

INL/RPT-24-80449

Light Water Reactor Sustainability Program

A Full-scale Demonstration of
Pressurized Water Reactor Core
Design Optimization using
Multi-Cycle Optimization
Methodology

September 2024

U.S. Department of Energy

Office of Nuclear Energy

DISCLAIMER
This information was prepared as an account of work sponsored by an

agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/RPT-24-80449

A Full-scale Demonstration of Pressurized Water
Reactor Core Design Optimization using
Multi-Cycle Optimization Methodology

Junyung Kim1
Mohammad Abdo1
Congjian Wang1

Geon Kim1

Svetlana Lawrence1

Juan Cristhian Luque Gutierrez2
Nicholas Rollins2

Jason Hou2

1 Idaho National Laboratory
2 North Carolina State University

September 2024

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Page intentionally left blank

iii

EXECUTIVE SUMMARY
The U.S. nuclear utilities encounter a difficulty in upholding essential safety standards while also

securing economic viability for continued operation. Safety stands as a pivotal factor across all facets of
operations within light water reactor nuclear power plants. Achieving economic feasibility alongside
safety can be facilitated through the utilization of a risk-informed framework, exemplified by the ongoing
development within the Risk-Informed Systems Analysis (RISA) Pathway under the auspices of the U.S.
Department of Energy's LWRS Program. This initiative advocates for a diverse array of research and
development endeavors aimed at optimizing both safety and economic efficacy within nuclear power
plants, particularly pertinent as many plants contemplate subsequent license renewals.

The RISA Pathway has two main goals: deploy methodologies and technologies that better represent
safety margins, cost, and safety factors and develop advanced applications that enable cost-effective plant
operation. This report assesses the potential for resolving multi-cycle plant reload challenges through real-
world scenarios utilizing the Plant ReLoad Optimization (PRLO) framework. This framework offers
reactor core design developers analytic tools of reactor safety and fuel performance with the assistance of
artificial intelligence (AI) to enhance core design solutions. Multi-objective genetic algorithm alongside
acceleration techniques is considered as an enabling technology for improving fuel efficiency while
upholding safety thresholds. The demonstration of multi-cycle core design optimization is performed,
then results are compared to benchmarks. This report investigates the practical application of the PRLO
platform in addressing real-world core design challenges and contrasting outcomes with those derived
from heuristic or conventional algorithms.

The cost of fuel is a critical consideration for nuclear power plants. Various factors can be
manipulated to reduce the cost, including batch size, enrichment levels, and the use of burnable poison.
Alongside these economic factors, meeting cycle energy requirements and operation and safety
constraints, such as the hot zero power moderator temperature coefficient (MTC) and hot channel factor
(FΔH), is imperative. The large number of design variable combinations at both the lattice and core levels,
along with multiple design objectives and constraints, make single-cycle optimization highly challenging.
Furthermore, the current cycle's core loading influences subsequent cycles, establishing interdependencies
between reload cycles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs).
From an optimization standpoint, sequential cycle-by-cycle optimization with no coupling between cycles
may not yield optimal results from multi-year operation standpoint. Therefore, multi-cycle core design
throughout the planning horizon becomes crucial when the goal is to minimize multi-cycle fuel costs or,
at the very least, to link sequential cycles through carefully formulated objectives in the plant reload
process.

The plant reload optimization using AI offers several benefits discussed below:

Efficiency - AI can analyze large volumes of data to optimize plant reload processes quickly and
efficiently. It can identify patterns, correlations, and trends that may not be apparent to humans, leading to
more efficient process of core design.

Cost Reduction - By optimizing core designs, AI can reduce costs associated with volume of fresh fuel
and spent fuel needing processing, down-power, and inventory management.

Improved Safety - Optimized core design can enhance safety by reducing the risk of accidents and
incidents. AI can identify potential hazards of the suggested core designs and recommend preventive
measures to mitigate risks.

Enhanced Performance - AI-driven optimization can improve the overall performance of the plant by
maximizing safety margins potentially reducing the need to down-power during plant operation which
can lead to increased productivity, higher throughput, and better overall performance metrics for the
plant.

iv

Adaptability – AI algorithms possess the adaptability to learn and adjust to various plant designs and
operating conditions. This ability ensures that the system remains efficient and effective, regardless of
alterations in the environment or operational parameters.

In this fiscal year, the PRLO framework, in which the Risk Analysis Virtual Environment (RAVEN)
plays a pivotal role, has been upgraded to include optimization capabilities for n-th cycle and consecutive
cycles for a PWR. As part of this enhancement, the RAVEN-SIMULATE3 interface was expanded to
handle fuel label maps in addition to just fuel types, enabling the optimization process to account for fuel
assemblies from previous cycles. To showcase this new capability, single-cycle optimization cases with
two distinct objectives were analyzed. Furthermore, a case involving the optimization of two consecutive
cycles, starting from the 10th cycle with a specific fuel Inventory Management strategy, was also
examined. The reactor model used for these optimizations was a generic AP1000 model based on open-
source data. In the two single-cycle optimization cases, the goal was to exceed the performance of an
equilibrium cycle reference design using the same inventory. For the two-consecutive-cycle case, the aim
was to optimize each cycle individually to achieve superior fuel performance compared to the reference
design across both cycles. The results demonstrated that the PRLO framework effectively guided the
design process, yielding solutions that outperformed the reference model in all scenarios tested.

v

Page intentionally left blank

vi

CONTENTS
EXECUTIVE SUMMARY ... iii

CONTENTS .. vi

ACRONYMS.. xii

1. INTRODUCTION .. 14

2. DEVELOPMENT OF MULTI-CYCLE PLANT RELOAD OPTIMIZATION
FRAMEWORK .. 18
2.1 Optimization Framework in RAVEN ... 18
2.2 RAVEN – SIMULATE3 Interface Development ... 18
2.3 Multi–Objective Optimization – Non-Dominated Sorting Genetic Algorithm II 21

2.3.1 Dominance Depth Method .. 23
2.3.2 Elitism ... 23
2.3.3 Crowding Distance .. 23
2.3.4 Survivor Selection ... 24
2.3.5 Optimization Procedures ... 24

2.4 Multi–Cycle Fuel Reloading Optimization ... 25
2.4.1 The n-th cycle optimization ... 25
2.4.2 Multi – cycle optimization with fixed Inventory Management strategy 26
2.4.3 Evolution Operators Development in RAVEN .. 28

2.5 Optimization Acceleration Methods ... 30
2.5.1 Adaptive Mutation / Crossover Probabilities ... 30
2.5.2 Active Subspaces for an Efficient GA in high-dimensional Problems 34

3. DEMONSTRATION OF CORE DESIGN OPTIMIZATION WITHIN PRLO
FRAMEWORK .. 39
3.1 Single – Cycle Optimization – Cycle 10 .. 39

3.1.1 Problem Statement .. 40
3.1.2 Optimization Results and Analysis .. 40

3.2 Multi – Cycle Optimization – Cycle 10 & Cycle 11 ... 44
3.2.1 Problem Statement .. 44
3.2.2 Inventory Management .. 44
3.2.3 Consecutive Cycles Optimization .. 45
3.2.4 Optimization Results and Analysis .. 45

4. SUMMARY AND FUTURE WORKS .. 49

ACKNOWLEDGEMENTS .. 49

REFERENCE ... 50

APPENDIX A – ESTIMATED FUEL COST OF THE U.S. NUCLEAR OPERATING PLANTS 54

vii

APPENDIX B – COMPARISON SUMMARY AMONG MULTI-EVOLUTIONALRY
ALGORITHMS .. 57

APPENDIX C – SAMPLE RAVEN INPUT FILES FOR RAVEN – SIMULATE3 INTERFACE 60

viii

FIGURES
Figure 1. U.S. Nuclear Plant (PWR) Costs in 2021. Unit: $/MWh. [1] ... 14
Figure 2. Factors influencing fuel utilization. [3] The highlighted section is the focus of the Plant

ReLoad Optimization project. ... 15
Figure 3. Technology roadmap of the PRLO project in Risk-Informed Systems Analysis Pathway of

Light Water Reactor Sustainability Program. .. 16
Figure 4. RAVEN – SIMULATE3 interface workflow. ... 19
Figure 5. Pareto dominance in a multi objective optimization problem. [12] .. 22
Figure 6. The set of potential solutions (population) and their elements. [4] .. 22
Figure 7. The dominance depth method. [12] ... 23
Figure 8. Cuboid with neighboring solutions for calculating crowding distance. [12] 24
Figure 9. Procedure of NSGA-II. [12] .. 25
Figure 10. The approach for n-th cycle optimization (a) Label map for a generic AP1000 reactor with

157 fuel assemblies, using quarter symmetrical perturbations. (b) Quarter symmetrical
perturbation. For instance, C-12 and H-12 were swapped. This resulted in simultaneous
permutation of their symmetrical counterparts in the other quadrants. 26

Figure 11. Multi–cycle optimization process in the PRLO framework. (a) Overall workflow of n-th
and n+1-th cycle optimization. (b) Exemplary strategy for the Inventory Management. The
dotted block of RAVEN Input File is optional in case users want to change settings for the
optimization after n-th cycle. ... 27

Figure 12. Two-step approach for perturbations in the shuffling scheme: (a) The Inventory
Management – defining fuel inventory (i.e., number of the fuel assembles per batch, amount
of fresh fuel used, and reused inventories), and (b) Rearranging inventories through
permutation. .. 28

Figure 13. Two-point crossover operation in GA. ... 28
Figure 14. Steps of a performing two point partially mapped crossover. .. 29
Figure 15. Swap Mutation in GA .. 29
Figure 16. The DHM (Decreasing High Mutation) / ILC (Increasing Low Crossover) approach. 31
Figure 17. Optimization result of ZDT1 with Population size of 10 and 30 iterations: static

mutation/crossover vs. adaptive – DHM (Decreasing High Mutation) / ILC (Increasing Low
Crossover – approach. ... 32

Figure 18. Optimization result of ZDT1 with Population size of 50 and 30 iterations: static
mutation/crossover rates vs. adaptive – DHM (Decreasing High Mutation) / ILC (Increasing
Low Crossover – approach. ... 32

Figure 19. Illustration of the application of active subspace method. ... 35
Figure 20. Flowchart of modified SPSA. .. 36
Figure 21. Performance analysis of SPSA method for gradient approximation: a comparison with

analytical solutions. K=25 is used for Equation (21) and (22). .. 37
Figure 22. Computational time comparison between FDM and SPSA method for gradient

calculation/prediction of 100 data points (2.3GHz 8-core Intel Core i9). 38

ix

Figure 23. Burnup [GWd/MT] map of generic AP1000 equilibrium cycle model at the beginning of
cycle. ... 39

Figure 24. Quarter burnup map for equilibrium reference core. (a) The BOC, and (b) The EOC. 42
Figure 25. Quarter burnup map for optimized with Case A. (a) The BOC, and (b) The EOC. 42
Figure 26. Quarter burnup map for optimized Case B. (a) The BOC, and (b) The EOC. 42
Figure 27. Cycle length and boron concentration behavior during optimization process in Case A.......... 43
Figure 28. Core average burnup at the EOC and Boron concentration behavior during optimization

process in Case B .. 43
Figure 29. Hot channel factors. (a) Case A and (b) Case B. .. 44
Figure 30. Optimization results after Cycle 10. (a) Optimized burnup map at the EOC. (b) Fuel

assemblies to be removed and reused for Cycle 11. .. 45
Figure 31. Fitness behavior for Cycle 11. (a) Fitness function vs. generations. (b) Relative fitness 46
Figure 32. Hot channel factors for Cycle 11. .. 46
Figure 33. Cycle length and boron concentration behavior during optimization process of Cycle 11. 47
Figure 34. Quarter burnup map. (a) At the EOC for optimized Cycle 10 core. (b) At the BOC for

Cycle 11. ... 47
Figure 35. Shuffling scheme of fuel assemblies from optimized Cycle 10, to optimized Cycle 11. 48

x

TABLES
Table 1. Node name and description in Sim3-param.xml. ... 20

Table 2. Comparison of computational time for finding optimal solutions of ZDT1 problem with 200
population size – static vs. adaptive mutation/crossover rates (2.3GHz 8-core Intel Core i9). .. 33

Table 3. Performance parameters of equilibrium feference AP1000 model. ... 39
Table 4. Fuel inventory of equilibrium cycle in reference AP1000 model. ... 40
Table 5. Summary of key variables of single cycle optimization: Reference, Case A and Case B............ 41
Table 6. Summary of key variables of consecutive cycles optimization: Reference, Cycle 10 and

Cycle 11. ... 45
Table 7. Average burnup distribution per batches for reference equilibrium model, optimized Cycle

10, and optimized Cycle 11. .. 48
Table 8. Estimated Fuel Cost of the U.S. Nuclear Operating Plants in 2021... 54
Table 9. Comparison summary among multi evolutionary algorithms. [26] ... 58

xi

Page intentionally left blank

xii

ACRONYMS
AI artificial intelligence

API application programming interface

AS active subspaces

BOC beginning of cycle

BWR boiling water reactor

DBA design basis accident

DHM decreasing high mutation

EFPD effective full power day

EOC end of cycle

FDM finite difference method

FY fiscal year

FA fuel assembly

GA genetic algorithm

ILC increasing low crossover

INL Idaho National Laboratory

LP loading pattern

LWRS Light Water Reactor Sustainability

ML machine learning

MOEA multi-objective evolutionary algorithm

MOOP multi-objective optimization problem

MTC moderator temperature coefficient

NEI Nuclear Energy Institute

NSGA-II Non-Dominated Sorting Genetic Algorithm II

PMX partially mapped crossover

PRLO plant reload optimization

PWR pressurized-water reactor

RAVEN Risk Analysis and Virtual Environment

RISA Risk-Informed Systems Analysis

SC shuffling scheme

SPSA simultaneous perturbation stochastic approximation

ZDT Zitzler, Deb and Thiele

xiii

Page intentionally left blank

14

1. INTRODUCTION
The U.S. Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) Program's Risk-

Informed Systems Analysis (RISA) Pathway Plant ReLoad Optimization (PRLO) project is a pivotal
initiative designed to address one of the top-priority needs of the nuclear power industry –improved
efficiency, safety, and economic viability of nuclear energy. The initiative is a part of a broader strategy
to enhance the economic sustainability and competitiveness of light water reactors (LWRs), which play a
critical role in the U.S. energy landscape. According to the Nuclear Energy Institute's (NEI) Nuclear
Costs in Context report [1], fuel costs constitute approximately 18% of the total generation costs as shown
in Figure 1. In 2021, total electricity generation from nuclear power was reported to be 778 TWh. [2] The
total fuel cost for pressurized water reactors (PWRs) is estimated at $3,041.78 million ($48.28 million per
reactor unit), while the total fuel cost for boiling water reactors (BWRs) is estimated at $1,576.95 million
($50.87 million per reactor unit). This substantial expense underscores the importance of optimizing fuel
use to maintain economic viability of the U.S. nuclear fleet. APPENDIX A shows the estimated fuel cost
of the U.S. nuclear operating plants.

