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EXECUTIVE SUMMARY 
The U.S. nuclear utilities encounter a difficulty in upholding essential safety standards while also 

securing economic viability for continued operation. Safety stands as a pivotal factor across all facets of 
operations within light water reactor nuclear power plants. Achieving economic feasibility alongside 
safety can be facilitated through the utilization of a risk-informed framework, exemplified by the ongoing 
development within the Risk-Informed Systems Analysis (RISA) Pathway under the auspices of the U.S. 
Department of Energy's LWRS Program. This initiative advocates for a diverse array of research and 
development endeavors aimed at optimizing both safety and economic efficacy within nuclear power 
plants, particularly pertinent as many plants contemplate subsequent license renewals. 

The RISA Pathway has two main goals: deploy methodologies and technologies that better represent 
safety margins, cost, and safety factors and develop advanced applications that enable cost-effective plant 
operation. This report assesses the potential for resolving multi-cycle plant reload challenges through real-
world scenarios utilizing the Plant ReLoad Optimization (PRLO) framework. This framework offers 
reactor core design developers analytic tools of reactor safety and fuel performance with the assistance of 
artificial intelligence (AI) to enhance core design solutions. Multi-objective genetic algorithm alongside 
acceleration techniques is considered as an enabling technology for improving fuel efficiency while 
upholding safety thresholds. The demonstration of multi-cycle core design optimization is performed, 
then results are compared to benchmarks. This report investigates the practical application of the PRLO 
platform in addressing real-world core design challenges and contrasting outcomes with those derived 
from heuristic or conventional algorithms. 

The cost of fuel is a critical consideration for nuclear power plants. Various factors can be 
manipulated to reduce the cost, including batch size, enrichment levels, and the use of burnable poison. 
Alongside these economic factors, meeting cycle energy requirements and operation and safety 
constraints, such as the hot zero power moderator temperature coefficient (MTC) and hot channel factor 
(FΔH), is imperative. The large number of design variable combinations at both the lattice and core levels, 
along with multiple design objectives and constraints, make single-cycle optimization highly challenging. 
Furthermore, the current cycle's core loading influences subsequent cycles, establishing interdependencies 
between reload cycles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs). 
From an optimization standpoint, sequential cycle-by-cycle optimization with no coupling between cycles 
may not yield optimal results from multi-year operation standpoint. Therefore, multi-cycle core design 
throughout the planning horizon becomes crucial when the goal is to minimize multi-cycle fuel costs or, 
at the very least, to link sequential cycles through carefully formulated objectives in the plant reload 
process. 

The plant reload optimization using AI offers several benefits discussed below: 

Efficiency - AI can analyze large volumes of data to optimize plant reload processes quickly and 
efficiently. It can identify patterns, correlations, and trends that may not be apparent to humans, leading to 
more efficient process of core design. 

Cost Reduction - By optimizing core designs, AI can reduce costs associated with volume of fresh fuel 
and spent fuel needing processing, down-power, and inventory management. 

Improved Safety - Optimized core design can enhance safety by reducing the risk of accidents and 
incidents. AI can identify potential hazards of the suggested core designs and recommend preventive 
measures to mitigate risks. 

Enhanced Performance - AI-driven optimization can improve the overall performance of the plant by 
maximizing safety margins potentially reducing the need to down-power during plant operation which 
can lead to increased productivity, higher throughput, and better overall performance metrics for the 
plant. 
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Adaptability – AI algorithms possess the adaptability to learn and adjust to various plant designs and 
operating conditions. This ability ensures that the system remains efficient and effective, regardless of 
alterations in the environment or operational parameters.  

In this fiscal year, the PRLO framework, in which the Risk Analysis Virtual Environment (RAVEN) 
plays a pivotal role, has been upgraded to include optimization capabilities for n-th cycle and consecutive 
cycles for a PWR. As part of this enhancement, the RAVEN-SIMULATE3 interface was expanded to 
handle fuel label maps in addition to just fuel types, enabling the optimization process to account for fuel 
assemblies from previous cycles. To showcase this new capability, single-cycle optimization cases with 
two distinct objectives were analyzed. Furthermore, a case involving the optimization of two consecutive 
cycles, starting from the 10th cycle with a specific fuel Inventory Management strategy, was also 
examined. The reactor model used for these optimizations was a generic AP1000 model based on open-
source data. In the two single-cycle optimization cases, the goal was to exceed the performance of an 
equilibrium cycle reference design using the same inventory. For the two-consecutive-cycle case, the aim 
was to optimize each cycle individually to achieve superior fuel performance compared to the reference 
design across both cycles. The results demonstrated that the PRLO framework effectively guided the 
design process, yielding solutions that outperformed the reference model in all scenarios tested. 
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1. INTRODUCTION 
The U.S. Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) Program's Risk-

Informed Systems Analysis (RISA) Pathway Plant ReLoad Optimization (PRLO) project is a pivotal 
initiative designed to address one of the top-priority needs of the nuclear power industry –improved 
efficiency, safety, and economic viability of nuclear energy. The initiative is a part of a broader strategy 
to enhance the economic sustainability and competitiveness of light water reactors (LWRs), which play a 
critical role in the U.S. energy landscape. According to the Nuclear Energy Institute's (NEI) Nuclear 
Costs in Context report [1], fuel costs constitute approximately 18% of the total generation costs as shown 
in Figure 1. In 2021, total electricity generation from nuclear power was reported to be 778 TWh. [2] The 
total fuel cost for pressurized water reactors (PWRs) is estimated at $3,041.78 million ($48.28 million per 
reactor unit), while the total fuel cost for boiling water reactors (BWRs) is estimated at $1,576.95 million 
($50.87 million per reactor unit). This substantial expense underscores the importance of optimizing fuel 
use to maintain economic viability of the U.S. nuclear fleet. APPENDIX A shows the estimated fuel cost 
of the U.S. nuclear operating plants. 

 
Figure 1. U.S. Nuclear Plant (PWR) Costs in 2021. Unit: $/MWh. [1] 

The effective utilization of nuclear fuel involves efficiently using nuclear materials within reactors, 
ensuring safety, and maximizing energy output while minimizing costs. The efficient utilization of 
nuclear fuel implies reducing the frequency of refueling outages, which are both time-consuming and 
expensive, and lowering the cost of new fuel batches. By extending the operational cycle of reactors 
through improved fuel use, plants can increase their uptime and reduce the costs associated with 
shutdowns and restarts. Enhancing reactor core design can enable a smaller fresh fuel batch to generate 
the same amount of electricity. This enhancement not only reduces new fuel costs but also significantly 
decreases expenses in the back-end fuel cycle by lowering the volume of spent fuel that needs processing. 
Figure 2 illustrates the factors influencing nuclear fuel utilization.  
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Figure 2. Factors influencing fuel utilization. [3] The highlighted section is the focus of the Plant ReLoad 
Optimization project.  

Designing a nuclear reactor core is an exceptionally complex process due to several factors. First, the 
intricate integration of physics and engineering principles presents a significant challenge, particularly in 
accurately modeling neutron transport and diffusion, which is essential for predicting neutron behavior 
within the core. This requires a deep understanding of nuclear reactions and precise calculations to ensure 
efficient reactor operation. Additionally, thermal-hydraulic considerations must be meticulously balanced 
to effectively remove heat from the core while maintaining safe operating temperatures, preventing 
overheating, and ensuring structural integrity. Safety and regulatory requirements add further complexity, 
as nuclear reactors must adhere to stringent safety standards, necessitating rigorous safety protocols and 
comprehensive accident analyses for worst-case scenarios. Extensive testing and validation are often 
required, increasing the design's complexity and time. Material performance is another critical aspect, 
with fuel and cladding materials needing to withstand extreme conditions, such as high radiation and 
corrosive environments, over extended periods. Ensuring materials long-term durability and resistance to 
corrosion and wear is crucial for safe and efficient reactor operation, requiring advanced material science 
and engineering expertise. Economic considerations also play a significant role, as designers must balance 
initial fuel costs with long-term operational efficiency (e.g., single-cycle and multi-cycle optimization). 
Lastly, the design space for reactor cores is vast, with over 1030 possible combinations for a 17×17 PWR 
core design. In addition, traditional methods of deciding core loading pattern (LP) and reload quantity are 
labor-intensive and time-consuming.   

The PRLO project aims to develop an integrated, comprehensive framework offering an all-in-one 
solution for reload evaluations with a special focus on optimization of core design. [4] The project is 
leveraging artificial intelligence (AI) – machine learning (ML) techniques to find optimal solutions, a 
nearly impossible task for humans due to a large design space. The aim of this study is to enhance nuclear 
reactor efficiency by improving the process of reloading fresh fuel and optimizing fuel shuffling scheme. 
This optimization could lead potential fuel cost savings for a single PWR unit in the order of 5 – 10% 
($2M to $5M per year on average) where these savings apply solely to new fuel costs and do not include 
additional savings from reduced spent fuel processing costs.  
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Figure 3. Technology roadmap of the PRLO project in Risk-Informed Systems Analysis Pathway of Light 
Water Reactor Sustainability Program. 

Figure 3 illustrates the PRLO project’s technology roadmap and research strategy spanning multiple 
fiscal years (FYs), comprising distinct phases of research and development. In Phase 1 (FY19 – 20), 
available tools and methods were investigated and tested for fuel reloading optimization. Plant-based 
design basis accident (DBA) scenarios were simulated using traditional deterministic methods with the 
RELAP5-3D thermal-hydraulic analysis code [5] developed at Idaho National Laboratory (INL). 
Simulations used fixed core loading and evaluated recoverable margins. In Phase 2 (FY21 – 22), the 
development of an optimization framework using the genetic algorithm (GA) and application 
programming interfaces (APIs) of nuclear system code in Risk Analysis and Virtual Environment 
(RAVEN) was initiated. During this development, RAVEN's capability to perform neutronics and 
thermohydraulic analyses was enhanced. As an initial test, ten limiting DBA scenarios for a generic PWR 
and a single objective optimization framework were developed. Additionally, constraints in 
computational tools, particularly in reactor core design and fuel performance system codes, were 
identified. [6] These constraints were reviewed through benchmark studies, and the applicability of the 
risk-informed approach for plant reload optimization was assessed. In Phase 3 (FY22 – 23), the project 
enhanced the framework with additional capabilities to support regulatory-required fuel safety analyses. 
The development and deployment of the multi – objective optimization process using the Non-Dominated 
Sorting Genetic Algorithm II (NSGA-II) in RAVEN were completed. The newly developed NSGA-II 
optimization framework was demonstrated with a constrained multi – objective optimization of a PWR 
core LP. In addition, the project has initiated engagement with Constellation Energy© for applications of 
fuel reload optimization framework deployments to industry. In Phase 4, the project focuses on 
demonstration of multi – cycle fuel reloading optimization showing effectiveness of the platform 
comparing to status-quo industrial approach for fuel reloading optimization. For FY24, two consecutive – 
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cycle fuel management problems have been solved leveraging the optimization framework and the 
outcomes of the optimization were benchmarked against genetic PWR fuel reloading data. For FY25, the 
project is targeting to evolve the platform to the equilibrium-cycle fuel management problem. 

