
 

 

INL/RPT-24-80159 

Light Water Reactor Sustainability Program 

Scalable Methods to Automate 
Manual Work Management Activities 

Using Artificial Intelligence 
Ahmad Al Rashdan, Kellen Giraud, John Mapes, Brian Wilcken, and Jeremy Mohon 

Idaho National Laboratory  

Patrick Murray 

EQRPI Inc. 

 
August 2024 

U.S. Department of Energy 

Office of Nuclear Energy 

 



 

 

 

 
 

DISCLAIMER 

This information was prepared as an account of work sponsored by an 

agency of the U.S. Government. Neither the U.S. Government nor any 

agency thereof, nor any of their employees, makes any warranty, expressed 

or implied, or assumes any legal liability or responsibility for the accuracy, 

completeness, or usefulness, of any information, apparatus, product, or 

process disclosed, or represents that its use would not infringe privately 

owned rights. References herein to any specific commercial product, 

process, or service by trade name, trade mark, manufacturer, or otherwise, 

does not necessarily constitute or imply its endorsement, recommendation, 

or favoring by the U.S. Government or any agency thereof. The views and 

opinions of authors expressed herein do not necessarily state or reflect 

those of the U.S. Government or any agency thereof. 



 

 

INL/RPT-24-80159 
   

Light Water Reactor Sustainability 
Program 

Scalable Methods to Automate Manual Work Management Activities 
Using Artificial Intelligence 

Ahmad Al Rashdan, Kellen Giraud, John Mapes, Brian Wilcken, and Jeremy 
Mohon 

Idaho National Laboratory  
Patrick Murray 

EQRPI Inc. 

August 2024 

Idaho National Laboratory 
Light Water Reactor Sustainability 

Idaho Falls, Idaho 83415  
 
 

http://lwrs.inl.gov 
 

Prepared for the 
U.S. Department of Energy 
Office of Nuclear Energy 

Under DOE Idaho Operations Office 
Contract DE-AC07-05ID14517 

 

http://lwrs.inl.gov/


 

 

 

Page intentionally left blank 

 



 

iii 

EXECUTIVE SUMMARY 

In nuclear utilities, work is generally initiated by three sources: unexpected 

events that need to be addressed to maintain plant operations, updates or 

upgrades that improve plant performance or prevent potential issues, and periodic 

preventative maintenance activities, such as inspections or servicing of 

structures, systems, and components to monitor degradation and minimize 

unexpected outage risk. Thousands of work requests are generated annually in a 

nuclear power plant. Once a work need is identified, work preparation is initiated 

and managed through a highly proceduralized process (known as work 

management) involving decisions and actions by various plant organizations.  

The work management process is both time-consuming and costly. The 

process includes several phases: screening unexpected events, scoping to define 

the nature of the work, planning and assembling a work package, scheduling 

work and resources, executing the work, and documenting findings. Various 

plant organizations—including but not limited to maintenance, engineering, and 

operations—may be involved depending on the specific impact of the work on 

plant operations. Each organization utilizes its own data sources and brings 

different expertise and perspectives to the process. 

Due to the length and complexity of the work management process and the 

involvement of multiple organizations, routine tasks can incur significant 

expenses, often reaching tens of thousands of U.S. dollars per work package due 

to extensive staff involvement across various phases. With thousands of work 

packages executed annually per plant, these costs can total tens of millions of 

U.S. dollars per year, making work management a major contributor to the high 

operational expenses of nuclear power plants. 

To address the high costs of work management, this effort focused on 

determining ways to automate or semi-automate the process using artificial 

intelligence (AI) in its various forms, such as natural-language processing or 

machine learning. AI is a critical tool for automation due to its ability to handle 

complex and varied decisions by understanding context similarly to humans. 

To identify areas where automation may be effective in improving work 

management processes, the entire work management process was mapped to 

specific activities. To facilitate automation, the work management process was 

broken down into specific, clearly defined steps performed by specific staff that 

can be represented by decisions or actions. Each phase—screening, scoping, 

planning, scheduling, execution, and post-execution—was divided into numerous 

decisions and actions. Human time estimates were assigned to each decision and 

action. The goal was to identify those steps that would most likely benefit from 

integrating AI into the process. The analysis showed that most of the time-

consuming steps were concentrated in the planning phase, which alone accounts 

for over 42% of the total cost.  

To demonstrate the potential for AI in automating the work process, several 

methods and tools (e.g., topic modeling, regression, similarity analysis) from 

Machine Intelligence for Review and Analysis of Condition Logs and Entries 

(MIRACLE) were customized or expanded. These methods and tools were 

grouped into a novel list of scalable AI functions (e.g., classification, estimation, 

guidance) that were then assigned to the decisions and actions of the work 
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management process. Example demonstrations of these AI functions and the 

technology readiness of each function were evaluated using both existing and 

newly developed methods and tools. The analysis revealed several challenges in 

implementing AI technologies, such as issues with sparse labels, inconsistent 

data, and prompt sensitivity in classification. Addressing these challenges is 

crucial for improving the reliability and efficiency of AI functions, ultimately 

enhancing their effectiveness in real-world scenarios. Several of these challenges 

are addressed in this research and proposed solutions are provided. Other 

challenges are identified and are active areas of research within the AI 

community. Regardless of the specific methods or tools used—whether 

developed or yet to be developed—AI functions were applied to automate each 

decision and action.  

Using the AI functions and their mapping to work management decisions and 

actions, this research concludes that significant cost savings can be achieved 

through targeted improvements. This analysis shows a potential cost savings of 

$14.5M per nuclear power plant unit per year. These cost savings are derived by 

using AI to automate 131 steps in six phases of the work management process: 

Phase 
Current Cost 

Per Unit Per Year 

AI Cost Saving 

Per Unit Per Year 

Ratio of 

Saving 

Screening $1.53M $0.88M 57.6% 

Scoping $2.50M $2.13M 85.2% 

Planning $7.79M $7.72M 99.1% 

Scheduling $1.96M $1.32M 67.2% 

Execution $4.45M $1.78M 40.1% 

Post-execution $0.16M $0.14M 84.4% 
 

Despite being the most expensive phase of the work management process, 

planning was found to be almost fully automatable. Execution, the second-most 

expensive phase, shows much lower potential for automation with AI.  

By quantifying the cost savings for each decision or action and linking it to 

the associated AI functions, this research identifies the most promising functions 

for cost reduction. Review, generation, structuring, comparison, summarization, 

and supervised classification each resulted in estimated cost savings over $2.7M 

per unit per year, with the review function offering the highest savings at around 

$4.0M per unit per year. Meanwhile unsupervised classification and estimation 

achieved cost savings between $1.1M and $1.2M per unit per year. Guidance and 

insertion achieved cost savings of $0.85M per unit per year. All these functions 

were demonstrated using work management examples. 

Although review, generation, and structuring show the greatest potential for 

cost savings, the AI methods and tools associated with them are not yet fully 

developed and validated or ready for deployment due to several discussed 

challenges. While solutions were proposed and/or demonstrated, further in-depth 

research is needed to advance these functions for industry use. In contrast, the 

methods and tools for comparison and classification, despite offering slightly 

lower cost savings, are more developed and ready for implementation. In this 
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effort, several innovative methods were developed for these functions to 

effectively address their deployment challenges and facilitate their broader use. 
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Scalable Methods to Automate Manual Work 
Management Activities Using Artificial Intelligence 

1. INTRODUCTION 

The fundamental task of staff at a nuclear power plant (NPP) is to maintain and operate the power 

plant to safely generate electricity in the most cost-effective way possible. Though nuclear energy 

provides several advantages over other energy sources, NPPs have been economically challenged to 

compete with other sources of energy in terms of cost per megawatt-hour of power. The current fleet of 

NPPs in the United States (U.S.) is labor dependent and still frequently relies on manual processes. While 

some automation efforts have been successful across the industry, in general migration toward automation 

has been slow due to the industry’s unique regulatory nature. As a result, operations and maintenance 

costs have remained high, while other industries have leveraged technology development and reduced 

their operations and maintenance costs. 

In nuclear utilities, work execution is managed by a process that is highly proceduralized by a set of 

decisions and actions made by people from several organizations in the plant. Those decisions and actions 

are enabled by various forms of information in the form of documents, such as procedures, manuals, data 

sheets, etc. This process is often referred to as the work management process. The work management 

process is very time-consuming and therefore expensive. Routine tasks can incur substantial costs that 

often reach beyond the actual cost of the job execution due to extensive staff involvement in several 

phases of the work evolvement. A utility has conducted a recent study and identified that a simple task in 

NPPs can cost upward of tens of thousands of U.S. dollars (USD) due to the overhead associated with the 

work execution. With thousands of work orders (WOs) per plant executed annually, these costs can 

accumulate to tens of millions of USD per year for each plant, highlighting how work management is a 

major factor in the high operational expenses of NPPs.  

The Light Water Reactor Sustainability (LWRS) Program has recognized the potential for automation 

to reduce the cost of the work management process and proposed several technologies in previous efforts. 

In 2016, Al Rashdan et al. (2016) identified 50 key advanced functions to implement in the work process 

and conducted an industry survey to verify the research findings on the importance of those functions. 

Although these functions were considered ambitious at the time due to the lack of existing technology, the 

rapid advancements in artificial intelligence (AI) in recent years have enabled the realization of many of 

these functions. In 2018 the LWRS Program began developing AI methods to enable automated work 

processes. The first challenge to achieve this objective was data integration, which was researched in 

2019 (Al Rashdan et al. 2019). Research into the use of AI to analyze work management data commenced 

in 2019 (Al Rashdan et al.  2020), and research focused on condition reports (CRs) followed that effort 

(Al Rashdan et al. 2021). 

Given recent advancements in the use of AI for text analysis, the nuclear industry leveraged several 

existing methods and tools to create application-specific solutions. Those methods and tools were generic 

in nature—that is, they were designed to be used in various functions. Therefore, users frequently found 

that they resulted in suboptimal performance, eroding their trust and resulting in the industry abandoning 

those methods and tools after the pilot stage. This motivated the LWRS Program to research novel 

methods and tools and create new approaches to achieve optimal performance, with the aim of 

outperforming a human counterpart. This resulted in a novel technology called Machine Intelligence for 

Review and Analysis of Condition Logs and Entries (MIRACLE). MIRACLE (Figure 1) included several 

novel technologies—AI methods to analyze a plant’s CRs (as highlighted in NEI 2018)—and 

consequently won an R&D 100 Award in 2022. Additionally, MIRACLE aimed to explore new 

applications the industry had not explored. The nuclear industry recognized the potential for this research, 

and data from the corrective action programs (CAPs) of 39 reactors operating in the U.S. were shared 

with Idaho National Laboratory (INL). MIRACLE was made available for licensing and is currently 
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being used by a utility as part of the utility’s condition screening tool. Since 2021, researchers have had 

exponential success finding new applications for MIRACLE, including, using its tools for inspection, risk 

analysis, outage optimization, performance improvement (PI), among other tasks. A key application for 

MIRACLE is work management, which is discussed in this report.  

Considering the cost associated with the work management process, it is desired to determine a means 

to migrate it to an automated or at least semi-automated model in which the decisions and actions are 

made by a machine using AI. AI is a critical tool for automation mainly because the decisions for work 

management vary in complexity and nature, a challenge that AI can tackle, given its ability to understand 

context like a human. The goal of this work is to identify and develop effective AI solutions to reduce 

workforce costs and streamline the work management process. 

 

 

Figure 1. MIRACLE initial mission to assist the CR screening process. 

1.1 Overview of the Work Management Process 

There are generally three sources that initiate work in a nuclear utility:  

1. Corrective maintenance: an unexpected event that needs to be rectified to sustain plant operations 

and described in a CR 

2. Project: an update, upgrade, or change that needs to be implemented to improve plant 

performance or prevent a foreseen issue 

3. Preventive maintenance (PM): activities that could be in the form of inspecting or servicing a 

structure, system, and component (SSC) to ensure its degradation is tracked and outage risk is 

minimized.  

Once the work need is identified, a work request (WR) is created and work commences, passing 

through several phases, each leading to different outcomes (see Figure 2). The main work phases are 

screening of unexpected events in the plant, scoping to characterize the nature of the needed work, 

planning the work and assembling the work package (WP), scheduling the work and creating schedule 
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tasks (STs) for the specific work activities at specific times and assigning the needed resources, executing 

the actual work, then documenting the findings and insights post-execution. 

The execution of the work requires that all relevant organizations review their daily schedule and 

execute the activities assigned to that day. During the work, each organization completes its assigned part 

of the WP and provides progress or completion indications for each step of its dedicated procedure. 

Once a WO is initiated, if it relates to equipment it goes through the scoping process. Scoping is the 

process of characterizing attributes of the WO such as priority, criticality, and whether the planned work 

will have any operational impact. This process also determines the type of resources needed (in-house or 

contract), risk and risk-mitigation strategies, and any other work scope implications. During scoping, the 

WO is broken down into one or more WO activities (also referred to as sub-WOs or tasks in the industry). 

For example, associated work scopes that may require the creation of separate WO activities include 

erecting (and dismantling after the work) scaffolding to access the equipment, removing (and reinstalling) 

insulation installed on the equipment, and establishing foreign material exclusion (FME) controls as 

required. Each WO activity is a substep or task of the main scope. After the WO is completed, a WP is 

created as part of the planning process. The WP converts the WO requirements into a set of procedures, 

instructions, manuals, and other related data sheets or documents. This is performed by the planner. The 

WP could be updated from an existing WP if one exists for similar work, or a new WP could be created if 

needed. After the WP is completed, it needs to be assigned to staff to execute the work. The scheduling 

team determines when the work will be executed within the week. Schedulers consider all the resources 

that may be needed in terms of staff, parts (and lead time to get them), and risk constraints (provided by 

the planner), among other factors discussed in this report. Once the work is scheduled, it is “frozen,” and 

the staff are assigned to the WP task for the dedicated time. After the work is completed, actions are taken 

to ensure that the quality of work is satisfactory, and any lessons learned are logged. 

 

 

Figure 2. An overview of the work management process. 

Throughout this process, various organizations in the plant beyond maintenance, engineering, or 

operations could be involved. For example, chemistry could be involved if the work impacts plant 

chemistry, radiation protection (RP) could be involved to ensure low exposure levels to humans are 

sustained and contamination is prevented, or security could be involved if a barrier needs to be broken. 

Each organization uses its own data sources, has different knowledge and skill sets, and considers the 

plant from a different perspective. The details of the work management process are discussed in Section 4 

and Appendix A-F. 
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1.2 Approach 

To introduce a systematic approach to automation, the MIRACLE methods and tools were expanded 

in this effort and grouped into the functions (for an application) they perform (Figure 3). The functions 

were designed to be scalable, enabling them to automate the diverse forms of human decision-making and 

action-taking activities. The key functions included supervised and unsupervised classification for 

categorizing and labeling operational data, text comparison for identifying similar text or context, and 

dialogue systems for real-time human-AI interactions. The functions also included estimation for 

predicting continuous outcomes based on historical data patterns, as well as generation for creating new 

content through AI-driven innovation. Additional functions discussed are guidance for text 

recommendations, insertion for facilitating new information, review for assessing unstructured 

documents, structuring for data organization and extraction, summarization for concise overviews of 

lengthy texts, and visualization for making complex data more comprehensible.  

Most of the MIRACLE methods and tools would benefit more than one function. For example, 

nonlinear regression (using a neural network, or NN) can be used for classification of text, for estimation 

of an outcome, or for automated text insertion. Using functions instead of a specific method or tool in 

automating the work management process provides flexibility for users in deciding what method or tool 

to use, provided they serve the targeted function. The function is not fixed to a certain method or tool; 

instead, it is focused on how methods and tools can be used rather than on which is used.  

Each work management phase (screening, scoping, planning, scheduling, execution, and post-

execution) consists of a series of steps that rely heavily on staff from various organizations to review 

documents, including procedures, manuals, and data sheets, and to make decisions. The approach of this 

report is to identify the key decisions and actions involved in each of these steps, resulting in over 130 

identified decisions and actions (Appendix A-F). Each decision and action was assigned a frequency and 

an estimate of the human time required to execute it. To automate specific steps of the work management 

process, the AI functions were assigned to each identified decision and action. This approach allowed for 

estimating the potential cost savings that could be achieved by introducing AI into the process. 

Given that the cost savings for each step is quantified, and the associated AI function is linked, those 

functions can be aggregated to determine which ones have the most promising cost savings. This was 

used to focus this research and can be used to focus future research on the functions that have a high 

cost-saving impact. Within those functions, several challenges were identified and research into methods 

to overcome them was conducted. For example, sparse labels of significant safety events in NPPs (due to 

their rare occurrence) would limit AI’s ability to understand how and when to classify an event as a 

significant safety event. Several solutions are proposed in this research to tackle such challenges.  
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Figure 3. MIRACLE expanded mission to automate the work management process. 

1.3 Report Structure 

The report layout is summarized in Figure 4. The following Section 2 introduces the scalable AI 

methods and tools for any form of text analysis, covering text preprocessing and supervised, 

unsupervised, and semisupervised approaches. Section 3 explains how these methods and tools are 

applied to achieve the outlined AI functions, with example demonstrations using real utility data. Section 

4 provides an overview of the work management mapping approach, outlines the assumptions made, and 

discusses the main phases. Appendices A-F break down each phase into numerous specific steps currently 

performed by humans, detailing the decisions and actions taken and the time each step requires, as well as 

how these steps could be automated using the discussed AI functions. Section 5 presents an estimate of 

the aggregated potential cost savings from automating each phase. Based on these savings, Section 6 

discusses the cost savings that can be achieved by each AI function. Finally, Section 7 discusses the 

challenges of deploying these functions and presents research into overcoming these challenges. 
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Figure 4. Visual abstract of the report denoting the scope of each section. 

2. AI METHODS AND TOOLS USED FOR TEXT ANALYSIS 

AI for text analysis is a research-intensive area with several new methods and tools being created 

every day. However, the vast majority can be categorized into specific groups that describe their general 

purpose. In this effort, the methods and tools used are grouped for text preparation and modeling, which is 

broken down into supervised, unsupervised, and semisupervised learning. This section summarizes the AI 

methods and tools in the context of their purpose. Examples of the usage of these methods and tools in 

specific applications are provided in Section 3. Section 7 examines the challenges associated with using 

these methods and tools at scale to achieve the targeted AI functions, along with research and 

demonstrations into potential solutions. 

2.1 Text Preparation 

Most data preparation solutions are ready-to-use tools that have been demonstrated and used across 

several industries. In this section, the commonly used tools are introduced with a short overview on how 

they work. Details on the underlying methods can be found in the listed references. 

2.1.1 Rules-Based Processing 

Free-form text presents a challenge to analyze since it encompasses words that span the entire English 

language. Making it even more difficult, free-form text often includes abbreviations, industry-specific 

jargon, and—very often—misspellings. Before text could be applied to any AI method, it had to undergo 

a detailed data curation and be reduced to a form that could be fed into a model. This activity removes 

text discrepancies and errors that could impact the results, such as by correcting common misspellings, 

and refines and simplifies the text for efficient processing, such as through spelling out common 

acronyms, lemmatization, etc. Specifically, data preparation can include any of the following: 

• Determining which columns are to be used (i.e., go through each text field to decide which are useful 

out of potentially hundreds of columns for some utilities). This involves interacting with each utility 

subject-matter expert (SME). 
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• Eliminating invalid values (e.g., NaN in the text fields). The use of such abbreviations is very 

common by utilities but inconsistent across the industry, necessitating consistency in how they are 

used in AI. 

• Removing all meaningless nonalphanumeric characters in text fields (e.g., (\|/(|)<|>-*)+) and replacing 

those that do have meaning (e.g., &). 

• Removing duplicate records. In some cases, this results in a significant reduction in the amount of 

text. 

• Removing very short records, since they are meaningless (e.g., Canceled, Error, reviewer_comment). 

• Spelling out all contractions (e.g., don’t → do not). 

• Spelling out acronyms and abbreviations (e.g., convert “PM” to “preventative maintenance,” “Bkr” to 

“breaker,” and “Crit” to “criticality). 

• Fixing common spelling errors via automatic/manual rules-based processes. 

• Fixing words split apart by unwarranted spaces (e.g., “cl eared early amps ears ean amp ear adding 

ip”). This type of artifact often exists due to data migration from one tool to another within a nuclear 

utility. 

• In some cases, removing employee names (e.g., Doe, John). For this work, a list of about 116,000 

first, last, and surnames for men and women from countries around the world was compiled. Names 

pollute the vocabulary with high-frequency noise. Such noise can reduce the usefulness of the term 

frequency-inverse document frequency (TF-IDF, discussed in a later section). 

• Removing frequently occurring meaningless text (e.g., “Operator Input:”). 

• Lemmatization, in which words are reduced to their most basic forms in the context of the other 

tokens surrounding them (e.g., convert to singular form, change past to present tense). 

• Creating n-grams of meaningful commonly used words in a specific context (e.g., “high-pressure 

coolant injection” becomes one n-gram). Frequently occurring patterns of one, two, or three tokens—

called unigrams, bigrams, and trigrams (referred to as n-grams), respectively—are identified. 

The preprocessing steps that are necessary depend on the data, the method used, and the intended 

application. Once the relevant steps are applied, the text is reduced to its foundational format. This often 

results in a more robust use of AI methods to extract the relative meaning and context of each text field so 

that a machine can make an automated decision. 

Text preprocessing often relies on the user defining a set of predefined rules or patterns. In its 

simplistic form, a find and replace tool or query is used to search for specific text or a pattern of words 

and replacing it with alternative values. While the basic form of this approach is straightforward, it can be 

used to handle more complex tasks with advanced rules, especially when inconsistent data is processed. 

For example, rule-based processing can be used to detect names and codes (for procedures, manuals, etc.). 

2.1.2 Tokenization 

Tokenization is the process of converting text into smaller units known as tokens. This step is used in 

natural-language processing (NLP) to convert raw text into a format (i.e., numbers) that a machine can 

analyze. The tokenized value for a word has no real meaning in a linguistic sense; it is simply a number 

chosen to represent the given word. Tokens can represent sentences, words, parts of words, or characters. 

For example, “This is an example” can be presented as one token, or it can become “This,” “is,” “an,” 

“example,” “.” if each word is a token, or “T,” “h,” “i,” “s,” “i,” “s,” “a,” “n,” “e,” “x,” “a,” “m,” “p,” “l,” 

“e,” “.” if each character is a token. The most used form of tokenization is word based. Converting the 

tokens into numbers is performed by assigning numbers to all words in a training dataset, then simply 
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converting the tokens to their assigned numbers. For example, the tokens “This,” “is,” “an,” “example,” 

and “.” would become [1, 2, 3, 4, 5]. More details on tokenization can be found in Grefenstette (1999).  

2.1.3 Vectorization 

Text vectorization is the process of turning words, sentences, or whole documents into a vector of 

numbers in a space with many dimensions. This step is necessary because vectors can be mathematically 

analyzed. Similar text ends up with vectors that are close to each other. Using “This is an example,” if a 

corpusa contains 100,000 unique words, then the “This is an example” sentence could be converted to a 

vector with the size 1x100,000, with 1 assigned to the words that appear in “This is an example” and 0 

otherwise. This method is called hot-encoding and results in spare vectors (vectors with mostly zero 

values). The resulting vector might look like this: 

this and is person … example an 

1 0 1 0  1 1 

 

Other methods include bag of words (BoW; Zhang, Jin, and Zhou 2010) and TF-IDF (Ramos 2003), 

both of which are common techniques used in NLP for vectorization. BoW is a process that counts the 

occurrences of each word in textual data and groups words as bags of words based on their frequency.  

TF-IDF adds importance to BoW by comparing the prevalence of words in an individual document 

against their prevalence in a corpus. TF-IDF executes two main steps: The term frequency (TF) measures 

how frequently a term (word) appears in a document, and words that appear more often are considered 

more important. Inverse document frequency (IDF) aims to regulate the TF output by removing words 

with less meaning, such as “and.” It evaluates how rare a term is across all documents in a corpus (not just 

a single document), and those rare words are given higher weight since they are more specific to the 

context than words such as “and.” This process ensures that words that are used frequently within a 

specific document but rarely across the entire corpus are given a high TF-IDF score. Using the same 

example, “This is an example,” this process could result in: 

this and is person … example an 

0.2 0 0.2 0  0.4 0.25 

 

High numbers indicate the word is both frequent in a document and rare across the corpus. This 

explains why “example” has higher value than “an,” for example, indicating it is more informative. One 

key benefit of vectorization is that similar text will result in spatially close vectors. For example, “This is 

an example” and “An example is provided” would be denoted as similar because they have nonzero 

values for the common words “example,” “an,” and “is.” 

2.1.3.1 Dictionary 

A dictionary includes predefined, predeveloped sets of correlated words and is curated over decades 

of language research and available for direct use. A human or SME can also provide a dictionary that 

reflects the field-specific use of words. A dictionary can be used to assist vectorization by converting each 

word into a set of representative words. This approach ensures targeted semantic analysis and 

domain-specific knowledge inclusion. Dictionaries provide a structured framework that enhances specific 

interpretability, allowing for tailored text-processing tasks. For example, if the word “system” is used in a 

 
a Corpus is used in language process to refer to a large set of texts that often represents all text available for a problem. 
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sentence, it can result in a token for “equipment” since they both refer to similar or interchangeable 

concepts in the nuclear industry. 

2.1.4 Embedding 

Despite the ability of vectorization to detect text similarities, it is sensitive to the use of words. For 

example, if “This is an example” is compared to “A demonstration is presented,” vectorization is unable 

to determine that they both provide essentially the same information because “is” is the only overlapping 

word. This highlights the need for methods to incorporate context, which can be achieved by using 

embedding. Text embedding is the process of turning words, phrases, or whole documents into numerical 

vectors that have context relationships. These vectors show how words are related in meaning and how 

they are used in sentences. This process allows machines to understand and process natural language 

more effectively for tasks like text classification. 

Embedding can be considered fundamentally different from vectorization because it reduces data 

dimensionality to force words with similar context to be grouped into single vectors. In essence, 

embedding extracts from the text the features that matter. This is different from the previously discussed 

tokens vectorization, which tends to result in high-dimensional, sparse vectors. The first step in 

embedding is to choose a desired reduced dimension; this is the embedding vector size. For example, if a 

corpus contains 100,000 unique words and it is desired to reduce all the vocabulary to 1,000 dimensions 

(i.e., all contextually similar words in that 100,000-word vector are represented by 1,000 dimensions 

only), a matrix of 1,000 × 100,000 is generated. Using this matrix and an optimizer, it is possible to use a 

corpus (with billions of words but only 100,000 unique ones) to tune how the matrix would convert any 

documentb into 1,000 dimensional embedding vectors. Every document can therefore be converted into a 

vector of 1,000 dimensional embeddings that represent the document context. 

To train the embedding matrix, there are two choices available. One uses the available corpus. For 

example, if the work management data is available, the text can be used to develop the embedding matrix. 

The second uses nonrelevant text that is available (e.g., that of Wikipedia or WWW). The first approach 

is very application-specific aware, while the second encompasses general knowledge. 

Creating the correlation of words can be performed with statistical methods like latent Dirichlet 

allocation (LDA; Tong and Zhang 2016), positive pointwise mutual information (Schneider 2005), and 

hyperspace analogue to language (Azzopardi, Girolami, and Crowe 2005). These methods analyze the 

co-occurrence and distribution patterns of words in a corpus and generate vector representations that 

capture the semantic and contextual relationships between words. 

Although a matrix is used in this section to explain embedding, it is also possible to implement 

embeddings using nonlinear models, such as a NN. The underlying concept is the same—that is, a model 

is presented, and an optimizer is used to train it to generate embeddings using a training dataset. The 

training process could involve attempting to predict a word or sentence used in a corpus, for example. 

Those nonlinear models often contain billions of tunable parameters and are therefore capable of 

detecting complex relationships among words (i.e., capture broader context). Such models are referred to 

as large language models (LLMs). An example of an LLM that was trained on preexisting data is 

Google’s BERT (Bidirectional Encoder Representations from Transformers), which was trained on 

Wikipedia and books. LLMs are ubiquitous NNs that can be used for many tasks, such as classification, 

question answering, summarization, translation, etc. 

Word2Vec (Rong 2014) is an example of an LLM that can be trained for a specific corpus. It can be 

trained on nuclear-specific text to understand the word analogies in the nuclear field.  Word2Vec is a NN 

that reconstructs linguistic contexts for each word. It converts every word into vectors in a continuous 

 
b A document is usually used in the context of NLP to a single piece of text that serves as a unit of analysis or processing. 
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space in which similar words have similar vectors. Word2Vec has a proven ability to form analogies and 

produce reasonable word similarities, (Church 2017).  

If several of the mentioned encoding methods are used, the context of a word, sentence, or document 

can be significantly enhanced. By integrating embeddings, the underlying and hidden relationships can be 

revealed, improving any text-related analysis. 

2.1.4.1 Transfer Learning for Embedding 

Instead of using a pretrained LLM or training one for a specific corpus, it is possible to combine the 

benefits of pretrained models with those trained for a specific dataset. This is referred to as transfer 

learning. Transfer learning analyzes large sets of text (such as Wikipedia), learning patterns and 

relationships from it. The transferred models of this effort can be fine-tuned to focus a model on specific 

smaller-domain text. For example, a general LLM might consider the word “coolant” to relate strongly to 

vehicles, but when refined with NPP data it might associate it with reactor coolant systems. This enables 

modes to be biased towards the desired applications. 

One example of an LLM that was used in this research is Falcon (Almazrouei et al. 2023). This model 

was used for this work because it can be downloaded and run locally, which is important given the 

sensitive nature of the data used. Falcon was trained on Wikipedia to infer context-sensitive document 

similarities by comparing pairs of Wikipedia articles. For instance, a 2016 Wikipedia article should be 

more similar to the 2023 Wikipedia article of the same name than any other article. 

MiniLM is another LLM that was used locally in this research. It can be fine-tuned for specific fields 

too (Wang et al. 2020). However, its benefit is that it is smaller in size (hence the use of “mini”) and 

therefore enables faster deployment and requires lighter computational demand to train. 

2.2 Supervised Learning 

Supervised learning establishes empirical relationships between sets of inputs and specific outputs. 

These models are trained on labeled data, unlike unsupervised models, which do not use labeled data. 

Labeled data consists of pairs for which each input is associated with a specific output. An optimizer 

adjusts the model parameters to improve its performance in predicting the output given the input. This 

process is known as training. 

A key aspect of supervised models is the need for labels. Using a large corpus, such as Wikipedia, to 

train a model does not involve labeling in the supervised learning sense, as the text is not explicitly tagged 

with output labels. For example, if the task is to classify text related to work scope, a label like 

“Chemistry” might be assigned to text that implicitly discusses chemistry. This label enables the model to 

classify the text into categories such as “Chemistry” or “Not Chemistry,” even if the term “Chemistry” is 

not explicitly mentioned. In contrast, labels in supervised learning are explicitly assigned to text or data 

points and are used as output targets. 

2.2.1 Regression 

Regression is a suite of methods within supervised learning that approximate the relationship between 

inputs and outputs. These methods can be based on linear or nonlinear models and may produce outputs 

that are categorical or continuous. 

Linear regression methods approximate the relationship between inputs and outputs using a linear 

equation. They estimate the output as a weighted sum of the inputs, where the weights (parameters) are 

adjusted during the learning or training process. Ridge regression adds regularization to improve 

robustness, especially in the presence of multicollinearity. It has been used for decades and is considered 

valuable by applied statisticians (McDonald 2009). It follows the law of parsimony—that is, it seeks the 

simplest answer by trying to reduce the number of words that are relevant to the classification (Hastie 

2020; Ng 2004). Logistic regression is another linear method used for classification that estimates 
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probabilities for each class. It consists of two main components: first, a linear combination of inputs 

weighted by coefficients, and second, a sigmoid function, which transforms this linear output into a 

probability value between zero and one for classification. 

Another method that can be used in a linear manner is Bayesian regression. This method extends 

regression by treating model parameters as distributions rather than fixed values, incorporating 

uncertainty into the predictions. 

Support vector regression is another regression method that can be used in a linear (or nonlinear) 

manner. It aims to find a function that approximates the relationship between input and output while 

ensuring that the deviation between the predicted and actual outputs remains within a specified margin— 

that is, it aims to ensure that a certain separation between the actual output and the regressed output is not 

exceeded (the error stays within a margin). Support vector regression balances the trade-off between 

fitting the training data and maintaining generalizability. 

Nonlinear regression methods are designed to capture complex relationships between inputs and 

outputs that cannot be effectively represented by linear equations. These models can reveal hidden 

patterns and interactions within data. NNs are prominent examples of a nonlinear model. NNs consist of 

interconnected nodes, or neurons, in which each neuron applies a nonlinear function to its inputs. By 

stacking multiple layers of neurons, NNs can model high-order relationships through complex 

mathematical formulas. During training, the weights associated with each neuron’s inputs are adjusted 

using input text. There are various types of NNs, including recurrent NNs (RNNs). RNNs are designed to 

handle sequential data by incorporating information from previous time steps, allowing the model to 

capture temporal dependencies, such as the sequence of words in a sentence. 

A simpler and commonly used type of nonlinear model involves analyzing distances between data 

points in a reduced-dimensional space. The k-nearest neighbors (k-NN) algorithm (Cover and Hart 1967) 

makes predictions based on the closest k data points to a given query point using a distance metric such as 

Euclidean distance (distance between two points in Euclidean space). In the context of text, if “This is an 

example” and “This is a demonstration” are converted into a two-dimensional cluster of points, k-NN 

would locate those two sentences to be close to each other since the words “example” and 

“demonstration” are used interchangeably in a corpus, and therefore it would assign them the same 

decision. For continuous regression tasks (k-NNR), the average value of the k-NN is computed rather 

than assigning each data point to a specific class. For instance, if a new sentence like “This is a great 

example” is presented, the algorithm computes the distance between this sentence and the other two 

sentences. The algorithm then predicts a decision value based on the average of the values of its nearest 

neighbors, reflecting how closely the new sentence aligns with the known data points. 

Another class of nonlinear models use decision trees. Decision trees are models that recursively 

partition and tune the partition using the data based on certain criteria. Each partition’s weight is tuned to 

enhance the model’s performance. A key advantage of decision trees is their interpretability and their 

ability to handle nonlinear relationships in data. One common method of decision trees is CatBoost 

(Dorogush, Ershov, and Gulin 2018). CatBoost is a gradient-boosting algorithm, specifically optimized 

for categorical variables. It builds an ensemble of decision trees and uses gradient-boosting techniques to 

sequentially improve the accuracy of decision trees. Using the example “This is a great example,” if the 

aim is to determine whether this is a positive or negative statement, sentences are split based on the 

presence of specific keywords. A sentence containing “great” might be classified as positive, whereas one 

with “awful” might be classified as negative. As the decision tree is trained on thousands of examples of 

labeled positive and negative sentences, the decision nodes adjust based on the patterns in the training 

data to provide the final classification. Decision trees also incorporate regularization methods to mitigate 

overfitting (i.e., preventing the tree from growing too complex).  
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2.2.1.1 Transfer Learning 

Instead of creating a model from scratch in regression, it is possible to perform transfer learning on 

an LLM beyond the text-preprocessing tool discussed in Section 2.1.4.1. The LLM can be integrated with 

a linear or nonlinear model to perform a function. The LLM and the attached model parameters could be 

tuned simultaneously to perform the same function that a standalone linear or nonlinear model would 

accomplish. This enables the integrated mode to use the domain knowledge that is encoded in the LLM. 

2.3 Unsupervised Learning 

Unsupervised learning identifies patterns or structures within text without relying on labeled data. 

Unlike supervised models, which are trained on data where each input is associated with a specific output 

label, unsupervised models work with unlabeled data and focus instead on finding underlying 

relationships or groupings. The creation of embeddings discussed earlier is a good example of an 

unsupervised model used to understand text correlations. 

2.3.1 Clustering 

Clustering relies on finding relationships between data (e.g., words) by grouping similar occurrences 

(text that shares common context) into clusters. This approach uses the co-occurrence of data to extract 

patterns based on these relationships. An example of such a method is k-means clustering (Ahmed, Seraj, 

and Islam 2020), which organizes data into a user-specified number of groups (clusters) based on 

similarity. K-means clustering works by initially selecting k centroids (center points) and then iteratively 

adjusting these centroids to minimize the distances (e.g., Euclidian distance) between each data point and 

the nearest centroid. This process is repeated until the centroids converge, meaning they no longer move 

significantly. For example, k-means might group the two sentences “This is an example” and “This is a 

demonstration” into one cluster because they are similar, while placing the sentence “The sky is blue” 

into a different cluster due to its distinct content. 

2.3.2 Dimensionality Reduction 

Dimensionality reduction aims to reduce the number of variables (typically high-dimensional word 

vectors) under consideration by obtaining a set of key text—that is, by keeping important text only. 

Dimensionality reduction serves multiple purposes. It can be used to create embeddings (discussed 

earlier) and aids in isolating the most relevant information to improve model computational performance 

in tasks such as text classification. It is also a powerful tool in removing noise. Additionally, it can help 

humans visualize high-dimensional text data, enabling them to understand data relationships and patterns.  

Principal component analysis (Abdi and Williams 2010) is a common technique used for linear 

dimensionality reduction. Principal component analysis works by identifying the orthogonal principal 

components along which the data information is contained. It reduces high-dimensional data into a 

lower-dimensional format while sustaining key variability.  

Uniform Manifold Approximation and Projection (UMAP; McInnes et al. 2018) is a nonlinear 

method often used for visualization. It reduces data dimensions while preserving the manifold shape of 

the data. This means that clusters close together in the UMAP space have higher similarity than those 

farther apart. The orientation of the clusters is also important. Orthogonal clusters that are close together 

use similar words, but in the context of other dissimilar words. 

2.3.3 Generative AI 

Generative AI refers to the various approaches used to create new text out of some input text. The 

various approaches and tools used within this category are summarized in Table 1 and will be discussed 

in this section. Except for generative adversarial networks (GANs), all the methods listed use decoders, so 

it is necessary to introduce decoders ahead of the methods discussion. 
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Decoders are tools for converting an abstract form of text (such as embeddings) into a readable text 

output. Decoding could be developed using an RNN, for example, and trained using various techniques. 

For example, greedy decoding would use the training text to select the most likely next token at each step, 

aiming for the highest probability sequence. This technique assumes that the model is not aware of the 

future words and simply aims to select the most likely token based on the current state. It uses the training 

text to tune the NN until the model generates the word that was provided in the training text. In this 

method, if the prompt is “the valve is,” the model might generate “leaking” as the next word because it 

has the highest probability based on the training data. The model repeats this process, choosing the word 

with the highest probability each time, resulting in a sequence like “The valve is leaking water.” 

Table 1. The different types of generative AI methods considered in this research. 

Model 
Autoregressive 

Models 

Encoders-

Decoders 

Dialogue 

Models 

Generative 

Adversarial 

Networks 

(GANs) 

Retrieval-

Augmented 

Generation 

(RAG) 

Objective 

Reconstruct text 

based on its 

knowledge 

Reconstruct text 

in targeted 

manner based 

on training 

Interact with 

users in a 

coherent 

manner 

Generate new 

data out of 

examples of 

historical data 

Searches 

through large 

set of 

documents to 

create answers 

from the 

documents 

How it 

works 

Predict the next 

word using a 

regression 

model 

Predict the text 

using the whole 

representation 

of the input 

Trained on 

generic 

questions and 

answers 

Iterate over 

fake data until it 

looks like (but 

is not) the real 

data 

Finds text 

related to the 

query and 

formats it in an 

answer to the 
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2.3.3.1 Autoregressive Models 

Autoregressive models are methods used for generating sequential data by applying regression 

models to text to determine what the next word will be based on the previous text (e.g., set of words). An 

autoregressive model relies on training the regression model using a large corpus of data. The core 

principle behind them is the use of decoders that generate outputs sequentially. This sequential generation 

is achieved by making a prediction based on the previously correlated text. The models create a 

probability distribution of the next element in a sequence, based on the context provided by preceding 

elements, and generate realistic and coherent sequences of data. 

The well-known ChatGPT is an example of an autoregressive model. ChatGPT’s model operates by 

processing sequential data. It predicts the next word in a sentence or conversation by analyzing all 

previous words, performing complex correlation of text. This capability allows an autoregressive model 

to not only generate fluent text but to also mimic the style and coherence of the corpus text data it was 

trained on. 

2.3.3.2 Encoders-Decoders 

Encoder-decoder models are designed to convert input text into an output text that may vary in 

content and length based on the application. They consist of two parts. The first part is the encoder 

(possibly using NNs), which aims to convert the original text into a reduced-order representation, often 
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contextually focused, called the latent space. The second part is the decoder; it takes the encoded text and 

generates the output text, which can be similar to or different from the input text, depending on the task. 

Encoder-decoder models are trained on large corpora of text to learn how to effectively map input text to 

target output text and can be trained in both supervised and unsupervised manners. Seq2Seq (Liu et al. 

2018) models are examples of encoder-decoder architecture that use RNNs, for example, and they are 

designed for tasks where the input and output are sequences of text. Transformers are another type of 

encoder-decoder architecture that rely on self-attention mechanisms to handle long-range dependencies 

and parallelize processing and are therefore more sophisticated than traditional RNN-based Seq2Seq 

models. 

Autoencoders are a specialized form of the encoder-decoder architecture where the input and output 

sequences are the same, and the goal is to reconstruct the input data rather than to transform it into a 

different format. Autoencoders are also unsupervised as they use the actual text to optimize the encoder 

and decoder parameters to minimize reconstruction error. Variational autoencoders introduced by Kingma 

and Welling (2013), are a common type of text autoencoder that rely on creating probabilities (i.e., 

Bayesian inference) in the latent space. Denoising autoencoders (Vincent et al. 2008) are a common type 

of text autoencoder that are trained by using a known input text that has several words removed. The goal 

of the training is to teach the model to recreate the original text without those words included in the input 

(i.e., masking those words). 

2.3.3.3 Dialogue Generation Models 

Dialogue generation models are methods aimed at producing contextually suitable responses to 

requests or questions in conversations. They can be developed in a supervised manner where a machine is 

fed specific requests and answers to learn how to reply. More commonly they are used in an unsupervised 

manner, where they are trained on a large dataset of text that includes dialogue and find correlations 

between requests and responses on their own. An autoencoder can be used in which the input is the 

request (e.g., a question) and the response comes from the decoder. 

Dialogue generation models can be developed by a variety of techniques aimed at generating coherent 

and contextually relevant responses in conversational AI systems (e.g., chatbots). For example, Seq2Seq 

models can map input dialogues to output responses using RNN. Reinforcement learning techniques (Li 

et al. 2016) can also be used. They rely on user feedback, encouraging the user to generate good answers. 

2.3.3.4 Generative Adversarial Networks (GANs) 

GANs are methods used to generate novel text that resembles some provided examples. GANs do not 

use decoders. Instead, they consist of two main components: a generator and a discriminator. The 

generator generates text, attempting to mimic some provided text examples. The discriminator, on the 

other hand, is trained to distinguish between the provided text examples and the text produced by the 

generator. The generator aims to fool the discriminator by adjusting the text to look real, while the 

discriminator aims to catch the generator’s attempts to fool it and decide whether the text is real or not. 

This is the reason why this method is called “adversarial” (i.e., the components compete). When the 

generator can create indistinguishable text, it is considered a success, and that text can be used to 

resemble real text. TextGAN (Zhang et al. 2017) is an example of a text GAN that modifies the 

conventional GAN architecture to accommodate the discrete nature of textual data by employing a 

Seq2Seq model as the generator. The discriminator evaluates the entire sequences generated by the 

generator, rather than individual tokens, for the overall model to effectively learn and generate coherent 

text sequences. 

2.3.3.5 Retrieval-Augmented Generation (RAG) 

RAG (Lewis et al. 2020) is an approach that uses similarity analysis to compare text provided as input 

to a large set of documents to determine which of the documents most resemble the text, then it 
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summarizes all those relevant documents in one response. RAG acts like a librarian that can mine large 

sets of documents to provide a concise summary focused on the provided input. 

The RAG process involves multiple steps, which are laid out in Figure 5. Proceeding from left to 

right, the user poses an inquiry or question to the RAG system.  The user’s inquiry is then encoded into a 

text embedding using an LLM that has been pretrained for the purpose of determining the similarity 

between the user’s question and the entries in a previously assembled vector database that contains the 

text embeddings of the domain-specific data. The similarity comparison itself is performed using the 

cosine similarity algorithm (discussed in the next section). Once the set of similar documents has been 

retrieved, they are presented to a different LLM that has been fine-tuned for conversation (an instruct 

model). The instruct model then summarizes the documents and provides the user with the summaries. 

Decoders are subsequently employed to convert these document embeddings into human-readable text, 

focusing on capturing the core context. 

 

Figure 5. The RAG process. 

2.3.4 Similarity Analysis 

Similarity analysis is an approach that compares text to another set of texts to determine if they are 

literally or contextually similar. This approach relies on extracting the key embeddings vector of one 

input text and comparing it to the vector of another input text. The distance between these 

multidimensional embedding vectors can be used as an indicator of similarity (e.g., Euclidean distance for 

relatively small-dimensionality data). Similar text would result in vectors that are close to each other. For 

large data dimensionality, the angle between the vectors can be used to determine similarity instead (e.g., 

cosine similarity; Rahutomo, Kitasuka, and Aritsugi 2012). 