Figure 1. U.S. Nuclear Plant (PWR) Costs in 2021. Unit: $/MWh. [1]

The effective utilization of nuclear fuel involves efficiently using nuclear materials within reactors,
ensuring safety, and maximizing energy output while minimizing costs. The efficient utilization of
nuclear fuel implies reducing the frequency of refueling outages, which are both time-consuming and
expensive, and lowering the cost of new fuel batches. By extending the operational cycle of reactors
through improved fuel use, plants can increase their uptime and reduce the costs associated with
shutdowns and restarts. Enhancing reactor core design can enable a smaller fresh fuel batch to generate
the same amount of electricity. This enhancement not only reduces new fuel costs but also significantly
decreases expenses in the back-end fuel cycle by lowering the volume of spent fuel that needs processing.
Figure 2 illustrates the factors influencing nuclear fuel utilization.

31.17

5.94

5.89

19.34

Total
Cost

Operating
Cost

Capital
Cost

Fuel
Cost

15

Figure 2. Factors influencing fuel utilization. [3] The highlighted section is the focus of the Plant ReLoad
Optimization project.

Designing a nuclear reactor core is an exceptionally complex process due to several factors. First, the
intricate integration of physics and engineering principles presents a significant challenge, particularly in
accurately modeling neutron transport and diffusion, which is essential for predicting neutron behavior
within the core. This requires a deep understanding of nuclear reactions and precise calculations to ensure
efficient reactor operation. Additionally, thermal-hydraulic considerations must be meticulously balanced
to effectively remove heat from the core while maintaining safe operating temperatures, preventing
overheating, and ensuring structural integrity. Safety and regulatory requirements add further complexity,
as nuclear reactors must adhere to stringent safety standards, necessitating rigorous safety protocols and
comprehensive accident analyses for worst-case scenarios. Extensive testing and validation are often
required, increasing the design's complexity and time. Material performance is another critical aspect,
with fuel and cladding materials needing to withstand extreme conditions, such as high radiation and
corrosive environments, over extended periods. Ensuring materials long-term durability and resistance to
corrosion and wear is crucial for safe and efficient reactor operation, requiring advanced material science
and engineering expertise. Economic considerations also play a significant role, as designers must balance
initial fuel costs with long-term operational efficiency (e.g., single-cycle and multi-cycle optimization).
Lastly, the design space for reactor cores is vast, with over 1030 possible combinations for a 17×17 PWR
core design. In addition, traditional methods of deciding core loading pattern (LP) and reload quantity are
labor-intensive and time-consuming.

The PRLO project aims to develop an integrated, comprehensive framework offering an all-in-one
solution for reload evaluations with a special focus on optimization of core design. [4] The project is
leveraging artificial intelligence (AI) – machine learning (ML) techniques to find optimal solutions, a
nearly impossible task for humans due to a large design space. The aim of this study is to enhance nuclear
reactor efficiency by improving the process of reloading fresh fuel and optimizing fuel shuffling scheme.
This optimization could lead potential fuel cost savings for a single PWR unit in the order of 5 – 10%
($2M to $5M per year on average) where these savings apply solely to new fuel costs and do not include
additional savings from reduced spent fuel processing costs.

16

Figure 3. Technology roadmap of the PRLO project in Risk-Informed Systems Analysis Pathway of Light
Water Reactor Sustainability Program.

Figure 3 illustrates the PRLO project’s technology roadmap and research strategy spanning multiple
fiscal years (FYs), comprising distinct phases of research and development. In Phase 1 (FY19 – 20),
available tools and methods were investigated and tested for fuel reloading optimization. Plant-based
design basis accident (DBA) scenarios were simulated using traditional deterministic methods with the
RELAP5-3D thermal-hydraulic analysis code [5] developed at Idaho National Laboratory (INL).
Simulations used fixed core loading and evaluated recoverable margins. In Phase 2 (FY21 – 22), the
development of an optimization framework using the genetic algorithm (GA) and application
programming interfaces (APIs) of nuclear system code in Risk Analysis and Virtual Environment
(RAVEN) was initiated. During this development, RAVEN's capability to perform neutronics and
thermohydraulic analyses was enhanced. As an initial test, ten limiting DBA scenarios for a generic PWR
and a single objective optimization framework were developed. Additionally, constraints in
computational tools, particularly in reactor core design and fuel performance system codes, were
identified. [6] These constraints were reviewed through benchmark studies, and the applicability of the
risk-informed approach for plant reload optimization was assessed. In Phase 3 (FY22 – 23), the project
enhanced the framework with additional capabilities to support regulatory-required fuel safety analyses.
The development and deployment of the multi – objective optimization process using the Non-Dominated
Sorting Genetic Algorithm II (NSGA-II) in RAVEN were completed. The newly developed NSGA-II
optimization framework was demonstrated with a constrained multi – objective optimization of a PWR
core LP. In addition, the project has initiated engagement with Constellation Energy© for applications of
fuel reload optimization framework deployments to industry. In Phase 4, the project focuses on
demonstration of multi – cycle fuel reloading optimization showing effectiveness of the platform
comparing to status-quo industrial approach for fuel reloading optimization. For FY24, two consecutive –

17

cycle fuel management problems have been solved leveraging the optimization framework and the
outcomes of the optimization were benchmarked against genetic PWR fuel reloading data. For FY25, the
project is targeting to evolve the platform to the equilibrium-cycle fuel management problem.

This report consists of four sections: Section 2 outlines the key features of RAVEN, which serves as
the foundation of the PRLO framework, and provides the theoretical background of the optimization
algorithm and multi-cycle optimization scheme. Section 3 presents the demonstrative study: single and
multi-cycle optimization of a genetic AP1000 reactor core. Section 4 presents conclusions of the report
and outlines future work.

18

2. DEVELOPMENT OF MULTI-CYCLE PLANT RELOAD
OPTIMIZATION FRAMEWORK

2.1 Optimization Framework in RAVEN
The main driving force behind the PRLO framework is RAVEN developed at INL designed to

facilitate advanced risk analysis, uncertainty quantification, and optimization tasks in various engineering
domains, particularly focusing on nuclear energy systems. [7] The tool integrates state-of-the-art
methodologies to provide a comprehensive framework for modeling, simulation, and decision support,
making it an invaluable asset for enhancing the safety, efficiency, and reliability of nuclear reactors.

One of the core strengths of RAVEN is its powerful optimization capabilities. It supports a wide
range of optimization algorithms, including gradient-based methods, evolutionary algorithms, and hybrid
approaches, enabling users to tackle complex, multi-objective optimization problems. RAVEN's
optimization framework is highly flexible and can be tailored to specific user needs. It supports not only
the definition of custom objective functions and constraints, making it adaptable to various types of
optimization problems, but also the tools necessary to find solutions that meet multiple criteria
simultaneously. This is particularly useful in the nuclear industry, where decisions often need to balance
competing objectives such as cost, safety, performance, and regulatory compliance. By incorporating
these advanced optimization techniques, RAVEN allows engineers to identify optimal configurations and
operational strategies that enhance reactor performance while minimizing risks and uncertainties.

Another significant feature of RAVEN is its robust API, which facilitates seamless integration with
multiple nuclear system codes. This capability is critical for conducting comprehensive simulations and
analyses that require coupling of different modeling tools. The API allows RAVEN to interface with
established codes such as RELAP5-3D, SIMULATE3 [8] , PARCS [9], and BISON [10], among others,
enabling the exchange of data and execution of coupled simulations. This interoperability ensures that
users can leverage the strengths of various specialized tools within a unified framework, enhancing the
accuracy and reliability of their analyses.

The API-driven integration also supports the execution of complex workflows involving multiple
stages of simulation and analysis. For instance, in a typical nuclear safety assessment, one might need to
perform thermal-hydraulic simulations, structural integrity analyses, and probabilistic risk assessments.
RAVEN's API allows these tasks to be orchestrated in a coordinated manner, ensuring that the results
from one stage can seamlessly inform the next. This capability not only streamlines the analysis process
but also enhances the fidelity of the overall assessment by ensuring consistency across different modeling
domains.

2.2 RAVEN – SIMULATE3 Interface Development
SIMULATE3, developed by Studsvik©, is a neutronics code designed to simulate nuclear fuel

depletion within reactor cores. It plays a vital role in the detailed analysis of core behavior by solving
neutron diffusion equations across various energy groups. The code is specifically tailored to model the
time-dependent changes in nuclear fuel during fission, accurately capturing the evolution of isotopic
compositions within fuel assemblies (FAs) over time. Renowned for its precision in predicting core
reactivity, power distribution, and burnup, SIMULATE3 is a tool for optimizing reactor performance and
ensuring safety. Additionally, the code integrates complex fuel management strategies, providing precise
calculations that support informed decisions on fuel LPs and cycle lengths.

The RAVEN – SIMULATE3 interface aims to communicate RAVEN and SIMULATE3 during the
optimization process. This interface supports generating SIMULATE3 input files and executes them, to
later collect information needed for evaluating individual designs and inform the optimization process in
GA. On top of the RAVEN – SIMULATE3 interface already developed in [11], new features allowing
users having n-th cycle optimization (not necessarily the first cycle optimization) capabilities are added.

19

Figure 4 illustrates workflows for RAVEN – SIMULATE3 interface and data stream. The API requires
three interface python script files: SimulateInterface.py, SpecificParser.py, and
SimulateData.py, and three RAVEN and CMS (CasMo/Simulate) input files. The
‘SimulateInterface.py’ file acts as a bridge between other classes and methods in RAVEN and the
input/output files of SIMULATE3. It runs two interface scripts: one to modify the input files and another
to extract information from the output files. Additionally, it organizes the folder structure for the
perturbed runs. The ‘SpecificParser.py’ file creates SIMULATE3 input files based on samples
provided by RAVEN. For fresh core optimization, it generates input files for the LP, while for n-th cycle
optimization, which is further explained in Section 2.3.1, it produces input files with a map of FA labels.
The ‘SimulateData.py’ file extracts and stores information from SIMULATE3 output files after each
run executed through RAVEN. As of the date of this publication, the variables that can be read and stored
are time-dependent multiplication factor (k-eff), time-dependent heat flux hot channel factor (FQ), time-
dependent nuclear enthalpy rise hot channel factor (FΔH), time-dependent critical boron concentration,
cycle length determined by the critical boron concentration being 10 ppm, time-dependent relative pin
power distribution, average burnup for each FA type at the end of cycle (EOC), maximum neutron
leakage, core average burnup at the EOC, and front end fuel cost. The ‘Sim3-param.xml’ file is where
the user can specify input information needed to generate SIMULATE3 input files, including reactor inlet
temperature, pressure, power percentage, coolant mass flow, core width, number of FAs, and FA types.
Table 1 shows node names used in Sim3-param.xml and their descriptions. The ‘Sim3-perturb.xml’
file defines the number of FAs which must match the length of chromosome in GA. The ‘input.inp’
file is in need as a placeholder for perturbed SIMULATE3 input deck. Sample scripts of XML files are
listed in – SAMPLE RAVEN INPUT FILES FOR RAVEN – SIMULATE3 INTERFACE.

Figure 4. RAVEN – SIMULATE3 interface workflow.

20

Table 1. Node name and description in Sim3-param.xml.

Node
Name

Information
Type

Description

pins

Reactor
Core
Physics

Number of fuel pins across in a fuel assembly (FA)

core_width Number of fuel assemblies (FAs) across in a reactor

load_point Burnup step to read from restart file

depletion Maximum burnup limit (unit: GWd/MT)

axial_nodes The number of axial nodes for fuel assemble

active_height Reactor active height (unit: cm)

batch The cycle number that runs

pressure Reactor pressure (unit: psia)

Boron (Initial) estimated boron concentration (unit: pcm)

Power Reactor power (unit: MWth)

Flow Percentage of coolant massflow (unit: %)

inlet_temperature Reactor inlet coolant temperature (unit: K)

map_size Size of map to be printed in SIMULATE3 input file

Symmetry Type of symmetry

restart_file Name of restart file

cs_lib Cross-section library name (including file
extension)

number_assemblies Number of FAs in the reactor core

working-dir Working directory where out files will be saved.

