
| 34             | Mass Density            | (m3/h)<br>(kg/m3) | 9.511                    | 27.38               | 70.98                    | 105.1                 | 50.96                 |
| 35             | Name                    | (Kg/H3)           | BURNER LIQ @H2bu         | WATER @H2burn       | 1 @H2rec                 | 101 Process Water Inl | 102 @H2rec            |
| 36             | Vapour Fraction         |                   | 0.0000                   | 0.0000              | 1.0000                   | 0.0000                | 0.0000                |
| 37             | Temperature             | (C)               | 981.4                    | 40.00               | 120.0 *                  | 10.00                 | 10.05                 |
| 38             | Pressure                | (bar)             | 49.02                    | 48.37               | 1.000 *                  | 5.171                 | 11.38                 |
| 39             | Molar Flow              | (kgmole/h)        | 0.0000                   | 1.230e+004          | 0.1917                   | 360.0                 | 360.0                 |
| 10             | Mass Flow               | (kg/h)            | 0.0000                   | 2.215e+005          | 1.000 *                  | 6485                  | 6485                  |
| 11             | Actual Volume Flow      | (m3/h)            | 0.0000                   | 222.1               | 6.265                    | 6.367                 | 6.366                 |
| 12             | Mass Density            | (kg/m3)           | 9.511                    | 997.3               | 0.1596                   | 1019                  | 1019                  |
| 13             | Name                    |                   | 113 @H2rec               | 114 @H2rec          | 122@H2rec                | 131 @H2rec            | 132 process feed wa   |
| 4              | Vapour Fraction         |                   | 0.0000                   | 0.0000              | 0.0000                   | 0.0004                | 0.0004                |
| 15             | Temperature             | (C)               | 40.05                    | 60.38               | 20.05                    | 59.34                 | 59.40                 |
| 6              | Pressure                | (bar)             | 10.38                    | 9.876               | 10.88                    | 9.189                 | 6.400                 |
| 17             | Molar Flow              | (kgmole/h)        | 360.0                    | 360.0               | 360.0                    | 439.3                 | 439.3                 |
| 8              | Mass Flow               | (kg/h)            | 6485                     | 6485                | 6485                     | 7911                  | 7911                  |
| 9              | Actual Volume Flow      | (m3/h)            | 6.510                    | 6.615               | 6.413                    | 8.588                 | 8.839                 |
| 0              | Mass Density            | (kg/m3)           | 996.2                    | 980.4               | 1011                     | 921.3                 | 895.1                 |
| 1              | Name                    |                   | 302 H2/H2O for purific   | 303 @H2rec          | 304a @H2rec              | 304b @H2rec           | 304c @H2rec           |
| 52             | Vapour Fraction         |                   | 1.0000                   | 1.0000 *            | 1.0000                   | 1.0000 *              | 1.0000                |
| 3              | Temperature             | (C)               | 99.24                    | 59.66               | 59.67                    | 59.23                 | 59.23                 |
| 4              | Pressure                | (bar)             | 4.640                    | 0.9800              | 0.9800                   | 0.9604                | 0.9604                |
| 5              | Molar Flow              | (kgmole/h)        | 439.3                    | 0.1917              | 0.1917                   | 0.1917                | 0.1917                |
| i6             | Mass Flow               | (kg/h)            | 2152                     | 1.000               | 1.000                    | 1.000                 | 1.000                 |
| 7              | Actual Volume Flow      | (m3/h)            | 2927                     | 5.410               | 5.410                    | 5.513                 | 5.513                 |
| 58<br>59<br>60 | Mass Density            | (kg/m3)           | 0.7350                   | 0.1848              | 0.1848                   | 0.1814                | 0.1814                |
| 61<br>62       |                         |                   |                          |                     |                          |                       |                       |
| 92             |                         |                   |                          |                     |                          |                       |                       |

| 1              |                                |                     |                      | Case Name:           | Generic HTSE+NH3 PF     | D_v3.00_Therm66_5bar | _U80 (3049 tpd NH3)_re               |
|----------------|--------------------------------|---------------------|----------------------|----------------------|-------------------------|----------------------|--------------------------------------|
| 2<br>3         | ( aspentech                    | ) Bedford, M        | ENERGY ALLIANCE<br>A | Unit Set:            | HTSE PFD                |                      |                                      |
| 4<br>5         |                                | USA                 |                      | Date/Time:           | Fri Apr 30 14:25:18 202 | 1                    |                                      |
| 6              |                                |                     |                      |                      |                         |                      |                                      |
| 7<br>8         | Wo                             | orkbook:            | Case (Maii           | n) (continue         | ed)                     |                      |                                      |
| 9<br>10        |                                |                     | Mat                  | erial Streams (con   | tinued)                 | Fluid Pkg            | : All                                |
| 11             | Name                           |                     | 304d @H2rec          | 304e @H2rec          | 304f @H2rec             | 304g @H2rec          | 304h @H2rec                          |
| 12             | Vapour Fraction                |                     | 1.0000 *             | 1.0000               | 1.0000 *                | 1.0000               | 1.0000 *                             |
| 13             | Temperature                    | (C)                 | 58.80                | 58.81                | 58.37                   | 58.38                | 57.94                                |
| 14             | Pressure                       | (bar)               | 0.9412               | 0.9412               | 0.9224                  | 0.9224               | 0.9039                               |
| 15             | Molar Flow                     | (kgmole/h)          | 0.1917               | 0.1917               | 0.1917                  | 0.1917               | 0.1917                               |
| 16             | Mass Flow                      | (kg/h)              | 1.000                | 1.000                | 1.000                   | 1.000                | 1.000                                |
| 17             | Actual Volume Flow             | (m3/h)              | 5.619                | 5.619                | 5.726                   | 5.726                | 5.835                                |
| 19             | Mass Density<br>Name           | (kg/m3)             | 0.1780<br>305 @H2rec | 0.1780<br>306 @H2rec | 0.1746<br>307 @H2rec    | 0.1746<br>308 @H2rec | 0.1714<br>309 @H2rec                 |
| 20             | Vapour Fraction                |                     | 305 @H2rec<br>1.0000 | 0.8822               | 0.8603                  | 308 @H2rec<br>0.0000 | 309 @H2rec<br>0.0000                 |
| 20             | Temperature                    | (C)                 | 57.95                | 70.38                | 60.00 *                 | 60.00                | 60.05                                |
| 22             | Pressure                       | (C)<br>(bar)        | 0.9039               | 4.547                | 4.287                   | 4.287                | 9.189                                |
| 23             | Molar Flow                     | (kgmole/h)          | 0.1917               | 439.3                | 439.3                   | 61.37                | 61.37                                |
| 24             | Mass Flow                      | (kg/h)              | 1.000                | 2152                 | 2152                    | 1106                 | 1106                                 |
| 25             | Actual Volume Flow             | (m3/h)              | 5.836                | 2436                 | 2445                    | 1.128                | 1.127                                |
| 26             | Mass Density                   | (kg/m3)             | 0.1714               | 0.8832               | 0.8801                  | 980.5                | 980.7                                |
| 27             | Name                           |                     | 310 @H2rec           | 311 @H2rec           | 312@H2rec               | 313 @H2rec           | 314 @H2rec                           |
| 28             | Vapour Fraction                |                     | 1.0000               | 1.0000               | 1.0000 *                | 1.0000               | 0.9785                               |
| 29             | Temperature                    | (C)                 | 60.00                | 113.0                | 68.60                   | 123.0                | 64.00                                |
| 30             | Pressure                       | (bar)               | 4.287                | 6.495                | 6.365                   | 9.642                | 9.449                                |
| 31             | Molar Flow                     | (kgmole/h)          | 377.9                | 377.9                | 377.9                   | 377.9                | 377.9                                |
| 32             | Mass Flow                      | (kg/h)              | 1046                 | 1046                 | 1046                    | 1046                 | 1046                                 |
| 33             | Actual Volume Flow             | (m3/h)              | 2444                 | 1871                 | 1689                    | 1294                 | 1100                                 |
| 34             | Mass Density                   | (kg/m3)             | 0.4281               | 0.5591               | 0.6193                  | 0.8087               | 0.9511                               |
| 35             | Name                           |                     | 315 @H2rec           | 316 @H2rec           | 317@H2rec               | 318 @H2rec           | 320 @H2rec                           |
| 36<br>97       | Vapour Fraction                | (0)                 | 0.9609<br>40.00 *    | 0.0000<br>40.00      | 0.0101<br>35.71         | 0.0023               | 1.0000<br>40.00                      |
| 38             | Temperature<br>Pressure        | (C)                 | 9.189                | 9.189                | 9.189                   | 9.189                | 9.189                                |
| 39             | Molar Flow                     | (bar)<br>(kgmole/h) | 377.9                | 14.77                | 17.95                   | 79.32                | 363.2                                |
| 4N             | Mass Flow                      | (kg/h)              | 1046                 | 266.1                | 320.5                   | 1426                 | 780.1                                |
| 41             | Actual Volume Flow             | (m3/h)              | 1032                 | 0.2671               | 0.8285                  | 1.990                | 1032                                 |
| 42             | Mass Density                   | (kg/m3)             | 1.013                | 996.2                | 386.8                   | 716.6                | 0.7559                               |
| 43             | Name                           |                     | 321 @H2rec           | 322 @H2rec           | 323 @H2rec              | 324 @H2rec           | 325 @H2rec                           |
| 44             | Vapour Fraction                |                     | 1.0000               | 1.0000 *             | 1.0000                  | 0.9952               | 0.9927                               |
| 45             | Temperature                    | (C)                 | 90.37                | 47.25                | 98.78                   | 37.79                | 15.00 *                              |
| 46             | Pressure                       | (bar)               | 13.92                | 13.64                | 20.66                   | 20.25                | 19.95                                |
| 47             | Molar Flow                     | (kgmole/h)          | 363.2                | 363.2                | 363.2                   | 363.2                | 363.2                                |
| 48             | Mass Flow                      | (kg/h)              | 780.1                | 780.1                | 780.1                   | 780.1                | 780.1                                |
| 49             | Actual Volume Flow             | (m3/h)              | 792.1                | 712.3                | 547.0                   | 464.6                | 436.0                                |
| 50<br>64       | Mass Density                   | (kg/m3)             | 0.9849               | 1.095                | 1.426                   | 1.679                | 1.789                                |
| 51<br>50       | Name<br>Veneur Freetien        |                     | 326 @H2rec           | 330 @H2rec           | 331@H2rec               | 332 H2 Product @H2r  | 132 process feed wate                |
| 52<br>53       | Vapour Fraction<br>Temperature | (0)                 | 0.0000               | 1.0000               | 0.3511                  | 1.0000               | 0.0004<br>59.40                      |
| 53<br>54       | Pressure                       | (C)<br>(bar)        | 15.00<br>19.95       | 15.00<br>19.95       | 15.00                   | 15.00                | 6.400                                |
| 55             | Molar Flow                     | (kgmole/h)          | 2.665                | 360.5                | 0.5134                  | 360.0                | 439.3                                |
| 56             | Mass Flow                      | (kg/h)              | 48.00                | 732.1                | 6.367                   | 725.7                | 7911                                 |
| 57             | Actual Volume Flow             | (m3/h)              | 4.728e-002           | 436.0                | 0.2239                  | 435.4                | 8.839                                |
| 58             | Mass Density                   | (kg/m3)             | 1015                 | 1.679                | 28.44                   | 1.667                | 895.1                                |
| 59<br>60<br>61 |                                |                     |                      |                      |                         |                      |                                      |
| 62<br>63       | Aspen Technology In            |                     | ŀ                    | spen HYSYS Versio    | on 10                   |                      | Page 5 of 34<br>* Specified by user. |

| 1        |                                |              |                                  | Case Name:                     | Generic HTSE+NH3 PF            | D_v3.00_Therm66_5bar           | _U80 (3049 tpd NH3)_re         |
|----------|--------------------------------|--------------|----------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| 2<br>3   | ( aspentech                    | Bedford, M   | ENERGY ALLIANCE                  | Unit Set:                      | HTSE PFD                       |                                |                                |
| 4<br>5   |                                | USA          |                                  | Date/Time:                     | Fri Apr 30 14:25:18 202        | 1                              |                                |
| 6        |                                |              |                                  |                                |                                |                                |                                |
| 7<br>8   | Wo                             | orkbook:     | Case (Maii                       | n) (continue                   | ed)                            |                                |                                |
| 9<br>10  |                                |              | Mate                             | erial Streams (cor             | tinued)                        | Fluid Pkg                      | r All                          |
| 11       | Name                           |              | 132B @HTSE                       | 151 @HTSE                      | 151B@HTSE                      | 152 process feed wate          | 162 @HTSE                      |
| 12       | Vapour Fraction                |              | 0.0004                           | 0.0614                         | 0.4403                         | 1.0000 *                       | 1.0000                         |
| 13       | Temperature                    | (C)          | 95.31                            | 157.9                          | 158.2                          | 154.8                          | 315.7                          |
| 14       | Pressure                       | (bar)        | 6.400                            | 5.900                          | 5.900                          | 5.400                          | 4.900                          |
| 15       | Molar Flow                     | (kgmole/h)   | 439.3                            | 439.3                          | 439.3                          | 439.3                          | 439.3                          |
| 16       | Mass Flow                      | (kg/h)       | 7911                             | 7911                           | 7911                           | 7911                           | 7911                           |
| 17       | Actual Volume Flow             | (m3/h)       | 9.231                            | 166.5                          | 1140                           | 2801                           | 4339                           |
| 18       | Mass Density                   | (kg/m3)      | 857.0                            | 47.51                          | 6.940                          | 2.825                          | 1.823                          |
| 19       | Name                           |              | 163 @HTSE                        | 164 @HTSE                      | 165@HTSE                       | 166 @HTSE                      | 167 Process Cell Inlet         |
| 20       | Vapour Fraction                |              | 1.0000                           | 1.0000                         | 1.0000                         | 1.0000                         | 1.0000                         |
| 21       | Temperature                    | (C)          | 318.3                            | 328.9                          | 328.9 *                        | 707.8                          | 800.0 *                        |
| 22       | Pressure                       | (bar)        | 4.900                            | 5.206                          | 5.206 *                        | 5.102                          | 5.000                          |
| 23       | Molar Flow                     | (kgmole/h)   | 499.6                            | 499.6                          | 499.6                          | 499.6                          | 499.6                          |
| 24<br>25 | Mass Flow                      | (kg/h)       | 8207                             | 8207                           | 8207 *                         | 8207                           | 8207                           |
| 25       | Actual Volume Flow             | (m3/h)       | 4968                             | 4759                           | 4759                           | 7976                           | 8909                           |
| 26       | Mass Density                   | (kg/m3)      | 1.652<br>171 Process Cell Outle  | 1.724                          | 1.724                          | 1.029                          | 0.9212                         |
| 27       | Name<br>Manager Franking       |              | 171 Process Cell Outli<br>1.0000 | 172 H2/H2O product r<br>1.0000 | 173 H2/H2O recycle @<br>1.0000 | 202 Process Heat Sup<br>0.0000 | 203 Process Heat Ret<br>0.0000 |
| 20       | Vapour Fraction<br>Temperature | (C)          | 800.0                            | 343.9                          | 343.9                          | 247.0                          | 178.2                          |
| 30       | Pressure                       | (C)<br>(bar) | 5.000                            | 4.900                          | 4.900                          | 3.870                          | 3.610                          |
| 31       | Molar Flow                     | (kgmole/h)   | 499.6                            | 4.900                          | 60.28                          | 259.2                          | 259.2                          |
| 32       | Mass Flow                      | (kg/h)       | 2447                             | 2447                           | 295.3                          | 6.531e+004                     | 6.531e+004                     |
| 33       | Actual Volume Flow             | (m3/h)       | 8921                             | 5233                           | 631.4                          | 76.63                          | 72.46                          |
| 34       | Mass Density                   | (kg/m3)      | 0.2743                           | 0.4676                         | 0.4676                         | 852.2                          | 901.3                          |
| 35       | Name                           | (Kg/H3)      | 301@HTSE                         | 302 H2/H2O for purific         |                                | 502 @HTSE                      | 503 @HTSE                      |
| 36       | Vapour Fraction                |              | 1.0000                           | 1.0000                         | 1.0000                         | 1.0000                         | 1.0000                         |
| 37       | Temperature                    | (C)          | 343.9                            | 99.24                          | 20.00 *                        | 109.4                          | 50.00 *                        |
| 38       | Pressure                       | (bar)        | 4.900                            | 4.640                          | 1.013 *                        | 2.190                          | 2.146                          |
| 39       | Molar Flow                     | (kgmole/h)   | 439.3                            | 439.3                          | 568.1                          | 568.1                          | 568.1                          |
| 40       | Mass Flow                      | (kg/h)       | 2152                             | 2152                           | 1.639e+004 *                   | 1.639e+004                     | 1.639e+004                     |
| 41       | Actual Volume Flow             | (m3/h)       | 4602                             | 2927                           | 1.366e+004                     | 8249                           | 7106                           |
| 42       | Mass Density                   | (kg/m3)      | 0.4676                           | 0.7350                         | 1.200                          | 1.987                          | 2.306                          |
| 43       | Name                           |              | 504 @HTSE                        | 505 @HTSE                      | 506 @HTSE                      | 507 @HTSE                      | 508 Sweep Cell Inlet @         |
| 44       | Vapour Fraction                |              | 1.0000                           | 1.0000                         | 1.0000                         | 1.0000                         | 1.0000                         |
| 45       | Temperature                    | (C)          | 147.7                            | 167.1                          | 184.9                          | 785.0                          | 800.0 *                        |
| 46       | Pressure                       | (bar)        | 4.640                            | 4.640                          | 5.206                          | 5.102                          | 5.000 *                        |
| 47       | Molar Flow                     | (kgmole/h)   | 568.1                            | 719.5                          | 719.5                          | 719.5                          | 719.5                          |
| 48       | Mass Flow                      | (kg/h)       | 1.639e+004                       | 2.087e+004                     | 2.087e+004                     | 2.087e+004                     | 2.087e+004                     |
| 49       | Actual Volume Flow             | (m3/h)       | 4287                             | 5680                           | 5268                           | 1.242e+004                     | 1.285e+004                     |
| 50       | Mass Density                   | (kg/m3)      | 3.823                            | 3.674                          | 3.962                          | 1.680                          | 1.624                          |
| 51       | Name                           |              | 511 Sweep Gas/O2 O               | 512 @HTSE                      | 513@HTSE                       | 514 @HTSE                      | 515 Sweep Gas Recy             |
| 52       | Vapour Fraction                |              | 1.0000                           | 1.0000                         | 1.0000                         | 1.0000                         | 1.0000                         |
| 53       | Temperature                    | (C)          | 800.0 *                          | 330.7                          | 238.7                          | 238.8 *                        | 238.8                          |
| 54       | Pressure                       | (bar)        | 5.000                            | 4.900                          | 4.640                          | 4.640 *                        | 4.640                          |
| 55       | Molar Flow                     | (kgmole/h)   | 899.4                            | 899.4                          | 899.4                          | 899.4 *                        | 151.4                          |
| 56       | Mass Flow                      | (kg/h)       | 2.663e+004                       | 2.663e+004                     | 2.663e+004                     | 2.663e+004                     | 4483                           |
| 57       | Actual Volume Flow             | (m3/h)       | 1.607e+004                       | 9229                           | 8258                           | 8260                           | 1390                           |
| 58<br>59 | Mass Density                   | (kg/m3)      | 1.657                            | 2.886                          | 3.225                          | 3.224                          | 3.224                          |
| 09<br>60 |                                |              |                                  |                                |                                |                                |                                |
| 6U       |                                |              |                                  |                                |                                |                                |                                |
| 62       |                                |              |                                  |                                |                                |                                |                                |
| 94<br>60 | Aspen Technology In            | IC .         | 4                                | spen HYSYS Versio              | on 10                          |                                | Page 6 of 34                   |
|          |                                | w.           |                                  | 100001111010 101010            |                                |                                |                                |

| 1        |                            |                   |                      | Case Name:                | Generic HTSE+NH3 PF     | D_v3.00_Therm66_5bar      | _U80 (3049 tpd NH3)_re |
|----------|----------------------------|-------------------|----------------------|---------------------------|-------------------------|---------------------------|------------------------|
| 3        | <b>@aspen</b> tech         | Bedford, M        | ENERGY ALLIANCE<br>A | Unit Set:                 | HTSE PFD                |                           |                        |
| 4<br>5   |                            | USA               |                      | Date/Time:                | Fri Apr 30 14:25:18 202 | 1                         |                        |
| 6        |                            |                   |                      |                           |                         |                           |                        |
| 7<br>8   | Wo                         | rkbook:           | Case (Maii           | n) (continue              | d)                      |                           |                        |
| 9        |                            |                   | Mat                  | erial Streams (con        | tinued)                 | Fluid Pkg                 | c All                  |
| 10<br>11 | Name                       |                   | 516 @HTSE            | 517 Sweep Gas Exhau       | 401@KhpH2               | 402a @KhpH2               | 402b @KhpH2            |
| 12       | Vapour Fraction            |                   | 1.0000               | 1.0000                    | 1.0000                  | 1.0000                    | 4020 @rtipH2<br>1.0000 |
| 13       | Temperature                | (C)               | 238.8                | 98.33                     | 15.00                   | 46.83                     | 40.00 *                |
| 14       | Pressure                   | (bar)             | 4.640                | 1.013 *                   | 19.95                   | 26.17                     | 25.65                  |
| 15       | Molar Flow                 | (kgmole/h)        | 748.0                | 748.0                     | 1.132e+004              | 1.132e+004                | 1.132e+004             |
| 16       | Mass Flow                  | (kg/h)            | 2.215e+004           | 2.215e+004                | 2.282e+004              | 2.282e+004                | 2.282e+004             |
| 17       | Actual Volume Flow         | (m3/h)            | 6869                 | 2.280e+004                | 1.369e+004              | 1.161e+004                | 1.159e+004             |
| 18       | Mass Density               | (kg/m3)           | 3.224                | 0.9714                    | 1.667                   | 1.965                     | 1.968                  |
| 19       | Name                       |                   | 402c @KhpH2          | 402d @KhpH2               | 402e @KhpH2             | 403 Pressurized H2 Pr     | PURGE-4@Krecov         |
| 20       | Vapour Fraction            |                   | 1.0000               | 1.0000                    | 1.0000                  | 1.0000                    | 1.0000                 |
| 21       | Temperature                | (C)               | 74.53                | 40.00 *                   | 74.56                   | 40.00*                    | -32.19                 |
| 22       | Pressure                   | (bar)             | 33.65                | 32.98                     | 43.27                   | 42.40                     | 1.034                  |
| 23       | Molar Flow                 | (kgmole/h)        | 1.132e+004           | 1.132e+004                | 1.132e+004              | 1.132e+004                | 1577                   |
| 24       | Mass Flow                  | (kg/h)            | 2.282e+004           | 2.282e+004                | 2.282e+004              | 2.282e+004                | 2.684e+004             |
| 25<br>26 | Actual Volume Flow         | (m3/h)<br>(kg/m3) | 9837<br>2.319        | 9042<br>2.524             | 2.972                   | 7057                      | 3.010e+004<br>0.8917   |
| 26<br>27 | Mass Density<br>Name       | (kyrna)           | PURGE-5@Krecov       | 2.524<br>PURGE-4A @Krecov | PURGE-4B @Krecov        | 3.233<br>PURGE-4C @Krecov | PURGE-4D @Krecov       |
| 28       | Vapour Fraction            |                   | 0.0246               | 1.0000                    | 1.0000                  | 1.0000                    | 1.0000                 |
| 29       | Temperature                | (C)               | 40.00                | 26.71                     | 26.71                   | 96.86                     | 40.00 *                |
| 30       | Pressure                   | (bar)             | 17.56                | 2.099                     | 2.099                   | 4.262                     | 4.262                  |
| 31       | Molar Flow                 | (kamole/h)        | 1577                 | 1577                      | 1577                    | 1577                      | 1577                   |
| 32       | Mass Flow                  | (kg/h)            | 2.684e+004           | 2.684e+004                | 2.684e+004              | 2.684e+004                | 2.684e+004             |
| 33       | Actual Volume Flow         | (m3/h)            | 96.84                | 1.842e+004                | 1.842e+004              | 1.119e+004                | 9352                   |
| 34       | Mass Density               | (kg/m3)           | 277.2                | 1.457                     | 1.457                   | 2.400                     | 2.870                  |
| 35       | Name                       |                   | PURGE-4E @Krecov     | PURGE-4F @Krecov          | PURGE-4G @Krecov        | NH3-VAP1 @KRU             | NH3-VAP3 @KRU          |
| 36       | Vapour Fraction            |                   | 1.0000               | 1.0000                    | 1.0000                  | 1.0000                    | 1.0000                 |
| 37       | Temperature                | (C)               | 112.7                | 40.00 *                   | 113.3                   | 88.33                     | -30.86                 |
| 38       | Pressure                   | (bar)             | 8.652                | 8.652                     | 17.56                   | 15.77                     | 1.103                  |
| 39       | Molar Flow                 | (kgmole/h)        | 1577                 | 1577                      | 1577                    |                           |                        |
| 40       | Mass Flow                  | (kg/h)            | 2.684e+004           | 2.684e+004                | 2.684e+004              |                           |                        |
| 41       | Actual Volume Flow         | (m3/h)            | 5666                 | 4455                      | 2698                    |                           |                        |
| 42       | Mass Density               | (kg/m3)           | 4.738                | 6.025                     | 9.948                   | 9.643                     | 0.9474                 |
| 43<br>44 | Name                       |                   | NH3-VAP3A @KRU       | NH3-VAP3B@KRU             | NH3-VAP3C @KRU          | NH3-VAP3D@KRU             | NH3-VAP3E @KRU         |
|          | Vapour Fraction            |                   | 1.0000               |                           |                         |                           |                        |
| 45<br>46 | Temperature<br>Pressure    | (C)<br>(bar)      | 24.21<br>2.139       | 2.139                     |                         |                           |                        |
| 46       | Molar Flow                 | (kgmole/h)        | 2.139                | 2.138                     |                         |                           |                        |
| 48       | Mass Flow                  | (kg/h)            |                      |                           |                         |                           |                        |
| 49       | Actual Volume Flow         | (m3/h)            |                      |                           |                         |                           |                        |
| 50       | Mass Density               | (kg/m3)           | 1.499                |                           |                         |                           |                        |
| 51       | Name                       |                   | NH3-VAP3F @KRU       | NH3-VAP3G @KRU            | SYN-2@Ksyn              | SYN-3 @Ksyn               | SYN-2A @Ksyn           |
| 52       | Vapour Fraction            |                   |                      |                           | 1.0000                  | 1.0000                    | 1.0000                 |
| 53       | Temperature                | (C)               | 88.33 *              |                           | 40.00                   | 86.11                     | 104.8                  |
| 54       | Pressure                   | (bar)             |                      | 15.77                     | 42.40                   | 206.8                     | 71.91                  |
| 55       | Molar Flow                 | (kgmole/h)        |                      |                           | 1.509e+004              | 1.509e+004                | 1.509e+004             |
| 56       | Mass Flow                  | (kg/h)            |                      |                           | 1.285e+005              | 1.285e+005                | 1.285e+005             |
| 57       | Actual Volume Flow         | (m3/h)            |                      |                           | 9508                    | 2442                      | 6857                   |
| 58       | Mass Density               | (kg/m3)           |                      |                           | 13.52                   | 52.62                     | 18.74                  |
| 59<br>60 |                            |                   |                      |                           |                         |                           |                        |
| 60<br>61 |                            |                   |                      |                           |                         |                           |                        |
| 62       |                            |                   |                      |                           |                         |                           |                        |
| 63       | Aspen Technology Ind       | C.                | 4                    | spen HYSYS Versio         | n 10                    |                           | Page 7 of 34           |
|          | Licensed to: BATTELLE ENER |                   |                      |                           |                         |                           | * Specified by user.   |
|          |                            |                   |                      |                           |                         |                           |                        |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Case Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Generic HTSE+NH3 PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D_v3.00_Therm66_5bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _U80 (3049 tpd NH3)_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ( aspentech         | BATTELLE<br>Bedford, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ENERGY ALLIANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit Set:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HTSE PFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <u>()</u> .         | USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fri Apr 30 14:25:18 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Wo                  | orkbook:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Case (Mai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n) (continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | erial Streams (con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tinued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fluid Pk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Name                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SYN-2B @Ksyn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SYN-2C @Ksyn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SYN-2D @Ksyn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SYN-2E @Ksyn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MSC-1A @MSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Vapour Fraction     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Temperature         | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 86.11 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 160.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 86.11 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 160.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 129.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pressure            | (bar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 122.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 206.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Molar Flow          | (kgmole/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.509e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.509e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.509e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.509e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | (kg/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.058e+005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Actual Volume Flow  | (m3/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.263e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                     | (kg/m3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MSC-3B@MSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.058e+005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | (Kg/m3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N2-2-@MSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.058e+005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     | (кулпа)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45.36<br>NH3-1 @NH3syn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                     | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.24 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.236e+005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 208.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 592.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NH3-VAP2 @NH3syr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Temperature         | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -32.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40.00 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 88.33 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -28.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Pressure            | (bar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.034 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Molar Flow          | (kgmole/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mass Flow           | (kg/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.680e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.029e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Actual Volume Flow  | (m3/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 144.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mass Density        | (kg/m3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 672.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 576.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Name                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NH3-VAP3 @NH3syn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PROD-1 @NH3syn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROD-2 @NH3syn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PROD-3 @NH3syn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PURGE @NH3syn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Vapour Fraction     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Temperature         | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -30.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pressure            | (bar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 196.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 194.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 194.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Molar Flow          | (kgmole/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mass Flow           | (kg/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.070e+005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.152e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.285e+005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 980.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Actual Volume Flow  | (m3/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 183.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 219.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 164.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mass Density        | (kg/m3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 581.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 612.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 586.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Aspen Technology In | IC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>I</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | spen HYSYS Versio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Page 8 of 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | Name         Vapour Fraction         Temperature         Pressure         Molar Flow         Mass Flow         Actual Volume Flow         Mass Density         Name         Vapour Fraction         Temperature         Pressure         Molar Flow         Mass Density         Name         Vapour Fraction         Temperature         Pressure         Molar Flow         Mass Density         Name         Vapour Fraction         Temperature         Pressure         Molar Flow         Mass Density         Name         Vapour Fraction         Temperature         Pressure         Molar Flow         Mass Density         Name         Vapour Fraction         Temperature         Pressure         Molar Flow         Mass Density         Name         Vapour Fraction         Temperature         Pressure         Molar Flow         Mass Density         Name | Name         Vapour Fraction         Temperature       (C)         Pressure       (bar)         Mass Flow       (kg/m)         Actual Volume Flow       (m3/h)         Astual Volume Flow       (m3/h)         Mass Density       (kg/m3)         Name       (c)         Yapour Fraction       (kg/m4)         Actual Volume Flow       (m3/h)         Mass Density       (kg/m3)         Molar Flow       (kg/h)         Actual Volume Flow       (kg/h)         Actual Volume Flow       (m3/h)         Mass Density       (kg/m3)         Name       (kg/m3)         Nass Flow | Workbook:         Case (Main           Name         SYN-2B @ksyn           Name         SYN-2B @ksyn           Temperature         (C)         86:11 °           Pressure         (bar)         71.911           Molar Flow         (kgmole/h)         1.509e+004           Mass Flow         (kg/m)         1.285e+005           Actual Volume Flow         (m3/h)         68:27           Mass Density         (kg/m)         1.98:04           Name         MSC-1B @MSC         2402           Pressure         (bar)         2.402           Pressure         (bar)         3.777           Mass Flow         (kg/m)         1.058e+005           Actual Volume Flow         (m3/h)         4.032+004           Mass Flow         (kg/m)         1.058e+005           Actual Volume Flow         (m3/h)         4.032+004           Mass Density         (kg/m)         1.058e+005           Actual Volume Flow         (m3/h)         4.032           Mass Flow         (kg/m)         1.058e+005           Actual Volume Flow         (m3/h)         6.231           Mass Flow         (kg/m)         1.058e+005           Actual Volume Flow         ( | DataCline           Workbook: Case (Main) (continue           Mare with the second of | Date://www.com/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/participants/partiparticipant/partipants/participants/participants/participants/part | Determ         Principal           Charbock: Case (Main) (continued)           National Stream (continued)           Natine Stream (continued) |

| 1        |                                 |                        |                      | Case Name:         | Generic HTSE+NH3 PF     | D_v3.00_Therm66_5bar | _U80 (3049 tpd NH3)_r    |
|----------|---------------------------------|------------------------|----------------------|--------------------|-------------------------|----------------------|--------------------------|
| 2<br>3   | ( aspentech                     | BATTELLE<br>Bedford, M | ENERGY ALLIANCE<br>A | Unit Set:          | HTSE PFD                |                      |                          |
| 4<br>5   |                                 | USA                    |                      | Date/Time:         | Fri Apr 30 14:25:18 202 | 1                    |                          |
| 6        |                                 |                        |                      |                    |                         |                      |                          |
| 7<br>8   | Wo                              | orkbook:               | Case (Mai            | n) (continue       | ed)                     |                      |                          |
| 9<br>10  |                                 |                        | Mat                  | erial Streams (cor | tinued)                 | Fluid Pk             | g: All                   |
| 11       | Name                            |                        | PURGE-3@NH3syn       | PURGE-4 @NH3syn    | PURGE-5 @NH3syn         | PURGE-7 @NH3syn      | RECY-1@NH3syn            |
| 12       | Vapour Fraction                 |                        | 1.0000               | 1.0000             | 0.0246                  | 0.2239               | 1.0000                   |
| 13       | Temperature                     | (C)                    | 29.29                | -32.19             | 40.00 *                 | 32.21                | 15.52                    |
| 14       | Pressure                        | (bar)                  | 17.24 *              | 1.034 *            | 17.56                   | 17.24                | 194.8                    |
| 15       | Molar Flow                      | (kgmole/h)             | 335.9                | 1577               | 1577                    | 1913                 | 2.380e+004               |
| 16       | Mass Flow                       | (kg/h)                 | 4886                 | 2.684e+004         | 2.684e+004              | 3.173e+004           | 1.772e+005               |
| 17       | Actual Volume Flow              | (m3/h)                 | 458.9                | 3.010e+004         | 96.85                   | 627.3                | 3283                     |
| 18       | Mass Density                    | (kg/m3)                | 10.65                | 0.8917             | 277.2                   | 50.58                | 53.97                    |
| 19       | Name                            |                        | RECY-2@NH3syn        | RECY-3 @NH3syn     | RECY-4@NH3syn           | RX1-LIQ @NH3syn      | RX1-OUT @NH3syn          |
| 20       | Vapour Fraction                 |                        | 1.0000               | 1.0000             | 1.0000                  | 0.0000               | 1.0000                   |
| 21       | Temperature                     | (C)                    | 30.28                | 37.79              | 37.79 *                 | 525.8                | 525.8                    |
| 2        | Pressure<br>Malas Flour         | (bar)                  | 194.1                | 206.8*             | 206.8 *                 | 203.7                | 203.7                    |
| 3        | Molar Flow                      | (kgmole/h)             | 2.380e+004           | 2.380e+004         | 2.379e+004 *            | 0.000                | 3.520e+004               |
| 24<br>25 | Mass Flow<br>Actual Volume Flow | (kg/h)                 | 1.772e+005<br>3455   | 1.772e+005<br>3343 | 1.772e+005<br>3341      | 0.000                | 3.057e+005<br>1.206e+004 |
| 26       | Mass Density                    | (m3/h)                 | 51.28                | 53.01              | 53.02                   | 25.34                | 25.35                    |
| 27       | Name                            | (kg/m3)                | RX2-LIQ @NH3syn      | RX2-OUT @NH3syn    | RX3-LIQ @NH3syn         | RX3-OUT @NH3syn      | SYN-1@NH3svn             |
| 28       | Vapour Fraction                 |                        | 0.0000               | 1.0000             | 0.0000                  | 1.0000               | 1.0000                   |
| .0<br>19 | Temperature                     | (C)                    | 464.7                | 464.7              | 431.1                   | 431.1                | 39.17                    |
| :9<br>10 | Pressure                        | (C)<br>(bar)           | 201.3                | 201.3              | 199.6                   | 199.6                | 42.40                    |
| 11       | Molar Flow                      | (kgmole/h)             | 0.0000               | 3.293e+004         | 0.0000                  | 3.140e+004           | 1.509e+004               |
| 12       | Mass Flow                       | (kg/h)                 | 0.0000               | 3.057e+005         | 0.0000                  | 3.057e+005           | 1.285e+005               |
| 3        | Actual Volume Flow              | (m3/h)                 | 0.0000               | 1.055e+004         | 0.0000                  | 9677                 | 9484                     |
| 34       | Mass Density                    | (morn)<br>(kg/m3)      | 28.92                | 28.96              | 31.58                   | 31.59                | 13.55                    |
| 35       | Name                            | (itg/itit)             | SYN-2@NH3syn         | SYN-3 @NH3syn      | SYN-6 @NH3syn           | SYN-7 @NH3syn        | SYN-8 @NH3syn            |
| 36       | Vapour Fraction                 |                        | 1.0000               | 1.0000             | 1.0000                  | 1.0000               | 1.0000                   |
| 37       | Temperature                     | (C)                    | 40.00 *              | 86.11*             | 56.07                   | 56.09                | 320.0                    |
| 38       | Pressure                        | (bar)                  | 42.40                | 206.8              | 206.8                   | 206.2                | 205.5                    |
| 39       | Molar Flow                      | (kgmole/h)             | 1.509e+004           | 1.509e+004         | 3.889e+004              | 3.889e+004           | 3.889e+004               |
| 10       | Mass Flow                       | (kg/h)                 | 1.285e+005           | 1.285e+005         | 3.057e+005              | 3.057e+005           | 3.057e+005               |
| 11       | Actual Volume Flow              | (m3/h)                 | 9508                 | 2442               | 5782                    | 5800                 | 9999                     |
| 12       | Mass Density                    | (kg/m3)                | 13.52                | 52.62              | 52.86                   | 52.70                | 30.57                    |
| 13       | Name                            |                        | SYN-9 @NH3syn        | SYN-10 @NH3syn     | SYN-11 @NH3syn          | SYN-12@NH3syn        | SYN-13 @NH3syn           |
| 4        | Vapour Fraction                 |                        | 1.0000               | 1.0000             | 1.0000                  | 1.0000               | 1.0000                   |
| 15       | Temperature                     | (C)                    | 357.2 *              | 488.5              | 357.2 *                 | 357.2 *              | 357.2                    |
| 6        | Pressure                        | (bar)                  | 204.8                | 203.1              | 202.4                   | 200.6                | 198.9                    |
| 17       | Molar Flow                      | (kgmole/h)             | 3.889e+004           | 3.520e+004         | 3.520e+004              | 3.293e+004           | 3.140e+004               |
| 8        | Mass Flow                       | (kg/h)                 | 3.057e+005           | 3.057e+005         | 3.057e+005              | 3.057e+005           | 3.057e+005               |
| 19       | Actual Volume Flow              | (m3/h)                 | 1.062e+004           | 1.156e+004         | 9689                    | 9101                 | 8716                     |
| 50       | Mass Density                    | (kg/m3)                | 28.79                | 26.45              | 31.55                   | 33.59                | 35.07                    |
| i1       | Name                            |                        | SYN-14 @NH3syn       | SYN-15 @NH3syn     | SYN-16 @NH3syn          | SYN-17 @NH3syn       | SYN-18 @NH3syn           |
| i2       | Vapour Fraction                 |                        | 0.9964               | 0.8088             | 0.7984                  | 1.0000               | 0.9493                   |
| 3        | Temperature                     | (C)                    | 75.30                | 40.00 *            | 36.11 *                 | 36.07                | 15.56                    |
| 4        | Pressure                        | (bar)                  | 198.2                | 197.5              | 196.8                   | 196.2                | 195.5                    |
| 5        | Molar Flow                      | (kgmole/h)             | 3.140e+004           | 3.140e+004         | 3.140e+004              | 2.507e+004           | 2.507e+004               |
| 6        | Mass Flow                       | (kg/h)                 | 3.057e+005           | 3.057e+005         | 3.057e+005              | 1.987e+005           | 1.987e+005               |
| 7        | Actual Volume Flow              | (m3/h)                 | 4783                 | 3866               | 3804                    | 3632                 | 3308                     |
| 58<br>59 | Mass Density                    | (kg/m3)                | 63.91                | 79.06              | 80.35                   | 54.72                | 60.07                    |
| 60<br>61 |                                 |                        |                      |                    |                         |                      |                          |
| 62<br>63 | Aspen Technology Ir             | ۱C.                    |                      | Aspen HYSYS Versio | on 10                   |                      | Page 9 of 34             |
| 20       | Licensed to: BATTELLE ENE       |                        | ,                    | Spontino to versio |                         |                      | * Specified by user.     |