2.3.5 Topic Modeling 

Topic modeling is an approach to extract the main theme (i.e., the topic) of text by extracting the 

text’s context and consolidating the underlying information into a set of keywords. The approach relies on 

the occurrence of correlated words that hint at the theme. The co-occurrence of multiple correlated words 

increases the method’s confidence in the theme of the text. The models can also be fully unsupervised, by 

which the text is mined for correlated words and consolidated into a few keywords, or semisupervised, in 

which a subset of words is provided for a topic and the text is tested against them. If the text words 

resemble the topic words, the text can be assigned to that topic. 
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LDA is a topic modeling method that uses the underlying assumption that a collection of documents 

can be approximated by a set of latent topics. It produces a set of concepts related to words that frequently 

occur within a given corpus and accomplishes this by emphasizing the weight of high-frequency words 

that occur together. Anchored correlation explanation (CorEx; Gallagher et al. 2017), a state-of-the-art 

technique for topic modeling, leverages domain knowledge via an information-theoretic approach that 

does not rely on any generative assumptions about latent topics. CorEx assumes that correlations between 

documents can be explained by sets of mutually informative words, and CorEx involves similar 

assumptions about the exchangeability of words in documents. The CorEx algorithm was built to also 

accept domain-specific guidance, which then motivates its ability to discover highly informative topics. 

Whereas LDA considers the frequency of words in each document, CorEx uses TF-IDF document 

embeddings. Another well-known transformer-based topic model called BERTopic (Grootendorst 2022) 

can also be used to optimize the guided topic modeling for standard topics. Guided topic modeling means 

that the targeted topics are known before the model is run. 

2.4 Semisupervised Learning 

Though either supervised or unsupervised methods and tools were discussed in previous sections, a 

combination of both is often used. Those hybrid unsupervised and supervised learning methods (i.e., 

semisupervised methods) combine the strengths of both approaches to address limitations inherent in each 

method. They leverage the strength of unsupervised learning in discovering underlying text patterns and 

context extraction and the supervised methods ability to better model the training data. Several examples 

of these methods are discussed in Section 7. 

3. APPLICABLE AI FUNCTIONS IN TEXT ANALYSIS AND EXAMPLE 
DEMONSTRATIONS 

Having introduced the methods and tools used for text analysis, this section elucidates their 

application to specific functions. While some of these methods and tools are directly applicable to these 

functions, others may necessitate customization or the integration of multiple approaches to achieve the 

desired outcomes. This is essential to demonstrate how some tools can have multiple applications. The 

primary focus of this section is to explore these functions in detail and provide illustrative examples of 

some of the methods and tools that are used to serve a function in nuclear work management contexts. 

These examples will demonstrate the effectiveness and suitability of these functions. The maturation of 

each technology is discussed in each of the discussed sections. This exploration serves as a precursor to 

discussing how these AI capabilities can streamline and automate work management processes. The 

challenges associated with these methods are not addressed in this section; instead, common challenges 

and innovative solutions are examined in Section 7. 

The functions targeted in this section are specific to work management automation. For example, 

sentiment analysis, which is a function of AI, is not discussed in this work since it is mostly used for 

social media data analysis and is not relevant to this effort. 

3.1 Classification (Supervised) 

Classification is the process of categorizing an outcome of text into a predefined set of categories. 

Supervised classification is a specific approach where a machine is trained to categorize texts using 

existing labeled examples. These labeled examples allow the machine to learn patterns in the text and 

replicate the decisions. The classification can be either binary (e.g., yes or no for safety classification) or 

multiclass (e.g., priority assignment with numbers between 1 and 10). The underlying approach for both 

types is similar, differing mainly in the final output layer of the model used. 
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3.1.1 Tools Overview 

To be able to perform classification, the machine first aims to group words that have similar meaning 

or context in numerical forms through the tokenization and embedding processes mentioned in 

Section 2.1. This enables the machine to become more context focused rather than correlating singular 

occurrences of words when making a decision. 

Classification can be achieved through a regression model that generates a probability, confidence, or 

likelihood. In this method, a threshold is set, and any value exceeding it is marked as belonging to a 

specific class. Alternatively, the model can directly produce the classification outcome in a discrete form, 

rather than as a continuous regression value. Linear regression models (Section 2.2.1) are among the 

simplest and most interpretable types of models used in supervised classification. They make predictions 

based on a linear correlation of input embeddings. Nonlinear models (Section 2.2.1) can capture nonlinear 

relationships between embeddings and the decisions and are usually more capable in complex 

decision-making processes. 

3.1.2 Example Application 

When an employee identifies a condition in writing and submits it to the CAP system, the resulting 

CR goes through a screening process to determine the importance of the condition; thus, the safety 

significance is assigned to the condition among several other decisions that are discussed in the screening 

process (Section 4.4). In this section the experimentation and implementation of classification capabilities 

for CRs in NPPs is demonstrated. The classification of CRs includes multiclass classification, for 

example: not a condition adverse to quality (NCAQ), a condition adverse to quality (CAQ), or a 

significant CAQ (SCAQ). In this example, the first two are targeted, and a binary classifier is sought. 

CR datasets sourced from five utilities were used to train several text classification AI models to 

identify the one that performed the CR classification task the best. This training dataset encompasses 

multiple timeframes and facilities with their own internal processes. The dataset comprises 879,485 CRs. 

Each CR was labeled by the respective utilities as either a CAQ or NCAQ condition. 

If a classifier is not used and all the CRs are classified as CAQ, an F1c score of 31.1% can be 

achieved. This is because the data are imbalanced and the majority of CRs are NCAQ. Naturally the F1 

score alone is not a good indicator; both recall and precision are needed. In this case classifying all CRs as 

CAQ resulted in a precision of 0 but a recall of 100. The TF-IDF algorithm was used next to convert 

documents into tokens, as discussed in Section 2.1.2. A ridge regression algorithm (Section 2.2.1) was 

used to fit the TF-IDF text embeddings to the CAQ/NCAQ labels for each CR. The results are shown in 

Table 2. Adding context awareness, Word2Vec (Section 2.1.4) was used to expand on the words before 

they were converted to numerical values. Two forms of large language models—Falcon and MiniLM 

(Section 2.1.4.1) were also used to generate more sophisticated embeddings to increase context 

awareness. This further degraded the performance. Next, nonlinear models were tested (CatBoost and k-

NNR). Neither yielded improvements in performance. 

The results for this specific example indicate that the linear model was the most successful. This is a 

common finding for the research community. Nonlinear models, despite their ability to model complex 

relationships, can be unnecessary and can overfit the data. The use of linear and nonlinear models is really 

a question of data linearity. Linear data are better modeled by linear models. 

 

 
c F1 score is a common performance metric that is used in AI. 
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Table 2. Summary of performance results for supervised classification of CAQ. 

Method 

F1 

Score 

(%) 

Precision/ 

Recall 

(%) 

Confusion Matrix 

Baseline 31.1 0.0/100.0 

— — Predicted 

— — NCAQ CAQ 

Actual NCAQ 0 717,544 

CAQ 0 161,941 

TF-IDF +  

Ridge Regression   
82.1 81.6/82.7 

— — Predicted 

— — NCAQ CAQ 

Actual NCAQ 687,348 30,196 

CAQ 28,048 133,898 

Word Vectors +  

TF-IDF +  

Ridge 

75.2 74.5/75.9 

— — Predicted 

— — NCAQ CAQ 

Actual NCAQ 675,529 42,015 

CAQ 38,970 122,971 

Falcon Embeddings +  

Ridge 
70.0 67.6/72.5 

— — Predicted 

— — NCAQ CAQ 

Actual NCAQ 661,268 56,276 

CAQ 44,544 117,379 

MiniLM Embeddings + 

Ridge 
65.7 61.4/70.7 

— — Predicted 

— — NCAQ CAQ 

Actual NCAQ 645,418 72,126 

CAQ 47,375 114,566 

Falcon Embeddings + 

CatBoost  
68.1 66.0/70.5 

— — Predicted 

— — NCAQ CAQ 

Actual NCAQ 658,695 58,849 

CAQ 47,827 114,114 

MiniLM Embeddings + 

CatBoost 
73.6 71.3/76.0 

— — Predicted 

— — NCAQ CAQ 

Actual NCAQ 668,012 49,532 

CAQ 38,821 123,120 

Falcon Embeddings +  

k-NNR 
63.9 63.1/64.7 

— — Predicted 

— — NCAQ CAQ 

Actual NCAQ 674,572 42,972 

CAQ 67,326 94,615 

MiniLM Embeddings +  

k-NNR 
75.7 76.5/74.8 

— — Predicted 

— — NCAQ CAQ 

Actual NCAQ 689,849 27,695 

CAQ 48,391 113,550 
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3.1.3 Technology Readiness 

As demonstrated in this section, there are several methods that can applied to automated supervised 

classification. Several embedding models exist, and models are continuously expanding the number of 

parameters (i.e., context) they can understand. Also, several linear and nonlinear models are approaching 

the maximum performance value that is possible, given the quality of the provided data. It is important to 

note that the performance of the models mentioned herein is not indicative of their highest performance 

potential, but rather what they could achieve given the quality of the data used (as is described in 

Section 7. 

Summary of Technology Readiness: Ready but the context awareness capabilities of the tools should 

continue to be improved. 

3.2 Classification (Unsupervised) 

Unlike supervised classification, unsupervised classification is used for data that is not labeled. 

Instead, unsupervised classification automatically identifies groups in the text and establishes clusters that 

can be assigned a certain label. The user can control the number of groups the data is broken into. This 

parameter can be adjusted to fit the specific needs of the analysis. The groups can be binary or multiclass. 

The approach for both types is similar, differing mainly in the number of clusters the algorithm aims to 

identify. For example, in a binary classification scenario, the algorithm aims to divide the data into two 

distinct clusters (e.g., Yes or No clusters). In contrast, a multiclass classification scenario involves 

dividing the data into more than two clusters, each representing a different category or theme. 

3.2.1 Tools Overview 

Unsupervised classification can leverage various techniques to effectively group and categorize data. 

Clustering algorithms such as k-means are the most common approach for identifying natural groupings 

within the text based on similarities in a k number of groups. Topic modeling can also be used to identify 

topics or themes within a collection of texts for classification. On the generative front, autoregressive 

models such as ChatGPT use broader context to fill in the text based on word-to-word prediction. They 

can be used to answer direct questions on how likely it would be for a text to fall into one category based 

on the data they trained on and similarity of the text to the training data. 

3.2.2 Example Application 

In this example demonstration, logs that contained few words describing any operator-taken actions 

were mined for shutdown, failure, and startup for reliability purposes. Those logs were not labeled as any 

of those events. Therefore, they were classified using unsupervised models. Like CRs, they are free-form 

text but have no labels for what the nature of the action is. Since the data is not labeled, 100 operator logs 

were manually labeled by an SME and used as the truth to compare against.  

In this example, three sets of methods were used. Clustering was performed using k-means first, in 

which the text was either classified as one of those classes or not. This resulted in three classifiers, each 

comprising two clusters. The results are shown in Table 3 and show no significant improvement over a 

random classifier. 

Topic modeling was also used by CorEx. The single keywords “start,” “shutdown,” and “inoperable” 

were used as seed words to generate the results. This proved to be more effective than using a more 

complex list of keywords, possibly because CorEx finds the rest of the important keywords. CorEx 

outputted the probability that a given operator log belonged to a particular class. The probability threshold 

chosen for the classification was guided by the need to balance precision and recall to produce an 

optimum F1 score for each task.  
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Table 3. Summary of performance results for unsupervised classification of three events. 

Method 

Shutdown F1 

Score 

(%) 

Startup F1 

Score 

(%) 

Failure F1 

Score 

(%) 

Mean 

(%) 

Random Baseline  66.6 66.6 66.6 66.6 

Clustering Methods 

K-Means 66.6 67.5 66.6 66.9 

Topic Modeling 

CorEx  81.4 76.6 68.5 75.5 

Autoregressive Methods 

Generic Ratings Dialogue Using Vicuna 82.4 71.0 70.1 74.5 

 

Next, an autoregressive model was used. Vicuna 1.3 (Zheng et al. 2024) was asked to provide 

responses that varied from 1 to 10 in terms of confidence that an operator log was related to a certain type 

of event. 

Prompt: 

“Please only give a number between 1 and 10 as your response. A shutdown score of 1 means 

definitely not an equipment shutdown. A shutdown score of 10 definitely represents an equipment 

shutdown. In this nuclear power plant operator log what is the shutdown score only: ‘[OP LOG]’” 

Response: 

“1”… “10” 

Various thresholds were tested for the rating, and the best results are shown in Table 3. A similar 

prompt was used for failure and startup operator-log entry classification. Despite the larger model and the 

detailed prompt that was provided, the results showed minor improvement, except for startup where it 

seems it was very sensitive to the prompt used. 

Both generative-AI-based models and topic-modeling models performed relatively similarly. Most of 

the misclassifications using generative AI were due to its difficulty understanding where such events 

would fall. For example, the models identified a breaker trip as a failure because it indicates a 

failure-caused safeguard, yet the human disagreed. The right answer is very subjective and specific to the 

type of classifier used. 

3.2.3 Technology Readiness 

Unlike with supervised classification, there are fewer approaches that can apply to automated 

unsupervised classification. Current methods are being explored to enable generative AI models to 

understand the criteria of classification better. Also, prompt engineering was identified as a key challenge 

for the deployment of autoregressive models. Different prompts generated different results, emphasizing 

the need for proper prompt engineering. 

Summary of Technology Readiness: Ready but there is a need to continue to improve the incorporation of 

domain-specific knowledge decisions and prompt engineering. 

3.3 Comparison 

Text comparison aims to determine whether one text resembles another within a corpus, and it is 

commonly used to replicate decision-making based on the assumption that similar inputs yield similar 

outputs, or to indicate that the text is contained in another text. This comparison can be performed either 
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literally or contextually. Additionally, the texts being compared do not need to be of similar length, as the 

focus is on the underlying context, which is independent of the document size. 

3.3.1 Tools Overview 

The most common methods for text comparison use similarity analysis techniques to evaluate how 

closely two text elements are related by examining their embeddings. These embeddings are projected 

into a high-dimensional space, allowing the similarity analysis to quantify the closeness of the texts based 

on their vector representations. Clustering is another effective approach, grouping similar texts into the 

same cluster based on their embeddings; texts within the same cluster are considered related, while those 

in different clusters are viewed as dissimilar. Dimensionality-reduction techniques further aid in text 

comparison by reducing the high-dimensional space of embeddings to a lower-dimensional space while 

preserving the relative distances between similar texts. Unlike similarity analysis, which operates in 

high-dimensional space, dimensionality reduction simplifies comparisons by positioning similar texts 

closer together in a reduced space. 

3.3.2 Example Application 

In this example, three CR entries were compared against each other using three similarity analysis 

methods. The aim was to determine if the algorithms can detect that the CRs are similar, and hence should 

have the same CAQ/NCAQ classification (discussed earlier). The three CRs are: 

Handcrafted CAQ: “There was a steam leak coming from a check valve near the reactor core isolation 

cooling system. This leak caused damage to piping and resulted in a boric acid spill. There may need to 

be revisions to technical specifications.” 

Sanitized CAQ: “During the walkdown, dry white boron was observed near [AREA]. This is not 

reportable, and operability is maintained. The presence of dry white boric acid suggests an inactive leak 

with minimal or no corrosion. There is reasonable assurance that the leak did not affect the flow of the 

available emergency core cooling system. Operability remains intact.” 

Sanitized NCAQ: “Half of the high bay lights in [Room] are out, leaving one end particularly dark. 

Please replace the faulty lights.” 

 The results shown in Table 4 indicate that the handcrafted and CAQ text were deemed similar, while 

the one that was randomly selected and is NCAQ was deemed different. 

Table 4. Pairwise cosine similarity of three conditions using three different models. 

Condition 1 Condition 2 

TF-IDF 

Cosine Similarity 

(%) 

MiniLM 

Cosine Similarity 

(%) 

Falcon Cosine 

Similarity          

(%) 

Handcrafted CAQ Sanitized CAQ 7.9 29.0 67.8 

Handcrafted CAQ Sanitized NCAQ 1.8 -3.2 25.7 

Sanitized CAQ Sanitized NCAQ 0.0 -2.6 27.5 

 

3.3.3 Technology Readiness 

Similarity analysis tools can identify text similarities both literally and contextually. When using 

TF-IDF or vectorization alone, the focus is on literal similarity. In contrast, embedding methods 

emphasize contextual similarity. These methods have primarily been demonstrated for short texts, and 

similarity analysis for large documents is still under development. It is anticipated that there will be issues 

related to focus with large documents. 

Summary of Technology Readiness: Ready to use for short text. Needs to be demonstrated for large 

documents. 
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3.4 Dialogue (Chatbots) 

Dialogue systems are increasingly utilized across various industries because of their ability to 

simulate human conversational skills. These systems are designed to interact with users in a seamless and 

natural manner, leveraging underlying AI models, such as LLMs, to convey knowledge. They are built to 

understand and interpret text inputs, maintain conversational context, and generate responses that are both 

coherent and contextually appropriate. 

3.4.1 Tools Overview 

Dialogue systems are primarily developed using generative AI methods, as discussed in Section 2.3.3. 

Autoregressive models can be employed due to their training on data that includes question-answer pairs. 

Encoder-decoder architectures are also effective when trained to handle specific types of text responses. 

While less common, similarity analysis can be used to train models to identify questions and provide 

corresponding answers based on the similarity of the new questions to the ones used in training. 

3.4.2 Example Application 

Interacting with a machine is a common tool for every chatbot (leveraging autoregressive models). 

Therefore, it is desired in this section to demonstrate when a chatbot fails, mainly due to hallucination. AI 

hallucinations occur when a chatbot creates outputs that are illogical or entirely fabricated. To give an 

example of a hallucination the Microsoft’s Phi-3 mini-LLM was used with reference to the Nuclear 

Energy Institute NEI-99-02 procedure (NEI 2023): 

Prompt: 

“Log: ‘Reset panel BKR [EQUIP ID] [LOCATION] per [CODE] BKR tripped due to welding in the 

area.’ … Please explain if you are sure that this equipment failure is covered under NEI-99-02, don’t 

make assumptions.” 

Response: 

“…Regarding NEI-99-02, this standard covers the Unavailability Reporting and Investigation (URI) 

for nuclear power plants. The log entry describes a failure of a breaker, which is a monitored component. 

Therefore, this equipment failure is covered under NEI-99-02.” 

The hallucination is that URI is not an acronym for “Unavailability Reporting and Investigation.” 

Instead, URI is an acronym for “Unreliability Index” in NEI-99-02. The use of this incorrect acronym it 

casts doubt on the truthfulness of the model’s responses. Furthermore, the statement “don’t make 

assumptions” seems to have had no effect on the incorrectness of its assumption regarding the acronym 

URI. 

AI hallucinations arise from several factors (Ji et al., 2023). Subjective bias, or innate divergence, 

occurs when a language model is trained to be engaging rather than strictly factual. Nonmemorized 

learning, or parametric knowledge bias, happens when the model generalizes from training data instead of 

using specific texts. Imperfect representation learning involves the model misinterpreting or fabricating 

facts due to its flawed comprehension of patterns in the data. Longer outputs are more susceptible to 

hallucinations due to exposure bias. Additionally, defective training data, or heuristic data collection, 

results from using unchecked datasets, given the immense volume of text involved. 

3.4.3 Technology Readiness 

It has been demonstrated that autoregressive models can answer questions that they have been trained 

on. However, it remains questionable if they can accurately answer specific field questions that are 

beyond what is typically used in training the models. Also, hallucination is one of the main limitations of 

dialogue systems since it erodes human trust. 
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Summary of Technology Readiness: Ready for simple dialogue but unknown for complex conversations 

and tasking. More research is needed to reduce hallucination. 

3.5 Estimation 

Estimation is the process of modeling the relationship between text inputs and a continuous response 

variable. This process starts by training an AI model in a supervised manner, where the model learns from 

a dataset consisting of input text and corresponding continuous responses. The goal is to uncover patterns 

and correlations within historical data that allow the model to predict continuous outcomes for new 

unseen text. The key distinction between estimation and classification lies in the nature of the predictions: 

estimation predicts continuous values, such as duration; classification, on the other hand, categorizes 

inputs into discrete class labels. 

3.5.1 Tools Overview 

Estimation in AI using text data as input can be achieved through supervised learning methods, which 

can be either linear or nonlinear. The core of these models involves assigning weights to each word or its 

numerical representation, such as tokens or embeddings. In linear models, each word embedding is 

assigned a weight, and these weighted values are summed to produce a final prediction. In contrast, 

nonlinear models, such as NNs, handle embeddings and their weights in a more complex manner. These 

models process embeddings through multiple layers of operations, enabling the models to learn the 

intricate dependencies and interactions between words. This approach allows nonlinear models to capture 

more nuanced and sophisticated patterns in text data, potentially leading to more accurate predictions. 

3.5.2 Example Application 

In the work management process the vast majority of estimation applications are used to predict the 

duration or time needed to complete certain tasks. Therefore, a similar use case was targeted for this 

example. This example estimated the time to complete a CR (i.e., the origination date of a CR until the 

completion date of a CR). This time to completion is measured in days and is needed for planning 

purposes (i.e., to estimate how much time it typically takes to resolve the issue). The training dataset 

comprised about 78,000 CRs from a utility. Each CR was labeled by the utility with a CR time to close. 

A linear model was used for this example. TF-IDF was used with ridge regression to predict the 

number of days from the origination of a CR until it was completed. Five-fold cross-validation was 

performed.d The correlation between the actual and predicted time should fit a line with a slope of unity. 

However, as the points do not follow a clean linear distribution, the resulting line might not exactly fit the 

desired shape, and the noise would reduce the line fitness. R2 is a statistic that directly measures the 

predictions of a curve against its known values for goodness of fit (Kasuya 2019). It normally ranges from 

0 to 100%, with 100% indicating a perfect fit. 

Figure 6 shows the actual and predicted time. Log transformation was used given the variation in 

values in both axes. For the percentile interval a sliding window of the predicted duration of 1,000 CRs 

was used. The text predicts CR duration with an R2 between ~30% and ~45% in the first several years. 

Then the model degrades during the latter years with some time periods being no better than random 

chance. The average R2 value is 33%. This mainly indicates that the text that exists in the CRs is not 

sufficient to predict the time it takes to complete the event. However, these results could still indicate that 

the machine may perform better than a human. Earlier efforts demonstrated that the machine was able to 

generate better results than the human despite its poor performance (Lawrence et al. 2023). Both the 

human and machine suffered from their inability to understand the context and background of the text. 

 
d Cross-validation is a technique in which a subset of the data is omitted during the training process and used for validation. This 

omitted subset is then included in the training, and a different subset is left out for validation. This process is repeated 

multiple times to ensure that every part of the data is used both for training and validation, providing a robust assessment of 

model performance. 
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For example, one condition could be resolved in weeks and another similar one might take years because 

of the unavailability of explicitly mentioned background in the text for a machine to learn. 

 

 

Figure 6. Actual vs. predicted completion time in days.e 

3.5.3 Technology Readiness 

As demonstrated in this section, various methods can be applied for estimation. While the example 

used a simple linear model, other approaches, including nonlinear or more complex models, can also be 

utilized. Regardless of the model chosen, regression models are often sensitive to the text provided. 

Missing background information and additional variables that are not explicitly mentioned can complicate 

the development of effective regression models. 

Summary of Technology Readiness: Needs a means to improve the regression performance for relatively 

short text or text with missing context.  

3.6 Generation 

Generation is a process in which an AI model creates new text that it has not explicitly encountered 

during its training. This process involves the model generating documents based on patterns learned from 

a broad set of documents used to train LLMs, as well as any additional specific documents it was later 

trained on. By combining knowledge presented to it in the form of language elements, the model creates 

new content that is contextually relevant, while remaining contextually relevant and natural. 

 
e The 95% percentile interval is shown in orange. The fitted line is given in red. The ideal line is shown in black. The intensity of 

the cells in the grid is based on a logarithmic scale. When there are no CRs at a point in a grid, the color of the cell is white. 
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3.6.1 Tools Overview 

Most of the generative tools discussed in Section 2.3.3 can be used to create content, but innovating 

and generating new content that does not resemble the training dataset is generally associated with GANs. 

Because RAG is primarily used for summarizing a provided set of documents and autoregressive models 

are typically limited to the scope of their training data, both can be used to create new text, but with a 

focus on specific content.  Encoder-decoder models can also generate new content, but their ability to do 

so effectively depends on them being trained to produce content in a specific manner. 

3.6.2 Example Application 

Generating new documents in the work management process could be associated with creating new 

procedures or instructions for work that have not been done before, reports on findings, or notifications 

that are machine generated to inform the human of an event. For this example, more than 1,600 work 

procedures provided by a utility were used. It has not yet been demonstrated that GANs can generate such 

documents, and this is considered an active area of research for text generation. Therefore, the example in 

this section instead used RAG, demonstrating its ability (or inability) to perform this function. 

In this example, it was desired to generate text describing the risk of arc chuting during breakers 

inspections. Several out of the more than 1,600 procedures include those that reduce such risks, but there 

is no explicit mention of the risk. RAG was used with the embeddings focused on pages, since documents 

are too long to embed and could miss the context of specific parts of the procedure. Using word token 

embeddings produced a huge vector database with nearly 27 billion parameters, a computationally 

expensive model, but on the other hand it enabled a much finer level of control over how much focus to 

place on any individual excerpt of a document when trying to retrieve excerpts that match a user’s 

question.  

Using page embeddings, the retrieved excerpts were aggregated and presented to the RAG instruct 

model with the goal for the model being to produce a cohesive summary that captured the details and 

semantic intent of the excerpts. The experimental procedure relied on a relatively small embedding model 

(moka-ai/m3e-base; Wang, Sun, and He 2023) optimized for text similarity comparisons and a 

conversational instruct model (Mistral-7B LLM; Jiang et al. 2023) for generating the facsimile 

representations of the pages. The cosine similarity algorithm was then used to find the page with the 

highest overall cosine similarity to all the other pages in the vector database.  

Prompt: 

“What is the risk of arc chutes when conducting breakers inspections?” 

Responsef: 

“Based on the provided document, the risk of arc chutes during breaker inspections is related to the 

potential exposure to asbestos when handling and removing the arc chutes. Asbestos is a known health 

hazard and should be handled in accordance with established safety protocols and regulations. 

Therefore, personnel should follow the procedures outlined in the document to minimize the risk of 

exposure.” 

The response presents two perspectives: the utility-specific one relates to asbestos, a material used to 

overcome arc chuting in breakers, and a generic one on why asbestos is dangerous. Considering the 

documents the model used to generate its response, the first perspective demonstrates that the LLM 

created new insight because this content wasn’t explicitly mentioned in the utility’s procedure documents. 

Testing the model’s ability to innovate, two tests were conducted. The first related to creating a 

procedure that has nothing to do with nuclear work—that is, to replace a vehicle’s brake rotor. 

 
f A subset of the response is presented to preserve the data privacy of the utility.  
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Prompt: 

“How to replace a vehicle brake rotor?” 

Response:  

“Based on the given question about replacing a vehicle brake rotor, I cannot directly answer that using 

the provided document as it does not contain any information related to vehicle brake systems or rotor 

replacement procedures. The document focuses on the replacement of RHR Pump Motors in a nuclear 

power plant. However, I can provide some general information about brake rotor replacement. The 

process of replacing a brake rotor involves the following steps: 

 1. Loosen the lug nuts on the wheel. 

2. Remove the wheel. 

3. Remove the brake caliper or pads. 

4. Remove the old rotor. 

5. Inspect the hub for damage. 

6. Install the new rotor. 

7. Reinstall the brake pads and caliper. 

8. Torque the lug nuts to the manufacturer’s specifications. 

…” 

This example demonstrates that RAG innovated but used the knowledge incorporated in the LLM to 

answer the questions, and it indicated that before answering. If RAG was pushed further to answer a 

fictional question like “How to change the brake rotor of a spaceship?” it would not be able to provide an 

answer, which would be the expected outcome.  

3.6.3 Technology Readiness 

RAG showed some potential for innovation but was constrained by the knowledge provided.  

Generating novel text using GANs is an active area of research. Generating a totally new document 

requires teaching the machine to think like a human and innovate beyond what it has learned. This ability 

has not yet been demonstrated with text. 

Summary of Technology Readiness: Need to develop models that can innovate beyond the knowledge-

specific training dataset. 

3.7 Guidance 

One of the key challenges with data input by humans is that it often lacks enough context because the 

staff assumes the reader would understand the context without the need to explicitly mention it. AI can be 

run on the fly to determine if the text inserted by a human is sufficient or proactively ask for more 

information if the user text is not clear. 

3.7.1 Tools Overview 

There are two means to accomplish guidance: the first is to run supervised models in real time while 

the text is being typed to generate classification and confidence. If the confidence is low, the user is asked 

to provide more information. The second approach is unsupervised and relies on models, such as 

autoregressive ones, to compare text against what the machine expected and ask for clarification when 

needed. 

3.7.2 Example Application 

Using the previously discussed CAQ/NCAQ-supervised classifier, an example could be created 

where users input text and the algorithm provides feedback on the classification, along with suggestions 
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to add more text or generate insights in real time. The iterative process is demonstrated in Table 5. 

Initially, the classifier finds the text as indicating an NCAQ event but requests additional information. 

Because a crucial field such as “equipment details” is missing, the model recommends adding this 

information to enhance confidence. After it is included, confidence in the NCAQ decreases significantly, 

suggesting safety implications, and the model leans toward a CAQ classification. The model continues 

requesting more text. As more text is added, the machine runs classifiers to decide if this text has an 

impact on the plant. As users provide more context, the AI model continues to reassess the text’s impact 

on the plant. This iterative process repeats until the AI model confidently determines the necessary 

decisions in the screening process. 

Table 5. AI guidance of a user who is typing a CR. 

Text 
CAQ/CAQ 

Classification 

Confidence 

(%) 
Recommendation 

Valve packing is leaking. NCAQ 29.1 

Add equipment/ 

location 

information 

Valve packing is leaking for valve 45CDDF224, 

RCIC storage tank level instrument standpipe 

vent. 

NCAQ 2.9 Add more detail 

Valve packing is leaking for valve 45CDDF224, 

RCIC storage tank level instrument standpipe 

vent. The leak is slowly seeping at a rate of 3 

drops per minute. 

CAQ 7.0 

Add information 

about impacts of 

the issue 

Valve packing is leaking for valve 45CDDF224, 

RCIC storage tank level instrument standpipe 

vent. The leak is slowly seeping at a rate of 3 

drops per minute. There is a potential for the leak 

to cause corrosion of the piping near the valve. 

The valve is causing a puddle of contaminated 

water on the floor. 

CAQ 4.5 

Add information 

about operational 

impacts of the 

issue 

Valve packing is leaking for valve 45CDDF224, 

RCIC storage tank level instrument standpipe 

vent. The leak is slowly seeping at a rate of 3 

drops per minute. There is a potential for the leak 

to cause corrosion of the piping near the valve. 

The valve is causing a puddle of contaminated 

water on the floor. There are no operational 

impacts for this condition, since there is adequate 

inventory of RCIC and there is no impact on the 

RCIC system pressure boundary. 

CAQ 5.1 Stop 

 

3.7.3 Technology Readiness 

The supervised approach demonstrated in this example is usually achievable provided that 

computational power exists to run the text against the models on the fly. The unsupervised approach has 

not been demonstrated but is explored in Section 7, mainly for detecting junk text. 

Summary of Technology Readiness: More research into unsupervised methods to guide users in inserting 

input is needed. 
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3.8 Insertion 

Insertion is similar to the guidance approach except the user is presented with more text to describe 

the user input as the user is typing text. This is a more proactive approach; instead of just informing the 

user that the text is insufficient, the AI model helps the user describe the input and asks the user to mainly 

validate the generated input. 

3.8.1 Tools Overview 

Predictive text insertion can be used to predict an arbitrary number of words beyond the words in a 

user’s input. Given that this is purely a generative model (i.e., new text is generated that relates to the 

provided text), generative AI models can be used for this purpose. Autoregressive models are the easiest 

to use, but they might not have the specific knowledge of the inserted text and thus end up hallucinating 

(i.e., generating text that does not relate to the provided text). RAG can be used if it knows the source of 

the information that the user text relates to. It can generate assistive text describing what the user inserted 

if the text is contained in the RAG’s training data. GANs can be used if the input being used is of a new 

context that the model has not seen before. 

3.8.2 Example Application 

In this example, it was desired to demonstrate how AI can add words to the user input. The 

experiment involved single-, double-, and triple-word lookahead predictions. A sampling of nearly 600 

NPP CRs was synthesized using. These synthetic CRs were then used to test the generative AI to see if it 

could correctly fill in the words that had been redacted from each report. 

Several examples of text were used (Table 6). Mistral-7B was given guidance that it would be used as 

a text-completion assistant, and that its responses ought to be given in the context of the day-to-day 

goings-on at an NPP. By providing the model with this context, it was possible to coax its output so that it 

could supply word-insertion predictions with varying degrees of success depending on how many words 

forward it was trying to predict. Table 6 shows some of the texts the LLM was trying to predict. In this 

case, the generative AI was trying to predict three words that had been redacted from the end of the 

original report in the leftmost column. The center column includes the report text after the last three 

words had been removed.  The rightmost column shows the results after the generative AI attempted to 

predict the removed words. The green text indicates words that were correctly predicted by the generative 

AI. The red text indicates words of the generative AI that differed from the original. It is important to note 

that just because some of the predicted words differed from the original does not necessarily mean that 

the prediction is not usable; it could be that the same context was generated. On the other hand, row 5 

shows a case where there is a subtle difference in meaning between the intended words and the predicted 

words. “Backup Power Supply” system could be referring to something completely different than the 

predicted text’s “Backup Emergency Generator” system. 

A metric was prepared to examine how successfully the generative AI predicted the redacted words.  

To calculate the metric, context-sensitive text embeddings had to be generated for the original text and the 

text-completion versions. The similarity between the predicted tokens versus the actual tokens was 

measured using cosine similarity. Just the end tokens were used in the similarity comparison and not the 

entire set of tokens for all the original text. By doing this, the context associated with the beginning 

tokens that were identical in the original and predicted text would not unnecessarily saturate the cosine 

similarities. After all, the desire was to focus on the similarities between the end tokens (target and 

predicted), which would automatically inherit the context of all beginning tokens anyway because of the 

context captured by the embedding model. 

Histogram plots of the cosine similarity scores for each case of single-, double-, and triple-word 

predictions were prepared and are shown in Figure 7. The histogram plots were overlayed on the same 

plot to make it easy to compare performance. It should come as no surprise that the performance results 
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for single-word prediction significantly exceeded the results for double- and triple-word predictions, with 

nearly 23% of the CR examples having a perfect 100% similarity between the target and predicted words, 

and nearly 60% of the predictions having an accuracy of 70% or above. Triple-word prediction was much 

less successful, with most predictions scoring at 60% or less. Therefore, when the generative AI is 

coached with some domain-specific context, it is possible to get reasonable single-word lookahead 

predictions. However, looking much beyond single words is much less likely to produce usable results. 

Table 6. AI insertion for a user while typing a CR. 

Original Text Redacted Text With Predicted Text 

A potential issue has been 

identified in the Feedwater 

System, where the expected water 

level is significantly lower than 

normal. 

A potential issue has been 

identified in the Feedwater 

System, where the expected 

water level is significantly 

A potential issue has been 

identified in the Feedwater 

System, where the expected 

water level is significantly 

lower than normal. 

Unusual levels of radiation have 

been detected within the 

Containment Building. 

Unusual levels of radiation have 

been detected within 

Unusual levels of radiation 

have been detected within the 

Containment Building. 

An unexpected and potentially 

critical issue has been identified 

in the Emergency Core Cooling 

System, with the primary pump 

not operating as intended. 

An unexpected and potentially 

critical issue has been identified 

in the Emergency Core Cooling 

System, with the primary pump 

not 

An unexpected and potentially 

critical issue has been 

identified in the Emergency 

Core Cooling System, with the 

primary pump not functioning 

as expected. 

An unanticipated deviation from 

normal operating parameters has 

been observed in the Steam 

Turbine, necessitating a thorough 

investigation and potential 

corrective action. 

An unanticipated deviation from 

normal operating parameters has 

been observed in the Steam 

Turbine, necessitating a thorough 

investigation and 

An unanticipated deviation 

from normal operating 

parameters has been observed 

in the Steam Turbine, 

necessitating a thorough 

investigation and immediate 

corrective action. 

An anomaly has been detected in 

the functioning of the Backup 

Power Supply system. 

An anomaly has been detected in 

the functioning of the Backup 

An anomaly has been detected 

in the functioning of the 

Backup Emergency Generator 

System. 

An anomaly has been detected in 

the Main Steam System, with 

pressure levels deviating from 

normal operational standards. 

An anomaly has been detected in 

the Main Steam System, with 

pressure levels deviating from 

An anomaly has been detected 

in the Main Steam System, 

with pressure levels deviating 

from normal expected values. 
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Figure 7. Insertion accuracy for one, two, and three words. 

3.8.3 Technology Readiness 

Autoregressive models have been widely used in chat engines and have shown their ability to provide 

more context, but they suffer from hallucinating, especially when the specific knowledge is not part of 

their training. Model refinement can be performed to train a model on a specific field, but its performance 

has yet to be demonstrated in this research.  However, hallucination is less of an issue for short text 

prediction.  The use of RAG for knowledge-specific uses cases or GAN for unseen text is yet to be 

demonstrated. 

Summary of Technology Readiness: Ready if an autoregressive model is used for short text or specific 

knowledge is not needed. The use of autoregressive, RAG or GAN methods for knowledge-specific 

applications is not demonstrated. 

3.9 Review 

Review is the process of comparing some text against a criterion to indicate if compliance or 

misalignment is found and presented in a self-explanatory format. For example, some text might need to 

be tested against a procedure to determine what actions need to be taken. Review is often used when there 

are several decisions to be made and creating a single model to make all of them is not feasible. 

3.9.1 Tools Overview 

The two most promising tools for review are autoregressive models, because they incorporate the 

general ability to understand contextual text and can be fed explicit instructions from the reference 

procedure or guidance, and RAG, since it operates in the same manner but with a focus on specific 

documents. Encoder-decoders can be used if enough examples can be used to train the models. 

3.9.2 Example Application 

For this example, the decision to mark failures in log entries, discussed in Section 3.2.2, is used again. 

In this section’s example, it was desired for an AI model to make the decision after reviewing guidance 

on how to make the decision. An autoregressive model was used and instructed to use the help of 

NEI-99-02, herein referred to as the “guideline.” One of the purposes of the guideline is to show how to 

identify the failures of monitored equipment that are directly used for the computation of reliability. The 

information of the guideline was needed because the autoregressive model did not know where the 
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boundaries of the equipment were for determining if a failure occurred on a specific piece of equipment. 

Nor was it able to understand the definition of failure for specific pieces of equipment. 

The definitions from pages F-14 to F-16 of the guideline were used to define whether a failure 

occurred for eight different types of equipment and failure combinations. Also, the equipment boundaries 

per page G-33 of the guideline were provided. The following are some of the examples of equipment and 

failure combinations: 

Sample Failure Definition: “Pump failure to run - Given that it has successfully started and run for 

an hour, a failure of a pump to run/operate. Exclude post-maintenance tests, unless the cause of failure 

was independent of the maintenance performed. Include all failures that result from a non-PMT demand 

following return to service. If a PMT failure occurs following return to service and was caused by the 

maintenance activity, then this failure is excluded and the train, during the period from the completion of 

the maintenance activity to the declaration of return to service, is counted as unavailable.” 

Sample Component Boundary: “Solenoid Operated Valves - The valve boundary includes the valve 

body, the operator, the supply breaker (both power and control) or fuse and its associated control circuit 

(relay contacts for normally auto-actuated components, control board switches for normally operator 

actuated components).” 

This information was provided to Microsoft’s Phi-3 mini-LLM (Abdin, M., et al., 2024) because the 

text contained less than 8,000 tokens (around 5,000 words). The same 100 text entries from the NPP 

operator logs discussed in Section 3.2.2 were used. The autoregressive model was used to predict if this 

SME-labeled data concerns an equipment failure by answering yes or no only. The F1 score of the failure 

classification is given in Table 7. 

These two sources of information did not seem to improve the results. Instead, they degraded the 

model performance. The several pages of definitions and boundaries created a complex set of instructions 

that a human can follow with significant effort; however, it is hypothesized that this is beyond generative 

AI’s capabilities at the time of this writing. It is also possible that not all the necessary procedures, 

guidelines, etc. were provided for generative AI to be able to classify an entry correctly. 

Table 7. Effect of the inclusion of reference material on F1 score. 

Reference Material Included 
F1 Score 

(%) 

SME-Created Prompt 76.27 

SME-Created Prompt + NEI 99-02 Rev. 8 Component Boundaries 74.80 

SME-Created Prompt + NEI 99-02 Rev. 8 Failure Definitions 75.55 

SME-Created Prompt + NEI 99-02 Rev. 8 Component Boundaries + Failure Definitions  75.68 

 

3.9.3 Technology Readiness 

From the demonstration, it was concluded that autoregressive models may not yet be able to 

understand complex instructions, such as those from references and standards, at the same level as 

humans. RAG has not been demonstrated for review. Encoder-decoders have not been demonstrated for a 

specific type of decision. 

Summary of Technology Readiness: Need to determine the means to improve an autoregressive model’s 

ability to understand and follow instruction or guidance, and to demonstrate RAG or encoder-decoder use 

for review. 
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3.10 Structuring 

The vast majority of data in the nuclear industry is in an unstructured format (i.e., documents, tables, 

figures). Mining these data sources to acquire data and structuring the data in a format so that data from 

one source can be combined with that of a different utility, or even so that data from multiple utilities can 

be combined, is a challenging human effort. AI could resolve this challenge. 

3.10.1 Tools Overview 

Both supervised and unsupervised models can be used for this purpose. Supervised models can be 

used if the text follows a somewhat similar structure. For example, tables can be extracted by training a 

machine to recognize table entries (such as the tags of equipment) so it can mine documents that relate to 

that entry. However, since most data in the nuclear industry is nonstructured (follows various patterns) 

within the utility and across utilities, unsupervised models have much more potential. Methods like topic 

modeling can provide broader information about the theme of the information to be used for mining. 

Similarity analysis methods can perform a similar function if the data in the unstructured documents have 

a certain structure that is sought. Generative AI models are considered the most promising ones as they 

can understand unclear patterns. For example, if safety precaution data related to a certain type of work 

are required, RAG can be used to extract that specific information if it is readily available but hard to find 

in a large set of documents. GANs can be used if examples of the needed data are present to teach the AI 

to find or even generate similar data from a large set of structured data. Autoregressive models can create 

data in a structure that resembles what the machine has seen before. 

3.10.2 Example Application 

An experiment was conducted to identify whether a collection of more than 1,600 work procedure 

documents include a fire protection aspect (i.e., a fire hazard is relevant). This could enable a new fire 

protection procedure to be developed if it resembles the provided procedures. 

An autoregressive method using the Mistral-7B LLM was used. This model is limited to 4,096 

tokens, which is about two pages of text, so procedures that are more than two pages long were not used 

(i.e., the full procedures were not used). The hypothesis was that the LLM should be able to establish the 

intent and meaning of the document by examining the first two to three pages. This seemed reasonable 

since most procedure documents are quite explicit about the purpose of the document early on, and 

hazards are usually presented in the first part of a procedure document due to their importance. 

Because the LLM relies on carefully constructed textual prompts to guide its responses, several 

experiments were conducted with different prompt variants before deciding on one that resulted in 

reasonable performance. The LLM was asked to decide whether the procedure pages had anything to do 

with fire protection programs or fire protection equipment or could describe a fire hazard. 

Since autoregressive models are used in an unsupervised manner, another method (topic modeling 

using an advanced form of CorEx) was used to benchmark the results. The CorEx model used the 

keywords and phrases listed in Table 8 to describe the fire hazard involvement in the procedure. 

The results, presented in Table 9, show great agreement between the two methods in identifying 

fire-related procedures, but several disagreements were noticed too. In addition to a yes/no response, the 

LLM was asked to provide two to three sentences to explain its decision. In some cases, the reasons it 

provided were fascinating. For instance, in one case that the LLM identified a procedure as fire related, 

but CorEx did not, the LLM admitted that the document did not directly describe details about fire 

protection, but that its contents could be construed as describing fire-related procedures based on context. 

The document in question described excavation and trenching activities in the context of ensuring that 

natural gas lines are avoided, etc., an obvious potential cause of fire if sufficient caution is not taken, and 

yet the topic model could not possibly have detected this due to the absence of relevant terminology. 
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Table 8. Keywords and phrases used by the CorEx to describe fire hazards. 

combustible 

detector 

fire 

fire brigade 

fire detection 

fire detector 

fire drill 

fire impairment 

fire marshal 

fire panel 

fire protection 

fire protection program 

fire pump 

fire watch 

fire zone 

halon 

hose 

hose station 

hot work 

hydrant 

impairment 

national fire protection association 

smoke detector 

sprinkler 

sprinkler system 

zone 

 

Table 9. Confusion matrix for the LLM and CorEx decisions on whether text relates to fire. 

— — LLM Predicted 

— — Fire Not Fire 

CorEx Prediction 
Fire 27 30 

Not Fire 25 1,573 

3.10.3 Technology Readiness 

While the example application demonstrates one approach to structuring data, it represents a small 

portion of the types of unstructured data that could exist. This function is in early stages of development 

and requires additional research into what types of unstructured data exist and the means to structure 

each. For example, asking an AI model to analyze a figure or table to provide knowledge or perform a 

complex task was not demonstrated in this effort and remains an area for future research. 