FA-list

Fuel
Assembly
Label
Map

name Name for FA used in RAVEN

 FAid ID for FA used in RAVEN

 type1 ~
type 4 Location in the reactor core map

21

2.3 Multi–Objective Optimization – Non-Dominated Sorting Genetic
Algorithm II

The fuel reload optimization in nuclear reactors is inherently a multi-objective optimization problem
due to the necessity to balance multiple, often conflicting objectives to achieve optimal performance and
safety. Some primary objectives typically include minimizing the volume of new fuel, maximizing the
utilization of existing fuel, and ensuring the reactor operates within safety limits. This must be balanced
with the objective of maximizing the burnup of existing fuel to extract as much energy as possible from
the current fuel inventory, thereby extending fuel life and reducing overall fuel consumption.
Additionally, safety and regulatory constraints impose critical objectives that cannot be compromised.
These include maintaining reactor power distribution within acceptable limits, and ensuring thermal
margins to prevent overheating. Each of these safety constraints interacts with the economic goals,
creating a complex trade-off landscape. For example, while increasing fuel burnup may reduce costs, it
may lead to unsafe power peaking factors or compromise the structural integrity of FAs.

When a problem involves multiple objectives, it results in a set of optimal solutions known as Pareto-
optimal solutions instead of a single optimal solution. In the absence of additional information, the
solutions on the Pareto curve (or Pareto front) are assumed to be the optimal solutions, thus Pareto-
optimal solutions. Traditional optimization methods, including multi-criteria decision-making techniques,
recommend transforming the multi-objective optimization problem (MOOP) into a single-objective
optimization problem by emphasizing one Pareto-optimal solution during single simulation. However, for
a problem with multiple solutions, this approach needs to be applied multiple times, with each simulation
expected to yield a different solution.

A MOOP includes a set of n decision variables, k objective functions, and a set of (m inequality and p
equality) constraints. The optimization goal is:

Min/Max 𝒚𝒚(𝒙𝒙) = �𝑓𝑓1(𝒙𝒙),𝑓𝑓2(𝒙𝒙), … ,𝑓𝑓𝑘𝑘(𝒙𝒙)�,𝑘𝑘 ≥ 2 (1)

Subject to 𝑔𝑔𝑖𝑖(𝒙𝒙) ≤ 0, 𝑖𝑖 = 1, 2, … ,𝑚𝑚 (2)

 ℎ𝑗𝑗(𝒙𝒙) = 0, 𝑖𝑖 = 1, 2, … , 𝑝𝑝 (3)

where 𝒙𝒙 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) is an n-dimensional decision vector in 𝒙𝒙 ∈ ℝ𝑛𝑛 (ℝ is the set of real numbers), y is a
k-dimensional objective vector in ℝ𝑘𝑘, f defines the mapping function, 𝑔𝑔𝑖𝑖 is the ith inequality constraint,
and ℎ𝑗𝑗 is the jth equality constraint.

If the following conditions are satisfied, x1 can be considered as superior to x2, where x1 and x2 are the
two feasible solution vectors of the multi minimization problem.

𝑓𝑓𝑗𝑗(𝒙𝒙𝟏𝟏) ≤ 𝑓𝑓𝑗𝑗(𝒙𝒙2) for all 𝑗𝑗 = {1,2, … , 𝑘𝑘}, and 𝑓𝑓𝑗𝑗(𝒙𝒙1) < 𝑓𝑓𝑗𝑗(𝒙𝒙2) for at least one 𝑗𝑗 = {1,2, … ,𝑘𝑘}, (4)

where k is the number of objective functions and 𝑓𝑓𝑗𝑗(𝒙𝒙) is jth value of an objective function for decision
vector x.

Here, the vector value x is the Pareto-optimal solution when it is not dominated by any other feasible
solutions. The collection of all Pareto-optimal solutions is a Pareto set, and the objective vectors that
correspond to the Pareto set are called a Pareto front, as illustrated in Figure 5.

22

Figure 5. Pareto dominance in a multi objective optimization problem. [12]

Several multi-objective evolutionary algorithms (MOEAs) have been proposed with different
purposes and applicability. APPENDIX B shows a summary of the different MOEAs. For the plant fuel
reload optimization, the NSGA-II was selected for various reasons. Firstly, after testing it on multiple
testing problems, NSGA-II showed an advantage in finding a wide range of solutions and converging
characteristics compared to the other contemporary MOEAs [13]. NSGA-II, initially proposed by Deb et
al. in 2000 [13], is a powerful GA-based method for solving MOOPs and problems with continuous and
discrete variables. Furthermore, NSGA-II has shown its efficiency in managing many engineering
optimization problems [14].

The NSGA-II optimization inherits definitions used in the GA method. For instance, the initial set of
solutions—called a population—is composed of a chromosome, which is a vector of variables (called
genes in NSGA-II). Figure 6 shows a schematic diagram of the population and its element.

Figure 6. The set of potential solutions (population) and their elements. [4]

23

2.3.1 Dominance Depth Method
The dominance depth method sorts non-dominated solutions using the Pareto dominance concept.

The non-dominated sorting procedure commences by allocating the initial population's non-dominated
members to the first front (or so-called “rank” in NSGA-II). These members are then categorized into the
first front and are removed from the initial population. The remaining population members undergo the
dominance depth method. The non-dominated members of the residual population are then designated the
second rank and added to the second front. This process is reiterated until all population members are
grouped into different fronts based on their respective ranks. Figure 7 shows an example of the
dominance depth method. The solutions are scattered and non-dominated in the left figure and sorted with
four different Pareto fronts in the right figure.

Figure 7. The dominance depth method. [12]

2.3.2 Elitism
Elitism, also known as the elite preserving strategy, is an essential concept that NSGA-II emphasizes.

It conserves a population's elite solutions by directly transferring them to the succeeding generation. Put
differently, the non-dominated solutions discovered in each generation proceed to the next generations
until some solutions dominate them.

2.3.3 Crowding Distance
To assess the density of solutions surrounding a specific solution, the crowding distance is computed.

It represents the average distance between two solutions on each side of the solution along each objective.
When comparing two solutions that have different crowding distances, the one with the greater crowding
distance is believed to exist in a less congested area. The ith solution's crowding distance is the average
side length of the cuboid, as depicted in Figure 8. If 𝑓𝑓𝑗𝑗𝑖𝑖 is the jth value of an objective function for the ith
solution and 𝑓𝑓𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚and 𝑓𝑓𝑗𝑗𝑚𝑚𝑖𝑖𝑛𝑛 are the maximum and minimum values, respectively, of jth objective function
among all the solutions, the crowding distance of ith solution is defined as the distance of the two nearest
solutions on either side, as given in Equation (5).

𝑐𝑐𝑐𝑐(𝑖𝑖) = ∑
𝑓𝑓𝑗𝑗
𝑖𝑖+1−𝑓𝑓𝑗𝑗

𝑖𝑖−1

𝑓𝑓𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚−𝑓𝑓𝑗𝑗

𝑚𝑚𝑖𝑖𝑚𝑚
𝑘𝑘
𝑗𝑗=1 (5)

where k is the number of objective functions.

M
in

im
ize

Minimize

M
in

im
ize

Minimize

Front-1

Front-2
Front-3

Front-4

24

Figure 8. Cuboid with neighboring solutions for calculating crowding distance. [12]

2.3.4 Survivor Selection
The population for the next generation was selected using a tournament selection operator, which uses

the rank of chromosomes and their crowding distances for selecting ones out of chromosomes for the next
generation. The survivor selection process is:

[1] Select chromosomes that do not violate any constraints

[2] If both the chromosomes have different ranks, the one with the better rank is selected for the next
generation

[3] If both the chromosomes are of the same ranks, the one with the higher crowding distance is
selected for the next generation.

2.3.5 Optimization Procedures
The NSGA-II procedure begins with generating an initial population P(t=0) of size N, where t

represents the number of iterations. Then a new population Q(t=0) (offspring) is created after performing
crossover and mutation operations on the population P(t=0). After that, the population P(t=0) and Q(t=0)
are combined to form a new population R(t=0) (which is the size of 2 × N), and the non-dominated
sorting procedure is performed on R(t=0). Then the population members of R(t=0) are ranked into
different fronts according to their non-domination levels.

The next process is to select N members from R(t=0) to create the next population P(t=1). If the size
of the first front is greater than or equal to N, only N members are selected from the least crowded region
of the first front to form P(t=1). On the contrary, if the size of the first front is less than N, the
chromosomes of first front are directly transferred to the next generation, and the remaining members are
taken from the least crowded region of the second front and added to P(t=1). If the size of P(t=1) is still
less than N, the same procedure is followed for the next consecutive fronts until the size of P(t=1)
becomes equal to N. The populations of P(t=2), P(t=3), …, are constructed following same procedure
until the stopping criteria are satisfied. The NSGA-II procedure is shown in Figure 9.

M
in

im
ize

Minimize

Cuboid

Pareto front

25

Figure 9. Procedure of NSGA-II. [12]

2.4 Multi–Cycle Fuel Reloading Optimization
The previous fuel-management optimization capabilities within the PRLO framework were centered

on single cycle – single, or multi-objective optimization of fuel LPs for PWRs. [15] While this approach
provided valuable insights, it primarily focused on the rearrangement of a fresh fuel inventory. In
practice, fuel reload design is inherently a multi-cycle optimization challenge, as a common strategy in
fuel management is to recycle FAs from previous cycles. This multi-cycle approach opens up a vast
design space, making the single – optimization process across multiple cycles more complex due to the
extensive search space that needs to be explored.

In this study, an initial effort was made to extend the PRLO framework to incorporate multi-cycle
optimization capabilities by implementing n-th cycle optimization and demonstrating individual cycle
optimization using a given Inventory Management strategy. In this approach, the Inventory Management
is treated separately from the optimization process. The RAVEN optimizer perturbs only the defined fuel
inventory to identify an optimal fuel reload, while the optimization of Inventory Management itself is
planned for future work.

2.4.1 The n-th cycle optimization
The approach for n-th cycle optimization involves using the RAVEN optimizer to shuffle the defined

FAs into different positions within the reactor core. In this method, the chromosome representation of the
fuel loading includes fuel labels that specify the position of each FA. The size of this chromosome
depends on the reactor map size and the symmetry applied. Unlike using only fuel types, incorporating
labels allows for consideration of FAs from previous cycles. Figure 10 illustrates a label map for a generic
AP1000 reactor with 157 FAs, where colors represent quadrants (except for the H-08 position) and IDs in
Figure 10 (b) indicate the position of an FA within the quarter-core.

The permuted FAs from the given inventory in the core are represented as a chromosome, with each
gene corresponding to an FA label and its specific position within the reactor. These FAs can be either
fresh or reused, as defined by the inventory management. The process allows only permutations, meaning
no fuel is added or removed during the shuffling of FAs. Given that each FA may have a unique burnup
history, a chromosome representing an unrestricted map has a length equal to the number of FAs in the
core. This results in a large design space; for a 157-assembly reactor, the design space is 157!.

P(t)

Q(t)

Non-
dominated

sorting

Size = 2N

Crowding distance
sorting

Rejected

Size = N

2

3

4

1

26

Since real-world core design always follow a certain level of symmetry (i.e., ¼ or 1/8 core
symmetry), maintaining symmetry in the optimization process is a natural choice which can greatly
reduce the size of the design space. Some of the symmetries that can be applied include quarter mirror,
rotational, and octant symmetries. For example, a quarter rotational symmetrical perturbation divides the
reactor into four quadrants with a fixed central position, allowing permutations in one quadrant to be
repeated in the others. This approach reduces the chromosome size to 39 genes, making the optimization
process more manageable.

(a) (b)

Figure 10. The approach for n-th cycle optimization (a) Label map for a generic AP1000 reactor with 157
fuel assemblies, using quarter symmetrical perturbations. (b) Quarter symmetrical perturbation. For
instance, C-12 and H-12 were swapped. This resulted in simultaneous permutation of their symmetrical
counterparts in the other quadrants.

2.4.2 Multi – cycle optimization with fixed Inventory Management strategy
On top of single cycle optimization capability, additional capability – multi-cycle optimization with

externally given Inventory Management – was developed in the PRLO framework. Figure 11 shows
multi–cycle optimization process in the PRLO framework. Figure 11(a) shows the workflow of n-th and
n+1-th cycle optimization. The n-th cycle means a cycle which does not necessarily the initial fuel cycle,
and n+1-th cycle is the one next to n-th cycle. The optimization in RAVEN–Optimizer needs two inputs:
RAVEN input file (see sample RAVEN input script in APPENDIX C.3. Sample RAVEN Input Script of
Multi-Cycle Optimization with Given Inventory Management) and a series of steps called “Inventory
Management.” Figure 11(b) illustrates steps for the Inventory Management for cycle n. To complete the
Inventory Management steps, reactor specifications such as core map size, reactor inlet temperature, and
pressure must be provided. Additionally, to maintain the fuel depletion histories, the results from the
optimized core should be used to define the inventory for the subsequent cycle. Given these inputs,
Python scripts read the burnup maps at the EOC from the optimized previous cycle output and selects the
most burned FAs. Users can specify the quantity of FAs to be discarded. The geometry, labels, and
enrichment of the fresh FAs are then defined, and these new fresh FAs are placed in the positions of the
discarded ones. Next, the SIMULATE3 input file for cycle n+1 is generated, which includes the fuel
inventory information that will be perturbed in the RAVEN–Optimizer. Finally, SIMULATE3 is executed
using the input file generated in the previous step, creating a restart file for cycle n+1. This restart file
contains inventory information, including the history from the previous cycle, enabling the user to

27

proceed with the optimization of the next cycle. It is important to note that different inventory definition
strategies can be applied depending on specific needs for each cycle. The developed approach involves
single-cycle optimization applied successively across different cycles, which can be challenging without
an appropriate constraint violation penalty weight in the fitness function.

(a)

(b)

Figure 11. Multi–cycle optimization process in the PRLO framework. (a) Overall workflow of n-th and
n+1-th cycle optimization. The dotted block of RAVEN Input File is optional in case users want to
change settings for the optimization after n-th cycle. (b) Exemplary strategy for the Inventory
Management.