| 1        |                                |                        |                       | Case Name:            | Generic HTSE+NH3 PF     | D_v3.00_Therm66_5bar  | _U80 (3049 tpd NH3)_re |
|----------|--------------------------------|------------------------|-----------------------|-----------------------|-------------------------|-----------------------|------------------------|
| 3        | ( aspentech                    | BATTELLE<br>Bedford, M | ENERGY ALLIANCE<br>A  | Unit Set:             | HTSE PFD                |                       |                        |
| 4<br>5   |                                | USA                    |                       | Date/Time:            | Fri Apr 30 14:25:18 202 | 1                     |                        |
| 6        | 14/                            |                        | 0                     | .) (                  | .0                      |                       |                        |
| 8        | vvc                            | DIKDOOK:               | Case (Mail            | n) (continue          | a)                      |                       |                        |
| 9<br>10  |                                |                        | Mat                   | erial Streams (con    | tinued)                 | Fluid Pkg             | j: All                 |
| 11       | Name                           |                        | SYN-IN @NH3syn        | VENT-1 @NH3syn        | VENT-2 @NH3syn          | WATER-1@NH3syn        | WATER-2 @NH3syn        |
| 12       | Vapour Fraction                |                        | 1.0000                | 1.0000                | 1.0000                  | 0.0000                | 0.0000                 |
| 13       | Temperature                    | (C)                    | 39.17                 | -34.44 *              | -34.44 *                | 30.65                 | 197.4                  |
| 14       | Pressure                       | (bar)                  | 42.40                 | 1.034                 | 1.034 *                 | 14.82 *               | 14.82                  |
| 15       | Molar Flow                     | (kgmole/h)             | 1.509e+004            | 3.061                 | 3.062 *                 | 0.4795                | 6890                   |
| 16       | Mass Flow                      | (kg/h)                 | 1.285e+005            | 52.55                 | 52.56                   | 8.638                 | 1.241e+005             |
| 17       | Actual Volume Flow             | (m3/h)                 | 9484                  | 58.02                 | 58.02                   | 8.608e-003            | 145.3                  |
| 10       | Mass Density                   | (kg/m3)                | 13.55                 | 0.9058                | 0.9058                  | 1004                  | 854.0                  |
| 20       | Name<br>Vanaur Fraction        |                        | WATER-3@NH3syn        | WATER-4 @NH3syn       | WATER-5 @NH3syn         | WATER-6A @NH3syr      | WATER-6B @NH3syr       |
| ∠∪<br>21 | Vapour Fraction<br>Temperature | (C)                    | 0.0000<br>197.4       | 0.0000<br>197.4       | 0.0000                  | 0.0000 40.00 *        | 0.0000 40.00 *         |
| ∡1<br>22 | Pressure                       | (C)<br>(bar)           | 197.4                 | 197.4                 | 131.1                   | 40.00**               | 40.00 -                |
| ~~<br>79 | Molar Flow                     | (kgmole/h)             | 6890                  | 6890                  | 6890                    | 6863                  | 6890                   |
| 23       | Mass Flow                      | (kgrnulern)<br>(kg/h)  | 1.241e+005            | 1.241e+005            | 1.241e+005              | 1.236e+005 *          | 1.241e+005             |
| 24       | Actual Volume Flow             | (kg/h)<br>(m3/h)       | 145.3                 | 145.3                 | 135.0                   | 1.2308+003            | 12418+005              |
| 26       | Mass Density                   | (mom)<br>(kg/m3)       | 854.0                 | 854.0                 | 919.3                   | 996.5                 | 994.3                  |
| 27       | Name                           | (Kgrino)               | 151 HTE feedwater (li | 152 HTE feed water (v | 201@NPP                 | 202 @NPP              | 202 Process Heat Sup   |
| 28       | Vapour Fraction                |                        | 0.4403                | 1.0000                | 0.0000                  | 0.0000                | 0.0000                 |
| 20       | Temperature                    | (C)                    | 158.2                 | 155.3                 | 247.1                   | 247.0                 | 247.0                  |
| 30       | Pressure                       | (C)<br>(bar)           | 5.900                 | 5.400                 | 4.000                   | 3.870                 | 3.870                  |
| 31       | Molar Flow                     | (kgmole/h)             | 1.381e+004            | 1.381e+004            | 8148                    | 8148                  | 259.2                  |
| 32       | Mass Flow                      | (kg/h)                 | 2.487e+005            | 2.488e+005            | 2.053e+006              | 2.053e+006            | 6.531e+004             |
| 33       | Actual Volume Flow             | (kg/h)<br>(m3/h)       | 3.584e+004            | 8.817e+004            | 2410                    | 2409                  | 76.63                  |
| 33<br>34 | Mass Density                   | (ma/m)<br>(kg/m3)      | 5.5648+004            | 2.821                 | 852.2                   | 852.2                 | 852.2                  |
| 36       | Name                           | (kg/ma)                | 203 @NPP              | 203 Process Heat Ret  | 204 @NPP                | 205 @NPP              | 206 @NPP               |
| 36       | Vapour Fraction                |                        | 0.0000                | 0.0000                | 0.0000                  | 0.0000                | 0.0000                 |
| 37       | Temperature                    | (C)                    | 178.2                 | 178.2                 | 178,1                   | 178.2                 | 189.7                  |
| 38       | Pressure                       | (C)<br>(bar)           | 3.610                 | 3.610                 | 3.481                   | 5.000 *               | 4.500                  |
| 39       | Molar Flow                     | (kgmole/h)             | 8148                  | 259.2                 | 8148                    | 8148                  | 8148                   |
| 40       | Mass Flow                      | (kg/h)                 | 2.053e+006            | 6.531e+004            | 2.053e+006              | 2.053e+006            | 2.053e+006             |
| 41       | Actual Volume Flow             | (m3/h)                 | 2278                  | 72.46                 | 2278                    | 2278                  | 2298                   |
| 42       | Mass Density                   | (kg/m3)                | 901.3                 | 901.3                 | 901.3                   | 901.3                 | 893.4                  |
| 43       | Name                           | ,                      | 207 @NPP              | 701 Steam Out @NPF    |                         | 703 Turbine Exhaust @ | 711 SEL Inlet @NPP     |
| 44       | Vapour Fraction                |                        | 0.0000                | 1.0000 *              | 1.0000                  | 0.7931                | 1.0000                 |
| 45       | Temperature                    | (C)                    | 189.7 *               | 267.1                 | 267.1                   | 79.34                 | 267.1                  |
| 46       | Pressure                       | (bar)                  | 4.500 *               | 52.54 *               | 52.54                   | 0.4611                | 52.54                  |
| 47       | Molar Flow                     | (kgmole/h)             | 8148                  | 3.664e+005            | 3.580e+005              | 3.580e+005            | 8348                   |
| 48       | Mass Flow                      | (kg/h)                 | 2.053e+006 *          | 6.601e+006            | 6.450e+006              | 6.450e+006            | 1.504e+005             |
| 49       | Actual Volume Flow             | (m3/h)                 | 2298                  | 2.470e+005            | 2.414e+005              | 1.788e+007            | 5628                   |
| 50       | Mass Density                   | (kg/m3)                | 893.4                 | 26.72                 | 26.72                   | 0.3607                | 26.72                  |
| 51       | Name                           |                        | 712 @NPP              | 713 SEL Condensate (  | 721 NPP Condensate      | 722 @NPP              | 723 @NPP               |
| 52       | Vapour Fraction                |                        | 0.0000                | 0.0000                | 0.0000 *                | 0.0000                | 0.0000                 |
| 53       | Temperature                    | (C)                    | 264.3                 | 198.2                 | 78.84                   | 79.25                 | 82.04                  |
| 54       | Pressure                       | (bar)                  | 51.91                 | 51.29                 | 0.4519                  | 30.66 *               | 30.66                  |
| 55       | Molar Flow                     | (kgmole/h)             | 8348                  | 8348                  | 3.580e+005              | 3.580e+005            | 3.664e+005             |
| 56       | Mass Flow                      | (kg/h)                 | 1.504e+005            | 1.504e+005            | 6.450e+006              | 6.450e+006            | 6.601e+006             |
| 57       | Actual Volume Flow             | (m3/h)                 | 193.5                 | 172.9                 | 6633                    | 6625                  | 6792                   |
| 58       | Mass Density                   | (kg/m3)                | 777.2                 | 869.6                 | 972.5                   | 973.6                 | 971.9                  |
| 59       |                                |                        |                       |                       |                         |                       |                        |
| 60       |                                |                        |                       |                       |                         |                       |                        |
| 61       |                                |                        |                       |                       |                         |                       |                        |
| 62       | Appon Toshnologi Ja            |                        |                       | Senon HVCVC Varia     | n 10                    |                       | Bago 40 of 34          |
| 03       | Aspen Technology In            |                        |                       | spen HYSYS Versio     |                         |                       | Page 10 of 34          |
| 55       | Licensed to: BATTELLE ENE      |                        | <i>r</i>              |                       |                         |                       | * Specified by user.   |

| 1           |                         |             |                     | Case Name:          | Generic HTSE+NH3 PF      | D_v3.00_Therm66_5bar | _U80 (3049 tpd NH3)_r   |
|-------------|-------------------------|-------------|---------------------|---------------------|--------------------------|----------------------|-------------------------|
| 3           | @aspentech              | Bedford, M# | ENERGY ALLIANCE     | Unit Set:           | HTSE PFD                 |                      |                         |
| 4<br>5      |                         | USA         |                     | Date/Time:          | Fri Apr 30 14:25:18 2021 | 1                    |                         |
| 6           |                         |             |                     |                     |                          |                      |                         |
| 7<br>8      | Wo                      | orkbook:    | Case (Mai           | n) (continue        | ed)                      |                      |                         |
| 9           |                         |             | Mat                 | erial Streams (con  | ntinued)                 | Fluid Pkg            | g: All                  |
| 10          | Name                    |             | 724 @NPP            | 725 @NPP            | 726 Heated Feedwate      | 101 @NPP-2           | 102 @NPP-2              |
| 2           | Vapour Fraction         |             | 0.0000              | 0.0000              | 0.0000                   | 1.0000 *             | 1.0000                  |
| 3           | Temperature             | (C)         | 82.51               | 222.2 *             | 222.2 *                  | 267.1                | 267.1                   |
| 4           | Pressure                | (bar)       | 64.73               | 63.43 *             | 63.43 *                  | 52.54 *              | 52.54                   |
| 5           | Molar Flow              | (kgmole/h)  | 3.664e+005          | 3.664e+005          | 3.664e+005               | 3.663e+005           | 3.592e+005              |
| 6           | Mass Flow               | (kg/h)      | 6.601e+006          | 6.601e+006          | 6.601e+006 *             | 6.599e+006 *         | 6.471e+006              |
| 7           | Actual Volume Flow      | (m3/h)      | 6783                | 7848                | 7848                     | 2.469e+005           | 2.421e+005              |
| 8           | Mass Density            | (kg/m3)     | 973.1               | 841.1               | 841.1                    | 26.72                | 26.72                   |
| 9           | Name                    |             | 103 @NPP-2          | 103a @NPP-2         | 104@NPP-2                | 107 @NPP-2           | 107a @NPP-2             |
| 0           | Vapour Fraction         |             | 1.0000              | 0.9991              | 0.9986                   | 1.0000               | 0.9989                  |
| 1           | Temperature             | (C)         | 267.1               | 265.2               | 263.9                    | 267.1                | 264.5                   |
| 2           | Pressure                | (bar)       | 52.54               | 50.96               | 49.97                    | 52.54                | 50.44                   |
| З           | Molar Flow              | (kgmole/h)  | 3.340e+005          | 3.340e+005          | 3.340e+005               | 2.522e+004           | 2.522e+004              |
| 4           | Mass Flow               | (kg/h)      | 6.016e+006          | 6.016e+006          | 6.016e+006               | 4.543e+005           | 4.543e+005              |
| 5           | Actual Volume Flow      | (m3/h)      | 2.251e+005          | 2.323e+005          | 2.371e+005               | 1.700e+004           | 1.773e+004              |
| 6           | Mass Density            | (kg/m3)     | 26.72               | 25.89               | 25.37                    | 26.72                | 25.62                   |
| 7           | Name                    |             | 108 (F) @NPP-2      | 110 @NPP-2          | 111@NPP-2                | 112 @NPP-2           | 112a @NPP-2             |
| 8           | Vapour Fraction         |             | 0.0000              | 0.9383              | 0.9383                   | 0.9383               | 0.9387                  |
| 9<br>n      | Temperature             | (C)         | 262.8               | 225.3               | 225.3                    | 225.3                | 223.6                   |
| -           | Pressure                | (bar)       | 49.93               | 25.60               | 25.60                    | 25.60                | 24.83                   |
| 1           | Molar Flow              | (kgmole/h)  | 2.522e+004          | 3.340e+005          | 3.052e+005               | 2.872e+004           | 2.872e+004              |
| 2           | Mass Flow               | (kg/h)      | 4.543e+005          | 6.016e+006          | 5.499e+006               | 5.174e+005           | 5.174e+005              |
| 3<br>4      | Actual Volume Flow      | (m3/h)      | 582.8               | 4.412e+005          | 4.033e+005               | 3.795e+004           | 3.913e+004              |
| 4<br>5      | Mass Density            | (kg/m3)     | 779.5<br>114 @NPP-2 | 13.64<br>115 @NPP-2 | 13.64<br>120@NPP-2       | 13.64<br>121 @NPP-2  | 13.22<br>122 (H) @NPP-2 |
| 6           | Name<br>Vapour Fraction |             | 0.5476              | 0.0000              | 0.8940                   | 0.8940               | 0.8940                  |
| 7           | Temperature             | (C)         | 223.6               | 188.2               | 184.8                    | 184.8                | 184.8                   |
| 8           | Pressure                | (bar)       | 24.83               | 24.83               | 11.18                    | 11.18                | 11.18                   |
| 9           | Molar Flow              | (kgmole/h)  | 5.394e+004          | 5.394e+004          | 3.052e+005               | 2.776e+005           | 2.762e+004              |
| 0           | Mass Flow               | (kg/h)      | 9.717e+005          | 9.717e+005          | 5.499e+006               | 5.001e+006           | 4.977e+005              |
| 1           | Actual Volume Flow      | (m3/h)      | 4.334e+004          | 1105                | 8.600e+005               | 7.821e+005           | 7.783e+004              |
| 2           | Mass Density            | (kg/m3)     | 22.42               | 879.0               | 6.394                    | 6.394                | 6.394                   |
| 3           | Name                    |             | 122a @NPP-2         | 122a-L @NPP-2       | 123@NPP-2                | 124 @NPP-2           | 125 @NPP-2              |
| 4           | Vapour Fraction         |             | 0.8953              | 0.0000 *            | 0.3118                   | 0.0000               | 0.0000                  |
| 5           | Temperature             | (C)         | 182.5               | 182.5               | 182.5                    | 182.4                | 182.5                   |
| ŝ           | Pressure                | (bar)       | 10.62               | 10.62               | 10.62                    | 10.62                | 10.62                   |
| 7           | Molar Flow              | (kgmole/h)  | 2.762e+004          | 2.762e+004          | 8.156e+004               | 8.156e+004           | 1.107e+005              |
| 8           | Mass Flow               | (kg/h)      | 4.977e+005          | 4.977e+005          | 1.469e+006               | 1.469e+006           | 1.994e+006              |
| 9           | Actual Volume Flow      | (m3/h)      | 8.186e+004          | 562.8               | 8.525e+004               | 1661                 | 2255                    |
| 0           | Mass Density            | (kg/m3)     | 6.079               | 884.3               | 17.24                    | 884.5                | 884.3                   |
| 1           | Name                    |             | 126 (E) @NPP-2      | 127 @NPP-2          | 128 @NPP-2               | 128a @NPP-2          | 130 @NPP-2              |
| 2           | Vapour Fraction         |             | 0.0000              | 1.0000              | 1.0000                   | 1.0000               | 1.0000                  |
| 3           | Temperature             | (C)         | 183.0               | 183.0               | 252.9                    | 252.5                | 147.2                   |
| 4<br>5      | Pressure                | (bar)       | 10.73               | 10.73               | 10.30                    | 10.09                | 3.597                   |
| į           | Molar Flow              | (kgmole/h)  | 2.914e+004          | 2.485e+005          | 2.485e+005               | 2.485e+005           | 2.485e+005              |
| ŝ           | Mass Flow               | (kg/h)      | 5.249e+005          | 4.476e+006          | 4.476e+006               | 4.476e+006           | 4.476e+006              |
| 7           | Actual Volume Flow      | (m3/h)      | 593.9               | 8.136e+005          | 1.016e+006               | 1.037e+006           | 2.335e+006              |
| 8<br>9<br>0 | Mass Density            | (kg/m3)     | 883.8               | 5.502               | 4.404                    | 4.316                | 1.917                   |
| i1<br>i2    |                         |             |                     |                     |                          |                      |                         |
|             | Aspen Technology In     | с.          | 1                   | spen HYSYS Versio   | on 10                    |                      | Page 11 of 34           |

| -        |                                    |                   |                          | Case Name:               | Generic HTSE+NH3 PF      | D_v3.00_Therm66_5bar     | _U80 (3049 tpd NH3)_re     |  |  |
|----------|------------------------------------|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------|--|--|
| 2<br>3   | ( aspentech                        | Bedford, M/       | ENERGY ALLIANCE          | Unit Set:                | HTSE PFD                 |                          |                            |  |  |
| 4<br>5   |                                    | USA               |                          | Date/Time:               | Fri Apr 30 14:25:18 202  | 1                        |                            |  |  |
| 6        |                                    |                   |                          |                          |                          |                          |                            |  |  |
| 7<br>8   | Wo                                 | orkbook:          | Case (Maii               | n) (continue             | ) (continued)            |                          |                            |  |  |
| 9<br>10  |                                    |                   | Mate                     | erial Streams (cor       | ntinued)                 | Fluid Pkg                | j: All                     |  |  |
| 11       | Name                               |                   | 131 @NPP-2               | 132 @NPP-2               | 132a (RP) @NPP-2         | 132a-L (RP-L) @NPP-      | 134 @NPP-2                 |  |  |
| 12       | Vapour Fraction                    |                   | 1.0000                   | 1.0000                   | 1.0000                   | * 0.000.0                | 0.0000                     |  |  |
| 13       | Temperature                        | (C)               | 147.2                    | 147.2                    | 146.5                    | 138.0                    | 103.3                      |  |  |
| 14       | Pressure                           | (bar)             | 3.597                    | 3.597                    | 3.417                    | 3.417                    | 3.417                      |  |  |
| 15       | Molar Flow                         | (kgmole/h)        | 2.310e+005               | 1.752e+004               | 1.752e+004               | 1.752e+004               | 1.752e+004                 |  |  |
| 16       | Mass Flow                          | (kg/h)            | 4.161e+006               | 3.156e+005               | 3.156e+005               | 3.156e+005               | 3.156e+005                 |  |  |
| 17<br>18 | Actual Volume Flow                 | (m3/h)            | 2.170e+006               | 1.646e+005               | 1.733e+005               | 340.1                    | 330.1                      |  |  |
| 10       | Mass Density                       | (kg/m3)           | 1.917                    | 1.917<br>140 @NPP-2      | 1.821<br>141 @NPP-2      | 927.9                    | 956.1                      |  |  |
| 20       | Name<br>Vapour Fraction            |                   | 135 @NPP-2<br>0.0053     | 14U @NPP-2<br>0.9583     | 0.9583                   | 142 @NPP-2<br>0.9583     | 142a (SO) @NPP-2<br>0.9594 |  |  |
| 20       | Temperature                        | (C)               | 100.6                    | 102.0                    | 102.0                    | 102.0                    | 100.6                      |  |  |
| 22       | Pressure                           | (C)<br>(bar)      | 1.034                    | 1.089                    | 1.089                    | 1.089                    | 1.034                      |  |  |
| 23       | Molar Flow                         | (kgmole/h)        | 1.752e+004               | 2.310e+005               | 2.182e+005               | 1.273e+004               | 1.273e+004                 |  |  |
| 24       | Mass Flow                          | (kg/h)            | 3.156e+005               | 4.161e+006               | 3.931e+006               | 2.293e+005               | 2.293e+005                 |  |  |
| 25       | Actual Volume Flow                 | (m3/h)            | 3060                     | 6.241e+006               | 5.897e+006               | 3.439e+005               | 3.612e+005                 |  |  |
| 26       | Mass Density                       | (kg/m3)           | 103.1                    | 0.6667                   | 0.6667                   | 0.6667                   | 0.6348                     |  |  |
| 27       | Name                               |                   | 142a-L (SO-L) @NPP       | 144 @NPP-2               | 145 @NPP-2               | 146 @NPP-2               | 150 @NPP-2                 |  |  |
| 28       | Vapour Fraction                    |                   | 0.0000 *                 | 0.4068                   | 0.0000                   | 0.0051                   | 0.9406                     |  |  |
| 29       | Temperature                        | (C)               | 100.6                    | 100.6                    | 74.38                    | 71.57                    | 88.25                      |  |  |
| 30       | Pressure                           | (bar)             | 1.034                    | 1.034                    | 1.034                    | 0.3335                   | 0.6559                     |  |  |
| 31       | Molar Flow                         | (kgmole/h)        | 1.273e+004               | 3.025e+004               | 3.025e+004               | 3.025e+004               | 2.182e+005                 |  |  |
| 32       | Mass Flow                          | (kg/h)            | 2.293e+005               | 5.449e+005               | 5.449e+005               | 5.449e+005               | 3.931e+006                 |  |  |
| 33       | Actual Volume Flow                 | (m3/h)            | 239.4                    | 3.643e+005               | 558.8                    | 1.368e+004               | 9.296e+006                 |  |  |
| 34       | Mass Density                       | (kg/m3)           | 958.0                    | 1.496                    | 975.2                    | 39.84                    | 0.4229                     |  |  |
| 35       | Name                               |                   | 151 @NPP-2               | 152 @NPP-2               | 160 @NPP-2               | 161 @NPP-2               | 162 @NPP-2                 |  |  |
| 36       | Vapour Fraction                    |                   | 0.9406                   | 0.9406                   | 0.9205                   | 0.9205                   | 0.9205                     |  |  |
| 37       | Temperature                        | (C)               | 88.25                    | 88.25                    | 72.77                    | 72.77                    | 72.77                      |  |  |
| 38       | Pressure                           | (bar)             | 0.6559                   | 0.6559                   | 0.3510                   | 0.3510                   | 0.3510                     |  |  |
| 39<br>40 | Molar Flow                         | (kgmole/h)        | 2.169e+005               | 1284                     | 2.169e+005               | 2.042e+005               | 1.277e+004                 |  |  |
| 40<br>41 | Mass Flow<br>Actual Volume Flow    | (kg/h)<br>(m3/h)  | 3.908e+006<br>9.242e+006 | 2.314e+004<br>5.471e+004 | 3.908e+006<br>1.624e+007 | 3.678e+006<br>1.528e+007 | 2.300e+005<br>9.557e+005   |  |  |
| 41       | Mass Density                       | (ha/h)<br>(kg/m3) | 0.4229                   | 0.4229                   | 0.2407                   | 0.2407                   | 0.2407                     |  |  |
| 42       | Name                               | (rightio)         | 163@NPP-2                | 163a @NPP-2              | 163a-L @NPP-2            | 165 @NPP-2               | 166 @NPP-2                 |  |  |
| 44       | Vapour Fraction                    |                   | 0.9234                   | 0.9244                   | 0.0000 *                 | 0.2967                   | 0.0000 *                   |  |  |
| 45       | Temperature                        | (C)               | 72.77                    | 71.57                    | 71.57                    | 71.57                    | 71.57                      |  |  |
| 46       | Pressure                           | (bar)             | 0.3510                   | 0.3335                   | 0.3335                   | 0.3335                   | 0.3335                     |  |  |
| 47       | Molar Flow                         | (kgmole/h)        | 1.405e+004               | 1.405e+004               | 1.405e+004               | 4.430e+004               | 4.430e+004                 |  |  |
| 48       | Mass Flow                          | (kg/h)            | 2.532e+005               | 2.532e+005               | 2.532e+005               | 7.981e+005               | 7.981e+005                 |  |  |
| 49       | Actual Volume Flow                 | (m3/h)            | 1.055e+006               | 1.108e+006               | 259.2                    | 1.122e+006               | 817.0                      |  |  |
| 50       | Mass Density                       | (kg/m3)           | 0.2399                   | 0.2284                   | 976.8                    | 0.7113                   | 976.8                      |  |  |
| 51       | Name                               |                   | 167 @NPP-2               | 168 @NPP-2               | 170@NPP-2                | 171 @NPP-2               | 172 @NPP-2                 |  |  |
| 52       | Vapour Fraction                    |                   | 0.0000                   | 0.0100                   | 0.8698                   | 0.7165                   | 0.7008                     |  |  |
| 53       | Temperature                        | (C)               | 40.12                    | 34.32                    | 34.32                    | 34.32                    | 34.32                      |  |  |
| 54       | Pressure                           | (bar)             | 0.3335                   | 5.419e-002               | 5.419e-002 *             | 5.419e-002               | 5.419e-002                 |  |  |
| 55       | Molar Flow                         | (kgmole/h)        | 4.430e+004               | 4.430e+004               | 2.042e+005               | 2.485e+005               | 2.556e+005                 |  |  |
| 56       | Mass Flow                          | (kg/h)            | 7.981e+005               | 7.981e+005<br>2.101e+005 | 3.678e+006               | 4.476e+006               | 4.605e+006<br>8.432e+007   |  |  |
| 57<br>58 | Actual Volume Flow<br>Mass Density | (m3/h)<br>(kg/m3) | 804.4<br>992.1           | 2.101e+005<br>3.799      | 8.360e+007<br>4.400e-002 | 8.381e+007<br>5.341e-002 | 5.461e-002                 |  |  |
| 59<br>60 | - made bondry                      | (                 |                          | 0.100                    |                          | 0.0110 002               | 0.1010 002                 |  |  |
| 61<br>62 |                                    |                   |                          |                          |                          |                          | _                          |  |  |
|          | Aspen Technology In                | r                 | A                        | spen HYSYS Versio        | on 10                    |                          | Page 12 of 34              |  |  |

| 1         |                                                |              |                       | Case Name:            | Generic HTSE+NH3 PF     | D_v3.00_Therm66_5bar | _U80 (3049 tpd NH3)_re |
|-----------|------------------------------------------------|--------------|-----------------------|-----------------------|-------------------------|----------------------|------------------------|
| 2<br>3    | ( aspentech                                    | Bedford, M.  | ENERGY ALLIANCE<br>A  | Unit Set:             | HTSE PFD                |                      |                        |
| 4<br>5    |                                                | USA          |                       | Date/Time:            | Fri Apr 30 14:25:18 202 | 1                    |                        |
| 6         |                                                |              |                       |                       |                         |                      |                        |
| 7<br>8    | Wo                                             | orkbook:     | Case (Mai             | n) (continue          | ed)                     |                      |                        |
| 9<br>10   |                                                |              | Mat                   | erial Streams (con    | tinued)                 | Fluid Pkg            | j: All                 |
| 11        | Name                                           |              | 173 @NPP-2            | 180 @NPP-2            | 181 @NPP-2              | 182 @NPP-2           | 183 @NPP-2             |
| 12        | Vapour Fraction                                |              | 0.0000 *              | 0.0000                | 0.0000                  | 0.0000               | 0.0000                 |
| 13        | Temperature                                    | (C)          | 34.32                 | 34.64                 | 40.10                   | 68.79                | 97.79                  |
| 14        | Pressure                                       | (bar)        | 5.419e-002            | 30.66 *               | 30.66                   | 30.66                | 30.66                  |
| 15        | Molar Flow                                     | (kgmole/h)   | 2.556e+005            | 2.556e+005            | 2.556e+005              | 2.556e+005           | 2.556e+005             |
| 16        | Mass Flow                                      | (kg/h)       | 4.605e+006            | 4.605e+006            | 4.605e+006              | 4.605e+006           | 4.605e+006             |
| 17        | Actual Volume Flow                             | (m3/h)       | 4632                  | 4626                  | 4635                    | 4700                 | 4790                   |
| 18        | Mass Density                                   | (kg/m3)      | 994.2                 | 995.5                 | 993.5                   | 979.8                | 961.3                  |
| 19<br>20  | Name<br>Manager Franking                       |              | 184 @NPP-2            | 185 @NPP-2            | 186 @NPP-2              | 187 @NPP-2           | 188 @NPP-2             |
| 20        | Vapour Fraction<br>Temperature                 | (C)          | 0.0000<br>97.79       | 0.0000<br>135.3       | 0.0000<br>181.4         | 0.0000<br>183.0      | 0.0000<br>181.9        |
| 21        | Pressure                                       | (C)<br>(bar) | 30.66                 | 30.66                 | 30.66                   | 30.66 *              | 30.66                  |
| 23        | Molar Flow                                     | (kgmole/h)   | 2.556e+005            | 2.556e+005            | 2.556e+005              | 1.107e+005           | 3.663e+005             |
| 24        | Mass Flow                                      | (kg/h)       | 4.605e+006            | 4.605e+006            | 4.605e+006              | 1.994e+006           | 6.599e+006             |
| 25        | Actual Volume Flow                             | (m3/h)       | 4790                  | 4942                  | 5192                    | 2253                 | 7445                   |
| 26        | Mass Density                                   | (kg/m3)      | 961.3                 | 931.8                 | 886.9                   | 885.2                | 886.4                  |
| 27        | Name                                           |              | 190 @NPP-2            | 191 @NPP-2            | 711@NPP-2               | 713 @NPP-2           |                        |
| 28        | Vapour Fraction                                |              | 0.0000                | 0.0000                | 1.0000                  | 0.0000               |                        |
| 29        | Temperature                                    | (C)          | 182.6                 | 221.1                 | 267.1                   | 121.1 *              |                        |
| 30        | Pressure                                       | (bar)        | 63.43 *               | 63.43                 | 52.54                   | 49.99 *              |                        |
| 31        | Molar Flow                                     | (kgmole/h)   | 3.663e+005            | 3.663e+005            | 7125                    | 7125                 |                        |
| 32        | Mass Flow                                      | (kg/h)       | 6.599e+006            | 6.599e+006            | 1.284e+005              | 1.284e+005           |                        |
| 33        | Actual Volume Flow                             | (m3/h)       | 7433                  | 7833                  | 4803                    | 135.9                |                        |
| 34        | Mass Density                                   | (kg/m3)      | 887.8                 | 842.5                 | 26.72                   | 944.6                |                        |
| 35<br>36  |                                                |              |                       | Compositions          |                         | Fluid Pkg            | j: All                 |
| 37        | Name                                           |              | 101 Process Water Inl | 132 process feed wate | 202 Process Heat Sup    | 203 Process Heat Ret | 302 H2/H2O for purific |
| 38        | Comp Mole Frac (H2O)                           |              | 1.0000 *              | 0.9996                | ***                     | ***                  | 0.1801                 |
| 39        | Comp Mole Frac (Hydrog                         | en)          | 0.0000 *              | 0.0004                | ***                     | ***                  | 0.8199                 |
| 40        | Comp Mole Frac (Oxyger                         |              | 0.0000 *              | 0.0000                | ***                     | ***                  | 0.0000                 |
| 41        | Comp Mole Frac (Nitroge                        | n)           | 0.0000 *              | 0.0000                | ***                     | ***                  | 0.0000                 |
| 42        | Comp Mole Frac (CO2)                           |              | 0.0000 *              | 0.0000                | ***                     | * **                 | 0.0000                 |
| 43        | Comp Mole Frac (CO)                            |              | 0.0000 *              | 0.0000                | ***                     | ***                  | 0.000                  |
| 44        | Comp Mole Frac (DTRM-                          |              | ***                   | ***                   | ***                     | ***                  | ***                    |
| 45        | Comp Mole Frac (Thermi                         |              | ***                   | ***                   | 1.0000                  | 1.0000               | ***                    |
| 46<br>47  | Comp Mole Frac (Ammor                          | naj          | ***                   | ***                   | ***                     | ***                  | ***                    |
| 47        | Comp Mole Frac (Argon)<br>Name                 |              | 332 H2 Product        | 401                   | 403 Pressurized H2 P    | 801 feed water       | 802                    |
| 48<br>49  | Comp Mole Frac (H2O)                           |              | 0.0000                | 401                   | 403 Pressunzed H2 P     | 1.0000 *             | 1.0000                 |
| 50        | Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrog | en)          | 1.0000                | 1.0000                | 1.0000                  | 0.0000 *             | 0.0000                 |
| 51        | Comp Mole Frac (Oxyger                         |              | 0.0000                | 0.0000                | 0.0000                  | 0.0000 *             | 0.0000                 |
| 52        | Comp Mole Frac (Nitroge                        |              | 0.0000                | 0.0000                | 0.0000                  | 0.0000 *             | 0.0000                 |
| 53        | Comp Mole Frac (CO2)                           | -            | 0.0000                | 0.0000                | 0.0000                  | 0.0000 *             | 0.0000                 |
| 54        | Comp Mole Frac (CO)                            |              | 0.0000                | 0.0000                | 0.0000                  | 0.0000 *             | 0.0000                 |
| 55        | Comp Mole Frac (DTRM-                          | A)           | ***                   | ***                   | ***                     | ***                  | ***                    |
| 56        | Comp Mole Frac (Thermi                         | nol-66)      | ***                   | ***                   | ***                     | ***                  | ***                    |
| 57        | Comp Mole Frac (Ammor                          | nia)         | ***                   | ***                   | ***                     | ***                  | ***                    |
| 58<br>60  | Comp Mole Frac (Argon)                         |              | ***                   | ***                   | ***                     | ***                  | ***                    |
| 59<br>60  |                                                |              |                       |                       |                         |                      |                        |
| 60<br>61  |                                                |              |                       |                       |                         |                      |                        |
| 62        |                                                |              |                       |                       |                         |                      |                        |
| 63        | Aspen Technology In                            | с.           | 4                     | spen HYSYS Versio     | on 10                   |                      | Page 13 of 34          |
| <u>ات</u> | Licensed to: BATTELLE ENER                     |              |                       |                       |                         |                      | * Specified by user.   |

| 1                                |                                                           |                      | Case Name:         | Generic HTSE+NH3 PF     | D_v3.00_Therm66_5bar | _U80 (3049 tpd NH3)_re |
|----------------------------------|-----------------------------------------------------------|----------------------|--------------------|-------------------------|----------------------|------------------------|
| 2<br>3                           | Caspentech Bedford, M                                     | ENERGY ALLIANCE<br>A | Unit Set:          | HTSE PFD                |                      |                        |
| 4                                | USA                                                       |                      | Date/Time:         | Fri Apr 30 14:25:18 202 | 21                   |                        |
| 6                                |                                                           |                      |                    |                         |                      |                        |
| 7                                | Workbook:                                                 | Case (Mai            | n) (continue       | d)                      |                      |                        |
| 8<br>9                           |                                                           | _                    |                    |                         |                      |                        |
| 10                               |                                                           | Co                   | mpositions (conti  | nued)                   | Fluid Pkg            | g: All                 |
| 11                               | Name                                                      | 803                  | 901 cooling water  | 902                     | 903                  | 904                    |
| 12<br>13                         | Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)         | 1.0000               | 1.0000 *           | 1.0000                  | 1.0000               | 1.0000                 |
| 14                               | Comp Mole Frac (Aydrogen)                                 | 0.0000               | 0.0000 *           | 0.0000                  | 0.0000               | 0.0000                 |
| 15                               | Comp Mole Frac (Nitrogen)                                 | 0.0000               | 0.0000 *           | 0.0000                  | 0.0000               | 0.0000                 |
| 16                               | Comp Mole Frac (CO2)                                      | 0.0000               | 0.0000 *           | 0.0000                  | 0.000                | 0.000                  |
| 17                               | Comp Mole Frac (CO)                                       | 0.0000               | 0.0000 *           | 0.0000                  | 0.000.0              | 0.0000                 |
| 18                               | Comp Mole Frac (DTRM-A)                                   | ***                  | ***                | ***                     | ***                  | ***                    |
| 19                               | Comp Mole Frac (Therminol-66)                             | ***                  | ***                | ***                     | ***                  | ***                    |
| 20<br>21                         | Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)        | ***                  | ***                | ***                     | ***                  | ***                    |
| 22                               | Name                                                      | 905                  | AIR                | AN-NH3                  | BURN AIR-1           | BURN H2                |
| 23                               | Comp Mole Frac (H2O)                                      | 1.0000               | 0.0100 *           | 0.0000                  | 0.0000 *             | 0.0000 *               |
| 24                               | Comp Mole Frac (Hydrogen)                                 | 0.0000               | 0.0000 *           | 0.0000                  | * 0.000.0            | 1.0000 *               |
| 25                               | Comp Mole Frac (Oxygen)                                   | 0.0000               | 0.2080 *           | 0.0000                  | 0.2100 *             | 0.0000 *               |
| 26                               | Comp Mole Frac (Nitrogen)                                 | 0.0000               | 0.7730 *           | 0.0000                  | 0.7900 *             | 0.0000 *               |
| 27<br>28                         | Comp Mole Frac (CO2)                                      | 0.0000               | 0.0000 *           | 0.0000                  | 0.0000 *             | 0.0000 *               |
| 28<br>29                         | Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)            | 0.0000               | ***                | ***                     | ***                  | ***                    |
| 30                               | Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66)  | ***                  | ***                | ***                     | ***                  | ***                    |
| 31                               | Comp Mole Frac (Ammonia)                                  | ***                  | 0.0000 *           | 1.0000                  | 0.0000 *             | 0.0000 *               |
| 32                               | Comp Mole Frac (Argon)                                    | ***                  | 0.0090 *           | 0.0000                  | * 0.000.0            | 0.0000 *               |
| 33                               | Name                                                      | BURN N2-5            | N2                 | N2-2+                   | N2-2-                | O2                     |
| 34                               | Comp Mole Frac (H2O)                                      | 0.0025               | 0.0000             | 0.0000                  | 0.0000               | 0.0000                 |
| 35                               | Comp Mole Frac (Hydrogen)                                 | 0.0142               | 0.0000             | 0.0000                  | 0.0000               | 0.0000                 |
| 36                               | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)      | 0.0000               | 0.0000             | 0.0000                  | 0.0000               | 0.9642                 |
| 38                               | Comp Mole Frac (CO2)                                      | 0.0000               | 0.0000             | 0.0000                  | 0.0000               | 0.0000                 |
| 39                               | Comp Mole Frac (CO)                                       | ***                  | ***                | 0.0000                  | ***                  | ***                    |
| 40                               | Comp Mole Frac (DTRM-A)                                   | ***                  | ***                | ***                     | ***                  | ***                    |
| 41                               | Comp Mole Frac (Therminol-66)                             | ***                  | ***                | ***                     | ***                  | ***                    |
| 42                               | Comp Mole Frac (Ammonia)                                  | 0.0000               | 0.0000             | ***                     | 0.0000               | 0.0000                 |
| 43                               | Comp Mole Frac (Argon)                                    | 0.0000               | 0.0010             | ***                     | 0.0010               | 0.0358                 |
| 44<br>45                         | Name<br>Comp Mole Frac (H2O)                              | SYN-IN<br>0.0000     | AIR @ASU<br>0.0100 | AIR-1@ASU<br>0.0100     | AIR-2@ASU<br>0.0100  | AIR-3 @ASU<br>0.0000   |
| 40                               | Comp Mole Frac (Hydrogen)                                 | 0.7500               | 0.0000             | 0.0000                  | 0.0000               | 0.0000                 |
| 47                               | Comp Mole Frac (Oxygen)                                   | 0.0000               | 0.2080             | 0.2080                  | 0.2080               | 0.2101                 |
| 48                               | Comp Mole Frac (Nitrogen)                                 | 0.2500               | 0.7730             | 0.7730                  | 0.7730               | 0.7808                 |
| 49                               | Comp Mole Frac (CO2)                                      | 0.0000               | 0.0000             | 0.0000                  | 0.0000               | 0.0000                 |
| 50                               | Comp Mole Frac (CO)                                       | 0.0000               | ***                | ***                     | ***                  | ***                    |
| 51<br>50                         | Comp Mole Frac (DTRM-A)                                   | ***                  | ***                | ***                     | ***                  | ***                    |
| 52                               | Comp Mole Frac (Therminol-66)<br>Comp Mole Frac (Ammonia) | ***                  | 0.0000             | 0.0000                  | 0.0000               | 0.0000                 |
| 53                               |                                                           | ***                  | 0.0090             | 0.0090                  | 0.0090               | 0.0091                 |
| 53<br>54                         |                                                           |                      |                    |                         |                      |                        |
|                                  | Comp Mole Frac (Argon)                                    |                      |                    |                         |                      |                        |
| 54                               |                                                           |                      |                    |                         |                      |                        |
| 54<br>55<br>56<br>57             |                                                           |                      |                    |                         |                      |                        |
| 54<br>55<br>56                   |                                                           |                      |                    |                         |                      |                        |
| 54<br>55<br>56<br>57<br>58<br>59 |                                                           |                      |                    |                         |                      |                        |
| 54<br>55<br>56<br>57             |                                                           |                      |                    |                         |                      |                        |
| 54<br>55<br>56<br>57<br>58<br>59 |                                                           |                      |                    |                         |                      |                        |
| 54<br>55<br>56<br>57<br>58<br>59 |                                                           |                      | Aspen HYSYS Versio | n 10                    |                      | Page 14 of 34          |

| 1                    |                                                          |                      | Case Name:           | Generic HTSE+NH3 Pf     | D_v3.00_Therm66_5bar  | _U80 (3049 tpd NH3)_re |
|----------------------|----------------------------------------------------------|----------------------|----------------------|-------------------------|-----------------------|------------------------|
| 2<br>3               | ( aspentech Bedford, M                                   | ENERGY ALLIANCE<br>A | Unit Set:            | HTSE PFD                |                       |                        |
| 4                    | USA                                                      |                      | Date/Time:           | Fri Apr 30 14:25:18 202 | 21                    |                        |
| 5<br>6               |                                                          |                      |                      |                         |                       |                        |
| 7<br>8               | Workbook:                                                | Case (Mai            | n) (continue         | ed)                     |                       |                        |
| 9                    |                                                          | Cr                   | ompositions (cont    | inued)                  | Fluid Pk              | a: All                 |
| 10<br>11             | News                                                     |                      | • •                  | ,                       |                       |                        |
| 12                   | Name<br>Comp Mole Frac (H2O)                             | AIR-4 @ASU<br>0.0000 | AIR-5 @ASU<br>0.0000 | AIR-6 @ASU<br>0.0000    | AIR-3A @ASU<br>0.0000 | AIR-3B @ASU<br>0.0000  |
| 13                   | Comp Mole Frac (Hydrogen)                                | 0.0000               | 0.0000               | 0.0000                  | 0.0000                | 0.0000                 |
| 14                   | Comp Mole Frac (Oxygen)                                  | 0.2101               | 0.2101               | 0.2101                  | 0.2101                | 0.2101                 |
| 15                   | Comp Mole Frac (Nitrogen)                                | 0.7808               | 0.7808               | 0.7808                  | 0.7808                | 0.7808                 |
| 16                   | Comp Mole Frac (CO2)                                     | 0.0000               | 0.0000               | 0.0000                  | 0.000                 | 0.0000                 |
| 17                   | Comp Mole Frac (CO)                                      | ***                  | ***                  | ***                     | ***                   | ***                    |
| 18                   | Comp Mole Frac (DTRM-A)                                  | ***                  | ***                  | ***                     | ***                   | ***                    |
| 19                   | Comp Mole Frac (Therminol-66)                            | ***                  | ***                  | ***                     | ***                   | ***                    |
| 20                   | Comp Mole Frac (Ammonia)                                 | 0.0000               | 0.0000               | 0.0000                  | 0.0000                | 0.0000                 |
| 21                   | Comp Mole Frac (Argon)                                   | 0.0091               | 0.0091               | 0.0091                  | 0.0091                | 0.0091                 |
| 22                   | Name                                                     | AIR_A @ASU           | AIR_B@ASU            | AIR_C @ASU              | AIR_D @ASU            | AIR_E@ASU              |
| 23                   | Comp Mole Frac (H2O)                                     | 0.0100               | 0.0100               | 0.0100                  | 0.0100                | 0.0100                 |
| 24                   | Comp Mole Frac (Hydrogen)                                | 0.0000               | 0.0000               | 0.0000                  | 0.000                 | 0.000                  |
| 25                   | Comp Mole Frac (Oxygen)                                  | 0.2080               | 0.2080               | 0.2080                  | 0.2080                | 0.2080                 |
| 26                   | Comp Mole Frac (Nitrogen)                                | 0.7730               | 0.7730               | 0.7730                  | 0.7730                | 0.7730                 |
| 27                   | Comp Mole Frac (CO2)                                     | 0.0000               | 0.0000               | 0.0000                  | 0.0000                | 0.0000                 |
| 28                   | Comp Mole Frac (CO)                                      | ***                  | ***                  | ***                     | ***                   | ***                    |
| 29                   | Comp Mole Frac (DTRM-A)                                  | ***                  | ***                  | ***                     | ***                   | ***                    |
| 30                   | Comp Mole Frac (Therminol-66)                            | ***                  | ***                  | ***                     | ***                   | ***                    |
| 31                   | Comp Mole Frac (Ammonia)                                 | 0.0000               | 0.0000               | 0.0000                  | 0.000                 | 0.0000                 |
| 32                   | Comp Mole Frac (Argon)                                   | 0.0090               | 0.0090               | 0.0090                  | 0.0090                | 0.0090                 |
| 33                   | Name                                                     | C2-WASTE @ASU        | HP-BOT-1 @ASU        | HP-BOT-2 @ASU           | HP-TOP-2@ASU          | HP-TOP-3 @ASU          |
| 34                   | Comp Mole Frac (H2O)                                     | 0.0000               | 0.0000               | 0.0000                  | 0.0000                | 0.0000                 |
| 35                   | Comp Mole Frac (Hydrogen)                                | 0.0000               | 0.0000               | 0.0000                  | 0.0000                | 0.0000                 |
| 36<br>37             | Comp Mole Frac (Oxygen)                                  | 0.1134               | 0.3889               | 0.3889                  | 0.0000                | 0.0000                 |
| 37                   | Comp Mole Frac (Nitrogen)                                | 0.7929               | 0.5951               | 0.5951                  | 0.9990                | 0.9990                 |
| 30<br>39             | Comp Mole Frac (CO2)                                     | 0.0000               | 0.0000               | 0.0000                  | 0.0000                | 0.0000                 |
| 39<br>40             | Comp Mole Frac (CO)                                      | ***                  | ***                  | ***                     | ***                   | ***                    |
| 40                   | Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66) | ***                  | ***                  | ***                     | ***                   | ***                    |
| 41                   | Comp Mole Frac (Ammonia)                                 | 0.0000               | 0.0000               | 0.0000                  | 0.0000                | 0.0000                 |
| 43                   | Comp Mole Frac (Armonia)                                 | 0.0937               | 0.0360               | 0.0160                  | 0.0010                | 0.0010                 |
| 44                   | Name                                                     | HPCOLBOT @ASU        | HPCOLTOP @ASU        | KO-LIQ @ASU             | LPCOLBOT @ASU         | LPCOLTOP @ASU          |
| 45                   | Comp Mole Frac (H2O)                                     | 0.0000               | 0.0000               | 1.0000                  | 0.0000                | 0.0000                 |
| 46                   | Comp Mole Frac (Hydrogen)                                | 0.0000               | 0.0000               | 0.0000                  | 0.0000                | 0.0000                 |
| 47                   | Comp Mole Frac (Oxygen)                                  | 0.3889               | 0.0000               | 0.0000                  | 0.9642                | 0.0000                 |
| 48                   | Comp Mole Frac (Nitrogen)                                | 0.5951               | 0.9990               | 0.0000                  | 0.0000                | 0.9990                 |
| 49                   | Comp Mole Frac (CO2)                                     | 0.0000               | 0.0000               | 0.0000                  | 0.0000                | 0.0000                 |
| 50                   | Comp Mole Frac (CO)                                      | ***                  | ***                  | ***                     | ***                   | ***                    |
| 51                   | Comp Mole Frac (DTRM-A)                                  | ***                  | ***                  | ***                     | ***                   | ***                    |
| 52                   | Comp Mole Frac (Therminol-66)                            | ***                  | ***                  | ***                     | ***                   | ***                    |
| 53                   | Comp Mole Frac (Ammonia)                                 | 0.0000               | 0.0000               | 0.0000                  | 0.000                 | 0.0000                 |
| 54                   | Comp Mole Frac (Argon)                                   | 0.0160               | 0.0010               | 0.0000                  | 0.0358                | 0.0010                 |
| 56<br>57<br>58<br>59 |                                                          |                      |                      |                         |                       |                        |
| 61                   |                                                          |                      |                      |                         |                       |                        |
| 62                   |                                                          |                      |                      |                         |                       |                        |
| 63                   | Aspen Technology Inc.                                    |                      | Aspen HYSYS Versio   | on 10                   |                       | Page 15 of 34          |
| _                    | Licensed to: BATTELLE ENERGY ALLIANCE                    |                      |                      |                         |                       | * Specified by user.   |