Summary of Technology Readiness: Need more research into the various formats of unstructured data and 

the means to structure each.  

3.11 Summarization 

Summarization is often needed to mine a large set of documents to determine some key information 

that a user needs to present. It saves users the time they would need to search through a large set of 

documents; for example, technical specification manuals could be mined to address a specific question 

about an action in the work process. Summarization can also be used to present to users the key 

information of a document before they read it, or to conduct a literature review on a topic. 

3.11.1 Tools Overview 

For summarization, models must be able to ingest the new documents they are being asked to 

summarize. Autoregressive models can be used in two ways: if the document to be summarized is small, 

it can be directly fed to the model, and if it is large, the model can be retrained with the newly added 

documents to make them part of the model’s knowledge. If an autoregressive model is not provided the 

full extent of documents it has been tasked to summarize, problems can present themselves in the form of 

hallucination, where the model might give suboptimal summaries of documents that contain 

extrapolations of context or semantics that confuse rather than assist understanding. Instead, RAG can be 

used because it can summarize the documents into a size that can be fed into an autoregressive model. 

RAG can therefore be provided given domain-specific data to review. Encoders-decoders can be used if 

the summarization process is specific and examples can be used to train the model to perform the process 

in a specific manner. 
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3.11.2 Example Application 

The same experiment conducted in Section 3.6.2 for generation was used for summarization to 

demonstrate how the RAG process can be used to reliably produce summaries of pages sourced from 

nuclear industry documents. The hypothesis was that if a page of text shared much commonality with 

many other pages of text in a set of pages known to RAG, then RAG ought to be able to generate a close 

facsimile of that page using just the context of the similar pages. In this example, the procedure to 

perform breaker inspection was targeted again with a focus on arc chuting. The same prompt that was 

used in the previous experiment was used again, but one of the answers resulted in a summary of the 

procedure: 

Prompt: 

“What is the risk of arc chutes when conducting breakers inspections?” 

Responseg: 

“During the inspection and maintenance of arc chutes, personnel should follow the outlined 

procedure carefully to minimize the risk of arc flash incidents. The procedure advises caution to keep the 

arc chutes dry and to tilt them back carefully to avoid causing the breaker to tip over. The arc chutes 

should be cleaned using a HEPA filtered vacuum cleaner and a mild solvent or water if necessary. 

Inspecting the arc chutes for broken or cracked ceramic parts and erosion of ceramics is also important 

to ensure their continued safe operation.” 

This summary represents several pages of instructions summarized well in a few sentences. An 

autoregressive model (Mistral-7B LLM) was used to generate a response that was compared to the RAG 

response to evaluate its performance. 

Prompt: 

“Provide a procedure for protection of arc chutes when conducting breakers inspections in one 

paragraph.”  

Response: 

“To protect arc chutes during circuit breaker inspections, begin by thoroughly reviewing the 

breaker’s service manual and ensuring all personnel are trained and certified in electrical safety 

procedures. De-energize the circuit and implement lockout/tagout (LOTO) procedures to prevent 

accidental re-energization. Equip inspectors with appropriate personal protective equipment (PPE) such 

as insulated gloves and safety glasses. Conduct a visual inspection of the arc chute for damage or 

contamination, clean it carefully with a dry cloth or vacuum, and check its alignment. Perform insulation 

resistance and operational testing according to manufacturer guidelines. Document all findings and 

report any significant issues for further action. After reassembling the circuit breaker and removing 

LOTO devices, restore power and conduct a final operational test. Review safety practices post-

inspection and schedule any necessary follow-up maintenance.” 

This response demonstrates that autoregressive models provide generic instructions, given they are 

not trained on breaker inspections. 

3.11.3 Technology Readiness 

RAG is well suited for creating summaries due to its ability to summarize large documents without 

the need to retrain LLMs, unlike autoregressive models. For smaller references, any of those methods can 

be used, but larger documents require either RAG or the retraining of autoregressive models. It has not 

been demonstrated that encoder-decoder models are effective for specific summarization tasks. 

 
g A subset of the response is presented to preserve the data privacy of the utility. 
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Summary of Technology Readiness: Ready using RAG but not demonstrated using autoregressive 

models. Targeted summarization using encoder-decoders has yet to be demonstrated too. 

3.12 Visualization 

Visualization is integral to text analysis, especially when managing extensive and complex corpora of 

unstructured data. The volume and intricacy of text data can be daunting, but visualization techniques 

transform this information into more comprehensible and actionable insights. By converting large text 

datasets into graphical formats, these techniques allow analysts to discern patterns, trends, and 

relationships that might elude conventional analytical methods. 

3.12.1 Tools Overview 

Several visualization tools, including heatmaps, word clouds, and network diagrams, can reveal the 

relationships between different terms or concepts, aiding in the comprehension of large data sets and 

enhancing transparency in the analytical process. However, these tools depend on underlying data 

analysis techniques used such as dimensionality reduction, clustering algorithms, and topic modeling to 

effectively present the data. 

3.12.2 Example Application 

In this example, topic modeling was used to classify text by specific topics in an unsupervised 

manner. The result needed to be visual to determine how close the topic clusters were to each other. For 

this purpose, UMAP was used. An example is presented in Figure 8. The figure shows the UMAP 

reduction of the topic-modeling score data for the top 30,000+ most informative words out of a 

vocabulary of 100,000 words total. Each point in the scatter plot represents a single word, and each word 

is clustered with its topic.h Broader clusters seem to indicate that the information gain of the topic words 

experiences greater variance and thus offers a broader capacity for describing a greater number of 

documents. The orientation of the wispiness of the clusters could also be meaningful. Though purely 

hypothetical, it may be that topics in proximity and with a similar orientation use words that have similar 

conceptual meanings in similar contexts. In essence, these topics have a positive correlation, whereas 

topics that are in proximity and have an orthogonal orientation use words with similar meanings to 

describe very different ideas. 

3.12.3 Technology Readiness 

While this section provides a single example for demonstration, numerous proven visualization tools 

have been employed across various research studies. Visualization typically involves methods to reduce 

data dimensionality while maintaining a focus on the process of interest. For instance, reducing data to 

two dimensions for visualization can reveal different clusters, which may vary depending on the 

dimensionality reduction techniques used. 

Summary of Technology Readiness: Ready but more research is needed to determine the optimal means 

to transform the data for visualization. 

 

 
h Each topic cluster has a numeric suffix appended to its title to indicate whether multiple clusters exist. 
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Figure 8. UMAP dimensionality reduction for topics generated by a CorEx model. 
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4. MAPPING THE WORK PROCESS TO AI FUNCTIONS 

An overview of the work management process was presented in Figure 2. This section provides a 

detailed explanation of the phases shown in the figure, the approach used to automate the steps in each 

phase, and the cost savings achieved through automation in each phase and by each AI function. Several 

conclusions are also made from the mapping of the work management process and the assignment of AI 

functions. 

4.1 Work Mapping Approach 

Each step in the work processes detailed in Appendices A-F commences with an introduction for 

context to describe what the step entails and why it is performed. Each step is categorized into a decision, 

an action, or both. A decision is formulated into a clear question while an action is formed as a command. 

Depending on the decision outcome, each decision is broken into two possible actions. 

The step is broken into two subsections: the first focuses on how it is currently done by the staff and 

titled “Current Decisions and Conditional Actions” if a decision is made or “Current Unconditional 

Actions” if an action is taken. The second focuses on how it can be automated by AI and is titled 

“Automated Decisions and Conditional Actions” if a decision is made or “Automated Unconditional 

Actions” if an action is only taken. 

In considering the human process first, the specific steps in making the decision or taking the action 

are explained. The time staff takes is quantified in minutes full-time equivalent (FTE), and the 

organization taking the action is listed. This information is presented in a table format. 

The frequency of each decision or action is listed. The frequency is normalized against a CR, WO, 

WP, or ST depending on where in the process the step is taken. This variation is because the phases target 

different outcomes. However, the outcomes can be scaled to each other as discussed later in Section 5. 

The frequency depends on the previous step in the flow. For example, if a decision outcome is to 

perform the next step and this happens 50% of the time the decision is made, the frequency of the next 

step is 50% of the frequency of the current step. As steps are incremented, the frequency tends to drop to 

the point where some decisions or actions occur very rarely. Those rare decisions or actions are not listed 

herein. 

Using the frequency and time needed, it is possible to estimate how much time each of the decisions 

and actions take per CR, WO, WP, or ST. These estimates are listed at the bottom of the table. Those 

numbers might look insignificant; however, considering the thousands of occurrences in the plant, the 

numbers can scale up a significant amount. 

An example of the decision and condition actions table is shown in Table 10. In this example, the first 

step of the screening process, “Issue Identification and Reporting,” is used. The objective of this step is to 

determine whether the condition has been reported before so that it is not logged again. In the manual 

approach, if the condition relates to equipment, the staff inspects the equipment or searches through 

existing CRs to determine if the observation is already in the screening system. If the condition is already 

in the system, the staff may add comments if they believe additional insight could help. If the condition is 

not found, staff writes a new CR. This process can be performed by any member of plant staff. It takes 3 

minutes to make the decision about whether the condition is already there and 5 minutes to log a new one 

if one does not exist. 

The decisions and actions are also reflected in the automated approach. Each decision and action is 

assigned an AI function from Section 3 to indicate methods that can achieve the desired function to 

replace the human process. AI functions were selected for steps based on a systematic process and SME 

experience in using AI for process automation. While some subjectivity is involved in selecting AI 

functions for work steps, the overall trends and conclusions of this report are valid and not based on 
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individual AI function assignment decisions. For each function, the data source used for training the AI is 

listed, if applicable. Additionally, the input data, the model used, and the AI output are listed. Using the 

same example, Table 11 shows that three options exist to replace the human decision with the machine 

decision. In the first one, the previous CRs can be compared to the one being logged. Therefore, the 

function of the AI is to perform a comparison. The method to achieve this could be, for example, 

similarity analysis as discussed in Section 3.3. If the AI finds a similar CR, it is flagged as already logged 

and can possibly even provide the similar text. If the CR was found, the AI can elaborate on the event 

provided by a user if any text is provided. If the condition is not found in the system by the AI, it can 

assist the user by inserting new text and providing guidance as soon as the user starts typing. This reduces 

the 5 minutes required by the user significantly. 

A similar process for mapping each phase step (except initiation since it is considered out of the work 

management scope) is provided in Appendices A-F.   

Table 10. Example of the current decisions and conditional actions table. 

Decision Effort Description Discipline 
Time in 

Minutes 

Frequency 

Per CR 

Process Check if the condition was previously 

identified. e.g., there is a tag on the equipment 

or is in the condition reporting system 

Any 3 150% 

If yes Add comments to the existing condition if 

needed. 

(End of Process) 

Any 2 50% 

If no Write a CR. Any 5 100% 

Total (minutes FTE per CR) 10.5 

 

Table 11. Example of the automated decisions and conditional actions table. 

Decision 
AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical CRs Identified and 

reported 

condition text 

Comparison Yes/No 

(and previous 

CR) 

If yes Previous CR Identified and 

reported 

condition text 

Generation Modified CR 

text 

If no Historical CRs  Identified and 

reported 

condition text 

Guidance New CR text 

Historical CRs Identified and 

reported 

condition text 

Insertion New CR text 

 

4.2 Assumptions 

The analysis presented in Appendices A-F relies on several key assumptions due to the variability in 

processes across different nuclear power plants. This section summarizes these key assumptions: 



 

39 

Variation in Estimates: Time estimates and step frequency estimates can vary by utility and plant. The 

used estimates have been generated based on the best available information from industry experts. The 

organization of decision-making may also differ. While there is some uncertainty in individual estimates, 

on average the overall trends and conclusions are an accurate representation of the work management 

process. 

Precision of Estimates: Estimates are rounded to the nearest minute in most cases. Fractions of a minute 

are included for some steps where warranted. 

Sequence of Steps: The sequence of steps in the appendices may differ from actual processes. However, 

this does not impact the report’s conclusions, as cost savings are not dependent on the order of steps. 

Repetition of Steps: Very often a step could result in previous steps being repeated, such as when work 

needs to be rescoped. The estimates presented in this report accounted for those repeated steps, so they 

are not accounted for separately. 

Depth of Mapping: The steps outlined in the appendices may not encompass every step performed. 

Achieving complete mapping fidelity would require excessive effort. The report focuses on identifying 

critical AI functions, and mapping most steps is sufficient for the report's objectives. 

Scope of Work Management: The focus of this work is on work management. Tangential tasks that 

support work management but fall outside of it are not mapped. For instance, if operations needs to 

configure the plant to perform the work, this configuration is not considered part of the work management 

process. 

Outlier Scenarios: Outlier scenarios, which are rare or exceptional cases, are not considered in the steps 

decisions and actions. The analysis focuses on typical scenarios to maintain practicality and relevance. 

Online vs Outage: This work focuses on online work management in a plant, given it represents most of 

the work performed in NPPs. Outage work management follows a similar approach, and future work 

could expand to consider the similarities and differences for outage work.  

Maximum Automation Credit: For some steps, a tool is used to expedite the human review process 

without fully automating it. For this work, the exact time saved through automation for these partially 

automated steps was not quantified and thus each step was assumed to be fully automated for purposes of 

time savings calculation. As a result, the estimates provided represent the maximum possible cost savings. 

The only exception is for guidance and insertion, where it is assumed that a human will still spend half the 

time performing the work if these functions are implemented. 

Data Sources: Decisions and estimates are based on the current format of data sources. Future 

technological advancements or process changes may introduce new labels and alter tools and methods, 

potentially affecting decision-making. 

Crediting Functions: AI Functions can be combined or used independently for a given step. In the cost 

savings estimates, it was assumed that each function could be used separately, meaning each was credited 

independently regardless of what other solutions exist.  

Subjective Functions: The two AI functions that were discussed in this report and not mapped to work 

management decisions and actions are dialogue and visualization. These functions are highly subjective 
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and vary based on human needs. Some utilities may require staff to interact with AI and visualize data in 

specific ways, while others may need less interaction and visualization. Consequently, these functions 

were excluded from this mapping effort. 

4.3 Initiation 

The phases of work in a nuclear power plant starts with three types of initiators: (1) a condition 

occurring in the plant, (2) modifications or upgrades sponsored by the projects team, and (3) periodic 

plant PM activities performed by maintenance. A condition is any off-normal event or configuration 

associated with an event in the plant that requires the plant staff’s attention. There is a variety of ways that 

an event can be identified, including through staff performing their daily activities, operator rounds, 

walkdowns, equipment trending and monitoring via various instrumentation and monitoring methods, or 

through a self-revealing performance issue (e.g., the equipment stops performing its intended function). A 

large portion of the events observed relates to SSC or specific equipment. When an event is identified, it 

is sent to the screening committee that analyzes conditions. This committee decides what priority, impact, 

or action should be taken (see Section 4.4). A CR (also called action report or issue report) is generated in 

the process. The outcome of this effort could be a WR, followed by the creation of a WO. 

Another initiator of work relates to projects, which are usually associated with modifications to the 

plant or upgrades. Those stem from long-term plans driven by strategic objectives to sustain the plant 

operations. Each site has a list of projects that are desired to be completed based on priority needs, such as 

regulatory commitments, plant improvements, or other corrective actions. As these projects become ready 

for implementation, WOs are created, and the projects are turned over to work management to identify the 

best work window for ensuring the project’s successful implementation. In most cases, one or more plant 

modifications are performed during the execution of the project. Prior to this point in a project’s life 

cycle, many hours have been spent—mostly with engineering and projects resources (with other 

organizations providing guidance and input as needed)—to develop the project to the point that it is ready 

for scoping. For the purposes of this report, the scope of the project development is beyond this report 

scope, but a project is considered part of the work management life cycle when it arrives at the scoping 

phase. One key aspect of this initiator is that it does not go through the events or conditions screening 

process.  

The third initiator of work is PM. It typically consists of a model WO, a defined frequency for 

performing that model WO, and a due date by when the next PM is to be performed. Every NPP has a 

scheduling tool that takes defined PM frequencies and due dates and generates or prompts PM WOs in the 

schedule. 

PMs could also go through the screening process if a change is needed. Sometimes an equipment 

condition is the result of an issue in the PM strategy. Thus, when an equipment condition is identified, an 

issue may also be identified with the PM strategy. The PM change process is typically completed by the 

system engineer responsible for the equipment. An issue with an existing PM task could include a 

frequency issue (performing the PM too often or not often enough) or a scope issue (work performed does 

too much, not enough, or the wrong tasks). 

Some screened work becomes a fix-it-now orders. This process is usually started by maintenance staff 

and involve routine and low-risk activities that do not need the level of scrutiny that more significant 

work must go through. Examples of such work could be tightening a nut for a flange. This type of work 

skips the work process and gets directly scheduled as there is no need for a WP with detailed procedures 

to be created. 

The following sections discuss each of the following phases in detail with focus on how AI could 

automate the process. 
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4.4 Screening 

Screening in an NPP involves a systematic analysis of events to determine their characteristics, 

necessary actions, and the path forward. This process begins with the identification and reporting of 

issues and determining relevance to equipment, followed by evaluating the event criticality and plant 

impact. Maintenance, operations, engineering, and other relevant organization validations are conducted 

to ensure that identified issues are addressed effectively. Compensatory actions are established to mitigate 

risks until permanent solutions can be implemented. The significance of the issue to each organization is 

determined. 

Next, an investigation is conducted to determine if this is issue is considered a rework. For significant 

work, resources are estimated to help decide whether the work can be done in-house or if a contract is 

needed. Modifications or field changes are identified. The screening process then analyzes safety 

significance and impacts related to administrative, radiological, and chemical factors. This is followed by 

categorizing the severity of the issue, which enables prioritization of resources. The necessary actions for 

resolving the issues are determined. 

Finally, meetings, including prescreeningi and screening sessions, facilitate thorough discussions of 

the identified issues and the necessary corrective actions. During the screening meetings, relevant 

stakeholders collaborate to evaluate and finalize decisions on actions needed to address issues effectively. 

After these meetings, updates on corrective actions and WRs are documented, and maintenance WOs are 

created when applicable for the next stage of work management. 

As discussed in Section 4.1, each step is mapped to specific activities performed by dedicated staff, 

and AI functions are identified to replace those tasks. The detailed steps and considerations involved in 

the process are presented in Appendix A. Table 12 summarizes the findings from the analysis of the 

process in Appendix A and is used to quantify the potential cost savings of the entire process in Section 5 

and each AI function in Section 6. 

4.5 Scoping 

Scoping is a crucial process that involves characterizing the WO by assessing attributes such as 

priority and criticality and determining the potential operational impact of the planned work to assist in 

scheduling the work week. This phase ensures that all aspects of the work scope are understood and 

managed effectively. Specific steps within this phase include merging new WOs into existing ones when 

applicable and establishing priorities and criticality levels for the tasks at hand. Additionally, the 

determination is made on whether work should occur during an outage or while the unit is online, along 

with preliminary scheduling to optimize resource allocation and timelines. 

If the work is relevant to ongoing projects, several decisions and actions are taken. Project sequencing 

and readiness are evaluated, and engineering evaluations are conducted to prepare proper drawings and 

documentation. At this phase, it is determined whether contractor services are needed for projects. The 

scoping process creates associated WO activities from each WO, typically resulting in multiple work 

activities per WO. Resource estimation is performed, and availability is confirmed to facilitate allocation 

during planning. If support is planned in collaboration with other plants, considerations for plant, fleet, 

and corporate schedules are also integrated. Additional assessments are then conducted, including 

considering technical specification requirements to ensure compliance, evaluating whether unit down 

power is necessary, and analyzing the impacts on plant chemistry. 

 
i Prescreening meetings are not consistently part of the process in the nuclear industry.  



 

42 

Table 12. Estimated potential time saved in minutes per CR for each screening step by each AI function. 
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Issue Identification and Reporting — — 4.5 — 1 2.5 2.5 — — — 

Equipment Relevance 0.5 0.5 0.5 — — — — — — — 

Criticality 1.5 — 1.5 — — — — — — — 

Operability and Impact to Plant 3 — — — — — — 3 — — 

Maintenance Validation — — 3 — — 0.075 0.075 — — 3 

Maintenance Compensatory Actions — — — — — — — — — — 

Maintenance Significance 0.75 — — — — — — 0.75 — — 

Operations Validation — — 0.75 — — 0.05 0.05 0.75 — 0.75 

Operations Compensatory Actions — — — — — — — — — — 

Operations Significance 0.75 — — — — — — 0.75 — — 

Engineering Validation — — 0.75 — — 0.025 0.025 — — 0.75 

Engineering Compensatory Actions — — — — — — — — — — 

Engineering Significance 0.75 — — — — — — 0.75 — — 

All Others Validation — — 0.75 — — 0.025 0.025 — — 0.75 

Rework — — 2.25 — — — — — — — 

Resources for Significant Work — — 2.25 — — — — — 2.25 — 

Project/In-house for Significant Work — — 0.75 — — 0.005 0.005 — 0.75 — 

Modification/Field Change 0.03 — 0.78 — — — — 0.75 0.75 — 

Safety Significance 1.5 — 1.5 — — — — — — — 

Administrative Impact 1.25 1.25 — — — — — 1.25 — — 

Radiological Impact — 2 — — — — — 2 — — 
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Task Time in Minutes C
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Chemistry Impact — 5 — — — — — 5 — — 

Severity 3 — — — — 0.05 0.05 3 — — 

Actions Needed 2 — — — — — — 2 — — 

Prescreening Meeting — — — — — — — — — — 

Screening Meeting Preparation — — — — — — — — — — 

Screening Meeting — — — — — — — — — — 

Condition Report Update and Work Request  — — — — — — — 2 — — 

Maintenance Work Order Creation 0.45 — 0.45 — — — — — — — 
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Other considerations such as reactivity effects, coolant system impacts, redundant systems, and risks 

associated with transients and conflicts with surveillance schedules are assessed to maintain plant 

integrity. The scoping process also addresses other operational factors, including seasonal impacts, grid 

instability, and containment integrity. Furthermore, cycle timing evaluations are conducted to ensure 

alignment with operational schedules. Factors such as relevant of work to plant security are also 

considered. Maintenance rules are verified to uphold safety and compliance. Risk screening is performed. 

At this point, work management conducts a review to ensure that the work scope is clear and concise. 

Validation of priority assignments are performed to ensure that all maintenance and operational activities 

effectively align with the overall objectives of the plant. Work is then ranked by priority to ensure that the 

most critical tasks are addressed first, and PM grace periods are evaluated to allow flexibility in 

scheduling should conflicts arise. 

As discussed in Section 4.1, each step was mapped to specific activities performed by dedicated staff, 

and AI functions were identified to replace those tasks. The detailed steps and considerations involved in 

the process are presented in Appendix B. Table 13 summarizes the findings from the analysis of the 

process in Appendix B and is used to quantify the potential cost savings of the entire process in Section 5 

and each AI function in Section 6. 

4.6 Planning 

Planning consists of a series of structured steps designed to ensure that all necessary elements are 

thoroughly addressed in a WP before work execution. Initially, it is determined whether a WP is required. 

If yes, a planner identifies previous similar WPs to help leverage past experiences and knowledge, in 

parallel with reserving long lead-time parts. If similar previous WPs are found, they may be updated or a 

new WP may be created, depending on the situation. If a new WP is created, a thorough review of similar 

WPs for relevant information is conducted, along with a review of technical information. This helps 

ensure all necessary details are available for effective planning. 

Next, clear and concise work instructions are crafted. This is an essential step to guiding workers 

during the execution phase. Any relevant operating experiences are incorporated into the WP to make 

sure mistakes are not repeated. Worker feedback from previous similar work is examined to identify 

potential areas of improvement or concerns that should be addressed, and human performance (HP) tools 

are integrated to enhance execution A clearance order (CO) is requested, if applicable. An evaluation is 

needed for engineering and operations documentation to confirm that all relevant engineering changes 

(ECs) and technical specifications are covered. Administrative or technical procedures are also 

considered.  

Steps are taken to ensure that fire protection and industrial safety controls and permits are in place. A 

WP walkdown is performed to assess the work area and confirm that all preparations are adequate. 

Radiological controls are also reviewed, along with the ALARA (as low as reasonably achievable) plan, 

to minimize exposure to workers. The radiological work impact on workers is evaluated to ensure their 

safety throughout the process. Additionally, worker training and qualification are assessed to ensure that 

all personnel are adequately prepared. Resources are then assigned to the WP, followed by reviewing 

equipment qualification requirements. Finally, materials and parts are reserved, and their request is 

completed before the WP is reviewed and approved. 

As discussed in Section 4.1, each step was mapped to specific activities performed by dedicated staff, 

and AI functions were identified to replace those tasks. The detailed steps and considerations involved in 

the process are presented in Appendix C. Table 14 summarizes the findings from the analysis of the 

process in Appendix C and is used to quantify the potential cost savings of the entire process in Section 5 

and each AI function in Section 6. 
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Table 13. Estimated potential time saved in minutes per WO for each scoping step by each AI function. 

Task Time in Minutes C
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Merger of Work Orders for Same Issue — — 5 — 0.25 — — — — — 

Work Order Priority 2.85 — — — — — — 2.85 — — 

Work Order Criticality 2.85 — 2.85 — — — — 2.85 — — 

Outage or Online Work 1.9 — — 2.5 — — — 1.9 — — 

Preliminary Work Schedule — — — 2.5 — — — — — — 

Project Relevance — — 1 — — — — — — — 

Project Sequence — — 0.6 — — — — 0.6 — — 

Project Week(s) Readiness — — 1.2 — — — — — — — 

Project Engineering Evaluation Review — 0.6 — — — — — 0.6 — — 

Project Need for Contractor Services 0.4 — — — — — — — 0.4 — 

Work Order Activities Creation 15 — — — 2.8 1.4 1.4 — — — 

Resources Estimation 3 3 — 3 — — — — — — 

Resources Availability — — — — — — — 6 — — 

Plant/Fleet/Corporate Schedule 1 — — — — — — 0.9 1 — 

Technical Specifications 3 — 3 — — — — 3 — — 

Unit Down Power 3 — 3 — — — — 3 — — 

Chemistry Impact — 1.5 1.5 — — — — 1.5 — — 

Reactivity Effect — 3 3 — — — — 3 — — 

Reactor Coolant System Effect — 1.5 1.5 — — — — 1.5 — — 

Redundant Structures, Systems, and Components Effect — — 1 — — — — — 1 — 

Plant Transient 1 — 1 — — — — 1 — 0.9 

Surveillance Schedule — — 3 — — — — — — — 
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Task Time in Minutes C
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Seasonal Impacts — — 3 — — — — 3 3 — 

Grid Instability — 1 1 — — — — 1 — — 

Containment Integrity/Heat Removal — 3 3 — — — — 3 — — 

Cycle Timing — — — — — — — 3 — — 

Plant Security — 0.5 0.5 — — — — 0.5 — — 

Maintenance Rule — — 1.5 1.5 — — — — — — 

Risk Screening — — — — — — — — — — 

Work Scope Clarity and Conciseness — — — — 3 0.2 0.2 1.5 — — 

Integrated Risk Screening for Execution Week — — — — — — — — — — 

Priority Assignment Validation 0.25 — — — — — — 0.25 — — 

Priority Work Rank — — 1.5 1.5 — — — 1.5 — — 

Preventive Maintenance Grace Periods — — — — — — — — — — 
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Table 14. Estimated potential time saved in minutes per WP for each planning step by each AI function. 

Task Time in Minutes C
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Need for Work Package 4 — — — 9.9 — — — — — 

Previous Similar Work Packages — — 5 — — — — — — — 

Long Lead-Time Parts — — — 15 — — — — 15 — 

Existing or New Work Package Use — — — — 5 1.875 1.875 — — 5 

Similar Work Packages Review for Information — — — — 1.95 — — — 1.95 3.75 

Needed Technical Information — — 15 — — — — — 15 15 

Work Instructions — — — — 15 7.5 7.5 — — — 

Incorporate Operating Experience — — 10 — 5 — — — 10 20 

Worker Feedback from Previous Similar Work — — 5 — 3 — — — 5 10 

Human Performance Tools 2 — — — 3 — — 2 2 — 

Clearance Order Request 3 — — — 4.95 — — 3 3 — 

Engineering and Operations Documentation — — — — 1.5 — — — — 15 

Administrative or Technical Procedures 2 — — — 10.05 — — 2 2 — 

Fire Protection and Industrial Safety Controls 1 1 1 — 1 — — 1 1 — 

Fire Protection and Industrial Safety Permits 0.1 — — — 1.2 — — 0.1 0.1 — 

Work Package Walkdown 5 — — — 3 — — — 5 — 

Radiological Controls 1 — 1 — 7.5 — — — 1 — 

ALARA Plan 0.75 — 0.75 — — — — — 0.75 — 

Radiological Work Impact on Workers — — — 2.5 0.2 — — — — — 

Worker Training and Qualification 3 3 — — 3.75 — — 3 3 — 

Resources Assignment to Work Package — — 5 — — — — — — — 

Equipment Qualification Requirements 5 — 5 — — — — 1.5 5 — 

Parts and Materials  20 — — — — — — — 20 — 

Work Package Review and Approval — — — — — — — 26 — — 
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4.7 Scheduling 

The scheduling process in work management involves several critical tasks designed to optimize 

resource allocation and ensure efficient execution of work activities. The process begins with the creation 

of all necessary STs for the execution week. This initial step establishes the framework for subsequent 

evaluations and adjustments. 

Once the STs are drafted, the next phase assesses whether all STs have appropriate resources 

assigned. This evaluation ensures alignment between the work planned and the available personnel. Next, 

an assessment is conducted of available resources against task requirements to identify any gaps or 

surpluses, which helps clarify the resource situation for the upcoming week. 

Addressing any identified resource deficiencies is critical for successful execution. The process 

includes evaluating the feasibility of using overtime to fill resource gaps, providing a potential solution 

for shortages. Additionally, the option of employing contractors is explored to supplement the workforce 

as needed. In some cases, resources may need to be overloaded beyond 100% capacity during the 

execution week, assuming work can be performed more efficiently. If no solutions work, tasks may be 

removed from the execution week schedule to alleviate the burden on available resources. 

Alternatively, if the work scheduled is less than the available resources, the scheduling team may face 

the need to add extra normal work or low-priority work to the execution week schedule. 

Once the deficiency or surplus is taken care of, the impact of any new tasks on existing scope is 

evaluated. A logical ordering of existing tasks is then carried out to support the most efficient workflow 

and optimal resource usage. 

After all evaluations and adjustments, the work execution week schedule is finalized and “frozen” to 

prevent further changes. A certification meeting is held to review and confirm the execution week plan, 

addressing any remaining concerns before moving forward. The execution week plan is then formally 

handed over from the cycle planner to the workweek manager to ensure clarity in responsibilities. Finally, 

a daily work schedule is issued to guide teams throughout the execution week, ensuring that all personnel 

are aware of their tasks and responsibilities. 

As discussed in Section 4.1, each step is mapped to specific activities performed by dedicated staff, 

and AI functions are identified to replace those tasks. The detailed steps and considerations involved in 

the process are presented in Appendix D. Table 15 summarizes the findings from the analysis of the 

process in Appendix D and is used to quantify the potential cost savings of the entire process in Section 5 

and each AI function in Section 6.
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Table 15. Estimated potential time saved in minutes per ST for each scheduling step by each AI function. 

Task Time in Minutes C
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Schedule Tasks Creation — — — — 5 — — — — — 

Resources Assignment to All Schedule Tasks — — — — — — — — — — 

Deficiency or Surplus of Resources for Execution Week — — — — — — — — — — 

Overtime Use  — — — — 2.5 — — — — — 

Contractors Use  1.5 — — — 0.45 — — 1.5 1.5 — 

Resources Overload — — — 4.5 — — — 0.3 2.25 — 

Work Removal from Execution Week Schedule  — — — — — — — — — — 

Work Addition to Execution Week Schedule 0.4 0.4 — 0.4 — — — 0.4 — — 

Lower-Priority Work Addition to Execution Week Schedule 0.4 0.4 — 0.4 — — — 0.4 — — 

Impact of New Items Screened on Existing Week Scope — — 1 — — — — — — — 

Logical Order of Schedule Tasks  — — — — — — — 5 — — 

Execution Week Schedule Freeze — — — — — 0.5 0.5 — — — 

Execution week certification meeting — — — — — — — — — — 

Changes from Certification Meeting — — — — — — — — — — 

Turnover of Execution week from Cycle Planner to Workweek 

Manager 
— — — — — — — — — — 

Daily Work Schedule Issuance — — — — — — — — — 0.5 
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4.8 Execution 

The work execution process involves a series of critical tasks designed to ensure the effective 

completion of WPs while maintaining operational safety and efficiency. The process begins with the 

review of the daily work schedule, which sets the stage for the day’s activities. 

Key tasks include conducting RP operations and engineering work associated with the WP. RP might 

need to perform new surveys to accommodate the work scope. Operations might perform tagout and/or 

configure the plant as needed. Engineering might need to perform inspections, surveillances, and/or 

troubleshooting. Other organizations may also have predecessor tasks. All teams involved would then 

update the work schedule to reflect any changes or actions. The predecessor tasks must be completed 

before maintenance activities can commence. 

The maintenance team needs to prepare for execution, which includes confirming that predecessor 

tasks have been completed, picking up necessary materials and parts from the warehouse, storing them if 

needed in a dedicated area, and checking out tools and calibrated equipment. The maintenance team also 

ensures that the chemicals and lubricants needed for the tasks at hand are available. 

Communication is critical throughout the process, requiring maintenance personnel to check in with 

operations and discuss plans before commencing work. If necessary, maintenance will implement FME 

zones. 

Next, work groups perform their assigned tasks, and they update WP notes and statuses to maintain 

accurate records of progress. The maintenance supervisor must approve the completed work before 

conducting further updates to the work schedule. Finally, the process concludes with the closeout of the 

WP and a completion check to ensure all tasks have been properly completed and documented. 

As discussed in Section 4.1, each step was mapped to specific activities performed by dedicated staff, 

and AI functions were identified to replace those tasks. The detailed steps and considerations involved in 

the process are presented in Appendix E.  Table 16 summarizes the findings from the analysis of the 

process in Appendix E and is used to quantify the potential cost savings of the entire process in Section 5 

and each AI function in Section 6. 

4.9 Post-Execution 

The post-execution process involves several key tasks aimed at evaluating and improving work 

performance. It begins with gathering execution week performance information through work 

management systems. These data are then analyzed across all relevant groups to identify trends and areas 

for improvement. 

After the analysis, a post-execution week performance critique meeting is conducted, where team 

members discuss findings and share insights. Finally, any performance shortfalls are documented to 

ensure transparency and facilitate future improvements. This structured approach helps organizations 

learn from each execution cycle and enhances overall operational efficiency. 

As discussed in Section 4.1, each step was mapped to specific activities performed by dedicated staff, 

and AI functions were identified to replace those tasks. The detailed steps and considerations involved in 

the process are presented in Appendix F. Table 17 summarizes the findings from the analysis of the 

process in Appendix F and is used to quantify the potential cost savings of the entire process in Section 5 

and each AI function in Section 6. 
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 Table 16. Estimated potential time saved in minutes per WP for each work execution step by each AI function. 

Task Time in Minutes C
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Daily Work Schedule Review — — — — — — — — — — 

RP Work Associated with the Work Package — 0.5 — — 3.75 — — 0.5 — — 

RP Work Execution Week Survey 1.25 1.25 — — — — — 1.25 1.25 — 

RP Work Schedule Updates — — — — — 0.25 0.25 — — — 

Operations CO Associated with the Work Package — 1 — — — — — 1 — — 

Operations Work Schedule Update — — — — — 0.2 0.2 — — — 

Engineering Determination of Work — 1 — — — — — — — 3 

Engineering Work Schedule Update — — — — — 0.1 0.1 — — — 

Other Work Groups Predecessor Tasks Prior to Maintenance — 1 — — — — — — — — 

Other Groups Work Schedule Update — — — — — 0.1 0.1 — — — 

Maintenance Determination of Work Predecessor Tasks — — — — — — — — — 3 

Pick-up of Materials and Parts from Warehouse — — — — — — — — — — 

Temporary Materials and Parts Storage  — — — — — — — — — — 

Check-out of Tools for Work — 2 2 — — — — — — — 

Check-out of Calibrated Tools and Equipment — 2 2 — — — — — — — 

Chemicals and Lubricants — 2 2 — — — — — — — 

Maintenance Check-in with Operations  — — — — — — — — — — 

Maintenance FME Zone Actions — 1 — — — — — 1 — — 

Work Groups Perform Work — — — — — — — — — — 

Work Groups Update of Work Package Notes/Status — — — — — 1 1 — — — 

Maintenance Supervisor Approval of Work — — — — 3 2.375 2.375 5 — — 

Maintenance Work Schedule Updates — — — — — 1 1 — — — 

Work Package Closeout — — — — — 7.5 7.5 — — — 

Work Package Completion Check — — — — 1.5 — — 10 — — 
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Table 17. Estimated potential time saved in minutes per WP for each post-execution step by each AI function. 

Task Time in Minutes C
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Work Management Evaluation of Week Performance Information — — — — 2 — — — — 2 

Relevant Groups Analysis of Execution Week Performance 

Information  
— — — — — — — 1 — — 

Post-Execution Week Performance Critique Meeting — — — — — — — — — — 

Performance Shortfalls Documentation  — — — — 0.05 — — 1 — — 
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5. POTENTIAL COST SAVING IN WORK MANAGEMENT 

In this section, a summary of potential cost savings is developed by quantifying the cost of each step 

of the work management process and comparing it to the percentage reduction in cost after implementing 

AI. As discussed in the assumptions, the potential savings of AI, if deployed, is assumed to the maximum 

extent, i.e., where the manual process is totally abandoned. 

To calculate the total time saved, it is necessary to estimate the number of CRs generated and scale 

them to WOs, WPs, and STs, as each phase in Appendices A-F uses a different scale to quantify effort. A 

survey of datasets from multiple utilities indicated a conservative estimate of 6,000 CRs per nuclear unit 

per year. Table 18 presents an estimated ratio of the number of records scaled in comparison to each 

other. Those are assumed ratios based on discussion with industry. Projects and PM WO numbers were 

also estimated on the conservative side based on discussion with industry. In this section’s analysis, a 

nuclear plant staff average cost was estimated at $200 per hour. This enables converting the findings into 

actual cost saving per year. 

Table 18. Reference metrics and scaling factors for each work management phase. 

Phase Metric Scale to previous metric 
Assumed number per 

unit per year 

Screening CR Not applicable (NA) 6,000 

Scoping WO 

One corrective WO per five CRs 1,100 

Project WOs 400* 

PM WOs 6,000 

Total WOs 7,500 

Planning WP Four WPs per three WOs 10,000 

Scheduling ST Two STs per WP 20,000 

Execution WP 
One WP to two STs 

10,000 

Post-Execution WP 10,000 

* A typical WO contains two work activities. However, project WOs often involve multiple activities and require 

more effort at each step. While the actual number of project WOs is estimated at 120, it is assumed to be 400 to 

account for the additional work involved in project activities. 

5.1 Screening 

A summary of screening steps is provided in Table 19. The analysis of each of the listed steps reveals 

significant insights into current cost thousands of dollars ($K) and the potential cost-saving benefits of 

automation (in %). The table shows that most steps can be automated resulting in a maximum potential 

cost saving of 57.6%. However, certain steps like prescreening meeting, screening meeting preparation, 

and the actual screening meeting show no potential for savings, since they rely on people coordinating 

and discussing in person. Specifically, the prescreening and screening meetings currently take 30 minutes 

each and involve several staff members. Compensatory actions were also found to be non-automatable 

because they depend on the broader staff experience, which AI models cannot replicate. Considering the 

overall cost of this phase at $1.5M and the 57.6% potential cost saving, this results in around $880K of 

cost saving.  
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Table 19. Current costs and potential cost savings by using AI for every step of screening. 

Task 

Current Cost 

(in $K per unit per 

year) 

Maximum AI 

Cost Reduction 

(%) 

Issue Identification and Reporting 210 76 

Equipment Relevance  10 100 

Criticality 30 100 

Operability and Impact to Plant 60 100 

Maintenance Validation 63 98 

Maintenance Compensatory Actions 15 0 

Maintenance Significance 15 100 

Operations Validation 17 94 

Operations Compensatory Actions 15 0 

Operations Significance 15 100 

Engineering Validation 16 97 

Engineering Compensatory Actions 15 0 

Engineering Significance 15 100 

All Others Validation 16 97 

Rework 45 100 

Resources for Significant Work 45 100 

Project/In-house for Significant Work 15 99 

Modification/Field Change 16 100 

Safety Significance 30 100 

Administrative Impact 25 100 

Radiological Impact 40 100 

Chemistry Impact 100 100 

Severity 62 98 

Actions Needed 40 100 

Prescreening Meeting 120 0 

Screening Meeting Preparation 139 0 

Screening Meeting 120 0 

Condition Report Update and Work Request Notification  205 20 

Maintenance Work Order Creation 13 71 

Total/Average 1,526 57.6 



 

55 

5.2 Scoping 

A summary of scoping steps is listed in Table 20. The table outlines the steps associated with 

scoping, including the current cost and the potential cost savings when automated with AI functions. The 

table indicates that most steps can be automated resulting in a maximum potential cost saving of 85.2%. 

This represents a significant improvement over the previous phase, due to more systematic decision-

making and reduced reliance on staff coordination and non-automatable physical activities. Two steps that 

cannot be automated relate to risk. While AI could potentially aid in risk optimization, this was deemed 

outside the scope of the current effort and could be a research effort on its own. Also, risk screening is too 

risky and complex for effective automation. It requires human expertise in risk assessments and extensive 

knowledge of the plant. Preventive maintenance grace period determination was another step that was not 

automated by AI because it is simply a lookup from a database table. The highest potential for cost 

savings is associated with creating work activities. Automating this step alone could result in around 

$400K in annual savings. Considering the overall cost of this phase at $2.5M and the 85.2% potential cost 

saving, this results in around $2.1M of cost saving.  

5.3 Planning 

A summary of planning tasks is provided in Table 21. The table outlines the steps associated with 

planning, including the current cost and the potential cost savings when automated with AI functions. 

Except for one step, all steps in the table can be automated by AI resulting in a maximum potential cost 

saving of 99.1%. This indicates that this entire phase is automatable. However, as discussed in Section 6, 

this relies heavily on tools to review unstructured text, follow procedures, and create documents. Many of 

these are not ready for deployment, as discussed in Section 3 and Section 7.  The one step that could not 

be automated in this phase was the actual reservation of parts, since this involves manual data entry into a 

system, which could be automated by simple data management tools.  Considering the overall cost of this 

phase at $7.8M and the 99.1% potential cost saving, this results in approximately $7.7M in cost savings. 

Many of the listed steps can produce savings in the range of hundreds of thousands of dollars, making this 

phase a priority for AI deployment, provided the current AI challenges are resolved.   

5.4 Scheduling 

A summary of scheduling steps is listed in Table 22. The table outlines the steps associated with 

scheduling, including the current cost and the potential cost savings from automating these steps with AI 

functions. The table indicates that less steps can be automated than the previous two phases, resulting in a 

maximum potential cost saving of 67.2%.  Many of the steps that were not automated by AI were mainly 

due to their simplicity and the possibility of automation without AI. For example, verifying resource 

assignments to all tasks could be done through a simple database query. Identifying deficiencies or 

surpluses in resources would require a query to confirm that available resources match the number needed 

for scheduled tasks. The removal of low-priority work from the execution week schedule is enabled 

through labels from previous steps. Additionally, all meeting steps were not automated due to the need for 

human interaction, coordination, and discussion. Considering the overall cost of this phase at $1.96M and 

the 67.2% potential cost saving, this results in around $1.3M of cost savings. 
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Table 20. Current costs and potential cost savings by using AI for every step of scoping. 

Task 

Current Cost 

(in $K per unit per 

year) 

Maximum AI 

Cost Reduction 

(%) 

Merger of Work Orders for Same Issue 131 100 

Work Order Priority 71 100 

Work Order Criticality 71 100 

Outage or Online Work 110 100 

Preliminary Work Schedule 63 100 

Project Relevance 25 100 

Project Sequence 15 100 

Project Week(s) Readiness 30 100 

Project Engineering Evaluation Review 15 100 

Project Need for Contractor Services 5 100 

Work Order Activities Creation 445 92 

Resources Estimation 75 100 

Resources Availability 188 80 

Plant/Fleet/Corporate Schedule 48 100 

Technical Specifications 75 100 

Unit Down Power 75 100 

Chemistry Impact 38 100 

Reactivity Effect 75 100 

Reactor Coolant System Effect 38 100 

Redundant Structures, Systems, and Components Effect 25 100 

Plant Transient 48 100 

Surveillance Schedule 75 100 

Seasonal Impacts 75 100 

Grid Instability 25 100 

Containment Integrity/Heat Removal 75 100 

Cycle Timing 75 100 

Plant Security 13 100 

Maintenance Rule 45 83 

Risk Screening 60 0 

Work Scope Clarity and Conciseness 123 96 

Integrated Risk Screening for Execution Week 188 0 

Priority Assignment Validation 6 100 

Priority Work Rank 38 100 

Preventive Maintenance Grace Periods 38 0 

Total/Average 2,498j 85.2 

 

 
j This number might not match the summation of all the numbers above it due to rounding.  
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Table 21. Current costs and potential cost savings by using AI for every step of planning. 