The information needed to transition from one cycle to the next is typically encoded in SC, which
gives instructions on the batch definitions, sizes, and the positions of each FA. Figure 12 shows two steps
of perturbations of SC. Figure 12(a) illustrates an steps showing what FAs are present and where they
came from. Note that Fresh FA in H-15 position, after burning one cycle, is reused in F-10 position. FAs
with labels which do not appear in the map imply that they are discarded. Figure 12(b) shows a step of
permuting FAs. Given a fixed inventory information at a given cycle, the FAs can be shuffled in the core.

28

(a) (b)

Figure 12. Two-step approach for perturbations in the shuffling scheme: (a) The Inventory Management –
defining fuel inventory (i.e., number of the fuel assembles per batch, amount of fresh fuel used, and
reused inventories), and (b) Rearranging inventories through permutation.

Currently, the PRLO framework addresses two distinct steps, as shown in Figure 12: fuel

management is handled through external Python scripts, while the shuffling of FAs is managed by the
RAVEN Optimizer. The future plan involves incorporating flexible inventory definition and the
optimization of fuel inventory directly within RAVEN's optimization framework.

2.4.3 Evolution Operators Development in RAVEN
Fixed-inventory optimization with a SC is a permutation-based combinatorial problem, where FAs

are rearranged to occupy different positions. Since each gene in the chromosome represents a distinct FA
with its own burnup history, it is essential to use GA operators that will preserve the genes in a
chromosome.

The crossover operator in a GA combines information from two parents to generate offspring. In this
study, a two-point crossover method is used, where two points in the chromosome are selected, and the
genetic material between these points is swapped between the two parents. This ensures that each
offspring contains information from both parents. However, this method does not preserve the uniqueness
of genes. For example, Offspring 1 in Figure 13 ends up with duplicate Cs and Hs, but lacks D and G.
Applying this crossover technique to a permutation-based problem can lead to significant issues, as
repeated genes in a chromosome would mean placing the same FA in multiple positions at a given cycle,
while neglecting the FA represented by the missing gene.

Figure 13. Two-point crossover operation in GA.

To preserve the genes in a chromosome, a two point partially mapped crossover (PMX) operator was
added to the available crossover operators in the PRLO framework. The two-point PMX works by

29

creating an intermediate step where the swapped sections of the chromosomes are mapped to each other.
The swapped regions are preserved, and the outside genes are mapped back according to the previously
done mapping.

Figure 14. Steps of a performing two point partially mapped crossover.

Mutation operation in GA involves randomly altering an offspring to replicate the concept of
imperfect copies in nature. This process enables exploration of design space regions that are not
represented by the traits of previous populations. In this study, the swap mutation method is chosen
because it maintains the uniqueness of the genes. Figure 15 shows the schematic of the swap mutation in
GA.

Figure 15. Swap Mutation in GA

30

2.5 Optimization Acceleration Methods
2.5.1 Adaptive Mutation / Crossover Probabilities
2.5.1.1 Introduction

In GA, mutation and crossover probability play crucial roles in exploring and exploiting the search
space. Static mutation probability refers to a fixed rate at which random alterations are introduced into the
chromosomes of a population. This probability determines how often parts of a solution are randomly
changed, ensuring genetic diversity and preventing premature convergence to suboptimal solutions. For
instance, a mutation rate of 0.01 means that 1% of the genes in the chromosome will undergo random
changes during each iteration. Static crossover probability, on the other hand, is the fixed rate at which
pairs of chromosomes (i.e., parents) exchange segments of their genetic material to produce offspring.
This process combines the traits of two parents to create potentially superior solutions. A crossover
probability of 0.7 means that 70% of the selected pairs will undergo crossover, blending their genetic
information to explore new areas of the solution space.

Static mutation and crossover probabilities, though simple to implement, have significant drawbacks
compared to adaptive mutation and crossover probabilities. The main issue with static probabilities is
their lack of adaptability; they remain constant throughout the evolutionary process and cannot adjust to
the changing needs of the population. This inflexibility can lead to inefficiencies as the algorithm
progresses. For instance, a higher mutation rate is beneficial in the early stages for exploring the search
space, while a lower rate is preferable later for fine-tuning solutions. Static rates cannot accommodate
these shifting requirements. Additionally, static probabilities increase the risk of premature convergence,
as a low mutation rate may result in insufficient genetic diversity, causing the population to settle on
suboptimal solutions too early. Conversely, a high crossover rate might disrupt high-quality solutions
rather than enhancing them. This inability to balance exploration and exploitation effectively hampers
optimization.

Adaptive mutation and crossover probabilities, on the other hand, adjust dynamically based on the
algorithm’s performance and the state of the population, thereby maintaining diversity and enhancing the
quality of solutions. These adaptive probabilities improve convergence speed and the overall efficiency of
the optimization process by better balancing exploration and exploitation. In summary, while static
probabilities offer simplicity, adaptive probabilities provide the necessary flexibility for more effective
and efficient optimization, especially in complex and dynamic search environments. Several adaptive
mutation and crossover algorithms are reviewed, and the DHM (Decreasing High Mutation) / ILC
(Increasing Low Crossover) approach [16] was applied in this work.

2.5.1.2 DHM / ILC
The DHM/ILC approach controls mutation and crossover probabilities solely based on the number of

iterations. DHM/ILC means decreasing mutation probability from 1 to 0 and increasing crossover
probability from 0 to 1. The reasoning behind this approach is that fixed high mutation rate can’t
converge into global optima. Initial state of GA uses high mutation rate in pursuance of more opportunity
that improve the diversity of GA. And as iteration goes, mutation probability gradually gets lower in
order to remain stable while crossover probability gets higher in order to shuffle genes of survived
chromosomes. Equation (6) ~ (7) show the definition of the DHM/ILC. Figure 16 shows mutation and
crossover probability changes over iterations.

Mutation Prob. = 1 − Current # of Iteration
Total # of Iterarion

 (6)

Crossover Prob. = Current # of Iteration
Total # of Iterarion

 (7)

31

Figure 16. The DHM (Decreasing High Mutation) / ILC (Increasing Low Crossover) approach.

2.5.1.3 Demonstration with ZDT1 Problem
In the realm of multi-objective optimization, the ZDT1 problem [17] is a widely recognized as a

benchmark problem. It serves as a standard test case for evaluating the performance of multi-objective
optimization algorithms. The ZDT1 problem is specifically designed to assess an algorithm's ability to
handle problems with convex Pareto-optimal fronts and to maintain diversity among solutions. The ZDT1
problem is defined in a continuous search space and involves two conflicting objectives, minimizing two
objective functions (i.e., 𝑓𝑓1(𝑥𝑥) and 𝑓𝑓2(𝑥𝑥)). The mathematical formulation of the ZDT1 problem is as
follows:

𝑓𝑓1(𝑥𝑥1) = 𝑥𝑥1 (8)

 𝑓𝑓2(𝑥𝑥1, … ,𝑥𝑥𝑛𝑛) = 𝑔𝑔 ∙ ℎ (9)

 𝑔𝑔(𝑥𝑥2, … ,𝑥𝑥𝑛𝑛) = 1 + 9
𝑛𝑛−1

∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=2 (10)

 ℎ(𝑓𝑓1,𝑔𝑔) = 1− �𝑓𝑓1
𝑔𝑔

 (11)

where

0 ≤ 𝑥𝑥𝑖𝑖 ≤ 1 (𝑖𝑖 = 1, … , 𝑛𝑛)

Two-point crossover and random mutation method are used to solve the ZDT1 problem using GA.
Figure 17 illustrates the optimization results with static and adaptive mutation & crossover probabilities
when the population size equals 10.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 400 800 1200 1600

Pr
ob

ab
ili

ty

Generation

Crossover Mutation

32

Figure 17. Optimization result of ZDT1 with Population size of 10 and 30 iterations: static
mutation/crossover vs. adaptive – DHM (Decreasing High Mutation) / ILC (Increasing Low Crossover –
approach.

Figure 18. Optimization result of ZDT1 with Population size of 50 and 30 iterations: static
mutation/crossover rates vs. adaptive – DHM (Decreasing High Mutation) / ILC (Increasing Low
Crossover – approach.

Figure 17 and Figure 18 demonstrate that dynamically adjusting crossover and mutation rates
significantly enhances the performance of GA on the ZDT1 problem. The GA using DHM/ILC closely
approximates the analytical solution, indicating excellent convergence and diversity maintenance. In

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
bj

ec
tiv

e
2

Objective 1

Analytical Static Adaptive (DHM/ILC)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
bj

ec
tiv

e
2

Objective 1

Analytical Static Adaptive (DHM/ILC)

33

contrast, the GA with static mutation/crossover rates failed to converge to the analytical solutions within
the given iterations. Table 2 compares the computational time for finding optimal solutions to the ZDT1
problem with a population size of 200, using static versus adaptive mutation/crossover rates. The results
show that the adaptive method outperformed the static method by a factor of 60 in terms of computation
time, while also achieving better accuracy.

Table 2. Comparison of computational time for finding optimal solutions of ZDT1 problem with 200
population size – static vs. adaptive mutation/crossover rates (2.3GHz 8-core Intel Core i9).

Method Number of
Iteration Elapsed time (sec) Mean Squared Error (%)

Static 300 846 sec 0.001%
Adaptive

(DHM/ILC)
15 13.89 sec 0.0001%

34

2.5.2 Active Subspaces for an Efficient GA in high-dimensional Problems
2.5.2.1 Searching for Active Subspaces

The Active Subspaces (AS) method [18] is a dimensionality reduction technique used in parameter
space studies. The core concept of the AS method is to identify the crucial directions in the input
parameter space that significantly impact the output of a given function. By projecting the high-
dimensional input space onto a lower-dimensional subspace, the AS method simplifies the optimization
process, enhancing computational efficiency while maintaining substantial accuracy.

The AS method aims to reduce the input dimension 𝜇𝜇 = (𝜇𝜇1,𝜇𝜇2, … ,𝜇𝜇K) of a scalar function
𝑓𝑓(𝜇𝜇):Ω ⊂ ℝK → ℝ by defining a linear transformation 𝜇𝜇𝑀𝑀 = 𝐀𝐀𝜇𝜇. This approach necessitates evaluating
the gradients of 𝑓𝑓 since A depends on the second moment matrix C of the target function's gradient. The
matrix C is defined as follows:

C = 𝔼𝔼[∇𝜇𝜇��⃗ 𝑓𝑓 ∙ ∇𝜇𝜇��⃗ 𝑓𝑓T] (11)

where with the symbol 𝔼𝔼[∙] we denote the expected value, and ∇𝜇𝜇��⃗ 𝑓𝑓 ≡ ∇𝑓𝑓(𝜇𝜇) ∈ ℝK. The matrix C can be
decomposed by the Eigenvalue decomposition as

C = 𝐖𝐖Λ𝐖𝐖T (12)

where W represents the orthogonal matrix containing the eigenvectors, and Λ denotes the eigenvalue
matrix arranged in descending order. These two matrices can be decomposed as follows:

Λ = �Λ1 ⬚
⬚ Λ2

�, W = [𝐖𝐖1,𝐖𝐖2], 𝐖𝐖1 ∈ ℝK×M, 𝐖𝐖2 ∈ ℝ(K−M)×M (13)

where M represents the dimension of the active subspace. The active subspace of dimension M is defined
as the principal eigenspace corresponding to the eigenvalues before the major spectral gap. We refer to
the active variable(s) as 𝜇𝜇𝑀𝑀 = 𝐖𝐖1

T𝜇𝜇 ∈ ℝM, and the inactive variable(s) as 𝜂𝜂 = 𝐖𝐖2
T𝜇𝜇 ∈ ℝK−M. 𝜇𝜇 can be

expressed using the identified eigenvectors and approximated as shown in Equation 14 and 15.

𝜇𝜇 = 𝐖𝐖1𝐖𝐖1

T𝜇𝜇 + 𝐖𝐖2𝐖𝐖2
T𝜇𝜇 (14)

𝜇𝜇 ≅ 𝐖𝐖1𝜇𝜇𝑀𝑀 (15)

To combat the curse of dimensionality in GA, a study on a supervised learning approach utilizing
active subspaces in high-dimensional optimization problems has been conducted. [19] By leveraging the
active subspaces property of the objective function, one can select individuals in the reduced parameter
space, mutate and mate them, and then map them back to the full parameter space. This process
transforms the original optimization problem from Equation 16 to Equation 17:

min

𝜇𝜇∈Ω⊂ℝK
𝑓𝑓(𝜇𝜇) (16)

min
𝜇𝜇��⃗ M∈Ƥ⊂ℝM

𝜇𝜇��⃗ ∈Ω

𝑔𝑔(𝜇𝜇M = 𝐖𝐖1
T𝜇𝜇) (17)

35

where Ƥ is a feasible region in the reduced dimensional active subspace, ℝM. Figure 19 illustrates the
progress of the AS method.

Figure 19. Illustration of the application of active subspace method.

Computing the gradient ∇𝜇𝜇��⃗ 𝑓𝑓 can be challenging, particularly for functions that discontinuous, or
computationally expensive to evaluate, or when the governing equation is unknown. To address this issue,
Simultaneous Perturbation Stochastic Approximation (SPSA) method [20] can be incorporated into the
AS method. SPSA method is a powerful gradient approximation technique that estimates the gradient by
perturbing all input parameters simultaneously with random perturbations.