This report consists of four sections: Section 2 outlines the key features of RAVEN, which serves as 
the foundation of the PRLO framework, and provides the theoretical background of the optimization 
algorithm and multi-cycle optimization scheme. Section 3 presents the demonstrative study: single and 
multi-cycle optimization of a genetic AP1000 reactor core. Section 4 presents conclusions of the report 
and outlines future work.  
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2. DEVELOPMENT OF MULTI-CYCLE PLANT RELOAD 
OPTIMIZATION FRAMEWORK 

2.1 Optimization Framework in RAVEN 
The main driving force behind the PRLO framework is RAVEN developed at INL designed to 

facilitate advanced risk analysis, uncertainty quantification, and optimization tasks in various engineering 
domains, particularly focusing on nuclear energy systems. [7] The tool integrates state-of-the-art 
methodologies to provide a comprehensive framework for modeling, simulation, and decision support, 
making it an invaluable asset for enhancing the safety, efficiency, and reliability of nuclear reactors. 

One of the core strengths of RAVEN is its powerful optimization capabilities. It supports a wide 
range of optimization algorithms, including gradient-based methods, evolutionary algorithms, and hybrid 
approaches, enabling users to tackle complex, multi-objective optimization problems. RAVEN's 
optimization framework is highly flexible and can be tailored to specific user needs. It supports not only 
the definition of custom objective functions and constraints, making it adaptable to various types of 
optimization problems, but also the tools necessary to find solutions that meet multiple criteria 
simultaneously. This is particularly useful in the nuclear industry, where decisions often need to balance 
competing objectives such as cost, safety, performance, and regulatory compliance. By incorporating 
these advanced optimization techniques, RAVEN allows engineers to identify optimal configurations and 
operational strategies that enhance reactor performance while minimizing risks and uncertainties. 

Another significant feature of RAVEN is its robust API, which facilitates seamless integration with 
multiple nuclear system codes. This capability is critical for conducting comprehensive simulations and 
analyses that require coupling of different modeling tools. The API allows RAVEN to interface with 
established codes such as RELAP5-3D, SIMULATE3 [8] , PARCS [9], and BISON [10], among others, 
enabling the exchange of data and execution of coupled simulations. This interoperability ensures that 
users can leverage the strengths of various specialized tools within a unified framework, enhancing the 
accuracy and reliability of their analyses. 

The API-driven integration also supports the execution of complex workflows involving multiple 
stages of simulation and analysis. For instance, in a typical nuclear safety assessment, one might need to 
perform thermal-hydraulic simulations, structural integrity analyses, and probabilistic risk assessments. 
RAVEN's API allows these tasks to be orchestrated in a coordinated manner, ensuring that the results 
from one stage can seamlessly inform the next. This capability not only streamlines the analysis process 
but also enhances the fidelity of the overall assessment by ensuring consistency across different modeling 
domains. 

2.2 RAVEN – SIMULATE3 Interface Development  
SIMULATE3, developed by Studsvik©, is a neutronics code designed to simulate nuclear fuel 

depletion within reactor cores. It plays a vital role in the detailed analysis of core behavior by solving 
neutron diffusion equations across various energy groups. The code is specifically tailored to model the 
time-dependent changes in nuclear fuel during fission, accurately capturing the evolution of isotopic 
compositions within fuel assemblies (FAs) over time. Renowned for its precision in predicting core 
reactivity, power distribution, and burnup, SIMULATE3 is a tool for optimizing reactor performance and 
ensuring safety. Additionally, the code integrates complex fuel management strategies, providing precise 
calculations that support informed decisions on fuel LPs and cycle lengths.  

The RAVEN – SIMULATE3 interface aims to communicate RAVEN and SIMULATE3 during the 
optimization process. This interface supports generating SIMULATE3 input files and executes them, to 
later collect information needed for evaluating individual designs and inform the optimization process in 
GA. On top of the RAVEN – SIMULATE3 interface already developed in [11], new features allowing 
users having n-th cycle optimization (not necessarily the first cycle optimization) capabilities are added. 
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Figure 4 illustrates workflows for RAVEN – SIMULATE3 interface and data stream. The API requires 
three interface python script files: SimulateInterface.py, SpecificParser.py, and 
SimulateData.py, and three RAVEN and CMS (CasMo/Simulate) input files. The 
‘SimulateInterface.py’ file acts as a bridge between other classes and methods in RAVEN and the 
input/output files of SIMULATE3. It runs two interface scripts: one to modify the input files and another 
to extract information from the output files. Additionally, it organizes the folder structure for the 
perturbed runs. The ‘SpecificParser.py’ file creates SIMULATE3 input files based on samples 
provided by RAVEN. For fresh core optimization, it generates input files for the LP, while for n-th cycle 
optimization, which is further explained in Section 2.3.1, it produces input files with a map of FA labels. 
The ‘SimulateData.py’ file extracts and stores information from SIMULATE3 output files after each 
run executed through RAVEN. As of the date of this publication, the variables that can be read and stored 
are time-dependent multiplication factor (k-eff), time-dependent heat flux hot channel factor (FQ), time-
dependent nuclear enthalpy rise hot channel factor (FΔH), time-dependent critical boron concentration, 
cycle length determined by the critical boron concentration being 10 ppm, time-dependent relative pin 
power distribution, average burnup for each FA type at the end of cycle (EOC), maximum neutron 
leakage, core average burnup at the EOC, and front end fuel cost. The ‘Sim3-param.xml’ file is where 
the user can specify input information needed to generate SIMULATE3 input files, including reactor inlet 
temperature, pressure, power percentage, coolant mass flow, core width, number of FAs, and FA types. 
Table 1 shows node names used in Sim3-param.xml and their descriptions. The ‘Sim3-perturb.xml’ 
file defines the number of FAs which must match the length of chromosome in GA. The ‘input.inp’ 
file is in need as a placeholder for perturbed SIMULATE3 input deck. Sample scripts of XML files are 
listed in  – SAMPLE RAVEN INPUT FILES FOR RAVEN – SIMULATE3 INTERFACE. 

 

 
Figure 4. RAVEN – SIMULATE3 interface workflow. 
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Table 1. Node name and description in Sim3-param.xml. 

Node  
Name 

Information 
Type 

Description 

pins 

Reactor  
Core  
Physics 

Number of fuel pins across in a fuel assembly (FA) 

core_width Number of fuel assemblies (FAs) across in a reactor 

load_point Burnup step to read from restart file 

depletion Maximum burnup limit (unit: GWd/MT) 

axial_nodes The number of axial nodes for fuel assemble 

active_height Reactor active height (unit: cm) 

batch The cycle number that runs  

pressure Reactor pressure (unit: psia) 

Boron (Initial) estimated boron concentration (unit: pcm) 

Power Reactor power (unit: MWth) 

Flow Percentage of coolant massflow (unit: %) 

inlet_temperature Reactor inlet coolant temperature (unit: K) 

map_size Size of map to be printed in SIMULATE3 input file  

Symmetry Type of symmetry 

restart_file Name of restart file 

cs_lib Cross-section library name (including file 
extension) 

number_assemblies Number of FAs in the reactor core 

working-dir Working directory where out files will be saved.  

FA-list 

Fuel 
Assembly 
Label  
Map 

name Name for FA used in RAVEN  

 FAid ID for FA used in RAVEN 

 type1 ~ 
type 4 Location in the reactor core map 
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2.3 Multi–Objective Optimization – Non-Dominated Sorting Genetic 
Algorithm II 

The fuel reload optimization in nuclear reactors is inherently a multi-objective optimization problem 
due to the necessity to balance multiple, often conflicting objectives to achieve optimal performance and 
safety. Some primary objectives typically include minimizing the volume of new fuel, maximizing the 
utilization of existing fuel, and ensuring the reactor operates within safety limits. This must be balanced 
with the objective of maximizing the burnup of existing fuel to extract as much energy as possible from 
the current fuel inventory, thereby extending fuel life and reducing overall fuel consumption. 
Additionally, safety and regulatory constraints impose critical objectives that cannot be compromised. 
These include maintaining reactor power distribution within acceptable limits, and ensuring thermal 
margins to prevent overheating. Each of these safety constraints interacts with the economic goals, 
creating a complex trade-off landscape. For example, while increasing fuel burnup may reduce costs, it 
may lead to unsafe power peaking factors or compromise the structural integrity of FAs. 

When a problem involves multiple objectives, it results in a set of optimal solutions known as Pareto-
optimal solutions instead of a single optimal solution. In the absence of additional information, the 
solutions on the Pareto curve (or Pareto front) are assumed to be the optimal solutions, thus Pareto-
optimal solutions. Traditional optimization methods, including multi-criteria decision-making techniques, 
recommend transforming the multi-objective optimization problem (MOOP) into a single-objective 
optimization problem by emphasizing one Pareto-optimal solution during single simulation. However, for 
a problem with multiple solutions, this approach needs to be applied multiple times, with each simulation 
expected to yield a different solution. 

A MOOP includes a set of n decision variables, k objective functions, and a set of (m inequality and p 
equality) constraints. The optimization goal is: 

Min/Max 𝒚𝒚(𝒙𝒙) = �𝑓𝑓1(𝒙𝒙),𝑓𝑓2(𝒙𝒙), … ,𝑓𝑓𝑘𝑘(𝒙𝒙)�,𝑘𝑘 ≥ 2       (1) 

Subject to 𝑔𝑔𝑖𝑖(𝒙𝒙) ≤ 0, 𝑖𝑖 = 1, 2, … ,𝑚𝑚         (2) 

  ℎ𝑗𝑗(𝒙𝒙) = 0, 𝑖𝑖 = 1, 2, … , 𝑝𝑝           (3) 

where 𝒙𝒙 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) is an n-dimensional decision vector in 𝒙𝒙 ∈  ℝ𝑛𝑛 (ℝ is the set of real numbers), y is a 
k-dimensional objective vector in ℝ𝑘𝑘, f defines the mapping function, 𝑔𝑔𝑖𝑖 is the ith inequality constraint, 
and ℎ𝑗𝑗 is the jth equality constraint. 

If the following conditions are satisfied, x1 can be considered as superior to x2, where x1 and x2 are the 
two feasible solution vectors of the multi minimization problem. 

𝑓𝑓𝑗𝑗(𝒙𝒙𝟏𝟏) ≤ 𝑓𝑓𝑗𝑗(𝒙𝒙2) for all 𝑗𝑗 = {1,2, … , 𝑘𝑘}, and 𝑓𝑓𝑗𝑗(𝒙𝒙1) < 𝑓𝑓𝑗𝑗(𝒙𝒙2) for at least one 𝑗𝑗 = {1,2, … ,𝑘𝑘},    (4) 

where k is the number of objective functions and 𝑓𝑓𝑗𝑗(𝒙𝒙) is jth value of an objective function for decision 
vector x. 

Here, the vector value x is the Pareto-optimal solution when it is not dominated by any other feasible 
solutions. The collection of all Pareto-optimal solutions is a Pareto set, and the objective vectors that 
correspond to the Pareto set are called a Pareto front, as illustrated in Figure 5. 
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Figure 5. Pareto dominance in a multi objective optimization problem. [12] 

Several multi-objective evolutionary algorithms (MOEAs) have been proposed with different 
purposes and applicability. APPENDIX B shows a summary of the different MOEAs. For the plant fuel 
reload optimization, the NSGA-II was selected for various reasons. Firstly, after testing it on multiple 
testing problems, NSGA-II showed an advantage in finding a wide range of solutions and converging 
characteristics compared to the other contemporary MOEAs [13]. NSGA-II, initially proposed by Deb et 
al. in 2000 [13], is a powerful GA-based method for solving MOOPs and problems with continuous and 
discrete variables. Furthermore, NSGA-II has shown its efficiency in managing many engineering 
optimization problems [14]. 