Task 

Current Cost 

(in $K per unit per 

year) 

Maximum AI 

Cost Reduction 

(%) 

Need for Work Package 463 100 

Previous Similar Work Packages 167 100 

Long Lead-Time Parts 567 88 

Existing or New Work Package Use 333 100 

Similar Work Packages Review for Information 190 100 

Needed Technical Information 500 100 

Work Instructions 500 100 

Incorporate Operating Experience 500 100 

Worker Feedback from Previous Similar Work 267 100 

Human Performance Tools 167 100 

Clearance Order Request 265 100 

Engineering and Operations Documentation 550 100 

Administrative or Technical Procedures 402 100 

Fire Protection and Industrial Safety Controls 67 100 

Fire Protection and Industrial Safety Permits 43 100 

Work Package Walkdown 267 100 

Radiological Controls 283 100 

ALARA Plan 25 100 

Radiological Work Impact on Workers 90 100 

Worker Training and Qualification 225 100 

Resources Assignment to Work Package 167 100 

Equipment Qualification Requirements 217 100 

Parts and Materials 667 100 

Work Package Review and Approval 867 100 

Total/Average 7,786 99.1 
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Table 22. Current costs and potential cost savings by using AI for every step of scheduling. 

Task 

Current Cost 

(in $K per unit per 

year) 

Maximum AI 

Cost Reduction 

(%) 

Schedule Tasks Creation  333 100 

Resources Assignment to All Schedule Tasks 67 0 

Deficiency or Surplus of Resources for Execution Week 200 0 

Overtime Use  217 77 

Contractors Use  130 100 

Resources Overload 170 100 

Work Removal from Execution Week Schedule  50 0 

Work Addition to Execution Week Schedule 27 100 

Lower-Priority Work Addition to Execution Week Schedule 27 100 

Impact of New Items Screened on Existing Execution Week Scope 67 100 

Logical Order of Schedule Tasks  333 100 

Execution Week Schedule Freeze  67 50 

Execution Week Certification Meeting 203 0 

Changes from Certification Meeting 7 0 

Turnover of Execution Week  33 0 

Daily Work Schedule Issuance 33 100 

Total/Average 1,964 67.2 

 

5.5 Execution 

A summary of work execution steps is listed in Table 23. The table outlines the steps associated with 

execution, including the current cost and potential savings from automating these steps with AI functions. 

The table indicates much fewer steps can be automated compared to the previous phases, resulting in a 

maximum potential cost saving of 40.2%. This phase is the least promising for AI due to the nature of the 

steps, which involve human physical actions such as retrieving materials and tools, setting up the work 

environment, performing work, and interacting directly with the schedule and staff. These activities are 

inherently manual and cannot be easily automated by AI. Despite the lower automation potential, the 

overall cost of this phase is estimated at $4.45M, and the 40.2% potential cost saving translates to 

approximately $1.79M in savings. Interestingly, this step generates around $450K more cost savings than 

the previous scheduling phase, even though that phase had a 67.2% automation potential. 

5.6 Post-Execution 

A summary of post-execution steps is listed in Table 24. The table outlines the steps associated with 

post-execution, including the current cost and potential savings from automating these tasks with AI 

functions. The maximum potential cost saving for this phase is 84.4%. Except for the post-execution 

week performance critique meeting, which cannot be automated as it requires human interaction and 

discussion, all other steps can be automated by AI. Since this phase involves review and performance 

evaluations, all the AI functions used for this step relate to generation, summarization, or review, as will 

be shown in Section 6. The overall cost of this phase is relatively low, estimated at $160,000. The 84.4% 

potential cost saving translates to approximately $135,000 in savings.  
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Table 23. Current costs and potential cost savings by using AI for every step of execution. 

Task 

Current Cost 

(in $K per unit per 

year) 

Maximum AI 

Cost Reduction 

(%) 

Daily Work Schedule Review 333 0 

RP Work Associated with the Work Package 142 100 

RP Work Execution Week Survey 102 41 

RP Work Schedule Updates 17 50 

Operations CO Associated with the Work Package 33 100 

Operations Work Schedule Update 13 50 

Engineering Determination of Work 133 100 

Engineering Work Schedule Update 7 50 

Other Work Groups Predecessor Tasks Prior to Maintenance 133 25 

Other Groups Work Schedule Update 7 50 

Maintenance Determination of Work Predecessor Tasks 100 100 

Pick-up of Materials and Parts from Warehouse 442 0 

Temporary Materials and Parts Storage 200 0 

Check-out of Tools for Work 442 15 

Check-out of Calibrated Tools and Equipment 317 21 

Chemicals and Lubricants 167 40 

Maintenance Check-in with Operations  335 0 

Maintenance FME Zone Actions 83 40 

Work Groups Perform Work Out of scope 

Work Groups Update of Work Package Notes/Status 67 50 

Maintenance Supervisor Approval of Work 425 81 

Maintenance Work Schedule Updates 67 50 

Work Package Closeout 500 50 

Work Package Completion Check 383 100 

Total/Average 4,447 40.2 

 

Table 24. Current costs and potential cost savings by using AI for every step of post-execution. 

Task 

Current Cost 

(in $K per unit per 

year) 

Maximum AI 

Cost Reduction 

(%) 

Work Management Evaluation of Week Performance  67 100 

Relevant Groups Analysis of Execution Week Performance  33 100 

Post-Execution Week Performance Critique Meeting 25 0 

Performance Shortfalls Documentation  35 100 

Total/Average 160 84.4 

 

5.7 Summary of Cost Savings in Work Management 

In this section, the findings of the previous sections are summarized in Table 25. The data presented 

highlights the substantial potential for cost savings through the automation of various phases in the work 
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management process. Each phase demonstrates significant reductions in manual processing time when 

automated, leading to notable financial benefits for the organization. 

The most significant potential savings are observed in the planning phase, where automation could 

reduce costs by up to $7.72M. This substantial reduction demonstrates that optimizing this phase can 

yield transformative financial benefits for the organization. However, as will be shown next, this phase 

relies heavily on methods and tools for generation, structuring, summarization, and review, which must 

perform sophisticated functions and are not yet ready for deployment. Scoping follows as the second-

highest cost-saving phase, benefiting more from currently available tools. Scheduling and execution, on 

the other hand, are less automatable. Scheduling primarily involves simple operations that do not require 

AI, while execution is heavily reliant on physical activities. Additionally, while screening has been a 

major focus of the industry automation efforts so far, it is evident from the table that it has one of the 

lowest cost-saving potentials. 

Table 25. Summary of current costs and potential cost savings per phase. 

Phase 
Current Cost per Unit 

per Year 

Maximum AI Cost 

Saving 

Ratio of Saving           

(%) 

Screening $1.53M $0.88M 57.6 

Scoping $2.50M $2.13M 85.2 

Planning $7.79M $7.72M 99.1 

Scheduling $1.96M $1.32M 67.2 

Execution $4.45M $1.78M 40.1 

Post-Execution  $0.16M $0.14M 84.4 

 

6. POTENTIAL COST SAVING OF FUNCTIONS 

In this section, a summary of the potential cost savings derived from implementing AI functions is 

discussed across all steps in the phase. It is again assumed that the deployment of AI for a function would 

fully replace manual processes, i.e., the estimates reflect the maximum possible cost savings, except for 

guidance and insertion, which receive half credit (Section 4.2). One key assumption that was mentioned 

in Section 4.2 is that the cost saving from each function is assumed not to overlap (i.e., two functions can 

be used in one step, and each is counted as a cost-saving function). While one function is usually used to 

automate the decision, or action, it was necessary to double-count the redundant methods in the context of 

quantifying AI function cost saving to provide insight into the full potential of each AI function. 

6.1 Screening 

A summary of the AI functions for screening is listed in Table 26. The table illustrates the substantial 

cost-saving potential of various AI functions. It also compares the ratio of savings each function provides 

relative to others on the list, offering insights into their impact on overall cost reduction. Supervised and 

unsupervised classification together account for 30% of the total cost saving, amounting to $485K. This 

substantial contribution is due to the critical role of classification in categorizing screening records into 

specific labels. Review also plays a similar role, contributing 27%, by leveraging procedures such as the 

CAP procedure and mining complex or unstructured documents like technical specifications or implied 

instructions in manuals to support decision-making. Comparison contribution at 24% is crucial because 

decisions often depended on references in records that were structured differently. Other functions, 

including generation (1%), summarization (6%), guidance (3%), insertion (3%), and structuring (5%), 

offer varying degrees of support but with less overall impact. 
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One key aspect of the cost savings presented in Table 26 is that summing all the costs saved would 

exceed the cost-saving figure discussed in Table 19. This is because of the overlapping credit taken for 

each function, as discussed in the introduction of this section. 

Table 26. Cost savings in screening by each AI function. 

Task 
Contribution of AI function 

(%) 

Maximum AI Cost Saving 

($K per unit per year) 

Classification (Supervised) 19 310 

Classification (Unsupervised) 11 175 

Comparison 24 395 

Estimation 0 0 

Generation 1 20 

Guidance 3 55 

Insertion 3 55 

Review 27 440 

Structuring 5 75 

Summarization 6 120 

6.2 Scoping 

The AI functions for scoping are summarized in Table 27. The table illustrates the substantial cost-

saving potential of various AI functions and compares the ratio of savings each function provides relative 

to others, offering insights into their impact on overall cost reduction. Since scoping relies heavily on 

labeling to characterize WOs, supervised and unsupervised classification together account for 31% of the 

total cost saving, which is higher than in screening. This indicates that decision-making in scoping is 

more structured than screening. Also, given that scoping is a more expensive phase than screening, this 

amounts to $1.2M in savings, demonstrating the considerable impact of these ready-to-deploy tools. 

Review also played a major role in scoping, similar to screening, contributing 27% with a saving of 

approximately $1.1M. It focused on procedures such as chemistry procedures, operations procedures, 

technical specifications, and work management procedures, and sometimes reviewed unstructured 

documents like system drawings. Comparison, with a 25% contribution and a saving of around $1M, was 

valuable for connecting WOs to structured lists of information. Other functions, including estimation 

(7%), generation (4%), guidance (1%), insertion (1%), structuring (3%), and summarization (1%), again 

provided varying degrees of support but with less overall impact. Overall, the potential cost savings for 

scoping appear to be higher than for screening, although the AI functions benefiting both are the same. 
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Table 27. Cost savings in scoping by each AI function. 

Task 
Contribution of AI function  

(%) 

Maximum AI Cost Saving  

($K per unit per year) 

Classification (Supervised) 22 856 

Classification (Unsupervised) 9 353 

Comparison 25 954 

Estimation 7 275 

Generation 4 151 

Guidance 1 40 

Insertion 1 40 

Review 27 1,061 

Structuring 3 135 

Summarization 1 23 

 

6.3 Planning 

The AI functions to automate the planning process are summarized in Table 28. The table illustrates 

the substantial cost-saving potential of various AI functions and compares the ratio of savings each 

function provides relative to others, offering insights into their impact on overall cost reduction. A notable 

shift in AI function contributions is observed in this phase: supervised and unsupervised classification 

together account for only 12% of the total cost savings, a significant decrease compared to previous 

phases. In contrast, there is a substantial increase in the contributions from generation (19%), structuring 

(22%), and summarization (17%). Review also played a significant role in planning, contributing 9% with 

savings of approximately $1.3M. This shift is due to planning involving significantly more complex 

decisions than earlier phases, with a greater reliance on unstructured and complex documents. These 

functions (generation, structuring, summarization, and review) depend on generative AI methods and 

tools, which, as discussed in Sections 3 and 7, can be challenging to deploy. However, since the 

combined cost savings from these four functions amount to more than $9M, prioritizing research in this 

area is essential.  

Despite a drop in the contribution ratio, comparison, with an 12% contribution, still resulted in 

significant savings of around $1.6M due to planning being the most expensive phase. Other functions, 

including estimation (4%), guidance (2%), and insertion (2%), provided less impact. 

Table 28. Cost savings in planning by each AI function. 

Task 
Contribution of AI function 

(%) 

Maximum AI Cost Saving 

($K per unit per year) 

Classification (Supervised) 11 1,561 

Classification (Unsupervised) 1 133 

Comparison 12 1,592 

Estimation 4 583 

Generation 19 2,533 

Guidance 2 313 

Insertion 2 313 

Review 9 1,287 

Structuring 22 2,993 

Summarization 17 2,292 
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6.4 Scheduling 

The AI functions to automate the scheduling process are summarized in Table 29. The table illustrates 

the substantial cost-saving potential of various AI functions and compares the ratio of savings each 

function provides relative to others, offering insights into their impact on overall cost reduction. 

Supervised and unsupervised classification together account for only 11% of the total cost savings, 

reflecting a continued decrease from previous phases. In contrast, estimation has a notable increase, 

contributing 18% to the total savings due to its role in time and resource estimation for scheduling. 

Generation, with a 26% contribution, was found to significantly impact few but costly steps, resulting in 

the 26% or $530K savings. Review, contributing 25%, was crucial for optimizing schedules by 

considering constraints and resources, while structuring made a significant impact at 12% by extracting 

implied labels from unstructured documents. Other functions, including comparison, guidance, insertion, 

and summarization, had relatively insignificant cost-saving impacts. 

Table 29. Cost savings in scheduling by each AI function. 

Task 
Contribution of AI function  

(%) 

Maximum AI Cost Saving  

($K per unit per year) 

Classification (Supervised) 8 153 

Classification (Unsupervised) 3 53 

Comparison 3 67 

Estimation 18 353 

Generation 26 530 

Guidance 2 33 

Insertion 2 33 

Review 25 507 

Structuring 12 250 

Summarization 2 33 

 

6.5 Execution  

The AI functions to automate the work execution process are summarized in Table 30. The table 

illustrates the substantial cost-saving potential of various AI functions and compares the ratio of savings 

each function provides relative to others, offering insights into their impact on overall cost reduction. In 

this phase, which primarily involves physical activities and staff logging information, insertion and 

guidance are the most promising AI functions in terms of cost-saving, each contributing 12% to the total 

cost savings. Review played a significant role by mining procedures and making decisions from large 

datasets, contributing 24%. Unsupervised classification contributed 15%. Generation supported staff in 

creating novel texts, such as notes on rework needs or radiological impact, contributing 11%. Other 

functions were less influential: supervised classification contributed only 2%. Comparison and 

summarization provided minimal support, each contributing 8%, while structuring had a minimal impact 

at 2%. 
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Table 30. Cost savings in execution by each AI function. 

Task 
Contribution of AI function  

(%) 

Maximum AI Cost Saving  

($K per unit per year) 

Classification (Supervised) 2 42 

Classification (Unsupervised) 15 392 

Comparison 8 200 

Estimation 0 0 

Generation 11 275 

Guidance 16 418 

Insertion 16 418 

Review 24 625 

Structuring 2 42 

Summarization 8 200 

 

6.6 Post-Execution  

The AI functions to automate the post-execution process are summarized in Table 31. The table 

presents an overview of tasks related to cost savings achieved through automation, specifically 

highlighting time savings and their corresponding monetary impacts. In this phase, generation, review, 

and summarization are the primary effective AI functions, each contributing modestly to cost savings. 

These functions are useful due to the phase's focus on reviewing or summarizing documents about 

performance and generating insights for future work. Other functions, including classification (supervised 

and unsupervised), comparison, estimation, guidance, insertion, and structuring, had no impact in this 

phase. 

Table 31. Cost savings in post-execution by each AI function. 

Task 
Contribution of AI function  

(%) 

Maximum AI Cost Saving  

($K per unit per year) 

Classification (Supervised) 0 0 

Classification (Unsupervised) 0 0 

Comparison 0 0 

Estimation 0 0 

Generation 34 68 

Guidance 0 0 

Insertion 0 0 

Review 33 67 

Structuring 0 0 

Summarization 33 67 

 

6.7 Summary of Cost Savings of Functions 

In this section, the results from the previous sections are aggregated. Table 32 presents a detailed 

breakdown of the cost savings associated with various AI functions across different phases of screening, 

scoping, planning, scheduling, execution, and post-execution. Overall, the table highlights the varying 

effectiveness of AI functions across these phases, with some excelling in specific tasks and others having 
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a more modest impact. Notably, planning benefits the most from AI functions due to its high cost. Among 

the functions, generation ($3.6M), review ($4M), structuring ($3.5M), and summarization ($2.7) are 

highlighted for their substantial total cost savings, though they are not yet ready for deployment as 

discussed in Sections 3 and 7. Comparison, with a total saving of $3.2M, offers similar cost-saving 

potential and is ready for use. By prioritizing this function, organizations can enhance efficiency and 

reduce expenditures soon. The more challenging functions can be the focus of future deployment. 

The table also reveals that each AI function excels in specific phases beyond planning. Supervised 

classification shows substantial contributions in screening and scoping. Unsupervised classification is 

effective in scoping and execution. Comparison stands out for its significant impact in screening and 

scoping. Estimation mostly impacts scoping and scheduling. Generation is notable in scheduling and 

execution. Guidance and insertion are equally impactful in execution. Review contributes significantly 

across most phases. Structuring excels in scheduling, while summarization is strong in execution. As 

discussed in the previous sections, the effectiveness of an AI function in each phase depends on the 

decisions made and the type of data or documents available. This explains why some functions perform 

exceptionally well in certain phases while having a more modest impact in others. 

Table 32. Cost savings for each AI function across all phases. 

Task 

Cost savings in $K per unit per year 

Screening Scoping Planning Scheduling Execution 
Post-

Execution 
Totalk 

Classification 

(Supervised) 
310 856 1,561 153 42 0 2,922 

Classification 

(Unsupervised) 
175 353 133 53 392 0 1,106 

Comparison 395 954 1592 67 200 0 3,207 

Estimation 0 275 583 353 0 0 1,212 

Generation 20 151 2,533 530 275 68 3,578 

Guidance 55 40 313 33 418 0 858 

Insertion 55 40 313 33 418 0 858 

Review 440 1,061 1,287 507 625 67 3,986 

Structuring 75 135 2,993 250 42 0 3,495 

Summarization 105 23 2,292 33 200 67 2,719 

 

7. FUNCTION CHALLENGES AND POTENTIAL METHODS 

In the previous section, the most impactful functions were identified. This section examines the 

challenges faced as the methods and tools outlined in Section 2 were applied to these functions, as 

discussed in Section 3,within the context of the work process described in Section 4. The obstacles 

encountered are analyzed, and the research conducted to address and overcome many of these challenges 

 
k   This number might not match the summation of all the numbers due to rounding. 
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is presented. Demonstrations of the solutions were included for each challenge when they were 

conducted. 

7.1 Supervised Classification 

Supervised classification has several challenges, primarily related to the availability and quality of 

labels, including issues with labels inconsistency and missing or imbalanced labels. The challenges that 

arose as supervised classification methods were applied to NPP data drove the research to investigate 

methods to tackle those challenges. 

7.1.1 Sparse Labels 

This challenge is specific to supervised methods, since supervised classification relies on labeled data 

to learn text patterns associated with classification decisions. Having sparse or very few labels has a 

significant negative impact on the performance of the developed solutions. For example, it is rare for the 

screening process that was discussed in Section 4.4 to classify events as SCAQ. A utility might have a 

few dozen such events out of a million CRs, which is not enough to train an AI model. Three methods 

were explored, each of which is scalable to any classification problem with sparse labels. 

Developed Solution 1: Combining Data from More Utilities 

Combining data from multiple utilities can have a positive effect if the data are consistent in the 

means that decisions are being made. This is usually the case in the nuclear industry; however, care 

should be taken when utilities use different criteria to describe what is assigned to a particular label. 

Demonstration of Solution 1: SCAQ Example 

In this example, an SCAQ prediction was generated using data from a single utility (containing 6 

SCQ CRs) and compared to the results obtained when data from multiple utilities was used (Containing a 

total of 112 SCAQ CRs). A TF-IDF and logistic regression model were used with five-fold 

cross-validation in both cases.  

The results are shown in Table 33. A baseline, where all CRs are labeled as SCAQ, was generated 

first to be used a benchmark. The baseline F1 for an SCAQ is 0.01% for a single utility and 0.03% for 

several utilities. The TF-IDF and logistic regression model were then applied to the two datasets: the one 

for a single utility and another using several utilities. The recall was set to around 30% to enable visual 

comparison of the F1 scores and precision results. 

The results show that the F1 score for the single utility did not improve due to the low number of 

CRs. However, the F1 score for several utilities’ SCAQ classification using logistic regression was 1.6%. 

This is a 53-fold increase over the random prediction baseline, indicating the model was able to better 

learn text patterns that indicate an SCAQ when data from multiple utilities is used. It is reasonable to 

assume that in this example the labeling process across the different utilities was consistent and therefore 

improved the SCAQ classification. 

Developed Solution 2: Use of Projection through Another Class That Has Sufficient Labels 

Often the class with sparse labels is an extension of another class that has labels. For example, if a 

priority 8 to 10 assignment for a WO is very rare, a regression model can be developed to estimate other 

more common priorities (0 to 7), and extrapolation can be used to predict what a priority 8 to 10 would 

be. The same could apply to confidence of a class. For example, because CRs are rarely assigned an 

SCAQ label, an SCAQ could be assigned to a CAQ classifier if the classifier is very confident it is a CAQ 

(since SCAQ is a special class of CAQ in extreme conditions). 

Demonstration of Solution 2: SCAQ Example 

The SCAQ prediction is again targeted in this example. To handle the sparse SCAQ label situation, 

SCAQ CRs were given a magnitude instead of a class label. An NCAQ had magnitude of 0, a CAQ a 
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magnitude of 1, and an SCAQ a magnitude of 100. This allowed the AI algorithm to learn from the large 

amount of CAQ data to use for SCAQ predictions. Ridge regression was used to predict the SCAQ labels. 

Five-fold cross-validation was used.   

To demonstrate the potential for this method, it was benchmarked against a logistic regression model 

that was trained on the 112 available labels. The logistic regression therefore did not use the CAQ CRs to 

inform the regression, only the SCAQ CRs. The recall was again set to around 30% to enable visual 

comparison of the F1 scores and precision results. 

The results are shown in Table 33. The single utility model achieved an F1 score of 0.68%, whereas 

the several utilities grouped together achieved an F1 score of 37.36%. This latter score is a 1,245-fold 

increase over the random baseline and a 23-fold increase over logistic regression. 

Developed Solution 3: Using Context Sensitive Word Embeddings and Similarity 

For labels that occur infrequently in a dataset, it is possible to develop a semisupervised model that 

uses an algorithm to find certain words that occur frequently and the likelihood that they will occur to 

create a rare-class classification. It is then possible to feed the words that are found into an embedding 

model to generate context-aware embedding vectors. Any new text can be compared to the embedding 

vectors, using similarity analysis methods, and if it is similar enough it is classified as positive. 

Demonstration of Solution 3: SCAQ Example 

The same dataset used in the previous example is used again herein. A relatively small embedding 

model LLM (moka-ai/m3e-base) was optimized to transform raw text into high-dimensional 

representations suitable for measuring the similarity of documents against each other using cosine 

similarity. The CRs were each converted into a 768-dimensional representation. In addition, five-fold 

cross-validation was performed. Each fold used one or two SCAQ CR embedding vectors from the 112 

SCAQ CRs embeddings to compare using cosine similarity against the remaining 110 or 111 SCAQ CRs. 

The results are shown in Table 33. With the recall rate set to 30% the F1-score stayed relatively low 

at 0.05%. This approach suffered from a very high false positive rate, the reason for which can be 

understood by analyzing the distribution of cosine similarity values for all SCAQ, CAQ, and NCAQ 

records superimposed on the same histogram. That is, cosine similarity results were calculated for all CRs 

against each other. The similarity values were then segregated according to the true label for each CR: 

either SCAQ, CAQ, or NCAQ. The histogram is shown in Figure 9. The figure shows that the similarity 

values for the SCAQ and CAQ records overlap significantly. Although the mean for the SCAQ values is 

farther to the right than it is for the CAQ or the NCAQ values, and the standard deviation is narrower, it is 

still very difficult to distinguish between the similarity values. Therefore, while context-sensitive 

embeddings can be used with some success to correctly classify a CR as an SCAQ, it is very difficult to 

do so without sustaining a large penalty in the form of many false positives. 
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Table 33. Summary of performance results for supervised classification of SCAQ. 

Approach Method 

F1 

Score 

(%) 

Precision/ 

Recall 

(%) 

Confusion Matrix 

Baseline  

(single utility) 

All CRs are 

labeled as an 

SCAQ 

0.01 0.0/100.0 

— Predicted 

— — 
Not 

SCAQ 
SCAQ 

Actual 
Not SCAQ 0 83,137 

SCAQ 0 6 

Baseline  

(five utilities) 

All CRs are 

labeled as an 

SCAQ 

0.03 0.0/100 

— Predicted 

— — 
Not 

SCAQ 
SCAQ 

Actual 
Not SCAQ 0 838,980 

SCAQ 0 112 

SCAQ-driven 

classification  

(single utility) 

TF-IDF + 

logistic 

regression 

0.01 0.003/33.3 

— Predicted 

— — 
Not 

SCAQ 
SCAQ 

Actual 
Not SCAQ 26,768 56,363 

SCAQ 4 2 

SCAQ-driven 

classification 

(five utilities) 

TF-IDF + 

logistic 

regression 

1.60 0.82/29.46 

— Predicted 

— — 
Not 

SCAQ 
SCAQ 

Actual 
Not SCAQ 835,006 3,974 

SCAQ 79 33 

Extrapolation 

approach 

(single utility) 

TF-IDF + 

ridge 

regression 

0.68 0.34/33.3 

— Predicted 

— — 
Not 

SCAQ 
SCAQ 

Actual 
Not SCAQ 82,553 578 

SCAQ 4 2 

Extrapolation 

approach  

(five utilities) 

TF-IDF + 

ridge 

regression  

37.36 48.56/30.35 

— Predicted 

— — 
Not 

SCAQ 
SCAQ 

Actual 
Not SCAQ 838,944 36 

SCAQ 78 34 

Cosine 

similarity of 

context-

sensitive 

embeddings 

Moka 

embeddings 

+ cosine 

similarity 

0.05 0.03/33.3 

— Predicted 

— — 
Not 

SCAQ 
SCAQ 

Actual 
Not SCAQ 74,728 7,504 

SCAQ 4 2 
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Figure 9: Histograms of cosine similarity values for records tagged as CAQ, NCAQ, or SCAQ. 

7.1.2 Consistency of Labels Overtime or Across Utilities 

Adding data from multiple utilities or from various periods of time for one utility is usually perceived 

as a means for improving model performance; however, adding contradicting data to broader models 

could worsen model performance. Tribal knowledge at each utility can be critical to the classification 

process; for example, utility staff often use a particular phrase to describe a situation that is likely to be 

critical, whereas staff at a different utility use a different phrase to describe the same situation. Some 

utilities have specific procedures that might not mirror what other utilities are using.  

Even in the same utility, a decision-making procedure might change due to relaxed or more stringent 

policies or regulations. It has been observed that a utility will produce data for one period that are 

relatively easy to predict, and yet data from a different period are more difficult to predict. This 

inconsistency can occur gradually over time. For instance, a permanent procedure change can occur that 

will outdate data older than the change. Alternatively, data points can be inconsistently labeled during a 

pandemic, an outage, or other circumstance.  

Combining models from various periods of time or across utilities could result in improved 

performance if the utilities follow a similar decision-making process, or in degraded performance if the 

utilities follow a different decision-making process. Consistency is a critical aspect of data that directly 

impacts a model’s performance., Robie, and Branson (2015) note that “Incorrectly or inconsistently 

labeled training data lead[s] to significant prediction errors because the learning algorithm will find an 

overly complex rule that deviates from the true best classifier.” 

Developed Solution 1: Measuring Consistency Similarity between Text and Decisions 

Consistency determination methods can be based on specific models that are used where inconsistent 

data seems to appear as output outliers. However, an approach was developed in this effort that can be 

used in an application-generic manner. The idea behind this approach is that if similar data are labeled 

differently, this implies inconsistency in the decision-making process. Therefore, it is possible to compare 

label agreement to data similarity using similarity analysis tools to quantify the quality of the data before 

models are run, and to isolate severe inconsistencies for the user to clean (i.e., elaborate on the text 

differences or change the classification to match). 

Demonstration of Solution 1: CAQ Example 
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For consistency, the data from five utilities discussed earlier were analyzed. Two durations were used 

for one of the utility’s datasets to highlight decision-making inconsistencies even within the same utility. 

To evaluate the consistency metric performance, a subset of 4,000 datapoints were used from each utility 

and balanced at 50% CAQ and 50% NCAQ classification. The consistency was compared against a 

simple classifier that was discussed earlier (TF-IDF and ridge regression). If more consistent data results 

in high model performance, this confirms the hypothesis that the proposed approach to consistency 

measurement effectively provides insight into data quality. 

The results are shown in Table 34. Two fictional benchmark cases were added. One in which all the 

data were labeled randomly; the other had correct 50% CAQ and 50% NCAQ labels. The results confirm 

the direct proportionality of consistency and model performance (using the simple classifier). This 

experiment demonstrates that it is possible to assess data label consistency even before any AI model is 

used for classification. The table shows that the data label consistency for utility 3 changed over time, 

which resulted in two different model performance results. 

Table 34. Correlation of data consistency metric and model performance. 

Dataset Consistency Metric Testing Model Accuracy Testing Mode F1 Score 

Random labels 50.3 51.7 66.7 

Utility 1 58.4 76.9 78.5 

Utility 2 61.0 71.9 74.7 

Utility 3 duration 1 65.3 85.9 85.7 

Utility 3 duration 2 63.6 81.9 82.0 

Utility 4 63.6 82.0 82.3 

Utility 5 66.0 88.9 88.7 

100% consistent data 100.0 100.0 100.0 

 

7.1.3 Missing or Highly Imbalanced Labels Data 

Missing data points are problematic, especially in the classification process. For example, if data for a 

certain classification task have a strong bias toward a certain decision, the resulting AI mode will inherit 

this bias and generate models that resembles the data labels. Imbalance is another issue. Some utilities 

have a more severe labels imbalance than others. As an example, a normal imbalance might be 30%/70% 

CAQ/NCAQ, but some utilities could be at 5%/95%. This results in a dataset that is more difficult to 

classify because of the severe imbalance. Since this is a data issue, no solutions are proposed herein 

beyond ensuring that the training data reflect the population of labels, or the results are normalized to 

account for it. 

7.2 Unsupervised Classification 

Topic modeling and generative AI autoregressive models are two of the most powerful tools for 

unsupervised classification (see Section 3.2). While generative AI can be used for generic knowledge 

classification, topic modeling can be used for challenging classifications that require specific-domain 

knowledge, such as whether a WO requires a HP evaluation. 

Like supervised classification, unsupervised classification also has several challenges; these are 

mostly associated with training time when topic modeling is used, and prompt sensitivity when generative 

AI is used. As unsupervised classification methods were applied to NPP data, the challenges that arose 

drove the research to investigate methods to tackle those challenges. 
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7.2.1 Iterations Time for New Labels 

Topic modeling can be guided by an SME. However, training a single topic can take hours to be able 

to perform superior unsupervised classification, as the AI model needs to evaluate new correlations of 

topic words across the whole corpus. This process involves tuning billions of parameters and is therefore 

a time- and computational-power-consuming process. The training could involve terabits of data to enable 

the model to learn patterns and structures. 

If models are being used to assign predesigned topics to text, this process can happen in the 

background, and the results are stored in a readily format for users. However, if new topics (custom 

topics) are being created on the fly and need to be trained, it is not practical for users to perform this 

online, especially if iterations are expected. This introduces a usability challenge. The user can’t wait for 

hours for each iteration of a new topic. 

It is also sometimes the case that certain categories or clusters within a dataset are underrepresented 

or nonexistent. This occurs when there is insufficient text data available for a specific label, and the 

model is not able to identify and analyze those topics effectively. Regardless of how many attempts are 

performed to generate those labels, the data limit the model’s ability to understand them as they are 

nonexistent. 

Developed Solution 1: Using Word Correlation as a Preliminary Indicator 

A novel approach was developed that involves optimizing the information gained from not only the 

seed words but also any other words in the vocabulary that improve the capacity of the topic. The 

approach relies on establishing word relationships regardless of the topic being developed. Those 

relationships show how words are correlated in the context of each document and in the context of the 

whole corpus. A correlation matrix is created, and as new topics are created it is used in a rapid manner to 

indicate whether the words inserted by the SME are contextually correlated. If the words are uncorrelated, 

the topic-modeling model operates like a search engine. If the words are correlated, they teach the model 

to find context-aware results. 

Demonstration of Solution 1: Events Classification into a Custom Label 

In this example, the goal is to demonstrate how correlation matrices can support topic modeling. It is 

assumed that the SME is interested in finding words that relate to valves. Two reference sets were used: 

the first represented the correlation of words across the entire corpus of text from an NPP, while the 

second focused on the correlation of words within each individual document of the same corpus. Using 

the word “valve_stem” and corpus from an NPP, a summary of 15 highly correlated n-grams was 

generated (see Table 35). The top row in the table indicates which corpus or document correlations were 

used to mine the related words that are displayed in the following rows. The rows are ordered according 

to normalized adjacency scores. This data shows that the adjacency scores for the n-grams “valve” and 

“valve_stem” are significantly higher (95.46% for corpus and 96.18% for document) than those for 

“valve_stem” and itself (88.76% for corpus and 86.18% for document). It is also noteworthy that there is 

a significant overlap between the two sets. That is, three-fourths of the n-grams are shared between the 

two sets. This shows that either approach to forming the word adjacency matrices, corpus or document, 

provides similar results. After these additional related words are discovered with relative ease, they can 

easily be added to the topic as desired, and topic modeling can be performed for a more refined model 

using those words. This approach reduces the need for iterative topic modeling.  
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Table 35. Top 15 n-grams relating to the bigram “valve_stem”.   

Corpus Document 

Related N-Gram 
Adjacency 

Score (%) 
Related N-Gram 

Adjacency 

Score (%) 

valve 95.46 valve 96.18 

cv 93.72 cv 95.28 

solenoid_valve 92.05 solenoid_valve 91.95 

mv 90.76 mv 88.34 

motor_operated_valve 89.21 actuator 87.78 

open 89.00 air_leak 87.67 

actuator 88.93 open 87.45 

packing 88.88 packing 87.40 

valve_stem 88.76 motor_operated_valve 86.20 

stem 88.06 valve_stem 86.18 

isolation_valve 87.99 ao 86.08 

solenoid 87.61 control_valve 86.06 

handwheel 87.59 leak 85.95 

closed 87.25 solenoid 85.80 

stroke_time 87.17 isolation_valve 85.44 

 

7.2.2 Prompt Sensitivity 

Generative AI that relies on prompts are especially sensitive to the prompt format (White et al. 2023). 

This is because these models generate text based on the patterns present in the prompts. When the text is 

slightly modified, the model can develop a different output. Also, if the prompt is too vague, the model 

can become stochastic, leading to different answers every time it runs. 

Developed Solution 1: Using Words Correlation as a Preliminary Indicator 

The field of research known as prompt engineering focuses on optimizing the prompt to the 

generative AI to produce accurate decisions that can automate human-level decision-making and 

reasoning tasks. It is hypothesized that proper prompt engineering can improve unsupervised 

classification using autoregressive models. A new approach was developed, in which the generative AI 

was asked to generate tens of prompts that can be used to achieve an ultimate objective. Each prompt is 

tested against a labeled validation set. The hypothesis is that the machine-generated prompts will contain 

very effective ones, which can be used independently. Also, the generative AI can provide insights into 

the decision-making process, thereby aiding in the optimization of future prompts.  

Demonstration of Solution 1: Failure Labeling of Text 

In Section 3.2.2, the classification of logs into shutdown, startup, or failure was discussed. The same 

use case is discussed in this example to use the previous results as a benchmark. In this example, the Phi-

3 mini-LLM was used to create more than 100 different prompts to identify operator log entries that 

contain equipment failures. The following is the best-performing prompt, which begins with instructions 

and then asks whether the log entry indicates a failure. 
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Prompt: 

“To identify a failure in an operator log entry at a nuclear power plant, you should follow these 

steps: 

1. Read the entire operator log entry carefully, paying close attention to the details and events 

described. 

2. Look for any specific words or phrases that suggest an incident or issue, such as those provided in 

the initial list (e.g., failure, trouble, not running, fault, etc.). 

3. Identify if any equipment or systems are mentioned in relation to these problem indicators. 

4. Determine if the issue resulted in a negative outcome, such as equipment not performing its 

intended function, requiring troubleshooting and repair, or causing an unplanned or unexpected event. 

5. Verify if the failure occurred within the critical 24-hour period mentioned in the definition of 

unreliability, and if it happened during the previous 12 quarters. 

6. Cross-reference the log entry with relevant datasets to ensure accurate evaluation and analysis. 

Based on the details provided in the operator log entry, can you confirm if there was an equipment 

failure at the nuclear power plant? [OPERATOR LOG ENTRY.]” 

Response: 

“Yes.” or “No” 

Since the data were not labeled, the 100 SME-labeled operator logs that were used in Section 3.2.2 

were used again. The results are shown in Table 36 and indicate that an F1 score of 70.5% was achieved. 

This was deemed slightly better than the best generative AI model that was used for the experiment 

discussed in Section 3.2.2, which achieved an F1 score of 70.1%. 

Table 36. Summary of performance results for the autoregressive methods with and without prompt 

engineering. 

Method 
Failure F1 Score 

(%) 

Generic ratings dialogue using Vicuna (From Section 3.2.2) 70.1 

First prompt engineered model using Phi-3 mini-LLM 70.5 

Second prompt engineered model using Phi-3 mini-LLM 76.3 
 

The model made mistakes on about one-quarter of these operator log entries. The false positives and 

false negatives were evaluated along with the reason that Phi-3 mini-LLM thought these operator log 

entries were or were not a failure. The SME observed that a common error is the “unexpectedness” of a 

failure. An unexpected equipment failure is a crucial criterion for making the decision, so the following 

prompt was developed by the SME using the LLM insight. 

Prompt: 

“To identify an equipment failure in an operator log entry at a nuclear power plant, follow these 

steps: 

 1. Carefully read the entire operator log entry to understand the context and details of the event. 

2. Determine if any of the text indicates an equipment failure has occurred. 

A failure is when an equipment stops working or stops running unexpectedly. 
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If it was intentionally taken out of service, then that is not a failure. 

If there is no clear indication that there is an unexpected failure, then do not classify it as a failure. 

3. Consider the context and details surrounding the identified keywords. This may include the time 

and duration of the failure, any actions taken by the operator, and the impact of the failure on the overall 

system. 

4. After analyzing the log entry, conclude whether an equipment failure occurred by evaluating the 

information gathered from the keywords and their context. 

 Now, after learning the steps provided above, please indicate whether the following operator log 

entry represents an equipment failure. 

[OPERATOR LOG ENTRY.] 

Is this operator log talking about an unexpected failure, planned removal from service, or not a 

failure. If this is an unexpected failure say “yes,” otherwise, “no.” 

Response: 

“Yes.” or “No” 

This prompt achieved an F1 score of 76.3%, a significant improvement over the 70.5% achieved 

using the previous prompt. This confirms that such an automated iterative approach to prompt 

engineering can increase the ability of unsupervised classification to label text. 

 

7.3 Supervised and Unsupervised Classification 

In this section, some generic classification challenges are identified and discussed. The methods 

introduced herein could apply to both supervised and unsupervised classification. The challenges of short 

text classification and input quality are addressed, with methods developed to overcome both issues. 

7.3.1 Short Text 

The problem of short text is common across the work management process. Staff often use short text 

to describe an action or process, and it usually does not provide enough information for a machine to 

understand the context, nor does it provide enough features for a classifier to be able to make decisions. 

For example, moving from a CR to a WO usually involves the short text used in the CR, which the 

scoping phase inherits. To be able to automate scoping decisions, more context is needed. Short text 

impacts both supervised and unsupervised classifiers, but it is much more severe in unsupervised 

functions because context is much more impactful in making decisions without the knowledge introduced 

by labels. 

Developed Solution 1: Hybrid Supervised and Unsupervised Models 

Hybrid unsupervised and supervised methods for text classification (often called semisupervised 

methods) combine the strengths of both approaches to address limitations inherent in each method. These 

methods leverage the strength of unsupervised learning by discovering underlying text patterns and 

extracting context then use these patterns and context in supervised learning. While dimensionality 

reduction methods simplify data by reducing them to key significant pieces of information (i.e., features), 

making the data easier to classify, given the short nature of text, methods to expand the size of the text 

can be more beneficial. For example, embedding methods can be used to expand on each word in the text. 

Generative AI tools (e.g., autoregressive methods) can also be used to expand the context of the text for 

better classification. 

Demonstration of Solution 1: Shutdown, Startup, or Failure Example 
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In Section 3.2.2, the classification of logs into shutdown, startup, or failure was discussed. 

Autoregressive models were used to inform the classifier of the criteria to make the decisions. In this 

section, two methods to improve context awareness are discussed using a subset of the data and the same 

100 SME labeled logs for validation. The classification methods were expanded by means of transfer 

learning, using the Word2Vec methods discussed in Section 2.1.4. Every word was expanded to include 

0, 5, 10, 20, 40, or 80 of the most similar word vectors before being fed into a linear regression model. 

Additionally, autoregressive methods were used to elaborate or expand on the text in the operator logs to 

determine if this would improve the classification process. Both expanded versions of the operator logs 

were combined with a supervised approach to place weights on the expanded list of words. The 

explanation prompt follows: 

Prompt: 

Make an argument that the nuclear power plant operator log is a shutdown and another argument 

that it is a startup: [TEXT.] 

On the other hand, the elaborate prompt focused on getting more context without considering the 

classification objective: 

Prompt: 

Please elaborate on this nuclear power plant operator log: [ TEXT.] 

For this example, ridge regression was the supervised method that was used as it was the best method 

identified in Section 3.1.2. The results are shown in Table 37. The first-row results show the baseline in 

which a supervised method was used with no context (0 words). Comparing this to the results with the 

expansion of each word to 40 words demonstrate that for startup, a 4.1% F1 score improvement was 

achieved. Using 20 words resulted in a 6.8% F1 score improvement for failure classification. For 

shutdown, it was found that autoregressive models (Vicuna in this case) resulted in a 2% F1 score 

improvement using the elaboration prompt. This example demonstrates that more context usually but not 

always helps as it sometimes causes confusion for the supervised part of the classifier. The optimal level 

of context varies depending on the nature of the raw text. If the text is already context rich, more context 

could worsen the model. If the text is context poor, it is usually beneficial to add context. 

Developed Solution 2: Classification by Similar Text Classification 

A novel approach was developed in this effort to achieve context-aware topic inference. Instead of 

making decisions based on a single text entry, each entry was grouped with other entries that resemble the 

single text entry using similarity analysis. The classification was applied to each entry separately. The 

label assigned to each text entry was then summed in a weighted manner. The resulting label for a text 

entry then became the topic with the largest summed weights from the group of similar entries. 

Demonstration of Solution 2: Events Keyword Assignment 

An example is used herein to demonstrate assigning keywords to CRs. Those keywords are used for 

tracking the nature of events the plant experiences for performance tracking. An analysis was performed 

to understand whether the context-aware topic inference approach significantly improved the topics 

alignment with the text for a given set of documents.  
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Table 37. Summary of performance results for unsupervised classification of three events after word- and 

context-enhancement. 

Method 

Shutdown 

F1 Score 

(%) 

Startup F1 

Score 

(%) 

Failure F1 

Score 

(%) 

Mean 

(%) 

Extended Logs Using Transfer Learning 

TF-IDF + word vectors + ridge  

(0 nearest words) 87.3 90.0 73.6 83.6 

TF-IDF + word vectors + ridge  

(5 nearest words) 85.5 93.2 76.5 85.1 

TF-IDF + word vectors + ridge  

(10 nearest words) 86.0 92.5 80.0 86.2 

TF-IDF + word vectors + ridge  

(20 nearest words) 87.0 93.1 80.4 86.8 

TF-IDF + word vectors + ridge  

(40 nearest words) 86.8 94.1 77.9 86.3 

TF-IDF + word vectors + ridge  

(80 nearest words) 88.5 92.8 76.3 85.9 

Extended Logs Using Autoregressive Models 

Vicuna explain + TF-IDF + ridge  88.0 83.8 70.1 80.6 

Vicuna elaborate + TF-IDF + ridge 89.3 87.7 68.3 81.8 

 

Since this was an unsupervised approach, a benchmark set of results was needed to evaluate the 

performance. An SME prepared a set of more than 150 CRs by assigning sets of topics to each of the 119 

standard topics that were developed in previous efforts (Al Rashdan et al. 2023a, 2023b). In total, there 

were 500 topics assigned, so each CR had an average of three topics assigned to it by the industry expert. 

This set of CRs with topics comprised a ground-truth-testing dataset that could be used to empirically 

gauge the performance of the context-aware and non-context-aware topic inference approaches. 

All the 119 standard topics were equally represented in the testing dataset. This is because some of 

the topics occur much more frequently than others. For instance, “leakage” occurred very frequently and 

was assigned to 13 CRs, whereas 24 of the 119 topics were assigned to just two CRs, but none had fewer 

than two assignments. 

The results of this experiment demonstrate a significant improvement in topic modeling. However, it 

was not possible to quantify the improvement because of the assumption that the human labels were the 

truth. Considering the results of individual topic assignments demonstrated that the SME struggled to 

select all the right topics and in the right sequence. However, this solution was tested by partnering with a 

utility on specific text entries that were challenging in the conventional topic modeling. Significant 

improvement was indicated but not quantified. 