2.5.2.2 Simultaneous Perturbation Stochastic Approximation (SPSA)
The SPSA method is a stochastic approach for minimizing differentiable multivariate functions by

approximating the function's gradient. It is especially useful for functions where gradient evaluation is
either impossible or too resource-intensive. To achieve this, the target function is evaluated only twice
using perturbed parameter vectors that are independent of the number of variables: each component of the
original parameter vector is simultaneously shifted by a randomly generated value. This differs from the
finite difference method (FDM), where only one component of the parameter vector is shifted per
evaluation, resulting in computational costs that scale linearly with the number of parameters. [21]

Typically, the SPSA method is used to approximate an input vector such that its gradient equals zero.
When a target function is known, one can use either FDM or SPSA to obtain the gradient. However, in
many cases, the function of interest is unknown or difficult to determine. To address this, a modified
SPSA method has been developed in this study, as illustrated in Figure 20.

36

Figure 20. Flowchart of modified SPSA.

Figure 20 shows steps how the modified SPSA method works. This approach starts with obtaining
raw data matrix X. X is N × K matrix where N is the number of data point and K is the input space
dimension. n is a counter index of raw data set. Once c0 and 𝛾𝛾 which are user defined parameters
controlling the magnitude of the perturbations are set, one should obtain a simultaneous perturbation
vector (Δn). The element of Δn can be obtained using a distribution that generates only -1 and 1. Once
Δn is obtained, we need to calculate the values of 𝑦𝑦n

(+) and 𝑦𝑦n
(−) to determine approximated gradient.

 𝑦𝑦n

(+) = 𝑓𝑓(x�⃗ n + 𝑐𝑐n∆n) (18)

 𝑦𝑦n
(−) = 𝑓𝑓(x�⃗ n − 𝑐𝑐n∆n) (19)

Equation (20) shows how the gradients are approximated.

 𝑔𝑔(x�⃗ n) = 𝑦𝑦n
(+)−𝑦𝑦n

(−)

2×𝑐𝑐n
�∆n,1

−1 ∆n,2
−1 ⋯ ⋯ ∆n,K

−1 �
T

 (20)

2.5.2.3 Comparative Study of Gradient Approximation
This section aims to evaluate the effectiveness of the SPSA method in estimating the gradient of a

high-dimensional complex function by comparing its results with those obtained analytically or by FDM
method. The function of interest and its derivative function are shown in Equation (21) and (22):

37

 𝑓𝑓(𝜇𝜇) = ∑ 𝜇𝜇𝑖𝑖2K
𝑖𝑖=1 + ∑ sin 𝜇𝜇𝑖𝑖2K

𝑖𝑖=1 (21)

 𝜕𝜕𝑓𝑓
𝜕𝜕𝜇𝜇𝑖𝑖

= 2𝜇𝜇𝑖𝑖 + 2𝜇𝜇𝑖𝑖 cos�𝜇𝜇𝑖𝑖2� (22)

where 𝜇𝜇 = (𝜇𝜇1, 𝜇𝜇2, … , 𝜇𝜇K) 𝑓𝑓(𝜇𝜇):Ω ⊂ ℝK → ℝ.

Figure 21. Performance analysis of SPSA method for gradient approximation: a comparison with
analytical solutions. K=25 is used for Equation (21) and (22).

Figure 21 shows the result that compares gradients of 𝜇𝜇1 found by SPSA method and gradients found
analytically. The SPSA method showed its effectiveness on approximating gradient of each data point.

-40

-30

-20

-10

0

10

20

30

40

-10 -8 -6 -4 -2 0 2 4 6 8 10

G
ra

di
en

t o
f 𝜇𝜇

1

𝜇𝜇1

Analytic solution SPSA - 300 Sample Points

38

Figure 22. Computational time comparison between FDM and SPSA method for gradient
calculation/prediction of 100 data points (2.3GHz 8-core Intel Core i9).

Figure 22 presents a comparison of the elapsed time between the SPSA method and the FDM method.
The X-axis represents the dimension of the input space, while the Y-axis indicates the corresponding
computational time required to find a gradient for each data point. Both methods exhibit a similar overall
pattern, with the SPSA method showing nearly consistent computation times regardless of the increased
input parameters. In contrast, the FDM method's computation time increases linearly.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 10 20 30 40 50 60 70 80 90 100

El
ap

se
d

Ti
m

e
(s

ec
.)

Number of paramters in input space

FDM SPSA

39

3. DEMONSTRATION OF CORE DESIGN OPTIMIZATION WITHIN
PRLO FRAMEWORK

3.1 Single – Cycle Optimization – Cycle 10
A generic AP1000 equilibrium core model, developed in SIMULATE3 based on references [22] [23]

[24] [25], was utilized for the optimization demonstration. This model includes a total of 175 FAs. The
SC employed to achieve the equilibrium cycle follows a traditional checkerboard pattern, and it reached
equilibrium cycle conditions at cycle 9 with ∆BU < 0.5 GWd/MT. Key performance parameters of the
generic AP1000 equilibrium cycle can be found in Table 3 and the fuel inventory for the AP1000 model
is defined in Table 4. In Table 4, the thrice burned fuel is always positioned in the center of the reactor
core, and it consists of the FA with the lowest burnup in the twice burned batch from the previous cycle.
All FAs are enriched at 4 wt.% for simplicity and have a 17×17 lattice. No burnable poison is present in
the inventory.

Figure 23. Burnup [GWd/MT] map of generic AP1000 equilibrium cycle model at the beginning of cycle.

Table 3. Performance parameters of equilibrium reference AP1000 model.

Variable Value

Cycle Length (EFPD) 353.2

Critical Boron Concentration (ppm) 1457.2

FQ 1.901

FΔH 1.552

40

Table 4. Fuel inventory of equilibrium cycle in reference AP1000 model.

Fuel Batch Number of
Fuel Assemblies

Fresh fuel 52

Once burned 52

Twice burned 52

Thrice burned 1

3.1.1 Problem Statement
For the single-cycle optimization demonstration, the objective was to identify a reactor core design

that achieves improved parameters compared to the reference performance parameters of the equilibrium
cycle, while utilizing the same inventory. Two cases are developed: Case A and Case B. The goal of the
optimized core in Case A is to maximize the cycle length (i.e., Effective Full Power Day [EFPD]). The
target constraints values were defined by using the values of the equilibrium model as follows FQ <
1.901, FΔH < 1.552 and Boron Concentrtation(pcm) < 1,457.2. The constraint violation weights were
defined as shown in Equation 23.

fitness = 1.0 × EFPD− 400 × max�0, FQ − 1.901� − 400 × max(0, FΔH − 1.552)
− 1,600 × max(0, Boron Concentration− 1,457.2)

(23)

The goal of the optimized core in Case B is to maximize core average burnup. The target constraints
values were defined by using the values of the equilibrium model as shown above. The constraint
violation weights were defined as shown in Equation 24.

fitness = 1.0 × core average burnup− 40 × max�0, FQ − 1.901�
− 40 × max(0, FΔH − 1.552)
− 4,000 × max(0, Boron Concentration − 1,457.2)

(24)

3.1.2 Optimization Results and Analysis
The GA optimization was conducted over 200 generations, with a population size of 100 and a

quarter rotational symmetry. Figure 18 and Figure 19 illustrate the evolution of the fitness function during
the optimization process and its relative performance. The relative fitness is defined such that the fitness
value for the AP1000 reference core is set to 1. The results show that designs with performance
comparable to the reference model were achieved after approximately 85 generations for Case A and
around 60 generations for Case B. By the end of the optimization, designs with improved parameters were
identified for both cases.

41

(a) (b)

Figure 18. Fitness behavior of Case A. (a) fitness function vs. generations (b) relative fitness.

(a) (b)

Figure 19. Fitness behavior of Case B. (a) Fitness function vs. generations (b) Relative fitness.

Table 5. Summary of key variables of single cycle optimization: Reference, Case A and Case B.

Variable Reference Case A Case B
Cycle Length (EFPD) 353.2 353.5 353.5

Boron Concentration (ppm) 1457.20 1456.94 1456.90
FQ 1.901 1.781 1.775

FΔH 1.552 1.463 1.458

Figure 24, Figure 25, and Figure 26 show quarter burnup map for three cases: reference, Case A and
Case B respectively. It is worth noting that the optimization process led us to designs with a loading that
resembles industry practice in both Case A and B, by starting from a randomly generated initial
population using GA. The fresh FAs were placed mostly along the periphery of the reactor.

42

(a) (b)

Figure 24. Quarter burnup map for equilibrium reference core. (a) The BOC, and (b) The EOC.

(a) (b)

Figure 25. Quarter burnup map for optimized with Case A. (a) The BOC, and (b) The EOC.

(a) (b)

Figure 26. Quarter burnup map for optimized Case B. (a) The BOC, and (b) The EOC.

43

Figure 27 and Figure 28 display the behavior of cycle length and boron concentration during the
optimization process. In Case A, by around generation 100, core designs are identified that match the
reference boron concentration, with cycle lengths beginning to exceed those of the reference. In Case B,
the core average burnup consistently surpasses the reference value after approximately 80 generations,
indicating that the RAVEN optimizer effectively identified core designs that maximize core average
burnup.

Figure 27. Cycle length and boron concentration behavior during optimization process in Case A.

Figure 28. Core average burnup at the EOC and Boron concentration behavior during optimization
process in Case B

As shown in Figure 29, the peaking factors improved significantly compared to the reference values
through optimization in both Case A and Case B. Starting around generation 50, lower hot channel factors
were consistently identified, indicating the effectiveness of the optimization process.

44

(a) (b)
 Figure 29. Hot channel factors. (a) Case A and (b) Case B.

The results from Case A and Case B demonstrated that RAVEN's n-th cycle optimization capabilities
can generate improved designs. Despite using different approaches in Case A and Case B, the
optimization process ultimately led to similar designs in both cases.

3.2 Multi – Cycle Optimization – Cycle 10 & Cycle 11

In this demonstration, two consecutive cycles, cycles 10 and 11, were independently optimized using
the generic equilibrium AP1000 model as a reference. The optimized core results from Cycle 10 were
used to define the inventory for Cycle 11, ensuring that the fuel loading from the equilibrium model was
preserved. The objective was to provide a proof of concept for RAVEN's multi-cycle optimization
capabilities.

3.2.1 Problem Statement
For the multi-cycle optimization demonstration, the objective was to find a reactor core design that

will result in better parameters compared to the reference model by using the same inventory in both
Cycle 10 and Cycle 11. The fuel inventory for the AP1000 reference equilibrium is shown in Table 4.

3.2.2 Inventory Management
To transition into subsequent cycles, the Inventory Management is conducted prior to each cycle

optimization, as outlined in Figure 11. This process involves selecting FAs to be removed, reused, and
introducing a fresh fuel batch. To maintain the same inventory as the reference model, the following
approach was employed: FAs are first selected for removal based on their burnup levels—those with
higher burnup are removed and do not participate in the next cycle. The number of removed assemblies
matches the batch size (52 FAs) to ensure inventory consistency. Figure 30 shows the optimization results
after Cycle 10.

45

(a) (b)

Figure 30. Optimization results after Cycle 10. (a) Optimized burnup map at the EOC. (b) Fuel assemblies
to be removed and reused for Cycle 11.

3.2.3 Consecutive Cycles Optimization
The goal of the optimized core for consecutive cycle optimization is set up to maximize cycle length.

The target constraints values were defined by using the values of the base equilibrium model as follows
FQ < 1.901, FDH < 1.552 and Boron Concentraion < 1,457.2. A single objective optimization method
was used. The constraint violation weights for calculating fitness value were defined as shown in
Equation 25.

fitness = 1.0 × EFPD− 400 × max�0, FQ − 1.901� − 400 × max(0, FΔH − 1.552)
− 3,200 × max(0, Boron Concentraion − 1,457.2)

(15)

3.2.4 Optimization Results and Analysis
The results from Case A, optimized for Cycle 10, were used as the basis to define the fuel inventory

for optimizing Cycle 11. Beginning with randomly generated designs, the RAVEN–Optimizer guided the
search through the design space, leading to designs with improved parameters for both Cycle 10 and
Cycle 11 compared to the reference equilibrium cycle model as shown in Table 6.

Table 6. Summary of key variables of consecutive cycles optimization: Reference, Cycle 10 and Cycle
11.

Variable Reference Cycle 10 Cycle 11
Cycle Length (EFPD) 353.2 353.5 353.3

Boron Concentration (ppm) 1457.2 1456.9 1456.8
FQ 1.90 1.78 1.83

FΔH 1.55 1.46 1.49

Figure 31 shows that, after 135 generations, designs with performance similar to the reference model
were achieved for Cycle 11 using an inventory defined by the optimized Cycle 10 design in Case A.

46

(a) (b)
Figure 31. Fitness behavior for Cycle 11. (a) Fitness function vs. generations. (b) Relative fitness

Figure 32 illustrates that the design exploration during the optimization process meets the hot channel
factor requirements as early as 20 generations. Additionally, Figure 33 shows that after 100 generations,
the exploration identified solutions that satisfy the reference boron concentration requirement. Since
meeting the boron concentration requirement was more challenging, it was assigned a higher weight in
the fitness function for violation of boron concentration constraint compared to the hot channel factors.
(400 vs. 3200 in Equation 25)

Figure 32. Hot channel factors for Cycle 11.

47

Figure 33. Cycle length and boron concentration behavior during optimization process of Cycle 11.

(a) (b)

Figure 34. Quarter burnup map. (a) At the EOC for optimized Cycle 10 core. (b) At the BOC for Cycle
11.

The SC illustrating the movement of FAs from optimized Cycle 10 to optimized Cycle 11 is depicted
in Figure 35. Each alphanumeric label (e.g., H-12) indicates the origin of the FA from the previous cycle.
The core's label map is provided in Figure 10.

48

Figure 35. Shuffling scheme of fuel assemblies from optimized Cycle 10, to optimized Cycle 11.