The NSGA-II optimization inherits definitions used in the GA method. For instance, the initial set of 
solutions—called a population—is composed of a chromosome, which is a vector of variables (called 
genes in NSGA-II). Figure 6 shows a schematic diagram of the population and its element. 

 
Figure 6. The set of potential solutions (population) and their elements. [4]  
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2.3.1 Dominance Depth Method 
The dominance depth method sorts non-dominated solutions using the Pareto dominance concept. 

The non-dominated sorting procedure commences by allocating the initial population's non-dominated 
members to the first front (or so-called “rank” in NSGA-II). These members are then categorized into the 
first front and are removed from the initial population. The remaining population members undergo the 
dominance depth method. The non-dominated members of the residual population are then designated the 
second rank and added to the second front. This process is reiterated until all population members are 
grouped into different fronts based on their respective ranks. Figure 7 shows an example of the 
dominance depth method. The solutions are scattered and non-dominated in the left figure and sorted with 
four different Pareto fronts in the right figure. 

 
Figure 7. The dominance depth method. [12] 

2.3.2 Elitism 
Elitism, also known as the elite preserving strategy, is an essential concept that NSGA-II emphasizes. 

It conserves a population's elite solutions by directly transferring them to the succeeding generation. Put 
differently, the non-dominated solutions discovered in each generation proceed to the next generations 
until some solutions dominate them. 

2.3.3 Crowding Distance 
To assess the density of solutions surrounding a specific solution, the crowding distance is computed. 

It represents the average distance between two solutions on each side of the solution along each objective. 
When comparing two solutions that have different crowding distances, the one with the greater crowding 
distance is believed to exist in a less congested area. The ith solution's crowding distance is the average 
side length of the cuboid, as depicted in Figure 8. If 𝑓𝑓𝑗𝑗𝑖𝑖 is the jth value of an objective function for the ith 
solution and 𝑓𝑓𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚and 𝑓𝑓𝑗𝑗𝑚𝑚𝑖𝑖𝑛𝑛 are the maximum and minimum values, respectively, of jth objective function 
among all the solutions, the crowding distance of ith solution is defined as the distance of the two nearest 
solutions on either side, as given in Equation (5). 

𝑐𝑐𝑐𝑐(𝑖𝑖) =  ∑
𝑓𝑓𝑗𝑗
𝑖𝑖+1−𝑓𝑓𝑗𝑗

𝑖𝑖−1

𝑓𝑓𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚−𝑓𝑓𝑗𝑗

𝑚𝑚𝑖𝑖𝑚𝑚
𝑘𝑘
𝑗𝑗=1                            (5) 

where k is the number of objective functions. 
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Figure 8. Cuboid with neighboring solutions for calculating crowding distance. [12] 

2.3.4 Survivor Selection  
The population for the next generation was selected using a tournament selection operator, which uses 

the rank of chromosomes and their crowding distances for selecting ones out of chromosomes for the next 
generation. The survivor selection process is: 

[1] Select chromosomes that do not violate any constraints 

[2] If both the chromosomes have different ranks, the one with the better rank is selected for the next 
generation 

[3] If both the chromosomes are of the same ranks, the one with the higher crowding distance is 
selected for the next generation. 

2.3.5 Optimization Procedures 
The NSGA-II procedure begins with generating an initial population P(t=0) of size N, where t 

represents the number of iterations. Then a new population Q(t=0) (offspring) is created after performing 
crossover and mutation operations on the population P(t=0). After that, the population P(t=0) and Q(t=0) 
are combined to form a new population R(t=0) (which is the size of 2 × N), and the non-dominated 
sorting procedure is performed on R(t=0). Then the population members of R(t=0) are ranked into 
different fronts according to their non-domination levels. 

The next process is to select N members from R(t=0) to create the next population P(t=1). If the size 
of the first front is greater than or equal to N, only N members are selected from the least crowded region 
of the first front to form P(t=1). On the contrary, if the size of the first front is less than N, the 
chromosomes of first front are directly transferred to the next generation, and the remaining members are 
taken from the least crowded region of the second front and added to P(t=1). If the size of P(t=1) is still 
less than N, the same procedure is followed for the next consecutive fronts until the size of P(t=1) 
becomes equal to N. The populations of P(t=2), P(t=3), …, are constructed following same procedure 
until the stopping criteria are satisfied. The NSGA-II procedure is shown in Figure 9. 
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Figure 9. Procedure of NSGA-II. [12] 

2.4 Multi–Cycle Fuel Reloading Optimization 
The previous fuel-management optimization capabilities within the PRLO framework were centered 

on single cycle – single, or multi-objective optimization of fuel LPs for PWRs. [15] While this approach 
provided valuable insights, it primarily focused on the rearrangement of a fresh fuel inventory. In 
practice, fuel reload design is inherently a multi-cycle optimization challenge, as a common strategy in 
fuel management is to recycle FAs from previous cycles. This multi-cycle approach opens up a vast 
design space, making the single – optimization process across multiple cycles more complex due to the 
extensive search space that needs to be explored. 

In this study, an initial effort was made to extend the PRLO framework to incorporate multi-cycle 
optimization capabilities by implementing n-th cycle optimization and demonstrating individual cycle 
optimization using a given Inventory Management strategy. In this approach, the Inventory Management 
is treated separately from the optimization process. The RAVEN optimizer perturbs only the defined fuel 
inventory to identify an optimal fuel reload, while the optimization of Inventory Management itself is 
planned for future work. 

2.4.1 The n-th cycle optimization 
The approach for n-th cycle optimization involves using the RAVEN optimizer to shuffle the defined 

FAs into different positions within the reactor core. In this method, the chromosome representation of the 
fuel loading includes fuel labels that specify the position of each FA. The size of this chromosome 
depends on the reactor map size and the symmetry applied. Unlike using only fuel types, incorporating 
labels allows for consideration of FAs from previous cycles. Figure 10 illustrates a label map for a generic 
AP1000 reactor with 157 FAs, where colors represent quadrants (except for the H-08 position) and IDs in 
Figure 10 (b) indicate the position of an FA within the quarter-core. 

The permuted FAs from the given inventory in the core are represented as a chromosome, with each 
gene corresponding to an FA label and its specific position within the reactor. These FAs can be either 
fresh or reused, as defined by the inventory management. The process allows only permutations, meaning 
no fuel is added or removed during the shuffling of FAs. Given that each FA may have a unique burnup 
history, a chromosome representing an unrestricted map has a length equal to the number of FAs in the 
core. This results in a large design space; for a 157-assembly reactor, the design space is 157!.  
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Since real-world core design always follow a certain level of symmetry (i.e., ¼ or 1/8 core 
symmetry), maintaining symmetry in the optimization process is a natural choice which can greatly 
reduce the size of the design space. Some of the symmetries that can be applied include quarter mirror, 
rotational, and octant symmetries. For example, a quarter rotational symmetrical perturbation divides the 
reactor into four quadrants with a fixed central position, allowing permutations in one quadrant to be 
repeated in the others. This approach reduces the chromosome size to 39 genes, making the optimization 
process more manageable. 

  
(a) (b) 

Figure 10. The approach for n-th cycle optimization (a) Label map for a generic AP1000 reactor with 157 
fuel assemblies, using quarter symmetrical perturbations. (b) Quarter symmetrical perturbation. For 
instance, C-12 and H-12 were swapped. This resulted in simultaneous permutation of their symmetrical 
counterparts in the other quadrants. 

2.4.2 Multi – cycle optimization with fixed Inventory Management strategy 
On top of single cycle optimization capability, additional capability – multi-cycle optimization with 

externally given Inventory Management – was developed in the PRLO framework. Figure 11 shows 
multi–cycle optimization process in the PRLO framework. Figure 11(a) shows the workflow of n-th and 
n+1-th cycle optimization. The n-th cycle means a cycle which does not necessarily the initial fuel cycle, 
and n+1-th cycle is the one next to n-th cycle. The optimization in RAVEN–Optimizer needs two inputs: 
RAVEN input file (see sample RAVEN input script in APPENDIX C.3. Sample RAVEN Input Script of 
Multi-Cycle Optimization with Given Inventory Management ) and a series of steps called “Inventory 
Management.” Figure 11(b) illustrates steps for the Inventory Management for cycle n. To complete the 
Inventory Management steps, reactor specifications such as core map size, reactor inlet temperature, and 
pressure must be provided. Additionally, to maintain the fuel depletion histories, the results from the 
optimized core should be used to define the inventory for the subsequent cycle. Given these inputs, 
Python scripts read the burnup maps at the EOC from the optimized previous cycle output and selects the 
most burned FAs. Users can specify the quantity of FAs to be discarded. The geometry, labels, and 
enrichment of the fresh FAs are then defined, and these new fresh FAs are placed in the positions of the 
discarded ones. Next, the SIMULATE3 input file for cycle n+1 is generated, which includes the fuel 
inventory information that will be perturbed in the RAVEN–Optimizer. Finally, SIMULATE3 is executed 
using the input file generated in the previous step, creating a restart file for cycle n+1. This restart file 
contains inventory information, including the history from the previous cycle, enabling the user to 
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proceed with the optimization of the next cycle. It is important to note that different inventory definition 
strategies can be applied depending on specific needs for each cycle. The developed approach involves 
single-cycle optimization applied successively across different cycles, which can be challenging without 
an appropriate constraint violation penalty weight in the fitness function. 

 

 
(a) 

 
(b) 

Figure 11. Multi–cycle optimization process in the PRLO framework. (a) Overall workflow of n-th and 
n+1-th cycle optimization. The dotted block of RAVEN Input File is optional in case users want to 
change settings for the optimization after n-th cycle. (b) Exemplary strategy for the Inventory 
Management.  

The information needed to transition from one cycle to the next is typically encoded in SC, which 
gives instructions on the batch definitions, sizes, and the positions of each FA. Figure 12 shows two steps 
of perturbations of SC. Figure 12(a) illustrates an steps showing what FAs are present and where they 
came from. Note that Fresh FA in H-15 position, after burning one cycle, is reused in F-10 position. FAs 
with labels which do not appear in the map imply that they are discarded. Figure 12(b) shows a step of 
permuting FAs. Given a fixed inventory information at a given cycle, the FAs can be shuffled in the core. 
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(a) (b) 

Figure 12. Two-step approach for perturbations in the shuffling scheme: (a) The Inventory Management – 
defining fuel inventory (i.e., number of the fuel assembles per batch, amount of fresh fuel used, and 
reused inventories), and (b) Rearranging inventories through permutation. 

 
Currently, the PRLO framework addresses two distinct steps, as shown in Figure 12: fuel 

management is handled through external Python scripts, while the shuffling of FAs is managed by the 
RAVEN Optimizer. The future plan involves incorporating flexible inventory definition and the 
optimization of fuel inventory directly within RAVEN's optimization framework. 

2.4.3 Evolution Operators Development in RAVEN 
Fixed-inventory optimization with a SC is a permutation-based combinatorial problem, where FAs 

are rearranged to occupy different positions. Since each gene in the chromosome represents a distinct FA 
with its own burnup history, it is essential to use GA operators that will preserve the genes in a 
chromosome.  