| 2<br>3                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Case Name:                                                                                                                              | Generic HTSE+NH3 PF                                                                                                                | D_v3.00_Therm66_5bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _U80 (3049 tpd NH3)_re                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                     | Caspentech Bedford, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ENERGY ALLIANCE<br>A                                                                                                                    | Unit Set:                                                                                                                          | HTSE PFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                                                                                                                                                                                                                                                                   | USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         | Date/Time:                                                                                                                         | Fri Apr 30 14:25:18 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                                                                                                                                                                                                                                                                                   | Workbook:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Case (Mai                                                                                                                               | n) (continue                                                                                                                       | ed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Co                                                                                                                                      | ompositions (conti                                                                                                                 | inued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fluid Pkg                                                                                                                                       | r: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10<br>11                                                                                                                                                                                                                                                                            | blassa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                         | • •                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12                                                                                                                                                                                                                                                                                  | Name<br>Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MS-LIQ @ASU<br>1.0000                                                                                                                   | N2 @ASU<br>0.0000                                                                                                                  | N2-1 @ASU<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O2 @ASU<br>0.0000                                                                                                                               | 02-1 @ASU<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000                                                                                                                                  | 0.0000                                                                                                                             | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                          | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0000                                                                                                                                  | 0.0000                                                                                                                             | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9642                                                                                                                                          | 0.9642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000                                                                                                                                  | 0.9990                                                                                                                             | 0.9990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                          | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16                                                                                                                                                                                                                                                                                  | Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000                                                                                                                                  | 0.0000                                                                                                                             | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 17                                                                                                                                                                                                                                                                                  | Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***                                                                                                                                     | ***                                                                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18                                                                                                                                                                                                                                                                                  | Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                                     | ***                                                                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 19                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***                                                                                                                                     | ***                                                                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                  | 0.0000                                                                                                                             | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 21                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000                                                                                                                                  | 0.0010                                                                                                                             | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0358                                                                                                                                          | 0.0358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 22                                                                                                                                                                                                                                                                                  | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TO-HPCOL@ASU                                                                                                                            | TO-LPCOL@ASU                                                                                                                       | VENT-GAS @ASU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WASTE @ASU                                                                                                                                      | Anode @Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 23                                                                                                                                                                                                                                                                                  | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000                                                                                                                                  | 0.000                                                                                                                              | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 24                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000                                                                                                                                  | 0.0000                                                                                                                             | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2101                                                                                                                                  | 0.2101                                                                                                                             | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1134                                                                                                                                          | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 26                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7808                                                                                                                                  | 0.7808                                                                                                                             | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7929                                                                                                                                          | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 27                                                                                                                                                                                                                                                                                  | Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000                                                                                                                                  | 0.0000                                                                                                                             | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                          | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 28                                                                                                                                                                                                                                                                                  | Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***                                                                                                                                     | ***                                                                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                                             | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 29                                                                                                                                                                                                                                                                                  | Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                                     | ***                                                                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 30                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***                                                                                                                                     | ***                                                                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 31                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                  | 0.0000                                                                                                                             | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000.0                                                                                                                                         | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 32                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0091                                                                                                                                  | 0.0091                                                                                                                             | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0937                                                                                                                                          | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 33                                                                                                                                                                                                                                                                                  | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cathode @Cell                                                                                                                           | Gas Products @Cell                                                                                                                 | Liquid Products @Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Molar Flow of Oxygen                                                                                                                            | Process Cell Inlet @C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 34                                                                                                                                                                                                                                                                                  | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1801                                                                                                                                  | 0.1324                                                                                                                             | 0.1324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | * 0.000 *                                                                                                                                       | 0.9007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 35                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8199                                                                                                                                  | 0.6027                                                                                                                             | 0.6027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | * 0.000.0                                                                                                                                       | 0.0993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 36                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0000                                                                                                                                  | 0.0040                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 07                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0000                                                                                                                                  | 0.2648                                                                                                                             | 0.2648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000 *                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 37                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000                                                                                                                                  | 0.0000                                                                                                                             | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | * 0.000.0                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 37<br>38                                                                                                                                                                                                                                                                            | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000<br>0.0000                                                                                                                        | 0.0000<br>0.0000                                                                                                                   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | * 0.000.0<br>* 0.000.0                                                                                                                          | 0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 37<br>38<br>39                                                                                                                                                                                                                                                                      | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                  | 0.0000                                                                                                                             | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | * 0.000.0                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 37<br>38<br>39<br>40                                                                                                                                                                                                                                                                | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000<br>0.0000<br>0.0000<br>***                                                                                                       | 0.0000<br>0.0000<br>0.0000                                                                                                         | 0.0000<br>0.0000<br>0.0000<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * 0.000 *<br>0.000 *<br>0.000 *                                                                                                                 | 0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 37<br>38<br>39<br>40<br>41                                                                                                                                                                                                                                                          | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000<br>0.0000<br>0.0000                                                                                                              | 0.0000<br>0.0000<br>0.0000<br>***                                                                                                  | 0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * 0.000 (<br>* 0.000 (<br>* 0.000 (<br>***                                                                                                      | 0.0000<br>0.0000<br>0.0000<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 37<br>38<br>39<br>40                                                                                                                                                                                                                                                                | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000<br>0.0000<br>***<br>***                                                                                                          | 0.0000<br>0.0000<br>***<br>***                                                                                                     | 0.0000 0.0000 *** ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * 0.000 *<br>0.000 *<br>0.000 *<br>***<br>***                                                                                                   | 0.0000<br>0.0000<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 37<br>38<br>39<br>40<br>41<br>42                                                                                                                                                                                                                                                    | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000<br>0.0000<br>***<br>***<br>***                                                                                                   | 0.0000 0.0000                                                                                                                      | 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | * 0.000 * 0.000 * 0.000 * 0.000 * * * *                                                                                                         | 0.0000 0.0000 0.0000 *** *** *** ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 37<br>38<br>39<br>40<br>41<br>42<br>43                                                                                                                                                                                                                                              | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000<br>0.0000<br>***<br>***<br>***                                                                                                   | 0.000<br>0.000<br>***<br>***<br>***                                                                                                | 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | * 0.000 *<br>0.000 *<br>0.0000 *<br>***<br>***<br>***                                                                                           | 0.0000<br>0.0000<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                                                                                                                                                                                                                                        | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-B6)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000<br>0.0000<br>***<br>***<br>***<br>***<br>Sweep Cell Inlet @Ce                                                                    | 0.0000<br>0.0000<br>***<br>***<br>***<br>***<br>***<br>***<br>**                                                                   | 0.0000<br>0.0000<br>****<br>****<br>****<br>AQ-NH3@COL4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000 *<br>0.000 *<br>****<br>****<br>PURGE @COL4                                                                                               | 0.0000<br>0.0000<br>****<br>****<br>****<br>PURGE-7@COL4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45                                                                                                                                                                                                                                  | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000<br>0.0000<br>***<br>***<br>***<br>Sweep Cell Inlet @Ce<br>0.0000                                                                 | 0.0000<br>0.0000<br>***<br>***<br>***<br>\$weep Gas/O2 Out @<br>0.0000                                                             | 0.0000<br>0.0000<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000 *<br>0.000 *<br>***<br>***<br>PURGE@COL4<br>0.0045                                                                                        | 0.0000<br>0.0000<br>***<br>***<br>PURGE-7 @COL4<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46                                                                                                                                                                                                                            | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000<br>0.0000<br>***<br>***<br>***<br>Sweep Cell Inlet @Ce<br>0.0000<br>0.0000                                                       | 0.0000<br>0.0000<br>***<br>***<br>***<br>\$weep Gas/O2 Out @<br>0.0000<br>0.0000                                                   | 0.0000<br>0.0000<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000 *<br>0.000 *<br>****<br>***<br>PURGE@COL4<br>0.0045<br>0.7253                                                                             | 0.0000<br>0.0000<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47                                                                                                                                                                                                                      | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0000<br>0.0000<br>***<br>***<br>***<br>Sweep Cell Inlet @Ce<br>0.0000<br>0.0000                                                       | 0.0000<br>0.0000<br>***<br>***<br>***<br>Sweep Gas/O2 Out @<br>0.0000<br>0.0000<br>0.4001                                          | 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000 *<br>0.000 *<br>****<br>***<br>PURGE@COL4<br>0.0045<br>0.7253<br>0.0010                                                                   | 0.0000<br>0.0000<br>****<br>***<br>PURGE-7 @COL4<br>0.0000<br>0.0409<br>0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48                                                                                                                                                                                                                | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0000<br>0.0000<br>***<br>***<br>***<br>Sweep Cell Inlet @Ce<br>0.0000<br>0.0000<br>0.2500<br>0.7500                                   | 0.0000<br>0.0000<br>***<br>***<br>***<br>Sweep Gas/O2 Out @<br>0.0000<br>0.0000<br>0.4001<br>0.5999                                | 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000 *<br>0.000 *<br>****<br>***<br>PURGE@COL4<br>PURGE@COL4<br>0.0045<br>0.7253<br>0.0010<br>0.2692                                           | 0.0000<br>0.0000<br>****<br>***<br>PURGE-7 @COL4<br>0.0000<br>0.0409<br>0.0001<br>0.0153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ol> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> </ol>                                                                                                              | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000<br>0.0000<br>•••••<br>••••<br>••••<br>Sweep Cell Inlet @Ce<br>0.0000<br>0.0000<br>0.2500<br>0.7500<br>0.0000                     | 0.0000<br>0.0000<br>••••<br>•••<br>•••<br>Sweep Gas/O2 Out @<br>0.0000<br>0.0000<br>0.4001<br>0.5999<br>0.0000                     | 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000 *<br>0.000 *<br>                                                                                                                          | 0.0000<br>0.0000<br>•••••<br>••••<br>••••<br>••••<br>••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50                                                                                                                                                                                                    | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000<br>0.0000<br>***<br>***<br>***<br>Sweep Cell Inlet @Ce<br>0.0000<br>0.0000<br>0.2500<br>0.2500<br>0.0000<br>0.0000               | 0.0000<br>0.0000<br>***<br>***<br>***<br>Sweep Gas'O2 Out @<br>0.0000<br>0.0000<br>0.4001<br>0.5989<br>0.0000<br>0.0000            | 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.000 *<br>0.000 *<br>****<br>****<br>PURGE@COL4<br>***<br>0.0045<br>0.7253<br>0.0015<br>0.0010<br>0.2692<br>0.0000                             | 0.0000<br>0.0000<br>****<br>****<br>PURGE-7 @COL4<br>0.0000<br>0.0409<br>0.0409<br>0.0001<br>0.0153<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51                                                                                                                                                                                              | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000<br>0.0000<br>***<br>***<br>***<br>Sweep Cell Inlet @Ce<br>0.0000<br>0.0000<br>0.2500<br>0.7500<br>0.0000<br>0.0000               | 0.0000<br>0.0000<br>••••<br>•••<br>•••<br>•••<br>•••<br>•••<br>•                                                                   | 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 | 0.000 *<br>0.000 *<br>***<br>***<br>PURGE@COL4<br>0.0045<br>0.7253<br>0.0010<br>0.2892<br>0.0000<br>***                                         | 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.040 0.000 0.040 0.001 0.0153 0.0000 0.0153 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0. |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52                                                                                                                                                                                        | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000<br>0.0000<br>***<br>***<br>Sweep Cell Inlet @Ce<br>0.0000<br>0.0000<br>0.2500<br>0.7500<br>0.0000<br>0.0000                      | 0.0000<br>0.0000<br>***<br>***<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$                 | 0.0000 0.0000 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 | 0.000 *<br>0.000 *<br>***<br>***<br>PURGE@COL4<br>0.0045<br>0.0045<br>0.7253<br>0.0010<br>0.2692<br>0.0090<br>***<br>***                        | 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.040 0.000 0.040 0.000 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 44\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 9\end{array}$                                                                                                                                                 | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mo | 0.0000<br>0.0000<br>••••<br>•••<br>•••<br>•••<br>•••<br>•••<br>•                                                                        | 0.0000<br>0.0000<br>***<br>***<br>***<br>\$weep Gas/O2 Out @<br>0.0000<br>0.0000<br>0.4001<br>0.5999<br>0.0000<br>0.0000<br>0.4001 | 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 | 0.000 *<br>0.000 *<br>***<br>***<br>PURGE@COL4<br>0.0045<br>0.0045<br>0.0045<br>0.0010<br>0.2692<br>0.0000<br>0.2692<br>0.0000<br>***<br>0.0000 | 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0 |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57           58 | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mo | 0.0000<br>0.0000<br>••••<br>•••<br>•••<br>•••<br>•••<br>•••<br>•                                                                        | 0.0000<br>0.0000<br>***<br>***<br>***<br>\$weep Gas/O2 Out @<br>0.0000<br>0.0000<br>0.4001<br>0.5999<br>0.0000<br>0.0000<br>0.4001 | 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 | 0.000 *<br>0.000 *<br>***<br>***<br>PURGE@COL4<br>0.0045<br>0.0045<br>0.0045<br>0.0010<br>0.2692<br>0.0000<br>0.2692<br>0.0000<br>***<br>0.0000 | 0.000<br>0.000<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c} 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 44\\ 45\\ 44\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 9\\ 60\\ \end{array}$                                                                                                                               | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mo | 0.0000<br>0.0000<br>••••<br>•••<br>•••<br>•••<br>•••<br>•••<br>•                                                                        | 0.0000<br>0.0000<br>***<br>***<br>***<br>\$weep Gas/O2 Out @<br>0.0000<br>0.0000<br>0.4001<br>0.5999<br>0.0000<br>0.0000<br>0.4001 | 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 | 0.000 *<br>0.000 *<br>***<br>***<br>PURGE@COL4<br>0.0045<br>0.0045<br>0.0045<br>0.0010<br>0.2692<br>0.0000<br>0.2692<br>0.0000<br>***<br>0.0000 | 0.000<br>0.000<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c} 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 44\\ 45\\ 44\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 9\\ 60\\ \end{array}$                                                                                                                               | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mo | 0.0000<br>0.0000<br>***<br>***<br>Sweep Cell Inlet @Ce<br>0.0000<br>0.0000<br>0.2500<br>0.0000<br>0.0000<br>0.0000<br>***<br>***<br>*** | 0.0000<br>0.0000<br>***<br>***<br>***<br>\$weep Gas/O2 Out @<br>0.0000<br>0.0000<br>0.4001<br>0.5999<br>0.0000<br>0.0000<br>0.4001 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0. | 0.000 *<br>0.000 *<br>***<br>***<br>PURGE@COL4<br>0.0045<br>0.0045<br>0.0045<br>0.0010<br>0.2692<br>0.0000<br>0.2692<br>0.0000<br>***<br>0.0000 | 0.000<br>0.000<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| 1              |                                                           |                | Case Name:         | Generic HTSE+NH3 PF     | D_v3.00_Therm66_5bar | _U80 (3049 tpd NH3)_re |
|----------------|-----------------------------------------------------------|----------------|--------------------|-------------------------|----------------------|------------------------|
| 2<br>3         | BatTELLE ENERGY ALLIANCE     Bedford, MA                  |                | Unit Set:          | HTSE PFD                |                      |                        |
| 4<br>5         | USA                                                       |                | Date/Time:         | Fri Apr 30 14:25:18 202 | 1                    |                        |
| 6              |                                                           |                |                    |                         |                      |                        |
| 7              | Workbook:                                                 | Case (Mai      | n) (continue       | ed)                     |                      |                        |
| 8<br>9         |                                                           |                |                    |                         |                      |                        |
| 10             |                                                           | Co             | ompositions (conti | inued)                  | Fluid Pk             | g: All                 |
| 11             | Name                                                      | WATER-6A @COL4 | HPCOLBOT @COL5     | HPCOLTOP @COL5          | Reflux @COL5         | To Condenser @COL      |
| 12             | Comp Mole Frac (H2O)                                      | 1.0000         | 0.0000             | 0.0000                  | 0.0000               | 0.0000                 |
| 13<br>14       | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)      | 0.0000         | 0.0000             | 0.0000                  | 0.0000               | 0.0000                 |
| 14             | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)      | 0.0000         | 0.5859             | 0.9990                  | 0.9981               | 0.9985                 |
| 16             | Comp Mole Frac (CO2)                                      | 0.0000         | 0.0000             | 0.0000                  | 0.0000               | 0.0000                 |
| 17             | Comp Mole Frac (CO)                                       | ***            | ***                | ***                     | ***                  | ***                    |
| 18             | Comp Mole Frac (DTRM-A)                                   | ***            | ***                | ***                     | ***                  | ***                    |
| 19             | Comp Mole Frac (Therminol-66)                             | ***            | ***                | ***                     | ***                  | ***                    |
| 20             | Comp Mole Frac (Ammonia)                                  | 0.0000         | 0.0000             | 0.0000                  | 0.000                | 0.0000                 |
| 21             | Comp Mole Frac (Argon)                                    | 0.0000         | 0.0160             | 0.0010                  | 0.0019               | 0.0015                 |
| 22             | Name                                                      | TO-HPCOL@COL5  | Boilup @COL6       | C2-WASTE@COL6           | FlshV @COL6          | HP-BOT-2 @COL6         |
| 23             | Comp Mole Frac (H2O)                                      | 0.0000         | 0.000              | 0.0000                  | 0.000.0              | 0.000                  |
| 24             | Comp Mole Frac (Hydrogen)                                 | 0.0000         | 0.0000             | 0.0000                  | 0.000                | 0.0000                 |
| 25             | Comp Mole Frac (Oxygen)                                   | 0.2101         | 0.9612             | 0.1134                  | 0.9612               | 0.3889                 |
| 26             | Comp Mole Frac (Nitrogen)                                 | 0.7808         | 0.0000             | 0.7929                  | 0.0000               | 0.5951                 |
| 27<br>28       | Comp Mole Frac (CO2)                                      | 0.0000         | 0.0000             | 0.0000                  | 0.0000               | 0.0000                 |
| 20             | Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)            | ***            | ***                | ***                     | ***                  | ***                    |
| 30             | Comp Mole Frac (Drrtin-A)                                 | ***            | ***                | ***                     | ***                  | ***                    |
| 31             | Comp Mole Frac (Ammonia)                                  | 0.0000         | 0.0000             | 0.0000                  | 0.000                | 0.000                  |
| 32             | Comp Mole Frac (Argon)                                    | 0.0091         | 0.0388             | 0.0937                  | 0.0388               | 0.0160                 |
| 33             | Name                                                      | HP-TOP-3@COL6  | LPCOLBOT @COL6     | LPCOLTOP @COL6          | SumpV @COL6          | To Reboiler @COL6      |
| 34             | Comp Mole Frac (H2O)                                      | 0.0000         | 0.0000             | 0.0000                  | 0.000                | 0.0000                 |
| 35             | Comp Mole Frac (Hydrogen)                                 | 0.0000         | 0.0000             | 0.0000                  | 0.000                | 0.0000                 |
| 36             | Comp Mole Frac (Oxygen)                                   | 0.0000         | 0.9642             | 0.0000                  | 0.9445               | 0.9622                 |
| 37             | Comp Mole Frac (Nitrogen)                                 | 0.9990         | 0.0000             | 0.9990                  | 0.000                | 0.0000                 |
| 38             | Comp Mole Frac (CO2)                                      | 0.0000         | 0.0000             | 0.0000                  | 0.0000               | 0.0000                 |
| 39             | Comp Mole Frac (CO)                                       | ***            | ***                | ***                     | ***                  | ***                    |
| 40<br>41       | Comp Mole Frac (DTRM-A)                                   | ***            | ***                | ***                     | ***                  | ***                    |
| 41<br>42       | Comp Mole Frac (Therminol-66)<br>Comp Mole Frac (Ammonia) | 0.0000         | 0.0000             | 0.0000                  | 0.0000               | 0.0000                 |
| 42             | Comp Mole Frac (Arimonia)                                 | 0.0010         | 0.0358             | 0.0010                  | 0.0555               | 0.0378                 |
| 44             | Name                                                      | TO-LPCOL @COL6 | ToFIsh @COL6       | ToReb @COL6             | ToSump @COL6         | ToTee @COL6            |
| 45             | Comp Mole Frac (H2O)                                      | 0.0000         | 0.0000             | 0.0000                  | 0.0000               | 0.0000                 |
| 46             | Comp Mole Frac (Hydrogen)                                 | 0.0000         | 0.0000             | 0.0000                  | 0.000.0              | 0.000                  |
| 47             | Comp Mole Frac (Oxygen)                                   | 0.2101         | 0.9642             | 0.9642                  | 0.9752               | 0.9642                 |
| 48             | Comp Mole Frac (Nitrogen)                                 | 0.7808         | 0.0000             | 0.0000                  | 0.000.0              | 0.0000                 |
| 49             | Comp Mole Frac (CO2)                                      | 0.0000         | 0.0000             | 0.0000                  | 0.000                | 0.0000                 |
| 50             | Comp Mole Frac (CO)                                       | ***            | ***                | ***                     | ***                  | ***                    |
| 51             | Comp Mole Frac (DTRM-A)                                   | ***            | ***                | ***                     | ***                  | ***                    |
| 52<br>53       | Comp Mole Frac (Therminol-66)                             | ***            | ***                | ***                     | ***                  | ***                    |
| 53<br>54       | Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)        | 0.0000         | 0.0000<br>0.0358   | 0.0000                  | 0.0000               | 0.0000<br>0.0358       |
| 55             | Comp Mole Frac (Argon)                                    | 0.0091         | 0.0308             | 0.0358                  | U.U248               | 0.0308                 |
| 56<br>57<br>58 |                                                           |                |                    |                         |                      |                        |
| 59             |                                                           |                |                    |                         |                      |                        |
| 60<br>61       |                                                           |                |                    |                         |                      |                        |
| 60<br>61<br>62 | Aspen Technology Inc.                                     |                | Aspen HYSYS Versio | vn 10                   |                      | Page 17 of 34          |

| 1                          |                                                |                      | Case Name:          | Generic HTSE+NH3 PF     | D_v3.00_Therm66_5bar  | _U80 (3049 tpd NH3)_re |
|----------------------------|------------------------------------------------|----------------------|---------------------|-------------------------|-----------------------|------------------------|
| 2<br>3                     | ( aspentech Bedford, M                         | ENERGY ALLIANCE<br>A | Unit Set:           | HTSE PFD                |                       |                        |
| 4                          | USA                                            |                      | Date/Time:          | Fri Apr 30 14:25:18 202 | 1                     |                        |
| 5<br>6                     |                                                |                      |                     |                         |                       |                        |
| 7<br>8                     | Workbook:                                      | Case (Maii           | n) (continue        | d)                      |                       |                        |
| 9                          |                                                | C_                   | mpositions (conti   | nued)                   | Fluid Pkg             | c All                  |
| 10                         |                                                |                      | • •                 | ,                       |                       |                        |
| 11<br>12                   | Name<br>Comp Mole Frac (H2O)                   | 1 @H2burn<br>0.9998  | 2 @H2burn<br>0.9998 | 3 @H2burn<br>0.9998     | 4 @H2burn<br>0.9998   | 5 @H2burn<br>0.9998 *  |
| 13                         | Comp Mole Frac (Hydrogen)                      | 0.0000               | 0.0000              | 0.9998                  | 0.9998                | 0.0000 *               |
| 14                         | Comp Mole Frac (Oxygen)                        | 0.0000               | 0.0000              | 0.0000                  | 0.0000                | 0.0000 *               |
| 15                         | Comp Mole Frac (Nitrogen)                      | 0.0002               | 0.0002              | 0.0002                  | 0.0002                | 0.0002 *               |
| 16                         | Comp Mole Frac (CO2)                           | 0.0000               | 0.0000              | 0.0000                  | 0.0000                | 0.0000 *               |
| 17                         | Comp Mole Frac (CO)                            | ***                  | ***                 | ***                     | ***                   | ***                    |
| 18                         | Comp Mole Frac (DTRM-A)                        | ***                  | ***                 | ***                     | ***                   | ***                    |
| 19                         | Comp Mole Frac (Therminol-66)                  | ***                  | ***                 | ***                     | ***                   | ***                    |
| 20                         | Comp Mole Frac (Ammonia)                       | 0.0000               | 0.0000              | 0.0000                  | 0.0000                | 0.0000 *               |
| 21                         | Comp Mole Frac (Argon)                         | 0.0000               | 0.0000              | 0.0000                  | 0.000                 | 0.0000 *               |
| 22                         | Name                                           | 6 @H2burn            | BURN AIR-1 @H2burr  | BURN AIR-2 @H2burr      | BURN AIR-3 @H2buri    | BURN H2 @H2burn        |
| 23                         | Comp Mole Frac (H2O)                           | 0.7626               | 0.0000              | 0.0000                  | 0.000                 | 0.0000                 |
| 24                         | Comp Mole Frac (Hydrogen)                      | 0.0034               | 0.0000              | 0.0000                  | 0.000                 | 1.0000                 |
| 25                         | Comp Mole Frac (Oxygen)                        | 0.0000               | 0.2100              | 0.2100                  | 0.2100                | 0.0000                 |
| 26                         | Comp Mole Frac (Nitrogen)                      | 0.2340               | 0.7900              | 0.7900                  | 0.7900                | 0.0000                 |
| 27                         | Comp Mole Frac (CO2)                           | 0.0000               | 0.0000              | 0.0000                  | 0.000                 | 0.0000                 |
| 28                         | Comp Mole Frac (CO)                            | ***                  | ***                 | ***                     | ***                   | ***                    |
| 29                         | Comp Mole Frac (DTRM-A)                        | ***                  | ***                 | ***                     | ***                   | ***                    |
| 30                         | Comp Mole Frac (Therminol-66)                  | ***                  | ***                 | ***                     | ***                   | ***                    |
| 31                         | Comp Mole Frac (Ammonia)                       | 0.0000               | 0.0000              | 0.0000                  | 0.0000                | 0.000                  |
| 32                         | Comp Mole Frac (Argon)                         | 0.0000               | 0.0000              | 0.0000                  | 0.000                 | 0.0000                 |
| 33                         | Name                                           | BURN N2-1 @H2burn    | BURN N2-2 @H2burn   | BURN N2-3 @H2burn       | BURN N2-4 @H2burn     | BURN N2-5 @H2burn      |
| 34                         | Comp Mole Frac (H2O)                           | 0.7626               | 0.7626              | 0.7626                  | 0.7626                | 0.0025                 |
| 35                         | Comp Mole Frac (Hydrogen)                      | 0.0034               | 0.0034              | 0.0034                  | 0.0034                | 0.0142                 |
| 36<br>37                   | Comp Mole Frac (Oxygen)                        | 0.0000               | 0.0000              | 0.0000                  | 0.0000                | 0.0000                 |
| 37                         | Comp Mole Frac (Nitrogen)                      | 0.2340               | 0.2340              | 0.0000                  | 0.2340                |                        |
| 39                         | Comp Mole Frac (CO2)                           | ***                  | 0.0000              | ***                     | 0.0000                | 0.0000                 |
| 40                         | Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A) | ***                  | ***                 | ***                     | ***                   | ***                    |
| 40                         | Comp Mole Frac (DrrtmA)                        | ***                  | ***                 | ***                     | ***                   | ***                    |
| 42                         | Comp Mole Frac (Ammonia)                       | 0.0000               | 0.0000              | 0.0000                  | 0.0000                | 0.0000                 |
| 43                         | Comp Mole Frac (Argon)                         | 0.0000               | 0.0000              | 0.0000                  | 0.0000                | 0.0000                 |
| 44                         | Name                                           | BURNER LIQ @H2bu     | WATER @H2burn       | 1 @H2rec                | 101 Process Water Inl | 102 @H2rec             |
| 45                         | Comp Mole Frac (H2O)                           | 0.7626               | 0.9998              | 0.2000 *                | 1.0000                | 1.0000                 |
| 46                         | Comp Mole Frac (Hydrogen)                      | 0.0034               | 0.0000              | 0.8000 *                | 0.0000                | 0.0000                 |
| 47                         | Comp Mole Frac (Oxygen)                        | 0.0000               | 0.0000              | 0.0000 *                | 0.000                 | 0.0000                 |
| 48                         | Comp Mole Frac (Nitrogen)                      | 0.2340               | 0.0002              | 0.0000 *                | 0.000                 | 0.0000                 |
| 49                         | Comp Mole Frac (CO2)                           | 0.0000               | 0.0000              | 0.0000 *                | 0.0000                | 0.0000                 |
| 50                         | Comp Mole Frac (CO)                            | ***                  | ***                 | 0.0000 *                | 0.0000                | 0.0000                 |
| 51                         | Comp Mole Frac (DTRM-A)                        | ***                  | ***                 | ***                     | ***                   | ***                    |
| 52                         | Comp Mole Frac (Therminol-66)                  | ***                  | ***                 | ***                     | ***                   | ***                    |
| 53                         | Comp Mole Frac (Ammonia)                       | 0.0000               | 0.0000              | ***                     | ***                   | ***                    |
| 54                         | Comp Mole Frac (Argon)                         | 0.0000               | 0.0000              | ***                     | ***                   | ***                    |
| 56<br>57<br>58<br>59<br>60 |                                                |                      |                     |                         |                       |                        |
| 62                         |                                                |                      |                     |                         |                       |                        |
| 63                         | Aspen Technology Inc.                          | ļ                    | spen HYSYS Versio   | n 10                    |                       | Page 18 of 34          |
|                            |                                                |                      |                     | -                       |                       |                        |

|                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                 | Case Name:                                                                                                | Generic HTSE+NH3 PF                                                                                                            | D_v3.00_Therm66_5bar                                                                                                                            | _U80 (3049 tpd NH3)_re                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3                                                                                                                                                                                                                                                                              | ( aspentech Bedford, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EENERGY ALLIANCE<br>IA                                                                                                          | Unit Set:                                                                                                 | HTSE PFD                                                                                                                       |                                                                                                                                                 |                                                                                                                                        |
| 4<br>5                                                                                                                                                                                                                                                                              | USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                 | Date/Time:                                                                                                | Fri Apr 30 14:25:18 202                                                                                                        | 21                                                                                                                                              |                                                                                                                                        |
| 6                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                 |                                                                                                           |                                                                                                                                |                                                                                                                                                 |                                                                                                                                        |
| 7<br>8                                                                                                                                                                                                                                                                              | Workbook:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Case (Main                                                                                                                      | n) (continue                                                                                              | ed)                                                                                                                            |                                                                                                                                                 |                                                                                                                                        |
| 9                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Co                                                                                                                              | mpositions (cont                                                                                          | inued)                                                                                                                         | Fluid Pk                                                                                                                                        | a: All                                                                                                                                 |
| 10<br>11                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                 | • •                                                                                                       | ,                                                                                                                              |                                                                                                                                                 |                                                                                                                                        |
| 11<br>12                                                                                                                                                                                                                                                                            | Name<br>Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 113 @H2rec<br>1.0000                                                                                                            | 114 @H2rec<br>1.0000                                                                                      | 122@H2rec<br>1.0000                                                                                                            | 131 @H2rec<br>0.9996                                                                                                                            | 132 process feed wate<br>0.9996                                                                                                        |
| 13                                                                                                                                                                                                                                                                                  | Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000                                                                                                                          | 0.0000                                                                                                    | 0.0000                                                                                                                         | 0.0004                                                                                                                                          | 0.0004                                                                                                                                 |
| 14                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                          | 0.0000                                                                                                    | 0.0000                                                                                                                         | 0.0000                                                                                                                                          | 0.0000                                                                                                                                 |
| 15                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000                                                                                                                          | 0.0000                                                                                                    | 0.0000                                                                                                                         | 0.000.0                                                                                                                                         | 0.0000                                                                                                                                 |
| 16                                                                                                                                                                                                                                                                                  | Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                          | 0.0000                                                                                                    | 0.0000                                                                                                                         | 0.000                                                                                                                                           | 0.0000                                                                                                                                 |
| 17                                                                                                                                                                                                                                                                                  | Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000                                                                                                                          | 0.0000                                                                                                    | 0.0000                                                                                                                         | 0.000                                                                                                                                           | 0.0000                                                                                                                                 |
| 18                                                                                                                                                                                                                                                                                  | Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                                                                                                                             | ***                                                                                                       | ***                                                                                                                            | ***                                                                                                                                             | ***                                                                                                                                    |
| 19                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                             | ***                                                                                                       | ***                                                                                                                            | ***                                                                                                                                             | ***                                                                                                                                    |
| 20                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                             | ***                                                                                                       | ***                                                                                                                            | ***                                                                                                                                             | ***                                                                                                                                    |
| 21                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ***                                                                                                                             | ***                                                                                                       | ***                                                                                                                            | ***                                                                                                                                             | ***                                                                                                                                    |
| 22                                                                                                                                                                                                                                                                                  | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 302 H2/H2O for purific                                                                                                          | 303 @H2rec                                                                                                | 304a @H2rec                                                                                                                    | 304b @H2rec                                                                                                                                     | 304c @H2rec                                                                                                                            |
| 23                                                                                                                                                                                                                                                                                  | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1801                                                                                                                          | 0.2000                                                                                                    | 0.2000                                                                                                                         | 0.2000                                                                                                                                          | 0.2000                                                                                                                                 |
| 24                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8199                                                                                                                          | 0.8000                                                                                                    | 0.8000                                                                                                                         | 0.8000                                                                                                                                          | 0.8000                                                                                                                                 |
| 25                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                          | 0.0000                                                                                                    | 0.0000                                                                                                                         | 0.000.0                                                                                                                                         | 0.0000                                                                                                                                 |
| 26                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000                                                                                                                          | 0.0000                                                                                                    | 0.0000                                                                                                                         | 0.0000                                                                                                                                          | 0.0000                                                                                                                                 |
| 27                                                                                                                                                                                                                                                                                  | Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                          | 0.0000                                                                                                    | 0.0000                                                                                                                         | 0.0000                                                                                                                                          | 0.0000                                                                                                                                 |
| 28                                                                                                                                                                                                                                                                                  | Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000                                                                                                                          | 0.0000                                                                                                    | 0.0000                                                                                                                         | 0.0000                                                                                                                                          | 0.0000                                                                                                                                 |
| 29                                                                                                                                                                                                                                                                                  | Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                                                                                                                             | ***                                                                                                       | ***                                                                                                                            | ***                                                                                                                                             | ***                                                                                                                                    |
| 30                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                             | ***                                                                                                       | ***                                                                                                                            | ***                                                                                                                                             | ***                                                                                                                                    |
| 31                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                             | ***                                                                                                       | ***                                                                                                                            | ***                                                                                                                                             | ***                                                                                                                                    |
| 32<br>33                                                                                                                                                                                                                                                                            | Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                           |                                                                                                                                |                                                                                                                                                 |                                                                                                                                        |
| 33<br>34                                                                                                                                                                                                                                                                            | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 304d @H2rec                                                                                                                     | 304e @H2rec<br>0.2000                                                                                     | 304f @H2rec<br>0.2000                                                                                                          | 304g @H2rec<br>0.2000                                                                                                                           | 304h @H2rec<br>0.2000                                                                                                                  |
| 34                                                                                                                                                                                                                                                                                  | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2000                                                                                                                          |                                                                                                           | 0.2000                                                                                                                         |                                                                                                                                                 | 0.8000                                                                                                                                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                 |                                                                                                           |                                                                                                                                |                                                                                                                                                 |                                                                                                                                        |
| 36                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8000                                                                                                                          | 0.8000                                                                                                    |                                                                                                                                | 0.8000                                                                                                                                          |                                                                                                                                        |
| 36<br>37                                                                                                                                                                                                                                                                            | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                          | 0.0000                                                                                                    | 0.0000                                                                                                                         | 0.0000                                                                                                                                          | 0.0000                                                                                                                                 |
| 37                                                                                                                                                                                                                                                                                  | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                          | 0.0000                                                                                                    | 0.0000                                                                                                                         | 0.0000                                                                                                                                          | 0.0000<br>0.0000                                                                                                                       |
|                                                                                                                                                                                                                                                                                     | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000<br>0.0000<br>0.0000                                                                                                      | 0.0000<br>0.0000<br>0.0000                                                                                | 0.0000<br>0.0000<br>0.0000                                                                                                     | 0.0000<br>0.0000<br>0.0000                                                                                                                      | 0.0000<br>0.0000<br>0.0000                                                                                                             |
| 37<br>38<br>39                                                                                                                                                                                                                                                                      | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000                                                                                                                          | 0.0000                                                                                                    | 0.0000                                                                                                                         | 0.0000                                                                                                                                          | 0.0000<br>0.0000                                                                                                                       |
| 37<br>38                                                                                                                                                                                                                                                                            | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CDTRM-A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                            | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                                      | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                           | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                            | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                   |
| 37<br>38<br>39<br>40                                                                                                                                                                                                                                                                | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>***                                                                                     | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>***                                                               | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>***                                                                                    | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>***                                                                                                     | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>***                                                                                            |
| 37<br>38<br>39<br>40                                                                                                                                                                                                                                                                | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0000<br>0.0000<br>0.0000<br>***                                                                                               | 0.000<br>0.000<br>0.000<br>0.000<br>***                                                                   | 0.0000<br>0.0000<br>0.0000<br>***                                                                                              | 0.000 0<br>0.000 0<br>0.000 0<br>0.000 0<br>***                                                                                                 | 0.0000<br>0.0000<br>0.0000<br>***<br>***                                                                                               |
| 37<br>38<br>39<br>40<br>41<br>42                                                                                                                                                                                                                                                    | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000<br>0.0000<br>0.0000<br>***<br>***                                                                                        | 0.0000<br>0.0000<br>0.0000<br>***<br>***                                                                  | 0.0000<br>0.0000<br>0.0000<br>***<br>***                                                                                       | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>***<br>***                                                                                              | 0.0000<br>0.0000<br>0.0000<br>***<br>***                                                                                               |
| 37<br>38<br>39<br>40<br>41<br>42<br>43                                                                                                                                                                                                                                              | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-88)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                                                                                                                  | 0.0000<br>0.0000<br>0.0000<br>****<br>***                                                                                       | 0.0000 0.0000 0.0000 0.0000 ***                                                                           | 0.0000 0.0000 0.0000 0.0000 ****                                                                                               | 0.0000 0.0000 0.0000 0.0000 *** *** ***                                                                                                         | 0.000<br>0.000<br>0.000<br>0.000<br>***<br>***                                                                                         |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                                                                                                                                                                                                                                        | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name                                                                                                                                                                                                                                                                                                                                                                                | 0.0000<br>0.0000<br>0.0000<br>•••••<br>••••<br>••••<br>••                                                                       | 0.0000<br>0.0000<br>0.0000<br>****<br>***<br>306 @H2rec                                                   | 0.0000<br>0.0000<br>0.0000<br>****<br>****<br>****<br>307 @H2rec                                                               | 0.0000<br>0.0000<br>0.0000<br>****<br>****<br>****<br>308 @H2rec                                                                                | 0.0000<br>0.0000<br>0.0000<br>****<br>***<br>309 @H2rec                                                                                |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45                                                                                                                                                                                                                                  | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                        | 0.0000<br>0.0000<br>0.0000<br>****<br>****<br>305@H2rec<br>0.2000                                                               | 0.0000<br>0.0000<br>0.0000<br>****<br>****<br>306 @H2rec<br>0.1801                                        | 0.0000<br>0.0000<br>0.0000<br>****<br>****<br>307 @H2rec<br>0.1801                                                             | 0.0000<br>0.0000<br>0.0000<br>****<br>****<br>****<br>308 @H2rec<br>1.0000                                                                      | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>***<br>309 @H2rec<br>1.0000                                                                |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46                                                                                                                                                                                                                            | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CDTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                          | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>305@H2rec<br>0.2000<br>0.8000                                                       | 0.000<br>0.000<br>0.000<br>                                                                               | 0.0000<br>0.0000<br>0.0000<br>****<br>****<br>307 @H2rec<br>0.1801<br>0.8199                                                   | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>308 @H2rec<br>1.0000<br>0.0000                                                                      | 0.000<br>0.000<br>0.000<br>                                                                                                            |
| <ol> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> </ol>                                                                                                                                      | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CDTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                               | 0.0000<br>0.0000<br>- 0.0000<br>- ***<br>- ***<br>- ***<br>305@H2rec<br>0.2000<br>0.8000                                        | 0.000<br>0.000<br>0.000<br>                                                                               | 0.0000<br>0.0000<br>0.0000<br>****<br>****<br>307 @H2rec<br>0.1801<br>0.8199<br>0.0000                                         | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>308 @H2rec<br>1.0000<br>0.0000                                                                      | 0.000<br>0.000<br>0.000<br>                                                                                                            |
| <ol> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> </ol>                                                                                                                          | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Nytrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)                                                                                                                                                                                                                 | 0.0000<br>0.0000<br>0.0000<br>                                                                                                  | 0.0000<br>0.0000<br>0.0000<br>****<br>***<br>306 @H2rec<br>0.1801<br>0.8199<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>****<br>***<br>307 @H2rec<br>0.1801<br>0.8199<br>0.0000<br>0.0000<br>0.0000                      | 0.0000<br>0.0000<br>0.0000<br>•••••<br>••••<br>••••<br>308@H2rec<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                              | 0.0000<br>0.0000<br>0.0000<br>                                                                                                         |
| <ol> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> </ol>                                                                                                              | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                       | 0.0000<br>0.0000<br>0.0000<br>•••••<br>••••<br>••••<br>305@H2rec<br>0.2000<br>0.8000<br>0.0000<br>0.0000                        | 0.000<br>0.000<br>0.000<br>                                                                               | 0.0000<br>0.0000<br>0.0000<br>****<br>***<br>307 @H2rec<br>0.1801<br>0.8199<br>0.0000<br>0.0000                                | 0.0000<br>0.0000<br>0.0000<br>****<br>***<br>308 @H2rec<br>1.0000<br>0.0000<br>0.0000<br>0.0000                                                 | 0.0000<br>0.0000<br>0.0000<br>                                                                                                         |
| <ol> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> </ol>                                                                          | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)                                                                                                                               | 0.0000<br>0.0000<br>.0000<br>.0000<br>.0000<br>.0000<br>.0000<br>0.0000<br>0.0000<br>0.0000<br>.0000<br>.0000                   | 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000           | 0.0000<br>0.0000<br>0.0000<br>****<br>307 @H2rec<br>0.1801<br>0.8199<br>0.0000<br>0.0000<br>0.0000<br>0.0000                   | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>308 @H2rec<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000          | 0.0000<br>0.0000<br>0.0000<br>****<br>309@H2rec<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                  |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52                                                                               | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia) | 0.0000<br>0.0000<br>0.0000<br>****<br>305@H2rec<br>0.2000<br>0.8000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.000<br>0.000<br>0.000<br>                                                                               | 0.0000<br>0.0000<br>0.0000<br>****<br>307 @H2rec<br>0.1801<br>0.8199<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000         | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>308@H2rec<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>309 @H2rec<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000           |
| <ol> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> </ol>                                                                          | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)                                                                                                                               | 0.0000<br>0.0000<br>.0000<br>.0000<br>.0000<br>.0000<br>.0000<br>0.0000<br>0.0000<br>0.0000<br>.0000<br>.0000                   | 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000           | 0.0000<br>0.0000<br>0.0000<br>****<br>307 @H2rec<br>0.1801<br>0.8199<br>0.0000<br>0.0000<br>0.0000<br>0.0000                   | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>308 @H2rec<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000          | 0 0000<br>0 0000<br>0 0000<br>***<br>***<br>309 @H2rec<br>1 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000 |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52                                                                               | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia) | 0.0000<br>0.0000<br>0.0000<br>****<br>305@H2rec<br>0.2000<br>0.8000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.000<br>0.000<br>0.000<br>                                                                               | 0.0000<br>0.0000<br>0.0000<br>****<br>307 @H2rec<br>0.1801<br>0.8199<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000         | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>308@H2rec<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>****<br>309@H2rec<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000        |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54                                                     | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia) | 0.0000<br>0.0000<br>0.0000<br>****<br>305@H2rec<br>0.2000<br>0.8000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.000<br>0.000<br>0.000<br>                                                                               | 0.0000<br>0.0000<br>0.0000<br>****<br>307 @H2rec<br>0.1801<br>0.8199<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000         | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>308@H2rec<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>****<br>309@H2rec<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000        |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57           58 | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia) | 0.0000<br>0.0000<br>0.0000<br>****<br>305@H2rec<br>0.2000<br>0.8000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.000<br>0.000<br>0.000<br>                                                                               | 0.0000<br>0.0000<br>0.0000<br>****<br>307 @H2rec<br>0.1801<br>0.8199<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000         | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>308@H2rec<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>309 @H2rec<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000           |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57           58 | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia) | 0.0000<br>0.0000<br>0.0000<br>                                                                                                  | 0.000<br>0.000<br>0.000<br>                                                                               | 0.0000<br>0.0000<br>0.0000<br>****<br>****<br>307 @H2rec<br>0.1801<br>0.8199<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>308@H2rec<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>309 @H2rec<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000           |