It is worth noting that though this method was developed for unsupervised classification, it can also 

be used for supervised classification. 

7.3.2 Input Quality 

Data quality is an essential part of any text-based AI. The methods used for cleaning data vary from 

simple rules-based search and replace (Section 2.1.1), such as removing stop words (e.g., “the,” “of,” 

etc.); correcting spelling; stemming (e.g., reducing words to their root form); removing special characters 

or links; extracting abbreviations; to more intelligent forms focused on identifying junk text or 
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contradicting text. However, a more complex challenge is removing text that does not fit contextually. For 

example, some text could be so poorly composed by staff that the point being made is not clear, or some 

fields might be concatenated to the point that they do not make sense. Those examples confuse a 

classifier. 

This work tackled data quality metrics, an active area of research. However, research into this area 

will continue to evolve beyond the issues that were observed in the available data. Other datasets are 

expected to have different types of issues. 

Developed Solution 1: Finding Junk Based on Frequency 

An approach was developed to use clustering to determine how often a text contains outliers. Outliers 

were searched for by finding the data points that were most distant from the expected text. For instance, a 

character bigram might be common (even though it can be an abbreviation or more commonly a part of a 

word) and less likely to be an outlier. However, another character bigram might be rare and likely to be an 

outlier. If a text contains enough rare character combinations to exceed a certain threshold, it could be 

junk text. 

Demonstration of Solution 1: CR Text Quality 

CRs represent the core of several decisions made in the work management process. Therefore, it is 

essential that they are high quality. CR text quality is the focus of this experiment. This experiment used a 

CR dataset that contains around 1M records. To detect for junk text, outliers were located by clustering 

the words and identifying for the data points that were most distant from those expected for a particular 

CR. In this example, this was done for all the character bigrams in the CRs for demonstration. If there 

were many infrequent bigrams in a CR, then it was likely an outlier. If there were common bigrams in the 

CR, then it was likely not an outlier. The probabilities of the character bigrams are shown in Table 38. 

The table shows that if the CR contains “ab” it is less likely to be an outlier. However, the character 

bigram “zy” is rare, and if a CR contains “zy” then it is likely an outlier. 

Table 38. Probability of bigrams occurrence using TF-IDF. 

Bigram aa ab … &a &b … zy zz 

Mean TF-IDF 8.7e-5 9.7e-4 … 7.6e-7 4.6e-7 … 1.8e-7 9.6e-6 

 

Developed Solution 2: Finding Junk by Part-of-Speech Anomalous Text 

An intelligent junk detector was developed in this effort. It did not focus on words but rather on text 

that does not make sense to a human. Part-of-speech (POS) tags were used for this junk detection method. 

POS tags are labels assigned to each word in a sentence to indicate its language function (e.g., noun vs. 

verb, prepositions, etc.). The tags are created by supervised models, and then used in an unsupervised 

manner. For example, every text should have a verb and a noun; if it does not it is likely of low quality. If 

a text does not contain a certain percentage of nouns, it is also likely of low quality. 

Demonstration of Solution 2: CR Text Quality 

The 1M CR records used in the previous example were evaluated in terms of their proportions of POS 

words. This process identified several junk texts. For example, “[CODE 1] Ch. B failure” was found to be 

anomalous because it did not include a verb. Technically the verb “occurred” should occur after the word 

“failure.” Though the machine identified this text as being of poor quality, it did not mark the CR as junk 

because a human could still understand the implicit word that was left out. Another example is “asdf 

asdfasdf asdfasdfasdf asdfasdfasdfasdf.” It is not clear why this text was included in the dataset (it is 

possible staff were testing the system). A third example is “[Code] Pump oil low.” The implicit word 



 

78 

“was” was left out, therefore this CR contained zero verbs. This approach was able to catch junky CRs for 

some tasks, but given the typical writing style of the industry several false positives were flagged too. 

Solution 3: Junk Probability Score 

In this solution, the frequency scoring method (solution 1) was combined with the POS tag scoring 

method (solution 2). If the score of both methods score was high, then the junk probability score was 

high. But if the scores were a mixture of the two, then an intermediate score was given. 

Demonstration of Solution 3: CR Text Quality 

Using the same dataset as the previous example, this process resulted in a distribution of probabilities 

(Figure 10), where a high value indicates a poorly written CR and a value of 0 would be the ideal case. 

The figure demonstrates that in terms of proportions, most of the CR text seemed coherent. The 

histogram’s tail to the right identifies junk, which seems minimal. Examples of this tail are: 

“asdf asdfasdf asdfasdfasdf asdfasdfasdfasdf” 

“cancel cancel cancel” 

“DELETE  DELETE                        DELETE” 

  

 

Figure 10. Histogram of the writing quality of CRs evaluated using the junk probability detector. 

Developed Solution 4: Similarity to Other Junk Text 

Another approach for junk detection that could be used is comparing text against junk text randomly 

generated by generative AI models. Similarity analysis can be used to compare each text to the random 

text, and those that are similar enough can be flagged as junky. 

Demonstration of Solution 4: CR Example 

An experiment was conducted in which an SME came up with several words that have nothing to do 

with each other (for example, “sky,” “dog,” “car,” “building,” and “burger”). These were combined in 

one topic. Generative AI was used to generate several variations of such topics, and the resulting topics 
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were compared against all the CRs. Several junk CRs were detected, but the model missed a lot of the 

CRs that do not resemble the Junk topic that were created. This method is therefore useful in combination 

with other methods. 

Developed Solution 5: Autoencoders 

Autoencoders (discussed in Section 2.3.3.2) are very powerful tools for removing noise, but they can 

also be used to detect how much noise exists in data. A document can be sent through an autoencoder to 

get the same output (i.e., it reproduces the document). Once the output is reproduced, the ratio of words 

lost can indicate the quality of the initial document. The error between the expected output versus the 

actual output from the network is calculated and used as the metric of the data quality. A poor 

reconstruction means the model is perplexed and the document could be junk, and a perfect reconstruction 

indicates the document is not junk. 

Demonstration of Solution 5: CR Text Quality 

The CRs were processed through a denoising autoencoder called BART. The BART decoder was 

trained by Meta AI to “(1) corrupt text with an arbitrary noising function, and (2) train a model to 

reconstruct the original text” (Lewis et al. 2019). For instance, given an input sequence of “Idaho 

National Laboratory <mask> in nuclear energy,” the target output would be “Idaho National Laboratory is 

a leader in nuclear energy,” where “<mask>” is replaced with “is a leader.” Examples of the generated 

output are shown in Table 39. To quantify the performance of the autoencoder, the input was compared to 

the model’s output by cosine similarity. A limit of 100 tokens was imposed to isolate the length of the CR 

as a factor.   The results show that the cosine similarity decreased when the original text no longer 

resembled the reconstructed text, and in some cases, this was because the junk CRs could not be 

reconstructed the same. The machine struggled to make sense of the text like a human would. The 

similarity of input and output of 100,000 CRs is shown in Figure 11. The histogram shows an expected 

distribution, with most of the CRs scoring reasonable quality. 

Developed Solution 6: Autoregressive Model 

This approach relies on generative AI capabilities. An autoregressive model was used for junk 

detection. The process simply relies on the autoregressive model being clearly asked to identify issues 

with the data.  

Demonstration of Solution 6: CR Text Quality 

The same set of CRs used in the previous examples are again used for the experiment herein. The 

Vicuna LLM model was used to check some of the CRs that were known to be junk and not junk. The 

following prompt was given with an associated CR that is not junk. 

Prompt: 

“Is the following nuclear power plant condition report incoherent: ‘[Code1 ] Tube leak [Code 2] 

Tube leak [Code 3]’?” 

Response: 

“No, the condition report is not incoherent. It provides specific information about two tube leaks, one 

in the [Code 1] and the other in the [Code 2], with the same identifier [Code 3]. This information could 

be used to track and address the leaks.” 

This response indicates that the model hallucinated (i.e., tried to make sense out of unusual text). In 

another attempt, the following CR was processed. 

Prompt: 

“Is the following nuclear power plant condition report incoherent: ‘asdf asdfasdf asdfasdfasdf 

asdfasdfasdfasdf’?” 
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Response:  

“Yes, the condition report is incoherent. It does not provide any meaningful information about the 

nuclear power plant’s condition.” 

This response indicates that the model can determine clearly junky CRs. In this section, six solutions are 

proposed for analyzing text quality. Typically, a combination of these methods is employed, with most of 

them likely to successfully identify junky text. 

Table 39. Autoencoder reconstruction of example textl and the cosine similarity of the original and 

reconstructed text.  

Original Text Reconstructed Text 

Cosine 

Similarity 

(%) 

asdf asdfasdf asdfasdfasdf 

asdfasdfasdfasdf 
asdf asdfasdfAsdfasdasdfas dfasdf 16.0 

[Code 1] Walkdown - Missing Insulation  

[Number 1]  TB Missing Insulation on 

[Code 1] @ [Code 2]  Photo 8  

[Code 1]  Walkdown - Missing Insulation 

[Number 1]  Photo 8  Photo 9  Photo 10  

Photo 11  Photo 12  Photo 13  Photo 14  

Photo 15  Photo 16  Photo 17 

29.4 

Errors on [Code 1] and [Code 2] On [Code 

1] and [Code 3] at coordinates FR-2 are the 

Errors on [Code 1] and [Code 2] On 

1[Code 1], [Code 2], 2 [Code 4]  and 2 

[Code 5] at coordinates FR-2 are the 

40.4 

Ultrasonic M&TE for [Code 1] During 

performance of WO [Number 1], [Code 1]  

Ultrasonic M&TE for [Code 1] During 

performance of WO [Number 1] WO 

[Number 1],  [Code 2]  

49.9 

Procedure Enhancement to [Code 1] 

Section [Number 1]  During the 

performance of [Code 1] Section [Number 

1]   

Procedure Enhancement to [Code 1] 

Section [Number 1]  During the 

performance of [Code 2] and the 

performance thereof, the following 

procedures were implemented: Section 

[Number 3] and [Number 4] 

60.1 

[Code 1] Typo  During performance of 

WO [Code 2], a typo was discovered on 

STEP 6.3. 

[Code 1] Typo  During performance of 

WO [Number 1], during the performance 

of [Code 3], a typo was discovered on 

STEP [Number 2]. 

70.0 

Implement [Code 1]  for scaffolding stored 

in Containment  during [Code 2]  

Implement  [Code 1]  for scaffolding 

stored in Containment  during [Code 2]  
80.0 

[Code 1] Outage RP Lessons Learned  

During the [Code 2] Outage walk downs 

and inspections performed  

[Code 1] Outage RP Lessons Learned  

During the [Code 2] Outage walk downs 

and inspections performed  

90.0 

cancel cancel cancel cancel cancel cancel 100.0 
 

 
l The text shown in the table was sanitized to preserve the data privacy of the utility 



 

81 

 

Figure 11. Histogram of the writing quality of CRs evaluated using BART. 

7.4 Comparison 

Comparison challenges were found to mainly relate to two issues: the comparison of two texts of 

different size and the use of a proper model for comparison. Solutions to these challenges exist and are 

discussed herein. Additionally, a third issue—related to extracting the specific similar or differing text—

was identified but has not yet been demonstrated. 

7.4.1 Different Sizes of Text 

Comparison methods are sensitive to the size of the two sets of text that are being compared. If one 

text is short and the resulting embedding model has a limited context, comparing it to a large document 

that has several context embeddings might be challenging, if document-based embeddings are used. 

Proposed Solution 1: Truncated Text 

An approach that has not been demonstrated in the efforts would be to truncate long text into multiple 

chunks of text that are comparable in size to the short text. This approach involves dividing the text vector 

into multiple chunks, producing embeddings of each chunk, and then “meshing” these chunks together 

according to a predetermined amount of overlap. That is, if the embedding model can handle input in 

sizes up to 512 tokens, and the total length of the text vector is 4,096 tokens, then the text vector could be 

divided into eight separate chunks, and each chunk could be processed individually. However, since the 

embedding model is meant to capture context that is dependent on all the tokens in each text, 

indiscriminately extracting a chunk may mean that essential context in a preceding or following chunk is 

missed when the chunk embedding is generated. Therefore, a striding approach can be employed in which 

context from the preceding and following chunks are combined with the current chunk to optimize 

context extraction. Approaches such as strided chunking (Gong et al. 2020) could be used. The number of 

tokens included in each stride is typically half the size of the context length, so in the example given, the 

stride size would be 256 tokens. Therefore, instead of generating embeddings for eight chunks, 15 chunk 

embeddings would be generated, and the overlapping portions of each chunk would be averaged together 

to produce a final embedding matrix with 4,096 token-level embeddings. 

Proposed Solution 2: Padding and Attention Masking 
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A very short text vector can be artificially inflated to the required size by appending inert content to 

the end of the vector. Padding and attention masking are two mechanisms for aiding the effective 

similarity analysis of short and long texts. Padding adds dummy tokens to shorter texts to force its vector 

size to match the length of longer texts. Attention masking is then used to focus the model on the desired 

content, therefore preventing the model from being influenced by the irrelevant padding. 

7.4.2 Suitability of Embedding Model 

Text comparison relies on an embedding representation of the text that is fed into a model either as an 

intermediate step in the support of downstream tasks, such as to supply context that is needed for the 

decoding phase of an autoencoder, or as its final output. Typically, embedding models are a subset of 

LLMs, and in many cases have a specific goal of using text embeddings that could be different than 

document comparison. For example, a model designed for context embeddings in classification might not 

work well for comparison. Therefore, not all embedding models have equal capacity to form usable 

embeddings for comparison. To be most effective, the model must have been trained specifically to 

identify similarities between texts. 

Proposed Solution 1: Training a Model with Known Similar and Dissimilar Text 

For higher accuracy in similarity analysis, it is necessary to consider models that generate 

embeddings optimized for comparing text. Techniques like Siamese networks (Neculoiu, Versteegh, and 

Rotaru 2016) can be used. Siamese networks use two or more identical subnetworks (encoders) that share 

the same weights. They process pairs of texts through these identical encoders to produce embeddings. 

During training, the model learns to minimize the distance between the embeddings of similar texts 

(positive pairs) and maximize the distance between embeddings of dissimilar texts (negative pairs). 

Unlike encoder-decoder models, Siamese networks do not use decoders; they focus solely on producing 

embeddings for comparison. 

A similar concept is used in triplet loss (Novoselov et al. 2018), but instead of two text inputs three 

are provided: one as the reference or anchor, one that is similar to it (i.e., the positive example), and one 

that is dissimilar (i.e., the negative example). They use one network for the comparison, which is tuned to 

minimize the distance between the reference and similar text and maximize the distance to the dissimilar 

one. 

If a domain-specific text or dataset is used, a network that includes a variety of similarity examples 

can be fine-tuned. This helps the models better represent the domain-specific text to create more accurate 

embeddings. 

7.4.3 Finding Similarities and Differences 

Similarity analysis methods typically focus on identifying how similar or dissimilar text pairs are. 

However, from this analysis, it was found that models often need the actual similarities and differences 

rather than just evaluating how similar two sets of text are. Preliminary testing demonstrated that 

generative AI models can assist in this task, but more research is needed in this area and remains for 

future analysis. 

7.5 Dialogue 

LLMs designed for question-and-answer (dialogue) tasks can be impacted by several challenges. One 

such challenge is prompt sensitivity, where the model’s responses can vary significantly based on the 

design of the prompt query. Another issue is hallucination, where the model might incorrectly assume it 

understands the user’s intent when it does not. Additionally, the limited size of prompt inputs can restrict 

the amount of information exchanged with the LLM. Solutions to these challenges exist and are discussed 

herein. 
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7.5.1 Prompt Sensitivity 

The sensitivity of dialogue models to the specific structure and vocabulary used in a text prompt is 

considered one of the main challenges of dialogue models as this prompt text is used to guide their 

response. Every causal language model contains several internal hyperparameters that can impact the 

stochasticity and quality of its replies. Depending on the settings of these hyperparameters, the sensitivity 

of the model to the user’s prompt can behave in either more predictable or less predictable ways. 

Proposed Solution 1: Dialogue Fine-Tuning 

Fine-tuning a dialogue model’s hyperparameters with targeted examples can ensure the model will 

give reasonable responses to varying text prompts that are specifically used during the structured 

fine-tuning phase. However, depending on the breadth of questions and answers used during the 

fine-tuning phase, adjustments to the hyperparameters could result in an LLM that responds in terms too 

generic to be of any legitimate use for a specific knowledge domain. As a result, hyperparameter tuning 

can be a significant influence when engineering text prompts.  

7.5.2 Hallucination 

Another major challenge is that a generative AI model can hallucinate to the point that the answer it 

provides is neither factually accurate nor logically sound. An example was provided in Section 3.4.2. 

Hallucinations usually happen when a model trained on a broad purview of knowledge is forced to focus 

on a highly specialized knowledge domain. For example, asking a highly technical question involving the 

technical specifications of fuel rod cladding will undoubtedly produce a response that is not useful unless 

the model was specifically trained on nuclear domain knowledge. Hallucination is an area of open 

research. 

Proposed Solution 1: Prompt Engineering 

A common approach to enhance the accuracy and relevance of model dialogue output and to reduce 

hallucination relates to engineering the prompt. Detailed and specific prompts can guide the model toward 

generating relevant responses. This relevancy can be achieved by iterating over different prompt formats 

to steer the model away from hallucination. It is also possible to implement constraints in the form of 

rules to limit the types of responses the model can generate. This can be automated by applying validation 

rules to a random set of AI-generated prompts to check the relevance and accuracy of the responses 

before they are presented. These methods can be used directly with autoregressive models or RAG 

models that were discussed in Section 2.3.3. 

7.5.3 Limited Insight 

If the LLM model is not tuned to capture specialized knowledge domain, then it may be necessary to 

provide it insight in the dialogue. However, there is a limit to how much text can be fed to a model at a 

time. This means that it may be necessary to redact some context from the input prompt, which may result 

in the LLM providing a response that does not completely satisfy the expectations of the user. 

Proposed Solution 1: Using RAG 

RAG methods (discussed in Section 2.3.3.5) are a common tool for addressing the input size 

limitation of LLM models without having to retrain the model with new insight. They operate by 

incorporating a retrieval system that captures relevant information from a set of documents that represent 

the needed insight. This approach allows an LLM model to access a broader range of documents and 

knowledge dynamically. 

7.6 Estimation 

The main challenge identified in this research regarding estimation is related to missing context or 

mixed context. The size of text (i.e., too short or too long) used for regression directly correlates with 
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these context issues used for regression. This finding spurred research into developing methods to achieve 

optimal context. 

7.6.1 Missing Context or Mixed Context 

One frequent challenge associated with regression is that text data are too short, which makes it 

difficult for models to make accurate predictions because the text is ambiguous or lacks the necessary 

background information. Another challenge is that longer texts are too general or combine confusing 

contexts, which also makes it difficult for models to make accurate predictions. Both issues result in 

inconsistent estimates. 

Developed Solution 1: Optimizing Text Length 

This approach relies on two steps. The first is to determine the regression performance as a function 

of text length. The second is to expand short text to an optimal length (e.g., see Wang, Yang, and Wei 

2023; Nogueira et al. 2019) using methods such as autoregressive models or by trimming long texts to 

make multiple data points that are regressed separately. 

Demonstration of Solution 1: Issue Completion Time 

The same experiment used in Section 3.5.2 is used in this example. The aim was to estimate the time 

it would take to resolve a condition—from the time it originated until it was completed. In this 

experiment, the goal is to expand on the shortest documents to improve a downstream task. Initially, 

fields other than the CR core text in the database were used. The model included —“condition,” “action 

taken,” “recommendations,” “operational notes,” “issue notes,” “screen notes,” “priority,” “CAQ,” and 

“criticality”—since they provided more context for the regression model. This resulted in a significant 

increase in R2 from 0.33 to 0.52 (Figure 12). 

 

 

Figure 12. Actual vs. predicted completion time in days after including additional fields. 

Figure 13(a) shows that the typical size of the considered CRs. A sliding window of 1,000 CRs was 

used, which moved across CRs of varying lengths to generate time predictions and R² values for each 
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window. Figure 13(b) illustrates that R² results are influenced by the number of tokens; CRs with 100 

tokens have an R2 of around 30%. Yet CRs with 365 tokens (average) have an R2 of around 58%. The 

average CR length has nearly double the performance of the shorter CRs. Therefore, it is possible to 

elaborate on the shortest CRs to increase the predictability of their time prediction. On the other hand, 

Figure 13(b) shows that longer CRs have lower performance. The 95th percentile is 812 tokens, and CRs 

above this percentile have the lowest R2. 

The elaboration of CRs was performed using Phi-3 mini-LLM. The following setup was used: 

Prompt:  

“[CONDITION REPORT] Given the previous condition report, please elaborate.” 

Response:  

“[ELABORATION.]” 

After each CR was elaborated, TF-IDF and ridge regression were used (in a similar manner to Section 

3.5.2) to predict the number of days from the origination of a CR until its completion. Five-fold cross 

validation was performed too. The results are presented in Table 40. The table provides data on the 

impact of different token thresholds for elaboration on CRs, along with the computational time required. 

CRs with fewer than 100 tokens each was elaborated to have100 tokens from an average of 85 tokens. 

Then the CR token size was incremented by 50 tokens at a time to 250 tokens, then 365 tokens, and the 

R2 was given. The table addresses two key questions: First, how does elaboration affect only the CRs that 

were elaborated? Second, how does elaboration impact overall performance when comparing elaborated 

and longer CRs to those that were not elaborated? 

  

(a) Histogram of CR lengths (b) Regression performance by CR length 

Figure 13. Histogram of CR lengths and regression performance using a sliding window.  

In all cases except the 250-token threshold, elaboration led to an increase in R² values for the 

elaborated CRs. In all cases, elaboration resulted in better overall model fitness. However, as the 

threshold increased, more CRs fell below it, and the elaboration process became computationally 

expensive. The computational demand appears to grow exponentially for small increases in the 

elaboration threshold. It is estimated that it would take weeks to calculate the most interesting elaboration 

threshold of 365 tokens. However, CRs with 365 tokens could result in the highest R2. Therefore, a subset 

of 511 CRs was used as a sample to test this hypothesis. The 511 CRs with fewer than 100 tokens were 
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used as the baseline (i.e., the same CRs were elaborated in all cases). The original R2 for those CRs before 

any elaboration was 32.7% (see Table 41). 

Table 40. Impact of text elaboration on model performance and computational time. 

Threshold for 

Elaboration 

(Tokens) 

Number of CRs 

That Were 

Elaborated 

CRs below Threshold All CRs Computational 

Time Required 

(Hours) 
R2 Before 

Elaboration (%) 

R2 After 

Elaboration (%) 
R2 (%) 

Default 0 NA NA 51.65 0 

100 511 32.7 34.6 51.67 0.1 

150 6,768 34.3 37.0 51.97 2 

200 19,247 40.8 41.8 52.44 6 

250 31,626 45.38 45.26 52.59 25 

365 NA NA NA NA Est. Weeks 

 

Table 41. Impact of text elaboration on model performance for 511 CRs with fewer than 100 tokens each. 

Threshold for Elaboration (Tokens) R2 Before Elaboration (%) R2 After Elaboration (%) 

100 32.7 34.6 

150 32.7 35.4 

200 32.7 31.1 

250 32.7 28.1 

300 32.7 27.2 

365 32.7 25.5 

 

Table 41 shows that the elaborated CRs performed worse than the original text except for the CRs 

with 100 and 150 tokens. The results are also plotted in Figure 14. Unlike Table 40, the optimum R2 for 

CRs is no longer about 365 tokens. This indicates that the quality or context of the CRs with 365 

human-generated tokens is higher than that of those generated by the LLM. Often, human context is a 

must-have. For example, consider a scenario in which a WO is recorded with text such as “fix leaking on 

MSIV valve #3...,” and a duration of 10 days is required to complete it. In a different year, a nearly 

identical text might require a duration of 15 days for completion. This discrepancy in completion times is 

a challenge for the model, which cannot be expected to learn a consistent rule for predicting the duration, 

and the machine making up context would not resolve this discrepancy. The underlying data is 

inconsistent, which affects the performance of the model. The resulting fitness function after optimizing 

the size of the CRs is shown in Figure 15, and it demonstrates minimal improvement.  

In summary, it is reasonable to conclude that LLMs possess the necessary background information to 

improve the quality of CRs at NPPs for the purpose of time estimation. However, there appears to be a 

limit to how much elaboration is useful. This will require more investigation in future research. 
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Figure 14. Model performance as a function of token count for 511 CRs with fewer than 100 tokens each. 

  

Figure 15. Actual vs. predicted completion time in days after CR size elaboration. 

7.7 Generation 

Generation often suffers because models lack a clear understanding of what needs to be produced. 

Similar to humans, these models require substantial information to generate relevant content. This 

challenge has driven research into the development of methods for creating optimal context to improve 

the quality and relevance of generated text. Solutions to this challenge exist and are discussed herein. 
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7.7.1 Irrelevant Text 

Using AI to generate new text can sometimes result in irrelevant text due to the AI’s limitations 

regarding understanding context and what the user needs to be generated. This is because the models 

capture generic knowledge and are biased toward generating text based on what they were trained on. 

Additionally, these models prioritize generating coherent and human-like text, which is sometimes the 

focus of the text generation. 

Proposed Solution 1: Fine-Tuning the Model for Generation 

A model that can generate entirely new content requires a specialized fine-tuning to ensure it can 

adequately capture the context and relevant facts needed to address the nuances of a highly specialized 

field, such as NPP operations. It is essential that the model be tuned with many examples of texts from the 

relevant field to train it to generate text in the desired format. This may necessitate an arduous data-

acquisition phase in which thousands of relevant texts are cataloged and appropriate preprocessing is 

conducted to prepare the texts to be processed through the LLM. 

Proposed Solution 2: Providing Example Data of Generated Text 

It is also possible for an AI model to generate content based on existing documents retrieved and 

processed through the RAG method. In this case, the model is provided with sufficient context to generate 

adequate summaries of documents that resemble the desired new text. Many small excerpts extracted 

from texts that are relevant to the user’s need can be used. The excerpts are presented to the model either 

individually or in aggregate form. The model must then decide how the excerpts fit together and what 

sense can be made from them. 

7.8 Guidance 

Like generation, guidance methods also suffer because models lack a clear understanding of how a 

model needs to guide the use and how much context is needed. A solution to this challenge is discussed 

herein.  

7.8.1 Confusion 

Determining the precise amount of context a machine needs to generate appropriate guidance is 

challenging. The optimal balance between the amount of information and contextual relevance is unclear. 

Using excessively long inputs without introducing new context can lead to confusion, making it difficult 

to gauge the right level of detail required for accurate and meaningful responses. Also, a machine might 

produce a seemingly counterintuitive guidance that does not help the human.   

Proposed Solution 1: Fine-Tuning the Model for Guidance 

Providing guidance to a model to ensure a desired response can be helpful for guidance. However, 

this process must be designed to provide short and valuable text to humans. This will require 

human-factor evaluation to identify what a human would perceive well, then meticulous fine-tuning so 

the machine can accurately capture the necessary context and relevant facts. The model would be 

fine-tuned using a comprehensive dataset of human-developed texts from a specific domain. 

7.9 Insertion 

Insertion methods are less challenging than other AI function methods because few words are 

generated to assist the user when typing text. It usually works well for generic text, but when 

domain-specific text is being inserted by the user, it might not be able to predict relevant words. A 

solution to this challenge is discussed herein.  
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7.9.1 Generic Words 

As demonstrated in Section 3.8.2, relying on an LLM model for text insertion can be problematic 

when more than one or two words are needed. Domain-specific knowledge is crucial when predictions 

depend on a very focused context. Providing only a few words to introduce a highly technical piece and 

expecting the model to generate relevant text is unlikely to work well. This issue is especially pronounced 

if the model has not been fine-tuned for the specific field, as its predictions may lack contextual accuracy. 

For example, if a machine is asked to complete the text “an anomaly has been detected in the functioning 

of the backup…,” the machine can predict “power supply system” to follow since this is the general 

words that follow when in a nuclear reactor, but “emergency generator system” would be more suitable in 

this context. 

Proposed Solution 1: Localized Predictors 

While it might be useful to refine a model to better predict inserted text, it is possible to train a 

dedicated autoregressive model for a specific application using historical examples of inserted text. This 

reduces the possibility of it recommending generic words. The model would only resort to a generic 

model if its confidence in the predicted word is low. 

7.10 Review 

Reviewing text is one of the most challenging tasks in text analysis because it requires a machine to 

thoroughly understand and interpret procedural or requirement documents to evaluate text. Those 

references are often complex and contain hidden or implied context. 

7.10.1 Complex Structure and Confounding Context 

Procedural documents often contain complex guidelines and checks that vary and are frequently 

presented in an unstructured format. The AI must capture and interpret these guidelines, then compare the 

text against them to determine whether it aligns with the reference. This process involves not only parsing 

the procedural document but also understanding the context and implications of the requirements. 

Research in this area is ongoing, with continued work needed to improve and demonstrate effective 

solutions. 

7.11 Structuring 

The majority of nuclear data could be classified as unstructured to some extent, given the industry’s 

reliance on paper-based text (procedures, standards, manual, etc.) for decades. As with review function, 

structuring unstructured text can be challenging due to complex structuring and confounding context. 

7.11.1  Complex Structure and Dispersed Low-Quality Data 

Unstructured text lacks a predefined format or organization and often contains information in various 

formats and artifacts, including diverse language styles, tables, images, and more. Extracting meaningful 

information from such text requires sophisticated methods to interpret context, handle ambiguity, and 

identify key entities and relationships. Additionally, unstructured data often necessitates extensive 

cleaning and preprocessing to remove noise, correct errors, and standardize the text. Research in this area 

is ongoing, with continued efforts needed to enhance and demonstrate effective solutions. 

7.12 Summarization 

The key challenge AI models face with text summarization is the quality and breadth of the provided 

documents they must follow. As with review and structuring functions, the reference text can be 

challenging due to complex structuring and confounding context. 
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7.12.1 Misleading the Model 

One primary issue in summarization is that providing irrelevant references or references that contain 

multiple key context areas might confuse the model and mislead it, causing it to summarize irrelevant 

information. The resulting summary might include unnecessary details or omit crucial points. Excessive 

or poorly chosen reference material also impacts the coherence and conciseness of the summary and can 

result in a summary that includes information outside its scope. Achieving seamless integration while 

maintaining contextual accuracy and coherence is a significant hurdle. Research in this area is ongoing, 

with continued efforts needed to enhance and demonstrate effective solutions. 

7.13 Visualization 

Visualizing extensive and complex text data is challenging because humans generally prefer multi-

dimensional data presented in 2D or 3D formats that reveal underlying structures. Achieving such 

visualization often involves making several assumptions. 

7.13.1 Data Volume and High Dimensionality 

The volume and complexity of data can make it difficult to create visualizations that are both 

informative and comprehensible. Converting large datasets into graphical formats often risks 

oversimplifying or distorting the underlying patterns and structures. Additionally, it is not always possible 

to ensure that visualizations effectively facilitate the exploration and interpretation of the factors driving 

decisions. Research in this area is ongoing, with continued efforts needed to enhance and demonstrate 

effective solutions. 

7.14 Broader Challenges 

This section discusses other challenges that are not specific to a certain AI function. These challenges 

involved two or more functions and are discussed without a specific AI function in mind. 

7.14.1 Obsolescence 

New state-of-the-art models are developed nearly every couple of months, and experiments 

performed with the latest models quickly become obsolete and the models become unavailable. This 

degrades the ability to make like-for-like comparisons for scientific research. Additionally, if a model is 

implemented for a task and then that model becomes outdated or unavailable, new models will have to be 

used. In some cases, the new models offer an improvement; in other cases, the older model may have 

worked better for a specific task. 

7.14.2 Scalability 

Each utility has tribal knowledge; for example, a utility may use a certain phrase to describe a specific 

situation, such as an outage, whereas another will have a different way to describe the same situation. 

Also, it has been observed that utilities will produce data that are relatively easier to predict for one 

period, then for another period the data become more difficult to predict. AI models could work well for a 

specific dataset, but not scale when using other datasets. 

7.14.3 Availability and Cost of Computational Power 

Nuclear utilities often lack computational power. However, many of the methods discussed in this 

report—especially the generative AI ones—require large LLMs that are state of the art in performance 

and often near the limit of what is possible computationally. Therefore, the expense involved with 

developing this computational infrastructure and staff and keeping up with the latest hardware upgrades 

can be beyond what is reasonable for a utility. Using cloud-computing resources is possible; however, it 

might be challenging to use these resources when sensitive information is being used, and they come at a 

cost, especially when the cloud is used to host large fine-tuned models. 
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7.14.4 Memory Constraints 

The most granular and powerful technique for embedding text is to produce embeddings for each 

token in every document. Depending on the number of documents this can result in a very large vector 

database of perhaps millions of entries. It is also possible to partition the document into logical 

subsections, such as pages perhaps, and then encode the individual pages into text embeddings.  The text 

embeddings for each page are then stored in a database for analysis. The individual pages can then be 

extracted and used. This approach has the drawbacks of potentially greater memory storage requirements 

for the vector database, increased processing time for each of the page embeddings, as well as missing 

across-page context. 

8. CONCLUSIONS 

This effort successfully demonstrated how AI methods and tools, organized into specific AI 

functions, can be used to automate decisions and actions in the work management process. The analysis 

included an overview of the AI methods and the tools that are essential for text preparation. It detailed 

foundational steps such as tokenization, vectorization, and embedding; followed by supervised learning 

techniques, such as regression; and unsupervised learning methods, including clustering and topic 

modeling. Semisupervised learning, combining elements of both supervised and unsupervised methods, 

was also discussed. 

The AI methods and tools were then used in key AI functions relevant for nuclear work management. 

This included supervised and unsupervised classification, which label operational data to make explicit 

decisions; comparison for identifying similarities between text and its context; and dialogue systems for 

real-time human interaction with AI. Estimation predicts continuous outcomes based on historical 

patterns and was also discussed in this analysis. Other functions covered include generation, which 

creates new content after AI learns to innovate like a human; guidance for relevant text recommendations; 

insertion for assisting the human in adding new information; review for unstructured decision-making 

presented by documents such as procedures or list of requirements; structuring for data organization and 

extraction; summarization for the quick review of long text; and visualization for making complex data 

accessible. Together, these functions could enhance operational efficiency, improve decision-making, and 

ensure compliance. 

This research evaluated the readiness of those functions. Supervised classification methods, including 

embedding models and linear/nonlinear approaches, are ready but could benefit from improved context 

awareness. Unsupervised classification methods are also ready but need better domain-specific 

knowledge integration and prompt engineering. Comparison tools are effective for short texts but require 

further development for use with large documents. Dialogue models are ready for simple interactions but 

need more research for complex tasks and to reduce hallucinations. Estimation methods need 

enhancements for handling short text or missing context. Generation models, particularly GANs, are 

advancing but need to innovate beyond current training datasets. Guidance methods are promising with 

supervised approaches, but unsupervised methods require more research. Insertion techniques are 

effective with autoregressive models but need validation for specific knowledge applications. Review 

capabilities need improvement in understanding complex instructions. Structuring of unstructured data is 

still in early stages and requires more research into various data formats. Summarization using RAG is 

effective, but autoregressive models and encoder-decoders need further demonstration for specific tasks. 

Visualization tools are proven but need further research to refine data transformation techniques. 

The AI functions were applied to various work management steps to assess their potential to replace 

human actions and the resulting cost savings. Human time estimates were assigned to each decision and 

action to identify the potential for AI to reduce the time and effort required of staff and the resulting cost 

savings. Quantifying the potential cost savings associated with each AI function offers a clear framework 

for evaluating the business value and return on investment of AI initiatives. The results showed that there 

could be potential cost savings across different phases of the work management process. In total, around 
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$14.5M per NPP unit per year of cost savings can be accomplished using AI in the work management 

process. Planning was found to benefit the most from AI, with automation resulting in over 99% cost 

reduction, representing $7.7M per NPP unit per year. Several assumptions were made to achieve these 

numbers. Time estimates and sequence of steps can vary by utility and plant. The potential need for 

repetition of steps was considered within the existing time estimates. Outlier scenarios were excluded to 

maintain practical relevance, and not all steps were mapped in detail once the cost of the step diminished. 

This is to ensure the mapping focus remains on costly decisions and actions. Tangential tasks and outage 

work were considered outside the scope of this research. Estimates were often rounded to the nearest 

minute, and any tool used to aid but not fully automate the process was assumed to fully automate the 

process, resulting in overestimated cost savings. Both simple and complex automation solutions were 

considered, but simple solutions only were used when possible. Complex solutions were used if simple 

solutions do not exist.  

The top three cost-saving functions relate to unstructured data and decision-making. While review 

and structuring are primarily used for comprehending data or procedures, generation is mostly associated 

with taking actions. Unsupervised classification results in lower cost savings because the decisions it 

applied to a human can typically be made quickly, often taking only a minute. This is not the case with 

supervised classification, where many decisions depend on explicit or implied labels. Estimation yields 

low cost savings because the work management step rarely involves predicting values such as time. 

Guidance and insertion fell at the low end of cost savings, because even if AI issued, humans could still 

be performing most of the work. It is important to note that the findings of this report are for the current 

state of AI and the current data structures in utilities. Future technological advancements or plant 

upgrades and data reorganization could alter the methods used and the potential cost savings.   

Various challenges were identified as methods and tools were applied to achieve AI functions. 

Supervised classification faces issues with sparse, inconsistent, or imbalanced labels, while unsupervised 

classification struggles with iteration time for new labels and prompt sensitivity. Both types of 

classification are challenged by short text and input quality. Comparison methods encounter difficulties 

with text size, embedding model suitability, and identifying similarities and differences. Dialogue systems 

are affected by prompt sensitivity, hallucination, and limited insight. Estimation methods struggle with 

missing or mixed context. Generation is challenged by irrelevant text, and guidance and insertion are 

challenged by confusion and generic words. Review and structuring face issues with complex structures 

and low-quality data. Summarization risks misleading the model. Broader challenges that were discussed 

in this research include obsolescence, scalability, availability and cost of computational power, and 

memory constraints. Several solutions for those challenges were also discussed, with example 

demonstrations provided for many of them.  

Overall, this research underscores the value of optimizing work management processes with AI. 

Streamlining these processes can reduce operational costs and redirect resources to critical areas. The 

potential for faster work completion and improved safety measures would contribute to a more efficient 

and cost-effective operation in the long term. 
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Appendix A 
 

Mapping of Screening 

This appendix applies the approach of Section 4.1 to screening steps according to the flow shown in 

Figure 16. The following sections discuss each of those steps in detail.  

 

 

Figure 16. Flowchart of the screening steps that are discussed in Appendix A. 
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A-1. Issue Identification and Reporting 

If the condition has been reported before, then it should not be logged again as it is being handled 

already. This step aims to determine if this event is already in the system by means of checking for any 

tags on the equipment or searching through the condition reporting system. 

Current Decisions and Conditional Actions 

Input: Identified and reported condition. 

Was this condition identified before? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

Per CR 

Process Check if the condition was previously 

identified. e.g., there is a tag on the equipment 

or is in the condition reporting system 

Any 3 150% 

If yes Add comments to the existing condition if 

needed. 

(End of Process) 

Any 2 50% 

If no Write a CR. Any 5 100% 

Total (minutes FTE per CR) 10.5 

 

Automated Decisions and Conditional Actions 

Input: Identified and reported condition in text and historical CRs text. 

Was this condition identified before? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical CRs Identified and 

reported 

condition text 

Comparison Yes/No 

(and previous 

CR) 

If yes Previous CR Identified and 

reported 

condition text 

Generation Modified CR 

text 

If no Historical CRs  Identified and 

reported 

condition text 

Guidance New CR text 

Historical CRs Identified and 

reported 

condition text 

Insertion New CR text 
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A-2. Equipment Relevance 

A key aspect of events relates to determining if the issue being analyzed relates to equipment. This is 

necessary as later steps use this information in making decisions.  

Current Decisions and Conditional Actions 

Input: Current CR. 

Is the reported condition related to a piece of equipment? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Check if the text mentions or refers to any 

equipment. Any 0.5 100% 

If yes Insert the equipment ID. Any 0 75% 

If no None. NA 0 25% 

Total (minutes FTE per CR) 0.5 

 

Automated Decisions and Conditional Actions 

Input: Current CR and engineering master equipment list (MEL). 

Is the reported condition related to a piece of equipment? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical CRs and equipment 

labels 

Current CR  Classification 

(supervised) 

Yes/No 

Equipment words or general-

knowledge-enabled LLM 

Current CR  Classification 

(unsupervised) 

Yes/No 

(and Equipment 

ID) 

MEL equipment description Current CR Comparison Yes/No 

(and Equipment 

ID) 

If yes NA 

If no NA 
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A-3. Criticality 

In this step, it is desired to determine if the CR relates to equipment that is critical (safety or non-

safety) that would impact plant performance and reliability. 

Current Decisions and Conditional Actions 

Input: Current CR and MEL. 

Is this a piece of critical equipment? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Check if the equipment is identified as critical 

in the MEL and if the nature of the issue could 

affect the performance or reliability of the 

equipment. Operations 2 75% 

If yes Supervisor notifies shift manager. Operations 0 5% 

If no None. NA 0 70% 

Total (minutes FTE per CR) 1.5 

 

Automated Decisions and Conditional Actions 

Input: Current and historical CRs, and MEL. 

Is this a piece of critical equipment? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process 

Historical CRs and criticality 

labels  Current CR 

Classification 

(supervised) 

Yes/No 

(and criticality 

label) 

MEL criticality labels Current CR  Comparison 

Yes/No 

(and criticality 

label) 

If yes NA 

If no NA 

  



 

104 

A-4. Operability and Impact to Plant 

Operations evaluates whether the issue impacts the reliability of equipment that is critical to the 

operations of the plant. This is different from the criticality analysis, which aims to determine emergent 

issues that require immediate plant attention. The operability analysis evaluates the longer-term impact to 

operations of the plant. It is also important to determine if this impacts regulatory compliance by affecting 

safety-related equipment and technical-specifications requirements. 

Current Decisions and Conditional Actions 

Input: Current and historical CRs and technical specifications. 

Is there an impact to the plant? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Determine if the issue in the CR affects 

technical specifications applicability by 

examining issue for compliance against the 

technical specifications. 

Operations 4* 75% 

If yes Add notes and technical specifications action 

statement or perform plant configuration Notify 

regulatory body if needed. 

Operations Out of 

scope 

70% 

If no None. NA 0 5% 

Total (minutes FTE per CR) 3 

 With most CRs, it is a trivial effort to determine whether the work affects technical specification. Some (about 10%), 

however, require more research (around 40 minutes). This averages to 4 minutes per CR. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical CRs and technical specifications. 

Is there an impact to the plant? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical CRs and criticality 

designation Current CR 

Classification 

(supervised) Yes/No 

Technical specifications Current CR Review Yes/No 

If yes NA 

If no NA 
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A-5. Maintenance Validation 

Except for operations review, the preceding steps are performed by the individual reporting the 

condition (i.e., any plant staff). It is next desired for maintenance to validate what was logged by the staff 

for thoroughness and accuracy. This is performed by the CAP coordinator (CapCo) for the maintenance 

organization. Validation is performed of the information in each CR. 

Current Decisions and Conditional Actions 

Input: Current and historical CRs. 

Was the CR related to equipment or originated by maintenance characterized correctly? 

Decision Effort Description Discipline 

Time in 

Minutes  

Frequency 

per CR 

Process Verify the CR entry is comprehensive and 

accurate Maintenance 4* 75% 

If yes None. NA 0 72% 

If no Add notes to clarify and additional insights or 

recommendations needed to help the screening 

process. Maintenance 5 3% 

Total (minutes FTE per CR) 3.15 

 In addition to the equipment issues, the maintenance CapCo reviews all events (including those not related to equipment) 

recorded by maintenance. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical CRs. 

Was the CR related to equipment or originated by maintenance characterized correctly? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical CRs and labels Current CR  Comparison Similar CRs for 

human 

verification* 

Historical CRs and labels  Current CR  Summarization Summary of 

CRs for human 

verification* 

If yes NA 

If no 

Historical CRs User notes Guidance 

Notes and 

additional 

insight 

Historical CRs User notes Insertion 

Notes and 

additional 

insight 

 AI can support this activity by finding similar CRs for review, but human review is still needed. 
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A-6. Maintenance Compensatory Actions 

In some cases, immediate actions are necessary to prevent a condition from worsening. These actions 

can be as simple as placing a bucket to catch a water leak to prevent an industrial safety incident or 

securing a panel door to keep dust away from electrical components. This is also performed by the CapCo 

for maintenance. 

Current Decisions and Conditional Actions 

Input: Current CR. 

Are any immediate or compensatory additional actions needed for all equipment and maintenance-

originated CRs? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Determine if any mitigation is needed for issues 

that could worsen in time (e.g., leakage). Maintenance 1 75% 

If yes 

Take compensatory action. Maintenance 

Out of 

scope 6% 

If no 
None. NA 0 69% 

Total (minutes FTE per CR) 0.75 

 

Automated Decisions and Conditional Actions 

Input: Current CR. 

Are any immediate or compensatory additional actions needed for all equipment and maintenance-

originated CRs? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA 

If yes NA 

If no NA 
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A-7. Maintenance Significance 

Every plant has a procedure containing a set of criteria used to determine the significance an event 

should be assigned. The significance determination is needed to ensure that adequate actions are taken for 

each CR especially those important to the safe and reliable operation of the plant. The maintenance 

CapCo assigns this significance based on the criteria. 