The crossover operator in a GA combines information from two parents to generate offspring. In this 
study, a two-point crossover method is used, where two points in the chromosome are selected, and the 
genetic material between these points is swapped between the two parents. This ensures that each 
offspring contains information from both parents. However, this method does not preserve the uniqueness 
of genes. For example, Offspring 1 in Figure 13 ends up with duplicate Cs and Hs, but lacks D and G. 
Applying this crossover technique to a permutation-based problem can lead to significant issues, as 
repeated genes in a chromosome would mean placing the same FA in multiple positions at a given cycle, 
while neglecting the FA represented by the missing gene. 

 
Figure 13. Two-point crossover operation in GA. 

To preserve the genes in a chromosome, a two point partially mapped crossover (PMX) operator was 
added to the available crossover operators in the PRLO framework. The two-point PMX works by 
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creating an intermediate step where the swapped sections of the chromosomes are mapped to each other. 
The swapped regions are preserved, and the outside genes are mapped back according to the previously 
done mapping.  

 
Figure 14. Steps of a performing two point partially mapped crossover. 

Mutation operation in GA involves randomly altering an offspring to replicate the concept of 
imperfect copies in nature. This process enables exploration of design space regions that are not 
represented by the traits of previous populations. In this study, the swap mutation method is chosen 
because it maintains the uniqueness of the genes. Figure 15 shows the schematic of the swap mutation in 
GA.  

 
Figure 15. Swap Mutation in GA 
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2.5 Optimization Acceleration Methods 
2.5.1 Adaptive Mutation / Crossover Probabilities 
2.5.1.1 Introduction 

In GA, mutation and crossover probability play crucial roles in exploring and exploiting the search 
space. Static mutation probability refers to a fixed rate at which random alterations are introduced into the 
chromosomes of a population. This probability determines how often parts of a solution are randomly 
changed, ensuring genetic diversity and preventing premature convergence to suboptimal solutions. For 
instance, a mutation rate of 0.01 means that 1% of the genes in the chromosome will undergo random 
changes during each iteration. Static crossover probability, on the other hand, is the fixed rate at which 
pairs of chromosomes (i.e., parents) exchange segments of their genetic material to produce offspring. 
This process combines the traits of two parents to create potentially superior solutions. A crossover 
probability of 0.7 means that 70% of the selected pairs will undergo crossover, blending their genetic 
information to explore new areas of the solution space. 

Static mutation and crossover probabilities, though simple to implement, have significant drawbacks 
compared to adaptive mutation and crossover probabilities. The main issue with static probabilities is 
their lack of adaptability; they remain constant throughout the evolutionary process and cannot adjust to 
the changing needs of the population. This inflexibility can lead to inefficiencies as the algorithm 
progresses. For instance, a higher mutation rate is beneficial in the early stages for exploring the search 
space, while a lower rate is preferable later for fine-tuning solutions. Static rates cannot accommodate 
these shifting requirements. Additionally, static probabilities increase the risk of premature convergence, 
as a low mutation rate may result in insufficient genetic diversity, causing the population to settle on 
suboptimal solutions too early. Conversely, a high crossover rate might disrupt high-quality solutions 
rather than enhancing them. This inability to balance exploration and exploitation effectively hampers 
optimization.  

Adaptive mutation and crossover probabilities, on the other hand, adjust dynamically based on the 
algorithm’s performance and the state of the population, thereby maintaining diversity and enhancing the 
quality of solutions. These adaptive probabilities improve convergence speed and the overall efficiency of 
the optimization process by better balancing exploration and exploitation. In summary, while static 
probabilities offer simplicity, adaptive probabilities provide the necessary flexibility for more effective 
and efficient optimization, especially in complex and dynamic search environments. Several adaptive 
mutation and crossover algorithms are reviewed, and the DHM (Decreasing High Mutation) / ILC 
(Increasing Low Crossover) approach [16] was applied in this work.  

2.5.1.2 DHM / ILC  
The DHM/ILC approach controls mutation and crossover probabilities solely based on the number of 

iterations. DHM/ILC means decreasing mutation probability from 1 to 0 and increasing crossover 
probability from 0 to 1. The reasoning behind this approach is that fixed high mutation rate can’t 
converge into global optima. Initial state of GA uses high mutation rate in pursuance of more opportunity 
that improve the diversity of GA. And as iteration goes, mutation probability gradually gets lower in 
order to remain stable while crossover probability gets higher in order to shuffle genes of survived 
chromosomes. Equation (6) ~ (7) show the definition of the DHM/ILC. Figure 16 shows mutation and 
crossover probability changes over iterations.  

 
 

Mutation Prob. = 1 − Current # of Iteration
Total # of Iterarion

                                              (6) 

Crossover Prob. = Current # of Iteration
Total # of Iterarion

                                                    (7) 
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Figure 16. The DHM (Decreasing High Mutation) / ILC (Increasing Low Crossover) approach. 

2.5.1.3 Demonstration with ZDT1 Problem  
In the realm of multi-objective optimization, the ZDT1 problem [17] is a widely recognized as a 

benchmark problem. It serves as a standard test case for evaluating the performance of multi-objective 
optimization algorithms. The ZDT1 problem is specifically designed to assess an algorithm's ability to 
handle problems with convex Pareto-optimal fronts and to maintain diversity among solutions. The ZDT1 
problem is defined in a continuous search space and involves two conflicting objectives, minimizing two 
objective functions (i.e., 𝑓𝑓1(𝑥𝑥) and 𝑓𝑓2(𝑥𝑥)). The mathematical formulation of the ZDT1 problem is as 
follows: 

 
𝑓𝑓1(𝑥𝑥1) = 𝑥𝑥1                                                                           (8) 

  𝑓𝑓2(𝑥𝑥1, … ,𝑥𝑥𝑛𝑛) = 𝑔𝑔 ∙ ℎ                                                                   (9) 

  𝑔𝑔(𝑥𝑥2, … ,𝑥𝑥𝑛𝑛) = 1 + 9
𝑛𝑛−1

∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=2                                                         (10) 

 ℎ(𝑓𝑓1,𝑔𝑔) = 1− �𝑓𝑓1
𝑔𝑔

                                                                (11) 

where   

0 ≤ 𝑥𝑥𝑖𝑖 ≤ 1 (𝑖𝑖 = 1, … , 𝑛𝑛) 
 

Two-point crossover and random mutation method are used to solve the ZDT1 problem using GA. 
Figure 17 illustrates the optimization results with static and adaptive mutation & crossover probabilities 
when the population size equals 10. 
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Figure 17. Optimization result of ZDT1 with Population size of 10 and 30 iterations: static 
mutation/crossover vs. adaptive – DHM (Decreasing High Mutation) / ILC (Increasing Low Crossover – 
approach. 

 
Figure 18. Optimization result of ZDT1 with Population size of 50 and 30 iterations: static 
mutation/crossover rates vs. adaptive – DHM (Decreasing High Mutation) / ILC (Increasing Low 
Crossover – approach. 

Figure 17 and Figure 18 demonstrate that dynamically adjusting crossover and mutation rates 
significantly enhances the performance of GA on the ZDT1 problem. The GA using DHM/ILC closely 
approximates the analytical solution, indicating excellent convergence and diversity maintenance. In 
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contrast, the GA with static mutation/crossover rates failed to converge to the analytical solutions within 
the given iterations. Table 2 compares the computational time for finding optimal solutions to the ZDT1 
problem with a population size of 200, using static versus adaptive mutation/crossover rates. The results 
show that the adaptive method outperformed the static method by a factor of 60 in terms of computation 
time, while also achieving better accuracy. 

 
Table 2. Comparison of computational time for finding optimal solutions of ZDT1 problem with 200 
population size – static vs. adaptive mutation/crossover rates (2.3GHz 8-core Intel Core i9). 

Method Number of  
Iteration Elapsed time (sec) Mean Squared Error (%) 

Static 300 846 sec 0.001% 
Adaptive 

(DHM/ILC) 
15 13.89 sec 0.0001% 
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2.5.2 Active Subspaces for an Efficient GA in high-dimensional Problems  
2.5.2.1 Searching for Active Subspaces 

The Active Subspaces (AS) method [18] is a dimensionality reduction technique used in parameter 
space studies. The core concept of the AS method is to identify the crucial directions in the input 
parameter space that significantly impact the output of a given function. By projecting the high-
dimensional input space onto a lower-dimensional subspace, the AS method simplifies the optimization 
process, enhancing computational efficiency while maintaining substantial accuracy. 

The AS method aims to reduce the input dimension 𝜇𝜇 = (𝜇𝜇1,𝜇𝜇2, … ,𝜇𝜇K) of a scalar function 
𝑓𝑓(𝜇𝜇):Ω ⊂ ℝK → ℝ by defining a linear transformation 𝜇𝜇𝑀𝑀 = 𝐀𝐀𝜇𝜇. This approach necessitates evaluating 
the gradients of 𝑓𝑓 since A depends on the second moment matrix C of the target function's gradient. The 
matrix C is defined as follows: 

 
C = 𝔼𝔼[∇𝜇𝜇��⃗ 𝑓𝑓 ∙ ∇𝜇𝜇��⃗ 𝑓𝑓T]                                                                       (11) 

where with the symbol 𝔼𝔼[∙] we denote the expected value, and ∇𝜇𝜇��⃗ 𝑓𝑓 ≡ ∇𝑓𝑓(𝜇𝜇) ∈ ℝK. The matrix C can be 
decomposed by the Eigenvalue decomposition as  

 
C = 𝐖𝐖Λ𝐖𝐖T                                                                              (12) 

where W represents the orthogonal matrix containing the eigenvectors, and Λ denotes the eigenvalue 
matrix arranged in descending order. These two matrices can be decomposed as follows: 

 

Λ =  �Λ1 ⬚
⬚ Λ2

�,       W = [𝐖𝐖1,𝐖𝐖2],      𝐖𝐖1 ∈ ℝK×M,        𝐖𝐖2 ∈ ℝ(K−M)×M                          (13) 

where M represents the dimension of the active subspace. The active subspace of dimension M is defined 
as the principal eigenspace corresponding to the eigenvalues before the major spectral gap. We refer to 
the active variable(s) as 𝜇𝜇𝑀𝑀 = 𝐖𝐖1

T𝜇𝜇 ∈ ℝM, and the inactive variable(s) as 𝜂𝜂 = 𝐖𝐖2
T𝜇𝜇 ∈ ℝK−M. 𝜇𝜇 can be 

expressed using the identified eigenvectors and approximated as shown in Equation 14 and 15. 

 
𝜇𝜇 = 𝐖𝐖1𝐖𝐖1

T𝜇𝜇 + 𝐖𝐖2𝐖𝐖2
T𝜇𝜇                                                            (14) 

𝜇𝜇 ≅ 𝐖𝐖1𝜇𝜇𝑀𝑀                                                                      (15) 

To combat the curse of dimensionality in GA, a study on a supervised learning approach utilizing 
active subspaces in high-dimensional optimization problems has been conducted. [19] By leveraging the 
active subspaces property of the objective function, one can select individuals in the reduced parameter 
space, mutate and mate them, and then map them back to the full parameter space. This process 
transforms the original optimization problem from Equation 16 to Equation 17: 

 
min

𝜇𝜇∈Ω⊂ℝK
𝑓𝑓(𝜇𝜇)                                                                   (16) 

min
𝜇𝜇��⃗ M∈Ƥ⊂ℝM

𝜇𝜇��⃗ ∈Ω

𝑔𝑔(𝜇𝜇M = 𝐖𝐖1
T𝜇𝜇)                                                          (17) 
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where Ƥ is a feasible region in the reduced dimensional active subspace, ℝM. Figure 19 illustrates the 
progress of the AS method.  