| 12         Comp Mole Frac (Hydrogen)         0.0470         0.0470         0.0470           13         Comp Mole Frac (Hydrogen)         0.9530         0.9530         0.9530           14         Comp Mole Frac (Cygen)         0.0000         0.0000         0.0000           15         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           16         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           16         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           17         Comp Mole Frac (Interminol-86)         ***         ***         ***           20         Comp Mole Frac (Interminol-86)         ***         ***         ***           21         Comp Mole Frac (Interminol-86)         ***         ***         ***           22         Marrie         315 @H2rec         316 @H2rec         317 @H2rec           22         Comp Mole Frac (Hydrogen)         0.9530         0.0000         0.0000           23         Comp Mole Frac (Cygen)         0.0000         0.0000         0.0000           24         Comp Mole Frac (Cygen)         0.0000         0.0000         0.0000           25         Comp Mole Frac (Cygen)         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | _U80 (3049 tpd NH3)_re |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|
| Comp         Date://ime         Fit Apr 30 14 25 18 2021           Image: State of the state o                   |                      |                        |
| Compositions (continued)           Image: state | I                    |                        |
| B         Compositions (continued)           11         Name         310 @H2rec         311 @H2rec         312 @H2rec           12         Comp Mole Frac (H2C)         0.0470         0.0470         0.0470           13         Comp Mole Frac (Hydrogen)         0.8530         0.9530         0.9630           14         Comp Mole Frac (Hydrogen)         0.0000         0.0000         0.0000           15         Comp Mole Frac (Wingen)         0.0000         0.0000         0.0000           15         Comp Mole Frac (Ningen)         0.0000         0.0000         0.0000           16         Comp Mole Frac (CO)         0.0000         0.0000         0.0000           16         Comp Mole Frac (CO)         0.0000         0.0000         0.0000           10         Comp Mole Frac (Minnonia)         ***         ***         ***           20         Comp Mole Frac (Hydrogen)         0.8530         0.0000         0.0000           21         Comp Mole Frac (Hydrogen)         0.8530         0.0000         0.0000           20         Comp Mole Frac (Hydrogen)         0.8530         0.0000         0.0000           22         Comp Mole Frac (Hydrogen)         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                        |
| 3         Compositions (continued)           10         Name         310@H2rec         311@H2rec         312@H2rec           12         Comp Mole Frac (Hydrogen)         0.9470         0.0470         0.0470           13         Comp Mole Frac (Hydrogen)         0.9530         0.9530         0.9530           14         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000           15         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           15         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           16         Comp Mole Frac (CO1         0.0000         0.0000         0.0000           16         Comp Mole Frac (CO1         0.0000         0.0000         0.0000           16         Comp Mole Frac (Mydrogen)         0.9470         1.0000         0.9900           20         Comp Mole Frac (Hydrogen)         0.9470         1.0000         0.9900           22         Name         315@H2rec         317@H2rec         317@H2rec           20         Comp Mole Frac (Nydrogen)         0.9530         0.0000         0.0000           22         Comp Mole Frac (CO2)         0.0000         0.00000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                        |
| Instruction         310 @H2rec         311 @H2rec         312 @H2rec           12         Comp Mole Frac (H2C)         0.0470         0.0470         0.0470           13         Comp Mole Frac (H2C)         0.0530         0.9530         0.9530           13         Comp Mole Frac (Nurogen)         0.0000         0.0000         0.0000           15         Comp Mole Frac (C22)         0.0000         0.0000         0.0000           15         Comp Mole Frac (C170         0.0000         0.0000         0.0000           16         Comp Mole Frac (C170M-A)         ***         ***         ***           19         Comp Mole Frac (Argon)         ***         ***         ***           21         Comp Mole Frac (Argon)         ***         ***         ***           22         Name         316 @H2rec         317 @H2rec           23         Comp Mole Frac (Nydrogen)         0.9530         0.0000         0.0000           24         Comp Mole Frac (Nydrogen)         0.9530         0.0000         0.0000           25         Comp Mole Frac (Nydrogen)         0.9530         0.0000         0.0000           26         Comp Mole Frac (Nydrogen)         0.9530         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                        |
| 12         Comp Mole Frac (H2C)         0.0470         0.0470         0.0470           13         Comp Mole Frac (Hydrogen)         0.9530         0.9530         0.9530           14         Comp Mole Frac (Cygen)         0.0000         0.0000         0.0000           14         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           15         Comp Mole Frac (CC2)         0.0000         0.0000         0.0000           16         Comp Mole Frac (CC2)         0.0000         0.0000         0.0000           16         Comp Mole Frac (CTerrinol-66)         ***         ***         ***           19         Comp Mole Frac (ITerrinol-66)         ***         ***         ***           20         Comp Mole Frac (Hydrogen)         0.0470         1.0000         0.9900           20         Comp Mole Frac (H2C)         0.0470         1.0000         0.9900           21         Comp Mole Frac (H2C)         0.0470         1.0000         0.9900           22         Name         316 @H2rec         317 @H2rec         317 @H2rec           22         Comp Mole Frac (H2C)         0.0000         0.0000         0.0000           2         Comp Mole Frac (CP)         0.0000 <t< th=""><th>Fluid Pk</th><th>-</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fluid Pk             | -                      |
| 13         Comp Mole Frac (Hydrogen)         0.9530         0.9530         0.9530           14         Comp Mole Frac (Norgen)         0.0000         0.0000         0.0000           15         Comp Mole Frac (Norgen)         0.0000         0.0000         0.0000           16         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           16         Comp Mole Frac (CO1)         0.0000         0.0000         0.0000           17         Comp Mole Frac (CO1)         0.0000         0.0000         0.0000           18         Comp Mole Frac (Ammonia)         ***         ***         ***           20         Comp Mole Frac (H2O)         0.0470         1.0000         0.9900           20         Comp Mole Frac (H2O)         0.0470         1.0000         0.0000           20         Comp Mole Frac (Ntrogen)         0.0800         0.0000         0.0000           20         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           20         Comp Mole Frac (CO1)         0.0000         0.0000         0.0000           20         Comp Mole Frac (Norgen)         0.0000         0.0000         0.0000           20         Comp Mole Frac (Norgen)         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 313 @H2rec<br>0.0470 | 314 @H2rec<br>0.0470   |
| 14         Comp Mole Frac (Oxygen)         0.0000         0.0000         0.0000           15         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           16         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           17         Comp Mole Frac (DTRM-A)         ***         ***         ***           18         Comp Mole Frac (DTRM-A)         ***         ***         ***           20         Comp Mole Frac (Armonia)         ***         ***         ***           21         Comp Mole Frac (Argon)         ***         ***         ***           22         Name         316 @H2rec         316 @H2rec         317 @H2rec           23         Comp Mole Frac (Hydrogen)         0.0000         0.0000         0.0000           24         Comp Mole Frac (Nydrogen)         0.0000         0.0000         0.0000           25         Comp Mole Frac (Nydrogen)         0.0000         0.0000         0.0000           26         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           26         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           27         Comp Mole Frac (CArmonia)         ****         ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0470               | 0.9530                 |
| 15         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000         0.0000           16         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000         0.0000           17         Comp Mole Frac (DTRM-A)         ***         ****         ****         ****           18         Comp Mole Frac (Therminol-86)         ****         ****         ****         ****           20         Comp Mole Frac (Therminol-86)         ****         ****         *****         *****           21         Comp Mole Frac (Maronnia)         ****         *****         *****         *****           22         Name         315 @H2rec         316 @H2rec         317 @H2rec         317 @H2rec           22         Name         316 @H2rec         316 @H2rec         317 @H2rec         317 @H2rec           23         Comp Mole Frac (Marogen)         0.0000         0.0000         0.0000         0.0000           26         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000         0.0000           26         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000         0.0000           27         Comp Mole Frac (Nitrogen)         0.00001         0.00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000               | 0.0000                 |
| 11         Comp Mole Frac (CO)         0.0000         0.0000         0.0000           12         Comp Mole Frac (DTRM-A)         ****         ****         ****           20         Comp Mole Frac (DTRm-A)         ****         ****         ****         ****           21         Comp Mole Frac (Argon)         ****         ****         ****         ****           21         Comp Mole Frac (Argon)         316 @H2rec         326 @H2rec         327 @H2rec         326 @H2rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000.0              | 0.0000                 |
| 18         Comp Mole Frac (DTRM-A)         ***         ***         ***         ***           19         Comp Mole Frac (Ammonia)         ****         ***         ***         ***           20         Comp Mole Frac (Ammonia)         ****         ***         ***         ***           21         Comp Mole Frac (H2O)         0.470         1.0000         0.9900         2           22         Name         315@H2rec         316@H2rec         317@H2rec         2           22         Comp Mole Frac (H2O)         0.0470         1.0000         0.9000         2           23         Comp Mole Frac (Ntrogen)         0.0000         0.0000         0.0000         0.0000         2           24         Comp Mole Frac (CO)         0.0000         0.0000         0.0000         0.0000         2           25         Comp Mole Frac (CO)         0.0000         0.0000         0.0000         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000                | 0.0000                 |
| 13         Comp Mole Frac (Therminol-66)         ***         ***         ***         ***           20         Comp Mole Frac (Ammonia)         ***         ***         ***         ***           21         Comp Mole Frac (Ammonia)         ***         ***         ***         ***           21         Comp Mole Frac (Argon)         315@H2rec         316@H2rec         317@H2rec           23         Comp Mole Frac (Hydrogen)         0.9530         0.0000         0.0000           24         Comp Mole Frac (Hydrogen)         0.0000         0.0000         0.0000           25         Comp Mole Frac (CX)         0.0000         0.0000         0.0000           26         Comp Mole Frac (CTRM-A)         ****         ****         ****           27         Comp Mole Frac (CTRM-A)         ****         ****         ****           20         Comp Mole Frac (CTRM-A)         ****         ****         ****           21         Comp Mole Frac (Ammonia)         ****         ****         ****           21         Comp Mole Frac (Ammonia)         ****         ****         ****           23         Comp Mole Frac (Ammonia)         ****         ****         ****           24         Comp Mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000               | 0.0000                 |
| Comp Mole Frac (Amonia)         ***         ***         ***           21         Comp Mole Frac (Argon)         ***         ***         ***         ***           21         Comp Mole Frac (H2O)         0.0470         1.0000         0.9900           22         Name         316 @H2rec         316 @H2rec         317 @H2rec           23         Comp Mole Frac (H2O)         0.0470         1.0000         0.9900           24         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000           25         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000           26         Comp Mole Frac (CO)         0.0000         0.0000         0.0000           26         Comp Mole Frac (Intromosia)         ****         ****         ****           30         Comp Mole Frac (Therninol-B6)         ****         ****         ****           31         Comp Mole Frac (Therninol-B6)         ****         ****         ****           31         Comp Mole Frac (Hydrogen)         0.0103         0.0083         0.0083           32         Comp Mole Frac (Hydrogen)         0.0103         0.0000         0.0000           32         Comp Mole Frac (Nitrogen)         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                  | ***                    |
| Comp Mole Frac (Arnonia)         ***         ***         ***           2         Comp Mole Frac (Argon)         ***         316 @H2rec         317 @H2rec         2           23         Comp Mole Frac (H2O)         0.0470         1.0000         0.9900         2           24         Comp Mole Frac (Cygen)         0.0000         0.0000         0.0000         0.0000           26         Comp Mole Frac (Cygen)         0.0000         0.0000         0.0000         0.0000           26         Comp Mole Frac (C)         0.0000         0.0000         0.0000         0.0000           26         Comp Mole Frac (C)         0.0000         0.0000         0.0000         0.0000           27         Comp Mole Frac (CTRM-A)         ****         ****         ****         ****           30         Comp Mole Frac (Armonia)         ****         ****         ****         ****           31         Comp Mole Frac (Argon)         ****         ****         ****         ****           31         Comp Mole Frac (H2O)         0.0083         0.0083         0.0083           32         Comp Mole Frac (H2O)         0.0000         0.0000         0.0000           33         Comp Mole Frac (Cygen)         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ***                  | ***                    |
| 21         Comp Mole Frac (Argun)         315 @H2rec         316 @H2rec         317 @H2rec           23         Comp Mole Frac (H2O)         0.0470         1.0000         0.9900           24         Comp Mole Frac (Hydrogen)         0.9530         0.0000         0.0000           25         Comp Mole Frac (Ntrogen)         0.0000         0.0000         0.0000           25         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           26         Comp Mole Frac (CDM-A)         ****         ****         ****           26         Comp Mole Frac (DTM-A)         ****         ****         ****           27         Comp Mole Frac (CTM-A)         ****         ****         ****           27         Comp Mole Frac (DTM-A)         ****         ****         ****           28         Comp Mole Frac (Argon)         ****         ****         ****           29         Comp Mole Frac (Argon)         201@H2rec         323 @H2rec         323 @H2rec           38         Name         321 @H2rec         322 @H2rec         323 @H2rec         323 @H2rec           39         Comp Mole Frac (CArgon)         0.0000         0.0000         0.0000           39         Comp Mole Frac (CArgon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                  | ***                    |
| 22         Comp Mole Frac (H2O)         0.0470         1.0000         0.9900           24         Comp Mole Frac (Hydrogen)         0.9530         0.0000         0.0000           25         Comp Mole Frac (Oxygen)         0.0000         0.0000         0.0000           25         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           20         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           26         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           26         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           27         Comp Mole Frac (CDTRM-A)         ****         ****         ****           30         Comp Mole Frac (Ammonia)         ****         ****         ****           31         Comp Mole Frac (Ammonia)         ****         ****         ****           32         Comp Mole Frac (Ammonia)         ****         ****         ****           33         Name         321@H2rec         323@H2rec         323@H2rec           34         Comp Mole Frac (H2O)         0.0000         0.0000         0.0000           35         Comp Mole Frac (CO2)         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ***                  | ***                    |
| 24         Comp Mole Frac (Hydrogen)         0.9530         0.0000         0.0000           25         Comp Mole Frac (Oxygen)         0.0000         0.0000         0.0000           26         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           27         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           20         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           20         Comp Mole Frac (DTRM-A)         ****         ****         ****           30         Comp Mole Frac (Therminol-66)         ****         ****         ****           31         Comp Mole Frac (Armonia)         ****         ****         ****           32         Comp Mole Frac (Armonia)         ****         ****         ****           32         Comp Mole Frac (Armonia)         ****         ****         ****           34         Comp Mole Frac (Armonia)         ****         ****         ****           35         Comp Mole Frac (Hydrogen)         0.0083         0.0083         0.0083           35         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000           36         Comp Mole Frac (CO2)         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 318 @H2rec           | 320 @H2rec             |
| 25         Comp Mole Frac (Oxygen)         0 0000         0.0000         0.0000           26         Comp Mole Frac (Nirogen)         0.0000         0.0000         0.0000           27         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           28         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           28         Comp Mole Frac (CTRM-A)         ****         ****         ****           30         Comp Mole Frac (Therminol-66)         ****         ****         ****           31         Comp Mole Frac (Argon)         ****         322 @H2rec         323 @H2rec         323 @H2rec         323 @H2rec         333 @H2rec         333 @H2rec         333 @H2rec         323 @H2rec         333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9977               | 0.0083                 |
| 26         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000           27         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           28         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           29         Comp Mole Frac (DTRM-A)         ***         ***         ****           30         Comp Mole Frac (Therminol-86)         ****         ****         ****           31         Comp Mole Frac (Ammonia)         ****         ****         ****           32         Comp Mole Frac (Ammonia)         ****         ****         ****           33         Name         321@H2rec         322@H2rec         323@H2rec         323@H2rec           34         Comp Mole Frac (Hydrogen)         0.0917         0.9917         0.9917         0.9917           35         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000         0.0000           35         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000         0.0000           36         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000 <th>0.0023</th> <th>0.9917</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0023               | 0.9917                 |
| 27         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           28         Comp Mole Frac (CO         0.0000         0.0000         0.0000           29         Comp Mole Frac (CTRM-A)         ****         ****         ****           30         Comp Mole Frac (Therminol-86)         ****         ****         ****           31         Comp Mole Frac (Ammonia)         ****         ****         ****           32         Comp Mole Frac (Argon)         ****         ****         ****           33         Name         321 @H2rec         322 @H2rec         323 @H2rec         33           34         Comp Mole Frac (Hydrogen)         0.9817         0.9817         0.9917         0.9917           35         Comp Mole Frac (Nygregn)         0.0000         0.0000         0.0000         0.0000           36         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000         0.0000           38         Comp Mole Frac (CDRM-A)         ****         ****         ****         4****           41         Comp Mole Frac (CDRM-A)         ****         ****         ****         4****           42         Comp Mole Frac (Argon)         ****         ****         **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000               | 0.0000                 |
| 28         Comp Mole Frac (CO)         0.0000         0.0000         0.0000           29         Comp Mole Frac (DTRM-A)         ****         ****         ****         ****           30         Comp Mole Frac (Therminol-66)         ****         ****         ****         ****           31         Comp Mole Frac (Ammonia)         ****         ****         ****         ****           32         Comp Mole Frac (Argon)         ****         ****         ****         ****           32         Comp Mole Frac (Argon)         321 @H2rec         322 @H2rec         323 @H2rec         323 @H2rec           33         Name         321 @H2rec         322 @H2rec         323 @H2rec         323 @H2rec           34         Comp Mole Frac (H2O)         0.0083         0.0083         0.0083         0.0083           35         Comp Mole Frac (CAygen)         0.0000         0.0000         0.0000         0.0000           36         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000         0.0000           37         Comp Mole Frac (CD         0.0000         0.0000         0.0000         0.0000           39         Comp Mole Frac (CD)         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000               | 0.0000                 |
| Original Sector         Occord         Occord         Occord           30         Comp Mole Frac (DTRM-A)         ****         ****         ****         ****           31         Comp Mole Frac (Therminol-86)         ****         ****         ****         ****           32         Comp Mole Frac (Argon)         ****         ****         ****         ****           32         Comp Mole Frac (Argon)         ****         322 @H2rec         323 @H2rec         323 @H2rec           34         Comp Mole Frac (H2O)         0.0083         0.0083         0.0083         0.0083           35         Comp Mole Frac (H2O)         0.9917         0.9917         0.9917         0.9917           36         Comp Mole Frac (H2O)         0.0000         0.0000         0.0000         0.0000           37         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000         0.0000           38         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000         0.0000           39         Comp Mole Frac (DTRM-A)         ****         ****         ****         ****           41         Comp Mole Frac (Argon)         ****         ****         ****           42         Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000               | 0.0000                 |
| 20         Comp Mole Frac (Therminol-86)         ****         ****         ****         ****           31         Comp Mole Frac (Ammonia)         ****         ****         ****         ****           32         Comp Mole Frac (Ammonia)         ****         ****         ****         ****           32         Comp Mole Frac (Argon)         ****         ****         ****         ****           33         Name         321 @H2rec         322 @H2rec         323 @H2rec         323 @H2rec           34         Comp Mole Frac (H2O)         0.0083         0.0083         0.0083         0.0083           35         Comp Mole Frac (Hydrogen)         0.9917         0.9917         0.9917         0.9917           36         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000         0.0000           37         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000         0.0000           38         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000         0.0000           39         Comp Mole Frac (CO1         0.0000         0.0000         0.0000         0.0000           40         Comp Mole Frac (Therminol-86)         ****         ****         ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000               | 0.0000                 |
| 31         Comp Mole Frac (Ammonia)         ****         ****         ****         ****           32         Comp Mole Frac (Ammonia)         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                  | ***                    |
| 32         Comp Mole Frac (Argon)         ***         ***         ***         ***           33         Name         321 @H2rec         322 @H2rec         323 @H2rec         323 @H2rec         333 @H2rec         330 @H2rec         330 @H2rec         330 @H2rec         330 @H2rec         330 @H2rec         300 @H3 @H3 &H3 &H3 &H3 &H3 &H3 &H3 &H3 &H3 &H3 &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***                  | ***                    |
| 33         Name         321@H2rec         322@H2rec         323@H2rec           34         Comp Mole Frac (H2O)         0.0083         0.0083         0.0083           35         Comp Mole Frac (Hydrogen)         0.9917         0.9917         0.9917           36         Comp Mole Frac (Nygen)         0.0000         0.0000         0.0000           37         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000           37         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000           38         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           39         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           40         Comp Mole Frac (DTRM-A)         ****         ****         ****           41         Comp Mole Frac (CArgon)         ****         ****         ****           42         Comp Mole Frac (Argon)         ****         ****         ****           43         Comp Mole Frac (H2O)         1.0000         0.0009         0.6492           44         Name         326@H2rec         330@H2rec         331@H2rec           45         Comp Mole Frac (H2O)         1.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ***                  | ***                    |
| 34         Comp Mole Frac (H2O)         0.0083         0.0083         0.0083           35         Comp Mole Frac (Hydrogen)         0.9917         0.9917         0.9917           36         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000           37         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000           37         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000           38         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           39         Comp Mole Frac (CO)         0.0000         0.0000         0.0000           40         Comp Mole Frac (DTRM-A)         ****         ****         ****           41         Comp Mole Frac (CArgon)         ****         ****         ****           42         Comp Mole Frac (Argon)         ****         ****         ****           43         Comp Mole Frac (Hydrogen)         326 @H2rec         330 @H2rec         331 @H2rec           44         Name         326 @H2rec         330 @H2rec         331 @H2rec           45         Comp Mole Frac (Hydrogen)         0.0000         0.0000         0.0000           46         Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 324 @H2rec           | 325 @H2rec             |
| 35         Comp Mole Frac (Hydrogen)         0.9917         0.9917         0.9917         0.9917           36         Comp Mole Frac (Oxygen)         0.0000         0.0000         0.0000         0.0000           37         Comp Mole Frac (Oxygen)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0083               | 0.0083                 |
| 36         Comp Mole Frac (Oxygen)         0.0000         0.0000         0.0000           37         Comp Mole Frac (Oxygen)         0.0000         0.0000         0.0000         0.0000           38         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9917               | 0.9917                 |
| 38         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           39         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           40         Comp Mole Frac (CTRM-A)         ****         ****         ****           41         Comp Mole Frac (Therminol-86)         ****         ****         ****           42         Comp Mole Frac (Ammonia)         ****         ****         ****           43         Comp Mole Frac (Argon)         ****         ****         ****           44         Name         326 @H2rec         330 @H2rec         331 @H2rec           45         Comp Mole Frac (H2O)         1.0000         0.0009         0.6492           46         Comp Mole Frac (H2O)         1.0000         0.0009         0.6492           47         Comp Mole Frac (CQ2)         0.0000         0.0000         0.0000           48         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           49         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           49         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           50         Comp Mole Frac (DTRM-A)         ****         ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000               | 0.0000                 |
| Ostop Mole Frac (CO)         0.0000         0.0000         0.0000           40         Comp Mole Frac (CDTRM-A)         ****         ****         ****           41         Comp Mole Frac (DTRM-A)         ****         ****         ****           42         Comp Mole Frac (Ammonia)         ****         ****         ****         ****           43         Comp Mole Frac (Argon)         ****         ****         ****         ****           44         Name         326 @H2rec         330 @H2rec         331 @H2rec         31 @H2rec           45         Comp Mole Frac (H2O)         1.0000         0.0009         0.6492         4           46         Comp Mole Frac (H2O)         0.0000         0.0000         0.0000         4           47         Comp Mole Frac (CQ)         0.0000         0.0000         0.0000         4           48         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000         4           49         Comp Mole Frac (CO)         0.0000         0.0000         0.0000         4           40         Comp Mole Frac (CO)         0.0000         0.0000         0.0000         4           41         Comp Mole Frac (CO)         0.0000         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000                | 0.0000                 |
| 40         Comp Mole Frac (DTRM-A)         ****         ****         ****         ****           41         Comp Mole Frac (Therminol-86)         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         **** </th <th>0.000</th> <th>0.0000</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                | 0.0000                 |
| Comp Mole Frac (Therminol-86)         ****         ****         ****           41         Comp Mole Frac (Ammonia)         ****         ****         ****         ****           42         Comp Mole Frac (Ammonia)         ****         ****         ****         ****           43         Comp Mole Frac (Ammonia)         ****         ****         ****         ****           44         Name         326 @H2rec         330 @H2rec         331 @H2rec         ****           44         Name         326 @H2rec         331 @H2rec         ****         ****           45         Comp Mole Frac (H2O)         1.0000         0.0009         0.8492         ****           46         Comp Mole Frac (Hydrogen)         0.0000         0.9991         0.3508         ****           47         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000         0.0000           48         Comp Mole Frac (C2)         0.0000         0.0000         0.0000         0.0000           49         Comp Mole Frac (C2)         0.0000         0.0000         0.0000         0.0000           50         Comp Mole Frac (DTRM-A)         ****         ****         ****         ****           51 <td< th=""><th>0.000</th><th>0.0000</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                | 0.0000                 |
| Comp Mole Frac (Armonia)         ****         ****         ****         ****           42         Comp Mole Frac (Armonia)         ****         ****         ****         ****           43         Comp Mole Frac (Argon)         ****         ****         ****         ****           44         Name         326 @H2rec         330 @H2rec         331 @H2rec         31           45         Comp Mole Frac (H2O)         1.0000         0.0009         0.6492         4           46         Comp Mole Frac (Hydrogen)         0.0000         0.0000         0.0000         4           47         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000         0.0000         4           48         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000         4         0.0000         0.0000         4           49         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000         4         0.0000         0.0000         4         4         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th>***</th> <th>***</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***                  | ***                    |
| Comp Mole Frac (Argon)         ****         ****         ****         ****           43         Comp Mole Frac (Argon)         ****         330 @H2rec         331 @H2rec         4           44         Name         326 @H2rec         330 @H2rec         331 @H2rec         4           45         Comp Mole Frac (H2O)         1.0000         0.0009         0.6492         4           46         Comp Mole Frac (CQ)         0.0000         0.0000         0.0000         4           47         Comp Mole Frac (Oxygen)         0.0000         0.0000         0.0000         4           48         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000         4           49         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000         4           50         Comp Mole Frac (CC)         0.0000         0.0000         0.0000         4           51         Comp Mole Frac (DTRM-A)         ****         ****         ****         ****           52         Comp Mole Frac (Therminol-86)         ****         ****         ****         ****           52         Comp Mole Frac (Armonia)         ****         ****         ****         ****         ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                  | ***                    |
| Some mode frac (H2O)         328 @H2rec         330 @H2rec         331 @H2rec         4           45         Comp Mole Frac (H2O)         1.0000         0.0009         0.6492         4           46         Comp Mole Frac (H2O)         0.0000         0.9991         0.3508         4           47         Comp Mole Frac (Oxygen)         0.0000         0.0000         0.0000         4           48         Comp Mole Frac (Oxygen)         0.0000         0.0000         0.0000         0.0000         4           49         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000 <td< th=""><th>***</th><th>***</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***                  | ***                    |
| American                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ***                  | ***                    |
| 46         Comp Mole Frac (Hydrogen)         0.0000         0.9991         0.3508           47         Comp Mole Frac (Oxygen)         0.0000         0.0000         0.0000           48         Comp Mole Frac (Oxygen)         0.0000         0.0000         0.0000           48         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           49         Comp Mole Frac (CO)         0.0000         0.0000         0.0000           50         Comp Mole Frac (CO)         0.0000         0.0000         0.0000           50         Comp Mole Frac (CO)         0.0000         0.0000         0.0000           51         Comp Mole Frac (CO)         0.0000         0.0000         0.0000           51         Comp Mole Frac (DTRM-A)         ****         ****         ***           52         Comp Mole Frac (Ammonia)         ****         ****         ***           52         Comp Mole Frac (Argon)         ****         ****         ***           54         Comp Mole Frac (Argon)         ****         ****         ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 332 H2 Product @H2   | 132 process feed wate  |
| 47         Comp Mole Frac (Oxygen)         0.0000         0.0000         0.0000           48         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000         0.0000           49         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000         0.0000           50         Comp Mole Frac (CO)         0.0000         0.0000         0.0000         0.0000           51         Comp Mole Frac (DTRM-A)         ****         ****         ****           52         Comp Mole Frac (Therminol-66)         ****         ****         ****           52         Comp Mole Frac (Ammonia)         ****         ****         ****           54         Comp Mole Frac (Argon)         ****         ****         ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000               | 0.9996                 |
| 48         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000           49         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           50         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           51         Comp Mole Frac (DTRM-A)         ****         ****         ****           52         Comp Mole Frac (DTRM-A)         ****         ****         ****           52         Comp Mole Frac (Therminol-66)         ****         ****         ****           53         Comp Mole Frac (Ammonia)         ****         ****         ****           54         Comp Mole Frac (Argon)         ****         ****         ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0000               | 0.0004                 |
| 49         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000           50         Comp Mole Frac (CO)         0.0000         0.0000         0.0000           51         Comp Mole Frac (CDTRM-A)         ****         ****         ****           52         Comp Mole Frac (Therminol-66)         ****         ****         ****           53         Comp Mole Frac (Argon)         ****         ****         ****           54         Comp Mole Frac (Argon)         ****         ****         ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000.0              | 0.0000                 |
| 50         Comp Mole Frac (CO)         0.0000         0.0000         0.0000           51         Comp Mole Frac (DTRM-A)         ****         ****         ****           52         Comp Mole Frac (Therminol-86)         ****         ****         ****           53         Comp Mole Frac (Ammonia)         ****         ****         ****           54         Comp Mole Frac (Argon)         ****         ****         ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000               | 0.0000                 |
| 51       Comp Mole Frac (DTRM-A)       ****       ****       ****         52       Comp Mole Frac (Therminol-86)       ****       ****       ****         53       Comp Mole Frac (Ammonia)       ****       ****       ****       ****         54       Comp Mole Frac (Argon)       ****       ****       ****       ****         55        ****       ****       ****       ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000               | 0.0000                 |
| 52         Comp Mole Frac (Therminol-88)         ****         ****         ****           53         Comp Mole Frac (Ammonia)         ****         ****         ****           54         Comp Mole Frac (Argon)         ****         ****         ****           55          ****         ****         ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ***                  | ***                    |
| 53         Comp Mole Frac (Ammonia)         ****         ****         ****           54         Comp Mole Frac (Argon)         ****         ****         ****         ****           55         ****         ****         ****         ****         ****         ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ***                  | ***                    |
| 54         Comp Mole Frac (Argon)         ***         ***         ***           55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ***                  | ***                    |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                  | ***                    |
| 56<br>57<br>58<br>59<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                        |
| 61<br>62<br>63 Aspen Technology Inc. Aspen HYSYS Version 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | Page 20 of 34          |
| Licensed to: BATTELLE ENERGY ALLIANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | * Specified by user.   |

| 1                    |                                                      |                        | Case Name:             | Generic HTSE+NH3 PF     | D_v3.00_Therm66_5bar_           | _U80 (3049 tpd NH3)_re |
|----------------------|------------------------------------------------------|------------------------|------------------------|-------------------------|---------------------------------|------------------------|
| 2<br>3               | ( aspentech Bedford, M/                              | ENERGY ALLIANCE<br>A   | Unit Set:              | HTSE PFD                |                                 |                        |
| 4<br>5               | USA                                                  |                        | Date/Time:             | Fri Apr 30 14:25:18 202 | 1                               |                        |
| 6                    |                                                      |                        | •                      |                         |                                 |                        |
| 7<br>8               | Workbook:                                            | Case (Mair             | n) (continue           | d)                      |                                 |                        |
| 9                    |                                                      | <u>.</u>               |                        | D                       |                                 |                        |
| 10                   |                                                      |                        | mpositions (conti      | -                       | Fluid Pkg                       |                        |
| 11<br>12             | Name                                                 | 132B @HTSE             | 151 @HTSE              | 151B @HTSE              | 152 process feed wate<br>0.9996 | 162 @HTSE              |
| 12                   | Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)    | 0.9996<br>0.0004       | 0.9996<br>0.0004       | 0.9996                  | 0.0004                          | 0.9996                 |
| 14                   | Comp Mole Frac (Oxygen)                              | 0.0000                 | 0.0000                 | 0.0000                  | 0.0000                          | 0.0000                 |
| 15                   | Comp Mole Frac (Nitrogen)                            | 0.0000                 | 0.0000                 | 0.0000                  | 0.000                           | 0.000                  |
| 16                   | Comp Mole Frac (CO2)                                 | 0.0000                 | 0.0000                 | 0.0000                  | 0.000                           | 0.0000                 |
| 17                   | Comp Mole Frac (CO)                                  | 0.0000                 | 0.0000                 | 0.0000                  | 0.000                           | 0.0000                 |
| 18                   | Comp Mole Frac (DTRM-A)                              | ***                    | ***                    | ***                     | ***                             | ***                    |
| 19                   | Comp Mole Frac (Therminol-66)                        | ***                    | ***                    | ***                     | ***                             | ***                    |
| 20                   | Comp Mole Frac (Ammonia)                             | ***                    | ***                    | ***                     | ***                             | ***                    |
| 21                   | Comp Mole Frac (Argon)                               | ***                    | ***                    | ***                     | ***                             | 407 B 0                |
| 22                   | Name                                                 | 163@HTSE               | 164 @HTSE              | 165@HTSE                | 166 @HTSE                       | 167 Process Cell Inlet |
| 23<br>24             | Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)    | 0.9007<br>0.0993       | 0.9007<br>0.0993       | 0.9007 *                | 0.9007<br>0.0993                | 0.9007                 |
| 24<br>25             | Comp Mole Frac (Oxygen)                              | 0.0000                 | 0.0000                 | 0.0000 *                | 0.0000                          | 0.0000                 |
| 26                   | Comp Mole Frac (Nitrogen)                            | 0.0000                 | 0.0000                 | 0.0000 *                | 0.0000                          | 0.0000                 |
| 27                   | Comp Mole Frac (CO2)                                 | 0.0000                 | 0.0000                 | 0.0000 *                | 0.0000                          | 0.0000                 |
| 28                   | Comp Mole Frac (CO)                                  | 0.0000                 | 0.0000                 | 0.0000 *                | 0.0000                          | 0.0000                 |
| 29                   | Comp Mole Frac (DTRM-A)                              | ***                    | ***                    | ***                     | ***                             | ***                    |
| 30                   | Comp Mole Frac (Therminol-66)                        | ***                    | ***                    | ***                     | ***                             | ***                    |
| 31                   | Comp Mole Frac (Ammonia)                             | ***                    | ***                    | ***                     | ***                             | ***                    |
| 32                   | Comp Mole Frac (Argon)                               | ***                    | ***                    | ***                     | ***                             | ***                    |
| 33                   | Name                                                 | 171 Process Cell Outle | 172 H2/H2O product n   | 173 H2/H2O recycle @    | 202 Process Heat Sup            | 203 Process Heat Ret   |
| 34                   | Comp Mole Frac (H2O)                                 | 0.1801                 | 0.1801                 | 0.1801                  | ***                             | ***                    |
| 35<br>36             | Comp Mole Frac (Hydrogen)                            | 0.8199<br>0.0000       | 0.8199                 | 0.8199<br>0.0000        | ***                             | ***                    |
| 37                   | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen) | 0.0000                 | 0.0000                 | 0.0000                  | ***                             | ***                    |
| 38                   | Comp Mole Frac (CO2)                                 | 0.0000                 | 0.0000                 | 0.0000                  | ***                             | ***                    |
| 39                   | Comp Mole Frac (CO)                                  | 0.0000                 | 0.0000                 | 0.0000                  | ***                             | ***                    |
| 40                   | Comp Mole Frac (DTRM-A)                              | ***                    | ***                    | ***                     | ***                             | ***                    |
| 41                   | Comp Mole Frac (Therminol-66)                        | ***                    | ***                    | ***                     | 1.0000 *                        | 1.0000                 |
| 42                   | Comp Mole Frac (Ammonia)                             | ***                    | ***                    | ***                     | ***                             | ***                    |
| 43                   | Comp Mole Frac (Argon)                               | ***                    | ***                    | ***                     | ***                             | ***                    |
| 44                   | Name                                                 | 301 @HTSE              | 302 H2/H2O for purific | 501 Sweep Gas Inlet (   | 502 @HTSE                       | 503 @HTSE              |
| 45                   | Comp Mole Frac (H2O)                                 | 0.1801                 | 0.1801                 | 0.0000 *                | 0.0000                          | 0.0000                 |
| 46                   | Comp Mole Frac (Hydrogen)                            | 0.8199                 | 0.8199                 | 0.0000 *                | 0.0000                          | 0.0000                 |
| 47<br>48             | Comp Mole Frac (Oxygen)                              | 0.0000                 | 0.0000                 | 0.2100 *                | 0.2100                          | 0.2100                 |
| 48<br>49             | Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)    | 0.0000                 | 0.0000                 | 0.7900 *                | 0.0000                          | 0.7900                 |
| 49<br>50             | Comp Mole Frac (CO2)                                 | 0.0000                 | 0.0000                 | 0.0000 *                | 0.0000                          | 0.0000                 |
| 51                   | Comp Mole Frac (CC)                                  | ***                    | ***                    | ***                     | ***                             | ***                    |
| 52                   | Comp Mole Frac (Therminol-66)                        | ***                    | ***                    | ***                     | ***                             | ***                    |
| 53                   | Comp Mole Frac (Ammonia)                             | ***                    | ***                    | ***                     | ***                             | ***                    |
| 54                   |                                                      | ***                    | ***                    | ***                     | ***                             | ***                    |
|                      | Comp Mole Frac (Argon)                               |                        |                        |                         |                                 |                        |
| 55                   | Comp Mole Frac (Argon)                               |                        |                        |                         |                                 |                        |
| 55<br>56             | Comp Mole Frac (Argon)                               |                        |                        |                         |                                 |                        |
| 57                   | Comp Mole Frac (Argon)                               |                        |                        |                         |                                 |                        |
| 57<br>58             | Comp Mole Frac (Argon)                               |                        |                        |                         |                                 |                        |
| 57<br>58<br>59       | Comp Mole Frac (Argon)                               |                        |                        |                         |                                 |                        |
| 57<br>58             | Comp Mole Frac (Argon)                               |                        |                        |                         |                                 |                        |
| 57<br>58<br>59<br>60 | Comp Mole Frac (Argon)                               |                        |                        |                         |                                 |                        |
| 57<br>58<br>59<br>60 | Comp Mole Frac (Argon) Aspen Technology Inc.         |                        | spen HYSYS Versio      | n 10                    |                                 | Page 21 of 34          |