Current Unconditional Actions 

Input: Current CR and CAP procedure. 

Assign significance to the equipment related CR or CR that were generated by maintenance.  

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process 

Compare the condition against the significance 

criteria in the CAP procedure and assign the 

appropriate significance. Maintenance 1 75% 

Total (minutes FTE per CR) 0.75 

 

Automated Unconditional Actions 

Input: Current and historical CRs and CAP procedure. 

Assign significance to the equipment related CR or CR that were generated by maintenance.  

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical CRs and significance 

labels 

Current CR Classification 

(supervised) 

Significance 

CAP procedure Current CR Review Significance 
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A-8. Operations Validation 

Similar to maintenance, it is important for operations to validate the information reported in CRs, 

especially when it pertains to equipment. As Operations reviews any critical CRs when they are 

generated, this step involves repeating the maintenance process but with less in-depth investigation. 

Current Decisions and Conditional Actions 

Input: Current and historical CRs and technical specifications. 

Was the CR related to equipment or originated by operations characterized correctly? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Verify the CR entry is comprehensive and 

accurate. 

Operations 1*  75% 

If yes None. NA 0 73% 

If no Add notes to clarify and additional insights or 

recommendations needed to help the screening 

process. 

Operations 5 2% 

Total (minutes FTE per CR) 0.85 

 With most CRs, it is a trivial effort to determine whether the CR is characterized correctly. Some (about 30%), however, 

require more research (around 3 minutes). This averages to 1 minute per CR. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical CRs and technical specifications. 

Was the CR related to equipment or originated by operations characterized correctly? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical CRs and labels Current CR Comparison Most similar CRs 

for human 

verification* 

Historical CRs and labels Current CR Summarization Summary of CRs 

for human 

verification* 

Technical specifications Current CR Review Any technical 

specifications 

issue that results 

from the CR* 

If yes NA 

If no 

Historical CRs User notes Guidance 

Notes and 

additional insight 

Historical CRs User notes Insertion 

Notes and 

additional insight 

 AI can support this activity by finding similar CRs for review, but human review is still needed. 
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A-9. Operations Compensatory Actions 

As with maintenance, operations evaluates whether any immediate or compensatory actions need to 

be taken to prevent the condition from worsening. The CapCo for operations performs this evaluation. 

Current Decisions and Conditional Actions 

Input: Current CR. 

Are any immediate or compensatory additional actions needed for all equipment and operations-

originated CRs? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Determine if any mitigation is needed for issues 

that could worsen in time. 

Operations 1 75% 

If yes Consult with operations procedures to identify 

alternative configurations and take any other 

necessary action. 

Operations Out of 

scope 

7% 

If no None. NA 0 68% 

Total (minutes FTE per CR) 0.75 

 

Automated Decisions and Conditional Actions 

Input: Current CR. 

Are any immediate or compensatory additional actions needed for all equipment and operations-

originated CRs? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA 

If yes NA 

If no NA 
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A-10. Operations Significance 

Operations utilizes the CAP procedures to determine the significance of the identified issue. The 

significance determination is to ensure adequate actions are taken to address issues affecting the safety or 

reliability of the plant. The operations CapCo assigns this significance. 

Current Unconditional Actions 

Input: Current CR and CAP procedure. 

Assign significance to the equipment related CR or CR that was generated by operations. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Using the procedure, compare the condition 

against the significance criteria (to be provided) 

and assign the appropriate significance. 

Operations 1 75% 

Total (minutes FTE per CR) 0.75 

 

Automated Unconditional Actions 

Input: Current CR and CAP procedure. 

Assign significance to the equipment related CR or CR that was generated by operations. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical CRs and significance 

labels 

Current CR Classification 

(supervised) 

Significance 

CAP procedure Current CR Review Significance 
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A-11. Engineering Validation 

Similar to maintenance and operations, it is desired for engineering to validate what was reported in a 

CR if the condition relates to equipment. This step involves repeating the maintenance and operations 

validation process but with less in-depth investigation. 

Current Decisions and Conditional Actions 

Input: Current CR and historical WOs. 

Was the equipment related CR or CR originated by engineering characterized correctly? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Verify the CR entry is comprehensive and 

accurate. 

Engineering 1* 75% 

If yes None. NA 0 74% 

If no Add notes to clarify and additional insights or 

recommendations needed to help the screening 

process. 

Engineering 5 1% 

Total (minutes FTE per CR) 0.80 

 With most CRs, it is a trivial effort to determine whether the CR is characterized correctly. Some (about 10%), however, 

require more research (around 10 minutes). This averages to 1 minute per CR. 

 

Automated Decisions and Conditional Actions 

Input: Current CR and historical WOs. 

Was the equipment related CR or CR originated by engineering characterized correctly? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical CRs and labels  Current CR  Comparison  Similar CRs for 

human 

verification* 

Historical WOs Current CR Comparison  Similar WOs for 

human 

verification* 

Historical CRs and labels  Current CR  Summarization Summary of 

CRs for human 

verification* 

Historical WOs Current CR Summarization Summary of 

WOs for human 

verification* 

If yes NA 

If no 

Historical CRs User notes Guidance 

Notes and 

additional 

insight 

Historical CRs User notes Insertion 

Notes and 

additional 

insight 
 AI can support this activity by finding similar CRs to review but human review is still needed. 
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A-12. Engineering Compensatory Actions 

Like operations and maintenance compensatory actions, immediate engineering actions might also be 

necessary to develop a solution to prevent a condition from worsening. The CapCo for engineering 

performs this evaluation. 

Current Decisions and Conditional Actions 

Input: Current CR. 

Are any immediate or compensatory additional actions needed for all equipment and engineering-

originated CRs? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Determine if any mitigation is needed for issues 

that could worsen in time. 

Engineering 1 75% 

If yes Take compensatory action. Engineering Out of 

scope 

1% 

If no None. NA 0 74% 

Total (minutes FTE per CR) 0.75 

 

Automated Decisions and Conditional Actions 

Input: Current CR. 

Are any immediate or compensatory additional actions needed for all equipment and engineering -

originated CRs? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA 

If yes NA 

If no NA 
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A-13. Engineering Significance 

Like maintenance and operations, engineering evaluates the significance of the event. The 

significance determination is needed because a system is important to the operations or generation aspect 

of the plant. The engineering CapCo assigns this significance. 

Current Unconditional Actions 

Input: Current CR and CAP procedure. 

Assign significance to the equipment-related CR or CR that was generated by engineering. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Using the procedure, compare the condition 

against the significance criteria (to be provided) 

and assign the appropriate significance. 

Engineering 1 75% 

Total (minutes FTE per CR) 0.75 

 

Automated Unconditional Actions 

Input: Current CR and CAP procedure. 

Assign significance to the equipment-related CR or CR that was generated by engineering. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical CRs and significance 

labels 

Current CR Classification 

(supervised) 

Significance 

CAP procedure Current CR Review Significance 
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A-14. All Others Validation 

In addition to maintenance, operations, and engineering, all other organizations will review the CRs 

that were generated by their organization or related to their discipline. The organization’s CapCo will 

perform this review. 

Current Decisions and Conditional Actions 

Input: Current and historical CRs. 

Was the CR related to the organization or originated by the organization characterized correctly? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Verify the CR entry is comprehensive and 

accurate. 

All relevant 

groups 1* 75% 

If yes None. NA 0 74% 

If no Add notes to clarify and additional insights or 

recommendations needed to help the screening 

process. 

All relevant 

groups 5 1% 

Total (minutes FTE per CR) 0.80 

 With most CRs, it is a trivial effort to determine whether the CR is characterized correctly. Some (about 10%), however, 

require more research (around 10 minutes) and is performed by multiple organizations. This averages to 1 minute per CR. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical CRs.  

Was the CR related to the organization or originated by the organization characterized correctly? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process 

Historical CRs and labels Current CR Comparison 

Similar CRs for 

human 

verification* 

Historical CRs and labels Current CR Summarization 

Summary of 

CRs for human 

verification* 

If yes NA 

If no 

Historical CRs User notes Guidance 

Notes and 

additional 

insight 

Historical CRs User notes Insertion 

Notes and 

additional 

insight 

 AI can support this activity by finding similar CRs for review, but human review is still needed. 
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A-15. Rework 

At this stage maintenance needs to know if this issue is reoccurring (i.e., is a rework). This is different 

from the previous step in which maintenance was focused on determining if the issue was previously 

reported.  

Current Decisions and Conditional Actions 

Input: Current and historical CRs and historical WOs. 

Was this worked on before? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Find similar historical CR and WO records to 

the CR for the past 2 years. 

Maintenance 3 75% 

If yes Perform rework evaluation. Maintenance Out of 

scope 

1% 

If no None. NA 0 74% 

Total (minutes FTE per CR) 2.25 

 

Automated Decisions and Conditional Actions 

Input: Current and historical CRs and historical WOs. 

Was this worked on before? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical CRs Current CR Comparison Similar CRs for 

human 

verification* 

Historical WOs Current CR Comparison Similar CRs for 

human 

verification* 

If yes NA 

If no NA 

 AI can support this activity by finding similar CRs for review, but human review is still needed. 
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A-16. Resources for Significant Work 

A rough estimate of the necessary resources is needed to determine if this will require significant 

work and to help determine if the work should be done in-house in the following steps 

Current Decisions and Conditional Actions 

Input: Current CR. 

Is this a significant work? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Predict the nature of work needed and use it to 

roughly estimate the resources that will be 

needed. 

Maintenance 3* 75% 

If yes Decide if it can be performed in-house. Maintenance 0** 3% 

If no None. NA 0 72% 

Total (minutes FTE per CR) 2.25 

 With most CRs, it is a trivial effort to determine whether the work is significant. Some (about 10%), however, require 

more research (around 30 minutes). This averages to 3 minutes per CR. 

** Performed in next step 

 

Automated Decisions and Conditional Actions 

Input: Current and historical CRs and historical WPs. 

Is this a significant work? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process 

Historical CR assigned WPs 

and allocated resources Current CR 

Comparison and 

structuring  

Resources 

available from 

the WP 

If yes NA 

If no NA 
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A-17. Project/In-house for Significant Work 

Based on the resources needed, it is essential to determine early in the process if the job will be 

performed in-house or if a contractor will be needed, and whether the projects group needs to take over 

the responsibility of the work. 

Current Decisions and Conditional Actions 

Input: Current CR. 

Is this an in-house job? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Compare the needed resources for the CR to the 

available resources and determine if the 

component is supplier controlled. 

Maintenance 1* 75% 

If yes None. NA 0 74% 

If no Add additional notes on why this is not an in-

house job. 

Maintenance 1 1% 

Total (minutes FTE per CR) 0.76 

 With most CRs, it is a trivial effort to determine whether the work can be performed in-house. Some (about 5%), 

however, require more research (around 20 minutes). This averages to 1 minute per CR. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical CRs and historical WP. 

Is this an in-house job? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs and in-house 

decision Current CR  

Comparison and 

structuring 

Yes/No 

 

If yes NA 

If no Historical CRs User notes  Guidance Justification 

Historical CRs User notes  Insertion Justification 
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A-18. Modification/Field Change 

Whether the work is conducted in-house or is contracted, it is desired to determine if the work relates 

to a modification or change, which requires the extensive involvement of engineering and projects. 

Current Decisions and Conditional Actions 

Input: Current CR, manuals, historical WPs, drawings, and ECs. 

Is a modification needed? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Determine if the issue can be resolved by the 

type of work that is possible or an equipment 

modification is needed. 

Engineering 1* 75% 

If yes Recommend the level of change needed and 

initiate the EC request. 

Engineering 1 3% 

If no None. NA 0 72% 

Total (minutes FTE per CR) 0.78 

 With most CRs, it is a trivial effort to determine whether modification is needed. Some (about 5%), however, require 

more research (around 20 minutes). This averages to 1 minute per CR. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical CRs, historical WPs, manuals, drawings, and ECs. 

Is a modification needed? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical CRs assigned WP, 

and modification label 

Current CR Comparison and 

Structuring 

Yes/No 

Historical CRs assigned WP 

and ECs presence  

Current CR Comparison  Yes/No 

Manuals and drawings Current CR Review Summary of 

modifications 

needed* 

If yes Historical CRs and assigned 

WP’s modification label 

Current CR Comparison and 

classification 

(supervised) 

Modification 

level 

If no NA 

* AI can support this activity, but human review is still needed. 

  



 

119 

A-19. Safety Significance 

Safety-significant events have been considered as part of criticality and severity decisions, but in this 

step, they are explicitly flagged as they are tracked by multiple organizations, including the plant risk 

management staff, licensing group, and performance improvement organization. 

Current Decisions and Conditional Actions 

Input: Current CR and safety equipment list. 

Is this a safety significant event? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Determine if the issue relates to any safety 

equipment and if the type of issue impacts the 

safety function of the equipment. 

PI 2 75% 

If yes Flag the CR as CAQ. PI 0 15% 

If no None. NA 0 60% 

Total (minutes FTE per CR) 1.5 

 

Automated Decisions and Conditional Actions 

Input: Current and historical CRs and safety equipment list. 

Is this a safety significant event? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical CRs and equipment 

safety labels 

Current CR Classification 

(supervised) 

Yes/No 

Safety equipment list Current CR and 

equipment ID 

Comparison Yes/No 

If yes NA 

If no NA 
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A-20. Administrative Impact 

Aside from issues directly affecting plant performance, there are other issues that the CRs need to be 

screened for. In this step, the reported issue is screened for any other potential administrative issue. 

Current Decisions and Conditional Actions 

Input: Current CR and human resources (HR), security, and information technology (IT) procedures. 

Does the condition have any administrative impact? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Determine if the issue relates to HR, security, 

or IT procedures and consult relevant 

procedures if needed. 

Administration 5 25% 

If yes Assign to organization. Administration 0 3% 

If no Add notes. Administration 0 22% 

Total (minutes FTE per CR) 1.25 

 

Automated Decisions and Conditional Actions 

Input: Current and historical CRs and HR, security, and IT procedures. 

Does the condition have any administrative impact? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical CRs and action or 

department labels 

Current CR Classification 

(Supervised) 

Yes/No 

(and specific 

impact) 

HR, security, IT words or 

general-knowledge-enabled 

LLM 

Current CR Classification 

(unsupervised) 

Yes/No 

HR, security, and IT procedures Current CR Review Yes/No 

(and specific 

impact) 

If yes NA 

If no NA 
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A-21. Radiological Impact 

If the identified issue could result in an unplanned radiation release or unplanned dose or could 

impact the plant’s ALARA goals, then the RP group needs to evaluate which actions are necessary to 

mitigate any radiological impact. 

Current Decisions and Conditional Actions 

Input: Current CR and radiological survey documentation. 

Is there an ALARA impact (increase dose rate) or contamination? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Determine if the condition relates to a high rad 

area, involve any release of radiological 

materials (evident by radiological survey 

documentation) and contamination, or an 

increase of dose. Check if the condition impacts 

the radiological survey data. 

RP and 

chemistry* 

2 100% 

If yes RP and chemistry conduct surveys or 

decontamination. 

RP and 

chemistry 

Out of 

scope 

5% 

If no None. NA 0 95% 

Total (minutes FTE per CR) 2 

 The reason both organizations are listed here is because they often have one shared CapCo. 

 

Automated Decisions and Conditional Actions 

Input: Current CR and radiological survey documentation. 

Is there an ALARA impact (increase dose rate) or contamination? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Radiological survey words or 

general-knowledge-enabled 

LLM 

Current CR Classification 

(unsupervised) 

Yes/No 

Radiological survey 

documentation 

Current CR Review Yes/No 

(and 

explanation) 

If yes NA 

If no NA 
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A-22. Chemistry Impact 

If the condition could result in an issue such as an unplanned chemical release which could affect 

plant staff or the environment, then the plant chemistry department needs to evaluate the issue to ensure 

regulations are not violated and to take action to mitigate the issue. Sampling might be needed to 

determine the extent of the condition. 

Current Decisions and Conditional Actions 

Input: Current CR, regulations, data sheets, and sampling results. 

Did the chemistry of the plant equipment or environment change? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Determine if the condition relates to any release 

of chemical materials (evident using sampling), 

or if it violates regulatory requirements. 

RP and 

chemistry 

5 100% 

If yes RP and chemistry conduct sampling and 

cleanup, or update data sheets. 

RP and 

chemistry 

Out of 

scope 

3% 

If no None. NA 0 97% 

Total (minutes FTE per CR) 5 

 

Automated Decisions and Conditional Actions 

Input: Current CR and chemistry regulations, manuals, datasheets, and sampling results. 

Did the chemistry of the plant equipment or environment change? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Chemistry words or general-

knowledge-enabled LLM 

Current CR Classification 

(unsupervised) 

Yes/No 

(relates to 

chemistry) * 

Chemistry regulations, manuals, 

datasheets, and sampling results 

Current CR Review Yes/No 

(and 

explanation) 

If yes NA 

If no NA 

* AI can support this activity, but human review is still needed. 
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A-23. Severity 

Severity relates to the consequences of the event to the plant; it is different than criticality, which is 

focused on the importance of the event. Severity is a key metric that PI is interested in tracking to ensure 

plant performance is sustained at satisfactory levels. 

Current Decisions and Conditional Actions 

Input: Current CR and work management procedure. 

Is this a severe event? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Determine if the issue relates to a high or 

moderate severity based on the work 

management procedure. Severe events relate to 

safety-related equipment, events that could 

impact ALARA, or events that indicate a 

broader problem in the plant. 

PI 3 100% 

If yes Add notes to justify the ranking. PI 1 10% 

If no None. NA 0 90% 

Total (minutes FTE per CR) 3.1 

 

Automated Decisions and Conditional Actions 

Input: Current and historical CRs and work management procedure. 

Is this a severe event? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical CRs and severity 

labels 

Current CR Classification 

(supervised) 

Severity level 

Work management procedure Current CR Review Severity level 

If yes Historical CRs User notes Guidance  Justification  

Historical CRs User notes Insertion  Justification  

If no NA 
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A-24. Actions Needed 

Each CR is evaluated to determine whether further investigation or evaluation is necessary, or 

whether additional corrective actions need to be taken depending on the severity of the issue. For 

example, the condition may require a HP evaluation or improvement or a root cause evaluation. 

Current Decisions and Conditional Actions 

Input: Current CR and CAP procedure. 

Is an action needed? What type? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Determine if the event relates to the scope of 

one of the action categories in the work 

management procedure. Assign that action and 

the appropriate department. 

PI 2* 100% 

If yes Assign the action to a department. PI 0 5% 

If no None. NA 0 95% 

Total (minutes FTE per CR) 2 

 With most CRs, it is a trivial effort to determine if an action is needed. Some (about 10%), however, require more 

research (around 20 minutes). This averages to 2 minutes per CR. 

 

Automated Decisions and Conditional Actions 

Input: Current CR and CAP procedure. 

Is an action needed? What type? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical CRs and action or 

department labels 

Current CR Classification 

(supervised) 

Yes/No  

(and action type) 

CAP procedure Current CR  Review Yes/No  

(and action type 

explanation) 

If yes NA 

If no NA 
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A-25. Prescreening Meeting 

After all relevant groups have had a chance to provide input, they all meet to evaluate the decisions 

made collectively. This step does not apply to all utilities as some do not perform a prescreening meeting.  

Current Unconditional Actions 

Input: Current CR. 

Provide any feedback and validate the individual feedback. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Discuss in meeting all decisions made All relevant 

groups 

6* 100% 

Total (minutes FTE per CR) 6 

 Assuming 5 staff meet for 30 minutes and 25 CRs per day, this would result in 6 minutes per CR. 

 

Automated Unconditional Actions 

Input: Current CR. 

Provide any feedback and validate the individual feedback. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA 
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A-26. Screening Meeting Preparation 

Some staff might have actions to take to prepare for the screening meeting. Those actions could 

include reviewing the decisions made or providing more information. The PI staff is responsible for 

tracking all actions and making sure they are performed. 

Current Decisions and Conditional Actions 

Input: Current CR. 

Has all the feedback from the prescreening meeting been incorporated into the screening package? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Incorporate prescreening meeting updates. PI 2 100% 

If yes No further actions. PI 0 67% 

If no Make updates to the screening meeting package. PI 15 33% 

Total (minutes FTE per CR) 6.95 

 

Automated Decisions and Conditional Actions 

Input: Current CR. 

Has all the feedback from the prescreening meeting been incorporated into the screening package? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA 

If yes NA 

If no NA 
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A-27. Screening Meeting 

After all relevant groups have had a chance to update the input, they all meet to evaluate the decisions 

made collectively to prepare the WR, if applicable. 

Current Unconditional Actions 

Input: Current CR. 

Provide any feedback and validate the individual feedback. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Discuss in meeting the decisions made All relevant 

groups 

6* 100% 

Total (minutes FTE per CR) 6 

 Assuming 5 staff meet for 30 minutes and 25 CRs per day, this would result in 6 minutes per CR. 

 

Automated Unconditional Actions 

Input: Current CR. 

Provide any feedback and validate the individual feedback. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA 
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A-28. Condition Report Update and Work Request Notification  

After the screening meeting, the PI staff ensures that all necessary actions in the screening process are 

completed and a WR is initiated if needed. 

Current Decisions and Conditional Actions 

Input: Current CR. 

Have all the CR decisions been updated in the CR system and the actions created? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Ensure all needed fields of the CR have been 

addressed and incorporate any prescreening 

meeting recommendations into the CR and WR. 

Evaluate the screening findings and determine if 

a WR is needed. 

PI 2 100% 

If yes Create the WR and populate it with all critical 

information from the CR. 

PI 0 45% 

If no Contact departments for actions and/or updates. PI 15 55% 

Total (minutes FTE per CR) 10.25 

 

Automated Decisions and Conditional Actions 

Input: Current CR and CAP procedure. 

Have all CR decisions been updated in the CR system and actions created? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process CAP procedure Current CR Review Yes/No 

(and 

explanation)  

If yes NA 

If no NA 
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A-29. Maintenance Work Order Creation 

Using the WR, create a WO to provide detailed instructions and allocate resources for the completion 

of the identified work.  

Current Decisions and Conditional Actions 

Input: Current CR and WR (notifications). 

Does the WR require a WO? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per CR 

Process Determine if the WR and associated condition 

require maintenance-related work. 

Maintenance 1 45% 

If yes Initiate a WO in the WO system. Maintenance 1 18% 

If no None. NA 0 27% 

Total (minutes FTE per CR) 0.63 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WRs (notifications) and historical WOs. 

Does the WR require a WO? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WRs and WOs 

assignment 

Current WR  Classification 

(supervised) 

Yes/No 

Historical WOs Current WR  Comparison Yes/No 

If yes NA 

If no NA 
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Appendix B 
 

Mapping of Scoping 

This appendix applies the approach of Section 4.1 to scoping steps according to the flow shown in 

Figure 17. The following sections discuss each of those steps in detail.  

 

Figure 17. Flowchart of the scoping steps that are discussed in Appendix B. 
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B-1. Merger of Work Orders for Same Issue 

Whether the WO was initiated by maintenance, projects, or PM, it is desired to first determine if this 

new WO should be merged with an existing one (i.e., to combine multiples WOs in one WO) or if a new 

one should be created. This is done because the same equipment or system should be worked on at the 

same time to reduce equipment unavailability. 

Current Decisions and Conditional Actions 

Input: Current WO and other existing WOs. 

Are there multiple WOs that can be merged into one WO? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Determine if the new WO should be merged 

with an existing WO for the same 

system/component by verifying whether the 

defects described within the new WO will be 

addressed during the execution of the work for 

the existing WO. 

Maintenance 

senior 

reactor 

operator 

(SRO)* 

5 100% 

If yes Merge new WO into an existing WO. Maintenance 

SRO 

5 5% 

If no Keep the new WO. Maintenance 

SRO 

0 95% 

Total (minutes FTE per WO) 5.25 

 A Maintenance SRO is a maintenance staff member who is qualified and licensed to operate the plant, enabling the 

individual to scope work with insights from both maintenance and operations perspectives. 

 

Automated Decisions and Conditional Actions 

Input: Current WO and other existing WOs. 

Are there multiple WOs that can be merged into one WO? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Existing WOs Current WO  Comparison Yes/No 

(and similar 

WO) 

If yes Similar WO Current WO  Generation Modified 

existing WO 

If no NA 
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B-2. Work Order Priority  

Priority is used to indicate urgency. This step validates the WR-provided priority by determining if it 

impacts technical specifications, ALARA, or other characteristics that would impact priority. This priority 

is assigned based on work management procedures, which list the criteria that are used to assign priority. 

Current Unconditional Actions 

Input: Current and historical WOs, and the work management procedure. 

What priority level should be assigned to the WO? 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Assign a priority level to the WO based on the 

current work scope, the priority assigned to 

similar previous WOs, and work management 

procedure criteria. 

Maintenance 

SRO 

3 95% 

Total (minutes FTE per WO) 2.85 

 

Automated Unconditional Actions 

Input: Current and historical WOs, and the work management procedure.  

What priority level should be assigned to the WO? 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs and priority 

labels 

Current WO  Classification 

(supervised) 

Priority 

Work management procedure Current WO  Review Priority 
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B-3. Work Order Criticality 

Criticality is an indicator of importance (not urgency like priority). It is usually assigned based on the 

equipment being worked on. Equipment that relates to critical functions in the plant, specifically safety-

related equipment listed in the technical specifications, is usually assigned high criticality. There are also 

other circumstances for which equipment criticality might be increased, and these are usually detailed in 

the work management procedure. This label is usually listed in the MEL. 

Current unconditional Actions 

Input: Current and historical WOs, MEL, and the work management procedure.  

What criticality level should be assigned to the WO? 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Use the criticality of the equipment being 

worked on from the MEL, the criticality 

assigned to similar previous WOs, and current 

work scope and work management procedure 

criteria to assign criticality. 

Maintenance 

SRO 

3 95% 

Total (minutes FTE per WO) 2.85 

 

Automated unconditional Actions 

Input: Current and historical WOs, MEL, and the work management procedure.  

What criticality level should be assigned to the WO? 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs and criticality 

labels 

Current WO  Classification 

(supervised) 

Criticality 

MEL criticality labels Current WO  Comparison Criticality 

Work management procedure Current WO  Review Priority 
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B-4. Outage or Online Work 

Whether or not work is performed as outage work depends on the nature of issue, the impacted 

equipment, and the associated risk. If the work is to be performed during an outage, it follows a different 

schedule than online work and is considered out of scope in this effort. Thus, at this stage it is desired to 

determine whether the work fits in the outage or online (daily) schedule.  

Current Decisions and Conditional Actions 

Input: Current and historical WOs and technical specifications. 

Is this outage work? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Review the technical specifications and look for 

any requirements indicating the equipment must 

be worked during an outage. Search for similar 

WOs for the same or similar equipment to see if 

the work was done in an outage. 

Maintenance 

SRO 

2* 95% 

If yes Select an outage to scope the work into by 

determining the minimum lead time for work 

and deciding which is the closest outage in 

which to perform it. 

(End of process) 

Maintenance 

SRO 

Out of 

scope 

45% 

If no Select a workweek to scope the work into. Maintenance 

SRO 

5 50% 

Total (minutes FTE per WO) 4.4 

 With most WOs, it is a trivial effort toto determine whether the work is outage work or online work. Some (about 10%), 

however, require more research (around 20 minutes). This averages to 2 minutes per WO. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WOs, technical specifications, and historical outage dates. 

Is this outage work? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs and outage 

labels (using outage dates) 

Current WO Classification 

(supervised) 

Yes/No 

Technical specifications  Current WO Review Yes/No 

(and 

explanation) 

If yes NA 

If no Historical WOs and time to 

execution 

Current WO Estimation 

 

Lead time 

needed 
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B-5. Preliminary Work Schedule 

At this point, work is typically given a provisional placeholder in the schedule (a specific workweek 

for online work). Then the rest of the scoping process is completed, and the work may either continue to 

stay in that spot in the schedule or be moved to a more suitable spot at any time during the process. The 

goal is that by the end of the scoping process, all relevant factors will have been considered and the WO 

is positioned in a suitable spot in the schedule based on all factors. 

Current Unconditional Actions 

Input: Current WO. 

Add WO to a preliminary position in the schedule. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Estimate needed lead time and glance at the 

work schedule. Input the WO in the scheduling 

software. 

 

Cycle 

planning*  

5 50% 

Total (minutes FTE per WO) 2.5 

 Cycle planning is part of the work management organization. 

 

Automated Unconditional Actions 

Input: Current and historical WOs. 

Add WO to a preliminary position in the schedule. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs time to 

execution  

Current WO Estimation Usual time to 

execute the 

work 
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B-6. Project Relevance 

If the WO was initiated by the project team specifically to complete project work, then obviously the 

WO is related to that specific project. However, there may be other WOs that relate to a project work 

even if they were not generated by the project team, and they should be performed as part of the overall 

project. For example, if there is a project to replace a large valve with a new style of valve, and an issue 

with the valve controller has been reported separately, then perhaps the scope of work for the controller 

can be absorbed into the overall project. 

Current Decisions and Conditional Actions 

Input: Current WO and active projects list. 

Should this WO be included with planned project work? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Search the project database and determine if this 

WO should be included in the work scope for an 

existing project based on the planned scope for 

the WO overlapping with planned project work. 

Cycle 

planning  

2* 50% 

If yes Mark this as a relevant project effort and 

proceed with project-scoping activities.  

Cycle 

planning  

0 2% 

If no Skip project steps. Cycle 

planning  

0 48% 

Total (minutes FTE per WO) 1 

 With most WOs, it is a trivial effort to determine whether the work is project work. Some (about 10%), however, require 

more research (around 20 minutes). This averages to 2 minutes per WO. 

 

Automated Decisions and Conditional Actions 

Input: Current WO and active projects list. 

Should this WO be included with planned project work? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Active projects list Current WO Comparison Yes/No* 

If yes NA 

If no NA 

* AI can support this activity by providing the relevant projects, but human confirmation is still needed. 
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B-7.  Project Sequence 

Some projects comprise many other smaller projects that are scoped separately. If the WO relates to 

project work, it should be scheduled in accordance with the master project plan.  Work management 

ensures that the WO tied to other projects is completed in accordance with the master project plan. 

Current Unconditional Actions 

Input: Current WO, active projects list, and master project plan. 

Assign project sequence. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Compare the WO scope to the project work 

scoped into an execution week or weeks and 

move the WO to a new week if needed. Verify 

the WO scope is on a system that is selected for 

work during the selected week. Determine 

whether the WO is being performed in the 

intended sequence in accordance with the 

master project plan. (i.e., logic should tie this 

work to the other related projects). 

Cycle 

planning  

30 2% 

Total (minutes FTE per WO) 0.6 

 

Automated Unconditional Actions 

Input: Current WO, active projects list, and master project plan. 

Assign project sequence. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Active projects list and 

scheduled week or weeks for 

each in the master project plan Current WO Comparison 

Relevant scope 

week 

Active projects list and master 

project plan Current WO Review 

Sequence 

validation 
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B-8.  Project Week(s) Readiness 

It is necessary to determine if the project work is approved by projects management (which occurs 

during individual discussions among project team members or during one or more project review 

meetings) and is feasible in the preliminary scheduled week, given constraints associated with existing 

WOs. 

Current Decisions and Conditional Actions 

Input: Current and existing WOs. 

Are all projects scheduled for the preliminary scheduled week ready for implementation? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Check status of all the relevant projects for the 

week and consider any constraints. 

Cycle 

planning  

60 2% 

If yes Move WO to the project execution week Cycle 

planning  

3 0.2% 

If no None. NA 0 1.8% 

Total (minutes FTE per WO) 1.21 

Automated Decisions and Conditional Actions 

Input: Current and existing WOs. 

Are all projects scheduled for the preliminary scheduled week ready for implementation? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Existing relevant project WOs 

and ready labels 

Current WO Comparison Yes/No 

If yes NA 

If no NA 
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B-9.  Project Engineering Evaluation Review 

To successfully plan the WPs necessary to implement a project, engineering products such as drawing 

revisions, updated parameters, and set-point revisions must be performed, reviewed, and approved so they 

can be handed over to the maintenance work planners. This step reviews each of those engineering 

products to ensure that they will be ready to support WP planning. 

Current Decisions and Conditional Actions 

Input: Current WO and EC package. 

Is the applicable EC on track for completion to meet the project schedule? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Verify that all ECs listed in the EC package and 

referenced in the WO are in the complete status 

and that all drawings have been released for 

work. 

Engineering 30* 2% 

If yes None. NA 0 1.9% 

If no Identify additional resources necessary for 

completion of EC documentation or rescope the 

work into a different execution week. 

Engineering Out of 

scope 

0.1% 

Total (minutes FTE per WO) 0.6 

 With most project WOs, it is a reasonable effort (around 15 minutes) to determine whether the EC is ready. Some (about 

1%), however, require more research (around 45 minutes). This averages to 30 minutes per project WO. 

 

Automated Decisions and Conditional Actions 

Input: Current WOs and EC package, and engineering procedures. 

Is the applicable EC on track for completion to meet the project schedule? 

  

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process General-knowledge-enabled 

LLM 

Current EC 

package  

Classification 

(unsupervised) 

Yes/No 

Engineering procedure Current EC 

package 

Review Yes/No 

(and reason why 

it is not ready) 

If yes NA 

If no NA 
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B-10.  Project Need for Contractor Services 

Some projects are very involved and require many resources to implement. If the work cannot be 

performed within the allotted timeframe by the plant maintenance organization, then contracted services 

may be enlisted to ensure that the project is completed on time. This step evaluates the need for 

contracted services based on the work scope and available plant resources. 

Current Decisions and Conditional Actions 

Input: Current WO, contractor list, and staff resources dataset. 

Will some or all the project work need to be contracted out to an external vendor or vendors? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Determine if contracted resources (from the 

contractor list) will be necessary to execute the 

project by comparing work scope from WO, 

WO history for similar work, in-house 

resources, and contractor resources. 

Projects 10 2% 

If yes Prepare procurement requisition and purchase 

order for needed services. 

Procurement Out of 

scope 

0.7% 

If no None. NA 0 1.33% 

Total (minutes FTE per WO) 0.2 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WOs and EC package, and staff resources dataset. 

Will some or all the project work need to be contracted out to and external vendor or vendors? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs and EC package 

contract decisions 

Current WO and 

EC package 

Structuring and 

classification 

(supervised) 

Yes/No 

Historical WOs and EC 

packages resources 

Current WO and 

EC package 

Structuring and 

classification 

(supervised) 

Resources 

needed* 

If yes NA 

If no NA 

 AI can support this activity by providing the resources needed, but human review is needed after consulting with 

scheduling. 
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B-11. Work Order Activities Creation 

Each WO has initially one default activity. Additional WO activities may need to be created to ensure 

that related work steps, indirectly associated with the main scope (e.g., scaffolding), are completed. This 

step creates as many WO activities as necessary. 

Current Decisions and Conditional Actions 

Input: Current and historical WOs.  

Do additional WO activities need to be created to complete the work scope? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Evaluate the work scope and previous similar 

WOs to determine if additional WO activities 

need to be created to ensure that the work scope 

can be properly scoped, planned, scheduled, and 

executed. 

Maintenance  30 50% 

If yes Create additional WO activities. Maintenance  8* 35% 

If no None. NA 0 15% 

Total (minutes FTE per WO) 17.8 

 With most project WOs, it is a reasonable effort (around 10 minutes) to create activities. Project WOs (about 2%), 

however, require more research (around 240 minutes). This averages to 8 minutes per project WO. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WOs.  

Do additional WO activities need to be created to complete the work scope? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs and activities Current WO Classification 

(supervised) 

Yes/No 

If yes Historical WOs and activities Current WO Generation Activities for 

new WOs 

Historical WOs New activities Insertion Detailed 

activities 

Historical WOs New activities Guidance Detailed 

activities 

If no NA 
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B-12. Resources Estimation 

At this stage of scoping, it is desired to determine the needed work resources for the work scope 

defined earlier. The goal is to make an initial estimate, providing a basis for early decision-making in the 

scoping process. 

Unconditional Actions 

Input: Current and historical WOs. 

Prepare a high-level overview of resources needed to complete the work. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Prepare an overview of resource estimation to 

complete the work. Review similar previous 

projects for reference. Additionally, prepare an 

overview of work hour estimation to complete 

the work. 

Maintenance 6 50% 

Total (minutes FTE per WO) 3 

 

Automated Unconditional Actions 

Input: Current and historical WOs, and qualification database. 

Prepare a high-level overview of resources needed to complete the work. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs and resources 

allocated 

Current WO Classification 

(supervised) 

Resources 

needed for 

similar work 

Qualification database and 

general-knowledge-enabled 

LLM 

Current WO Classification 

(unsupervised) 

Needed 

qualifications  

Historical WOs and resources 

allocated 

Current WO Estimation Hours needed 
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B-13. Resources Availability 

All work that is scheduled for a particular workweek must be tabulated to ensure that adequate 

resources are available to perform all scheduled work. This step ensures that all available resources (plant 

and contracted) are available to perform the work scheduled within the execution week. Assigning 

specific staff is handled during scheduling, when resources are matched to the work scope to ensure full 

utilization. 

Current Decisions and Conditional Actions 

Input: Current WO, maintenance staffing plan, and qualification database. 

Are sufficient in-house and/or contractor staff available during the preliminary scheduled week to 

perform the work? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Determine if maintenance or contracted 

resources are available to support the work 

scope for the equipment to be worked on. 

Search the training and qualification databases 

to determine if workers have the current 

qualifications to support the work scope to be 

performed. 

Maintenance 12* 50% 

If yes None. 

 

NA 0 45% 

If no Verify options for rescheduling the work to an 

alternative time or acquiring additional 

resources to perform the work in the selected 

timeframe. 

Maintenance 30 5% 

Total (minutes FTE per WO) 7.5 

 With most WOs, it is a trivial effort to determine whether the work will involve significant or unusual resources. Some 

(about 20%), however, require more research (around 60 minutes). This averages to 12 minutes per WO. 

 

Automated Decisions and Conditional Actions 

Input: Current WO, maintenance staffing plan, and qualification database. 

Are sufficient in-house and/or contractor staff available during the scheduled week to perform the work? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Maintenance staffing plan, and 

qualification database 

Current WO Review Yes/No  

(and staff 

availability) 

If yes NA 

If no NA 
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B-14. Plant/Fleet/Corporate Schedule 

When a plant is part of a fleet or there are other proximal plants that share resources (e.g., personnel, 

tools) for a specific type of work, the availability of these resources must be considered to ensure that 

scheduling milestones are met. Some items in the plant/fleet/corporate schedule (e.g., outage at other unit, 

inspection) could impact whether resources are available to perform this work. 

Current Decisions and Conditional Actions 

Input: Current WO, resources available at other plant/fleet units, and schedule for other plant/fleet units. 

Does this work involve resources that could be needed from another unit in the plant or fleet? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Determine if the resources needed are not in-

unit and need to be resourced from other plants. 

Cycle 

planning  

2* 50% 

If yes Evaluate options to align with other plant/fleet 

resources availability, including rescheduling 

the work, or move the work to the outage 

schedule. 

Cycle 

planning  

30 3% 

If No None. NA 0 47% 

Total (minutes FTE per WO) 1.9 

 With most WOs, it is a trivial effort to determine whether the work will involve fleet or corporate resources. Some (about 

5%), however, require more research (around 40 minutes). This averages to 2 minutes per WO. 

 

Automated Decisions and Conditional Actions 

Input: Current WO, resources available at other plant/fleet units, and schedule for other plant/fleet units. 

Does this work involve resources that could be needed from another unit in the plant or fleet? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs out-of-plant 

used resources 

Current WO Structuring and 

classification 

(supervised) 

Yes/No 

If yes Resources available at other 

plant/fleet units, and schedule 

for other plant/fleet units 

Current WO 

(resources 

estimate) 

Review Staff availability 

If no NA 
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B-15. Technical Specifications 

Technical specifications need to be considered when scoping work. This ensures that inoperability 

time of associated equipment is minimized, and that other related equipment is available to provide 

required redundancy for probabilistic risk assessment (PRA) considerations.  

Current Decisions and Conditional Actions 

Input: Current WO and technical specifications. 

Will the scheduled work have an impact on equipment governed by technical specifications? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Determine whether the equipment affected by 

the work is safety-related equipment, and 

whether the scope of work affects technical 

specifications compliance. 

Operations 6* 50% 

If yes Risk analysis will be needed to complete 

scoping of the work. 

Risk 

management 

Out of 

scope 

5% 

If no None. NA 0 45% 

Total (minutes FTE per WO) 3 

 With most WOs, it is a trivial effort to determine whether the work will affect technical specifications. Some (about 

10%), however, require more research (around 60 minutes). This averages to 6 minutes per WO. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WOs, MEL, and technical specifications. 

Will the scheduled work have an impact on equipment governed by technical specifications? 

  

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs and technical 

specifications labels* 

Current WO Classification 

(supervised) 

Yes/No 

MEL technical specifications 

labels 

Current WO Comparison Yes/No 

Technical specifications Current WO Review Yes/No 

If yes NA 

If no NA 

 If the technical specification label is available. 
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B-16. Unit Down Power 

In some cases, a unit down power will be necessary to ensure that the work is performed safely, and 

to minimize the risk of a unit trip, or the potential for an unplanned impact on reactivity. Other 

considerations that affect whether a derate is necessary include radiological and unfavorable work 

environment, depending on the area in which the work is being performed. 

Current Decisions and Conditional Actions 

Input: Current WO, operations procedures, MEL, and technical specifications. 

Is a down power necessary to execute the work during the execution week? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Determine if the work scope will force a derate 

due to technical specifications compliance, and 

if the work is intrusive and would disable the 

equipment Compare the WO equipment to the 

equipment of MEL that requires a derate. 

Operations 6* 50% 

If yes Initiate plans for performing a unit derate during 

the execution week. Coordinate with the utility 

grid operator. 

Operations Out of 

scope 

1% 

If no None. NA 0 49% 

Total (minutes FTE per WO) 3 

 With most WOs, it is a trivial effort to determine whether the work requires a down power. Some (about 10%), however, 

require more research (around 60 minutes). This averages to 6 minutes per WO. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WOs, operations procedures, plant process computer, MEL, and technical 

specifications.  

Is a down power necessary to execute the work during the execution week? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs and downrate 

labels (using plant computer) 

Current WO Classification 

(supervised) 

Yes/No 

MEL down power label Current WO Comparison Yes/No 

Operations procedures and 

technical specifications 

Current WO Review Yes/No 

If yes NA 

If no NA 
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B-17. Chemistry Impact 

There are various systems and components that can impact reactors or other important system 

chemistry parameters when they are unavailable. The sustained unavailability of plant-chemistry-related 

equipment can degrade a reactor vessel and associated piping. Reducing the unavailability of this 

equipment is the desired goal when working on any component or system that can affect the availability 

of this equipment. The impact of the work on chemistry needs to be evaluated. 

Current Decisions and Conditional Actions 

Input: Current WO and plant chemistry parameters and procedures. 

Will the scheduled work impact plant chemistry? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Determine if the equipment within the WO is 

chemistry-related equipment and assess the 

impact of the work on plant chemistry. 

Chemistry 3* 50% 

If yes Identify necessary mitigation strategies and 

associated resources (evaluations, chemicals, 

vendors, equipment, other resources). 

Chemistry Out of 

scope 

5% 

If no None. NA 0 45% 

Total (minutes FTE per WO) 1.5 

 With most WOs, it is a trivial effort to determine whether the work impacts the plant chemistry. Some (about 10%), 

however, require more research (around 60 minutes). This averages to 3 minutes per WO. 

 

Automated Decisions and Conditional Actions 

Input: Current WO, MEL, and plant chemistry parameters and procedures. 

Will scheduled work impact plant chemistry? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Chemistry words and general-

knowledge-enabled LLM Current WO 

Classification 

(unsupervised) Yes/No 

MEL chemistry labels Current WO Comparison Yes/No 

Chemistry parameters and 

procedures Current WO Review Yes/No 

If yes NA 

If no NA 
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B-18. Reactivity Effect 

Various plant systems and components can either directly or indirectly impact nuclear reactivity when 

they are worked on, or when they are made unavailable to allow for work on other components within a 

functional location. If reactivity will be affected, compensatory work may also be performed to ensure 

that all reactivity impact is planned and quantified as expected. 

Current Decisions and Conditional Actions 

Input: Current WO, MEL, and system drawings. 

Will this work, possibly in conjunction with other scheduled work, result in unacceptable reactivity 

effects? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Compare the WO equipment to system 

drawings to determine if the equipment has been 

identified as reactivity-related equipment. 

Consult the MEL to identify reactivity-related 

equipment and leverage operations staff 

experience for any other equipment that could 

indirectly affect reactivity. 

Operations 6* 50% 

If yes Evaluate options for rescheduling the work or 

moving the work to the outage schedule. 

Cycle 

planning 

0** 2% 

If No None. 

 

NA 0 48% 

Total (minutes FTE per WO) 3 
 With most WOs, it is a trivial effort to determine whether the work will impact reactivity. Some (about 10%), however, 

require more research (around 60 minutes). This averages to 6 minutes per WO. 

      This action involves repeating some steps outlined in this appendix. The time is set to zero because this time has already 

been accounted for in the step time estimates, as specified in the report assumptions. 

 

Automated Decisions and Conditional Actions 

Input: Current WO, MEL, operations procedures, and system drawings. 