 

 
Figure 19. Illustration of the application of active subspace method. 

Computing the gradient ∇𝜇𝜇��⃗ 𝑓𝑓 can be challenging, particularly for functions that discontinuous, or 
computationally expensive to evaluate, or when the governing equation is unknown. To address this issue, 
Simultaneous Perturbation Stochastic Approximation (SPSA) method [20] can be incorporated into the 
AS method. SPSA method is a powerful gradient approximation technique that estimates the gradient by 
perturbing all input parameters simultaneously with random perturbations. 

 

2.5.2.2 Simultaneous Perturbation Stochastic Approximation (SPSA) 
The SPSA method is a stochastic approach for minimizing differentiable multivariate functions by 

approximating the function's gradient. It is especially useful for functions where gradient evaluation is 
either impossible or too resource-intensive. To achieve this, the target function is evaluated only twice 
using perturbed parameter vectors that are independent of the number of variables: each component of the 
original parameter vector is simultaneously shifted by a randomly generated value. This differs from the 
finite difference method (FDM), where only one component of the parameter vector is shifted per 
evaluation, resulting in computational costs that scale linearly with the number of parameters. [21] 

Typically, the SPSA method is used to approximate an input vector such that its gradient equals zero. 
When a target function is known, one can use either FDM or SPSA to obtain the gradient. However, in 
many cases, the function of interest is unknown or difficult to determine. To address this, a modified 
SPSA method has been developed in this study, as illustrated in Figure 20.  

 



 

36 

 

Figure 20. Flowchart of modified SPSA. 

Figure 20 shows steps how the modified SPSA method works. This approach starts with obtaining 
raw data matrix X. X is N × K matrix where N is the number of data point and K is the input space 
dimension. n is a counter index of raw data set. Once c0 and 𝛾𝛾 which are user defined parameters 
controlling the magnitude of the perturbations are set, one should obtain a simultaneous perturbation 
vector (Δn). The element of Δn can be obtained using a distribution that generates only -1 and 1. Once 
Δn is obtained, we need to calculate the values of 𝑦𝑦n

(+) and 𝑦𝑦n
(−) to determine approximated gradient.  

 
 𝑦𝑦n

(+) = 𝑓𝑓(x�⃗ n + 𝑐𝑐n∆n)                                                             (18) 

 𝑦𝑦n
(−) = 𝑓𝑓(x�⃗ n − 𝑐𝑐n∆n)                                                             (19) 

Equation (20) shows how the gradients are approximated.  

 

 𝑔𝑔(x�⃗ n) = 𝑦𝑦n
(+)−𝑦𝑦n

(−)

2×𝑐𝑐n
�∆n,1

−1 ∆n,2
−1 ⋯ ⋯ ∆n,K

−1 �
T

                                       (20) 

2.5.2.3 Comparative Study of Gradient Approximation 
This section aims to evaluate the effectiveness of the SPSA method in estimating the gradient of a 

high-dimensional complex function by comparing its results with those obtained analytically or by FDM 
method. The function of interest and its derivative function are shown in Equation (21) and (22):  
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 𝑓𝑓(𝜇𝜇) = ∑ 𝜇𝜇𝑖𝑖2K
𝑖𝑖=1 + ∑ sin 𝜇𝜇𝑖𝑖2K

𝑖𝑖=1                                                       (21) 

 𝜕𝜕𝑓𝑓
𝜕𝜕𝜇𝜇𝑖𝑖

= 2𝜇𝜇𝑖𝑖 + 2𝜇𝜇𝑖𝑖 cos�𝜇𝜇𝑖𝑖2�                                                      (22) 

where 𝜇𝜇 = (𝜇𝜇1,  𝜇𝜇2,  … ,  𝜇𝜇K) 𝑓𝑓(𝜇𝜇):Ω ⊂ ℝK → ℝ. 

 

 
Figure 21. Performance analysis of SPSA method for gradient approximation: a comparison with 
analytical solutions. K=25 is used for Equation (21) and (22). 

Figure 21 shows the result that compares gradients of 𝜇𝜇1 found by SPSA method and gradients found 
analytically. The SPSA method showed its effectiveness on approximating gradient of each data point.  
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Figure 22. Computational time comparison between FDM and SPSA method for gradient 
calculation/prediction of 100 data points (2.3GHz 8-core Intel Core i9). 

Figure 22 presents a comparison of the elapsed time between the SPSA method and the FDM method. 
The X-axis represents the dimension of the input space, while the Y-axis indicates the corresponding 
computational time required to find a gradient for each data point. Both methods exhibit a similar overall 
pattern, with the SPSA method showing nearly consistent computation times regardless of the increased 
input parameters. In contrast, the FDM method's computation time increases linearly. 
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3. DEMONSTRATION OF CORE DESIGN OPTIMIZATION WITHIN 
PRLO FRAMEWORK 

3.1 Single – Cycle Optimization – Cycle 10 
A generic AP1000 equilibrium core model, developed in SIMULATE3 based on references [22] [23] 

[24] [25], was utilized for the optimization demonstration. This model includes a total of 175 FAs. The 
SC employed to achieve the equilibrium cycle follows a traditional checkerboard pattern, and it reached 
equilibrium cycle conditions at cycle 9 with ∆BU < 0.5 GWd/MT. Key performance parameters of the 
generic AP1000 equilibrium cycle can be found in Table 3 and the fuel inventory for the AP1000 model 
is defined in Table 4. In Table 4, the thrice burned fuel is always positioned in the center of the reactor 
core, and it consists of the FA with the lowest burnup in the twice burned batch from the previous cycle. 
All FAs are enriched at 4 wt.% for simplicity and have a 17×17 lattice. No burnable poison is present in 
the inventory. 

 
Figure 23. Burnup [GWd/MT] map of generic AP1000 equilibrium cycle model at the beginning of cycle. 

 

Table 3. Performance parameters of equilibrium reference AP1000 model. 

Variable Value 

Cycle Length (EFPD) 353.2 

Critical Boron Concentration (ppm) 1457.2 

FQ 1.901 

FΔH 1.552 
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Table 4. Fuel inventory of equilibrium cycle in reference AP1000 model. 

Fuel Batch Number of  
Fuel Assemblies 

Fresh fuel 52 

Once burned 52 

Twice burned 52 

Thrice burned 1 
 

3.1.1 Problem Statement 
For the single-cycle optimization demonstration, the objective was to identify a reactor core design 

that achieves improved parameters compared to the reference performance parameters of the equilibrium 
cycle, while utilizing the same inventory. Two cases are developed: Case A and Case B. The goal of the 
optimized core in Case A is to maximize the cycle length (i.e., Effective Full Power Day [EFPD]). The 
target constraints values were defined by using the values of the equilibrium model as follows FQ <
1.901, FΔH < 1.552 and Boron Concentrtation(pcm) < 1,457.2. The constraint violation weights were 
defined as shown in Equation 23. 

fitness = 1.0 × EFPD− 400 × max�0, FQ − 1.901� − 400 × max(0, FΔH − 1.552)
− 1,600 × max(0, Boron Concentration− 1,457.2) 

(23) 

 

The goal of the optimized core in Case B is to maximize core average burnup. The target constraints 
values were defined by using the values of the equilibrium model as shown above. The constraint 
violation weights were defined as shown in Equation 24. 

fitness = 1.0 × core average burnup− 40 × max�0, FQ − 1.901�
− 40 × max(0, FΔH − 1.552)
− 4,000 × max(0, Boron Concentration − 1,457.2) 

(24) 

 

3.1.2 Optimization Results and Analysis 
The GA optimization was conducted over 200 generations, with a population size of 100 and a 

quarter rotational symmetry. Figure 18 and Figure 19 illustrate the evolution of the fitness function during 
the optimization process and its relative performance. The relative fitness is defined such that the fitness 
value for the AP1000 reference core is set to 1. The results show that designs with performance 
comparable to the reference model were achieved after approximately 85 generations for Case A and 
around 60 generations for Case B. By the end of the optimization, designs with improved parameters were 
identified for both cases. 
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(a)  (b)  

Figure 18. Fitness behavior of Case A. (a) fitness function vs. generations (b) relative fitness.  

    
(a)  (b)  

Figure 19. Fitness behavior of Case B. (a) Fitness function vs. generations (b) Relative fitness.  
 
  
Table 5. Summary of key variables of single cycle optimization: Reference, Case A and Case B. 

Variable  Reference  Case A  Case B  
Cycle Length (EFPD)  353.2  353.5  353.5  

Boron Concentration (ppm)  1457.20  1456.94  1456.90 
FQ 1.901  1.781  1.775  

FΔH 1.552  1.463  1.458  
  

Figure 24, Figure 25, and Figure 26 show quarter burnup map for three cases: reference, Case A and 
Case B respectively. It is worth noting that the optimization process led us to designs with a loading that 
resembles industry practice in both Case A and B, by starting from a randomly generated initial 
population using GA. The fresh FAs were placed mostly along the periphery of the reactor. 
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(a) (b) 

Figure 24. Quarter burnup map for equilibrium reference core. (a) The BOC, and (b) The EOC.  

 

  
(a) (b) 

Figure 25. Quarter burnup map for optimized with Case A. (a) The BOC, and (b) The EOC.  

 

  
(a) (b) 

Figure 26. Quarter burnup map for optimized Case B. (a) The BOC, and (b) The EOC.  
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Figure 27 and Figure 28 display the behavior of cycle length and boron concentration during the 
optimization process. In Case A, by around generation 100, core designs are identified that match the 
reference boron concentration, with cycle lengths beginning to exceed those of the reference. In Case B, 
the core average burnup consistently surpasses the reference value after approximately 80 generations, 
indicating that the RAVEN optimizer effectively identified core designs that maximize core average 
burnup. 

  
Figure 27. Cycle length and boron concentration behavior during optimization process in Case A.  

  
Figure 28. Core average burnup at the EOC and Boron concentration behavior during optimization 
process in Case B  

As shown in Figure 29, the peaking factors improved significantly compared to the reference values 
through optimization in both Case A and Case B. Starting around generation 50, lower hot channel factors 
were consistently identified, indicating the effectiveness of the optimization process. 
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(a) (b) 
 Figure 29. Hot channel factors. (a) Case A and (b) Case B.  
 

The results from Case A and Case B demonstrated that RAVEN's n-th cycle optimization capabilities 
can generate improved designs. Despite using different approaches in Case A and Case B, the 
optimization process ultimately led to similar designs in both cases. 

 
3.2 Multi – Cycle Optimization – Cycle 10 & Cycle 11 

In this demonstration, two consecutive cycles, cycles 10 and 11, were independently optimized using 
the generic equilibrium AP1000 model as a reference. The optimized core results from Cycle 10 were 
used to define the inventory for Cycle 11, ensuring that the fuel loading from the equilibrium model was 
preserved. The objective was to provide a proof of concept for RAVEN's multi-cycle optimization 
capabilities. 

3.2.1 Problem Statement 
For the multi-cycle optimization demonstration, the objective was to find a reactor core design that 

will result in better parameters compared to the reference model by using the same inventory in both 
Cycle 10 and Cycle 11. The fuel inventory for the AP1000 reference equilibrium is shown in Table 4.  