| 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                        | Case Name:                                                                                                                                    | Generic HTSE+NH3 PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D_v3.00_Therm66_5bar                                                                                                                                        | _U80 (3049 tpd NH3)_re                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                                                                                                                                                                                                                                                      | Bedford, MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                        | Unit Set:                                                                                                                                     | HTSE PFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                               |
| 4                                                                                                                                                                                                                                                                      | USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                        | Date/Time:                                                                                                                                    | Fri Apr 30 14:25:18 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21                                                                                                                                                          |                                                                                                                                                                                               |
| 6                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                        |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                                                                                               |
| 7<br>8                                                                                                                                                                                                                                                                 | Workbook:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Case (Mai                                                                                                              | n) (continue                                                                                                                                  | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                               |
| 9<br>10                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Co                                                                                                                     | mpositions (conti                                                                                                                             | nued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fluid Pkg                                                                                                                                                   | j: All                                                                                                                                                                                        |
| 11                                                                                                                                                                                                                                                                     | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 504 @HTSE                                                                                                              | 505 @HTSE                                                                                                                                     | 506 @HTSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 507 @HTSE                                                                                                                                                   | 508 Sweep Cell Inlet (                                                                                                                                                                        |
| 12                                                                                                                                                                                                                                                                     | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000                                                                                                                 | 0.0000                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                      | 0.0000 *                                                                                                                                                                                      |
| 13                                                                                                                                                                                                                                                                     | Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000                                                                                                                 | 0.0000                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                       | 0.0000 *                                                                                                                                                                                      |
| 14                                                                                                                                                                                                                                                                     | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2100                                                                                                                 | 0.2500                                                                                                                                        | 0.2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2500                                                                                                                                                      | 0.2500 *                                                                                                                                                                                      |
| 15                                                                                                                                                                                                                                                                     | Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7900                                                                                                                 | 0.7500                                                                                                                                        | 0.7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7500                                                                                                                                                      | 0.7500 *                                                                                                                                                                                      |
| 16                                                                                                                                                                                                                                                                     | Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000                                                                                                                 | 0.0000                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                       | * 0.0000                                                                                                                                                                                      |
| 17<br>18                                                                                                                                                                                                                                                               | Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000                                                                                                                 | 0.0000                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                      | 0.0000 *                                                                                                                                                                                      |
| 10                                                                                                                                                                                                                                                                     | Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                    | ***                                                                                                                                           | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                                                         | ***                                                                                                                                                                                           |
| 20                                                                                                                                                                                                                                                                     | Comp Mole Frac (Therminol-66)<br>Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***                                                                                                                    | ***                                                                                                                                           | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                                                         | ***                                                                                                                                                                                           |
| 20                                                                                                                                                                                                                                                                     | Comp Mole Frac (Arimonia)<br>Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***                                                                                                                    | ***                                                                                                                                           | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                                                         | ***                                                                                                                                                                                           |
| 22                                                                                                                                                                                                                                                                     | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 511 Sweep Gas/O2 O                                                                                                     | 512 @HTSE                                                                                                                                     | 513@HTSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 514 @HTSE                                                                                                                                                   | 515 Sweep Gas Recy                                                                                                                                                                            |
| 23                                                                                                                                                                                                                                                                     | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000                                                                                                                 | 0.0000                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                                                                                                                                    | 0.0000                                                                                                                                                                                        |
| 24                                                                                                                                                                                                                                                                     | Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000                                                                                                                 | 0.0000                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                                                                                                                                    | 0.0000                                                                                                                                                                                        |
| 25                                                                                                                                                                                                                                                                     | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4001                                                                                                                 | 0.4001                                                                                                                                        | 0.4001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4001 *                                                                                                                                                    | 0.4001                                                                                                                                                                                        |
| 26                                                                                                                                                                                                                                                                     | Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5999                                                                                                                 | 0.5999                                                                                                                                        | 0.5999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5999 *                                                                                                                                                    | 0.5999                                                                                                                                                                                        |
| 27                                                                                                                                                                                                                                                                     | Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000                                                                                                                 | 0.0000                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | * 0.000.0                                                                                                                                                   | 0.0000                                                                                                                                                                                        |
| 28                                                                                                                                                                                                                                                                     | Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000                                                                                                                 | 0.0000                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | * 0.000.0                                                                                                                                                   | 0.0000                                                                                                                                                                                        |
| 29                                                                                                                                                                                                                                                                     | Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                    | ***                                                                                                                                           | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                                                         | ***                                                                                                                                                                                           |
| 30                                                                                                                                                                                                                                                                     | Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***                                                                                                                    | ***                                                                                                                                           | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                                                         | ***                                                                                                                                                                                           |
| 31                                                                                                                                                                                                                                                                     | Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ***                                                                                                                    | ***                                                                                                                                           | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                                                         | ***                                                                                                                                                                                           |
| 32                                                                                                                                                                                                                                                                     | Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***                                                                                                                    | ***                                                                                                                                           | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                                                         | ***                                                                                                                                                                                           |
| 33                                                                                                                                                                                                                                                                     | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 516 @HTSE                                                                                                              | 517 Sweep Gas Exhau                                                                                                                           | 401@KhpH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 402a @KhpH2                                                                                                                                                 | 402b @KhpH2                                                                                                                                                                                   |
| 34                                                                                                                                                                                                                                                                     | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000                                                                                                                 | 0.0000                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                      | 0.0000                                                                                                                                                                                        |
| 26                                                                                                                                                                                                                                                                     | Coren Molo Eron (Lludrogon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000                                                                                                                 | 0.0000                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 0000                                                                                                                                                      |                                                                                                                                                                                               |
| 35<br>36                                                                                                                                                                                                                                                               | Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000                                                                                                                 | 0.0000                                                                                                                                        | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000                                                                                                                                                      | 1.0000                                                                                                                                                                                        |
| 35<br>36<br>37                                                                                                                                                                                                                                                         | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4001                                                                                                                 | 0.4001                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                       | 0.0000                                                                                                                                                                                        |
| _                                                                                                                                                                                                                                                                      | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4001<br>0.5999                                                                                                       | 0.4001<br>0.5999                                                                                                                              | 0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000                                                                                                                                                      | 0.0000                                                                                                                                                                                        |
| 37                                                                                                                                                                                                                                                                     | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4001                                                                                                                 | 0.4001                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                       | 0.0000                                                                                                                                                                                        |
| 37<br>38                                                                                                                                                                                                                                                               | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4001<br>0.5999<br>0.0000                                                                                             | 0.4001<br>0.5999<br>0.0000                                                                                                                    | 0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0000<br>0.0000<br>0.0000                                                                                                                                  | 0.0000<br>0.0000<br>0.0000                                                                                                                                                                    |
| 37<br>38<br>39                                                                                                                                                                                                                                                         | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.4001<br>0.5999<br>0.0000<br>0.0000                                                                                   | 0.4001<br>0.5999<br>0.0000<br>0.0000                                                                                                          | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                        | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                          |
| 37<br>38<br>39<br>40                                                                                                                                                                                                                                                   | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.4001<br>0.5999<br>0.0000<br>0.0000<br>***                                                                            | 0.4001<br>0.5999<br>0.0000<br>0.0000<br>***                                                                                                   | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>***                                                                                                                 | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>***                                                                                                                                                   |
| 37<br>38<br>39<br>40                                                                                                                                                                                                                                                   | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.4001<br>0.5999<br>0.0000<br>***<br>***                                                                               | 0.4001<br>0.5999<br>0.0000<br>0.0000<br>***<br>***                                                                                            | 0.0000<br>0.0000<br>0.0000<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000<br>0.000<br>0.000<br>0.000<br>***<br>***                                                                                                              | 0.0000<br>0.0000<br>0.0000<br>***<br>***                                                                                                                                                      |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                                                                                                                                                                                                                           | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name                                                                                                                                                                                                                                                                                                                                                                                    | 0.4001<br>0.5999<br>0.0000<br>0.0000<br>***<br>***                                                                     | 0.4001<br>0.5999<br>0.0000<br>0.0000<br>***<br>***                                                                                            | 0.0000<br>0.0000<br>0.0000<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>403 Pressurized H2 Pr                                                                                           | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>***<br>PURGE-4 @Krecov                                                                                                                            |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>43<br>44                                                                                                                                                                                                                     | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                        | 0.4001<br>0.5999<br>0.0000<br>****<br>****<br>402c @KhpH2<br>0.0000                                                    | 0.4001<br>0.5999<br>0.0000<br>***<br>***<br>***<br>402d @KhpH2<br>0.0000                                                                      | 0.0000<br>0.0000<br>0.0000<br>****<br>****<br>402e @KhpH2<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>***<br>403 Pressurized H2 Pr<br>0.0000                                                                          | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>***<br>PURGE-4@Krecov<br>0.0000                                                                                                                   |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46                                                                                                                                                                                                               | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name                                                                                                                                                                                                                                                                                                                                                                                  | 0.4001<br>0.5999<br>0.0000<br>****<br>****<br>402c @KhpH2<br>0.0000<br>1.0000                                          | 0.4001<br>0.5999<br>0.0000<br>***<br>402d@KhpH2<br>0.0000<br>1.0000                                                                           | 0.0000<br>0.0000<br>0.0000<br>•••••<br>••••<br>402e @KhpH2<br>0.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>403 Pressurized H2 Pr<br>0.0000<br>1.0000                                                                       | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>PURGE-4@Krecov<br>0.0000<br>0.0015                                                                                                                |
| <ol> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> </ol>                                                                                                                         | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CDTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                             | 0.4001<br>0.5899<br>0.0000<br>****<br>402c @KhpH2<br>0.0000<br>1.0000<br>0.0000                                        | 0.4001<br>0.5999<br>0.0000<br>***<br>***<br>402d @KhpH2<br>0.0000<br>1.0000                                                                   | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>403 Pressurized H2 Pr<br>0.0000<br>1.0000<br>0.0000                                                             | 0 0000<br>0 0000<br>0 0000<br>***<br>***<br>PURGE-4 @Krecov<br>0 0000<br>0 0015<br>0 0000                                                                                                     |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>43<br>45<br>46<br>47<br>48                                                                                                                                                                                                   | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (Cherminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                  | 0.4001<br>0.5899<br>0.0000<br>****<br>402c @KhpH2<br>0.0000<br>1.0000<br>0.0000                                        | 0.4001<br>0.5899<br>0.0000<br>***<br>402d@KhpH2<br>0.0000<br>1.0000<br>0.0000                                                                 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>403 Pressurized H2 Pr<br>0.0000<br>1.0000<br>0.0000                                                             | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>PURGE-4 @Krecov<br>0.0000<br>0.0015<br>0.0000                                                                                                     |
| <ul> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> </ul>                                                                                                 | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                           | 0.4001<br>0.5999<br>0.0000<br>                                                                                         | 0.4001<br>0.5999<br>0.0000<br>•••••<br>••••<br>402d @KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000                                            | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0000<br>0.0000<br>0.0000<br>****<br>403 Pressurized H2 Pr<br>0.0000<br>1.0000<br>0.0000<br>0.0000                                                         | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>PURGE-4 @Krecov<br>0.0000<br>0.0015<br>0.0000                                                                                                     |
| <ol> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> </ol>                                                                                                             | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (TRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)                                                                                                                                                                                                                     | 0.4001<br>0.5899<br>0.0000<br>****<br>402c @KhpH2<br>0.0000<br>1.0000<br>0.0000                                        | 0.4001<br>0.5899<br>0.0000<br>***<br>402d@KhpH2<br>0.0000<br>1.0000<br>0.0000                                                                 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>403 Pressurized H2 Pr<br>0.0000<br>1.0000<br>0.0000                                                             | 0 0000<br>0 0000<br>0 0000<br>***<br>***<br>PURGE-4 @Krecov<br>0 0000<br>0 0015<br>0 0000<br>0 0011<br>0 0000                                                                                 |
| <ul> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> </ul>                                                                                                 | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Nygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (COTRM-A)                                                                                                                                                                    | 0.4001<br>0.5999<br>0.0000<br>                                                                                         | 0.4001<br>0.5999<br>0.0000<br>•••••<br>••••<br>402d@KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000                                             | 0.0000<br>0.0000<br>0.0000<br>•••••<br>••••<br>402e @KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>403 Pressurized H2 Pr<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000                                         | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>PURGE-4 @Krecov<br>0.0000<br>0.0015<br>0.0000<br>0.0015<br>0.0000<br>0.0011                                                                       |
| 37       38       39       40       41       42       43       44       45       46       47       48       49       50       51                                                                                                                                       | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (TRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)                                                                                                                                                                                                                     | 0.4001<br>0.5999<br>0.0000<br>****<br>402c@KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000           | 0.4001<br>0.5999<br>0.0000<br>***<br>402d@KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000                                             | 0.0000<br>0.0000<br>0.0000<br>•••••<br>••••<br>402e @KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000<br>0.0000<br>0.0000<br>***<br>403 Pressurized H2 Pr<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                      | 0.0000<br>0.0000<br>0.0000<br>***<br>PURGE-4 @Krecov<br>0.0000<br>0.0015<br>0.0000<br>0.0011<br>0.0001<br>0.0011<br>***                                                                       |
| <ol> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> </ol>                                                                         | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)                                                                                                       | 0.4001<br>0.5999<br>0.0000<br>****<br>402c@KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000           | 0.4001<br>0.5999<br>0.0000<br>***<br>402d@KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                   | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>403 Pressurized H2 Pr<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                     | 0.0000<br>0.0000<br>                                                                                                                                                                          |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52                                                                  | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)                                            | 0.4001<br>0.5999<br>0.0000<br>****<br>402c@khpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.4001<br>0.5999<br>0.0000<br>***<br>402d@KhpH2<br>402d@KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000 | 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>403 Pressurized H2 Pr<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>****<br>***<br>PURGE-4 @Krecov<br>0.0000<br>0.0015<br>0.0000<br>0.0011<br>0.0000<br>0.0011<br>0.0000<br>***<br>***                                              |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53                                                     | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)                                            | 0.4001<br>0.5999<br>0.0000<br>****<br>402c@khpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.4001<br>0.5999<br>0.0000<br>***<br>402d@KhpH2<br>402d@KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000 | 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>403 Pressurized H2 Pr<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>****<br>***<br>PURGE-4 @Krecov<br>0.0000<br>0.0015<br>0.0000<br>0.0011<br>0.0000<br>0.0011<br>0.0000<br>***<br>***                                              |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54                                        | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)                                            | 0.4001<br>0.5999<br>0.0000<br>****<br>402c@khpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.4001<br>0.5999<br>0.0000<br>***<br>402d@KhpH2<br>402d@KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000 | 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>403 Pressurized H2 Pr<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>****<br>***<br>PURGE-4 @Krecov<br>0.0000<br>0.0015<br>0.0000<br>0.0011<br>0.0000<br>0.0011<br>0.0000<br>***<br>***                                              |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55                           | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)                                            | 0.4001<br>0.5999<br>0.0000<br>****<br>402c@khpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.4001<br>0.5999<br>0.0000<br>***<br>402d@KhpH2<br>402d@KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000 | 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>403 Pressurized H2 Pr<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0 0000<br>0 0000<br>0 0000<br>***<br>***<br>PURGE-4 @Krecov<br>0 0000<br>0 0015<br>0 0000<br>0 0011<br>0 0000<br>1 0 0110<br>1 0 0000                                                         |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56              | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)                                            | 0.4001<br>0.5999<br>0.0000<br>****<br>402c@khpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.4001<br>0.5999<br>0.0000<br>***<br>402d@KhpH2<br>402d@KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000 | 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>403 Pressurized H2 Pr<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0 0000<br>0 0000<br>0 0000<br>***<br>***<br>PURGE-4 @Krecov<br>0 0000<br>0 0015<br>0 0000<br>0 0011<br>0 0000<br>1 0 0110<br>1 0 0000                                                         |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57 | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)                                            | 0.4001<br>0.5999<br>0.0000<br>****<br>402c@khpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.4001<br>0.5999<br>0.0000<br>***<br>402d@KhpH2<br>402d@KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000 | 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>403 Pressurized H2 Pr<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0 0000<br>0 0000<br>0 0000<br>***<br>***<br>PURGE-4 @Krecov<br>0 0000<br>0 0015<br>0 0000<br>0 0011<br>0 0000<br>1 0 0110<br>1 0 0000                                                         |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57 | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)                                            | 0.4001<br>0.5999<br>0.0000<br>****<br>402c@khpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.4001<br>0.5999<br>0.0000<br>***<br>402d@KhpH2<br>402d@KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>***              | 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>403 Pressurized H2 Pr<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>****<br>***<br>PURGE-4 @Krecov<br>0.0000<br>0.0015<br>0.0000<br>0.0011<br>0.0000<br>0.0011<br>0.0000<br>***<br>***                                              |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57 | Comp Mole Frac (Oxygen)         Comp Mole Frac (CO2)         Comp Mole Frac (CO2)         Comp Mole Frac (CDRM-A)         Comp Mole Frac (TRM-A)         Comp Mole Frac (Hydrogen)         Comp Mole Frac (Nydrogen)         Comp Mole Frac (Nydrogen)         Comp Mole Frac (Nydrogen)         Comp Mole Frac (CO2)         Comp Mole Frac (CO)         Comp Mole Frac (TRM-A)         Comp Mole Frac (Therminol-86)         Comp Mole Frac (Argon) | 0.4001<br>0.5999<br>0.0000<br>                                                                                         | 0.4001<br>0.5999<br>0.0000<br>***<br>402d@KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                   | 0.0000<br>0.0000<br>0.0000<br>****<br>402e @KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>403 Pressurized H2 Pr<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>PURGE-4 @Krecov<br>0.0000<br>0.0015<br>0.0000<br>0.0015<br>0.0000<br>0.0011<br>0.0000<br>0.0011<br>0.0000<br>0.0011<br>0.0000<br>0.0011<br>0.0000 |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57 | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (CD)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)                                            | 0.4001<br>0.5999<br>0.0000<br>                                                                                         | 0.4001<br>0.5999<br>0.0000<br>***<br>402d@KhpH2<br>402d@KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>***              | 0.0000<br>0.0000<br>0.0000<br>****<br>402e @KhpH2<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0000<br>0.0000<br>0.0000<br>***<br>***<br>403 Pressurized H2 Pr<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>****<br>***<br>PURGE-4 @Krecov<br>0.0000<br>0.0015<br>0.0000<br>0.0011<br>0.0000<br>0.0011<br>0.0000<br>***<br>***                                              |

| 12         Comp Mole Frac (H2Q)         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |                               |                | Case Name:        | Generic HTSE+NH3 PF     | D_v3.00_Therm66_5bar | _U80 (3049 tpd NH3)_re |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|----------------|-------------------|-------------------------|----------------------|------------------------|
| Data/Time         Pri Apri 20 (14.25 18 221)           VOrkbook:         Case (Main) (continued)           Compositions (continued)         Fund Prig           Compositions (continued)         Fund Prig           Compositions (continued)         Fund Prig           Comp Max Frac (Prig)         0.0015         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016 </th <th></th> <th>( aspentech Bedford, M</th> <th></th> <th>Unit Set:</th> <th colspan="3">Unit Set: HTSE PFD</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | ( aspentech Bedford, M        |                | Unit Set:         | Unit Set: HTSE PFD      |                      |                        |
| Compositions (continued)         Fuis Page           Image: the second                                   | 4        | USA                           |                | Date/Time:        | Fri Apr 30 14:25:18 202 | 1                    |                        |
| Image: composition (continued)         Fuid Pkg           Image: composition (continued)         Fuid Pkg           Image: comp Mole Frac (H2O)         0.0001         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                               |                |                   |                         |                      |                        |
| Description         Compositions (continued)         PURGE-6 giracov         PURGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7<br>8   | Workbook:                     | Case (Mai      | n) (continue      | ed)                     |                      |                        |
| Instract         PURCE-5 gittersov         PURCE-4 gittersov         PU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _        |                               | Co             | mpositions (conti | ositions (continued)    |                      | j: All                 |
| 12         Come Male Frac (H2Q)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Name                          | PURGE-5@Krecov | PURGE-4A @Krecov  | PURGE-4B @Krecov        | PURGE-4C @Krecov     | PURGE-4D @Krecov       |
| Image: Second Mathematic Second Mathematis Second Mathematic Second Mathematic Second Mathematic | 12       |                               |                | _                 |                         |                      | 0.0000                 |
| Image: Comp Mate Frac (Ptrogen)         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011           I Comp Mate Frac (CO2)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13       | Comp Mole Frac (Hydrogen)     | 0.0015         | 0.0015            | 0.0015                  | 0.0015               | 0.0015                 |
| 10         Comp Mole Frac (CO)         0.0000         0.0000         0.0000         0.0000           10         Comp Mole Frac (C)TRM-A)         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ****         ***         ****         **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14       | Comp Mole Frac (Oxygen)       | 0.0000         | 0.0000            | 0.0000                  | 0.0000               | 0.0000                 |
| Comp Mule Frac (CO)         ***         ***         ***         ***           10         Comp Mule Frac (DTRMA)         ***         ***         ***         ***           20         Comp Mule Frac (DTRMA)         ***         ***         ***         ***           21         Comp Mule Frac (Thermonia)         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9001         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15       |                               |                |                   |                         |                      | 0.0011                 |
| Comp Mare Frac (DTRM-A)         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16       |                               |                |                   |                         |                      | 0.0000                 |
| 10         Comp Mole Frac (Therminol-66)         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17       |                               |                |                   |                         |                      | ***                    |
| Comp Mole Frac (Limmanulou)         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.9000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>***</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                               |                |                   |                         |                      | ***                    |
| 2         Comp Mole Frac (Argon)         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                               |                |                   |                         |                      |                        |
| 22         Name         PURGE-4E @recov         PURGE-4F @recov         PURGE-4G @recov         NH3-VAP1 @rEU         NH3-VAP1 @rEU           23         Comp Mole Frac (Hydrogen)         0.0016         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0.9974</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                               |                |                   |                         |                      | 0.9974                 |
| 2         Comp Mole Frac (H2O)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000 <t< th=""><th>22</th><th></th><th></th><th></th><th></th><th></th><th>NH3-VAP3 @KRU</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22       |                               |                |                   |                         |                      | NH3-VAP3 @KRU          |
| 20         Camp Mole Frac (Hydrogen)         0.0015         0.0015         0.0015         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23       |                               |                |                   |                         | -                    | 0.0000                 |
| 2         Camp Mole Frac (Norgen)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24       |                               |                |                   |                         |                      | 0.0000                 |
| 22         Comp Mole Frac (Ntrogen)         0 0011         0 0011         0 0001         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                               |                |                   |                         |                      | 0.0000                 |
| 22         Comp Mole Frac (CO)         ····         ····         ····         ····           23         Comp Mole Frac (CTRM-A)         ····         ····         ····         ····           31         Comp Mole Frac (Ammonia)         0.8974         0.8974         0.8974         1.0000         ···           32         Comp Mole Frac (Armonia)         0.8974         0.8974         0.8974         1.0000         0.0000           33         Comp Mole Frac (Argon)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000 </th <th>26</th> <th></th> <th>0.0011</th> <th>0.0011</th> <th>0.0011</th> <th></th> <th>0.0000</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26       |                               | 0.0011         | 0.0011            | 0.0011                  |                      | 0.0000                 |
| 22         Comp Mole Frac (DTRM.A)         ***         ***         ***         ***         ***           30         Comp Mole Frac (Therminol-86)         ****         ***         ***         ***           31         Comp Mole Frac (Argon)         0.9974         0.9974         0.9000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000 <td< th=""><th>27</th><th>Comp Mole Frac (CO2)</th><th>0.0000</th><th>0.0000</th><th>0.0000</th><th>0.0000</th><th>0.0000</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27       | Comp Mole Frac (CO2)          | 0.0000         | 0.0000            | 0.0000                  | 0.0000               | 0.0000                 |
| Comp Mole Frac (Cherminol-6b)         ***         ***         ***           31         Comp Mole Frac (Cherminol-6b)         0.9374         0.9974         0.9974         1.0000         1.0000           32         Comp Mole Frac (Argon)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28       | Comp Mole Frac (CO)           | ***            | ***               | ***                     | ***                  | ***                    |
| Comp Mole Frac (Ammonia)         0.9974         0.9974         0.9974         0.9974         0.9974         0.9974         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29       | Comp Mole Frac (DTRM-A)       | ***            | ***               | ***                     | ***                  | ***                    |
| 2         Comp Mole Frac (Argon)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30       | Comp Mole Frac (Therminol-66) | ***            | ***               | ***                     | ***                  | ***                    |
| 33         Name         NH3-VAP3A @KRU         NH3-VAP3B @KRU         NH3-VAP3C @KRU         NH3-VAP3D @KRU         NH3-VAP3C @KRU         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31       |                               |                |                   |                         |                      | 1.0000                 |
| 34         Comp Mole Frac (H2C)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        | 1                             |                |                   |                         |                      | 0.0000                 |
| 35         Comp Mole Frac (Hydrogen)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                               |                | _                 |                         |                      | NH3-VAP3E @KRU         |
| 36         Comp Mole Frac (Oxygen)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34       |                               |                |                   |                         |                      | 0.0000                 |
| 37         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35       |                               |                |                   |                         |                      | 0.0000                 |
| 38         Comp Mole Frac (CO2)         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         0 0000         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                               |                |                   |                         |                      | 0.0000                 |
| 3         Comp Mole Frac (CO)         0000         00000         00000         00000         00000         010000         110000         110000         110000         110000         110000         110000         110000         110000         110000         110000         100000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         010000         01000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                               |                |                   |                         |                      | 0.0000                 |
| 40         Comp Male Frac (Iherminol-86)         ****         ****         ****           41         Comp Male Frac (Iherminol-86)         ****         ****         ****           42         Comp Male Frac (Argon)         1.0000         1.0000         1.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                               |                |                   |                         |                      | ***                    |
| 41         Comp Mole Frac (Therminol-86)         ***         ***         ***         ***           42         Comp Mole Frac (Armonia)         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                               | ***            | ***               | ***                     | ***                  | ***                    |
| 42         Comp Mole Frac (Ammonia)         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                               | ***            | ***               | ***                     | ***                  | ***                    |
| Ostrop Mode Frac (H2O)         NH3-VAP3F @KRU         NH3-VAP3G @KRU         SYN-2 @Ksyn         SYN-3 @Ksyn         SYN-2A @Ksyn           45         Comp Mole Frac (H2O)         0.0000         0.0000         0.0000         0.0000         0           46         Comp Mole Frac (H2O)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0           47         Comp Mole Frac (Xygen)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 42       |                               | 1.0000         | 1.0000            | 1.0000                  | 1.0000               | 1.0000                 |
| Some Mole Frac (H2O)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43       |                               | 0.0000         | 0.0000            | 0.0000                  | 0.0000               | 0.0000                 |
| Comp Mole Frac (Hydrogen)         0.0000         0.0000         0.0000         0.7500         0.7500         0           47         Comp Mole Frac (Oxygen)         0.0000         0.0000         0.0000         0.0000         0           48         Comp Mole Frac (Oxygen)         0.0000         0.0000         0.2500         0.2500         0           49         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000         0.0000         0           50         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000         0.0000         0           51         Comp Mole Frac (DTRM-A)         ****         ****         ****         ****         ****           52         Comp Mole Frac (Armonia)         1.0000         1.0000         0.0000         0.0000         0           53         Comp Mole Frac (Argon)         0.0000         0.0000         0.0000         0         0           54         Frac (Argon)         0.0000         0.0000         0.0000         0.0000         0           55         Frac (Argon)         0.0000         0.0000         0.0000         0         0           56         Frac (Argon)         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44       | Name                          | NH3-VAP3F @KRU | NH3-VAP3G @KRU    | SYN-2@Ksyn              | SYN-3 @Ksyn          | SYN-2A @Ksyn           |
| 47         Comp Mole Frac (Oxygen)         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45       | Comp Mole Frac (H2O)          | 0.0000         | 0.0000            | 0.0000                  | 0.0000               | 0.0000                 |
| 48         Comp Mole Frac (Nitrogen)         0.0000         0.0000         0.2500         0.2500         0           49         Comp Mole Frac (CO2)         0.0000         0.0000         0.0000         0.0000         0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46       | Comp Mole Frac (Hydrogen)     |                | 0.0000            |                         | 0.7500               | 0.7500                 |
| 49       Comp Mole Frac (CO2)       0.0000       0.0000       0.0000       0.0000         50       Comp Mole Frac (CO)       ****       ****       ****       ****         51       Comp Mole Frac (CDTRM-A)       ****       ****       ****       ****         52       Comp Mole Frac (Therminol-86)       ****       ****       ****       ****         53       Comp Mole Frac (Ammonia)       1.0000       1.0000       0.0000       0.0000       0         54       Comp Mole Frac (Argon)       0.0000       0.0000       0.0000       0       0         55       Frac (Argon)       0.0000       0.0000       0.0000       0       0       0         56       Frac (Argon)       0.0000       0.0000       0.0000       0       0       0         58       Frac (Argon)       0.0000       0.0000       0.0000       0       0       0       0         60       Aspen Technology Inc.       Aspen HYSYS Version 10       Page 23       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                               |                |                   |                         |                      | 0.0000                 |
| S0         Comp Mole Frac (CO)         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         **** <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0.2500</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                               |                |                   |                         |                      | 0.2500                 |
| Comp Mole Frac (DTRM-A)         ****         ****         ****           51         Comp Mole Frac (DTRM-A)         ****         ****         ****           52         Comp Mole Frac (Therminol-66)         ****         ****         ****         ****           53         Comp Mole Frac (Ammonia)         1.0000         1.0000         0.0000         0.0000         0           54         Comp Mole Frac (Argon)         0.0000         0.0000         0.0000         0         0           55         Comp Mole Frac (Argon)         0.0000         0.0000         0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                               |                |                   |                         | 0.0000               | 0.0000                 |
| Since Comp Mole Frac (Therminol-66)         Image: Since Comp Mole Frac (Ammonia)         Image: Since Comp Mole Frac (Argon)         Image: Since Comp Mole Frac (Argon) <th< th=""><th>0U<br/>51</th><th></th><th></th><th></th><th></th><th>***</th><th>***</th></th<>                                                                                                                                                                                                                                                              | 0U<br>51 |                               |                |                   |                         | ***                  | ***                    |
| Comp Mole Frac (Armonia)         1.0000         1.0000         0.0000         0.0000         0           56         Comp Mole Frac (Argon)         0.0000         0.0000         0.0000         0         0           56         Frac (Argon)         0.0000         0.0000         0.0000         0.0000         0           56         Frac (Argon)         0.0000         0.0000         0.0000         0.0000         0           58         Frac (Argon)         0.0000         0.0000         0.0000         0.0000         0           59         Frac (Argon)         Agen Hysys Version 10         Page 23 of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52       |                               |                |                   |                         |                      | ***                    |
| Samp Mole Frac (Argon)         0.0000         0.0000         0.0000         0.0000         0.0000         0           56         56         57         58         59         56         56         57         58         56         56         57         58         56         56         57         58         58         56         56         57         58         56         56         56         57         58         58         56         56         57         58         58         56         56         57         58         56         56         57         58         56         56         57         58         56         56         57         58         56         57         58         56         57         58         56         56         57         58         56         56         57         58         56         57         58         56         57         58         56         57         58         56         57         58         56         57         58         56         57         58         56         57         58         56         57         58         56         56         57         58         56 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0.0000</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                               |                |                   |                         |                      | 0.0000                 |
| 60     50       57     58       59     60       61     61       62     63       63     Aspen Technology Inc.   Page 23 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _        |                               |                |                   |                         |                      | 0.0000                 |
| 57<br>58<br>59<br>60<br>61<br>62<br>63 Aspen Technology Inc. Aspen HYSYS Version 10 Page 23 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55       |                               |                |                   |                         |                      |                        |
| 58       59       60       61       62       63     Aspen Technology Inc.       Aspen Technology Inc.     Page 23 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                               |                |                   |                         |                      |                        |
| 53       60       61       62       63     Aspen Technology Inc.   Page 23 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57       |                               |                |                   |                         |                      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58       |                               |                |                   |                         |                      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59       |                               |                |                   |                         |                      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60       |                               |                |                   |                         |                      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61       |                               |                |                   |                         |                      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62       | 0 en en Teskasler de la       |                |                   | - 40                    |                      | Dana 00 -601           |
| Licensed to: BATTELLE ENERGY ALLIANCE * Specified by ut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63       |                               |                | spen H1S1S Versio |                         |                      | * Specified by user.   |

| 2                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                             | Case Name:                                                                                                                                                            | Generic HTSE+NH3 PF                                                                                                                                      | D_v3.00_Therm66_5bar                                                                                                                  | _U80 (3049 tpd NH3)_re                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| З                                                                                                                                                                                                                                                                       | Caspentech Bedford, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EENERGY ALLIANCE<br>IA                                                                                                                                                                                      | Unit Set:                                                                                                                                                             | HTSE PFD                                                                                                                                                 |                                                                                                                                       |                                                                                                                                   |
| 4                                                                                                                                                                                                                                                                       | USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                             | Date/Time:                                                                                                                                                            | Fri Apr 30 14:25:18 202                                                                                                                                  | 21                                                                                                                                    |                                                                                                                                   |
| 6                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                             |                                                                                                                                                                       |                                                                                                                                                          |                                                                                                                                       |                                                                                                                                   |
| 7<br>8                                                                                                                                                                                                                                                                  | Workbook:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Case (Mai                                                                                                                                                                                                   | n) (continue                                                                                                                                                          | ed)                                                                                                                                                      |                                                                                                                                       |                                                                                                                                   |
| 9<br>10                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Co                                                                                                                                                                                                          | ompositions (cont                                                                                                                                                     | ositions (continued)                                                                                                                                     |                                                                                                                                       | g: All                                                                                                                            |
| 11                                                                                                                                                                                                                                                                      | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SYN-2B @Ksyn                                                                                                                                                                                                | SYN-2C @Ksyn                                                                                                                                                          | SYN-2D @Ksyn                                                                                                                                             | SYN-2E @Ksyn                                                                                                                          | MSC-1A @MSC                                                                                                                       |
| 12                                                                                                                                                                                                                                                                      | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                                                                                                      | 0.0000                                                                                                                                                                | 0.0000                                                                                                                                                   | 0.0000                                                                                                                                | 0.0000                                                                                                                            |
| 13                                                                                                                                                                                                                                                                      | Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7500                                                                                                                                                                                                      | 0.7500                                                                                                                                                                | 0.7500                                                                                                                                                   | 0.7500                                                                                                                                | 0.0000                                                                                                                            |
| 14                                                                                                                                                                                                                                                                      | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                      | 0.0000                                                                                                                                                                | 0.0000                                                                                                                                                   | 0.000.0                                                                                                                               | 0.0000                                                                                                                            |
| 15                                                                                                                                                                                                                                                                      | Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2500                                                                                                                                                                                                      | 0.2500                                                                                                                                                                | 0.2500                                                                                                                                                   | 0.2500                                                                                                                                | 0.9990                                                                                                                            |
| 16                                                                                                                                                                                                                                                                      | Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                                                                                                      | 0.0000                                                                                                                                                                | 0.0000                                                                                                                                                   | 0.0000                                                                                                                                | 0.0000                                                                                                                            |
| 17                                                                                                                                                                                                                                                                      | Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***                                                                                                                                                                                                         | ***                                                                                                                                                                   | ***                                                                                                                                                      | ***                                                                                                                                   | ***                                                                                                                               |
| 10                                                                                                                                                                                                                                                                      | Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                         | ***                                                                                                                                                                   | ***                                                                                                                                                      | ***                                                                                                                                   | ***                                                                                                                               |
| 20                                                                                                                                                                                                                                                                      | Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000                                                                                                                                                                                                      | 0.0000                                                                                                                                                                | 0.0000                                                                                                                                                   | 0.0000                                                                                                                                | 0.0000                                                                                                                            |
| 21                                                                                                                                                                                                                                                                      | Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000                                                                                                                                                                                                      | 0.0000                                                                                                                                                                | 0.0000                                                                                                                                                   | 0.0000                                                                                                                                | 0.0010                                                                                                                            |
| 22                                                                                                                                                                                                                                                                      | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MSC-1B@MSC                                                                                                                                                                                                  | MSC-2A @MSC                                                                                                                                                           | MSC-2B@MSC                                                                                                                                               | MSC-3A @MSC                                                                                                                           | MSC-3B @MSC                                                                                                                       |
| 23                                                                                                                                                                                                                                                                      | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                                                                                                      | 0.0000                                                                                                                                                                | 0.0000                                                                                                                                                   | 0.0000                                                                                                                                | 0.0000                                                                                                                            |
| 24                                                                                                                                                                                                                                                                      | Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000                                                                                                                                                                                                      | 0.0000                                                                                                                                                                | 0.0000                                                                                                                                                   | 0.000                                                                                                                                 | 0.0000                                                                                                                            |
| 25                                                                                                                                                                                                                                                                      | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                      | 0.0000                                                                                                                                                                | 0.0000                                                                                                                                                   | 0.000                                                                                                                                 | 0.0000                                                                                                                            |
| 26                                                                                                                                                                                                                                                                      | Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9990                                                                                                                                                                                                      | 0.9990                                                                                                                                                                | 0.9990                                                                                                                                                   | 0.9990                                                                                                                                | 0.9990                                                                                                                            |
| 27                                                                                                                                                                                                                                                                      | Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                                                                                                      | 0.0000                                                                                                                                                                | 0.0000                                                                                                                                                   | 0.0000                                                                                                                                | 0.0000                                                                                                                            |
| 28                                                                                                                                                                                                                                                                      | Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***                                                                                                                                                                                                         | ***                                                                                                                                                                   | ***                                                                                                                                                      | ***                                                                                                                                   | ***                                                                                                                               |
| 29                                                                                                                                                                                                                                                                      | Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                                                                                                                                                                                                         | ***                                                                                                                                                                   | ***                                                                                                                                                      | ***                                                                                                                                   | ***                                                                                                                               |
| 30                                                                                                                                                                                                                                                                      | Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                                                                                                         | ***                                                                                                                                                                   | ***                                                                                                                                                      | ***                                                                                                                                   | ***                                                                                                                               |
| 31<br>32                                                                                                                                                                                                                                                                | Comp Mole Frac (Amonia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                      | 0.0000                                                                                                                                                                | 0.0000                                                                                                                                                   | 0.0000                                                                                                                                | 0.0000<br>0.0010                                                                                                                  |
| 33                                                                                                                                                                                                                                                                      | Comp Mole Frac (Argon)<br>Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MSC-4A @MSC                                                                                                                                                                                                 | MSC-4B@MSC                                                                                                                                                            | MSC-5A @MSC                                                                                                                                              | N2@MSC                                                                                                                                | N2-2- @MSC                                                                                                                        |
| 34                                                                                                                                                                                                                                                                      | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                                                                                                      | 0.0000                                                                                                                                                                | 0.0000                                                                                                                                                   | 0.0000                                                                                                                                | 0.0000                                                                                                                            |
| 35                                                                                                                                                                                                                                                                      | Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000                                                                                                                                                                                                      | 0.0000                                                                                                                                                                | 0.0000                                                                                                                                                   | 0.0000                                                                                                                                | 0.0000                                                                                                                            |
|                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                             |                                                                                                                                                                       |                                                                                                                                                          |                                                                                                                                       |                                                                                                                                   |
| 36                                                                                                                                                                                                                                                                      | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                      | 0.0000                                                                                                                                                                | 0.0000                                                                                                                                                   | 0.0000                                                                                                                                | 0.0000                                                                                                                            |
| 36<br>37                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                             | 0.0000<br>0.9990                                                                                                                                                      | 0.0000                                                                                                                                                   | 0.0000                                                                                                                                | 0.0000<br>0.9990                                                                                                                  |
|                                                                                                                                                                                                                                                                         | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                          |                                                                                                                                       |                                                                                                                                   |
| 37                                                                                                                                                                                                                                                                      | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000<br>0.9990                                                                                                                                                                                            | 0.9990<br>0.0000<br>***                                                                                                                                               | 0.9990<br>0.0000<br>***                                                                                                                                  | 0.9990                                                                                                                                | 0.9990<br>0.0000<br>***                                                                                                           |
| 37<br>38                                                                                                                                                                                                                                                                | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000<br>0.9990<br>0.0000<br>***                                                                                                                                                                           | 0.9990<br>0.0000<br>***<br>***                                                                                                                                        | 0.9990                                                                                                                                                   | 0.9990<br>0.0000<br>***                                                                                                               | 0.9990<br>0.0000<br>***<br>***                                                                                                    |
| 37<br>38<br>39                                                                                                                                                                                                                                                          | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000<br>0.9990<br>0.0000<br>***<br>***                                                                                                                                                                    | 0.9990                                                                                                                                                                | 0.9990                                                                                                                                                   | 0.9990                                                                                                                                | 0.9990<br>0.0000<br>***<br>***                                                                                                    |
| 37<br>38<br>39<br>40<br>41<br>42                                                                                                                                                                                                                                        | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0000<br>0.9990<br>0.0000<br>***<br>***<br>***<br>0.0000                                                                                                                                                   | 0.9990<br>0.0000<br>***<br>***<br>***<br>0.0000                                                                                                                       | 0.9990 0.0000 *** *** *** 0.0000                                                                                                                         | 0.9990<br>0.0000<br>***<br>***<br>***<br>0.0000                                                                                       | 0.9990<br>0.0000<br>***<br>***<br>***<br>0.0000                                                                                   |
| 37<br>38<br>39<br>40<br>41<br>42<br>43                                                                                                                                                                                                                                  | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000 0.9990 0.0000 *** *** *** 0.0000 0.0000 0.0000 0.0000 0.0010                                                                                                                                         | 0.9990<br>0.0000<br>***<br>***<br>0.0000<br>0.0000                                                                                                                    | 0.9990<br>0.0000<br>***<br>***<br>0.0000<br>0.0010                                                                                                       | 0.9990 0.0000 *** *** 0.0000 0.0000 0.0000                                                                                            | 0.9990<br>0.0000<br>***<br>***<br>0.0000<br>0.0010                                                                                |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                                                                                                                                                                                                                            | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000<br>0.9990<br>                                                                                                                                                                                        | 0.9990<br>0.0000<br>***<br>***<br>0.0000<br>0.0010<br>AQ-NH3 @NH3syn                                                                                                  | 0.9990<br>0.0000<br>***<br>***<br>0.0000<br>0.0000<br>0.0010<br>H2O-VAP @NH3syn                                                                          | 0.9990<br>0.0000<br>***<br>***<br>0.0000<br>0.0010<br>MKUP-H20 @NH3syr                                                                | 0.9990<br>0.0000<br>***<br>***<br>0.0000<br>0.0010<br>NH3-1 @NH3syn                                                               |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45                                                                                                                                                                                                                      | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0000<br>0.9990<br>0.0000<br>***<br>***<br>0.0000<br>0.0010<br>AN-NH3 @NH3syn<br>0.0000                                                                                                                    | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>0.0010<br>AQ-NH3 @NH3syn<br>0.7917                                                                                     | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>0.0010<br>H2O-VAP @NH3syn<br>0.9754                                                                       | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>0.0010<br>MKUP-H2O @NH3syn<br>1.0000 *                                                 | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>NH3-1@NH3syn<br>0.0000                                                             |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                                                                                                                                                                                                                            | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0000<br>0 9990<br>0 0000<br>***<br>0 0000<br>0 0000<br>AN-NH3 @NH3syn<br>0 0000<br>0 0000                                                                                                                 | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>AQ-NH3 @NH3syn<br>0.7917<br>0.0000                                                                                     | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>H2O-VAP @NH3syn<br>0.9754<br>0.0000                                                                       | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>0.0010<br>MKUP-H2O @NH3syr<br>1.0000 *<br>0.0000 *                                     | 0.9990<br>0.0000<br>****<br>0.0000<br>0.0000<br>0.0010<br>NH3-1@NH3syn<br>0.0000<br>0.0000                                        |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46                                                                                                                                                                                                                | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0000<br>0.9990<br>0.0000<br>***<br>***<br>0.0000<br>0.0010<br>AN-NH3 @NH3syn<br>0.0000                                                                                                                    | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>0.0010<br>AQ-NH3 @NH3syn<br>0.7917                                                                                     | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>0.0010<br>H2O-VAP @NH3syn<br>0.9754                                                                       | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>0.0010<br>MKUP-H2O @NH3syn<br>1.0000 *                                                 | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>NH3-1@NH3syn<br>0.0000                                                             |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47                                                                                                                                                                                                          | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0000<br>0 9990<br>0 0000<br>***<br>0 0000<br>0 0000<br>AN-NH3 @NH3syn<br>0 0000<br>0 0000<br>0 0000                                                                                                       | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>AQ-NH3 @NH3syn<br>0.7917<br>0.0000<br>0.0000                                                                           | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>H2O-VAP @NH3syn<br>0.9754<br>0.0000<br>0.0000                                                             | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>MKUP-H2O @NH3syr<br>1.000 *<br>0.0000 *                                                | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>NH3-1 @NH3syn<br>0.0000<br>0.0000<br>0.0003<br>0.0000                              |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48                                                                                                                                                                                                    | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0000<br>0 9990<br>0 0000<br>***<br>0 0000<br>0 0010<br>AN-NH3 @NH3syn<br>0 0000<br>0 0000<br>0 0000<br>0 0000                                                                                             | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>AQ-NH3 @NH3syn<br>0.7917<br>0.0000<br>0.0000<br>0.0000                                                                 | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>H2O-VAP @NH3syn<br>0.9754<br>0.0000<br>0.0000                                                             | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>MKUP-H2O @NH3syr<br>1.0000 *<br>0.0000 *<br>0.0000 *                                   | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>NH3-1@NH3syn<br>NH3-1@NH3syn<br>0.0000<br>0.0003<br>0.0000                         |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49                                                                                                                                                                                              | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CDTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000<br>0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>AN-NH3 @NH3syn<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                   | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>AQ-NH3 @NH3syn<br>0.7917<br>0.0000<br>0.0000<br>0.0000                                                                 | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>H2O-VAP @NH3syn<br>0.9754<br>0.0000<br>0.0000<br>0.0000                                                   | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>MKUP-H2O @NH3syr<br>1.0000 *<br>0.0000 *<br>0.0000 *                                   | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>NH3-1@NH3syn<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                     |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52                                                                                                                                                                            | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0000<br>0 9990<br>0 0000<br>***<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000                                                                                 | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>AQ-NH3 @NH3syn<br>0.7917<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                       | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>H2O-VAP @NH3syn<br>0.9754<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                         | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>MKUP-H2O @NH3syr<br>1.0000 *<br>0.0000 *<br>0.0000 *<br>0.0000 *                       | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>NH3-1@NH3syn<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000           |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53                                                                                                                                                                      | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (OXygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CMRM-A)<br>Comp Mole Frac (CMRM-A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0000<br>0.9990<br>                                                                                                                                                                                        | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>AQ-NH3 @NH3syn<br>0.7917<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                       | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>H2O-VAP @NH3syn<br>0.9754<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                         | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>MKUP-H2O @NH3syr<br>1.0000 *<br>0.0000 *<br>0.0000 *<br>0.0000 *<br>0.0000 *           | 0.9990<br>0.0000<br>                                                                                                              |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54                                                                                                                                                                | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0000<br>0.9990<br>0 0.0000<br>***<br>0 0.0000<br>0 0.0000<br>0 0.0000<br>0 0.0000<br>0 0.0000<br>0 0.0000<br>0 0.0000<br>0 0.0000<br>0 0.0000<br>***                                                      | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>0.0010<br>AQ-NH3 @NH3syn<br>0.7917<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                         | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>H2O-VAP @NH3syn<br>0.9754<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>***                                  | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>0.0010<br>MKUP-H2O @NH3syn<br>1.0000 *<br>0.0000 *<br>0.0000 *<br>0.0000 *<br>0.0000 * | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>NH3-1@NH3syn<br>0.0000<br>0.0003<br>0.0003<br>0.0000<br>0.0000<br>0.0000<br>0.0000 |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53                                                                                                                                                                      | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (OXygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (CO3)<br>Co | 0 0000<br>0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000                     | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>0.0010<br>AQ-NH3 @NH3syn<br>0.7917<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>***<br>*** | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>0.0010<br>H2O-VAP @NH3syn<br>0.9754<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>MKUP-H2O @NH3syr<br>1.0000 *<br>0.0000 *<br>0.0000 *<br>0.0000 *<br>0.0000 *           | 0.9990<br>0.0000<br>                                                                                                              |
| 37         38         39         40           41         42         43         44         45           42         43         44         45         51           52         53         54         55         56           57         56         57         56         57 | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (OXygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (CO3)<br>Co | 0 0000<br>0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000                     | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>0.0010<br>AQ-NH3 @NH3syn<br>0.7917<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>***<br>*** | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>0.0010<br>H2O-VAP @NH3syn<br>0.9754<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>MKUP-H2O @NH3syr<br>1.0000 *<br>0.0000 *<br>0.0000 *<br>0.0000 *<br>0.0000 *           | 0.9990<br>0.0000<br>                                                                                                              |
| 37         38         39         40           41         42         43         44         45           42         43         44         45         51           52         53         54         55         56           57         56         57         56         57 | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (OXygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (CO3)<br>Co | 0 0000<br>0 9990<br>0 0000<br>***<br>0 0000<br>0 0000 | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0000<br>0.0010<br>AQ-NH3 @NH3syn<br>0.7917<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000               | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>H2O-VAP @NH3syn<br>0.9754<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>***<br>***<br>***                    | 0.9990<br>0.0000<br>***<br>0.0000<br>0.0010<br>MKUP-H2O @NH3syr<br>1.0000 *<br>0.0000 *<br>0.0000 *<br>0.0000 *<br>0.0000 *           | 0.9990<br>0.0000<br>                                                                                                              |