Will this work, possibly in conjunction with other scheduled work, result in unacceptable reactivity 

effects? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Reactivity words Current WO Classification 

(unsupervised) 

Yes/No 

MEL reactivity labels Current WO Comparison Yes/No 

Operations procedures and 

system drawings 

Current WO Review Yes/No 

If yes NA 

If no NA 
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B-19. Reactor Coolant System Effect 

Maintaining reactor coolant parameters such as level and pressure ensures that required and adequate 

reactor cooling margins are maintained throughout the timeframe during which the work on the 

equipment or related equipment is being executed. Maintaining those margins is necessary to ensure that 

the reactor coolant can adequately perform its function.  

Current Decisions and Conditional Actions 

Input: Current WO, reactor coolant system equipment list, lessons learned in operating experience (OE) 

database. 

Will this work, possibly in conjunction with other scheduled work, result in unacceptable effects on 

reactor coolant system parameters? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Determine if the WO affects reactor coolant 

system equipment by comparing the equipment 

listed in the WO with the reactor coolant system 

equipment list and its associated systems. 

Additionally, search external OE to assess 

whether the work on this equipment could impact 

reactor coolant system equipment. 

Operations 3* 50% 

If yes Evaluate options for rescheduling the work or 

moving the work to the outage schedule. 

Cycle 

planning 

0** 2% 

If no None.  NA 0 48% 

Total (minutes FTE per WO) 1.5 

 With most WOs, it is a trivial effort to determine whether the work will impact reactor coolant systems. Some (about 

10%), however, require more research (around 30 minutes). This averages to 3 minutes per WO. 

      This action involves repeating some steps outlined in this appendix. The time is set to zero because this time has already 

been accounted for in the step time estimates, as specified in the report assumptions. 

Automated Decisions and Conditional Actions 

Input: Current WO, reactor coolant system equipment list, operation procedure, and lessons learned in OE 

database. 

Will this work, possibly in conjunction with other scheduled work, result in unacceptable effects on 

reactor coolant system parameters? 

  

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Reactor coolant words Current WO Classification 

(unsupervised) 

Yes/No 

Reactor coolant system 

equipment list 

Current WO Comparison Yes/No 

Operations procedures and OE Current WO Review Yes/No 

If yes NA 

If no NA 
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B-20. Redundant Structures, Systems, and Components Effect  

A robust plant design ensures reactor safety and reliability with redundant equipment that must 

remain unaffected during work execution to maintain its functional availability. If redundancy is 

impacted, the work can be rescheduled, or compensatory measures can be implemented to ensure plant 

safety and reliability. Additionally, a further review of technical specifications is conducted to understand 

any limitations on the availability or operability of redundant equipment. 

Current Decisions and Conditional Actions 

Input: Current WO, system drawings, and work schedule. 

Will this work affect redundancy of a component, train, or system? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Determine if there is any redundant equipment 

by comparing the WO with system drawings. 

Verify if a redundant component, train, or system 

has work scheduled during the same timeframe. 

Operations 2* 50% 

If yes Evaluate options for rescheduling the work or 

moving the work to the outage schedule. 

Cycle 

planning 

0** 5% 

If no None. NA 0 45% 

Total (minutes FTE per WO) 1 

 With most WOs, it is a trivial effort to determine whether the work will impact redundant SSCs. Some (about 10%), 

however, require more research (around 20 minutes). This averages to 2 minutes per WO. 

      This action involves repeating some steps outlined in this appendix. The time is set to zero because this time has already 

been accounted for in the step time estimates, as specified in the report assumptions. 

Automated Decisions and Conditional Actions 

Input: Current WO, MEL, system drawings, and work schedule. 

Will this work affect redundancy of a component, train, or system? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process MEL redundant systems labels Current WO Comparison Yes/No  

System drawings Current WO Structuring  Yes/No  

If yes NA 

If no NA 
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B-21. Plant Transient 

Engineered safety features (ESFs) are design elements intended to prevent accidental releases of 

reactor fission products or to protect the public in the event of such releases from the reactor coolant 

system. ESFs can include systems like emergency core cooling. They should not be activated 

unintentionally during normal plant operations. Unplanned activation of these systems or other plant 

transients may occur during maintenance work, potentially eroding safety margins and reducing plant 

reliability.  

Current Decisions and Conditional Actions 

Input: Current WO and operational procedures.  

Could this work, possibly in conjunction with other scheduled work, potentially result in a plant transient 

or the actuation of an ESF? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Compare the work scope against operations 

procedures to identify if a plant transient or ESF 

actuation could result from performing the 

work. 

Operations 2* 50% 

If yes Determine if the operations procedures identify 

alternative configurations for completing the 

work or for mitigating risk or move to outage. 

Operations 45 2% 

If no None. NA 0 48% 

Total (minutes FTE per WO) 1.9 

 With most WOs, it is a trivial effort to determine whether the work will result in a transient. Some (about 10%), however, 

require more research (around 20 minutes). This averages to 2 minutes per WO. 

 

Automated Decisions and Conditional Actions 

Input: Current WO, MEL, and operations procedures. 

Could this work, possibly in conjunction with other scheduled work, potentially result in a plant transient 

or the actuation of an ESF? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs and plant 

transient (from process 

computer) 

Current WO Classification 

(supervised) 

Yes/No 

MEL transient labels Current WO Comparison Yes/No 

Operations procedures Current WO Review Yes/No 

If yes Operations procedures Current WO Summarization Alternative 

configuration 

If no NA 
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B-22. Surveillance Schedule 

To maintain technical specification compliance as well as to ensure that condition-based monitoring 

is performed for plant reliability, surveillances are performed within set frequencies. If the surveillances 

are not performed within the required window, regulatory requirements may not be met, or important 

information that is necessary to prevent unplanned equipment failures may not be obtained. The WO 

needs to be evaluated against the surveillance schedule to ensure surveillances are performed as required. 

Current Decisions and Conditional Actions 

Input: Current WO and operational surveillance database. 

Will this work interfere with any scheduled surveillances that need to be performed during the same time? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Compare the WO scope to operational 

surveillance databases to determine if any 

scheduled surveillances will be impacted or 

delayed because of the work to be performed. 

Operations 6* 50% 

If yes Evaluate options for rescheduling the work. Cycle 

planning 

0** 5% 

If no None. NA 0 45% 

Total (minutes FTE per WO) 3 

 With most WOs, it is a trivial effort to determine whether the work will impact the surveillance schedule. Some (about 

10%), however, require more research (around 60 minutes). This averages to 6 minutes per WO. 

      This action involves repeating some steps outlined in this appendix. The time is set to zero because this time has already 

been accounted for in the step time estimates, as specified in the report assumptions. 

 

Automated Decisions and Conditional Actions 

Input: Current WO, MEL, and operational surveillance database. 

Will this work interfere with any scheduled surveillances that need to be performed during the same time? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Operational surveillance 

equipment and planned time, 

and MEL surveillance labels 

Current WO Comparison Yes/No 

If yes NA 

If no NA 
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B-23. Seasonal Impacts 

Weather extremes can impact work that is to be performed and can reduce required equipment 

availability times as well as result in damage to equipment if associated heating and cooling are not 

available as designed. Also, the work may result in unacceptable risk during a sensitive season of the 

year. Seasonal impacts need to be considered when scoping work on equipment that can be impacted by 

the weather. 

Current Decisions and Conditional Actions 

Input: Current WO, historical WPs, and operations procedures. 

Is there the potential for weather to negatively impact the work for when it is scheduled? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Search operations procedures and historical 

WPs to determine if the subject equipment or 

any downstream equipment can be affected by 

extreme weather conditions. 

Operations 6* 50% 

If yes Evaluate options for rescheduling the work. Cycle 

planning 

0** 1% 

If no None. NA 0 49% 

Total (minutes FTE per WO) 3 

 With most WOs, it is a trivial effort to determine whether the work will be impacted by seasonal factors. Some (about 

10%), however, require more research (around 60 minutes). This averages to 6 minutes per WO. 

      This action involves repeating some steps outlined in this appendix. The time is set to zero because this time has already 

been accounted for in the step time estimates, as specified in the report assumptions. 

 

Automated Decisions and Conditional Actions 

Input: Current WO, historical WPs, and operations procedures. 

Is there the potential for weather to negatively impact the work for when it is scheduled? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs for the WO 

equipment and references to 

weather-related issues 

Current WO Comparison and 

structuring 

 

Operations procedures Current WO Review Yes/No 

If yes NA 

If no NA 
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B-24. Grid Instability 

Although most utilities have electricity contracts that provide a certain level of predictability with the 

electrical grid, factors outside the plant’s control, such as unexpected low-voltage conditions, can impact 

the availability of certain equipment. The potential for unexpected grid stability issues and factors 

affecting the compensatory equipment supporting the plant must be considered. Additionally, any work 

that may pose an unacceptable risk to the grid during the scheduled time should also be evaluated. 

Current Decisions and Conditional Actions 

Input: Current WO, electrical diagrams, and utility grid policy/procedures. 

Will this work result in unacceptable risk to the grid or to the plant because of potential grid instability? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Review electrical diagrams and utility grid 

policies/procedures to determine if the 

equipment is related to electrical systems that 

are critical to or dependent on the grid, and 

evaluate the available backup power equipment 

options 

Operations 2* 50% 

If yes Evaluate options for rescheduling the work or 

moving the work to the outage schedule. 

Cycle 

planning 

0** 1% 

If no None. NA 0 49% 

Total (minutes FTE per WO) 1 

 With most WOs, it is a trivial effort to determine whether the work will impact the grid. Some (about 3%), however, 

require more research (around 60 minutes). This averages to 2 minutes per WO. 

     This action involves repeating some steps outlined in this appendix. The time is set to zero because this time has already 

been accounted for in the step time estimates, as specified in the report assumptions. 

 

Automated Decisions and Conditional Actions 

Input: Current WO, MEL, electrical diagrams, OE, and utility grid policy/procedures. 

Will this work result in unacceptable risk to the grid or to the plant because of potential grid instability? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Grid electrical equipment words 

and general-knowledge-enabled 

LLM 

Current WO Classification 

(unsupervised) 

Yes/No 

MEL grid electrical equipment 

or OE 

Current WO Comparison Yes/No 

Electrical diagrams and utility 

grid policy/procedures 

Current WO Review Yes/No 

If yes NA 

If no NA 
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B-25. Containment Integrity/Heat Removal 

The potential impact of the work on containment integrity and the ability to remove heat generated by 

plant operations or during shutdown conditions needs to be evaluated. Any potential negative impacts on 

any critical nuclear safety boundaries such as containment (and its structural and leak integrity) or heat 

removal systems must be considered when scoping the work to ensure that these impacts are minimized 

or that compensatory actions are taken. 

Current Decisions and Conditional Actions 

Input: Current WO, MEL, system drawings, and operations procedures. 

Does this work have the potential to impact the containment integrity or the ability to remove heat from 

the reactor? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Determine if the WO equipment is designated as 

part of the containment boundary or heat removal 

in the MEL. Use system drawings and operating 

procedures to verify the typical requirements and 

constraints for conducting the work. 

Operations 6* 50% 

If yes Evaluate options for rescheduling the work or 

moving the work to the outage schedule. 

Cycle 

planning 

0** 1% 

If no None. NA 0 49% 

Total (minutes FTE per WO) 3 

 With most WOs, it is a trivial effort to determine whether the work will impact containment integrity/heat removal. Some 

(about 10%), however, require more research (around 60 minutes). This averages to 6 minutes per WO. 

      This action involves repeating some steps outlined in this appendix. The time is set to zero because this time has already 

been accounted for in the step time estimates, as specified in the report assumptions. 

 

Automated Decisions and Conditional Actions 

Input: Current WO, MEL, system drawings, and operations procedures. 

Does this work have the potential to impact the containment integrity or the ability to remove heat from 

the reactor? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Containment or reactor coolant 

words 

Current WO Classification 

(unsupervised) 

Yes/No 

MEL containment and heat 

removal labels 

Current WO Comparison Yes/No 

System drawings and operations 

procedures 

Current WO Review Yes/No 

If yes NA 

If no NA 

  



 

158 

 

B-26. Cycle Timing 

During unit startup after an outage, or during unit coast down when a plant is long into its operational 

cycle, the characteristics of the plant are different from those during normal plant operations. Cyclical 

impacts can change the operational characteristics of certain plant equipment, making them different than 

during normal operations. These differences must be considered when performing work within these 

timeframes. 

Current Decisions and Conditional Actions 

Input: Current WO, operations procedures, and OE database. 

Will this work have an adverse impact on personnel or equipment based on when it is scheduled in the 

cycle? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Compare the work scope to the operations 

procedures and OE database to determine any 

cyclical impacts. Operations 6* 50% 

If yes Evaluate options for rescheduling the work. Cycle 

planning 0** 1% 

If no 

None. NA 0 49% 

Total (minutes FTE per WO) 3 

 With most WOs, it is a trivial effort to determine whether the work will be impacted by cycle timing. Some (about 10%), 

however, require more research (around 60 minutes). This averages to 6 minutes per WO. 

      This action involves repeating some steps outlined in this appendix. The time is set to zero because this time has already 

been accounted for in the step time estimates, as specified in the report assumptions. 

 

Automated Current Decisions and Actions 

Input: Current WO, operations procedures, and OE database. 

Will this work have an adverse impact on personnel or equipment based on when it is scheduled in the 

cycle? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Operations procedures and OE 

database 

Current WO Review Yes/No 

If yes NA 

If no NA 
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B-27. Plant Security 

In some cases, work can impact the plant security plan by causing equipment necessary for meeting 

security plan requirements to be unavailable or of diminished capacity. Security requirements need to be 

considered when planning work for equipment that can affect the security plan. 

Current Decisions and Conditional Actions 

Input: Current WO and security equipment configuration documentation. 

Will this work adversely affect the site protection strategy? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Determine if the work to be performed can 

impact security equipment that is necessary to 

protect the plant and consult with site security. 

Security 1* 50% 

If yes Evaluate options for mitigating risk. Security Out of 

scope 

3% 

If no None. NA 0 47% 

Total (minutes FTE per WO) 0.5 

 With most WOs, it is a trivial effort to determine whether the work will impact security. Some (about 10%), however, 

require more research (around 10 minutes). This averages to 1 minute per WO. 

 

Automated Decisions and Conditional Actions 

Input: Current WO, MEL, and security equipment configuration documentation. 

Will this work adversely affect the site protection strategy? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Security words and general-

knowledge-enabled LLM 

Current WO Classification 

(Unsupervised) 

Yes/No 

MEL security equipment labels Current WO Comparison Yes/No 

Security equipment 

configuration documentation 

Current WO Review Yes/No 

If yes NA 

If no NA 
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B-28. Maintenance Rule 

Maintenance-rule-related equipment has associated regulatory time clocks tracking the system or 

component unavailability. When maintenance-rule-related equipment unavailability exceeds the set 

unavailability limit, additional regulatory measures are taken to preserve the remaining availability time 

of this equipment. It is therefore important to consider that maintenance rule time clocks for maintenance-

rule-related equipment. 

Current Decisions and Conditional Actions 

Input: Current WO and maintenance rule database. 

Will the work result in unacceptable levels of equipment availability? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Compare the work equipment to the 

maintenance rule database, and if it is included, 

determine whether the work will impact 

equipment availability. 

Engineering 3* 50% 

If yes Evaluate options for rescheduling the work to an 

alternative time or means for minimizing 

unavailability time. 

Cycle 

planning 

30 1% 

If no None. NA 0 49% 

Total (minutes FTE per WO) 1.8 
 With most WOs, it is a trivial effort to determine whether the work will impact maintenance rule functions. Some (about 

10%), however, require more research (around 30 minutes). This averages to 3 minutes per WO. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WO and maintenance rule database. 

Will the work result in unacceptable levels of equipment availability? 

  

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Maintenance rule database Current WO Comparison Yes/No 

Historical WOs and equipment 

loss time 

Current WO Estimation Unavailability 

estimate 

If yes NA 

If no NA 
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B-29. Risk Screening 

If the work performed could impact plant risk, it is input into a software program that aggregates 

overall risk to make sure that approved risk levels are not exceeded. The aggregate PRA risk is calculated 

for all work scheduled within the execution week to ensure the risk is acceptable. 

Current Decisions and Conditional Actions 

Input: Current WO and PRA software model. 

Does the work scope introduce risk to the plant? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Update the PRA model software with the 

equipment condition to determine if there is any 

impact change to the PRA. 

Engineering Out of 

scope 

50% 

If yes Consider compensatory actions that can be 

taken to reduce the aggregate risk to the plant’s 

safety. 

Engineering 240 1% 

If no None. NA 0 49% 

Total (minutes FTE per WO) 2.4 

 

Automated Decisions and Conditional Actions 

Input: Current WO and PRA software model. 

Does the work scope introduce risk to the plant? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA 

If yes NA* 

If no NA 
 Risk optimization can benefit from using AI, but this is outside the scope of the current effort. 
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B-30. Work Scope Clarity and Conciseness 

The scope of the work needs to be clear and concise. A final check ensures that the appropriate 

resources, evaluations, and timeframes are well understood and that the work is accurately scoped within 

the allotted week. Additionally, the accuracy of the scope of work is evaluated to ensure it is useful for 

work planning. 

Current Decisions and Conditional Actions 

Input: Current WO. 

Is the WO scope clear and concise? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Review the work scope to ensure that all 

decisions are made correctly and documented 

appropriately, and that the WO is written in an 

acceptable manner. 

Maintenance 

SRO 

3 50% 

If yes Add additional notes if needed. NA 1 40% 

If no Clarify work scope and consider rescoping if the 

work scope changes are significantly different 

than when WO was created. 

Maintenance 

SRO 

30 10% 

Total (minutes FTE per WO) 4.9 

 

Automated Decisions and Conditional Actions 

Input: Current WO and work management procedure. 

Is the WO scope clear and concise? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Work management procedure Current WO Review Yes/No 

If yes Historical WOs  Current WO Guidance Notes  

Historical WOs  Current WO Insertion Notes  

If no 

Work management procedure Current WO Generation 

Issues and 

discrepancies 
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B-31. Integrated Risk Screening for Execution Week 

Aside from PRA there are other types of safety risks that must be considered for an execution week. 

Each task itself may not pose a decreased safety margin, but in aggregate these risks could result in 

eroded safety margins such that risk-mitigating measures need to be taken. This step evaluates the overall 

integrated risk to the plant for the respective execution week. 

Current Unconditional Actions 

Input: Current and historical WOs, work management database, OE, and PRA results. 

Consider risk associated with the work and develop mitigation strategies to be employed with the work. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Aggregate the risk for all work scheduled for 

the execution week, compare the risk against 

historical WOs data and OE, and identify any 

impacts that will reduce any type of safety, 

radiological, or environmental margins not 

previously evaluated in any other step of the 

scoping process. 

Cycle 

planning 

15 50% 

Total (minutes FTE per WO) 7.5 

 

Automated Unconditional Actions 

Input: Current and historical WOs, work management database, OE, and PRA results. 

Consider risk associated with the work and develop mitigation strategies to be employed with the work. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA* 

 This process is too risky and complicated to automate. 
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B-32. Priority Assignment Validation 

When WOs are created from condition screening, projects, or other sources, they are given an 

immediate priority to help with the scoping of the work. After all the research is done, especially for the 

risk evaluations, the priority of the work can either be escalated or downgraded. This step is performed to 

validate the initial priority assigned to the work and to ensure that work management requirements for 

priority are followed correctly. 

Current Decisions and Conditional Actions 

Input: Current and historical WOs and work management procedures. 

Is the assigned priority accurate? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Compare the current WO information to 

previous work and the work management 

procedure to ensure that the proper WO priority 

is assigned to the subject work. 

Cycle 

planning 

0.5 50% 

If yes None. NA 0 47% 

If no Modify the priority and provide justification. Cycle 

planning 

0 3% 

Total (minutes FTE per WO) 0.25 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WOs and work management procedures. 

Is the assigned priority accurate? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs and priority 

labels 

Current WO Classification 

(supervised) 

Yes/No 

Work management procedures Current WO Review Yes/No 

If yes NA 

If no Work management procedures Current WO Generation Justification 
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B-33. Priority Work Rank 

Once the priorities are assigned to each WO scoped into the work execution week, the work is ranked 

to ensure that the highest-priority WOs are completed within their scheduled requirements. Each WO is 

ranked against the rest of the work scheduled for the week to determine which tasks can be delayed, if 

necessary, and which must be completed as scheduled. As a result, it is important to avoid scheduling too 

many high-priority WOs in the same week. 

Current Unconditional Actions 

Input: Current WO and planned WOs for the same duration. 

Rank the current WO according to priority in comparison to other work. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Compare the priority of the WO to the priorities 

of other planned WOs, consider overlap of 

needed resources, and consult the work 

management procedure for requirements on 

work sequencing.  

Cycle 

planning 

3 50% 

Total (minutes FTE per WO) 1.5 

 

Automated Unconditional Actions 

Input: Current and historical WOs and planned WOs for the same duration. 

Rank the current WO according to priority in comparison to other work. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Planned WOs and assigned 

resources 

Current WO  Comparison Similar resources  

Historical WOs completion 

times 

Current and 

planned WOs 

Estimation Time to execute 

the work 

Planned WOs resources and 

execution times 

Current WO  Review Optimal ranking 

of WOs 
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B-34. Preventive Maintenance Grace Periods 

PM WOs are assigned a priority along with all WOs scheduled to be performed within the workweek. 

Some PM is regulatorily required, with grace periods being strictly adhered to when the WO priority is 

assigned. If a PM WO is to be moved to a different week, it is important that the PM has minimal impact 

on regulatory margins or plant reliability. If the grace period needs to be exceeded, then a PM change is 

needed.  

Current Decisions and Conditional Actions 

Input: Current WO and planned PM WO for the same duration. 

Is a PM change needed for a PM WO that is scheduled in the same week? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WO 

Process Consider all priorities of work assigned to the 

week. Determine if there is a risk of the PM WO 

going beyond the grace period.  

Cycle 

planning 

3 50% 

If yes Create a PM change request. Maintenance  Out of 

scope 

1% 

If no None. NA 0 49% 

Total (minutes FTE per WO) 1.5 

 

Automated Decisions and Conditional Actions 

Input: Current WO and planned PM WO for the same duration. 

Is a PM change needed for the PM WO that is scheduled in the same week? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA* 

If yes NA 

If no NA 

 This is a simple lookup from a database table. No AI automation is needed. 
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Appendix C 
 

Mapping of Planning 

This appendix applies the approach of Section 4.1 to planning steps according to the flow shown in 

Figure 18. The following sections discuss each of those steps in detail.  

 

 

Figure 18. Flowchart of the planning steps that are discussed in Appendix C. 
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C-1. Need for Work Package 

The work scope for most WOs at an NPP are complex enough that instructions and various permits 

are required to complete the work. All these instructions and information related to the WO scope are 

known collectively as a WP. This step determines if the work scope is complex enough to require a WP. 

Current Decisions and Conditional Actions 

Input: Current WO. 

Does the WO need a WP for guidance? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

Per WP 

Process Determine if the work scope is complex 

(requires detailed work instructions, multiple 

work steps, system isolation, or permits for such 

as hot work, confined space, or FME, etc.). 

Work 

planning* 

3 133% 

If yes Flag that a WP is needed. Work 

planning 

0 100% 

If no Create minor or tool pouch maintenance 

instructions and pass it to fix-it-now team. 

(End of process) 

Fix-it-now 

planning 

30 33% 

Total (minutes FTE per WP) 14 

 Work planning is part of the maintenance organization. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WOs and historical WO to WP assignment table. 

Does the WO need a WP for guidance? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs and WPs 

assignment 

Current WO Classification 

(supervised) 

Yes/No 

If yes NA 

If no Historical WOs instructions. Current WO Generation Few instructions 

to conduct the 

work 
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C-2. Previous Similar Work Packages 

If a WP is required to complete the work scope, typically a previously completed WP for a similar 

work scope can be used as a template for the new work scope WP. This template can be updated and 

inform the WP planning process. If no previous WPs are similar enough to serve as the template for the 

new WP, an entirely new WP must be created with new content, though it may still benefit from content 

from previous WPs that have a somewhat similar work scope (but not similar enough to serve as a 

template). 

Current Unconditional Actions 

Input: Current WO and historical WPs 

Identify previously completed WPs that are similar to the WO scope. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Search for relevant previous WPs with a work 

scope similar to the current WP. Save all 

identified WPs for reference during the planning 

process. 

Work 

planning 

5 100% 

Total (minutes FTE per WP) 5 

 

Automated Unconditional Actions 

Input: Current and historical WOs and historical WPs. 

Identify previously completed WPs that are similar to the WO scope. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs and WPs 

assignment 

Current WO Comparison Similar WPs 
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C-3. Long Lead-Time Parts 

An important early step during the planning process is to determine if there are any parts needed for 

the work that are not readily available and will take a relatively long time (months) to procure and receive 

on site. Such parts need to be identified early to allow adequate time for procurement. Thus, this step is 

pursued as early as possible in the planning process. Additional long-lead parts may be identified as the 

planning process continues and additional information is gained, but initial efforts to procure long-lead 

parts are pursued early on with the best available information. 

Current Decisions and Conditional Actions 

Input: Current WO, similar WPs, and inventory dataset. 

Are any parts or materials that have a long lead time needed for the work to be performed? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Develop an initial parts list for the work scope 

focusing on major items that may have a longer 

lead time. Consider what was used in the similar 

WPs. Confirm if any part has a long lead time in 

the procurement system or request a lead time 

from the vendor. 

Work 

planning 

15 100% 

If yes Reserve parts. Work 

planning 

10 20% 

If no None. NA 0 80% 

Total (minutes FTE per WP) 17 

 

Automated Decisions and Conditional Actions 

Input: Current WO, similar WPs, and inventory dataset. 

Are any parts or materials that have a long lead time needed for the work to be performed? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs WPs 

assignment or similar WPs 

materials or parts list and lead 

time (from the inventory 

dataset) 

Current WO  Structuring and 

estimation 

Materials or parts 

lead time 

If yes NA 

If no NA 
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C-4. Existing or New Work Package Use  

After similar WPs have been identified as potential candidates to serve as templates for updating the 

new WP (see previous step), the work scope must be examined in a broader context to determine if the 

selected similar WPs are suitable templates based on all factors. For example, if it has been many years 

since the most recent similar WP was created, there may have been enough changes to procedures and 

policies on work instructions and permits that it would be better to start with a new WP rather than use 

this particular WP as a template. Or perhaps there have been changes to equipment or systems that mean 

the previous WP no longer adequately describes the current work scope. 

Current Decisions and Conditional Actions 

Input: Current WO and most similar WP. 

Has the work scope significantly changed since the last time the similar WP was used? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Compare the similar WP to the current WO 

scope and look for significant differences or 

inconsistencies. 

Work 

planning 

5 100% 

If yes The work scope has significantly changed. 

Begin creating a new WP from a blank 

template. 

Work 

planning 

5 25% 

If no Use the scope and instructions from the 

previous WP as a starting point for the new WP. 

Work 

planning 

5 75% 

Total (minutes FTE per WP) 10 

 

Automated Decisions and Conditional Actions 

Input: Current WO, similar WP, and historical WPs. 

Has the work scope significantly changed since the last time the similar WP was used? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Similar WP Current WO Summarization WO meets WP 

scope or 

similarities and 

differences 

If yes Similar WP Current WO Generation Template WP 

If no Historical WPs Current WO Generation Generic 

Template WP 

Historical WPs Current WO Guidance General 

instructions 

Historical WPs Current WO Insertion General 

instructions 
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C-5. Similar Work Packages Review for Information 

If no previously completed WP is similar enough to directly serve as a template to be updated for the 

new WP, there may still be previously completed WPs that are close enough to provide useful content and 

information for developing the new WP. These WPs may not be for the exact same equipment or may 

have slightly different work scope, and such differences need to be considered when developing work 

instructions and new WP content. 

Current Decisions and Conditional Actions 

Input: Current and similar WPs. 

Are there any similar previously completed WPs information that can be used to help create the new WP? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Search in similar WPs with a focus on content, 

that will be helpful in creating the new WP. 

Work 

planning 

15 25% 

If yes Save content from similar WP(s) to a new WP 

template. 

Work 

planning 

15 13% 

If no None. Work 

planning 

0 12% 

Total (minutes FTE per WP) 5.7 

 

Automated Decisions and Conditional Actions 

Input: Current WP and similar WPs. 

Are there any similar previously completed WPs information that can be used to help create the new WP? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Similar WPs Current WP Summarization Similarities 

If yes Similar WPs Current WP Generation Similar 

instructions  

Similar WPs Current WP Structuring Useful 

information 

If no NA 
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C-6. Needed Technical Information 

For a new WP (created from a blank template instead of from a previously completed WP used as a 

template), a certain level of understanding of the equipment involved is necessary to complete the work 

instructions for the desired work scope. Technical documentation may be in various repositories and 

formats at the power plant, and it may be necessary to compile these documents for easy access. In 

addition to finding and collecting equipment technical information, a work planner will review the 

information and take notes on aspects of the identified data that will be useful for the given work scope. 

Current Unconditional Actions 

Input: Current and historical WPs, ECs and drawings, and manufacturer/vendor technical manuals. 

Compile applicable technical information that is available. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Search out and compile applicable technical 

information that is available for the equipment 

and become familiar with how the equipment 

works and what needs to be done in the work 

scope to ensure future equipment performance. 

Consult with engineering personnel as needed 

and make notes of any particular aspects of the 

equipment to keep in mind for planning the 

work scope. 

Work 

planning 

60 25% 

Total (minutes FTE per WP) 15 

 

Automated Unconditional Actions 

Input: Current and historical WPs, ECs and drawings, and manufacturer/vendor technical manuals. 

Compile applicable technical information that is available. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs technical 

information 

Current WP Comparison and 

structuring 

Critical 

technical 

information 

ECs and drawings, and 

manufacturer/vendor technical 

manuals 

Current WP Summarization  Critical 

technical 

information  
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C-7. Work Instructions 

If there is not an existing ready-to-use template for work instructions that can be directly applied to 

the new work scope of a new WP, some level of writing will likely be required to produce the work 

instructions for the new scope. In some cases, generating work instructions may be as simple as 

referencing existing procedures, whereas in other cases it may require drafting new work steps. 

Current Unconditional Actions 

Input: Current and historical WPs. 

Draft work instructions. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Draft work instructions for the work scope, 

referencing existing procedures as needed. 

Work 

planning 

60 25% 

Total (minutes FTE per WP) 15 

 

Automated Unconditional Actions 

Input: Current and historical WPs and procedures. 

Draft work instructions. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs procedures Current WP Generation New 

instructions 

Historical WPs procedures Current WP Guidance New 

instructions 

Historical WPs procedures Current WP Insertion New 

instructions 
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C-8. Incorporate Operating Experience  

Each WP should incorporate the latest industry lessons learned, industry OE, and improvements 

initiated by the CAP. This involves including the most applicable OE reports in the WP for use in pre-job 

briefs and incorporating any applicable lessons learned for all applicable OE into the work instructions. 

For WPs being updated, the previous similar WP must be updated with any recent information in this area 

for the new WP. In the case of developing a new WP, there may be some relevant OE from similar WPs 

that can be incorporated into the new WP, or new OE may be found that can be included. 

Current Decisions and Conditional Actions 

Input: Current and historical WP, OE database, and historical CRs. 

Are there CRs or OE evaluations that are pertinent to this WP? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Search for relevant CRs or OE lessons learned 

and evaluations for inclusion in the WP. 

Work 

planning 

10 100% 

If yes Update the WP and its pre-job brief with new 

info. 

Work 

planning 

10 50% 

If no None. NA 0 50% 

Total (minutes FTE per WP) 15 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WP, OE database, and historical CRs. 

Are there CRs or OE evaluations that are pertinent to this WP? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs found issues Current WP  Comparison and 

structuring 

Relevant issues 

Historical CRs 

 

Current WP  Summarization Relevant CRs* 

OE database Current WP  Summarization Relevant OE* 

If yes Relevant issues, CR, or OE Current WP  Generation Modified WP 

with issues, CRs 

or OE insight 

If no NA 

 A human will determine if the CR or OE are relevant. 
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C-9. Worker Feedback from Previous Similar Work 

Feedback from workers from the most recent time similar work was previously performed may be 

available. The WP must be updated to incorporate any feedback from workers. Feedback from workers 

may be captured in completed WPs, in the CAP database, or in some other lessons learned database. 

Reviewing feedback for new WPs is not the same as for previously completed WPs, as the previous 

worker feedback is not for the exact same work scope. However, worker feedback can still be 

incorporated from previous similar work scopes. 

Current Decisions and Conditional Actions 

Input: Current and historical WP, lessons learned database, and historical CRs. 

Is there any worker feedback from similar work that was performed previously? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Find previous similar WPs and relevant CRs 

and check for any relevant worker feedback 

that should be incorporated into the current 

work scope. 

Work 

planning 

5 100% 

If yes Update the WP based on worker feedback. Work 

planning 

15 20% 

If no No change to the WP. Work 

planning 

0 80% 

Total (minutes FTE per WP) 8 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WP, lessons learned database, and historical CRs. 

Is there any worker feedback from similar work that was performed previously? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs and feedback  Current WP Comparison and 

structuring 

Relevant 

feedback 

Historical CRs Current WP Summarization Relevant CRs* 

OE database Current WP  Summarization Relevant OE* 

If yes Relevant feedback, CR, or OE Current WP  Generation Suggestions 

based on worker 

feedback 

If no NA 

 A human will determine if the CR or OE are relevant. 
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C-10. Human Performance Tools 

The work scope should be reviewed to determine if there are work steps that should have specific HP 

tools incorporated into the work instructions to mitigate risk. Those HP tools could include self-check, 

STAR (stop, think, act, review), peer check, and three-way communication should be incorporated into 

the work instructions. 

Current Decisions and Conditional Actions 

Input: Current WP and HP procedure. 

Do specific HP tools need to be used by workers due to potential risk situations? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Evaluate the HP risk for work steps and 

determine if there are any high-risk steps for 

which HP tools—as per HP procedure—should 

be incorporated into the instructions. 

Work 

planning 

2* 100% 

If yes Update WP to incorporate HP tools. Work 

planning 

15 20% 

If no None. NA 0 80% 

Total (minutes FTE per WP) 5 

 With most WPs, it is a trivial effort to determine whether the work will need HP tools. Some (about 10%), however, 

require more research (around 20 minutes). This averages to 2 minutes per WP. 

 

Automated Decisions and Conditional Actions 

Input: Current WP, historical WPs, and HP procedure. 

Do specific HP tools need to be used by workers due to potential risk situations? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs and HP tools 

assignment 

Current WP Structuring and 

classification 

(supervised) 

Yes/No 

(and HP tools) 

HP procedure Current WP Review Yes/No 

If yes Historical WPs HP tools and 

HP procedure 

Current WP Generation HP tools 

If no NA 
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C-11. Clearance Order Request 

If system isolation is necessary to complete the work, a CO is required. System or process drawings, 

such as piping and instrumentation diagrams or electrical one-line diagrams, can help identify sources of 

operational hazards, along with CO or hazardous energy administrative procedures. Typically, a CO for a 

similar scope of work will have been completed previously and can be used as a reference to request a 

new CO. This process will determine if a CO is needed for the current work scope. 

Current Decisions and Conditional Actions 

Input: Current and historical WPs, system drawings, and administrative procedures for hazardous energy 

or COs. 

Does a CO request need to be initiated for new WP? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Compare the work scope to the hazardous 

energy or CO administrative procedures to 

determine whether system isolation is required 

to perform the work safely. Use system/process 

drawings to identify sources of hazardous 

energy. Consider previously completed similar 

WPs to make the determination. 

Work 

planning 

3 100% 

If yes Create a new CO request. Work 

planning 

15 33% 

If no None. NA 0 67% 

Total (minutes FTE per WP) 8 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WPs, system drawings, and administrative procedures for hazardous energy 

or COs. 

Does a CO request need to be initiated for the new WP? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs and COs 

assignment 

Current WP Structuring and 

classification 

(supervised) 

Yes/No 

System drawings and 

administrative procedures for 

hazardous energy or COs 

Current WP Review  Yes/No 

If yes Historical WPs COs  Current WP Generation New CO 

If no NA 
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C-12. Engineering and Operations Documentation 

The WP needs to be checked to see if the equipment to be worked on has an applicable engineering 

configurations or operational requirements (technical specifications) that need to be considered in the 

work instructions. For WPs created from a previously completed WP used as a template, this review 

focuses on changes that occurred since the previous WP was completed. For new WPs, this review 

ensures that the draft work instructions are not missing any information based on how the equipment is 

described in engineering and technical specifications. 

Current Decisions and Conditional Actions 

Input: Current WP, ECs, and technical specifications. 

Have there been any changes to the engineering specifications or technical specifications regarding the 

equipment in the WP? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Search for ECs or technical specifications 

changes related to the equipment referenced in 

the WP and compare them to those in the WP. 

Work 

planning 

15 100% 

If yes Update the WP with engineering/technical 

specifications information. 

Work 

planning 

30 5% 

If no None. NA 0 95% 

Total (minutes FTE per WP) 16.5 

 

Automated Decisions and Conditional Actions 

Input: Current WP, ECs, and technical specifications. 

Have there been any changes to the engineering specifications or technical specifications regarding the 

equipment in the WP? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process ECs and technical specifications 

(multiple versions) 

Current WP Summarization Relevant EC and 

technical 

specifications 

and version 

changes 

If yes ECs and technical specifications Current WP Generation Suggested text 

based on 

changes from 

EC and 

technical 

specifications 

If no NA 
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C-13. Administrative or Technical Procedures 

Procedures may need to be referenced for certain administrative processes (such as establishing a 

confined space) and technical processes (such as performing the calibration of instrumentation) that need 

to occur as part of performing the work. Current revisions of the procedures must be included in the WP, 

and the content of those procedures must be incorporated correctly. 

Current Decisions and Conditional Actions 

Input: Current WP and administrative or technical procedures. 

Does the WP need to reference administrative or technical procedures? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Examine the work scope to determine if there 

are technical and administrative processes that 

require a reference to a procedure.  

Work 

planning 

2* 100% 

If yes Add applicable content from existing 

procedures by reference or by including 

applicable content in the work instructions. 

Compare the procedure versions included in the 

WP to the latest procedures. 

Work 

planning 

15 67% 

If no None. Work 

planning 

0 33% 

Total (minutes FTE per WP) 12.05 

 With most WPs, it is a trivial effort to determine whether the work will reference administrative or technical procedures. 

Some (about 10%), however, require more research (around 20 minutes). This averages to 2 minutes per WP. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WPs and administrative or technical procedures. 

Does the WP need to reference administrative or technical procedures? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs and 

administrative or technical 

procedures assignment 

Current WP Structuring and 

classification 

(supervised) 

Yes/No 

Administrative or technical 

procedures 

Current WP Review  Yes/No 

If yes Historical WPs and 

administrative or technical 

procedures 

Current WP Generation Added 

procedures 

If no NA 
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C-14. Fire Protection and Industrial Safety Controls 

When creating a WP, particular attention must be given to ensure that all currently applicable fire 

protection and industrial safety controls are included in the WP. This step typically involves interfacing 

with fire protection engineers and industrial safety professionals to ensure that all currently applicable 

controls are included in the WP, such as limits on combustible loading for a given area or policies on the 

establishment of confined spaces. 

Current Decisions and Conditional Actions 

Input: Current WP, and procedures and forms related to fire protection and industrial safety. 

Will the work scope impact fire protection or industrial safety policies or practices in the area where work 

will be performed? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Evaluate the location and scope of work 

according to procedure and forms related to fire 

protection and industrial safety.  

Work 

planning 

1* 100% 

If yes Update the WP instructions to include fire 

protection or industrial safety controls. 

Work 

planning 

20 5% 

If no No change to the WP. Work 

planning 

0 95% 

Total (minutes FTE per WP) 2 

 With most WPs, it is a trivial effort to determine whether the work will impact fire protection or industrial safety. Some 

(about 10%), however, require more research (around 10 minutes). This averages to 1 minute per WP. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WPs, MEL, and procedures and forms related to fire protection and 

industrial safety. 

Will the work scope impact fire protection or industrial safety policies or practices in the area where work 

will be performed? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Fire protection or industrial 

safety words and general-

knowledge-enabled LLM 

Current WP Classification 

(unsupervised) 

Yes/No 

MEL fire protection labels Current WP Comparison Yes/No 

Procedures and forms related to 

fire protection and industrial 

safety 

Current WP Review Yes/No 

Historical WPs and fire 

protection or industrial safety 

controls assignment 

Current WP Structuring and 

classification 

(supervised) 

Yes/No 

If yes Procedures and forms related to 

fire protection and industrial 

safety 

Current WP Generation Modified WP 

with controls 

If no NA 
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C-15.  Fire Protection and Industrial Safety Permits 

Many WPs require one or more permits be generated to authorize the work to be performed. While 

the previous step incorporates the applicable fire protection and industrial safety controls into the work 

instructions themselves, this step completes the necessary permits to prepare to authorize the work. Some 

permits may be totally prepared and approved at this time, while others can be initially prepared but can 

only be approved closer to the time of work implementation. 

Current Decisions and Conditional Actions 

Input: Current WP and maintenance procedures. 

Do any hot work, fire protection, or combustible loading permits need to be initiated? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Verify whether the work scope requires a permit 

as per the requirements in maintenance 

procedures. 

Work 

planning 

2* 5% 

If yes Initiate relevant permit. Work 

planning 

30 4% 

If no None. Work 

planning 

0 1% 

Total (minutes FTE per WP) 1.3 

 With most WPs, it is a trivial effort to determine whether the work will need hot work, fire protection, or combustible 

loading permits. Some (about 1%), however, require more research (around 20 minutes). This averages to 2 minutes per 

WP. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WPs and maintenance procedures. 

Do any hot work, fire protection, or combustible loading permits need to be initiated? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs fire protection 

permit assignment  

Current WP Structuring and 

classification 

(supervised) 

Yes/No 

Maintenance procedures Current WP Review  Yes/No 

If yes Historical WPs fire protection 

permits 

Current WP Generation Permit forms 

If no NA 
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C-16. Work Package Walkdown 

An important step during WP planning, when possible, is to perform a walkdown of the area where 

work will be performed to evaluate actual conditions in the area and determine if draft work instructions 

are adequate based on the work environment and proposed scope of work. Sometimes walkdowns are not 

possible during planning due to inaccessibility of the work area. Frequently, maintenance work groups 

and support groups are invited to participate in walkdowns to provide input. 

Current Decisions and Conditional Actions 

Input: Current WP and plant conditions. 

Is a walkdowns needed and feasible? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Determine if work is complex or critical and 

require a walkdown. Check if the equipment is 

accessible given the plant status.  

Work 

planning 

5 100% 

If yes Perform walkdown and update the WP to reflect 

the walkdown findings. 

Work 

planning 

15* 20%* 

If no No change to the WP. Work 

planning 

0 80% 

Total (minutes FTE per WP) 8 

 Since walkdowns are not automatable, this time and frequency is only for the WP update. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WPs and plant conditions. 

Is a walkdowns needed and feasible? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs notes from 

walkdown 

Current WP Structuring and 

classification 

(supervised) 

Yes/No 

If yes Current notes from walkdown Current WP  Generation Updates to WP 

If no NA 
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C-17. Radiological Controls 

If the work will be performed in a radiological area, the planner is responsible to ensure applicable 

radiological controls are incorporated into the WP. Usually this means referencing a radiological work 

permit (RWP). If a more than negligible amount of radiation dose is expected to be received by workers 

performing the work, the dose must be accounted for in overall dose estimates and some degree of 

planning must take place to minimize the dose. 

Current Decisions and Conditional Actions 

Input: Current WP, RWP, and radiological survey databases. 

Will the work be performed in a radiological protected area (RPA)? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Determine, based on equipment location and 

current radiological conditions (from the most 

recently completed radiological surveys), if 

work will be performed in RPA. 

Work 

planning 

1 100% 

If yes Include relevant radiological controls in the WP. Work 

planning 

30 25% 

If no None. NA 0 75% 

Total (minutes FTE per WP) 8.5 

 

Automated Decisions and Conditional Actions 

Input: Current WP, RWP, and radiological survey databases. 

Will the work be performed in an RPA? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Referenced locations in the 

plant in the radiological work 

permit and radiological survey 

databases  

Current WP Comparison Yes/No 

Historical WPs ALARA plans 

assignment 

Current WP Structuring and 

classification 

(supervised) 

Yes/No 

If yes Historical WPs radiological 

controls 

Current WP Generation Radiological 

controls 

If no NA 
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C-18.  ALARA Plan 

If the work will be performed in a radiological area and the potential for radiation dose received by 

workers exceeds a defined threshold, the planner is responsible to initiate an ALARA plan. An ALARA 

plan includes an assessment of radiation risks and strategies to minimize dose to workers. Most of the 

work of creating the ALARA plan falls to RP personnel.  

Current Decisions and Conditional Actions 

Input: Current and historical WPs, RP procedures, dose-tracking and radiological survey databases. 

Will the work require an ALARA plan? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Use the dose-tracking and radiological survey 

database Determine if the work scope is in an 

area that will result in radiation exposure and 

study applicable RP procedures to identify if the 

work requires an ALARA plan. Review 

historical work in the area to determine if an 

ALARA plan is needed. 

RP 3 25%* 

If yes Create an ALARA plan. RP Out of 

scope 

5% 

If no None. NA 0 20% 

Total (minutes FTE per WP) 0.75 

 Frequencies are different based on plant design (boiling water reactor vs. pressurized water reactor). 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WPs, RP procedures, dose-tracking and radiological survey databases. 