3.2.2 Inventory Management 
To transition into subsequent cycles, the Inventory Management is conducted prior to each cycle 

optimization, as outlined in Figure 11. This process involves selecting FAs to be removed, reused, and 
introducing a fresh fuel batch. To maintain the same inventory as the reference model, the following 
approach was employed: FAs are first selected for removal based on their burnup levels—those with 
higher burnup are removed and do not participate in the next cycle. The number of removed assemblies 
matches the batch size (52 FAs) to ensure inventory consistency. Figure 30 shows the optimization results 
after Cycle 10. 
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(a) (b) 

Figure 30. Optimization results after Cycle 10. (a) Optimized burnup map at the EOC. (b) Fuel assemblies 
to be removed and reused for Cycle 11.  

3.2.3 Consecutive Cycles Optimization 
The goal of the optimized core for consecutive cycle optimization is set up to maximize cycle length. 

The target constraints values were defined by using the values of the base equilibrium model as follows  
FQ < 1.901, FDH < 1.552 and Boron Concentraion < 1,457.2. A single objective optimization method 
was used.  The constraint violation weights for calculating fitness value were defined as shown in 
Equation 25. 

fitness = 1.0 × EFPD− 400 × max�0, FQ − 1.901� − 400 × max(0, FΔH − 1.552)
− 3,200 × max(0, Boron Concentraion − 1,457.2) 

(15) 

 

3.2.4 Optimization Results and Analysis 
The results from Case A, optimized for Cycle 10, were used as the basis to define the fuel inventory 

for optimizing Cycle 11. Beginning with randomly generated designs, the RAVEN–Optimizer guided the 
search through the design space, leading to designs with improved parameters for both Cycle 10 and 
Cycle 11 compared to the reference equilibrium cycle model as shown in Table 6. 

 

Table 6. Summary of key variables of consecutive cycles optimization: Reference, Cycle 10 and Cycle 
11.  

Variable  Reference  Cycle 10  Cycle 11  
Cycle Length (EFPD)  353.2  353.5  353.3 

Boron Concentration (ppm)  1457.2  1456.9  1456.8 
FQ 1.90  1.78  1.83 

FΔH 1.55  1.46  1.49 
 

Figure 31 shows that, after 135 generations, designs with performance similar to the reference model 
were achieved for Cycle 11 using an inventory defined by the optimized Cycle 10 design in Case A. 
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(a) (b) 
Figure 31. Fitness behavior for Cycle 11. (a) Fitness function vs. generations. (b) Relative fitness 

Figure 32 illustrates that the design exploration during the optimization process meets the hot channel 
factor requirements as early as 20 generations. Additionally, Figure 33 shows that after 100 generations, 
the exploration identified solutions that satisfy the reference boron concentration requirement. Since 
meeting the boron concentration requirement was more challenging, it was assigned a higher weight in 
the fitness function for violation of boron concentration constraint compared to the hot channel factors. 
(400 vs. 3200 in Equation 25) 

 

 
Figure 32. Hot channel factors for Cycle 11. 
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Figure 33. Cycle length and boron concentration behavior during optimization process of Cycle 11. 

 

  
(a) (b) 

Figure 34. Quarter burnup map. (a) At the EOC for optimized Cycle 10 core. (b) At the BOC for Cycle 
11. 

The SC illustrating the movement of FAs from optimized Cycle 10 to optimized Cycle 11 is depicted 
in Figure 35. Each alphanumeric label (e.g., H-12) indicates the origin of the FA from the previous cycle. 
The core's label map is provided in Figure 10. 
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Figure 35. Shuffling scheme of fuel assemblies from optimized Cycle 10, to optimized Cycle 11.  

 

Table 7. Average burnup distribution per batches for reference equilibrium model, optimized Cycle 10, 
and optimized Cycle 11.  

Reactor BU Step Fresh Once Burned Twice Burned Thrice burned Core Average 

Reference 
Model 

BOC 0 13.17 27.93 37.996 13.85 

EOC 13.17 27.93 40.79 49.12 27.43 

Cycle 10 BOC 0 13.17 27.93 37.996 13.85 

EOC 12.90 28.14 40.88 48.48 27.44 

Cycle 11 BOC 0 12.90 28.14 38.781 13.84 

EOC 13.96 27.83 40.98 49.784 27.44 

 

Table 7 shows some differences in the batchwise burnup distributions between the optimized cycles 
and the reference model. For Cycle 10, the batchwise burnup distribution at the beginning of the cycle 
(BOC) matches that of the reference model, but by the end of the cycle (EOC), the distribution differs due 
to the different placement of FAs. At the EOC of optimized Cycle 10, higher burnup was achieved in the 
twice-burned batch, which is then removed and not used in Cycle 11. Additionally, the fresh batch burnup 
at the EOC of optimized Cycle 10 is lower than the one in the reference model. 
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4. SUMMARY AND FUTURE WORKS 
In FY24, the research was centered on advancing the PRLO framework that can handle both single 

and multi-cycle optimization, particularly for PWRs. This study delves into the intricate process of 
balancing economic considerations—such as batch size, enrichment levels, and fuel utilization—with 
critical reactor safety constraints. These factors are vital for ensuring that energy requirements and safety 
standards are consistently met across multiple fuel cycles. The challenge lies in the fact that the use of 
FAs in one cycle impacts subsequent cycles, creating interdependencies that add complexity to the 
optimization process. 

As part of this research, a new functionality in the PRLO framework has been added by implementing 
n-th cycle optimization and demonstrating the feasibility of optimizing individual cycles within given 
Inventory Management strategy. In this enhanced approach, the management of the fuel inventory is 
handled separately from the optimization process. The RAVEN optimizer plays perturbing the predefined 
fuel inventory to identify the most optimal fuel reload configuration. The separation of Inventory 
Management from the optimization process allows for a more focused and effective exploration of 
optimal reload strategies, while the integration of the automated inventory management into the 
optimization process is planned for future development. 

After several demonstrative cases with single and multi-cycle optimization, it has been shown that the 
PRLO framework has successfully come up with reactor core design optimizing fuel performance across 
multiple cycles, outperforming the reference design in both single-cycle and two-consecutive-cycle 
optimization scenarios. Even if this was a slight outperformance, this is promising as better results will be 
achieved once a more realistic setup is used and enough iterations are performed. These results highlight 
the potential of the PRLO platform to provide superior core designs compared to traditional heuristic or 
conventional methods. The enhanced performance achieved through this framework not only optimizes 
the economic aspects of fuel management but also reinforces safety standards within nuclear power 
plants. 

Looking ahead, future work will focus on automating the inventory definition step as a part of the 
optimization process. This will involve incorporating the Inventory Management into the core 
optimization routine, leading to a more comprehensive and cohesive approach to fuel management across 
multiple cycles. Additionally, the research will expand to include equilibrium cycle optimization and 
multi-physics analysis to validate the reactor core designs suggested by the PRLO framework. These 
steps are expected to further refine the optimization process and ensure that the proposed core designs 
meet the stringent safety and performance requirements necessary for the continued operation of nuclear 
power plants. 
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APPENDIX A – ESTIMATED FUEL COST OF THE U.S. NUCLEAR 
OPERATING PLANTS  

Table 8. Estimated Fuel Cost of the U.S. Nuclear Operating Plants in 2021. 

REACTOR NAME STATE REACTOR  
TYPE 

CAPACITY 
FACTOR (%) 

GENERATION 
(MWH)* 

Total Fuel Cost 
(M$)** 

Arkansas Nuclear One 1 AR PWR 90 6,570,588 $39.42 
Arkansas Nuclear One 2 AR PWR 81 6,985,096 $41.91 
Beaver Valley 1 PA PWR 92.6 7,356,891 $44.14 
Beaver Valley 2 PA PWR 89 7,024,505 $42.14 
Braidwood 1 IL PWR 95.4 9,887,584 $59.32 
Braidwood 2 IL PWR 94.8 9,586,763 $57.51 
Browns Ferry 1 AL BWR 98.9 10,881,278 $63.29 
Browns Ferry 2 AL BWR 83.5 9,210,093 $53.57 
Browns Ferry 3 AL BWR 99.3 10,962,181 $63.76 
Brunswick 1 NC BWR 97.4 8,006,921 $46.57 
Brunswick 2 NC BWR 91.4 7,461,939 $43.40 
Byron 1 IL PWR 95.9 9,776,596 $58.65 
Byron 2 IL PWR 102.4 10,193,056 $61.15 
Callaway MO PWR 39.3 4,292,433 $25.75 
Calvert Cliffs 1 MD PWR 103.4 7,895,813 $47.37 
Calvert Cliffs 2 MD PWR 94.9 7,097,820 $42.58 
Catawba 1 SC PWR 94.2 9,571,297 $57.42 
Catawba 2 SC PWR 89.5 9,014,422 $54.08 
Clinton IL BWR 89.5 8,348,706 $48.56 
Columbia Generating Station 2 WA BWR 84.4 8,511,288 $49.50 
Comanche Peak 1 TX PWR 99.7 10,528,185 $63.16 
Comanche Peak 2 TX PWR 84.3 8,828,068 $52.96 
Cooper NE BWR 102 6,880,622 $40.02 
Davis-Besse OH PWR 99.3 7,779,141 $46.67 
Diablo Canyon 1 CA PWR 100.3 9,854,372 $59.12 
Diablo Canyon 2 CA PWR 67.6 6,622,994 $39.73 
Donald C. Cook 1 MI PWR 103.1 9,110,067 $54.65 
Donald C. Cook 2 MI PWR 86.4 8,843,917 $53.06 
Dresden 2 IL BWR 93.9 7,422,615 $43.17 
Dresden 3 IL BWR 96.1 7,534,065 $43.82 
Edwin I. Hatch 1 GA BWR 93.9 7,202,991 $41.89 
Edwin I. Hatch 2 GA BWR 90 6,962,077 $40.49 
Fermi 2 MI BWR 93.7 9,369,536 $54.49 
Ginna NY PWR 92.8 4,727,764 $28.36 
Grand Gulf 1 MS BWR 95.9 11,772,058 $68.47 
H.B. Robinson 2 SC PWR 96.7 6,426,473 $38.55 
Hope Creek 1 NJ BWR 88.4 9,080,057 $52.81 
Indian Point 31 NY PWR 95 2,821,401 $16.93 
James A. Fitzpatrick NY BWR 99.6 7,397,717 $43.03 
Joseph M. Farley 1 AL PWR 92.9 7,114,415 $42.68 
Joseph M. Farley 2 AL PWR 100.2 7,868,522 $47.21 
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LaSalle 1 IL BWR 101.9 10,092,537 $58.70 
LaSalle 2 IL BWR 84.7 8,412,208 $48.93 
Limerick 1 PA BWR 102.5 10,050,781 $58.46 
Limerick 2 PA BWR 94.2 9,258,265 $53.85 
McGuire 1 NC PWR 102.1 10,361,236 $62.16 
McGuire 2 NC PWR 91.7 9,300,878 $55.80 
Millstone 2 CT PWR 92.6 6,919,561 $41.51 
Millstone 3 CT PWR 96.3 10,296,948 $61.77 
Monticello MN BWR 92.9 5,022,858 $29.21 
Nine Mile Point 1 NY BWR 91.3 5,037,579 $29.30 
Nine Mile Point 2 NY BWR 111.4 11,155,916 $64.88 
North Anna 1 VA PWR 83.3 6,919,326 $41.51 
North Anna 2 VA PWR 102.2 8,452,320 $50.71 
Oconee 1 SC PWR 102.2 7,579,868 $45.47 
Oconee 2 SC PWR 94 6,981,796 $41.89 
Oconee 3 SC PWR 101.6 7,644,799 $45.86 
Palisades2 MI PWR 100.6 7,014,799 $42.08 
Palo Verde 1 AZ PWR 100.3 11,515,959 $69.09 
Palo Verde 2 AZ PWR 88 10,123,959 $60.74 
Palo Verde 3 AZ PWR 86.9 9,989,944 $59.93 
Peach Bottom 2 PA BWR 103.3 11,439,087 $66.53 
Peach Bottom 3 PA BWR 96.2 10,829,157 $62.98 
Perry 1 OH BWR 89.3 9,703,868 $56.44 
Point Beach 1 WI PWR 98.4 5,137,279 $30.82 
Point Beach 2 WI PWR 91.8 4,832,911 $28.99 
Prairie Island 1 MN PWR 104.9 4,785,979 $28.71 
Prairie Island 2 MN PWR 94.9 4,313,934 $25.88 
Quad Cities 1 IL BWR 96 7,635,531 $44.41 
Quad Cities 2 IL BWR 101.6 8,104,797 $47.14 
River Bend 1 LA BWR 87.8 7,441,875 $43.28 
Salem 1 NJ PWR 101.7 10,205,299 $61.23 
Salem 2 NJ PWR 88.8 8,856,743 $53.13 
Seabrook 1 NH PWR 90.2 9,856,117 $59.13 
Sequoyah 1 TN PWR 87.8 8,865,277 $53.19 
Sequoyah 2 TN PWR 89.1 8,789,535 $52.73 
Shearon Harris 1 NC PWR 94.6 7,986,733 $47.92 
South Texas Project 1 TX PWR 91 10,363,168 $62.17 
South Texas Project 2 TX PWR 93.6 10,491,836 $62.94 
St. Lucie 1 FL PWR 81.2 6,978,217 $41.86 
St. Lucie 2 FL PWR 83 7,175,466 $43.05 
Surry 1 VA PWR 90.5 6,640,059 $39.84 
Surry 2 VA PWR 89.4 6,559,811 $39.35 
Susquehanna 1 PA BWR 97.6 10,664,952 $62.03 
Susquehanna 2 PA BWR 84.9 9,278,594 $53.97 
Turkey Point 3 FL PWR 86.1 6,314,980 $37.89 
Turkey Point 4 FL PWR 100.6 7,589,624 $45.53 
V.C. Summer SC PWR 77 6,552,773 $39.31 
Vogtle 1 GA PWR 93.7 9,443,128 $56.65 
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Vogtle 2 GA PWR 102.5 10,343,780 $62.06 
Waterford 3 LA PWR 96.1 9,806,799 $58.83 
Watts Bar 1 TN PWR 91.2 8,974,715 $53.84 
Watts Bar 2 TN PWR 88.5 8,700,880 $52.20 
Wolf Creek 1 KS PWR 79.9 8,574,732 $51.44 