| 1                                |                                                          |                      | Case Name:        | Generic HTSE+NH3 PF     | D_v3.00_Therm66_5bar | _U80 (3049 tpd NH3)_re |
|----------------------------------|----------------------------------------------------------|----------------------|-------------------|-------------------------|----------------------|------------------------|
| 2                                | Caspentech Bedford, M                                    | ENERGY ALLIANCE<br>A | Unit Set:         | HTSE PFD                |                      |                        |
| 4                                | USA                                                      |                      | Date/Time:        | Fri Apr 30 14:25:18 202 | 1                    |                        |
| 6                                |                                                          |                      |                   |                         |                      |                        |
| 7<br>8                           | Workbook:                                                | Case (Mai            | n) (continue      | ed)                     |                      |                        |
| 9<br>10                          |                                                          | Co                   | mpositions (conti | inued)                  | Fluid Pkg            | j: All                 |
| 11                               | Name                                                     | NH3-2 @NH3syn        | NH3-LIQ1@NH3syn   | NH3-VAP @NH3syn         | NH3-VAP1 @NH3syn     | NH3-VAP2 @NH3syn       |
| 12                               | Comp Mole Frac (H2O)                                     | 0.0000               | 0.0000            | 0.0000                  | 0.0000 *             | 0.0000                 |
| 13                               | Comp Mole Frac (Hydrogen)                                | 0.0000               | 0.0000            | 0.0001                  | 0.0000 *             | 0.0000                 |
| 14                               | Comp Mole Frac (Oxygen)                                  | 0.0000               | 0.0000            | 0.0000                  | * 0.000.0            | 0.0000                 |
| 15                               | Comp Mole Frac (Nitrogen)                                | 0.0000               | 0.0000            | 0.0001                  | 0.0000 *             | 0.0000                 |
| 16                               | Comp Mole Frac (CO2)                                     | 0.0000               | 0.0000            | 0.0000                  | ***                  | 0.0000                 |
| 17                               | Comp Mole Frac (CO)                                      | ***                  | ***               | ***                     | ***                  | ***                    |
| 19                               | Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66) | ***                  | ***               | ***                     | ***                  | ***                    |
| 20                               | Comp Mole Frac (Ammonia)                                 | 1.0000               | 1.0000            | 0.9998                  | 1.0000 *             | 1.0000                 |
| 21                               | Comp Mole Frac (Argon)                                   | 0.0000               | 0.0000            | 0.0000                  | 0.0000 *             | 0.0000                 |
| 22                               | Name                                                     | NH3-VAP3 @NH3syn     | PROD-1 @NH3syn    | PROD-2 @NH3syn          | PROD-3 @NH3syn       | PURGE @NH3syn          |
| 23                               | Comp Mole Frac (H2O)                                     | 0.0000               | 0.0000            | 0.0000                  | 0.0000               | 0.0045                 |
| 24                               | Comp Mole Frac (Hydrogen)                                | 0.0000               | 0.0109            | 0.0073                  | 0.0103               | 0.7253                 |
| 25                               | Comp Mole Frac (Oxygen)                                  | 0.0000               | 0.0000            | 0.0000                  | 0.0000               | 0.0010                 |
| 26                               | Comp Mole Frac (Nitrogen)                                | 0.0000               | 0.0040            | 0.0027                  | 0.0038               | 0.2692                 |
| 27                               | Comp Mole Frac (CO2)                                     | 0.0000               | 0.0000            | 0.0000                  | 0.0000               | 0.0000                 |
| 28                               | Comp Mole Frac (CO)                                      | ***                  | ***               | ***                     | ***                  | ***                    |
| 29                               | Comp Mole Frac (DTRM-A)                                  | ***                  | ***               | ***                     | ***                  | ***                    |
| 30                               | Comp Mole Frac (Therminol-66)                            | ***                  | ***               | ***                     | ***                  | ***                    |
| 31<br>32                         | Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)       | 1.0000               | 0.9851            | 0.9899<br>0.0000        | 0.9859               | 0.0000                 |
| 33                               | Name                                                     | PURGE-3 @NH3syn      | PURGE-4 @NH3syn   | PURGE-5 @NH3syn         | PURGE-7 @NH3syn      | RECY-1 @NH3syn         |
| 34                               | Comp Mole Frac (H2O)                                     | 0.0000               | 0.0000            | 0.0000                  | 0.0000               | 0.0000                 |
| 35                               | Comp Mole Frac (Hydrogen)                                | 0.2257               | 0.0015            | 0.0015                  | 0.0409               | 0.7674                 |
| 36                               | Comp Mole Frac (Oxygen)                                  | 0.0002               | 0.0000            | 0.0000                  | 0.0001               | 0.0001                 |
| 37                               | Comp Mole Frac (Nitrogen)                                | 0.0819               | 0.0011            | 0.0011                  | 0.0153               | 0.1760                 |
| 38                               | Comp Mole Frac (CO2)                                     | 0.0000               | 0.0000            | 0.0000                  | 0.0000               | 0.0000                 |
| 39                               | Comp Mole Frac (CO)                                      | ***                  | ***               | ***                     | ***                  | ***                    |
| 40                               | Comp Mole Frac (DTRM-A)                                  | ***                  | ***               | ***                     | ***                  | ***                    |
| 41                               | Comp Mole Frac (Therminol-66)                            | ***                  | ***               | ***                     | ***                  | ***                    |
| 42                               | Comp Mole Frac (Ammonia)                                 | 0.6921               | 0.9974            | 0.9974                  | 0.9438               | 0.0565                 |
| 43                               | Comp Mole Frac (Argon)                                   | 0.0000               | 0.0000            | 0.0000                  | 0.0000               | 0.0000                 |
| 44                               | Name                                                     | RECY-2@NH3syn        | RECY-3 @NH3syn    | RECY-4@NH3syn           | RX1-LIQ @NH3syn      | RX1-OUT @NH3syn        |
| 45                               | Comp Mole Frac (H2O)                                     | 0.0000               | 0.0000            | 0.0000 *                | 0.0000               | 0.0000                 |
| 46<br>47                         | Comp Mole Frac (Hydrogen)                                | 0.7674               | 0.7674            | 0.7673 * 0.0001 *       | 0.6833               | 0.6832                 |
| 47                               | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)     | 0.0001               | 0.0001            | 0.0001 *                | 0.0001               | 0.1739                 |
| 49                               | Comp Mole Frac (CO2)                                     | 0.0000               | 0.0000            | 0.0000 *                | 0.0000               | 0.0000                 |
| 50                               | Comp Mole Frac (CO)                                      | ***                  | ***               | ***                     | ***                  | ***                    |
| 51                               | Comp Mole Frac (DTRM-A)                                  | ***                  | ***               | ***                     | ***                  | ***                    |
| 52                               | Comp Mole Frac (Therminol-66)                            | ***                  | ***               | ***                     | ***                  | ***                    |
| 53                               | Comp Mole Frac (Ammonia)                                 | 0.0565               | 0.0565            | 0.0565 *                | 0.1427               | 0.1428                 |
| 54                               | Comp Mole Frac (Argon)                                   | 0.0000               | 0.0000            | 0.0000 *                | 0.000                | 0.0000                 |
| 55<br>56<br>57<br>58<br>59<br>60 |                                                          |                      |                   |                         |                      |                        |
| 62                               |                                                          |                      |                   |                         |                      |                        |
| 63                               | Aspen Technology Inc.                                    | ŀ                    | spen HYSYS Versio | on 10                   |                      | Page 25 of 34          |
|                                  | Licensed to: BATTELLE ENERGY ALLIANCE                    |                      |                   |                         |                      | * Specified by user.   |

| 2                                                              |                                                                                                                                                                                             |                                                           | Case Name:                                         | Generic HTSE+NH3 PF                                          | D_v3.00_Therm66_5bar                               | _U80 (3049 tpd NH3)_re                   |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|------------------------------------------|
| 3                                                              | Caspentech Bedford, M                                                                                                                                                                       | EENERGY ALLIANCE<br>IA                                    | Unit Set:                                          | HTSE PFD                                                     |                                                    |                                          |
| 4<br>5                                                         | USA                                                                                                                                                                                         |                                                           | Date/Time:                                         | Fri Apr 30 14:25:18 202                                      | 21                                                 |                                          |
| 6                                                              |                                                                                                                                                                                             |                                                           |                                                    |                                                              |                                                    |                                          |
| 7<br>8                                                         | Workbook:                                                                                                                                                                                   | Case (Mai                                                 | n) (continue                                       | ed)                                                          |                                                    |                                          |
| 9<br>10                                                        |                                                                                                                                                                                             | Co                                                        | ompositions (conti                                 | inued)                                                       | Fluid Pkg                                          | g: All                                   |
| 11                                                             | Name                                                                                                                                                                                        | RX2-LIQ @NH3syn                                           | RX2-OUT @NH3syn                                    | RX3-LIQ @NH3syn                                              | RX3-OUT @NH3syn                                    | SYN-1@NH3syn                             |
| 12                                                             | Comp Mole Frac (H2O)                                                                                                                                                                        | 0.0000                                                    | 0.0000                                             | 0.0000                                                       | 0.0000                                             | 0.0000                                   |
| 13                                                             | Comp Mole Frac (Hydrogen)                                                                                                                                                                   | 0.6278                                                    | 0.6268                                             | 0.5844                                                       | 0.5843                                             | 0.7500                                   |
| 14                                                             | Comp Mole Frac (Oxygen)                                                                                                                                                                     | 0.0001                                                    | 0.0001                                             | 0.0001                                                       | 0.0001                                             | 0.0000                                   |
| 15                                                             | Comp Mole Frac (Nitrogen)                                                                                                                                                                   | 0.1517                                                    | 0.1513                                             | 0.1344                                                       | 0.1344                                             | 0.2500                                   |
| 16                                                             | Comp Mole Frac (CO2)                                                                                                                                                                        | 0.0000                                                    | 0.0000                                             | 0.0000                                                       | 0.0000                                             | 0.0000                                   |
| 17                                                             | Comp Mole Frac (CO)                                                                                                                                                                         | ***                                                       | ***                                                | ***                                                          | ***                                                | ***                                      |
| 19                                                             | Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66)                                                                                                                                    | ***                                                       | ***                                                | ***                                                          | ***                                                | ***                                      |
| 20                                                             | Comp Mole Frac (Ammonia)                                                                                                                                                                    | 0.2204                                                    | 0.2218                                             | 0.2812                                                       | 0.2813                                             | 0.0000                                   |
| 21                                                             | Comp Mole Frac (Argon)                                                                                                                                                                      | 0.0000                                                    | 0.0000                                             | 0.0000                                                       | 0.0000                                             | 0.0000                                   |
| 22                                                             | Name                                                                                                                                                                                        | SYN-2@NH3syn                                              | SYN-3 @NH3syn                                      | SYN-6 @NH3syn                                                | SYN-7 @NH3syn                                      | SYN-8 @NH3syn                            |
| 23                                                             | Comp Mole Frac (H2O)                                                                                                                                                                        | 0.0000                                                    | 0.0000                                             | 0.0000                                                       | 0.0000                                             | 0.0000                                   |
| 24                                                             | Comp Mole Frac (Hydrogen)                                                                                                                                                                   | 0.7500                                                    | 0.7500                                             | 0.7606                                                       | 0.7606                                             | 0.7606                                   |
| 25                                                             | Comp Mole Frac (Oxygen)                                                                                                                                                                     | 0.0000                                                    | 0.0000                                             | 0.0001                                                       | 0.0001                                             | 0.0001                                   |
| 26                                                             | Comp Mole Frac (Nitrogen)                                                                                                                                                                   | 0.2500                                                    | 0.2500                                             | 0.2048                                                       | 0.2048                                             | 0.2048                                   |
| 27                                                             | Comp Mole Frac (CO2)                                                                                                                                                                        | 0.0000                                                    | 0.0000                                             | 0.0000                                                       | 0.0000                                             | 0.0000                                   |
| 28                                                             | Comp Mole Frac (CO)                                                                                                                                                                         | ***                                                       | ***                                                | ***                                                          | ***                                                | ***                                      |
| 29                                                             | Comp Mole Frac (DTRM-A)                                                                                                                                                                     | ***                                                       | ***                                                | ***                                                          | ***                                                | ***                                      |
| 30                                                             | Comp Mole Frac (Therminol-66)                                                                                                                                                               | ***                                                       | ***                                                | ***                                                          | ***                                                | ***                                      |
| 31<br>32                                                       | Comp Mole Frac (Amonia)                                                                                                                                                                     | 0.0000                                                    | 0.0000                                             | 0.0346                                                       | 0.0346                                             | 0.0346                                   |
| 33                                                             | Comp Mole Frac (Argon)<br>Name                                                                                                                                                              | SYN-9 @NH3syn                                             | SYN-10 @NH3syn                                     | SYN-11 @NH3syn                                               | SYN-12@NH3syn                                      | SYN-13 @NH3syn                           |
| 34                                                             | Comp Mole Frac (H2O)                                                                                                                                                                        | 0.0000                                                    | 0.0000                                             | 0.0000                                                       | 0.0000                                             | 0.0000                                   |
| 35                                                             | Comp Mole Frac (Hydrogen)                                                                                                                                                                   | 0.7606                                                    | 0.6832                                             | 0.6832                                                       | 0.6268                                             | 0.5843                                   |
| 36                                                             | Comp Mole Frac (Oxygen)                                                                                                                                                                     | 0.0001                                                    | 0.0001                                             | 0.0001                                                       | 0.0001                                             | 0.0001                                   |
| 37                                                             | Comp Mole Frac (Nitrogen)                                                                                                                                                                   | 0.2048                                                    | 0.1739                                             | 0.1739                                                       | 0.1513                                             | 0.1344                                   |
| 38                                                             | Comp Mole Frac (CO2)                                                                                                                                                                        | 0.0000                                                    | 0.0000                                             | 0.0000                                                       | 0.000                                              | 0.0000                                   |
| 39                                                             | Comp Mole Frac (CO)                                                                                                                                                                         | ***                                                       | ***                                                | ***                                                          | ***                                                | ***                                      |
| 40                                                             | Comp Mole Frac (DTRM-A)                                                                                                                                                                     | ***                                                       | ***                                                | ***                                                          | ***                                                | ***                                      |
| 41                                                             | Comp Mole Frac (Therminol-66)                                                                                                                                                               | ***                                                       | ***                                                | ***                                                          | ***                                                | ***                                      |
| 42                                                             | Comp Mole Frac (Ammonia)                                                                                                                                                                    | 0.0346                                                    | 0.1428                                             | 0.1428                                                       | 0.2218                                             | 0.2813                                   |
| 43                                                             | Comp Mole Frac (Argon)                                                                                                                                                                      | 0.0000                                                    | 0.0000                                             | 0.0000                                                       | 0.000.0                                            | 0.0000                                   |
| 44                                                             | Name                                                                                                                                                                                        | SYN-14 @NH3syn                                            | SYN-15 @NH3syn                                     | SYN-16 @NH3syn                                               | SYN-17@NH3syn                                      | SYN-18 @NH3syn                           |
| 45                                                             | Comp Mole Frac (H2O)                                                                                                                                                                        | 0.0000                                                    | 0.0000                                             | 0.0000                                                       | 0.0000                                             | 0.0000                                   |
| 10                                                             | Comp Mole Frac (Hydrogon)                                                                                                                                                                   | 0 20/0                                                    |                                                    |                                                              |                                                    | U.7289                                   |
| 46<br>47                                                       | Comp Mole Frac (Hydrogen)                                                                                                                                                                   | 0.5843                                                    | 0.5843                                             | 0.5843                                                       |                                                    | 0.0001                                   |
| 46<br>47<br>48                                                 | Comp Mole Frac (Oxygen)                                                                                                                                                                     | 0.0001                                                    | 0.0001                                             | 0.0001                                                       | 0.0001                                             | 0.0001                                   |
| 47                                                             | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)                                                                                                                                        |                                                           |                                                    |                                                              |                                                    | 0.0001<br>0.1672<br>0.0000               |
| 47<br>48                                                       | Comp Mole Frac (Oxygen)                                                                                                                                                                     | 0.0001<br>0.1344                                          | 0.0001<br>0.1344                                   | 0.0001                                                       | 0.0001                                             | 0.1672                                   |
| 47<br>48<br>49                                                 | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)                                                                                                                | 0.0001<br>0.1344<br>0.0000                                | 0.0001<br>0.1344<br>0.0000                         | 0.0001<br>0.1344<br>0.0000                                   | 0.0001                                             | 0.1672                                   |
| 47<br>48<br>49                                                 | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)                                                                                         | 0.0001<br>0.1344<br>0.0000<br>***                         | 0.0001<br>0.1344<br>0.0000<br>***                  | 0.0001<br>0.1344<br>0.0000<br>***                            | 0.0001<br>0.1672<br>0.0000                         | 0.1672<br>0.0000<br>***                  |
| 47<br>48<br>49<br>50<br>51                                     | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)                                                              | 0.0001<br>0.1344<br>0.0000<br>***                         | 0.0001<br>0.1344<br>0.0000<br>***                  | 0.0001<br>0.1344<br>0.0000<br>***<br>***                     | 0.0001<br>0.1672<br>0.0000<br>***                  | 0.1672<br>0.0000<br>***                  |
| 47<br>48<br>49<br>50<br>51<br>52<br>53<br>54                   | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)                             | 0.0001<br>0.1344<br>0.0000<br>***<br>***                  | 0.0001<br>0.1344<br>0.0000<br>***<br>***           | 0.0001<br>0.1344<br>0.0000<br>***<br>***                     | 0.0001 0.1672 0.0000 *** *** ***                   | 0.1672                                   |
| 47<br>48<br>49<br>50<br>51<br>52<br>53                         | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia) | 0.0001<br>0.1344<br>0.0000<br>***<br>***<br>***<br>0.2813 | 0.0001<br>0.1344<br>0.0000<br>***<br>***<br>0.2813 | 0.0001<br>0.1344<br>0.0000<br>***<br>***<br>***<br>0.2813    | 0.0001<br>0.1672<br>0.0000<br>***<br>***<br>0.1038 | 0.1672                                   |
| 47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57 | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia) | 0.0001<br>0.1344<br>0.0000<br>***<br>***<br>***<br>0.2813 | 0.0001<br>0.1344<br>0.0000<br>***<br>***<br>0.2813 | 0.0001<br>0.1344<br>0.0000<br>***<br>***<br>***<br>0.2813    | 0.0001<br>0.1672<br>0.0000<br>***<br>***<br>0.1038 | 0.1672<br>0.0000<br>***<br>***<br>0.1038 |
| 47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57 | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia) | 0.0001 0.1344 0.0000 *** *** 0.2813 0.0000                | 0.0001<br>0.1344<br>0.0000<br>***<br>***<br>0.2813 | 0.0001<br>0.1344<br>0.0000<br>***<br>***<br>0.2813<br>0.0000 | 0.0001<br>0.1672<br>0.0000<br>***<br>***<br>0.1038 | 0.1672<br>0.0000<br>***<br>***<br>0.1038 |

| 1                                      |                                                          |                       | Case Name:            | ase Name: Generic HTSE+NH3 PFD_v3.00_Therm66_5bar_U80 (3049 tpd NH3)_r |                  |                                       |  |  |
|----------------------------------------|----------------------------------------------------------|-----------------------|-----------------------|------------------------------------------------------------------------|------------------|---------------------------------------|--|--|
| 2<br>3                                 | Caspentech Battelle Bedford, M                           | ENERGY ALLIANCE<br>A  | Unit Set:             | HTSE PFD                                                               |                  |                                       |  |  |
| 4<br>5                                 | USA                                                      |                       | Date/Time:            | Fri Apr 30 14:25:18 202                                                | 1                |                                       |  |  |
| 6                                      |                                                          |                       |                       |                                                                        |                  |                                       |  |  |
| 7<br>8                                 | Workbook:                                                | Case (Maii            | n) (continue          | d)                                                                     |                  |                                       |  |  |
| 9                                      |                                                          | Co                    | mpositions (conti     | pued)                                                                  | Fluid Pkg        | x: All                                |  |  |
| 10<br>11                               | Name                                                     | SYN-IN @NH3syn        | VENT-1 @NH3syn        | VENT-2 @NH3syn                                                         | WATER-1@NH3syn   | WATER-2 @NH3syn                       |  |  |
| 12                                     | Comp Mole Frac (H2O)                                     | 0.0000                | 0.0000                | 0.0000 *                                                               | 1.0000           | 0.9960                                |  |  |
| 13                                     | Comp Mole Frac (Hydrogen)                                | 0.7500                | 0.0413                | 0.0412 *                                                               | 0.0000           | 0.0000                                |  |  |
| 14                                     | Comp Mole Frac (Oxygen)                                  | 0.0000                | 0.0002                | 0.0002 *                                                               | 0.000            | 0.0000                                |  |  |
| 15                                     | Comp Mole Frac (Nitrogen)                                | 0.2500                | 0.0685                | 0.0685 *                                                               | 0.000            | 0.0000                                |  |  |
| 16                                     | Comp Mole Frac (CO2)                                     | 0.0000                | 0.0000                | 0.0000 *                                                               | 0.0000           | 0.0000                                |  |  |
| 17                                     | Comp Mole Frac (CO)                                      | ***                   | ***                   | ***                                                                    | ***              | ***                                   |  |  |
| 18                                     | Comp Mole Frac (DTRM-A)                                  | ***                   | ***                   | ***                                                                    | ***              | ***                                   |  |  |
| 19                                     | Comp Mole Frac (Therminol-66)                            | ***                   | ***                   | ***                                                                    | ***              | ***                                   |  |  |
| 20                                     | Comp Mole Frac (Ammonia)                                 | 0.0000                | 0.8900                | 0.8900 *                                                               | 0.000            | 0.0040                                |  |  |
| 21                                     | Comp Mole Frac (Argon)                                   | 0.0000                | 0.0000                | 0.0000 *                                                               | 0.0000           | 0.0000                                |  |  |
| 22                                     | Name                                                     | WATER-3@NH3syn        | WATER-4 @NH3syn       | WATER-5 @NH3syn                                                        | WATER-6A @NH3syr | WATER-6B @NH3syr                      |  |  |
| 23                                     | Comp Mole Frac (H2O)                                     | 0.9960                | 0.9960                | 0.9960                                                                 | 1.0000 *         | 0.9960                                |  |  |
| 24                                     | Comp Mole Frac (Hydrogen)                                | 0.0000                | 0.0000                | 0.0000                                                                 | * 0.000.0        | 0.0000                                |  |  |
| 25                                     | Comp Mole Frac (Oxygen)                                  | 0.0000                | 0.0000                | 0.0000                                                                 | * 0.000.0        | 0.0000                                |  |  |
| 26                                     | Comp Mole Frac (Nitrogen)                                | 0.0000                | 0.0000                | 0.0000                                                                 | * 0.000 *        | 0.0000                                |  |  |
| 27                                     | Comp Mole Frac (CO2)                                     | 0.0000                | 0.0000                | 0.0000                                                                 | * 0.000 *        | 0.0000                                |  |  |
| 28                                     | Comp Mole Frac (CO)                                      | ***                   | ***                   | ***                                                                    | ***              | ***                                   |  |  |
| 29                                     | Comp Mole Frac (DTRM-A)                                  | ***                   | ***                   | ***                                                                    | ***              | ***                                   |  |  |
| 30                                     | Comp Mole Frac (Therminol-66)                            | ***                   | ***                   | ***                                                                    | ***              | ***                                   |  |  |
| 31                                     | Comp Mole Frac (Ammonia)                                 | 0.0040                | 0.0040                | 0.0040                                                                 | 0.0000 *         | 0.0040                                |  |  |
| 32                                     | Comp Mole Frac (Argon)                                   | 0.0000                | 0.0000                | 0.0000                                                                 | * 0.000.0        | 0.000                                 |  |  |
| 33                                     | Name                                                     | 151 HTE feedwater (li | 152 HTE feed water (v | 201@NPP                                                                | 202 @NPP         | 202 Process Heat Sup                  |  |  |
| 34                                     | Comp Mole Frac (H2O)                                     | 0.9997                | 0.9997                | ***                                                                    | ***              | ***                                   |  |  |
| 30                                     | Comp Mole Frac (Hydrogen)                                | 0.0003                | 0.0003                | ***                                                                    | ***              | ***                                   |  |  |
| 36<br>37                               | Comp Mole Frac (Oxygen)                                  | 0.0000                | 0.0000                | ***                                                                    | ***              | ***                                   |  |  |
| 38                                     | Comp Mole Frac (Nitrogen)                                | 0.0000                | 0.0000                | ***                                                                    | ***              | ***                                   |  |  |
| 39                                     | Comp Mole Frac (CO2)                                     | 0.0000                | 0.0000                | ***                                                                    | ***              | ***                                   |  |  |
| 40                                     | Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)           | 0.0000                | 0.0000                | ***                                                                    | ***              | ***                                   |  |  |
| 40                                     | Comp Mole Frac (DFRM-A)<br>Comp Mole Frac (Therminol-66) | ***                   | ***                   | 1.0000                                                                 | 1.0000           | 1.0000                                |  |  |
| 42                                     | Comp Mole Frac (Ammonia)                                 | ***                   | ***                   | ***                                                                    | ***              | ***                                   |  |  |
| 43                                     | Comp Mole Frac (Argon)                                   | ***                   | ***                   | ***                                                                    | ***              | ***                                   |  |  |
| 44                                     | Name                                                     | 203 @NPP              | 203 Process Heat Ret  | 204 @NPP                                                               | 205 @NPP         | 206 @NPP                              |  |  |
| 45                                     | Comp Mole Frac (H2O)                                     | ***                   | 20011000000110001100  | ***                                                                    | ***              | 200 (@1111                            |  |  |
| 46                                     | Comp Mole Frac (Hydrogen)                                | ***                   | ***                   | ***                                                                    | ***              | ***                                   |  |  |
| 47                                     | Comp Mole Frac (Oxygen)                                  | ***                   | ***                   | ***                                                                    | ***              | ***                                   |  |  |
| 48                                     | Comp Mole Frac (Nitrogen)                                | ***                   | ***                   | ***                                                                    | ***              | ***                                   |  |  |
| 49                                     | Comp Mole Frac (CO2)                                     | ***                   | ***                   | ***                                                                    | ***              | ***                                   |  |  |
| 50                                     | Comp Mole Frac (CO)                                      | ***                   | ***                   | ***                                                                    | ***              | ***                                   |  |  |
| 51                                     | Comp Mole Frac (DTRM-A)                                  | ***                   | ***                   | ***                                                                    | ***              | ***                                   |  |  |
| 52                                     | Comp Mole Frac (Therminol-66)                            | 1.0000                | 1.0000                | 1.0000                                                                 | 1.0000           | 1.0000                                |  |  |
| 53                                     | Comp Mole Frac (Ammonia)                                 | ***                   | ***                   | ***                                                                    | ***              | ***                                   |  |  |
| 54                                     | Comp Mole Frac (Argon)                                   | ***                   | ***                   | ***                                                                    | ***              | ***                                   |  |  |
| 54<br>55<br>56<br>57<br>58<br>59<br>60 |                                                          | ***                   | ***                   | ***                                                                    | ***              | *                                     |  |  |
| 61<br>62<br>63                         | Aspen Technology Inc.                                    | A                     | spen HYSYS Versio     | in 10                                                                  |                  | Page 27 of 34<br>* Specified by user. |  |  |

| 1                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                             | Case Name:                                                                                                                                                                         | Generic HTSE+NH3 PFI                                                               | D_v3.00_Therm66_5bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _U80 (3049 tpd NH3)_re                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 2                                                                                                                                                                                                                                                                                                             | ( aspentech Bedford, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EENERGY ALLIANCE<br>IA                                                                                      | Unit Set:                                                                                                                                                                          | HTSE PFD                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
| 4                                                                                                                                                                                                                                                                                                             | USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                             | Date/Time:                                                                                                                                                                         | Fri Apr 30 14:25:18 2021                                                           | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
| 6                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                             |                                                                                                                                                                                    |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
| 7<br>8                                                                                                                                                                                                                                                                                                        | Workbook:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Case (Mai                                                                                                   | n) (continue                                                                                                                                                                       | d)                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
| 9                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cr                                                                                                          | mpositions (conti                                                                                                                                                                  | nued)                                                                              | Fluid Pkg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c All                                                                                                           |
| 10<br>11                                                                                                                                                                                                                                                                                                      | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 207 @NPP                                                                                                    | 701 Steam Out @NPF                                                                                                                                                                 | 702 To Rankine Cycle                                                               | 703 Turbine Exhaust (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 711 SEL Inlet @NPP                                                                                              |
| 12                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 201 @NFF                                                                                                    | 1.0000                                                                                                                                                                             | 1.0000                                                                             | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                          |
| 13                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 14                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 15                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 16                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 17<br>18                                                                                                                                                                                                                                                                                                      | Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 19                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0000 *                                                                                                    | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 20                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 21                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 22                                                                                                                                                                                                                                                                                                            | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 712 @NPP                                                                                                    | 713 SEL Condensate                                                                                                                                                                 | 721 NPP Condensate                                                                 | 722 @NPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 723 @NPP                                                                                                        |
| 23                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0000                                                                                                      | 1.0000                                                                                                                                                                             | 1.0000                                                                             | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                          |
| 24                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 25                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 26                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 27                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 29                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 30                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 31                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 32                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 33                                                                                                                                                                                                                                                                                                            | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 724 @NPP                                                                                                    | 725 @NPP                                                                                                                                                                           | 726 Heated Feedwate                                                                | 101 @NPP-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 102 @NPP-2                                                                                                      |
| 34                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0000                                                                                                      | 1.0000                                                                                                                                                                             | 1.0000 *                                                                           | 1.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0000                                                                                                          |
| 35                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
|                                                                                                                                                                                                                                                                                                               | Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                             |                                                                                                                                                                                    |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
| 36                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 37                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |                                                                                                                                                                                    | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 36<br>37<br>38<br>39                                                                                                                                                                                                                                                                                          | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 37<br>38                                                                                                                                                                                                                                                                                                      | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***                                                                                                         | ***                                                                                                                                                                                | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 37<br>38<br>39                                                                                                                                                                                                                                                                                                | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***                                                                                                         | ***<br>***<br>***<br>***                                                                                                                                                           | ***                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                             |
| 37<br>38<br>39<br>40                                                                                                                                                                                                                                                                                          | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CDTRM-A)                                                                                                                                                                                                                                                                                                                                                                                                                        | ***<br>***<br>***<br>***                                                                                    | ***<br>***<br>***<br>***<br>***                                                                                                                                                    | ***                                                                                | ***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ***<br>***<br>***                                                                                               |
| 37<br>38<br>39<br>40<br>41<br>42<br>43                                                                                                                                                                                                                                                                        | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)                                                                                                                                                                                                                                                                                                                                                                                        | ***                                                                                                         | ***<br>***<br>***<br>***<br>***<br>***<br>***                                                                                                                                      | ***<br>***<br>***<br>***<br>***<br>***                                             | ***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***<br>***<br>***<br>***<br>***                                                                                 |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                                                                                                                                                                                                                                                                  | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name                                                                                                                                                                                                                                                                                                                                | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>103 @NPP-2                                                 | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>**                                                                                                                  | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>104@NPP-2                         | *** *** *** *** *** *** *** 107@NPP-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***<br>***<br>***<br>***<br>***<br>***<br>107a @NPP-2                                                           |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45                                                                                                                                                                                                                                                            | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                        | ****<br>****<br>****<br>****<br>****<br>103@NPP-2<br>1.0000                                                 | ***<br>***<br>***<br>***<br>***<br>***<br>103a @NPP-2<br>1.0000                                                                                                                    | ***<br>***<br>***<br>***<br>***<br>***<br>104@NPP-2<br>1.0000                      | ***<br>***<br>***<br>***<br>***<br>107@NPP-2<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ***<br>***<br>***<br>***<br>***<br>107a @NPP-2<br>1.0000                                                        |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>43<br>44<br>45<br>46                                                                                                                                                                                                                                                | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                           | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>103 @NPP-2                                                 | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>**                                                                                                                  | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>104@NPP-2                         | *** *** *** *** *** *** *** 107@NPP-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***<br>***<br>***<br>***<br>***<br>***<br>107a @NPP-2                                                           |
| <ol> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> </ol>                                                                                                                                                                | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CDTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                               | ****<br>****<br>****<br>****<br>****<br>103 @NPP-2<br>1.0000<br>***                                         | ***<br>***<br>***<br>***<br>***<br>103a @NPP-2<br>1.0000<br>***                                                                                                                    | ***<br>***<br>***<br>***<br>104 @NPP-2<br>1 0000                                   | ***<br>***<br>***<br>***<br>107@NPP-2<br>1.0000<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ***<br>***<br>***<br>***<br>107a @NPP-2<br>1.0000<br>***                                                        |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>43<br>44<br>45<br>46                                                                                                                                                                                                                                                | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CD TRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)                                                                                                                                                                                                                  | ****<br>****<br>****<br>****<br>****<br>103 @NPP-2<br>1.0000<br>***                                         | ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** | ***<br>***<br>***<br>***<br>***<br>104 @NPP-2<br>1.0000<br>***                     | ***<br>***<br>***<br>***<br>***<br>***<br>107@NPP-2<br>1.0000<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ***<br>***<br>***<br>***<br>***<br>107a @NPP-2<br>1.0000<br>***<br>***                                          |
| <ul> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> </ul>                                                                                                                                                    | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CDTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                               | ****<br>****<br>****<br>****<br>103 @NPP-2<br>1 0000<br>****<br>***                                         | ***                                                                                                                                                                                | ***<br>***<br>***<br>***<br>***<br>104 @NPP-2<br>1.0000<br>***<br>***              | ***<br>***<br>***<br>***<br>***<br>107@NPP-2<br>1.0000<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ***<br>***<br>***<br>***<br>***<br>107a @NPP-2<br>1.0000<br>***<br>***                                          |
| <ol> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> </ol>                                                                                                                                        | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (Nitrogen)                                                                                                                                                                       | ****<br>****<br>****<br>****<br>****<br>103 @NPP-2<br>1.0000<br>****<br>****                                | ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***                                                                            | ***<br>***<br>***<br>***<br>***<br>104@NPP-2<br>1.0000<br>***<br>***<br>***        | ***<br>***<br>***<br>***<br>***<br>***<br>107@NPP-2<br>1.0000<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***<br>***<br>***<br>***<br>107a @NPP-2<br>1.0000<br>***<br>***                                                 |
| <ol> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> </ol>                                                                                                    | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armronia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)                                                                                                                                                                   | ****<br>****<br>****<br>****<br>103 @NPP-2<br>1.0000<br>***<br>***<br>***                                   | ***                                                                                                                                                                                | ***<br>***<br>***<br>***<br>***<br>104@NPP-2<br>1.0000<br>***<br>***<br>***<br>*** | ***<br>***<br>***<br>***<br>***<br>***<br>107@NPP-2<br>1.0000<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***<br>***<br>***<br>***<br>***<br>107a @NPP-2<br>1.000<br>***<br>***<br>***<br>***                             |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52                                                                                                         | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia) | ****<br>****<br>****<br>****<br>****<br>103@NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****<br>**** | ***                                                                                                                                                                                | ***  ***  ***  ***  ***  ***  104@NPP-2  10000  ***  ***  ***  ***  ***  ***       | ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** | ***  ***  ***  ***  107a @NPP-2  1.0000  ***  ***  ***  ***  ***  ***                                           |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53                                                                                            | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)                                                                     | ****<br>****<br>****<br>****<br>****<br>103@NPP-2<br>1.0000<br>****<br>****<br>****<br>****                 | ***                                                                                                                                                                                | ***                                                                                | ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***                                                                                                                                                                                                                                       | ***<br>***<br>***<br>***<br>***<br>107a @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***                     |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54                                                                               | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia) | ****<br>****<br>****<br>****<br>****<br>103@NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****<br>**** | ***                                                                                                                                                                                | ***  ***  ***  ***  ***  ***  104@NPP-2  10000  ***  ***  ***  ***  ***  ***       | ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** | ***  ***  ***  ***  107a @NPP-2  1.0000  ***  ***  ***  ***  ***  ***                                           |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55                                                                  | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia) | ****<br>****<br>****<br>****<br>****<br>103@NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****<br>**** | ***                                                                                                                                                                                | ***  ***  ***  ***  ***  ***  104@NPP-2  10000  ***  ***  ***  ***  ***  ***       | ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** | ***  ***  ***  ***  107a @NPP-2  1.0000  ***  ***  ***  ***  ***  ***                                           |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56                                                     | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia) | ****<br>****<br>****<br>****<br>****<br>103@NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****<br>**** | ***                                                                                                                                                                                | ***  ***  ***  ***  ***  ***  104@NPP-2  10000  ***  ***  ***  ***  ***  ***       | ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** | ***  ***  ***  ***  107a @NPP-2  1.0000  ***  ***  ***  ***  ***  ***                                           |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55                                                                  | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia) | ****<br>****<br>****<br>****<br>****<br>103@NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****<br>**** | ***                                                                                                                                                                                | ***  ***  ***  ***  ***  ***  104@NPP-2  10000  ***  ***  ***  ***  ***  ***       | ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** | ***  ***  ***  ***  107a @NPP-2  1.0000  ***  ***  ***  ***  ***  ***                                           |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56                                                     | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia) | ****<br>****<br>****<br>****<br>****<br>103@NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****<br>**** | ***                                                                                                                                                                                | ***  ***  ***  ***  ***  ***  104@NPP-2  10000  ***  ***  ***  ***  ***  ***       | ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** | ***  ***  ***  ***  107a @NPP-2  1.0000  ***  ***  ***  ***  ***  ***                                           |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57           58                           | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia) | ****<br>****<br>****<br>****<br>****<br>103@NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****<br>**** | ***                                                                                                                                                                                | ***  ***  ***  ***  ***  ***  104@NPP-2  10000  ***  ***  ***  ***  ***  ***       | ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** | ***  ***  ***  ***  107a @NPP-2  1.0000  ***  ***  ***  ***  ***  ***                                           |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57           58           59           60 | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CDTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO1<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (Argon)                                                        |                                                                                                             | ***                                                                                                                                                                                | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>***                               | ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** | ***<br>***<br>***<br>***<br>107a @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***<br>***<br>***              |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57           58           59           60 | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia) |                                                                                                             | ***                                                                                                                                                                                | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>***                               | ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** | ****<br>****<br>****<br>****<br>****<br>107a @NPP-2<br>1.0000<br>****<br>1.0000<br>****<br>****<br>****<br>**** |