Table 7. Average burnup distribution per batches for reference equilibrium model, optimized Cycle 10,
and optimized Cycle 11.

Reactor BU Step Fresh Once Burned Twice Burned Thrice burned Core Average

Reference
Model

BOC 0 13.17 27.93 37.996 13.85

EOC 13.17 27.93 40.79 49.12 27.43

Cycle 10 BOC 0 13.17 27.93 37.996 13.85

EOC 12.90 28.14 40.88 48.48 27.44

Cycle 11 BOC 0 12.90 28.14 38.781 13.84

EOC 13.96 27.83 40.98 49.784 27.44

Table 7 shows some differences in the batchwise burnup distributions between the optimized cycles
and the reference model. For Cycle 10, the batchwise burnup distribution at the beginning of the cycle
(BOC) matches that of the reference model, but by the end of the cycle (EOC), the distribution differs due
to the different placement of FAs. At the EOC of optimized Cycle 10, higher burnup was achieved in the
twice-burned batch, which is then removed and not used in Cycle 11. Additionally, the fresh batch burnup
at the EOC of optimized Cycle 10 is lower than the one in the reference model.

49

4. SUMMARY AND FUTURE WORKS
In FY24, the research was centered on advancing the PRLO framework that can handle both single

and multi-cycle optimization, particularly for PWRs. This study delves into the intricate process of
balancing economic considerations—such as batch size, enrichment levels, and fuel utilization—with
critical reactor safety constraints. These factors are vital for ensuring that energy requirements and safety
standards are consistently met across multiple fuel cycles. The challenge lies in the fact that the use of
FAs in one cycle impacts subsequent cycles, creating interdependencies that add complexity to the
optimization process.

As part of this research, a new functionality in the PRLO framework has been added by implementing
n-th cycle optimization and demonstrating the feasibility of optimizing individual cycles within given
Inventory Management strategy. In this enhanced approach, the management of the fuel inventory is
handled separately from the optimization process. The RAVEN optimizer plays perturbing the predefined
fuel inventory to identify the most optimal fuel reload configuration. The separation of Inventory
Management from the optimization process allows for a more focused and effective exploration of
optimal reload strategies, while the integration of the automated inventory management into the
optimization process is planned for future development.

After several demonstrative cases with single and multi-cycle optimization, it has been shown that the
PRLO framework has successfully come up with reactor core design optimizing fuel performance across
multiple cycles, outperforming the reference design in both single-cycle and two-consecutive-cycle
optimization scenarios. Even if this was a slight outperformance, this is promising as better results will be
achieved once a more realistic setup is used and enough iterations are performed. These results highlight
the potential of the PRLO platform to provide superior core designs compared to traditional heuristic or
conventional methods. The enhanced performance achieved through this framework not only optimizes
the economic aspects of fuel management but also reinforces safety standards within nuclear power
plants.

Looking ahead, future work will focus on automating the inventory definition step as a part of the
optimization process. This will involve incorporating the Inventory Management into the core
optimization routine, leading to a more comprehensive and cohesive approach to fuel management across
multiple cycles. Additionally, the research will expand to include equilibrium cycle optimization and
multi-physics analysis to validate the reactor core designs suggested by the PRLO framework. These
steps are expected to further refine the optimization process and ensure that the proposed core designs
meet the stringent safety and performance requirements necessary for the continued operation of nuclear
power plants.

ACKNOWLEDGEMENTS
This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-

05ID14517 with the U.S. Department of Energy. The U.S. Government retains and the publisher, by
accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or
allow others to do so, for U.S. Government purposes.

50

REFERENCE

[1] Nuclear Energy Institute, "Nuclear Costs in Context," Nuclear Energy Institute, Washington D.C.

USA., 2023.
[2] Nuclear Energy Institute, "U.S. Nuclear Operating Plant Basic Information," Nuclear Energy

Institute, July 2023. [Online]. Available: https://www.nei.org/resources/statistics/us-nuclear-
operating-plant-basic-information. [Accessed 26 July 2024].

[3] International Atomic Energy Agency (IAEA), "Reload Design and Core Management in Operating
Nuclear Power Plants. IAEA-TECDOC-1898," International Atomic Energy Agency (IAEA),
Vienna, Austria, 2020.

[4] Y.-J. Choi, M. Abdo, G. Palamone, S. Heagy, C. Frepoli, K. Ogujiuba, N. Rollins, G. Deplipei and
J. Hou, "Development and Demonstration of a Risk-Informed Approach to the Regulatory Required
Fuel Reload Safety Analysis (NL/RPT-22-68628)," Idaho National Laboratory, Idaho Falls, 2022.

[5] RELAP5-3D CODE DEVELOPMENT TEAM, "RELAP5-3DCode Manual Volume I: Code
Structure, System Models andSolution Methods, INL-EXT-98-00834, Rev. 4.1," Idaho National
Laboratory, Idaho Falls, ID, USA, 2013.

[6] Y.-J. Choi, M. Abdo, D. Mandelli, A. Epiney, J. Valeri, C. Gosdin, C. Frepoli and A. Alfonsi,
"Demonstration of the Plant Fuel Reload Process Optimization for an Operating PWR," Idaho
National Laboratory, Idaho Falls, ID, USA, 2021.

[7] C. Rabiti, A. Alfonsi, J. Cogliati, D. Mandelli, C. Wang, P. Talbot, M. G. Abdo, D. J. McDowell, R.
Yoshiura, D. P. Maljovec, J. Chen, J. Zhou, J. Kim, R. Kinoshita and S. Sen, "RAVEN User
Manual INL/EXT-15-34123 Rev.10," Idaho National Laboratory, Idaho Falls, ID, USA, 2023.

[8] Studsvik Scandpower, "SIMULATE-3K Models and Methodology, SSP98/13 Rev. 3," Nyköping,
Sweden, 2006.

[9] T. Downar, Y. Xu, V. Seker and D. Carlson, "PARCS: U.S. NRC Core Neutronics Simulator User
Manuel," Purdue University, West Lafayette, IN, USA, 2006.

[10] R. L. Williamson, J. D. Hales, S. R. Novascone, G. Pastore, K. A. Gamble, B. Spencer, W. Jiang, S.
A. Pitts, A. Casagranda, D. Schwen, A. X. Zabriskie, A. Toptan, R. Gardner, C. Matthews, W. Liu
and H. Chen, "BISON: A Flexible Code for Advanced Simulation of the Performance of Multiple
Nuclear Fuel Forms," Nuclear Technology, vol. 207, no. 7, pp. 954-980, 2020.

[11] Y.-J. Choi, M. Abdo, C. Wang, J. Valeri, C. Frepoli, K. Nguyen and J. Hou, "Development of Plant
Reload Optimization Platform Capabilities for Core Design and Fuel Performance Analysis
(INL/RPT-22-70382)," Idaho National Laboratory, Idaho Falls, ID, USA, 2022.

[12] J. Kim, M. Abdo, C. Wang and Y.-J. Choi, "Development of Genetic Algorithm Based Multi-
Objective Plant Reload Optimization Platform. INL/RPT-23-71667," Idaho National Laboratory,
Idaho Falls, ID, USA, 2023.

[13] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist multiobjective genetic
algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol. 6, no. 20, p. 182–197,
2022.

[14] P. Wang, K. Ye, X. Hao and J. Wang, "Combining multi-objective genetic algorithm and neural
network dynamically for the complex optimization problems in physics," Scientific Reports, vol. 13,
no. 1, p. 880, 2023.

[15] J. Kim, M. Abdo, Y.-J. Choi, J. C. L. Gutierrez, J. Hou, C. Gosdin and J. Valeri, "Pressurized-Water
Reactor Core Design Demonstration with Genetic Algorithm Based MultiObjective Plant Fuel
Reload Optimization Platform (INL/RPT-23-74498)," Idaho National Laboratory, Idaho Falls, ID,
USA, 2023.

51

[16] A. Hassanat, K. Almohammadi, E. Alkafaween, E. Abunawas, A. Hammouri and V. S. Prasath,
"Choosing mutation and crossover ratios for genetic algorithms—a review with a new dynamic
approach," Information, pp. 10(12), 390, 2019.

[17] E. Zitzler, D. Kalyanmoy and T. Lothar, "Comparison of Multiobjective Evolutionary Algorithms:
Empirical Results," Evolutionary computation, pp. 173-195, 2000.

[18] P. G. Constantine, Active subspaces: Emerging ideas for dimension reduction in parameter studies,
vol. 2, Philadelphia, PA: Society for Industrial and Applied Mathematics, 2015.

[19] N. Demo, M. Tezzele and G. Rozza, "A supervised learning approach involving active subspaces
for an efficient genetic algorithm in high-dimensional optimization problems," SIAM Journal on
Scientific Computing, vol. 43, no. 3, pp. B831-B853, 2021.

[20] J. C. Spall, "Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation," IEEE transactions on automatic control, pp. 37(3), 332-341, 1992.

[21] C. T. Kelley, "Iterative Methods for Optimization," Society for Industrial and Applied Mathematics,
p. N/A, 1999.

[22] M. A. Elsawi and A. S. B. Hraiz, "Benchmarking of the WIMS9/PARCS/TRACE code system for
neutronic calculations of the Westinghouse AP1000™ reactor," Nuclear Engineering and Design,
vol. 293, pp. 249-257, 2015.

[23] R. J. Fetterman, "Advanced First Core Design for the Westinghouse AP1000," in 17th International
Conference on Nuclear Engineering, Brussels, Belgium, 2009.

[24] G. L. d. Stefani, J. M. L. Moreira, J. R. Maiorino and P. C. R. Rossi, "Detailed neutronic
calculations of the AP1000 reactor core with the Serpent code," Progress in Nuclear Energy, vol.
116, pp. 95-107, 2019.

[25] Westinghouse Electric Company LLC. , "Westinghouse AP1000 Design Control Document Rev. 19
(ML11171A500)," U.S. NRC., Washington D.C., USA, 2011.

[26] A. Konak, D. W. Coit and A. E. Smith, "Multi-objective optimization using genetic algorithms: A
tutorial," Reliability Engineering & System Safety, vol. 91, no. 9, p. 992–1007, 2006.

[27] J. D. Schaffer, "Multiple objective optimization with vector evaluated genetic algorithms," in
International Conference on Genetic Algorithm and Their Applications, Pittsburgh, PA, USA, 1985.

[28] C. M. Fonseca and P. J. Fleming, "Multiobjective genetic algorithms," in IEEE Colloquium on
Genetic Algorithms for Control Systems Engineering, Digest No. 1993/130, London, UK., 1993.

[29] P. Hajela and C. Y. Lin, "Genetic search strategies in multicriterion optimal design," Structural
optimization, vol. 4, pp. 99-107, 1992.

[30] J. Horn, N. Nafpliotis and D. E. Goldberg, "A niched Pareto genetic algorithm for multiobjective
optimization," in IEEE Conference on Evolutionary Computation. IEEE World Congress on
Computational Intelligence, Orlando, FL., 1994.

[31] T. Murata and H. Ishibuchi, "MOGA: multi-objective genetic algorithms," in IEEE international
conference on evolutionary computation, Perth, Australia, 1995.

[32] D. W. Corne, J. Knowles and M. Oates, "The Pareto envelope-based selection algorithm for
multiobjective optimization," in 6th International Conference on Parallel Problem Solving, Paris,
France, 2000.

[33] J. Knowles and D. Corne, "The Pareto archived evolution strategy: a new baseline algorithm for
Pareto multiobjective optimisation," in Congress on Evolutionary Computation, Washington D.C.,
USA, 1999 .

[34] N. Srinivas and K. Deb, "Multiobjective optimization using nondominated sorting in genetic
algorithms," Evolutionary Computation, vol. 2, no. 3, pp. 221-248, 1984.

52

[35] K. Deb, S. Agrawal, A. Pratap and T. Meyarivan, "A fast elitist nondominated sorting genetic
algorithm for multi-objective optimization: NSGA-II," in 6th International Conference on Parallel
Problem Solving from Nature, Paris, France, 2000.

[36] E. Zitzler and L. Thiele, "Multiobjective evolutionary algorithms: a comparative case study and the
strength Pareto approach," IEEE transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257-
271, 1999.

[37] E. Zitzler, M. Laumanns and L. Thiele, "SPEA2: improving the strength Pareto evolutionary
algorithm. TIK report 103," Swiss Federal Institute Techonology, , Zurich, Switzerland, 2001.

[38] H. Lu and G. Yen, "Rank-density-based multiobjective genetic algorithm and benchmark test
function study," IEEE Trans Evol. Comput., vol. 7, no. 4, p. 325–343, 2003.

[39] G. Yen and H. Lu, "Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and
density estimation," IEEE Trans Evol. Comput., vol. 7, no. 3, p. 253–274, 2003.

53

Page intentionally left blank

54

APPENDIX A – ESTIMATED FUEL COST OF THE U.S. NUCLEAR
OPERATING PLANTS

Table 8. Estimated Fuel Cost of the U.S. Nuclear Operating Plants in 2021.