Note:  

* Source: U.S. Energy Information Administration  
** These values are estimated based on the assumption that the fuel unit cost is $5.999/MWh in 2022 
dollars for PWR and $5.816/MWh in 2022 dollars for BWR. 
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APPENDIX B – COMPARISON SUMMARY AMONG  
MULTI-EVOLUTIONALRY ALGORITHMS 
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Table 9. Comparison summary among multi evolutionary algorithms. [26] 

Algorithm Fitness Assignment Diversity Mechanism Elitism External 
Population Advantages Disadvantages 

VEGA [27] 
Each subpopulation is 
evaluated with respect 
to a different objective 

No No No 
First MOGA 
straightforward 
implementation 

Tend to converge to 
the extreme of each 
objective 

MOGA [28] Pareto ranking Fitness sharing by 
niching No No Simple extension of 

single-objective GA 
Usually, slow 
convergence  

WBGA [29] Weighted average of 
normalized objectives 

Niching 
predefined wights 

No No Simple extension of 
single-objective GA 

Difficulties in non-
convex objective 
function space 

NPGA [30] 
No fitness assignment 
Tournament selection 

Niche count as 
tiebreaker in 
tournament selection 

No No Very simple 
tournament selection 

Problems related to 
niche size parameters 

RWGA [31] Weighted average of 
normalized objectives 

Randomly assigned 
weights Yes Yes Efficient and easy 

implement 

Difficulties in non-
convex objective 
function space 

PESA [32] No fitness assignment Cell-based density Pure elitist Yes 
Easy to implement and 
computationally 
efficient 

Performance depends 
on cell sizes 

PAES [33] 

Pareto dominance is 
used to replace a 
parent if offspring 
dominates 

Cell-based density as 
tiebreaker between 
offspring and parent 

Yes Yes 

Random mutation hill-
climbing strategy that 
is easy to implement 
and computationally 
efficient 

Prior information 
needed about objective 
space, not a 
population-based 
approach, and 
performance depends 
on cell sizes 

NSGA [34] 
Ranking based on 
non-domination 
sorting 

Fitness sharing by 
niching No No Fast convergence Problems related to 

niche size parameter 

NSGA-II [35] 
Ranking based on 
non-domination 
sorting 

Crowding distance Yes No Single parameter, well 
tested, and efficient 

Crowding distance 
works in objective 
space only 
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SPEA [36] 

Ranking based on the 
external archive of 
non-dominated 
solutions 

Clustering to truncate 
external population Yes Yes 

Well tested, with no 
parameter for 
clustering 

Complex clustering 
algorithm 

SPEA-2 [37] Strength of 
dominators 

Density based on the 
kth nearest neighbor Yes Yes 

Improved SPEA and 
made sure extreme 
points are preserved 

Computationally 
expensive fitness and 
density calculation 

RDGA [38] 

The problem reduced 
to bi-objective 
problem with solution 
rank and density as 
objectives 

Forbidden region cell-
based density Yes Yes 

Dynamic cell update 
that was robust with 
respect to the number 
of objectives 

More difficult to 
implement than others 

DMOEA [39] Cell-based ranking Adaptive cell-based 
density 

Yes 
(implicitly) Yes 

Includes efficient 
techniques to update 
cell densities and 
adaptive approaches to 
set GA parameters 

More difficult to 
implement than others 

 

 



 

60 

APPENDIX C – SAMPLE RAVEN INPUT FILES FOR RAVEN – 
SIMULATE3 INTERFACE 

APPENDIX C.1. Sim3-param.xml 
<Sim3-input-gen> 
   <pins> 17 </pins> 
   <core_width> 15 </core_width> 
   <load_point> 0.000 </load_point> 
   <depletion> 20 </depletion> 
   <axial_nodes> 25 </axial_nodes> 
   <active_height>426.72</active_height> 
   <batch> 10 </batch> 
   <pressure> 2250.0 </pressure> 
   <boron> 900.0 </boron> 
   <power> 100.0 </power> 
   <flow> 100.0 </flow> 
   <inlet_temperature> 550.0 </inlet_temperature> 
   <map_size> full </map_size> 
   <symmetry> quarter_rotational </symmetry> 
   <restart_file> cycle10.res </restart_file> 
   <cs_lib> cms.ap1000-eq-all.lib </cs_lib> 
   <number_assemblies> 157 </number_assemblies> 
   <working-dir> SampleSpecificSim3 </working-dir> 
   <FA-list> 
    <FA name='FA1'    FAid ='0'    type1 ='H-08' type2 ='H-08' type3 ='H-08' type4 ='H-08'/> 
    <FA name='FA2'    FAid ='1'    type1 ='H-09' type2 ='J-08' type3 ='H-07' type4 ='G-08'/> 
    <FA name='FA3'    FAid ='2'    type1 ='G-09' type2 ='J-09' type3 ='J-07' type4 ='G-07'/> 
    <FA name='FA4'    FAid ='3'    type1 ='F-09' type2 ='J-10' type3 ='K-07' type4 ='G-06'/> 
    <FA name='FA5'    FAid ='4'    type1 ='E-09' type2 ='J-11' type3 ='L-07' type4 ='G-05'/> 
    <FA name='FA6'    FAid ='5'    type1 ='D-09' type2 ='J-12' type3 ='M-07' type4 ='G-04'/> 
    <FA name='FA7'    FAid ='6'    type1 ='C-09' type2 ='J-13' type3 ='N-07' type4 ='G-03'/> 
    <FA name='FA8'    FAid ='7'    type1 ='B-09' type2 ='J-14' type3 ='P-07' type4 ='G-02'/> 
    <FA name='FA9'    FAid ='8'    type1 ='A-09' type2 ='J-15' type3 ='R-07' type4 ='G-01'/> 
    <FA name='FA10'   FAid ='9'    type1 ='H-10' type2 ='K-08' type3 ='H-06' type4 ='F-08'/> 
    <FA name='FA11'   FAid ='10'   type1 ='G-10' type2 ='K-09' type3 ='J-06' type4 ='F-07'/> 
    <FA name='FA12'   FAid ='11'   type1 ='F-10' type2 ='K-10' type3 ='K-06' type4 ='F-06'/> 
    <FA name='FA13'   FAid ='12'   type1 ='E-10' type2 ='K-11' type3 ='L-06' type4 ='F-05'/> 
    <FA name='FA14'   FAid ='13'   type1 ='D-10' type2 ='K-12' type3 ='M-06' type4 ='F-04'/> 
    <FA name='FA15'   FAid ='14'   type1 ='C-10' type2 ='K-13' type3 ='N-06' type4 ='F-03'/> 
    <FA name='FA16'   FAid ='15'   type1 ='B-10' type2 ='K-14' type3 ='P-06' type4 ='F-02'/> 
    <FA name='FA17'   FAid ='16'   type1 ='H-11' type2 ='L-08' type3 ='H-05' type4 ='E-08'/> 
    <FA name='FA18'   FAid ='17'   type1 ='G-11' type2 ='L-09' type3 ='J-05' type4 ='E-07'/> 
    <FA name='FA19'   FAid ='18'   type1 ='F-11' type2 ='L-10' type3 ='K-05' type4 ='E-06'/> 
    <FA name='FA20'   FAid ='19'   type1 ='E-11' type2 ='L-11' type3 ='L-05' type4 ='E-05'/> 
    <FA name='FA21'   FAid ='20'   type1 ='D-11' type2 ='L-12' type3 ='M-05' type4 ='E-04'/> 
    <FA name='FA22'   FAid ='21'   type1 ='C-11' type2 ='L-13' type3 ='N-05' type4 ='E-03'/> 
    <FA name='FA23'   FAid ='22'   type1 ='B-11' type2 ='L-14' type3 ='P-05' type4 ='E-02'/> 
    <FA name='FA24'   FAid ='23'   type1 ='H-12' type2 ='M-08' type3 ='H-04' type4 ='D-08'/> 
    <FA name='FA25'   FAid ='24'   type1 ='G-12' type2 ='M-09' type3 ='J-04' type4 ='D-07'/> 
    <FA name='FA26'   FAid ='25'   type1 ='F-12' type2 ='M-10' type3 ='K-04' type4 ='D-06'/> 
    <FA name='FA27'   FAid ='26'   type1 ='E-12' type2 ='M-11' type3 ='L-04' type4 ='D-05'/> 
    <FA name='FA28'   FAid ='27'   type1 ='D-12' type2 ='M-12' type3 ='M-04' type4 ='D-04'/> 
    <FA name='FA29'   FAid ='28'   type1 ='C-12' type2 ='M-13' type3 ='N-04' type4 ='D-03'/> 
    <FA name='FA30'   FAid ='29'   type1 ='H-13' type2 ='N-08' type3 ='H-03' type4 ='C-08'/> 
    <FA name='FA31'   FAid ='30'   type1 ='G-13' type2 ='N-09' type3 ='J-03' type4 ='C-07'/> 
    <FA name='FA32'   FAid ='31'   type1 ='F-13' type2 ='N-10' type3 ='K-03' type4 ='C-06'/> 
    <FA name='FA33'   FAid ='32'   type1 ='E-13' type2 ='N-11' type3 ='L-03' type4 ='C-05'/> 
    <FA name='FA34'   FAid ='33'   type1 ='D-13' type2 ='N-12' type3 ='M-03' type4 ='C-04'/> 
    <FA name='FA35'   FAid ='34'   type1 ='H-14' type2 ='P-08' type3 ='H-02' type4 ='B-08'/> 
    <FA name='FA36'   FAid ='35'   type1 ='G-14' type2 ='P-09' type3 ='J-02' type4 ='B-07'/> 
    <FA name='FA37'   FAid ='36'   type1 ='F-14' type2 ='P-10' type3 ='K-02' type4 ='B-06'/> 
    <FA name='FA38'   FAid ='37'   type1 ='E-14' type2 ='P-11' type3 ='L-02' type4 ='B-05'/> 
    <FA name='FA39'   FAid ='38'   type1 ='H-15' type2 ='R-08' type3 ='H-01' type4 ='A-08'/> 
    <FA name='FA40'   FAid ='39'   type1 ='G-15' type2 ='R-09' type3 ='J-01' type4 ='A-07'/> 
   </FA-list> 
</Sim3-input-gen> 
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APPENDIX C.2. Sim3-perturb.xml 
<core-map> 
  <loc id = '1' FAid ='0' /> 
  <loc id = '2' FAid ='0' /> 
  <loc id = '3' FAid ='0' /> 
  <loc id = '4' FAid ='0' /> 
  <loc id = '5' FAid ='0' /> 
  <loc id = '6' FAid ='0' /> 
  <loc id = '7' FAid ='0' /> 
  <loc id = '8' FAid ='0' /> 
  <loc id = '9' FAid ='0' /> 
  <loc id = '10' FAid ='0' /> 
  <loc id = '11' FAid ='0' /> 
  <loc id = '12' FAid ='0' /> 
  <loc id = '13' FAid ='0' /> 
  <loc id = '14' FAid ='0' /> 
  <loc id = '15' FAid ='0' /> 
  <loc id = '16' FAid ='0' /> 
  <loc id = '17' FAid ='0' /> 
  <loc id = '18' FAid ='0' /> 
  <loc id = '19' FAid ='0' /> 
  <loc id = '20' FAid ='0' /> 
  <loc id = '21' FAid ='0' /> 
  <loc id = '22' FAid ='0' /> 
  <loc id = '23' FAid ='0' /> 
  <loc id = '24' FAid ='0' /> 
  <loc id = '25' FAid ='0' /> 
  <loc id = '26' FAid ='0' /> 
  <loc id = '27' FAid ='0' /> 
  <loc id = '28' FAid ='0' /> 
  <loc id = '29' FAid ='0' /> 
  <loc id = '30' FAid ='0' /> 
  <loc id = '31' FAid ='0' /> 
  <loc id = '32' FAid ='0' /> 
  <loc id = '33' FAid ='0' /> 
  <loc id = '34' FAid ='0' /> 
  <loc id = '35' FAid ='0' /> 
  <loc id = '36' FAid ='0' /> 
  <loc id = '37' FAid ='0' /> 
  <loc id = '38' FAid ='0' /> 
  <loc id = '39' FAid ='0' /> 
  <loc id = '40' FAid ='0' /> 
</core-map> 
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APPENDIX C.3. Sample RAVEN Input Script of Multi-Cycle Optimization with Given Inventory 
Management  
<?xml version="1.0" ?> 
<Simulation verbosity="debug"> 
  <TestInfo> 
    <name>test_loaddingpattern_NSGAII-SIM3</name> 
    <author>luquj</author> 
    <created>2024-07-25</created> 
    <classesTested>Models.Code.CodeInterfaceBase.Simulate</classesTested> 
    <description> 
       Test to generate SIM3 input files for n-th cycle optimization. Chromosome contains 
entire fuel map and does not respect any symmetry. 
    </description> 
  </TestInfo> 
 