| H                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                          | Case Name:                                                                   | Generic HTSE+NH3 PF                                             | D_v3.00_Therm66_5bar                                            | _U80 (3049 tpd NH3)_re                                          |  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|--|
| 2                                                                                | ( aspentech Bedford, M                                                                                                                                                                                                                                                                                      | ENERGY ALLIANCE                                                                          | Unit Set:                                                                    | HTSE PFD                                                        |                                                                 |                                                                 |  |
| 4                                                                                | USA                                                                                                                                                                                                                                                                                                         |                                                                                          | Date/Time:                                                                   | Fri Apr 30 14:25:18 202                                         | 21                                                              |                                                                 |  |
| 5<br>6                                                                           |                                                                                                                                                                                                                                                                                                             |                                                                                          |                                                                              |                                                                 |                                                                 |                                                                 |  |
| 7                                                                                | Workbook                                                                                                                                                                                                                                                                                                    | Case (Mai                                                                                | n) (continue                                                                 | ed)                                                             |                                                                 |                                                                 |  |
| 8<br>9                                                                           |                                                                                                                                                                                                                                                                                                             |                                                                                          | -4- 4 4                                                                      | . n                                                             |                                                                 |                                                                 |  |
| 10                                                                               |                                                                                                                                                                                                                                                                                                             |                                                                                          | mpositions (cont                                                             | ,                                                               | Fluid Pkg                                                       | -                                                               |  |
| 11                                                                               | Name                                                                                                                                                                                                                                                                                                        | 108 (F) @NPP-2                                                                           | 110 @NPP-2                                                                   | 111@NPP-2                                                       | 112@NPP-2                                                       | 112a @NPP-2                                                     |  |
| 12<br>13                                                                         | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                        | 1.0000                                                                                   | 1.0000                                                                       | 1.0000                                                          | 1.0000                                                          | 1.0000                                                          |  |
| 14                                                                               | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                        | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 15                                                                               | Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                   | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 16                                                                               | Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                        | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 17                                                                               | Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                         | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 18                                                                               | Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                     | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 19                                                                               | Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                               | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 20                                                                               | Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                    | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 21                                                                               | Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                      | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 22                                                                               | Name                                                                                                                                                                                                                                                                                                        | 114 @NPP-2                                                                               | 115 @NPP-2                                                                   | 120@NPP-2                                                       | 121 @NPP-2                                                      | 122 (H) @NPP-2                                                  |  |
| 23<br>24                                                                         | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                        | 1.0000                                                                                   | 1.0000                                                                       | 1.0000                                                          | 1.0000                                                          | 1.0000                                                          |  |
| 24                                                                               | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                        | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 26                                                                               | Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                   | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 27                                                                               | Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                        | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 28                                                                               | Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                         | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 29                                                                               | Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                     | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 30                                                                               | Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                               | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 31                                                                               | Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                    | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 32                                                                               | Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                      | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 33                                                                               | Name                                                                                                                                                                                                                                                                                                        | 122a @NPP-2                                                                              | 122a-L @NPP-2                                                                | 123@NPP-2                                                       | 124 @NPP-2                                                      | 125 @NPP-2                                                      |  |
| 34                                                                               | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                        | 1.0000                                                                                   | 1.0000                                                                       | 1.0000                                                          | 1.0000                                                          | 1.0000                                                          |  |
| 35                                                                               | Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                   | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 36                                                                               | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                        | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 38                                                                               | Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                        | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 39                                                                               | Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                         | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 40                                                                               | Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                     | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 41                                                                               |                                                                                                                                                                                                                                                                                                             |                                                                                          |                                                                              |                                                                 |                                                                 |                                                                 |  |
| 42                                                                               | Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                               | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
|                                                                                  | Comp Mole Frac (Therminol-66)<br>Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                   | ***                                                                                      | ***                                                                          | ***                                                             | ***                                                             | ***                                                             |  |
| 43                                                                               |                                                                                                                                                                                                                                                                                                             |                                                                                          |                                                                              |                                                                 |                                                                 |                                                                 |  |
| 44                                                                               | Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name                                                                                                                                                                                                                                                  | ***                                                                                      | ***<br>***<br>127 @NPP-2                                                     | ***                                                             | ***                                                             | ***                                                             |  |
| 44<br>45                                                                         | Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)                                                                                                                                                                                                                          | ***<br>***<br>126 (E) @NPP-2<br>1.0000                                                   | ***<br>***<br>127 @NPP-2<br>1.0000                                           | ****<br>128@NPP-2<br>1.0000                                     | ***<br>***<br>128a @NPP-2<br>1.0000                             | ***<br>***<br>130 @NPP-2<br>1.0000                              |  |
| 44<br>45<br>46                                                                   | Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)                                                                                                                                                                                             | ***<br>126 (E) @NPP-2<br>1.0000<br>***                                                   | ***<br>127 @NPP-2<br>1.0000<br>***                                           | ****<br>128@NPP-2<br>1.0000<br>****                             | ***<br>128a @NPP-2<br>1.0000<br>***                             | ***<br>130 @NPP-2<br>1.0000<br>***                              |  |
| 44<br>45<br>46<br>47                                                             | Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)                                                                                                                                                                  | ***<br>***<br>126 (E) @NPP-2<br>1.0000                                                   | ***<br>***<br>127 @NPP-2<br>1.0000                                           | ****<br>128@NPP-2<br>1.0000                                     | ***<br>***<br>128a @NPP-2<br>1.0000                             | ***<br>***<br>130 @NPP-2<br>1.0000                              |  |
| 44<br>45<br>46<br>47<br>48                                                       | Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)                                                                                                                                     | ***<br>***<br>126 (E) @NPP-2<br>1.0000<br>***<br>***                                     | ***<br>***<br>127 @NPP-2<br>1.0000<br>***<br>***                             | ****<br>****<br>128@NPP-2<br>1.0000<br>****<br>***              | ***<br>***<br>128a @NPP-2<br>1.0000<br>***<br>***               | ***<br>***<br>130 @NPP-2<br>1.0000<br>***<br>***                |  |
| 44<br>45<br>46<br>47                                                             | Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)                                                                                                             | ***<br>126 (E) @NPP-2<br>1.0000<br>***<br>***                                            | ***<br>127 @NPP-2<br>1.0000<br>***<br>***                                    | ****<br>128 @NPP-2<br>1.0000<br>***<br>***                      | ***<br>***<br>128a @NPP-2<br>1.0000<br>***<br>***<br>***        | ***<br>130 @NPP-2<br>1.0000<br>***<br>***                       |  |
| 44<br>45<br>46<br>47<br>48<br>49                                                 | Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)                                                                                                                   | ****<br>126 (E) @NPP-2<br>1.0000<br>****<br>***<br>***                                   | ***<br>***<br>127 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***               | ****<br>128 @NPP-2<br>1.0000<br>****<br>****<br>****            | ***<br>***<br>128a @NPP-2<br>1.0000<br>***<br>***<br>***<br>*** | ****<br>130 @NPP-2<br>1.0000<br>****<br>***<br>***              |  |
| 44<br>45<br>46<br>47<br>48<br>49<br>50                                           | Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)                                                                                                             | ****<br>126 (E) @NPP-2<br>1.0000<br>***<br>***<br>***<br>***                             | ***<br>***<br>127 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***               | ****<br>128 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****    | **** 128a@NPP-2 1.0000 *** *** *** *** *** *** *** ***          | ****<br>130 @NPP-2<br>1.0000<br>****<br>***<br>***<br>***       |  |
| 44<br>45<br>46<br>47<br>48<br>49<br>50<br>51                                     | Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)                                                                                       | ****<br>126 (E) @NPP-2<br>1.0000<br>****<br>****<br>****<br>****                         | ***<br>***<br>127 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***<br>*** | ****<br>128 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>*** | **** 128a@NPP-2 1.0000 *** *** *** *** *** *** *** *** **       | ****<br>130 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>*** |  |
| 44<br>45<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54                         | Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)                                                 | ****<br>126 (E) @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****<br>****<br>**** | ***<br>127 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***<br>***<br>*** | **** 128@NPP-2 1.0000 **** **** **** **** **** **** **          | **** **** 128a@NPP-2 1.0000 **** **** **** **** **** **** **    | **** **** 130 @NPP-2 1.0000 **** **** **** **** **** **** **    |  |
| 44<br>45<br>47<br>48<br>49<br>50<br>51<br>52<br>53                               | Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66)<br>Comp Mole Frac (Ammonia) | ****<br>126 (E) @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****<br>****<br>**   | ***  127 @NPP-2  1.0000  ***                                                 | **** 128 @NPP-2 1.0000 **** *** **** **** **** **** ***         | **** **** 128a@NPP-2 1.0000 **** **** **** **** **** **** **    | **** **** 130 @NPP-2 1.0000 **** **** **** **** **** **** **    |  |
| 44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57 | Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66)<br>Comp Mole Frac (Ammonia) | ****<br>126 (E) @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****<br>****<br>**   | ***  127 @NPP-2  1.0000  ***                                                 | **** 128 @NPP-2 1.0000 **** *** **** **** **** **** ***         | **** **** 128a@NPP-2 1.0000 **** **** **** **** **** **** **    | **** 130 @NPP-2 1.0000 **** *** *** *** *** *** *** *** *       |  |
| 44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57 | Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66)<br>Comp Mole Frac (Ammonia) | **** 128 (E) @NPP-2 1.0000 ****                                                          | ***  127 @NPP-2  1.0000  ***                                                 | **** 128@NPP-2 1.0000 *** *** *** *** *** *** *** *** **        | **** **** 128a@NPP-2 1.0000 **** **** **** **** **** **** **    | **** 130 @NPP-2 1.0000 **** **** **** **** **** **** **         |  |

| 1                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Case Name:                                                                                        | Generic HTSE+NH3 PF                                                              | D_v3.00_Therm66_5bar                                                                                                                            | U80 (3049 tpd NH3) re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3                                                                                                                                                                                                                                                                                                        | ( aspentech Battelle Bedford, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ENERGY ALLIANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit Set:                                                                                         | HTSE PFD                                                                         |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                                                                                                                                                                                                                                                                                             | USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date/Time:                                                                                        | Fri Apr 30 14:25:18 202                                                          | 1                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5<br>6                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date/Time.                                                                                        | 111 Apr 30 14.23.10 202                                                          | .1                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                                                                                                                                                                                                                                                                                                             | Workbook:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Case (Mai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n) (continue                                                                                      | ed)                                                                              |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8<br>9                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ··· / /                                                                                           |                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mpositions (cont                                                                                  | ,                                                                                | Fluid Pkg                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11                                                                                                                                                                                                                                                                                                            | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 131 @NPP-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 132 @NPP-2                                                                                        | 132a (RP) @NPP-2                                                                 | 132a-L (RP-L) @NPP-                                                                                                                             | 134 @NPP-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0000                                                                                            | 1.0000                                                                           | 1.0000                                                                                                                                          | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 17                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 19                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 21                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ###                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22                                                                                                                                                                                                                                                                                                            | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 135@NPP-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140 @NPP-2                                                                                        | 141@NPP-2                                                                        | 142@NPP-2                                                                                                                                       | 142a (SO) @NPP-2<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 23                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0000                                                                                            | 1.0000                                                                           | 1.0000                                                                                                                                          | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 26                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 27                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 28                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 29                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 30                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 31                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 32                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 33                                                                                                                                                                                                                                                                                                            | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 142a-L (SO-L) @NPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 144 @NPP-2<br>1.0000                                                                              | 145@NPP-2                                                                        | 146 @NPP-2                                                                                                                                      | 150 @NPP-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 34                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   | 1.0000                                                                           | 1.0000                                                                                                                                          | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 26                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                   |                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 35<br>36                                                                                                                                                                                                                                                                                                      | Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 35<br>36<br>37                                                                                                                                                                                                                                                                                                | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 35<br>36<br>37<br>38                                                                                                                                                                                                                                                                                          | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 35<br>36<br>37<br>38<br>39                                                                                                                                                                                                                                                                                    | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | ***                                                                              | ***                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 37<br>38                                                                                                                                                                                                                                                                                                      | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ****<br>****<br>****<br>***                                                                       | ***<br>***<br>***                                                                | ***                                                                                                                                             | ***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 37<br>38<br>39                                                                                                                                                                                                                                                                                                | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ***<br>***<br>***<br>***                                                                          | ***<br>***<br>***<br>***                                                         | ***<br>***<br>***<br>***                                                                                                                        | ***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 37<br>38<br>39<br>40<br>41<br>42                                                                                                                                                                                                                                                                              | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (OTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                                   | ***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***<br>***<br>***<br>***<br>***<br>***                                                            | ***<br>***<br>***<br>***<br>***                                                  | 888<br>899<br>895<br>895<br>895<br>895<br>895<br>895<br>895<br>895                                                                              | ***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37<br>38<br>39<br>40<br>41<br>42<br>43                                                                                                                                                                                                                                                                        | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO7<br>Comp Mole Frac (CO TRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                                                             | ***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***<br>***<br>***<br>***<br>***<br>***<br>***                                                     | ***<br>***<br>***<br>***<br>***<br>***<br>***                                    | ***<br>***<br>***<br>***<br>***<br>***<br>***                                                                                                   | ***<br>***<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                                                                                                                                                                                                                                                                  | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO7)<br>Comp Mole Frac (CDTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name                                                                                                                                                                                                                                                                                                                     | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>151 @NPP-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>152 @NPP-2                                       | ****<br>****<br>****<br>****<br>****<br>180 @NPP-2                               | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>181 @NPP-2                                                                              | ***<br>***<br>***<br>***<br>***<br>***<br>162 @NPP-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45                                                                                                                                                                                                                                                            | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                               | ***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***<br>***<br>***<br>***<br>***<br>***<br>***                                                     | ***<br>***<br>***<br>***<br>***<br>***<br>***                                    | ***<br>***<br>***<br>***<br>***<br>***<br>***                                                                                                   | ***<br>***<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46                                                                                                                                                                                                                                                      | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                  | ****<br>****<br>****<br>****<br>****<br>151@NPP-2<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***<br>***<br>***<br>***<br>***<br>***<br>152 @NPP-2<br>1.0000                                    | 160 @NPP-2<br>1.0000                                                             | ***  ***  ***  ***  ***  ***  ***  ***  ***  181@NPP-2  1.0000                                                                                  | ****<br>****<br>****<br>****<br>****<br>182 @NPP-2<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45                                                                                                                                                                                                                                                            | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CDTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armmonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                   | ****<br>****<br>****<br>****<br>****<br>151@NPP-2<br>1.0000<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***<br>***<br>***<br>***<br>***<br>***<br>152 @NPP-2<br>1.0000<br>***                             | ****<br>****<br>****<br>****<br>****<br>160 @NPP-2<br>1.0000<br>****             | ***<br>***<br>***<br>***<br>***<br>***<br>161@NPP-2<br>1.0000<br>***                                                                            | ****<br>****<br>****<br>****<br>****<br>182 @NPP-2<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47                                                                                                                                                                                                                                                | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                  | ****<br>****<br>****<br>****<br>****<br>151@NPP-2<br>1.0000<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ***<br>***<br>***<br>***<br>***<br>152 @NPP-2<br>1.0000<br>***                                    | ****<br>****<br>****<br>****<br>160 @NPP-2<br>1.0000<br>****                     | ***<br>***<br>***<br>***<br>***<br>***<br>181@NPP-2<br>1.0000<br>***                                                                            | ****<br>****<br>****<br>****<br>182 @NPP-2<br>1.0000<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48                                                                                                                                                                                                                                          | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)                                                                                                                                                                                                | ****<br>****<br>****<br>****<br>****<br>151@NPP-2<br>1.0000<br>****<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***<br>***<br>***<br>***<br>***<br>***<br>152 @NPP-2<br>1.000<br>***<br>***                       | ****<br>****<br>****<br>****<br>****<br>160 @NPP-2<br>1.0000<br>****<br>***      | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>161@NPP-2<br>1.0000<br>***<br>***                                                              | ****<br>****<br>****<br>****<br>****<br>162 @NPP-2<br>1.0000<br>****<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49                                                                                                                                                                                                                                    | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO7)<br>Comp Mole Frac (CO7RM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (Nitrogen)                                                                                                                                                             | ***<br>- ****<br>- ****<br>- ****<br>- ***<br>- ***<br>- ***<br>- ***<br>- ***<br>- ***<br>- ***<br>- ****<br>- *****<br>- *****<br>- *****<br>- *****<br>- *****<br>- *****<br>- ********<br>- ********** | ***<br>***<br>***<br>***<br>***<br>***<br>152 @NPP-2<br>1.0000<br>***<br>***                      | 160 @NPP-2<br>1.0000<br>****<br>180 ****                                         | ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>162 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52                                                                                                                                                                                                                  | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Hreminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)                                                               | ****  ****  ****  ****  ****  ****  ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>**                                 | 160 @NPP-2<br>1.0000<br>***<br>***<br>180 ***<br>***<br>***<br>***<br>***<br>*** | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>161@NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***<br>***<br>***             | ****  ****  ****  ****  ****  ****  ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53                                                                                                                                                                                                            | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (COTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (O2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO7RM-A)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Armonia)                                                | ****<br>****<br>****<br>****<br>****<br>****<br>151@NPP-2<br>1.0000<br>****<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>152 @NPP-2<br>1.0000<br>***<br>***<br>***<br>*** | 160 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****                     | **** **** **** **** **** **** **** **** ****                                                                                                    | ****<br>****<br>****<br>****<br>****<br>182 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52                                                                                                                                                                                                                  | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Hreminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)                                                               | ****  ****  ****  ****  ****  ****  ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>**                                 | 160 @NPP-2<br>1.0000<br>***<br>***<br>180 ***<br>***<br>***<br>***<br>***<br>*** | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>161@NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***<br>***<br>***             | ***<br>***<br>***<br>***<br>***<br>***<br>182 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55                                                                  | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (COTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (O2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO7RM-A)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Armonia)                                                | ****<br>****<br>****<br>****<br>****<br>****<br>151@NPP-2<br>1.0000<br>****<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>152 @NPP-2<br>1.0000<br>***<br>***<br>***<br>*** | 160 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****                     | **** **** **** **** **** **** **** **** ****                                                                                                    | ****<br>****<br>****<br>****<br>****<br>182 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56                                                     | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (COTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (O2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO7RM-A)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Armonia)                                                | ****<br>****<br>****<br>****<br>****<br>****<br>151@NPP-2<br>1.0000<br>****<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>152 @NPP-2<br>1.0000<br>***<br>***<br>***<br>*** | 160 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****                     | ****<br>****<br>****<br>****<br>****<br>****<br>****<br>181@NPP-2<br>1.0000<br>****<br>***<br>****<br>****<br>****<br>****<br>***               | ****<br>****<br>****<br>****<br>****<br>182 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55                                                                  | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (COTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (O2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO7RM-A)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Armonia)                                                | ****<br>****<br>****<br>****<br>****<br>****<br>151@NPP-2<br>1.0000<br>****<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>152 @NPP-2<br>1.0000<br>***<br>***<br>***<br>*** | 160 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****                     | ****<br>****<br>****<br>****<br>****<br>****<br>****<br>181@NPP-2<br>1.0000<br>****<br>***<br>****<br>****<br>****<br>****<br>***               | ****<br>****<br>****<br>****<br>****<br>182 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57                                        | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (O2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO7RM-A)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)                | ****<br>****<br>****<br>****<br>****<br>****<br>151@NPP-2<br>1.0000<br>****<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>152 @NPP-2<br>1.0000<br>***<br>***<br>***<br>*** | 160 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****                     | ****<br>****<br>****<br>****<br>****<br>****<br>****<br>181@NPP-2<br>1.0000<br>****<br>***<br>****<br>****<br>****<br>****<br>***               | ****<br>****<br>****<br>****<br>****<br>182 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57                                        | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (O2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO7RM-A)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)                | ****<br>****<br>****<br>****<br>****<br>****<br>151@NPP-2<br>1.0000<br>****<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>152 @NPP-2<br>1.0000<br>***<br>***<br>***<br>*** | 160 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****                     | ****<br>****<br>****<br>****<br>****<br>****<br>****<br>181@NPP-2<br>1.0000<br>****<br>***<br>****<br>****<br>****<br>****<br>***               | ****<br>****<br>****<br>****<br>****<br>182 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57           58                           | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (O2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO7RM-A)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)                | ****<br>****<br>****<br>****<br>****<br>****<br>151@NPP-2<br>1.0000<br>****<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>152 @NPP-2<br>1.0000<br>***<br>***<br>***<br>*** | 160 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****                     | ****<br>****<br>****<br>****<br>****<br>****<br>****<br>181@NPP-2<br>1.0000<br>****<br>***<br>****<br>****<br>****<br>****<br>***               | ****<br>****<br>****<br>****<br>****<br>182 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57           58           59           60 | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (OXygen)<br>Comp Mole Frac (OXygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (CO3)<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (Argon) | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                               | 160 @NPP-2<br>1.0000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1        | ****<br>****<br>****<br>****<br>****<br>****<br>****<br>181@NPP-2<br>1.0000<br>****<br>***<br>****<br>****<br>****<br>****<br>***               | ***  . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . **** . *** . *** . *** . **** . *** . *** . *** . *** . *** . **** . ** |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57           58           59           60 | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (O2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO7RM-A)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>152 @NPP-2<br>1.0000<br>***<br>***<br>***<br>*** | 160 @NPP-2<br>1.0000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1        | ****<br>****<br>****<br>****<br>****<br>****<br>****<br>181@NPP-2<br>1.0000<br>****<br>***<br>****<br>****<br>****<br>****<br>***               | ****<br>****<br>****<br>****<br>****<br>182 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| 1                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Case Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Generic HTSE+NH3 PF                                                                                                | D_v3.00_Therm66_5bar                                                                                 | _U80 (3049 tpd NH3)_re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3                                                                                                                                                                                                                                                                                                        | Caspentech Battelle Bedford, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ENERGY ALLIANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit Set:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HTSE PFD                                                                                                           |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4                                                                                                                                                                                                                                                                                                             | USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fri Apr 30 14:25:18 202                                                                                            | 21                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5<br>6                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7<br>8                                                                                                                                                                                                                                                                                                        | Workbook:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Case (Mai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n) (continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ed)                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in                                                                                                                 | Elvid Div                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10                                                                                                                                                                                                                                                                                                            | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mpositions (cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                  | Fluid Pk                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11<br>12                                                                                                                                                                                                                                                                                                      | Name<br>Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 163 @NPP-2<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 163a @NPP-2<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 163a-L@NPP-2<br>1.0000                                                                                             | 165 @NPP-2<br>1.0000                                                                                 | 166 @NPP-2<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 407 ONDD 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 470 ONIDD 0                                                                                                        | 474 ONDD 9                                                                                           | 470 ONDD 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 22                                                                                                                                                                                                                                                                                                            | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 167 @NPP-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 168 @NPP-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170@NPP-2                                                                                                          | 171@NPP-2                                                                                            | 172 @NPP-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23<br>24                                                                                                                                                                                                                                                                                                      | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000                                                                                                             | 1.0000                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 24                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 26                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 29                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 31                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 32                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 33                                                                                                                                                                                                                                                                                                            | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 173 @NPP-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 180 @NPP-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 181 @NPP-2                                                                                                         | 182 @NPP-2                                                                                           | 183 @NPP-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 34                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (H2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000                                                                                                             | 1.0000                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 35                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 35<br>36                                                                                                                                                                                                                                                                                                      | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37                                                                                                                                                                                                                                                                                                            | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37<br>38                                                                                                                                                                                                                                                                                                      | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                | ***                                                                                                  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37<br>38<br>39                                                                                                                                                                                                                                                                                                | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                   | ***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ****<br>****<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***                                                                                                                | ***                                                                                                  | ***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 37<br>38                                                                                                                                                                                                                                                                                                      | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)                                                                                                                                                                                                                                                                                                                                                                                                        | ***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ***<br>***<br>***<br>***                                                                                           | ***<br>***<br>***<br>***<br>***                                                                      | ***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 37<br>38<br>39<br>40                                                                                                                                                                                                                                                                                          | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                   | ***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ***<br>***<br>***<br>***                                                                                           | ***<br>***<br>***<br>***<br>***                                                                      | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37<br>38<br>39<br>40                                                                                                                                                                                                                                                                                          | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-66)                                                                                                                                                                                                                                                                                                                                                                       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***<br>***<br>***<br>***<br>***                                                                                    | ***<br>***<br>***<br>***<br>***<br>***                                                               | ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 37<br>38<br>39<br>40<br>41<br>42                                                                                                                                                                                                                                                                              | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (OTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)                                                                                                                                                                                                                                                                                                                                           | ***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ***<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ***<br>***<br>***<br>***<br>***                                                                                    | ***<br>***<br>***<br>***<br>***<br>***<br>***                                                        | ***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 37<br>38<br>39<br>40<br>41<br>42<br>43                                                                                                                                                                                                                                                                        | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO7)<br>Comp Mole Frac (CDTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)                                                                                                                                                                                                                                                                                                                     | ****<br>****<br>****<br>****<br>****<br>****<br>****<br>184@NPP-2<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>185 @NPP-2<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ****<br>****<br>****<br>****<br>****<br>186 @NPP-2<br>1.0000                                                       | **** **** **** **** **** **** **** **** ****                                                         | ***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46                                                                                                                                                                                                                                                      | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)                                                                                                                                                                                                                                                          | ****<br>****<br>****<br>****<br>****<br>184 @NPP-2<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>185 @NPP-2<br>1.0000<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ****<br>****<br>****<br>****<br>****<br>186 @NPP-2<br>1.0000<br>****                                               | ****<br>****<br>****<br>****<br>****<br>****<br>187 @NPP-2<br>1.0000<br>***                          | ****<br>****<br>****<br>****<br>****<br>188 @NPP-2<br>1.0000<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47                                                                                                                                                                                                                                                | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Ammonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)                                                                                                                                                                                                 | ****<br>****<br>****<br>****<br>****<br>184 @NPP-2<br>1.0000<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***<br>***<br>***<br>***<br>***<br>185 @NPP-2<br>1.0000<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ****<br>****<br>****<br>****<br>186@NPP-2<br>1.0000<br>****                                                        | ***<br>***<br>***<br>***<br>***<br>187 @NPP-2<br>1.0000<br>***                                       | ***<br>***<br>***<br>***<br>***<br>***<br>188 @NPP-2<br>1.0000<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48                                                                                                                                                                                                                                          | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (COTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)                                                                                                                                                                                       | ****<br>****<br>****<br>****<br>****<br>184@NPP-2<br>1.0000<br>****<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***<br>***<br>***<br>***<br>***<br>185 @NPP-2<br>1.000<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ****<br>****<br>****<br>****<br>****<br>186@NPP-2<br>1.0000<br>****<br>****                                        | ****<br>****<br>****<br>****<br>****<br>****<br>187 @NPP-2<br>1.0000<br>****<br>***                  | ****<br>****<br>****<br>****<br>****<br>188 @NPP-2<br>1.0000<br>****<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49                                                                                                                                                                                                                                    | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO7)<br>Comp Mole Frac (COTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (Nitrogen)                                                                                                                                                           | ***<br>- ***<br>- ***<br>- ***<br>- ***<br>- ***<br>184 @NPP-2<br>1.0000<br>- ***<br>- ****<br>- ***<br>- ****<br>- ****<br>- ****<br>- ****<br>- ***<br>- ***<br>- ***<br>- ****<br>- *****<br>- *****<br>- *****<br>- *****<br>- *****<br>- *****<br>- ******<br>- ******<br>- **********                                                                                                                                                                                                                                                                                                                                                                                            | ***<br>***<br>***<br>***<br>***<br>***<br>185 @NPP-2<br>1.0000<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ****<br>****<br>****<br>****<br>****<br>186 @NPP-2<br>1.0000<br>****<br>****                                       | ****<br>****<br>****<br>****<br>****<br>****<br>187 @NPP-2<br>1.0000<br>****<br>****                 | ****<br>****<br>****<br>****<br>****<br>188 @NPP-2<br>1.0000<br>****<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50                                                                                                                                                                                                                              | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-88)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)                                                                                                                                                                   | ****<br>****<br>****<br>****<br>****<br>184@NPP-2<br>1.0000<br>****<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***<br>***<br>***<br>***<br>***<br>185 @NPP-2<br>1.000<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ****<br>****<br>****<br>****<br>****<br>186@NPP-2<br>1.0000<br>****<br>****                                        | ****<br>****<br>****<br>****<br>****<br>****<br>187 @NPP-2<br>1.0000<br>****<br>***                  | ****<br>****<br>****<br>****<br>****<br>188 @NPP-2<br>1.0000<br>****<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51                                                                                                                                                                                                                        | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CO)                                                                                                                   | ***<br>***<br>***<br>***<br>***<br>***<br>184 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ***<br>***<br>***<br>***<br>***<br>***<br>185 @NPP-2<br>1.0000<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 186 @NPP-2<br>1.0000                                                                                               | ****<br>****<br>****<br>****<br>****<br>****<br>187 @NPP-2<br>1.0000<br>****<br>****<br>****         | 188 @NPP-2<br>1.0000<br>****<br>****<br>188 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50                                                                                                                                                                                                                              | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO1)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)                                 | ***<br>- ****<br>- ****<br>- ****<br>- ***<br>- ****<br>- ***<br>- ***<br>- ***<br>- ***<br>- ****<br>- | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>185 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ****<br>****<br>****<br>****<br>****<br>186 @NPP-2<br>1.0000<br>***<br>***<br>****<br>****                         | ****  ****  ****  ****  ****  ****  ****                                                             | ****<br>****<br>****<br>****<br>****<br>188 @NPP-2<br>1 0000<br>****<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52                                                                                                                                                                                                                  | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (O2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (COTRM-A)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Arminol-86)<br>Comp Mole Frac (Arminol-86) | ****  ****  ****  ****  ****  ****  ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***<br>***<br>***<br>***<br>***<br>***<br>185 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 186 @NPP-2<br>186 @NPP-2                                                                                           | ****  ****  ****  ****  ****  ****  ****                                                             | ****  ****  ****  ****  ****  ****  ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53                                                                                                                                                                                                            | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Armonia)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO1)<br>Comp Mole Frac (DTRM-A)<br>Comp Mole Frac (Therminol-86)                                 | ****<br>****<br>****<br>****<br>****<br>****<br>****<br>****<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***<br>***<br>***<br>***<br>***<br>***<br>185 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ****<br>****<br>****<br>****<br>****<br>186@NPP-2<br>1.0000<br>****<br>****<br>****<br>****                        | ****<br>****<br>****<br>****<br>****<br>187 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>**** | ****<br>****<br>****<br>****<br>****<br>188 @NPP-2<br>1.0000<br>****<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>53<br>54                                                                                                                                                                                                | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (O2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (COTRM-A)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Arminol-86)<br>Comp Mole Frac (Arminol-86) | ****<br>****<br>****<br>****<br>****<br>****<br>****<br>****<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***<br>***<br>***<br>***<br>***<br>***<br>185 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ****<br>****<br>****<br>****<br>****<br>186@NPP-2<br>1.0000<br>****<br>****<br>****<br>****                        | ****<br>****<br>****<br>****<br>****<br>187 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>**** | ****<br>****<br>****<br>****<br>****<br>188 @NPP-2<br>1.0000<br>****<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55                                                                  | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (O2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (COTRM-A)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Arminol-86)<br>Comp Mole Frac (Arminol-86) | ****<br>****<br>****<br>****<br>****<br>****<br>****<br>****<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***<br>***<br>***<br>***<br>***<br>***<br>185 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ****<br>****<br>****<br>****<br>****<br>186@NPP-2<br>1.0000<br>****<br>****<br>****<br>****                        | ****<br>****<br>****<br>****<br>****<br>187 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>**** | ****<br>****<br>****<br>****<br>****<br>188 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57           58                           | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (O2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (COTRM-A)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Arminol-86)<br>Comp Mole Frac (Arminol-86) | ****<br>****<br>****<br>****<br>****<br>****<br>****<br>****<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***<br>***<br>***<br>***<br>***<br>***<br>185 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ****<br>****<br>****<br>****<br>****<br>186@NPP-2<br>1.0000<br>****<br>****<br>****<br>****                        | ****<br>****<br>****<br>****<br>****<br>187 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>**** | ****<br>****<br>****<br>****<br>****<br>188 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57                                        | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (O2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (COTRM-A)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Arminol-86)<br>Comp Mole Frac (Arminol-86) | ****<br>****<br>****<br>****<br>****<br>****<br>****<br>****<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***<br>***<br>***<br>***<br>***<br>***<br>185 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ****<br>****<br>****<br>****<br>****<br>186@NPP-2<br>1.0000<br>****<br>****<br>****<br>****                        | ****<br>****<br>****<br>****<br>****<br>187 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>**** | ****<br>****<br>****<br>****<br>****<br>188 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57           58           59           60 | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (O2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (COTRM-A)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Arminol-86)<br>Comp Mole Frac (Arminol-86) | ****<br>****<br>****<br>****<br>****<br>****<br>****<br>****<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***<br>***<br>***<br>***<br>***<br>***<br>185 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ****<br>****<br>****<br>****<br>****<br>186@NPP-2<br>1.0000<br>****<br>****<br>****<br>****                        | ****<br>****<br>****<br>****<br>****<br>187 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>**** | ****<br>****<br>****<br>****<br>****<br>188 @NPP-2<br>1.0000<br>****<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57           58                           | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (O2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (COTRM-A)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Arminol-86)<br>Comp Mole Frac (Arminol-86) | ****<br>****<br>****<br>****<br>****<br>****<br>****<br>****<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***<br>***<br>***<br>***<br>***<br>***<br>185 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ****<br>****<br>****<br>****<br>****<br>186@NPP-2<br>1.0000<br>****<br>****<br>****<br>****                        | ****<br>****<br>****<br>****<br>****<br>187 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>**** | ****<br>****<br>****<br>****<br>****<br>188 @NPP-2<br>1.0000<br>****<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57           58           59           60 | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oirrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CDTRM-A)<br>Comp Mole Frac (Therminol-68)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (Therminol-68)<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (Argon)<br>Comp Mole Frac (Argon)                             | ***  . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . **** . *** . *** . *** . **** . *** . *** . *** . *** . *** . **** . **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  **  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** * | ****<br>****<br>****<br>****<br>****<br>188 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****<br>****<br>** | ****<br>****<br>****<br>****<br>****<br>187 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>**** | 188 @NPP-2<br>188 @NPP-2<br>188 @NPF-2<br>188 @NFF-2<br>188 @N |
| 37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52           53           54           55           56           57           58           59           60 | Comp Mole Frac (Hydrogen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Therminol-86)<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (Argon)<br>Name<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (H2O)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Oxygen)<br>Comp Mole Frac (O2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (CO2)<br>Comp Mole Frac (COTRM-A)<br>Comp Mole Frac (CTRM-A)<br>Comp Mole Frac (Arminol-86)<br>Comp Mole Frac (Arminol-86) | ***  . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . *** . **** . *** . *** . *** . **** . *** . *** . *** . *** . *** . **** . **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***<br>***<br>***<br>***<br>***<br>***<br>185 @NPP-2<br>1.0000<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ****<br>****<br>****<br>****<br>****<br>188 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****<br>****<br>** | ****<br>****<br>****<br>****<br>****<br>187 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>**** | ****<br>****<br>****<br>****<br>****<br>188 @NPP-2<br>1.0000<br>****<br>****<br>****<br>****<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 43<br>44       | Heat Flow (MW)<br>Mass Flow (kg/h)                                                      | 0.7115<br>4.374e+004                   | 0.2747<br>1.689e+004                                                    | 0.1975                                  | 0.1348                              | 0.1246                                 |  |
|----------------|-----------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|-------------------------------------|----------------------------------------|--|
| 40<br>41<br>42 | Heat Flow (MVV) Mass Flow (kg/h) Name                                                   | 34.74<br><br>Q-HX-302 @H2rec           | 98.03<br><br>Q-HX-305 @H2rec                                            | 30.21<br><br>Q-HX-308 @H2rec            | 8.284e-003<br><br>Q-IC-302 @H2rec   | 9.542e-005<br>5.866<br>Q-IC-303 @H2rec |  |
| 37<br>38<br>39 | Heat Flow         (MW)           Mass Flow         (kg/h)           Name         (1100) | 2.755e-002<br><br>Q_N2_LPS @H2burn     | 3.694<br><br>Q_N2_MPS @H2burn                                           | 3.694<br><br>W_AIR-COMP @H2bu           | 24.87<br><br>W_N2-PUMP @H2bur       | 31.01<br><br>Q-HX-301@H2rec            |  |
| 35<br>36       | Mass Flow (kg/h)<br>Name                                                                | <br>Process Heat@Cell                  | <br>COL-DUTY @COL5                                                      | <br>COL-DUTY @COL6                      | <br>Q_AIR-COMP @H2bu                | <br>Q_N2_COND @H2bu                    |  |
| 32<br>33<br>34 | Mass Flow (kg/h) Name Heat Flow (MVV)                                                   | 1.966e+005<br>W_ACOMP-ST2 @AS<br>3.183 | 1.938e+005<br>W_ACOMP-ST3 @AS<br>3.126                                  | <br>Electrode Heat @Cell<br>-1.626e-005 | <br>Electrolysis Heating @<br>24.82 | <br>Electrolysis Power @C<br>-24.80    |  |
| 30<br>31       | Name<br>Heat Flow (MVV)                                                                 | Q_ACOMP-IC2 @ASU<br>3.198              | Q_ACOMP-IC3 @ASL<br>3.152                                               | W_A-EXPAND @ASU<br>9.741e-002           | W_ACOMP-2@ASU<br>5.317e-002         | W_ACOMP-ST1 @AS<br>2.991               |  |
| 27<br>28<br>29 | Heat Flow (MW)<br>Mass Flow (kg/h)                                                      | 6.445e-002                             | 3.694<br>                                                               | 5.378e-002<br>3306                      | -0.5917<br>3.637e+004               | 2.247<br>1.381e+005                    |  |
| 25<br>26<br>27 | Heat Flow (MVV)<br>Mass Flow (kg/h)<br>Name                                             | 62.80<br><br>W-P-901                   | 1.150e-006<br><br>COL-DUTY @ASU                                         | 7.531e-003<br><br>Q-CW-EXCH1@ASU        | 8.384e-003<br><br>Q-MOLSIEVE @ASU   | 3.047e-003<br><br>Q_ACOMP-IC1 @ASU     |  |
| 23<br>24       | Name                                                                                    | Q-CW                                   | C.PIPE-801                                                              | Q-PIPE-901                              | Fluid Pkg<br>Q-PIPE-902             | W-P-801                                |  |
| 21<br>22       | Comp Mole Frac (Argon)                                                                  | ***                                    | ***                                                                     | ***                                     | ***                                 |                                        |  |
| 19<br>20       | Comp Mole Frac (Drivina)<br>Comp Mole Frac (Therminol-66)<br>Comp Mole Frac (Ammonia)   | ***                                    | ***                                                                     | ***                                     | ***                                 |                                        |  |
| 16<br>17<br>18 | Comp Mole Frac (CO2)<br>Comp Mole Frac (CO)<br>Comp Mole Frac (DTRM-A)                  | ***                                    | ****                                                                    | ***                                     | ***                                 |                                        |  |
| 14<br>15       | Comp Mole Frac (Oxygen)<br>Comp Mole Frac (Nitrogen)                                    | ***                                    | ***                                                                     | ***                                     | ***                                 |                                        |  |
| 12<br>13       | Comp Mole Frac (H2O)<br>Comp Mole Frac (Hydrogen)                                       | 1.0000                                 | 1.0000                                                                  | 1.0000                                  | 1.0000                              |                                        |  |
| 9<br>10<br>11  | Name                                                                                    | Co                                     | mpositions (conti                                                       | nued)<br>711@NPP-2                      | Fluid Pkg<br>713 @NPP-2             | p. All                                 |  |
| 7<br>8<br>9    | Workbook                                                                                | : Case (Maii                           | n) (continue                                                            | d)                                      |                                     |                                        |  |
| 4<br>5<br>6    |                                                                                         |                                        | Date/Time:                                                              | Fri Apr 30 14:25:18 202                 | 1                                   |                                        |  |
| 3              | entech Bedford, I USA                                                                   |                                        | Unit Set:                                                               | HTSE PFD                                |                                     |                                        |  |
| -              | BATTELL                                                                                 | E ENERGY ALLIANCE                      | Case Name: Generic HTSE+NH3 PFD_v3.00_Therm66_5bar_U80 (3049 tpd NH3)_m |                                         |                                     |                                        |  |