REACTOR NAME STATE REACTOR
TYPE

CAPACITY
FACTOR (%)

GENERATION
(MWH)*

Total Fuel Cost
(M$)**

Arkansas Nuclear One 1 AR PWR 90 6,570,588 $39.42
Arkansas Nuclear One 2 AR PWR 81 6,985,096 $41.91
Beaver Valley 1 PA PWR 92.6 7,356,891 $44.14
Beaver Valley 2 PA PWR 89 7,024,505 $42.14
Braidwood 1 IL PWR 95.4 9,887,584 $59.32
Braidwood 2 IL PWR 94.8 9,586,763 $57.51
Browns Ferry 1 AL BWR 98.9 10,881,278 $63.29
Browns Ferry 2 AL BWR 83.5 9,210,093 $53.57
Browns Ferry 3 AL BWR 99.3 10,962,181 $63.76
Brunswick 1 NC BWR 97.4 8,006,921 $46.57
Brunswick 2 NC BWR 91.4 7,461,939 $43.40
Byron 1 IL PWR 95.9 9,776,596 $58.65
Byron 2 IL PWR 102.4 10,193,056 $61.15
Callaway MO PWR 39.3 4,292,433 $25.75
Calvert Cliffs 1 MD PWR 103.4 7,895,813 $47.37
Calvert Cliffs 2 MD PWR 94.9 7,097,820 $42.58
Catawba 1 SC PWR 94.2 9,571,297 $57.42
Catawba 2 SC PWR 89.5 9,014,422 $54.08
Clinton IL BWR 89.5 8,348,706 $48.56
Columbia Generating Station 2 WA BWR 84.4 8,511,288 $49.50
Comanche Peak 1 TX PWR 99.7 10,528,185 $63.16
Comanche Peak 2 TX PWR 84.3 8,828,068 $52.96
Cooper NE BWR 102 6,880,622 $40.02
Davis-Besse OH PWR 99.3 7,779,141 $46.67
Diablo Canyon 1 CA PWR 100.3 9,854,372 $59.12
Diablo Canyon 2 CA PWR 67.6 6,622,994 $39.73
Donald C. Cook 1 MI PWR 103.1 9,110,067 $54.65
Donald C. Cook 2 MI PWR 86.4 8,843,917 $53.06
Dresden 2 IL BWR 93.9 7,422,615 $43.17
Dresden 3 IL BWR 96.1 7,534,065 $43.82
Edwin I. Hatch 1 GA BWR 93.9 7,202,991 $41.89
Edwin I. Hatch 2 GA BWR 90 6,962,077 $40.49
Fermi 2 MI BWR 93.7 9,369,536 $54.49
Ginna NY PWR 92.8 4,727,764 $28.36
Grand Gulf 1 MS BWR 95.9 11,772,058 $68.47
H.B. Robinson 2 SC PWR 96.7 6,426,473 $38.55
Hope Creek 1 NJ BWR 88.4 9,080,057 $52.81
Indian Point 31 NY PWR 95 2,821,401 $16.93
James A. Fitzpatrick NY BWR 99.6 7,397,717 $43.03
Joseph M. Farley 1 AL PWR 92.9 7,114,415 $42.68
Joseph M. Farley 2 AL PWR 100.2 7,868,522 $47.21

55

LaSalle 1 IL BWR 101.9 10,092,537 $58.70
LaSalle 2 IL BWR 84.7 8,412,208 $48.93
Limerick 1 PA BWR 102.5 10,050,781 $58.46
Limerick 2 PA BWR 94.2 9,258,265 $53.85
McGuire 1 NC PWR 102.1 10,361,236 $62.16
McGuire 2 NC PWR 91.7 9,300,878 $55.80
Millstone 2 CT PWR 92.6 6,919,561 $41.51
Millstone 3 CT PWR 96.3 10,296,948 $61.77
Monticello MN BWR 92.9 5,022,858 $29.21
Nine Mile Point 1 NY BWR 91.3 5,037,579 $29.30
Nine Mile Point 2 NY BWR 111.4 11,155,916 $64.88
North Anna 1 VA PWR 83.3 6,919,326 $41.51
North Anna 2 VA PWR 102.2 8,452,320 $50.71
Oconee 1 SC PWR 102.2 7,579,868 $45.47
Oconee 2 SC PWR 94 6,981,796 $41.89
Oconee 3 SC PWR 101.6 7,644,799 $45.86
Palisades2 MI PWR 100.6 7,014,799 $42.08
Palo Verde 1 AZ PWR 100.3 11,515,959 $69.09
Palo Verde 2 AZ PWR 88 10,123,959 $60.74
Palo Verde 3 AZ PWR 86.9 9,989,944 $59.93
Peach Bottom 2 PA BWR 103.3 11,439,087 $66.53
Peach Bottom 3 PA BWR 96.2 10,829,157 $62.98
Perry 1 OH BWR 89.3 9,703,868 $56.44
Point Beach 1 WI PWR 98.4 5,137,279 $30.82
Point Beach 2 WI PWR 91.8 4,832,911 $28.99
Prairie Island 1 MN PWR 104.9 4,785,979 $28.71
Prairie Island 2 MN PWR 94.9 4,313,934 $25.88
Quad Cities 1 IL BWR 96 7,635,531 $44.41
Quad Cities 2 IL BWR 101.6 8,104,797 $47.14
River Bend 1 LA BWR 87.8 7,441,875 $43.28
Salem 1 NJ PWR 101.7 10,205,299 $61.23
Salem 2 NJ PWR 88.8 8,856,743 $53.13
Seabrook 1 NH PWR 90.2 9,856,117 $59.13
Sequoyah 1 TN PWR 87.8 8,865,277 $53.19
Sequoyah 2 TN PWR 89.1 8,789,535 $52.73
Shearon Harris 1 NC PWR 94.6 7,986,733 $47.92
South Texas Project 1 TX PWR 91 10,363,168 $62.17
South Texas Project 2 TX PWR 93.6 10,491,836 $62.94
St. Lucie 1 FL PWR 81.2 6,978,217 $41.86
St. Lucie 2 FL PWR 83 7,175,466 $43.05
Surry 1 VA PWR 90.5 6,640,059 $39.84
Surry 2 VA PWR 89.4 6,559,811 $39.35
Susquehanna 1 PA BWR 97.6 10,664,952 $62.03
Susquehanna 2 PA BWR 84.9 9,278,594 $53.97
Turkey Point 3 FL PWR 86.1 6,314,980 $37.89
Turkey Point 4 FL PWR 100.6 7,589,624 $45.53
V.C. Summer SC PWR 77 6,552,773 $39.31
Vogtle 1 GA PWR 93.7 9,443,128 $56.65

56

Vogtle 2 GA PWR 102.5 10,343,780 $62.06
Waterford 3 LA PWR 96.1 9,806,799 $58.83
Watts Bar 1 TN PWR 91.2 8,974,715 $53.84
Watts Bar 2 TN PWR 88.5 8,700,880 $52.20
Wolf Creek 1 KS PWR 79.9 8,574,732 $51.44

Note:

* Source: U.S. Energy Information Administration
** These values are estimated based on the assumption that the fuel unit cost is $5.999/MWh in 2022
dollars for PWR and $5.816/MWh in 2022 dollars for BWR.

57

APPENDIX B – COMPARISON SUMMARY AMONG
MULTI-EVOLUTIONALRY ALGORITHMS

58

Table 9. Comparison summary among multi evolutionary algorithms. [26]

Algorithm Fitness Assignment Diversity Mechanism Elitism External
Population Advantages Disadvantages

VEGA [27]
Each subpopulation is
evaluated with respect
to a different objective

No No No
First MOGA
straightforward
implementation

Tend to converge to
the extreme of each
objective

MOGA [28] Pareto ranking Fitness sharing by
niching No No Simple extension of

single-objective GA
Usually, slow
convergence

WBGA [29] Weighted average of
normalized objectives

Niching
predefined wights

No No Simple extension of
single-objective GA

Difficulties in non-
convex objective
function space

NPGA [30]
No fitness assignment
Tournament selection

Niche count as
tiebreaker in
tournament selection

No No Very simple
tournament selection

Problems related to
niche size parameters

RWGA [31] Weighted average of
normalized objectives

Randomly assigned
weights Yes Yes Efficient and easy

implement

Difficulties in non-
convex objective
function space

PESA [32] No fitness assignment Cell-based density Pure elitist Yes
Easy to implement and
computationally
efficient

Performance depends
on cell sizes

PAES [33]

Pareto dominance is
used to replace a
parent if offspring
dominates

Cell-based density as
tiebreaker between
offspring and parent

Yes Yes

Random mutation hill-
climbing strategy that
is easy to implement
and computationally
efficient

Prior information
needed about objective
space, not a
population-based
approach, and
performance depends
on cell sizes

NSGA [34]
Ranking based on
non-domination
sorting

Fitness sharing by
niching No No Fast convergence Problems related to

niche size parameter

NSGA-II [35]
Ranking based on
non-domination
sorting

Crowding distance Yes No Single parameter, well
tested, and efficient

Crowding distance
works in objective
space only

59

SPEA [36]

Ranking based on the
external archive of
non-dominated
solutions

Clustering to truncate
external population Yes Yes

Well tested, with no
parameter for
clustering

Complex clustering
algorithm

SPEA-2 [37] Strength of
dominators

Density based on the
kth nearest neighbor Yes Yes

Improved SPEA and
made sure extreme
points are preserved

Computationally
expensive fitness and
density calculation

RDGA [38]

The problem reduced
to bi-objective
problem with solution
rank and density as
objectives

Forbidden region cell-
based density Yes Yes

Dynamic cell update
that was robust with
respect to the number
of objectives

More difficult to
implement than others

DMOEA [39] Cell-based ranking Adaptive cell-based
density

Yes
(implicitly) Yes

Includes efficient
techniques to update
cell densities and
adaptive approaches to
set GA parameters

More difficult to
implement than others

60

APPENDIX C – SAMPLE RAVEN INPUT FILES FOR RAVEN –
SIMULATE3 INTERFACE

APPENDIX C.1. Sim3-param.xml
<Sim3-input-gen>
 <pins> 17 </pins>
 <core_width> 15 </core_width>
 <load_point> 0.000 </load_point>
 <depletion> 20 </depletion>
 <axial_nodes> 25 </axial_nodes>
 <active_height>426.72</active_height>
 <batch> 10 </batch>
 <pressure> 2250.0 </pressure>
 <boron> 900.0 </boron>
 <power> 100.0 </power>
 <flow> 100.0 </flow>
 <inlet_temperature> 550.0 </inlet_temperature>
 <map_size> full </map_size>
 <symmetry> quarter_rotational </symmetry>
 <restart_file> cycle10.res </restart_file>
 <cs_lib> cms.ap1000-eq-all.lib </cs_lib>
 <number_assemblies> 157 </number_assemblies>
 <working-dir> SampleSpecificSim3 </working-dir>
 <FA-list>
 <FA name='FA1' FAid ='0' type1 ='H-08' type2 ='H-08' type3 ='H-08' type4 ='H-08'/>
 <FA name='FA2' FAid ='1' type1 ='H-09' type2 ='J-08' type3 ='H-07' type4 ='G-08'/>
 <FA name='FA3' FAid ='2' type1 ='G-09' type2 ='J-09' type3 ='J-07' type4 ='G-07'/>
 <FA name='FA4' FAid ='3' type1 ='F-09' type2 ='J-10' type3 ='K-07' type4 ='G-06'/>
 <FA name='FA5' FAid ='4' type1 ='E-09' type2 ='J-11' type3 ='L-07' type4 ='G-05'/>
 <FA name='FA6' FAid ='5' type1 ='D-09' type2 ='J-12' type3 ='M-07' type4 ='G-04'/>
 <FA name='FA7' FAid ='6' type1 ='C-09' type2 ='J-13' type3 ='N-07' type4 ='G-03'/>
 <FA name='FA8' FAid ='7' type1 ='B-09' type2 ='J-14' type3 ='P-07' type4 ='G-02'/>
 <FA name='FA9' FAid ='8' type1 ='A-09' type2 ='J-15' type3 ='R-07' type4 ='G-01'/>
 <FA name='FA10' FAid ='9' type1 ='H-10' type2 ='K-08' type3 ='H-06' type4 ='F-08'/>
 <FA name='FA11' FAid ='10' type1 ='G-10' type2 ='K-09' type3 ='J-06' type4 ='F-07'/>
 <FA name='FA12' FAid ='11' type1 ='F-10' type2 ='K-10' type3 ='K-06' type4 ='F-06'/>
 <FA name='FA13' FAid ='12' type1 ='E-10' type2 ='K-11' type3 ='L-06' type4 ='F-05'/>
 <FA name='FA14' FAid ='13' type1 ='D-10' type2 ='K-12' type3 ='M-06' type4 ='F-04'/>
 <FA name='FA15' FAid ='14' type1 ='C-10' type2 ='K-13' type3 ='N-06' type4 ='F-03'/>
 <FA name='FA16' FAid ='15' type1 ='B-10' type2 ='K-14' type3 ='P-06' type4 ='F-02'/>
 <FA name='FA17' FAid ='16' type1 ='H-11' type2 ='L-08' type3 ='H-05' type4 ='E-08'/>
 <FA name='FA18' FAid ='17' type1 ='G-11' type2 ='L-09' type3 ='J-05' type4 ='E-07'/>
 <FA name='FA19' FAid ='18' type1 ='F-11' type2 ='L-10' type3 ='K-05' type4 ='E-06'/>
 <FA name='FA20' FAid ='19' type1 ='E-11' type2 ='L-11' type3 ='L-05' type4 ='E-05'/>
 <FA name='FA21' FAid ='20' type1 ='D-11' type2 ='L-12' type3 ='M-05' type4 ='E-04'/>
 <FA name='FA22' FAid ='21' type1 ='C-11' type2 ='L-13' type3 ='N-05' type4 ='E-03'/>
 <FA name='FA23' FAid ='22' type1 ='B-11' type2 ='L-14' type3 ='P-05' type4 ='E-02'/>
 <FA name='FA24' FAid ='23' type1 ='H-12' type2 ='M-08' type3 ='H-04' type4 ='D-08'/>
 <FA name='FA25' FAid ='24' type1 ='G-12' type2 ='M-09' type3 ='J-04' type4 ='D-07'/>
 <FA name='FA26' FAid ='25' type1 ='F-12' type2 ='M-10' type3 ='K-04' type4 ='D-06'/>
 <FA name='FA27' FAid ='26' type1 ='E-12' type2 ='M-11' type3 ='L-04' type4 ='D-05'/>
 <FA name='FA28' FAid ='27' type1 ='D-12' type2 ='M-12' type3 ='M-04' type4 ='D-04'/>
 <FA name='FA29' FAid ='28' type1 ='C-12' type2 ='M-13' type3 ='N-04' type4 ='D-03'/>
 <FA name='FA30' FAid ='29' type1 ='H-13' type2 ='N-08' type3 ='H-03' type4 ='C-08'/>
 <FA name='FA31' FAid ='30' type1 ='G-13' type2 ='N-09' type3 ='J-03' type4 ='C-07'/>
 <FA name='FA32' FAid ='31' type1 ='F-13' type2 ='N-10' type3 ='K-03' type4 ='C-06'/>
 <FA name='FA33' FAid ='32' type1 ='E-13' type2 ='N-11' type3 ='L-03' type4 ='C-05'/>
 <FA name='FA34' FAid ='33' type1 ='D-13' type2 ='N-12' type3 ='M-03' type4 ='C-04'/>
 <FA name='FA35' FAid ='34' type1 ='H-14' type2 ='P-08' type3 ='H-02' type4 ='B-08'/>
 <FA name='FA36' FAid ='35' type1 ='G-14' type2 ='P-09' type3 ='J-02' type4 ='B-07'/>
 <FA name='FA37' FAid ='36' type1 ='F-14' type2 ='P-10' type3 ='K-02' type4 ='B-06'/>
 <FA name='FA38' FAid ='37' type1 ='E-14' type2 ='P-11' type3 ='L-02' type4 ='B-05'/>
 <FA name='FA39' FAid ='38' type1 ='H-15' type2 ='R-08' type3 ='H-01' type4 ='A-08'/>
 <FA name='FA40' FAid ='39' type1 ='G-15' type2 ='R-09' type3 ='J-01' type4 ='A-07'/>
 </FA-list>
</Sim3-input-gen>