  <RunInfo> 
    <WorkingDir>Simulate_RAVEN-NSGAII</WorkingDir> 
    <Sequence>sampleGA-Simulate, print</Sequence> 
    <batchSize>20</batchSize> 
  </RunInfo> 
 
  <Steps> 
      <MultiRun name="sampleGA-Simulate" re-seeding="2286" clearRunDir="False"> 
      <Input class="Files" type="simulatedata">simulatedata_input</Input> 
      <Input class="Files" type="perturb">simulateperturb_input</Input> 
      <Input class="Files" type="input">input</Input> 
      <Model class="Models" type="Code">MySimulate</Model> 
      <Optimizer class="Optimizers"  type="GeneticAlgorithm" >GAopt</Optimizer> 
      <SolutionExport class="DataObjects" type="PointSet">opt_export</SolutionExport> 
      <Output class="DataObjects" type="PointSet">optOut</Output> 
      <Output class="OutStreams" type="Print">opt_export</Output> 
    </MultiRun> 
    <IOStep name="print"> 
      <Input class="DataObjects" type="PointSet">opt_export</Input> 
      <Input class="DataObjects" type="PointSet">optOut</Input> 
      <Output class="OutStreams" type="Print">opt_export</Output> 
      <Output class="OutStreams" type="Print">optOut</Output> 
    </IOStep> 
  </Steps> 
 
  <Files> 
    <Input name="simulatedata_input" type="simulatedata">sim3-param3.xml</Input> 
    <Input name="simulateperturb_input" type="perturb">sim3-perturb3.xml</Input> 
    <Input name="input" type="input">input.inp</Input> 
  </Files> 
 
  <Models> 
    <Code name="MySimulate" subType="Simulate"> 
      <executable>simulate3 -k</executable> 
      <sequence>simulate</sequence> 
    </Code> 
  </Models> 
 
  <Functions> 
    <External file="./constraints.py" name="impConstr1"> 
      <variables>pin_peaking,MaxFDH,max_boron</variables> 
    </External> 
    <External file="./constraints.py" name="impConstr2"> 
      <variables>pin_peaking,MaxFDH,max_boron</variables> 
    </External> 
    <External file="./constraints.py" name="impConstr3"> 
      <variables>pin_peaking,MaxFDH,max_boron</variables> 
    </External> 
  </Functions> 
 
  <Distributions> 
    <UniformDiscrete name='FA_dist'> 
      <lowerBound>1</lowerBound> 
      <upperBound>39</upperBound> 
      <strategy>withoutReplacement</strategy> 
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    </UniformDiscrete> 
  </Distributions> 
 
  <Optimizers> 
    <GeneticAlgorithm name="GAopt"> 
      <samplerInit> 
       <limit>150</limit> 
        <initialSeed>2286</initialSeed> 
        <writeSteps>every</writeSteps> 
        <type>max</type> 
      </samplerInit> 
      <GAparams> 
        <populationSize>100</populationSize> 
        <parentSelection>tournamentSelection</parentSelection> 
        <reproduction> 
          <crossover type="partiallyMappedCrossover"> 
            <crossoverProb>0.75</crossoverProb> 
          </crossover> 
          <mutation type="bitFlipMutator"> 
            <mutationProb>0.9</mutationProb> 
          </mutation> 
        </reproduction> 
        <fitness type="feasibleFirst"></fitness> 
        <survivorSelection>fitnessBased</survivorSelection> 
      </GAparams> 
      <convergence> 
        <AHDp>0.0</AHDp> 
      </convergence> 
      <constant name="loc1">0</constant>       
      <variable name="loc2">  
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc3"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc4"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc5"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc6"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc7"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc8"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc9"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc10"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc11"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc12"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc13"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc14"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc15"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc16"> 
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        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc17"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc18"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc19"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc20"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc21"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc22"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc23"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc24"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc25"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc26"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc27"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc28"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc29"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc30"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc31"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc32"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc33"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc34"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc35"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc36"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc37"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc38"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc39"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc40"> 
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        <distribution>FA_dist</distribution> 
      </variable> 
      <objective>MaxEFPD</objective> 
      <TargetEvaluation class="DataObjects" type="PointSet">optOut</TargetEvaluation> 
    <Sampler class="Samplers" type="MonteCarlo">MC_samp</Sampler> 
    <ImplicitConstraint class='Functions' type='External'>impConstr1</ImplicitConstraint> 
    <ImplicitConstraint class='Functions' type='External'>impConstr2</ImplicitConstraint> 
    <ImplicitConstraint class='Functions' type='External'>impConstr3</ImplicitConstraint> 
    </GeneticAlgorithm> 
  </Optimizers> 
 
  <Samplers> 
    <MonteCarlo name="MC_samp"> 
      <samplerInit> 
        <limit>100</limit> 
        <initialSeed>20021984</initialSeed> 
      </samplerInit> 
      <constant name="loc1">0</constant>     
      <variable name="loc2"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc3"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc4"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc5"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc6"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc7"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc8"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc9"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc10"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc11"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc12"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc13"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc14"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc15"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc16"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc17"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc18"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc19"> 
        <distribution>FA_dist</distribution> 
      </variable> 
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      <variable name="loc20"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc21"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc22"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc23"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc24"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc25"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc26"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc27"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc28"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc29"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc30"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc31"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc32"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc33"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc34"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc35"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc36"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc37"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc38"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc39"> 
        <distribution>FA_dist</distribution> 
      </variable> 
      <variable name="loc40"> 
        <distribution>FA_dist</distribution> 
      </variable> 
    </MonteCarlo> 
  </Samplers> 
 
  <DataObjects> 
    <PointSet name="optOut"> 
      <Input> 
      loc1, loc2, loc3, loc4, loc5, loc6, loc7, loc8, loc9, loc10,  
      loc11, loc12, loc13, loc14, loc15, loc16, loc17, loc18, loc19, loc20, 
      loc21, loc22, loc23, loc24, loc25, loc26, loc27, loc28, loc29, loc30, 
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      loc31, loc32, loc33, loc34, loc35, loc36, loc37, loc38, loc39, loc40 
      </Input> 
      <Output> MaxEFPD, MaxFDH, pin_peaking, max_boron, batchId</Output> 
    </PointSet> 
    <PointSet name="opt_export"> 
    <Input>trajID</Input> 
    <Output> 
        loc1, loc2, loc3, loc4, loc5, loc6, loc7, loc8, loc9, loc10,  
        loc11, loc12, loc13, loc14, loc15, loc16, loc17, loc18, loc19, loc20, 
        loc21, loc22, loc23, loc24, loc25, loc26, loc27, loc28, loc29, loc30, 
        loc31, loc32, loc33, loc34, loc35, loc36, loc37, loc38, loc39, loc40, 
        MaxEFPD, pin_peaking, max_boron, MaxFDH, fitness, 
        iteration, age, batchId, rank, CD, accepted 
    </Output> 
    </PointSet> 
  </DataObjects> 
 
  <OutStreams> 
    <Print name="optOut"> 
      <type>csv</type> 
      <source>optOut</source> 
      <what>input, output</what> 
    </Print> 
    <Print name="opt_export"> 
      <type>csv</type> 
      <source>opt_export</source> 
      <clusterLabel>trajID</clusterLabel> 
    </Print> 
  </OutStreams> 
</Simulation> 
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