| 1        |                                |                   |                              | Case Name:                    | Generic HTSE+NH3 PF           | D_v3.00_Therm66_5bar             | U80 (3049 tod NH3) re           |
|----------|--------------------------------|-------------------|------------------------------|-------------------------------|-------------------------------|----------------------------------|---------------------------------|
| 2        | ( aspentech                    |                   | ENERGY ALLIANCE              |                               |                               |                                  |                                 |
| 3        | <b>Geaspen</b> tech            | Bedford, M<br>USA | A                            | Unit Set:                     | HTSE PFD                      |                                  |                                 |
| 5        |                                |                   |                              | Date/Time:                    | Fri Apr 30 14:25:18 202       | I                                |                                 |
| 6        |                                |                   | - /                          |                               |                               |                                  |                                 |
| 7<br>8   | Work                           | book:             | Case (Mair                   | n) (continue                  | d)                            |                                  |                                 |
| 9        |                                |                   |                              |                               |                               |                                  |                                 |
| 10       |                                |                   | Ene                          | rgy Streams (con              | tinued)                       | Fluid Pkg                        | : All                           |
| 11       | Name                           |                   | W-K-501_stgC1@HT             |                               | W-K-501_stgT1@HT              | Q-IC-401_stg1 @Khpl              | Q-IC-401_stg2@Khpl              |
| 12<br>13 | Heat Flow                      | (MVV)             | 0.4142                       | 0.4563                        | 0.8798                        | 0.6146                           | 3.114                           |
| 14       | Mass Flow<br>Name              | (kg/h)            | <br>Q-IC-401_stg3@Khpł       | <br>W-K-401 @KhpH2            | <br>W-K-401 stg1@KhpH         | 3.778e+004<br>W-K-401_stg2 @KhpH | 1.914e+005<br>W-K-401_stg3@KhpF |
| 15       | Heat Flow                      | (MVV)             | 3.122                        | 9.103                         | 2.861                         | 3.116                            | 3.126                           |
| 16       | Mass Flow                      | (kg/h)            | 1.919e+005                   |                               |                               |                                  |                                 |
| 17       | Name                           |                   | Q_REC-COMP-IC1@              | Q_REC-COMP-IC2@               | Q_REC-COMP-IC3@               | Q_REC-COMP-IC4@                  | W_REC-COMP @Kre                 |
| 18       | Heat Flow                      | (MVV)             | 0.0000 *                     | 0.9395                        | 1.241                         | 9.671                            | 4.217                           |
| 19<br>20 | Mass Flow<br>Name              | (kg/h)            | 0.0000<br>W REC-COMP-ST1@    | 5.775e+004<br>W REC-COMP-ST2@ | 7.629e+004<br>W REC-COMP-ST3@ | 5.945e+005<br>W REC-COMP-ST4 @   | Q RUC-INTC1 @KRU                |
| 20       | Heat Flow                      | (MVV)             | 0.8888                       | 1.101                         | 1.133                         | 1.094                            | 0.0000 *                        |
| 22       | Mass Flow                      | (kg/h)            |                              |                               |                               |                                  | 0.0000                          |
| 23       | Name                           |                   | Q_RUC-INTC2 @KRU             | Q_RUC-INTC3@KRU               | Q_RUC-INTC4 @KRL              | W_RU-Comp @KRU                   | W_RUC-STG1 @KRL                 |
| 24       | Heat Flow                      | (MVV)             | 0.0000 *                     |                               |                               |                                  |                                 |
| 25       | Mass Flow                      | (kg/h)            | 0.0000                       |                               |                               |                                  |                                 |
| 26<br>27 | Name                           | 0.040             | W_RUC-STG2 @KRL              | W_RUC-STG3@KRU                | W_RUC-STG4 @KRU               | Q_SGC-IC1 @Ksyn                  | Q_SGC-IC2@Ksyn                  |
| 27       | Heat Flow<br>Mass Flow         | (MVV)<br>(kg/h)   |                              |                               |                               | 2.290<br>1.408e+005              | 9.145<br>5.622e+005             |
| 29       | Name                           | (Kg/H)            | Q SGC-IC3@Ksvn               | W SGC-STG1 @Ksyr              | W SGC-STG2@Ksyr               | W SGC-STG3 @Ksyr                 | W SYNGAS-COMP @                 |
| 30       | Heat Flow                      | (MVV)             | 9.267                        | 8.044                         | 9.376                         | 9.691                            | 27.11                           |
| 31       | Mass Flow                      | (kg/h)            | 5.697e+005                   |                               |                               |                                  |                                 |
| 32       | Name                           |                   | Q_MSC-INTC1@MSC              | Q_MSC-INTC2 @MSC              | Q_MSC-INTC3@MSC               | Q_MSC-INTC4 @MSC                 | Q_MSC-INTC5@MSC                 |
| 33       | Heat Flow                      | (MVV)             | 2.762                        | 2.916                         | 2.934                         | 2.970                            | 3.040                           |
| 34       | Mass Flow                      | (kg/h)            | 1.698e+005                   | 1.792e+005                    | 1.803e+005                    | 1.826e+005                       |                                 |
| 36       | Name<br>Heat Flow              | (MVV)             | W_MSC-STG1@MSC<br>2.866      | W_MSC-STG2 @MSC<br>2.901      | W_MSC-STG3@MS0<br>2.904       | W_MSC-STG4 @MSC<br>2.911         | W_MSC-STG5@MS0<br>2.926         |
| 37       | Mass Flow                      | (kg/h)            |                              | 2.301                         |                               | 2.511                            | 2.320                           |
| 38       | Name                           |                   | W_MSComp @MSC                | Q_COOL-1@NH3syn               | Q_COOLER @NH3sy               | Q_CW-EXCH @NH3s                  | Q_RU-COND @NH3s                 |
| 39       | Heat Flow                      | (MVV)             | 14.51                        | -0.1009                       | 14.08                         | 37.19                            |                                 |
| 40       | Mass Flow                      | (kg/h)            |                              |                               | 8.658e+005                    | 2.286e+006                       |                                 |
| 41       | Name                           | 0.040             | Q_STM-GEN @NH3s              | Q_STM-GEN1@NH3                | Q_STM-GEN2@NH3                | Q_STM-GEN3 @NH3                  | Q_STRIP-COND @NH                |
| 42<br>43 | Heat Flow<br>Mass Flow         | (MVV)<br>(kg/h)   | 10.81<br>1.772e+004          | 42.22<br>8.924e+004           | 33.87<br>7.160e+004           | 22.92<br>4.845e+004              | -10.62                          |
| 44       | Name                           | (Kg/H)            | Q_STRIP-REB @NH3             | Q_STRT-HTR @NH3s              | R1-DUTY @NH3syn               | R2-DUTY @NH3syn                  | RU-DUTY @NH3syn                 |
| 45       | Heat Flow                      | (MVV)             | 43.65                        | 0.0000 *                      | 85.89                         | 3.054                            |                                 |
| 46       | Mass Flow                      | (kg/h)            | 9.228e+004                   | 0.0000                        |                               |                                  |                                 |
| 47       | Name                           |                   | RU-DUTY1 @NH3syn             | RU-DUTY2A @NH3sy              | W_BST-COMP @NH3               | W_PUMP-1 @NH3syr                 | W_PUMP-2@NH3syr                 |
| 48       | Heat Flow                      | (MVV)             | 11.10                        | -13.11                        | 1.598                         | 4.398e-006                       | 1.299e-002                      |
| 49<br>50 | Mass Flow<br>Name              | (kg/h)            | 2.979e+007                   | 3.519e+007                    | <br>Q-COND-100 @NPP           | <br>Q-FWH-700 @NPP               | <br>Q-PIPE-201 @NPP             |
| 5U<br>51 | Name<br>Heat Flow              | (MVV)             | W_STG1@NH3syn<br>-1.096e-005 | Excess Electricity @N         | Q-COND-100 @NPP<br>3286       | GFWH-700@NPP<br>1108             | Q-PIPE-201 @NPP<br>7.490e-002   |
| 52       | Mass Flow                      | (kg/h)            |                              |                               |                               |                                  |                                 |
| 53       | Name                           |                   | Q-PIPE-202 @NPP              | Q-SG-100 Thermal En           | Rankine Energy@NP             | W-K-700 Electricity Ge           | W-P-201 Circ Pump P             |
| 54       | Heat Flow                      | (MVV)             | 5.313e-002                   | 3368                          | 3291                          | 1124                             | 0.1282                          |
| 55       | Mass Flow                      | (kg/h)            |                              |                               |                               |                                  |                                 |
| 56       | Name                           | (14)10            | W-P-701 Condensate           | W-P-702 Feedwater P           | Q-100 @NPP-2                  | Q-101 @NPP-2                     | Q-102 @NPP-2                    |
| 57<br>58 | Heat Flow<br>Mass Flow         | (MVV)<br>(kg/b)   | 7.421                        | 8.569                         | 170.9                         | 182.1                            | 1.674                           |
| 59       | Name                           | (kg/h)            | Q-103 @NPP-2                 | Q-104 @NPP-2                  | Q-105 @NPP-2                  | Q-106 @NPP-2                     | <br>Q-107 @NPP-2                |
| 60       | Heat Flow                      | (MVV)             | 9.036                        | 5.250                         | 2169                          | 245.3                            | 190.4                           |
| 61       | Mass Flow                      | (kg/h)            |                              |                               |                               |                                  |                                 |
| 62       |                                |                   |                              |                               |                               |                                  |                                 |
| 63       | Aspen Technology Inc.          |                   | A                            | spen HYSYS Versio             | n 10                          |                                  | Page 33 of 34                   |
|          | Licensed to: BATTELLE ENERGY A | LUANCE            |                              |                               |                               |                                  | * Specified by user.            |

| 1      | S. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BATTO                | E ENERGY ALLIAN | CE.          | Case Name 0                        | ieneric HTSE+NH3      | PF0_v3.00_T     | herm66_6bar | _U80 (3048 tpd NH3)  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|--------------|------------------------------------|-----------------------|-----------------|-------------|----------------------|--|
| 3      | @aspentech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bedford, N           |                 |              | Unit Set:                          | ITSE PFD              |                 |             |                      |  |
| 4      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | USA                  |                 |              | Date/Time Fit Apr 80 14:25 18 2021 |                       |                 |             |                      |  |
| â      | 1907-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 0               |              |                                    |                       |                 |             |                      |  |
| 7      | Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | book                 | Case (N         | lain         | ) (continued                       | I)                    |                 |             |                      |  |
| 9      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 | Enor         | gy Streams (conti                  | aund)                 |                 | Fluid Pkg   | τ Al                 |  |
| 0      | Alexand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                    | Q-108 @NFF-2    | Ener         |                                    |                       | Q-111@          |             | Q-TDL @NPP-2         |  |
| 2      | Name<br>Heat Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (MW)                 |                 | 16           | Q-109 @NPP-2<br>81.29              | Q-110 @NPP-2<br>202.3 |                 | 3376        | 81.28                |  |
| 3      | Mass Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (kg/h)               | (0              |              |                                    |                       |                 |             | 5112                 |  |
| 4      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |              | Unit Ops                           |                       |                 |             |                      |  |
| 5      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                    |                 | T            | - Y \                              | 1 2010                | 1               | Annual Ac   | 1                    |  |
| 6      | Operation Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ope                  | eration Type    | 903          | Feeds                              | Preduc<br>904         | ts              | Ignored     | Calc Level           |  |
| 8      | CW deltaT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Heater               |                 | - Q-C        | w/                                 | 804                   |                 | No          | 500.0                |  |
| 9      | Nuclear Power Plant (simple)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Standard             | Sub-Flowsheet   | -            | Process Heat Return                | 202 Process He        | at Supply       | No          | 3600                 |  |
| 0      | H2 burner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Standard             | Sub-Flowsheet   | BUF          | RN H2                              | BURN N2-5             |                 | No          | 2500                 |  |
| 1      | n iz dumen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stariuard            | Jud-FillWSRBBT  |              | RN AIR-1                           |                       |                 | inn.        | 250                  |  |
| 2      | Air Separation Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Standard             | Sub-Flowsheet   | AIR          |                                    | N2                    |                 | No          | 250                  |  |
| 3<br>4 | NH3 synthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Standard             | Sub-Flowsheet   | SYN          | IN                                 | O2<br>AN-NH3          |                 | No          | 250                  |  |
| +      | HP Product Compression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | Sub-Flowsheet   | 401          |                                    | 403 Pressurized       | H2 Product      | No          | 250                  |  |
| 6      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |              | Process Heat Supply                | 203 Process He        |                 |             |                      |  |
| 7      | HTSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Standard             | Sub-Flowsheet   | 132          | process feed water (liqui          | 302 H2/H2O for        | purification    | No          | 250                  |  |
| 8      | H2 Recovery and Feed Condi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Standard             | Sub-Flowsheet   |              | Process Water Inlet                | 132 process fee       | d water (liquid | Na          | 250                  |  |
| 9      | and the second s |                      |                 | 302          | H2/H2O for purification            | 332 H2 Product        |                 |             |                      |  |
| )      | Nuclear Power Plant (detailed<br>Multi-Stage Compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | Sub-Flowsheet   | NO           |                                    | N9 9                  |                 | Na          | 250<br>250           |  |
| 1      | AEJ CW Pump dP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Adjust               | Sub-Flowsheet   | N2           |                                    | N2-2-                 |                 | Ng          | 350                  |  |
| 3      | ADJ FW pump dP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Adjust               | 1               |              |                                    |                       |                 | Na          | 350                  |  |
| 4      | ADJ ASU inlet flow rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Adjust               |                 |              |                                    |                       |                 | Na          | 350                  |  |
| 5      | ADJ combustor inlet flow rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Adjust               |                 |              |                                    |                       |                 | Na          | 350                  |  |
| 6      | HTE Calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Spreadsh             |                 |              |                                    |                       |                 | Na          | 5.00.                |  |
| 7      | Cooling Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Spreadsh             | 1.1 T &         | -            |                                    |                       |                 | Na          | 5.00.                |  |
| 8      | TDL<br>Water Bal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Spreadsh<br>Spreadsh |                 | -            |                                    |                       |                 | No          | .500.<br>500.        |  |
| ə<br>n | HX dP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spreadsh             |                 |              |                                    | -                     |                 | No          | .500.                |  |
| 1      | NH3 heat use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Spreadsh             |                 | 1            |                                    |                       |                 | No          | .500.                |  |
| 2      | Anhydrous NH3 production ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Spreadsh             |                 | -            |                                    |                       |                 | No          | .500.                |  |
| 3      | PIPE-801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pipe Segr            | ment            | 802          |                                    | 803                   |                 | No          | 500.                 |  |
| 4      | 111 (2-001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i ipe begi           | hen             |              |                                    | Q-PIPE-801            |                 | 140         | -000,                |  |
| 5      | PIPE-901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pipe Segr            | ment            | 902          |                                    | 903                   |                 | No          | 500.                 |  |
| 7      | A NOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                 | 904          |                                    | Q-PIPE-901<br>905     |                 |             |                      |  |
| 8      | PIPE-902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pipe Segr            | ment            | 004          |                                    | Q-PIPE-902            |                 | No          | 500,0                |  |
| 9      | D 0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Burren               |                 | 801          | feed water                         | 802                   |                 | piles.      | Endi                 |  |
| 0      | F-801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pump                 |                 |              | -801                               |                       |                 | Ng          | 500.0                |  |
| 1      | P-901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pump                 |                 |              | cooling water                      | 902                   |                 | Na          | 500.                 |  |
| 2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | -               | W-F          | 4901                               | -                     |                 |             |                      |  |
| 4      | SET number of HTSE blocks<br>SET dP CW delta T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Set<br>Set           |                 |              |                                    |                       |                 | Na          | 5.00.0               |  |
| 5      | K-400 T-P-c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | eam Extn v2.0.0 | 332          | H2 Product.                        | 401                   |                 | Na          | 5.00.0               |  |
| 6      | SG-MIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mixer                |                 | 403          | Pressurized H2 Product             | SYN-IN                | 24              | Na          | 5.00.(               |  |
| 7<br>8 | N2-2-Cutter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stream C             | utter           | N2-:<br>N2-: |                                    | N2-2+                 |                 | No          | .500.1               |  |
| 9      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |              |                                    |                       |                 |             |                      |  |
| 2      | Appen Technology In-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                    |                 | A -          | non UVCVC Version                  | 10                    |                 |             | Page 34 of 34        |  |
| α.     | Aspen Technology Inc.<br>Licensed to: BATTELLE ENERGY,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                 | AS           | pen HYSYS Version                  | 19                    |                 |             | * Specified by user. |  |

## Appendix F Market Analyses

## APPENDIX F MARKET ANALYSES

## F-1 Market and Demand Points in the Minnesota Region

Table F-1. Hydrogen demand within 100 miles of the Prairie Island Nuclear Power Plant.

|                                                                                      |                                    | Potential H <sub>2</sub> Demand, kilotonnes/year |                  |                    |  |
|--------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------|------------------|--------------------|--|
| Name                                                                                 | Demand Type                        | Current<br>(2017)                                | Future<br>(2030) | Distance,<br>miles |  |
| Red Wing: Northern States Power Co., Minnesota                                       | Natural gas electricity generators | 0.02                                             | 0.02             | 13                 |  |
| Goodhue County, Minnesota                                                            | FCEV                               | _                                                | 0.00             | 17                 |  |
| Cannon Falls Energy Center: Invenergy Services, LLC                                  | Natural gas electricity generators | 0.35                                             | 0.35             | 20                 |  |
| LSP-Cottage Grove Limited Partnership (LP): Cottage Grove<br>Operating Services, LLC | Natural gas electricity generators | 1.65                                             | 1.65             | 23                 |  |
| Inver Hills: Northern States Power Co, Minnesota                                     | Natural gas electricity generators | 0.09                                             | 0.09             | 26                 |  |
| Koch Industries, Inc., Flint Hills Resources Pine Bend Refinery                      | Syngas: Hydrogen, SMR*             | _                                                | 158.12           | 27                 |  |
| Marathon Petroleum Corp. St. Paul Park Refinery                                      | Refinery                           | 28.90                                            | 36.61            | 27                 |  |
| Koch Industries Inc., Flint Hills Resources Pine Bend Refinery                       | Refinery                           | 85.06                                            | 107.76           | 27                 |  |
| Marathon Petroleum Corp. St. Paul Park Refinery                                      | Syngas: Hydrogen, SMR*             | _                                                | 15.13            | 27                 |  |
| Gerdau Long Steel North America, St. Paul, Minnesota                                 | DRI                                | 0.40                                             | 1.42             | 30                 |  |
| Pierce County, Wisconsin                                                             | FCEV                               | _                                                | 0.00             | 32                 |  |
| Dakota County, Minnesota                                                             | FCEV                               | _                                                | 0.01             | 33                 |  |
| St. Paul Cogeneration: St. Paul Cogeneration, LLC                                    | Natural gas electricity generators | 0.38                                             | 0.38             | 38                 |  |
| High Bridge: Northern States Power Co, Minnesota                                     | Natural gas electricity generators | 10.19                                            | 10.19            | 39                 |  |
| Washington County, Minnesota                                                         | FCEV                               | _                                                | 0.00             | 40                 |  |
| Allen S King: Northern States Power Co, Minnesota                                    | Natural gas electricity generators | 0.04                                             | 0.04             | 40                 |  |
| Ramsey County, Minnesota                                                             | FCEV                               | _                                                | 0.01             | 40                 |  |
| Wabasha County, Minnesota                                                            | FCEV                               | _                                                | 0.00             | 40                 |  |

|                                                                               |                                    | Potential H <sub>2</sub> Demand, kilotonnes/year |                  | _                  |  |
|-------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------|------------------|--------------------|--|
| Name                                                                          | Demand Type                        | Current<br>(2017)                                | Future<br>(2030) | Distance,<br>miles |  |
| Rice County, Minnesota                                                        | FCEV                               | _                                                | 0.00             | 41                 |  |
| University of Minnesota combined heat and power (CHP) Plant:<br>Veolia Energy | Natural gas electricity generators | 0.83                                             | 0.83             | 45                 |  |
| Southeast Steam Plant: Veolia Energy                                          | Natural gas electricity generators | 0.38                                             | 0.38             | 46                 |  |
| St. Croix County, Wisconsin                                                   | FCEV                               | _                                                | 0.00             | 48                 |  |
| Scott County, Minnesota                                                       | FCEV                               | _                                                | 0.00             | 48                 |  |
| Faribault Energy Park: Minnesota Municipal Power Agency                       | Natural gas electricity generators | 3.41                                             | 3.41             | 48                 |  |
| Covanta Hennepin Energy: Covanta Energy Co                                    | Natural gas electricity generators | 0.03                                             | 0.03             | 49                 |  |
| Saint Marys Hospital Power Plant: St Mary's Hospital                          | Natural gas electricity generators | 0.68                                             | 0.68             | 50                 |  |
| New Prague: New Prague Utilities Commission                                   | Natural gas electricity generators | 0.01                                             | 0.01             | 51                 |  |
| Hennepin County, Minnesota                                                    | FCEV                               | _                                                | 0.02             | 52                 |  |
| Water Reclamation Plant: City of Rochester                                    | Natural gas electricity generators | 0.00                                             | 0.00             | 52                 |  |
| Cascade Creek: Rochester Public Utilities                                     | Natural gas electricity generators | 0.21                                             | 0.21             | 53                 |  |
| Dodge County, Minnesota                                                       | FCEV                               | _                                                | 0.00             | 53                 |  |
| Riverside (Minnesota): Northern States Power Co, Minnesota                    | Natural gas electricity generators | 8.48                                             | 8.48             | 53                 |  |
| Olmsted County, Minnesota                                                     | FCEV                               | _                                                | 0.00             | 54                 |  |
| Franklin Heating Station: Franklin Heating Station                            | Natural gas electricity generators | 0.86                                             | 0.86             | 55                 |  |

|                                                        |                                    | Potentia<br>kiloto |                  |                    |
|--------------------------------------------------------|------------------------------------|--------------------|------------------|--------------------|
| Name                                                   | Demand Type                        | Current<br>(2017)  | Future<br>(2030) | Distance,<br>miles |
| Pepin County, Wisconsin                                | FCEV                               | _                  | 0.00             | 55                 |
| Blue Lake: Northern States Power Co, Minnesota         | Natural gas electricity generators | 0.65               | 0.65             | 56                 |
| Olmsted Waste Energy: Olmsted County Public Works      | Natural gas electricity generators | 0.01               | 0.01             | 57                 |
| Shakopee Energy Park: Minnesota Municipal Power Agency | Natural gas electricity generators | 0.06               | 0.06             | 58                 |
| Al-Corn Clean Fuel, Claremont                          | Syngas: ethanol                    | _                  | 20.00            | 59                 |
| Anoka County, Minnesota                                | FCEV                               | _                  | 0.00             | 59                 |
| Koda Biomass Plant: Koda Energy LLC                    | Natural gas electricity generators | 0.16               | 0.16             | 63                 |
| Minnesota River: Minnesota Municipal Power Agency      | Natural gas electricity generators | 0.00               | 0.00             | 63                 |
| Buffalo County, Wisconsin                              | FCEV                               | _                  | 0.00             | 64                 |
| Steele County, Minnesota                               | FCEV                               | _                  | 0.00             | 67                 |
| Carver County, Minnesota                               | FCEV                               | _                  | 0.00             | 68                 |
| Le Sueur County, Minnesota                             | FCEV                               | _                  | 0.00             | 69                 |
| Owatonna: City of Owatonna, (Minnesota)                | Natural gas electricity generators | 0.01               | 0.01             | 69                 |
| Big River Resources Boyceville LLC, Boyceville         | Syngas: ethanol                    | _                  | 20.00            | 73                 |
| Elk River: Great River Energy                          | Natural gas electricity generators | 0.24               | 0.24             | 74                 |
| Dunn County, Wisconsin                                 | FCEV                               | _                  | 0.00             | 74                 |
| Winona County, Minnesota                               | FCEV                               | _                  | 0.00             | 75                 |

|                                                   |                                    | Potential H₂ Demand,<br>kilotonnes/year |                  |                      |  |
|---------------------------------------------------|------------------------------------|-----------------------------------------|------------------|----------------------|--|
| Name                                              | Demand Type                        | Current<br>(2017)                       | Future<br>(2030) | – Distance,<br>miles |  |
| Chisago County, Minnesota                         | FCEV                               | _                                       | 0.00             | 76                   |  |
| Polk County, Wisconsin                            | FCEV                               | _                                       | 0.00             | 77                   |  |
| Pleasant Valley (Minnesota): Great River Energy   | Natural gas electricity generators | 0.42                                    | 0.42             | 78                   |  |
| Waseca County, Minnesota                          | FCEV                               | _                                       | 0.00             | 78                   |  |
| Janesville: City of Janesville, (Minnesota)       | Natural gas electricity generators | 0.00                                    | 0.00             | 80                   |  |
| Spring Valley: Spring Valley Pub Utils Commission | Natural gas electricity generators | 0.00                                    | 0.00             | 80                   |  |
| Guardian Energy LLC, Janesville                   | Syngas: Ethanol                    | _                                       | 60.00            | 81                   |  |
| Arcadia Electric: City of Arcadia, (Wisconsin)    | Natural gas electricity generators | 0.00                                    | 0.00             | 83                   |  |
| Eau Claire County, Wisconsin                      | FCEV                               | _                                       | 0.00             | 84                   |  |
| Sibley County, Minnesota                          | FCEV                               | _                                       | 0.00             | 85                   |  |
| Isanti County, Minnesota                          | FCEV                               | _                                       | 0.00             | 85                   |  |
| Wright County, Minnesota                          | FCEV                               | _                                       | 0.00             | 86                   |  |
| Cambridge CT: Great River Energy                  | Natural gas electricity generators | 0.20                                    | 0.20             | 86                   |  |
| Elk Mound: Dairyland Power Coop                   | Natural gas electricity generators | 0.14                                    | 0.14             | 87                   |  |
| Sherburne County, Minnesota                       | FCEV                               | _                                       | 0.00             | 87                   |  |
| Nicollet County, Minnesota                        | FCEV                               | _                                       | 0.00             | 88                   |  |
| Fillmore County, Minnesota                        | FCEV                               | _                                       | 0.00             | 89                   |  |
|                                                   |                                    |                                         |                  |                      |  |

|                                                          |                                    | Potentia<br>kiloto |                  |                    |
|----------------------------------------------------------|------------------------------------|--------------------|------------------|--------------------|
| Name                                                     | Demand Type                        | Current<br>(2017)  | Future<br>(2030) | Distance,<br>miles |
| Wheaton: Northern States Power Co, Minnesota             | Natural gas electricity generators | 0.80               | 0.80             | 90                 |
| Preston (Minnesota): Preston Public Utilities Commission | Natural gas electricity generators | 0.00               | 0.00             | 90                 |
| Heartland Corn Products, Winthrop                        | Syngas: ethanol                    | _                  | 30.00            | 91                 |
| Mower County, Minnesota                                  | FCEV                               | _                  | 0.00             | 91                 |
| Glencoe: Glencoe Light & Power Commission                | Natural gas electricity generators | 0.00               | 0.00             | 91                 |
| Wilmarth: Northern States Power Co, Minnesota            | Natural gas electricity generators | 0.02               | 0.02             | 94                 |
| Mankato Energy Center: Southern Power Co                 | Natural gas electricity generators | 3.80               | 3.80             | 94                 |
| Pro Corn LLC, Preston                                    | Syngas: ethanol                    | _                  | 20.00            | 94                 |
| Blue Earth County, Minnesota                             | FCEV                               | _                  | 0.00             | 96                 |
| Trempealeau County, Wisconsin                            | FCEV                               | _                  | 0.00             | 96                 |
| Cumberland (Wisconsin): City of Cumberland, (Wisconsin)  | Natural gas electricity generators | 0.00               | 0.00             | 98                 |
| Hutchinson Plant #2: Hutchinson Utilities Commission     | Natural gas electricity generators | 0.14               | 0.14             | 99                 |
| Hutchinson Plant #1: Hutchinson Utilities Commission     | Natural gas electricity generators | 0.06               | 0.06             | 100                |
| Freeborn County, Minnesota                               | FCEV                               | _                  | 0.00             | 100                |

\*H<sub>2</sub> demand for synfuel production using CO<sub>2</sub> from SMR units in the refineries is exclusive of H<sub>2</sub> demand by these refineries

|                                                            |                                    |                   |                  | Potential H <sub>2</sub> Demand,<br>kilotonnes/year |  |  |
|------------------------------------------------------------|------------------------------------|-------------------|------------------|-----------------------------------------------------|--|--|
| Name                                                       | Demand Type                        | Current<br>(2017) | Future<br>(2030) | Distance<br>(miles)                                 |  |  |
| Distance Sherburne County, Minnesota                       | FCEV                               | 0.00              | 0.00             | 12                                                  |  |  |
| Wright County, Minnesota                                   | FCEV                               | 0.00              | 0.00             | 13                                                  |  |  |
| Elk River: Great River Energy                              | Natural gas electricity generators | 0.24              | 0.24             | 17                                                  |  |  |
| Granite City: Northern States Power Co–Minnesota           | Natural gas electricity generators | 0.00              | 0.00             | 27                                                  |  |  |
| Stearns County, Minnesota                                  | FCEV                               | 0.00              | 0.00             | 32                                                  |  |  |
| Benton County, Minnesota                                   | FCEV                               | 0.00              | 0.00             | 32                                                  |  |  |
| Anoka County, Minnesota                                    | FCEV                               | 0.00              | 0.00             | 34                                                  |  |  |
| Hennepin County, Minnesota                                 | FCEV                               | 0.00              | 0.02             | 39                                                  |  |  |
| Riverside, Minnesota: Northern States Power Co., Minnesota | Natural gas electricity generators | 8.48              | 8.48             | 39                                                  |  |  |
| Covanta Hennepin Energy: Covanta Energy Co                 | Natural gas electricity generators | 0.03              | 0.03             | 42                                                  |  |  |
| Southeast Steam Plant: Veolia Energy                       | Natural gas electricity generators | 0.38              | 0.38             | 43                                                  |  |  |
| Mille Lacs County, Minnesota                               | FCEV                               | 0.00              | 0.00             | 45                                                  |  |  |
| Isanti County, Minnesota                                   | FCEV                               | 0.00              | 0.00             | 46                                                  |  |  |
| Univ Minnesota CHP plant, Veolia Energy                    | Natural gas electricity generators | 0.83              | 0.83             | 46                                                  |  |  |
| Meeker County, Minnesota                                   | FCEV                               | 0.00              | 0.00             | 49                                                  |  |  |
| Ramsey County, Minnesota                                   | FCEV                               | 0.00              | 0.01             | 49                                                  |  |  |
| Litchfield: Litchfield Public Utilities                    | Natural gas electricity generators | 0.00              | 0.00             | 50                                                  |  |  |
| Blue Lake: Northern States Power Co., Minnesota            | Natural gas electricity generators | 0.65              | 0.65             | 52                                                  |  |  |
| Cambridge CT: Great River Energy                           | Natural gas electricity generators | 0.20              | 0.20             | 53                                                  |  |  |
| St. Paul Cogeneration: St. Paul Cogeneration, LLC          | Natural gas electricity generators | 0.38              | 0.38             | 53                                                  |  |  |
| Koda Biomass Plant: Koda Energy, LLC                       | Natural gas electricity generators | 0.16              | 0.16             | 54                                                  |  |  |
| Shakopee Energy Park: Minnesota Municipal Power Agency     | Natural gas electricity generators | 0.06              | 0.06             | 54                                                  |  |  |
| Minnesota River: Minnesota Municipal Power Agency          | Natural gas electricity generators | 0.00              | 0.00             | 54                                                  |  |  |
| McLeod County, Minnesota                                   | FCEV                               | 0.00              | 0.00             | 55                                                  |  |  |
| Glencoe: Glencoe Light & Power Commission                  | Natural gas electricity generators | 0.00              | 0.00             | 55                                                  |  |  |

## Table F-2. Hydrogen demand within 100 miles of the Monticello Nuclear Power Plant.

|                                                              |                                    |                   | otential H <sub>2</sub> Demand,<br>kilotonnes/year |                     |
|--------------------------------------------------------------|------------------------------------|-------------------|----------------------------------------------------|---------------------|
| Name                                                         | Demand Type                        | Current<br>(2017) | Future<br>(2030)                                   | Distance<br>(miles) |
| High Bridge: Northern States Power Co–Minnesota              | Natural gas electricity generators | 10.19             | 10.19                                              | 55                  |
| Hutchinson Plant #2: Hutchinson Utilities Commission         | Natural gas electricity generators | 0.14              | 0.14                                               | 57                  |
| Washington County, Minnesota                                 | FCEV                               | 0.00              | 0.00                                               | 57                  |
| Black Dog: Northern States Power Co–Minnesota                | Natural gas electricity generators | 3.68              | 3.68                                               | 57                  |
| Scott County, Minnesota                                      | FCEV                               | 0.00              | 0.00                                               | 58                  |
| Hutchinson Plant #1: Hutchinson Utilities Commission         | Natural gas electricity generators | 0.06              | 0.06                                               | 58                  |
| Morrison County, Minnesota                                   | FCEV                               | 0.00              | 0.00                                               | 59                  |
| Gerdau Long Steel North America–St. Paul                     | DRI                                | 0.00              | 1.00                                               | 59                  |
| Carver County, Minnesota                                     | FCEV                               | 0.00              | 0.00                                               | 59                  |
| Allen S King: Northern States Power Co–Minnesota             | Natural gas electricity generators | 0.04              | 0.04                                               | 62                  |
| Marathon Petroleum Corp. St. Paul Park Refinery              | Refinery                           | 29.00             | 37.00                                              | 62                  |
| Mora: City of Mora–(Minnesota)                               | Natural gas electricity generators | 0.00              | 0.00                                               | 62                  |
| Marathon Petroleum Corp. St. Paul Park Refinery              | Syngas: Hydrogen, SMR*             | _                 | 15.00                                              | 62                  |
| Kanabec County, Minnesota                                    | FCEV                               | 0.00              | 0.00                                               | 63                  |
| Bushmills Ethanol Inc, Atwater                               | Syngas: Ethanol                    | _                 | 30.00                                              | 64                  |
| Dakota County, Minnesota                                     | FCEV                               | 0.00              | 0.01                                               | 64                  |
| Inver Hills: Northern States Power Co–Minnesota              | Natural gas electricity generators | 0.09              | 0.09                                               | 65                  |
| Koch Industries Inc Flint Hills Resources Pine Bend Refinery | Syngas: Hydrogen, SMR*             | _                 | 158.00                                             | 65                  |
| Koch Industries Inc Flint Hills Resources Pine Bend Refinery | Refinery                           | 85.00             | 108.00                                             | 66                  |
| LSP-Cottage Grove LP: Cottage Grove Operating Services LLC   | Natural gas electricity generators | 1.65              | 1.65                                               | 67                  |
| Sibley County, Minnesota                                     | FCEV                               | 0.00              | 0.00                                               | 68                  |
| Chisago County, Minnesota                                    | FCEV                               | 0.00              | 0.00                                               | 70                  |
| St. Croix County, Wisconsin                                  | FCEV                               | 0.00              | 0.00                                               | 74                  |
| New Prague: New Prague Utilities Commission                  | Natural gas electricity generators | 0.01              | 0.01                                               | 77                  |
| Heartland Corn Products, Winthrop                            | Syngas: Ethanol                    | _                 | 30.00                                              | 78                  |
| Kandiyohi County, Minnesota                                  | FCEV                               | 0.00              | 0.00                                               | 80                  |

|                                                         |                                    | Potential H <sub>2</sub> Demand,<br>kilotonnes/year |                  |                     |
|---------------------------------------------------------|------------------------------------|-----------------------------------------------------|------------------|---------------------|
| Name                                                    | Demand Type                        | Current<br>(2017)                                   | Future<br>(2030) | Distance<br>(miles) |
| Willmar: Willmar Municipal Utilities                    | Natural gas electricity generators | 0.06                                                | 0.06             | 82                  |
| Cannon Falls Energy Center: Invenergy Services LLC      | Natural gas electricity generators | 0.35                                                | 0.35             | 84                  |
| Pine County, Minnesota                                  | FCEV                               | 0.00                                                | 0.00             | 86                  |
| Rice County, Minnesota                                  | FCEV                               | 0.00                                                | 0.00             | 87                  |
| Pierce County, Wisconsin                                | FCEV                               | 0.00                                                | 0.00             | 88                  |
| Polk County, Wisconsin                                  | FCEV                               | 0.00                                                | 0.00             | 88                  |
| Faribault Energy Park: Minnesota Municipal Power Agency | Natural gas electricity generators | 3.41                                                | 3.41             | 89                  |
| Todd County, Minnesota                                  | FCEV                               | 0.00                                                | 0.00             | 90                  |
| Le Sueur County, Minnesota                              | FCEV                               | 0.00                                                | 0.00             | 90                  |
| Pope County, Minnesota                                  | FCEV                               | 0.00                                                | 0.00             | 92                  |
| Douglas County, Minnesota                               | FCEV                               | 0.00                                                | 0.00             | 95                  |
| Crow Wing County, Minnesota                             | FCEV                               | 0.00                                                | 0.00             | 95                  |
| Renville County, Minnesota                              | FCEV                               | 0.00                                                | 0.00             | 96                  |
| Red Wing: Northern States Power Co, Minnesota           | Natural gas electricity generators | 0.02                                                | 0.02             | 97                  |

\*H<sub>2</sub> demand for synfuel production using CO<sub>2</sub> from SMR units in the refineries is exclusive of H<sub>2</sub> demand by these refineries

| Labels/<br>demand<br>points | Name                                                            | Demand Type                        | Potential Demand,<br>kilotonnes | Future Potential<br>Demand, kilotonnes |
|-----------------------------|-----------------------------------------------------------------|------------------------------------|---------------------------------|----------------------------------------|
| 1                           | Koch Industries Inc Flint Hills Resources Pine<br>Bend Refinery | Refinery                           | 85.06                           | 107.76                                 |
| 2                           | Marathon Petroleum Corp. St. Paul Park Refinery                 | Refinery                           | 28.90                           | 36.61                                  |
| 3                           | LSP-Cottage Grove LP: Cottage Grove Operating<br>Services LLC   | Natural gas electricity generators | 1.65                            | 1.65                                   |
| 4                           | Gerdau Long Steel North America–St. Paul                        | DRI                                | 0.40                            | 1.42                                   |
| 5                           | High Bridge: Northern States Power Co-Minnesota                 | Natural gas electricity generators | 10.19                           | 10.19                                  |
| 6                           | St. Paul Cogeneration: St. Paul Cogeneration LLC                | Natural gas electricity generators | 0.38                            | 0.38                                   |
| 7                           | Univ Minnesota CHP Plant: Veolia Energy                         | Natural gas electricity generators | 0.83                            | 0.83                                   |
| 8                           | Southeast Steam Plant: Veolia Energy                            | Natural gas electricity generators | 0.38                            | 0.38                                   |
| 9                           | Covanta Hennepin Energy: Covanta Energy Co                      | Natural gas electricity generators | 0.03                            | 0.03                                   |
| 10                          | Riverside (Minnesota): Northern States Power Co-<br>Minnesota   | Natural gas electricity generators | 8.48                            | 8.48                                   |
| 11                          | Black Dog: Northern States Power Co–Minnesota                   | Natural gas electricity generators | 3.68                            | 3.68                                   |
| 12                          | Blue Lake: Northern States Power Co–Minnesota                   | Natural gas electricity generators | 0.65                            | 0.65                                   |
| 13                          | Shakopee Energy Park: Minnesota Municipal<br>Power Agency       | Natural gas electricity generators | 0.06                            | 0.06                                   |
| 14                          | Koda Biomass Plant: Koda Energy LLC                             | Natural gas electricity generators | 0.16                            | 0.16                                   |
| 15                          | Minnesota River: Minnesota Municipal Power<br>Agency            | Natural gas electricity generators | 0.00                            | 0.00                                   |

Table F-3. Hydrogen demand locations covered for transportation near Xcel Energy's Prairie Island Nuclear Power Plant

| Table F-4. Overlapping hydrogen demand within 50 miles of Xcel Energy's Prairie Island and Monticello Nuclear Power Plants.                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| *H <sub>2</sub> demand for synfuel production using CO <sub>2</sub> from SMR units in the refineries is exclusive of H <sub>2</sub> demand by these refineries |

|                                                              |                                    | Potential H <sub>2</sub><br>kilotonnes | Potential H <sub>2</sub> Demand, kilotonnes |                    | Monticello         |
|--------------------------------------------------------------|------------------------------------|----------------------------------------|---------------------------------------------|--------------------|--------------------|
| Name                                                         | Demand Type                        | Current<br>(2017)                      | Future<br>(2030)                            | Distance,<br>miles | Distance,<br>miles |
| Red Wing: Northern States Power Co–Minnesota                 | Natural gas electricity generators | 0.02                                   | 0.02                                        | 13                 | 97                 |
| Cannon Falls Energy Center: Invenergy Services LLC           | Natural gas electricity generators | 0.35                                   | 0.35                                        | 20                 | 84                 |
| LSP-Cottage Grove LP: Cottage Grove Operating Services LLC   | Natural gas electricity generators | 1.65                                   | 1.65                                        | 23                 | 67                 |
| Inver Hills: Northern States Power Co–Minnesota              | Natural gas electricity generators | 0.09                                   | 0.09                                        | 26                 | 65                 |
| Koch Industries Inc Flint Hills Resources Pine Bend Refinery | Synfuels: Hydrogen, SMR*           | -                                      | 158                                         | 27                 | 65                 |
| Marathon Petroleum Corp. St. Paul Park Refinery              | Refinery                           | 29                                     | 37                                          | 27                 | 62                 |
| Koch Industries Inc Flint Hills Resources Pine Bend Refinery | Refinery                           | 85                                     | 108                                         | 27                 | 66                 |
| Marathon Petroleum Corp. St. Paul Park Refinery              | Synfuels Hydrogen, SMR*            | -                                      | 15                                          | 27                 | 62                 |
| Gerdau Long Steel North America–St. Paul                     | DRI                                | 0                                      | 1                                           | 30                 | 59                 |
| St. Paul Cogeneration: St. Paul Cogeneration LLC             | Natural gas electricity generators | 0.38                                   | 0.38                                        | 38                 | 53                 |
| High Bridge: Northern States Power Co–Minnesota              | Natural gas electricity generators | 10.19                                  | 10.19                                       | 39                 | 55                 |
| Allen S King: Northern States Power Co-Minnesota             | Natural gas electricity generators | 0.04                                   | 0.04                                        | 40                 | 62                 |
| Univ Minnesota CHP Plant: Veolia Energy                      | Natural gas electricity generators | 0.83                                   | 0.83                                        | 45                 | 46                 |
| Southeast Steam Plant: Veolia Energy                         | Natural gas electricity generators | 0.38                                   | 0.38                                        | 46                 | 43                 |
| Faribault Energy Park: Minnesota Municipal Power Agency      | Natural gas electricity generators | 3.41                                   | 3.41                                        | 48                 | 89                 |
| Covanta Hennepin Energy: Covanta Energy Co                   | Natural gas electricity generators | 0.03                                   | 0.03                                        | 49                 | 42                 |
| Saint Marys Hospital Power Plant: St Mary's Hospital         | Natural gas electricity generators | 0.68                                   | 0.68                                        | 50                 |                    |

| Labels/<br>demand<br>points | Name                                                    | Demand Type                        | Potential Demand,<br>kilotonnes | Future Potential<br>Demand,<br>kilotonnes |
|-----------------------------|---------------------------------------------------------|------------------------------------|---------------------------------|-------------------------------------------|
| 2                           | Hutchinson Plant #1: Hutchinson Utilities<br>Commission | Natural gas electricity generators | 0.06                            | 0.06                                      |
| 3                           | Hutchinson Plant #2: Hutchinson Utilities<br>Commission | Natural gas electricity generators | 0.14                            | 0.14                                      |
| 4                           | Bushmills Ethanol Inc, Atwater                          | Syngas: Ethanol                    | -                               | 30                                        |
| 5                           | Heartland Corn Products, Winthrop                       | Syngas: Ethanol                    | -                               | 30                                        |
| 6                           | Willmar: Willmar Municipal Utilities                    | Natural gas electricity generators | 0.06                            | 0.06                                      |

Table F-5. Hydrogen demand locations covered for transportation near Xcel Energy's Monticello NPP.