61

APPENDIX C.2. Sim3-perturb.xml
<core-map>
 <loc id = '1' FAid ='0' />
 <loc id = '2' FAid ='0' />
 <loc id = '3' FAid ='0' />
 <loc id = '4' FAid ='0' />
 <loc id = '5' FAid ='0' />
 <loc id = '6' FAid ='0' />
 <loc id = '7' FAid ='0' />
 <loc id = '8' FAid ='0' />
 <loc id = '9' FAid ='0' />
 <loc id = '10' FAid ='0' />
 <loc id = '11' FAid ='0' />
 <loc id = '12' FAid ='0' />
 <loc id = '13' FAid ='0' />
 <loc id = '14' FAid ='0' />
 <loc id = '15' FAid ='0' />
 <loc id = '16' FAid ='0' />
 <loc id = '17' FAid ='0' />
 <loc id = '18' FAid ='0' />
 <loc id = '19' FAid ='0' />
 <loc id = '20' FAid ='0' />
 <loc id = '21' FAid ='0' />
 <loc id = '22' FAid ='0' />
 <loc id = '23' FAid ='0' />
 <loc id = '24' FAid ='0' />
 <loc id = '25' FAid ='0' />
 <loc id = '26' FAid ='0' />
 <loc id = '27' FAid ='0' />
 <loc id = '28' FAid ='0' />
 <loc id = '29' FAid ='0' />
 <loc id = '30' FAid ='0' />
 <loc id = '31' FAid ='0' />
 <loc id = '32' FAid ='0' />
 <loc id = '33' FAid ='0' />
 <loc id = '34' FAid ='0' />
 <loc id = '35' FAid ='0' />
 <loc id = '36' FAid ='0' />
 <loc id = '37' FAid ='0' />
 <loc id = '38' FAid ='0' />
 <loc id = '39' FAid ='0' />
 <loc id = '40' FAid ='0' />
</core-map>

62

APPENDIX C.3. Sample RAVEN Input Script of Multi-Cycle Optimization with Given Inventory
Management
<?xml version="1.0" ?>
<Simulation verbosity="debug">
 <TestInfo>
 <name>test_loaddingpattern_NSGAII-SIM3</name>
 <author>luquj</author>
 <created>2024-07-25</created>
 <classesTested>Models.Code.CodeInterfaceBase.Simulate</classesTested>
 <description>
 Test to generate SIM3 input files for n-th cycle optimization. Chromosome contains
entire fuel map and does not respect any symmetry.
 </description>
 </TestInfo>

 <RunInfo>
 <WorkingDir>Simulate_RAVEN-NSGAII</WorkingDir>
 <Sequence>sampleGA-Simulate, print</Sequence>
 <batchSize>20</batchSize>
 </RunInfo>

 <Steps>
 <MultiRun name="sampleGA-Simulate" re-seeding="2286" clearRunDir="False">
 <Input class="Files" type="simulatedata">simulatedata_input</Input>
 <Input class="Files" type="perturb">simulateperturb_input</Input>
 <Input class="Files" type="input">input</Input>
 <Model class="Models" type="Code">MySimulate</Model>
 <Optimizer class="Optimizers" type="GeneticAlgorithm" >GAopt</Optimizer>
 <SolutionExport class="DataObjects" type="PointSet">opt_export</SolutionExport>
 <Output class="DataObjects" type="PointSet">optOut</Output>
 <Output class="OutStreams" type="Print">opt_export</Output>
 </MultiRun>
 <IOStep name="print">
 <Input class="DataObjects" type="PointSet">opt_export</Input>
 <Input class="DataObjects" type="PointSet">optOut</Input>
 <Output class="OutStreams" type="Print">opt_export</Output>
 <Output class="OutStreams" type="Print">optOut</Output>
 </IOStep>
 </Steps>

 <Files>
 <Input name="simulatedata_input" type="simulatedata">sim3-param3.xml</Input>
 <Input name="simulateperturb_input" type="perturb">sim3-perturb3.xml</Input>
 <Input name="input" type="input">input.inp</Input>
 </Files>

 <Models>
 <Code name="MySimulate" subType="Simulate">
 <executable>simulate3 -k</executable>
 <sequence>simulate</sequence>
 </Code>
 </Models>

 <Functions>
 <External file="./constraints.py" name="impConstr1">
 <variables>pin_peaking,MaxFDH,max_boron</variables>
 </External>
 <External file="./constraints.py" name="impConstr2">
 <variables>pin_peaking,MaxFDH,max_boron</variables>
 </External>
 <External file="./constraints.py" name="impConstr3">
 <variables>pin_peaking,MaxFDH,max_boron</variables>
 </External>
 </Functions>

 <Distributions>
 <UniformDiscrete name='FA_dist'>
 <lowerBound>1</lowerBound>
 <upperBound>39</upperBound>
 <strategy>withoutReplacement</strategy>

63

 </UniformDiscrete>
 </Distributions>

 <Optimizers>
 <GeneticAlgorithm name="GAopt">
 <samplerInit>
 <limit>150</limit>
 <initialSeed>2286</initialSeed>
 <writeSteps>every</writeSteps>
 <type>max</type>
 </samplerInit>
 <GAparams>
 <populationSize>100</populationSize>
 <parentSelection>tournamentSelection</parentSelection>
 <reproduction>
 <crossover type="partiallyMappedCrossover">
 <crossoverProb>0.75</crossoverProb>
 </crossover>
 <mutation type="bitFlipMutator">
 <mutationProb>0.9</mutationProb>
 </mutation>
 </reproduction>
 <fitness type="feasibleFirst"></fitness>
 <survivorSelection>fitnessBased</survivorSelection>
 </GAparams>
 <convergence>
 <AHDp>0.0</AHDp>
 </convergence>
 <constant name="loc1">0</constant>
 <variable name="loc2">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc3">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc4">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc5">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc6">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc7">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc8">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc9">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc10">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc11">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc12">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc13">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc14">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc15">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc16">

64

 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc17">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc18">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc19">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc20">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc21">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc22">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc23">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc24">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc25">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc26">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc27">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc28">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc29">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc30">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc31">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc32">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc33">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc34">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc35">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc36">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc37">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc38">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc39">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc40">

65

 <distribution>FA_dist</distribution>
 </variable>
 <objective>MaxEFPD</objective>
 <TargetEvaluation class="DataObjects" type="PointSet">optOut</TargetEvaluation>
 <Sampler class="Samplers" type="MonteCarlo">MC_samp</Sampler>
 <ImplicitConstraint class='Functions' type='External'>impConstr1</ImplicitConstraint>
 <ImplicitConstraint class='Functions' type='External'>impConstr2</ImplicitConstraint>
 <ImplicitConstraint class='Functions' type='External'>impConstr3</ImplicitConstraint>
 </GeneticAlgorithm>
 </Optimizers>

 <Samplers>
 <MonteCarlo name="MC_samp">
 <samplerInit>
 <limit>100</limit>
 <initialSeed>20021984</initialSeed>
 </samplerInit>
 <constant name="loc1">0</constant>
 <variable name="loc2">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc3">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc4">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc5">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc6">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc7">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc8">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc9">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc10">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc11">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc12">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc13">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc14">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc15">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc16">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc17">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc18">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc19">
 <distribution>FA_dist</distribution>
 </variable>

66

 <variable name="loc20">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc21">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc22">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc23">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc24">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc25">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc26">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc27">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc28">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc29">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc30">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc31">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc32">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc33">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc34">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc35">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc36">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc37">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc38">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc39">
 <distribution>FA_dist</distribution>
 </variable>
 <variable name="loc40">
 <distribution>FA_dist</distribution>
 </variable>
 </MonteCarlo>
 </Samplers>

 <DataObjects>
 <PointSet name="optOut">
 <Input>
 loc1, loc2, loc3, loc4, loc5, loc6, loc7, loc8, loc9, loc10,
 loc11, loc12, loc13, loc14, loc15, loc16, loc17, loc18, loc19, loc20,
 loc21, loc22, loc23, loc24, loc25, loc26, loc27, loc28, loc29, loc30,

67

 loc31, loc32, loc33, loc34, loc35, loc36, loc37, loc38, loc39, loc40
 </Input>
 <Output> MaxEFPD, MaxFDH, pin_peaking, max_boron, batchId</Output>
 </PointSet>
 <PointSet name="opt_export">
 <Input>trajID</Input>
 <Output>
 loc1, loc2, loc3, loc4, loc5, loc6, loc7, loc8, loc9, loc10,
 loc11, loc12, loc13, loc14, loc15, loc16, loc17, loc18, loc19, loc20,
 loc21, loc22, loc23, loc24, loc25, loc26, loc27, loc28, loc29, loc30,
 loc31, loc32, loc33, loc34, loc35, loc36, loc37, loc38, loc39, loc40,
 MaxEFPD, pin_peaking, max_boron, MaxFDH, fitness,
 iteration, age, batchId, rank, CD, accepted
 </Output>
 </PointSet>
 </DataObjects>

 <OutStreams>
 <Print name="optOut">
 <type>csv</type>
 <source>optOut</source>
 <what>input, output</what>
 </Print>
 <Print name="opt_export">
 <type>csv</type>
 <source>opt_export</source>
 <clusterLabel>trajID</clusterLabel>
 </Print>
 </OutStreams>
</Simulation>

	EXECUTIVE SUMMARY
	CONTENTS
	ACRONYMS
	1. INTRODUCTION
	2. DEVELOPMENT OF MULTI-CYCLE PLANT RELOAD OPTIMIZATION FRAMEWORK
	2.1 Optimization Framework in RAVEN
	2.2 RAVEN – SIMULATE3 Interface Development
	2.3 Multi–Objective Optimization – Non-Dominated Sorting Genetic Algorithm II
	2.3.1 Dominance Depth Method
	2.3.2 Elitism
	2.3.3 Crowding Distance
	2.3.4 Survivor Selection
	2.3.5 Optimization Procedures

	2.4 Multi–Cycle Fuel Reloading Optimization
	2.4.1 The n-th cycle optimization
	2.4.2 Multi – cycle optimization with fixed Inventory Management strategy
	2.4.3 Evolution Operators Development in RAVEN

	2.5 Optimization Acceleration Methods
	2.5.1 Adaptive Mutation / Crossover Probabilities
	2.5.1.1 Introduction
	2.5.1.2 DHM / ILC
	2.5.1.3 Demonstration with ZDT1 Problem

	2.5.2 Active Subspaces for an Efficient GA in high-dimensional Problems
	2.5.2.1 Searching for Active Subspaces
	2.5.2.2 Simultaneous Perturbation Stochastic Approximation (SPSA)
	2.5.2.3 Comparative Study of Gradient Approximation

	3. DEMONSTRATION OF CORE DESIGN OPTIMIZATION WITHIN PRLO FRAMEWORK
	3.1 Single – Cycle Optimization – Cycle 10
	3.1.1 Problem Statement
	3.1.2 Optimization Results and Analysis

	3.2 Multi – Cycle Optimization – Cycle 10 & Cycle 11
	3.2.1 Problem Statement
	3.2.2 Inventory Management
	3.2.3 Consecutive Cycles Optimization
	3.2.4 Optimization Results and Analysis

	4. SUMMARY AND FUTURE WORKS
	ACKNOWLEDGEMENTS
	REFERENCE
	APPENDIX A – ESTIMATED FUEL COST OF THE U.S. NUCLEAR OPERATING PLANTS
	APPENDIX B – COMPARISON SUMMARY AMONG MULTI-EVOLUTIONALRY ALGORITHMS
	APPENDIX C – SAMPLE RAVEN INPUT FILES FOR RAVEN – SIMULATE3 INTERFACE
	APPENDIX C.1. Sim3-param.xml
	APPENDIX C.2. Sim3-perturb.xml
	APPENDIX C.3. Sample RAVEN Input Script of Multi-Cycle Optimization with Given Inventory Management