Will the work require an ALARA plan? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Referenced locations in the 

plant in the dose-tracking and 

radiological survey databases 

Current WP Comparison Yes/No 

Historical WPs ALARA plan 

assignment  

Current WP Structuring and 

classification 

(supervised) 

Yes/No 

If yes NA 

If no NA 
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C-19. Radiological Work Impact on Workers 

When work is to be performed in an RPA, the work planner must work with RP personnel to 

determine the potential hazards to workers who will be performing the work. Impacts to consider include 

dose rate changes during the work, contamination levels changing during the work, and whether dose 

rates may challenge worker dose limits. If there are potential significant impacts to workers, work 

instructions and/or the ALARA plan must be updated accordingly with appropriate warnings and 

controls. 

Current Decisions and Conditional Actions 

Input: Current WPs, dose-tracking and historical radiological survey databases. 

Could the work scope result in an increased radiological impact to workers? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Evaluate the history of dose rates and 

contamination in the work location focusing on 

historical sudden changes. 

RP 10 25% 

If yes Adjust work instructions and/or ALARA plan to 

include appropriate warnings and controls. 

RP 20 1% 

If no None. NA 0 24% 

Total (minutes FTE per WP) 2.7 

 

Automated Decisions and Conditional Actions 

Input: Current WPs, dose-tracking and historical radiological survey databases. 

Could the work scope result in an increased radiological impact to workers? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs and dose rate 

and contamination level at the 

execution time (from the dose-

tracking and historical 

radiological survey databases) 

Current WP Estimation Dose rates and 

contamination 

levels changes 

in the work 

location 

If yes Historical WPs ALARA plan 

and current ALARA plan 

Current WP Generation Update to 

ALARA plan 

If no NA 
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C-20. Worker Training and Qualification 

Some work tasks are considered “skill of the craft” tasks and do not require specific training or 

qualification to perform. Tasks beyond skill of the craft typically require some form of training or 

qualification. These may be general (for example, fall protection/ladder safety training to access elevated 

areas where equipment may be located) or technical (for example, training and qualification required to 

use a torque wrench) in nature. When work instructions are created for the WP, the training and 

qualifications needed by workers to perform the work must be determined and specified. 

Current Decisions and Conditional Actions 

Input: Current WP, training and qualification list, and training policies/procedures. 

Does the work scope require specific training or qualifications? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Compare the work scope to training 

policies/procedures to determine if any work 

tasks require training and/or worker 

qualifications. 

Work 

planning 

3* 100% 

If yes Ensure work tasks are covered by existing 

training and qualifications and document the 

training and qualifications needed to perform the 

work in the WP. 

Work 

planning 

15 25% 

If no None. NA 0 75% 

Total (minutes FTE per WP) 6.75 

 With most WPs, it is a trivial effort to determine whether the work will require training or qualifications. Some (about 

10%), however, require more research (around 30 minutes). This averages to 3 minutes per WP. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WPs, training and qualification list, and training policies/procedures. 

Does the work scope require specific training or qualifications? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Training and qualification 

words and general-knowledge-

enabled LLM 

Current WP Classification 

(unsupervised) 

Yes/No 

Historical WPs and training or 

qualifications assignment 

Current WP Structuring and 

classification 

(supervised) 

Yes/No 

Training policies/procedures Current WP Review  Yes/No 

If yes Historical WPs and training or 

qualifications  

Current WP Generation Training and 

qualification 

requirements 

If no NA 
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C-21. Resources Assignment to Work Package 

After determining the needed training and qualifications, the staff’s skill set is compared to the 

needed skill set and tasks are assigned accordingly. At this stage, the crew is assigned to the WP, not the 

specific staff as those are assigned by the supervisor during execution. 

Current Unconditional Actions 

Input: Current WP, training and qualification list, and staff resources dataset. 

Assign crew to the WP. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Compare the required training and 

qualifications for the work to those of the staff, 

and assign a crew if they meet the requirements 

for the scope 

Work 

planning 

5 100% 

Total (minutes FTE per WP) 5 

 

Automated Unconditional Actions 

Input: Current WP, training and qualification list, and staff resources dataset. 

Assign crew to the WP. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Staff training and qualification 

(from the staff resources 

dataset)  

Current WP  Comparison Crew that meets 

the requirement 
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C-22. Equipment Qualification Requirements 

Certain equipment in an NPP must be purchased and controlled as either environmental qualification 

(EQ) equipment or seismically qualified equipment. As part of the work execution work planners must 

verify whether EQ or seismically qualified parts are needed as part of the work scope and verify that such 

parts are available and controlled as qualified parts. 

Current Decisions and Conditional Actions 

Input: Current WP, MEL, and inventory dataset. 

Are any of the parts or components needed for the work scope classified as EQ or seismic? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Check the work scope against equipment or 

components that require EQ or seismic 

qualifications. 

Work 

planning 

5 100% 

If yes Notate work as EQ or seismic in the WP and 

ensure that replacement parts are correctly 

qualified. 

Work 

planning 

30 5% 

If no None. NA 0 95% 

Total (minutes FTE per WP) 6.5 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WPs, MEL, inventory dataset, and EQ and seismic qualification 

requirements. 

Are any of the parts or components needed for the work scope classified as EQ or seismic? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs and EQ or 

seismic notation 

Current WP Structuring and 

classification 

(supervised) 

Yes/No 

MEL EQ or seismic labels or 

inventory dataset 

Current WP Comparison Yes/No 

If yes EQ and seismic qualification 

requirements 

inventory 

dataset 

Review Yes/No 

If no NA 
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C-23. Parts and Materials 

A work planner must evaluate what parts and materials will be needed as part of the work scope and 

whether those parts already exist in the plant inventory database. Previous similar WOs may be helpful in 

determining what parts and materials may be needed for the work scope and how those are defined in the 

inventory database. The planner puts in a parts and materials request so that procurement personnel can 

work to obtain the needed parts if necessary and have all parts and materials ready for the work before it 

is performed. 

Current Unconditional Actions 

Input: Current and historical WPs, and inventory database.  

Reserve required parts and materials.  

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Check the parts and/or materials needed as part 

of the work scope and reserve required parts and 

materials by initiating a procurement request. 

Work 

planning 

20 100% 

Total (minutes FTE per WP) 20 

 

Automated Unconditional Actions 

Input: Current and historical WPs, and inventory database.  

Reserve required parts and materials. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs and parts and 

materials assignment 

Current WP Structuring and 

classification 

(supervised) 

Needed parts 

and materials 
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C-24. Work Package Review and Approval 

After the WP planning steps are completed and the WP is prepared, applicable representatives or 

supervisors from impacted work groups review and approve the WP. 

Current Decisions and Conditional Actions 

Input: Current WP, and applicable subject-matter-specific policies/procedures. 

Is the WP ready to be performed as prepared? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Check the completion of the WP content and 

determine if all processes and procedures have 

been correctly incorporated and the WP is ready 

to be worked. 

All relevant 

groups 

20* 100% 

If yes Mark the WP as reviewed and/or approved. All relevant 

groups 

0 90% 

If no Discuss any needed changes with the work 

planner until changes are agreed upon, then 

mark the WP as reviewed and/or approved. 

All relevant 

groups 

60** 10% 

Total (minutes FTE per WP) 26 

 Assuming 4 staff spend 5 minutes per WP, this would result in 20 minutes per WP. 

**     Assuming 2 staff spend 30 minutes per WP, this would result in 60 minutes per WP. 

 

Automated Decisions and Conditional Actions 

Input: Current WP, and applicable subject-matter-specific policies/procedures. 

Is the WP ready to be performed as prepared? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Relevant policies/procedures Current WP Review Yes/No 

If yes NA 

If no Relevant policies/procedures Current WP Review Needed change 
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Appendix D 
 

Mapping of Scheduling 

This appendix applies the approach of Section 4.1 to scheduling steps according to the flow shown in 

Figure 19. The following sections discuss each of those steps in detail.  

 

 

Figure 19. Flowchart of the scheduling steps that are discussed in Appendix D. 



 

199 

D-1. Schedule Tasks Creation 

The work scope of a WO described in comprehensive procedures in a WP is performed in STs. Each 

WO can have one or more STs depending on the work scope. In this step, the STs associated with the 

WOs are created in the schedule, given the resources available within the workweek. The tasks are not yet 

sequenced in this step; this is performed in a later step. 

Current Unconditional Actions 

Input: Planned WOs. 

Create the ST for the planned WO in the workweek. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per ST 

Process Create an ST for each WO activity, using the ST 

template. Move all relevant schedule 

assignments and constraints into the ST from 

the WO. Add additional STs if needed to 

accommodate any scope that is not included in 

the WP but is needed to execute the work. 

Scheduling* 5 100% 

Total (minutes FTE per ST) 5 

 Work scheduling is part of the work management organization. 

 

Automated Unconditional Actions 

Input: Planned WOs. 

Create the ST for the planned WO in the workweek. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs and their STs Planned WO Generation STs 
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D-2. Resources Assignment to All Schedule Tasks  

Before scheduling begins, it is necessary to ensure that needed resources are assigned to all STs that 

require them. Resource estimation and crew assignment were performed earlier in the process, so this step 

involves verifying that the crew has the necessary resources to perform the work, considering the entire 

week's schedule. 

Current Decisions and Conditional Actions 

Input: Current ST. 

Are all needed resources assigned to the ST? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per ST 

Process Evaluate the planned ST resources and assigned 

crew to ensure that crew resources are properly 

allocated to the ST. 

Scheduling 1 100% 

If yes None. NA 0 99% 

If no Notify ST owners to assign/allocate resources. Scheduling 1 1% 

Total (minutes FTE per ST) 1.01 

 

Automated Decisions and Conditional Actions 

Input: Current ST. 

Are all needed resources assigned to the ST? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA* 

If yes NA 

If no NA 

 This can be automated by a database query to ensure that all tasks have a resource assigned. 
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D-3. Deficiency or Surplus of Resources for Execution Week 

Aggregating all STs, the total available resources—by work discipline—are matched to the aggregate 

work scope. Then schedulers must determine if there are enough resources to complete the scoped work, 

or if there are too many or too few resources available. This helps them ensure that resources are fully 

utilized to accomplish as much work as possible. A mismatch typically occurs due to an unexpected 

increase in work or insufficient work scoped into the execution week to utilize the available resources in 

specific departments. This latter usually happens when work is removed from the execution week, or 

when resource predictions change after the work has been scoped into the week. 

Current Decisions and Conditional Actions 

Input: Current STs, staff resources dataset, and week schedule. 

Do available resources match required resources for some time slots in the week? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per ST 

Process Aggregate the resources needed by discipline, 

and then subtract the available resources from 

the needed resources by the STs for the 

scheduled work and quantify the difference in 

resources by each department. 

Scheduling 3 100% 

Match Skip schedule resource optimization. 

 

Scheduling 0 5% 

Too few Proceed to systematically determine how to 

obtain the required resources or to rescope some 

of the work out of the execution week 

schedule.* 

Cycle 

planning 

0** 75% 

Too many Proceed to systematically determine the best 

approach to utilizing the available resources.* 

Cycle 

planning 

0** 20% 

Total (minutes FTE per ST) 3 

 In some cases, it may take a combination of methods to optimize resources. 

**      Performed in next step. 

  

Automated Decisions and Conditional Actions 

Input: Current STs, staff resources dataset, and week schedule. 

Do available resources match required resources for some time slots in the week? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA* 

If yes NA 

If no NA 

 This is a database query to ensure that the number of resources available to work in each week matches the number 

required for all STs for each execution week. 
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D-4. Overtime Use  

Initial resource availability estimates are based on a 40-hour workweek, considering absences and 

other issues affecting resources. Work groups can consider offering overtime to the staff as a measure to 

provide additional resources to compensate for any shortage of available resources.  

Current Decisions and Conditional Actions 

Input: Current STs and staff resources dataset. 

Can overtime be used to fill the resource gap? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per ST 

Process Calculate the amount of overtime above the 

base available resource amount that would be 

necessary by department to meet resource 

shortfalls and consult with the work execution 

staff. 

All relevant 

groups 

1 75% 

If yes Initiate overtime request. All relevant 

groups 

5 50% 

If no None. NA 0 25% 

Total (minutes FTE per ST) 3.25 

 

Automated Decisions and Conditional Actions 

Input: Current STs and staff resources dataset. 

Can overtime be used to fill the resource gap? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA* 

If yes Staff resources dataset Current STs Generation  Overtime 

request 

If yes NA 

If no NA 

 This involves a simple calculation. 
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D-5. Contractors Use  

When all available plant resources, including overtime, are not enough to complete work scope 

estimates, and plant leadership does not want to remove the scope from the execution week, then using 

contracted workers to perform some of the work scope is an option for augmenting plant staff. In this 

step, a determination is made whether contracted resources should be used to perform some of the work 

scope. 

Current Decisions and Conditional Actions 

Input: Current and historical STs, Current and historical WOs, staff resources dataset, and historical 

service contracts. 

Can contractors be used to fill the resource gap? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per ST 

Process Consider the estimated shortfall numbers for 

plant resources. Review work scope history and 

determine if contractors could be used to 

complete the scope. 

Maintenance 2* 75% 

If yes Initiate a service request for contractors to 

augment plant resources. 

Maintenance 15 3% 

If no None. NA 0 72% 

Total (minutes FTE per ST) 1.95 

 With most STs, it is a trivial effort to determine whether the work can be supported by a contractor. Some (about 7%), 

however, require more research (around 30 minutes). This averages to 2 minutes per ST. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical STs, Current and historical WOs, staff resources dataset, and historical 

service contracts. 

Can contractors be used to fill the resource gap? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs and their 

assigned contracts in historical 

STs 

Current WO  Structuring and 

classification 

(supervised) 

Yes/No 

Historical service contracts Current WO  Review Yes/No 

If yes Historical service contracts Current ST and 

WO 

Generation Contract service 

request 

If no NA 
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D-6. Resources Overload  

An option to help close differences between available resources and estimated work scope resources 

is to overload the work schedule to more than 100% of its resources. This is often performed when 

leadership is optimistic that the estimated work scope can be performed more efficiently than current 

work scope estimates and does not want to remove any work scope from the execution week. 

Current Decisions and Conditional Actions 

Input: Current and historical STs, Current and historical WOs, historical staff resources dataset, and week 

schedule 

Can resource loading of the schedule be greater than 100 percent? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per ST 

Process Evaluate if the similar work is usually 

accomplished with less time. 

Scheduling 3* 75% 

If yes Allocate more work than there are available 

resources in the week schedule. 

Scheduling 10 3% 

If no None. NA 0 72% 

Total (minutes FTE per ST) 2.55 

 With most STs, it is a trivial effort to determine whether the work can be accomplished with less time. Some (about 

20%), however, require more research (around 15 minutes). This averages to 3 minutes per ST. 

 

Automated Decisions and Conditional Actions 

Input: Current and historical STs, Current and historical WOs, historical staff resources dataset, and week 

schedule.  

Can resource loading of the schedule be greater than 100 percent? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical STs Current ST Estimation Revised 

resources 

needed 

Historical WOs and their used 

resources in historical STs or 

historical staff resources dataset 

Current WO  Structuring and 

estimation 

Revised 

resources 

needed 

If yes Revised resources needed Week schedule  Review Modified 

schedule 

If no NA 
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D-7. Work Removal from Execution Week Schedule  

When it is not possible to perform all the execution week work scope due to a lack of available 

resources, and there is work that can be moved to a different execution week without incurring much risk 

to the plant, then work management will remove some of the lower-priority work scope. This step 

determines if some of the work scope can be removed from the subject execution week. 

Current Decisions and Conditional Actions 

Input: Current STs and WOs and week schedule.  

Can work scope be removed from the execution week schedule? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per ST 

Process Identify lower-priority work scope that can be 

moved from the execution week to another 

week. 

Cycle 

planning 

1 75% 

If yes Move the lower-priority work scoped into the 

execution week schedule to another week. 

Cycle 

planning 

0* 25% 

If no None NA 0 50% 

Total (minutes FTE per ST) 0.75 
 This action involves repeating some steps outlined in the appendices. The time is set to zero because this time has already 

been accounted for in the step time estimates, as specified in the report assumptions. 

 

Automated Decisions and Conditional Actions 

Input: Current STs and WOs and week schedule.  

Can work scope be removed from the execution week schedule? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA* 

If yes NA 

If no NA 

 Low-priority work is already labeled. 
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D-8. Work Addition to Execution Week Schedule 

If there is a surplus of resources for the execution week, it is important to utilize these resources to 

complete any pending work. A typical plant often has work items that can take advantage of such 

opportunities, in addition to any emergent or urgent work. Once work management determines which 

types of surplus resources are available, work management decides what type of work can be added to the 

execution week schedule. 

Current Decisions and Conditional Actions 

Input: Existing WOs, staff resources dataset, and week schedule.  

Are there other WOs that can be added to fully utilize execution week resources? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per ST 

Process Evaluate unscoped WOs scope and needed 

resources and compare them to available 

resources for opportunities to add work to the 

execution week schedule. 

Cycle 

planning 

2 20% 

If yes Perform scoping for the WOs to be added. Cycle 

planning 

0* 10% 

If no None. NA 0 10% 

Total (minutes FTE per ST) 0.4 
 This action involves repeating some steps outlined in the appendices. The time is set to zero because this time has already 

been accounted for in the step time estimates, as specified in the report assumptions. 

 

Automated Decisions and Conditional Actions 

Input: Existing and historical WOs, staff resources dataset, qualification database and week schedule.  

Are there other WOs that can be added to fully utilize execution week resources? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs and resources 

allocated 

Existing WOs Classification 

(supervised) 

Resources 

needed for work 

Qualification database and 

general-knowledge-enabled 

LLM 

Existing WOs Classification 

(unsupervised) 

Needed 

qualifications  

Historical WOs and resources 

allocated 

Existing WOs Estimation Hours needed 

Available staff resources and 

week schedule 

Existing WOs* Review WOs to consider 

for this week 

If yes NA 

If no NA 

 If resources for the unscoped WO are unknown, this option is performed after the previous three options have been 

completed to estimate the needed resources. 
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D-9.  Lower-Priority Work Addition to Execution Week Schedule 

There are many lower-priority WOs waiting to be scoped into a workweek. Higher-priority WOs have 

procedural deadlines, but lower-priority work is added when it can be, depending on the available 

resources and other scoping factors. In this step, work management evaluates the lower-priority WOs and 

determines if any of those can be scoped into the work execution week. 

Current Decisions and Conditional Actions 

Input: Existing WOs, staff resources dataset, and week schedule.  

Can other lower-priority WOs be added to the schedule to fill resource gaps? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per ST 

Process Identify all lower-priority WOs and evaluate 

their scope and needed resources to compare 

them to available resources for opportunities to 

add work to the execution week schedule. 

Scheduling  2 20% 

If yes Perform scoping on the WOs to be added. Maintenance 

SRO 

0* 10% 

If no None. NA 0 10% 

Total (minutes FTE per ST) 0.4 
 This action involves repeating some steps outlined in the appendices. The time is set to zero because this time has already 

been accounted for in the step time estimates, as specified in the report assumptions. 

 

Automated Decisions and Conditional Actions 

Input: Existing and historical WOs, staff resources dataset, qualification database and week schedule.  

Can other lower-priority WOs be added to the schedule to fill resource gaps? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WOs and resources 

allocated 

Existing WOs Classification 

(supervised) 

Resources 

needed for work 

Qualification database and 

general-knowledge-enabled 

LLM 

Existing WOs Classification 

(unsupervised) 

Needed 

qualifications  

Historical WOs and resources 

allocated 

Existing WOs Estimation Hours needed 

Available staff resources and 

week schedule 

Existing WOs* Review WOs to consider 

for this week 

If yes NA 

If no NA 
 If resources for the low-priority WO are unknown, this option is performed after the previous three options have been 

completed to estimate the needed resources. 
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D-10. Impact of New Items Screened on Existing Execution Week 
Scope  

CRs and WRs are screened daily as issues are identified. Depending on the severity of the issue and 

the impact on the plant, a priority is added to the new WO and it is allocated to the workweek that best 

ensures the most favorable outcome for the plant. Sometimes if the new issue is a high priority, then 

lower-priority previously allocated work must be rescoped into a different execution week.  

Current Decisions and Conditional Actions 

Input: Current CRs and WOs, and week schedule. 

Will any new issues impact the planned work scope of the execution week? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per ST 

Process Compare the priority of any new screened issues 

or work requested and unscheduled against the 

WOs allocated to the execution week and 

determine the impact on the execution week 

schedule. 

Cycle 

planning 

1* 100% 

If yes Allocate the new work to the execution week 

schedule. 

Cycle 

planning 

0** 1% 

If no None. NA 0 99% 

Total (minutes FTE per ST) 1 

 With most STs, it is a trivial effort to determine whether it will be impacted. Some (about 3%), however, require more 

research (around 30 minutes). This averages to 1 minute per WO. 

    This action involves repeating some steps outlined in the appendices. The time is set to zero because this time has already 

been accounted for in the step time estimates, as specified in the report assumptions. 

 

Automated Decisions and Conditional Actions 

Input: Current CRs and WOs, and week schedule. 

Will any new issues impact the planned work scope of the execution week? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Existing CRs or WOs and 

priority label 

Current (new) 

CR or WO  

Comparison Similar scope of 

work* 

If yes NA 

If no NA 

 Identifies similar work to the already planned work and the priorities assigned to them. 
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D-11. Logical Order of Schedule Tasks  

Once all STs have been created, there is a logical progression of work tasks that must be performed to 

make sure each work group can perform its tasks at the correctly scheduled time most efficiently. Work 

management must ensure that the work is performed in a logical order that supports the most efficient 

work performance.  In this step work management reviews the initial sequence of the schedule for the 

work execution week and places tasks in the most logical order.  

Current Unconditional Actions 

Input: Current STs and week schedule. 

Schedule tasks in the most efficient order to facilitate the best possible execution week outcome. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per ST 

Process Evaluate resource availability in the week and 

work scope sequence requirements. Schedule 

tasks in the most logical and efficient order. 

Adjust as necessary. Determine if there are gaps 

in workflow and add tasks as necessary to 

ensure schedule continuity. 

Scheduling 5 100% 

Total (minutes FTE per ST) 5 

 

Automated unconditional Actions 

Input: Current and existing STs and week schedule. 

Schedule tasks in the most efficient order to facilitate the best possible execution week outcome. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Existing STs constraints and 

requirements  

Current ST Review* ST placed in 

schedule 

 Optimization methods can be used to allocate the tasks in the schedule, but AI review can also be used to perform this. 
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D-12. Execution Week Schedule Freeze 

The work management “freezes” the week schedule so that no more changes can be made to the 

schedule. This allows all managers to review the upcoming schedule and provide comments during the 

certification meeting. 

Current Unconditional Actions 

Input: Current STs and week schedule. 

Freeze work execution week schedule. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per ST 

Process Lock execution week schedule and add 

comments for the work execution. 

Scheduling 1 100% 

Total (minutes FTE per ST) 1 

 

Automated Unconditional Actions 

Input: Current and historical STs and week schedule. 

Freeze work execution week schedule. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical STs Current ST Guidance Comments 

Historical STs Current ST Insertion Comments 
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D-13. Execution Week Certification Meeting 

The week schedule certification meeting is the last chance for each department to challenge the 

upcoming week schedule. Based on the comments and concerns gathered during the certification meeting, 

some changes may be made to the upcoming week schedule. 

Current Decisions and Conditional Actions 

Input: Current STs and week schedule. 

Are there any changes to the work execution week schedule? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per ST 

Process Gather all comments and concerns and identify 

if any changes need to be made to the workweek 

schedule. 

All relevant 

groups 

3* 100% 

If yes Recommend changes and notify concerned 

manager that changes are needed.  

All relevant 

groups 

5 1% 

If No No changes All relevant 

groups 

0 99% 

Total (minutes FTE per ST) 3.05 

 Assuming 10 staff meet for 120 minutes and 400 STs per week, this would result in 3 minutes per ST. 

 

Current Decisions and Conditional Actions 

Input: Current STs and week schedule. 

Are there any changes to the work execution week schedule? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA 

If yes NA 

If no NA 
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D-14. Changes from Certification Meeting 

Depending on the magnitude of the change, actions will be taken in this step to address the concern 

by the relevant work group. In extreme cases, the cycle planner may remove or rescope work if the 

concern cannot be resolved. 

Current Unconditional Actions 

Input: Current STs and WOs and week schedule. 

Make changes to address certification week issues. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per ST 

Process Address the comments received during the 

certification meeting. Make changes as 

necessary. Request work management to 

reschedule if needed. 

All relevant 

groups 

10* 1% 

Total (minutes FTE per ST) 0.1 

 Any significant changes identified during the certification meeting can result in the work being rescoped and rescheduled. 

This involves repeating some steps outlined in the appendices. The time is not added because it has already been 

accounted for in the step time estimates, as specified in the report assumptions. 

 

Automated Unconditional Actions 

Input: Current STs and WOs and week schedule. 

Make changes to address certification week issues. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA 

 Those activities can vary significantly so automating them might be challenging. 

  



 

213 

D-15. Turnover of Execution Week from Cycle Planner to Workweek 
Manager 

In this step, the work management cycle planner turns the subject execution week schedule over to 

the workweek manager. This turnover includes any discussion of concerns and comments about potential 

issues that may arise during the execution week. 

Current Unconditional Actions 

Input: Current STs and WOs and week schedule. 

Perform execution week turnover meeting. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per ST 

Process Hold a meeting, discuss STs, resolve any minor 

issues. 

Cycle 

planning and 

workweek 

management* 

0.5** 100% 

Total (minutes FTE per ST) 0.5 

 The workweek management is part of the work management organization. 

    Assuming 2 staff meet for 100 minutes and 400 STs per week, this would result in 0.5 minute per ST. 

 

Automated Unconditional Actions 

Input: Current STs and WOs and week schedule. 

Perform execution week turnover meeting. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA 
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D-16. Daily Work Schedule Issuance 

To keep the schedule current with work execution conditions, work management issues a daily 

schedule for all work groups. The schedule is updated with the progress of the day and reissued 

(electronically) before each day shift. 

Current Unconditional Actions 

Input: Daily schedule. 

Issue work management daily schedule. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per ST 

Process Confirm the schedule is up to date, perform any 

updates, and uploads the schedule to the 

intranet. 

Scheduling 0.5 100% 

Total (minutes FTE per ST) 0.5 

 

Automated Unconditional Actions 

Input: Daily schedule. 

Issue work management daily schedule. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Daily schedule  Completed work 

schedule 

(updated by the 

staff during 

execution) 

Summarization Summary of 

work schedule 

changes and 

daily schedule  
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Appendix E 
 

Mapping of Execution 

This appendix applies the approach of Section 4.1 to work execution steps according to the flow 

shown in Figure 20. The following sections discuss each of those steps in detail.  

 

  
 

Figure 20. Flowchart of the work execution steps that are discussed in Appendix E. 
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E-1. Daily Work Schedule Review 

Each work group supervisor reviews the daily schedule within their own groups, and then there is a 

meeting each morning of execution week before the day shift in which collegial discussions occur 

between the work groups on issues that need resolution that day. 

Current Unconditional Actions 

Input: Current WP and Week schedule. 

Review daily schedule. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Check the daily schedule for applicable tasks for 

the department to ensure task readiness. 

All relevant 

groups 

10 100% 

Total (minutes FTE per WP) 10 

 

Current Unconditional Actions 

Input: Current WP and Week schedule. 

Review daily schedule. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA* 

 This cannot be automated since supervisors need to familiarize themselves with the scheduled work. 
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E-2. RP Work Associated with the Work Package 

Before maintenance work can be performed, RP needs to check if the work will be done in a 

radiological area to perform any necessary work such as dosimetry, review RWP, log into RPA. 

Current Decisions and Conditional Actions 

Input: Current WP, daily schedule, and dose-tracking database. 

Do RP predecessor tasks need to be performed? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Check the WP to determine if there are any RP 

predecessor tasks that must be completed ahead 

of the maintenance work. 

RP 0.5 100% 

If yes Get dosimetry, review RWP, and log into RPA if 

needed. 

RP 15 25% 

If no None. NA 0 75% 

Total (minutes FTE per WP) 4.25 

 

Automated Decisions and Conditional Actions 

Input: Current WP, daily schedule, radiological control procedure and dose-tracking database. 

Do RP predecessor tasks need to be performed? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Radiological control words or 

general-knowledge-enabled 

LLM 

Current WP Classification 

(unsupervised) 

Yes/No 

Radiological control procedure Current WP Review Yes/No 

If yes Dose-tracking database and 

RWP 

Current WP Generation Radiological 

impact 

If no NA 
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E-3. RP Work Execution Week Survey 

Depending on the scope of the work, a new survey might be necessary if there are outdated surveys or 

concerns about high doses or contamination. In this step, the scope of each activity is assessed to decide if 

a new survey is required before the work proceeds. 

Current Decisions and Conditional Actions 

Input: Current WP, daily schedule, and RP survey maps. 

Does the work evolution need a new survey?   

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Determine if the work location poses a risk of 

high-dose exposure or contamination. Check 

whether recent surveys have been completed or 

if new surveys are needed before executing the 

work. 

RP 5* 25% 

If yes Perform survey. RP 60 3% 

If no None. NA 0 22% 

Total (minutes FTE per WP) 3.05 

 These frequencies are different based on the type of plant—boiling water reactor vs. pressurized water reactor). 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WPs, daily schedule, RP survey dataset, and radiological control procedure. 

Does the work evolution need a survey?  

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Radiological survey words or 

general-knowledge-enabled 

LLM 

Current WP Classification 

(unsupervised) 

Yes/No 

Historical WPs and survey 

assignment 

Current WP Structuring and 

classification 

(supervised) 

Yes/No 

RP survey dataset and 

radiological control procedure 

Current WP Review Yes/No 

If yes NA 

If no NA 
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E-4. RP Work Schedule Updates 

RP is required to update the work schedule each shift to ensure that schedule compliance will be 

achieved if problems occur during execution of work, or to allow for the completion of other related work 

activities. 

Current Unconditional Actions 

Input: Current WP and ST and daily schedule. 

Provide ST status updates. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process  Provide updates to the ST as the work starts, 

progresses, and completes. Those updates can 

be just marking steps completed or provided 

details description of what was accomplished. 

RP 2 25% 

Total (minutes FTE per WP) 0.5 

 

Current Unconditional Actions 

Input: Current and historical WPs and Current ST, daily schedule. 

Provide ST status updates. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs Current WP and 

ST 

Guidance Notes and 

updates 

Historical WPs Current WP and 

ST 

Insertion Notes and 

updates 
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E-5. Operations CO Associated with the Work Package 

Operations reviews the work scope for each WO in the execution day and determines if the work will 

need a tag-out to protect the maintenance workers during the execution of the work. 

Current Decisions and Conditional Actions 

Input: Current WP and daily schedule. 

Does the WP have a CO? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Identify if a CO is associated with the WP 

before work execution. 

Operations 1 100% 

If yes Perform tagout, log into RPA dosimetry 

information, if applicable, and/or configure the 

plant as needed. 

Operations Out of 

scope 

20% 

If no None. NA 0 80% 

Total (minutes FTE per WP) 1 

 

Automated Decisions and Conditional Actions 

Input: Current WP, historical COs, and daily schedule. 

Does the WP have a CO? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process CO words or general-

knowledge-enabled LLM 

Current WP Classification 

(unsupervised) 

Yes/No 

Historical COs Current WP Review Yes/No 

If yes NA 

If no NA 
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E-6. Operations Work Schedule Update 

Operations is required to update the work schedule each shift to ensure that schedule compliance will 

be achieved if problems occur during execution of work, or to allow for the completion of other related 

work activities. 

Current Unconditional Actions 

Input: Current WP and ST and daily schedule. 

Provide ST status updates. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Provide updates to the ST as the work starts, 

progresses, and completes. Those updates can 

be just marking steps completed or providing a 

detailed description of what was accomplished. 

Operations 2 20% 

Total (minutes FTE per WP) 0.4 

 

Current Unconditional Actions 

Input: Current and historical WPs and Current ST, daily schedule. 

Provide ST status updates. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs Current WP and 

ST 

Guidance Notes and 

updates 

Historical WPs Current WP and 

ST 

Insertion Notes and 

updates 
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E-7. Engineering Determination of Work 

Engineering determines whether they need to assist with work or perform duties (inspections, 

surveillances, and potential troubleshooting) in the plant in conjunction with work being performed by 

other work groups. 

Current Decisions and Conditional Actions 

Input: Current WP and daily schedule. 

Does engineering have work to be performed? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Determine if the WP involves any inspections, 

surveillances, and/or potential troubleshooting. 

Engineering 1 100% 

If yes Prepare to perform inspections, surveillances, 

and/or plan troubleshooting as applicable. 

Engineering 30 10% 

If no None. NA 0 90% 

Total (minutes FTE per WP) 4 

Automated Decisions and Conditional Actions 

Input: Current WP and daily schedule. 

Does engineering have work to be performed? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Inspections, surveillances, and 

troubleshooting keywords or 

general-knowledge-enabled 

LLM 

Current WP Classification 

(Unsupervised) 

Yes/No 

If yes Inspections, surveillances, and 

troubleshooting documents 

Current WP Summarization Specific 

engineering 

scope 

If yes NA 

If no NA 
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E-8. Engineering Work Schedule Update 

Engineering is required to update the work schedule each shift to ensure that schedule compliance 

will be achieved if problems occur during execution of work, or to allow for the completion of other 

related work activities. 

Current Unconditional Actions 

Input: Current WP and ST and daily schedule. 

Provide ST status updates. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process  Provide updates to the ST as the work starts, 

progresses, and completes. Those updates can 

be just marking steps completed or providing a 

detailed description of what was accomplished. 

Engineering 2 10% 

Total (minutes FTE per WP) 0.2 

 

Current Unconditional Actions 

Input: Current and historical WPs and Current ST, daily schedule. 

Provide ST status updates. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs Current WP and 

ST 

Guidance Notes and 

updates 

Historical WPs Current WP and 

ST 

Insertion Notes and 

updates 
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E-9. Other Work Groups Predecessor Tasks Prior to Maintenance 

Before work can be performed, many tasks need to be completed by other organizations, like security, 

etc. In this step, the working groups determine if they need to perform any work tasks prior to the actual 

execution work. 

Current Decisions and Conditional Actions 

Input: Current WP and daily schedule. 

Do predecessor tasks need to be performed? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Check the WP to determine if there are any 

predecessor tasks that must be completed ahead 

of the maintenance work. 

All relevant 

groups 

1 100% 

If yes Prepare and execute the task. All relevant 

groups 

30 10% 

If no None. NA 0 90% 

Total (minutes FTE per WP) 4 

 

Automated Decisions and Conditional Actions 

Input: Current WP and daily schedule. 

Do predecessor tasks need to be performed? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Keywords or general-

knowledge-enabled LLM 

Current WP Classification 

(Unsupervised) 

Yes/No 

If yes NA* 

If no NA 

 This depends on conditions outside the work management (i.e., plant conditions) and can’t be automated. 
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E-10. Other Groups Work Schedule Update 

Other groups are required to update the work schedule each shift to ensure that schedule compliance 

will be achieved if problems occur during execution of work, or to allow for the completion of other 

related work activities. 

Current Unconditional Actions 

Input: Current WP and ST and daily schedule. 

Provide ST status updates. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process  Provide updates to the ST as the work starts, 

progresses, and completes. Those updates can 

be just marking steps completed or providing a 

detailed description of what was accomplished. 

All relevant 

groups 

2 10% 

Total (minutes FTE per WP) 0.2 

 

Current Unconditional Actions 

Input: Current and historical WPs and Current ST, daily schedule. 

Provide ST status updates. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs Current WP and 

ST 

Guidance Notes and 

updates 

Historical WPs Current WP and 

ST 

Insertion Notes and 

updates 
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E-11. Maintenance Determination of Work Predecessor Tasks 

In this step, maintenance determines if all predecessor tasks indicated in the WP are completed and 

maintenance is clear to start. 

Current Decisions and Conditional Actions 

Input: Current WP and ST, daily schedule. 

Are all predecessor tasks to the main work scope completed? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Check the WP to verify that listed predecessor 

tasks are performed. 

Maintenance 3 100% 

If yes Proceed. Maintenance 0 90% 

If no Wait or contact responsible department. Maintenance 0 10% 

Total (minutes FTE per WP) 3 

 

Automated Decisions and Conditional Actions 

Input: Current WP and ST, daily schedule. 

Are all predecessor tasks to the main work scope completed? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process WP predecessor task documents 

and STs 

Current WP Summarization Summary of all 

completed and 

pending tasks 

If yes NA 

If no NA 
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E-12. Pick-up of Materials and Parts from Warehouse 

In most cases when maintenance is performed, materials and parts are needed to facilitate the 

maintenance. In this step, materials and parts are issued to maintenance by the warehouse personnel. 

Current Decisions and Conditional Actions 

Input: Current WP and daily schedule. 

Do any materials and parts need to be picked up from warehouse? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Check if any materials and parts are needed and 

are reserved and ready in the warehouse. 

Maintenance 2 100% 

If yes Pick up materials and parts from warehouse. Maintenance 15 75% 

If no None. NA 0 25% 

Total (minutes FTE per WP) 13.25 

 

Automated Decisions and Conditional Actions 

Input: Current WP and daily schedule. 

Do any materials and parts need to be picked up from warehouse? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA* 

If yes NA 

If no NA 

 This a data query as the WO and WP will be associated with the parts. 
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E-13. Temporary Materials and Parts Storage  

If materials and parts are necessary to complete a work activity, then maintenance is required by 

procedure to set up a temporary storage area. This is done for personnel safety and to protect the materials 

and parts from work being performed in proximity to the subject work activity. 

Current Decisions and Conditional Actions 

Input: Current WP and daily schedule. 

Does a temporary materials and parts storage area need to be established? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Check the materials and parts list to identify if 

the number of materials and parts requires that a 

temporary storage area be established. 

Maintenance 2 75% 

If yes Set up storage area. Maintenance 30 15% 

If no No storage area needed. Maintenance 0 60% 

Total (minutes FTE per WP) 6 

 

Automated Decisions and Conditional Actions 

Input: Current WP and daily schedule. 

Does a temporary materials and parts storage area need to be established? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA* 

If yes NA 

If no NA 

 This step relies on the number of parts from the previous step since the need for storage is not labeled. 
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E-14. Check-out of Tools for Work 

In this step, maintenance personnel check out tools from the tool crib as needed. This process is a key 

component of budgetary control and asset management. By tracking the use of tools, the organization can 

optimize tool usage, prevent loss or misuse, and ensure that tools are returned in good condition. 

Current Decisions and Conditional Actions 

Input: Current WP and daily schedule. 

Do any tools need to be checked out for work? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Check the WP to identify tools needed to be 

checked out for work execution. 

Maintenance 2 100% 

If yes Check out tools from tool crib. Maintenance 15 75% 

If no No tools needed to be checked out. Maintenance 0 25% 

Total (minutes FTE per WP) 13.25 

 

Automated Decisions and Conditional Actions 

Input: Current WP, tools list, and daily schedule. 

Do any tools need to be checked out for work? 

Decision AI Description 

 Training/Reference Input Use Input Functions Output 

Process Tools keywords or general-

knowledge-enabled LLM 

Current WP Classification 

(unsupervised) 

Yes/No 

Tools list Current WP Comparison Needed tools 

If yes NA 

If no NA 
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E-15. Check-out of Calibrated Tools and Equipment 

Some safety and reliability-related work will need to be performed with precision tools and 

equipment. Those tools usually exist in a different storage area. In this step, calibrated tools and 

equipment are checked out for the work in the plant. 

Current Decisions and Conditional Actions 

Input: Current WP and daily schedule. 

Are any calibrated tools or equipment needed to perform work? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Check the WP to identify if calibrated tools or 

equipment need to be checked out for work. 

Maintenance 2 100% 

If yes Check out calibrated tools and equipment. Maintenance 30 25% 

If no None. NA 0 75% 

Total (minutes FTE per WP) 9.5 

 

Automated Decisions and Conditional Actions 

Input: Current WP, calibrated tools and equipment list, and daily schedule. 

Are any tools or calibrated equipment needed to perform work? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Calibrated tools and equipment 

keywords or general-

knowledge-enabled LLM 

Current WP Classification 

(unsupervised) 

Yes/No 

Calibrated tools and equipment 

list 

Current WP Comparison Needed 

calibrated tools 

and equipment 

If yes NA 

If no NA 
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E-16. Chemicals and Lubricants 

All chemicals utilized in the plant are controlled due to regulations, to protect plant chemistry, and for 

personnel safety. In this step, maintenance obtains chemicals and lubricants as well as the documentation 

authorizing the use of the chemicals in the plant. 

Current Decisions and Conditional Actions 

Input: Current WP and daily schedule. 

Are any chemicals or lubricants needed for work? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Check the WP to identify if any chemical and 

lubricants needed to perform the work. 

Maintenance 2 100% 

If yes Gather chemicals and lubricants. Maintenance 30 10% 

If no No chemicals or lubricants needed. Maintenance 0 90% 

Total (minutes FTE per WP) 5 

 

Automated Decisions and Conditional Actions 

Input: Current WP, chemicals and lubricants list, and daily schedule. 

Are any chemicals or lubricants needed for work? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Chemicals and lubricants 

keywords or general-

knowledge-enabled LLM 

Current WP Classification 

(Unsupervised) 

Yes/No 

Chemicals and lubricants list Current WP Comparison Needed 

chemicals and 

lubricants 

If yes NA 

If no NA 
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E-17. Maintenance Check-in with Operations  

Each maintenance crew that is scheduled to perform work in the plant will go to the work execution 

center and discuss the work activity scope with operations. This is done to make sure that workers are 

aware of hazards while they are working, and that operations are aware of work being performed in the 

plant. 

Current Decisions and Conditional Actions 

Input: Current WP and daily schedule. 

Is the plant in a safe condition and in the proper configuration for maintenance to begin work? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Discuss the work activities with operations and 

determine if they can be performed based on 

current plant conditions. 

Maintenance 10* 100% 

If yes Verify tagout, and log into RPA dosimetry 

information if applicable. 

 

Maintenance Out of 

scope 

95% 

If no Notify workweek manager for resolution. 

 

Maintenance 1 5% 

Total (minutes FTE per WP) 10.05 

 Assuming 2 staff discuss for 5 minutes, this would result in 10 minutes per WP. 

 

Automated Decisions and Conditional Actions 

Input: Current WP and daily schedule. 

Is the plant in a safe condition and in the proper configuration for maintenance to begin work? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA 

If yes NA 

If no NA 
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E-18. Maintenance FME Zone Actions 

When there is a possibility that foreign material can be introduced into process systems during work 

execution, then FME zone actions are necessary to prevent foreign material intrusion. 

Current Decisions and Conditional Actions 

Input: Current WP and daily schedule. 

Are there FME zones associated with work to be performed? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Check the WP to identify whether FME zone 

actions will need to be performed to prevent 

foreign material intrusion during the work 

activity. 

Maintenance 1* 100% 

If yes Set up FME zones. Maintenance 30 5% 

If no None. NA 0 95% 

Total (minutes FTE per WP) 2.5 

 With most WPs, it is a trivial effort to determine whether the work will need FME zone. Some (about 10%), however, 

require more research (around 10 minutes). This averages to 1 minute per WP. 

 

Automated Decisions and Conditional Actions 

Input: Current WP and daily schedule. 

Are there FME zones associated with work to be performed? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process FME zone keywords or general-

knowledge-enabled LLM 

Current WP Classification 

(unsupervised) 

Yes/No 

FME zone locations Current WP Review Yes/No 

If yes NA 

If no NA 
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E-19. Work Groups Perform Work 

In this step, the subject work group performs the work in the plant based on the WP associated with 

the work activity. 

Current Unconditional Actions 

Input: Current WP and daily schedule. 

Perform work. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process  Perform field activity. All relevant 

groups 

Out of 

scope 

100% 

Total (minutes FTE per WP) 0 

 This is mainly a physical activity with variable duration and is outside the scope of this work. 

 

Automated Unconditional Actions 

Input: Current WP and daily schedule. 

Perform work. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA 
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E-20. Work Groups Update of Work Package Notes/Status 

During the performance of the WP, all groups will need to log their actions and plant conditions 

encountered while performing work. This is done to ensure procedural requirements have been 

maintained as well as help with condition-based monitoring. 

Current Unconditional Actions 

Input: Current WP. 

Provide ST status updates. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Update the WP based on the work execution 

and document any interactions. 

Maintenance 2 100% 

Total (minutes FTE per WP) 2 

 

Automated Unconditional Actions 

Input: Current and historical WPs. 

Provide ST status updates. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs Current WP  Guidance Notes and 

updates 

Historical WPs Current WP  Insertion Notes and 

updates 
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E-21. Maintenance Supervisor Approval of Work 

Once the work is complete in the field, the supervisor will ensure that the full scope of work has been 

completed and that the work that was performed has been adequately documented. Once verified, the 

supervisor will approve the completion of the WP. 

Current Decisions and Conditional Actions 

Input: Current WP. 

Is the work completed and documented? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Review the WP and discusses with staff to 

determine if work is performed and documented 

adequately. 

Maintenance 5 100% 

If yes Supervisor updates WP status. Maintenance 5 95% 

If no Rework or improve documentation. Maintenance 60 5% 

Total (minutes FTE per WP) 12.75 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WPs and work management procedure. 

Is the work completed and documented? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Work management procedure Current WP Review Yes/No 

If yes Historical WPs Current WP  Guidance Notes and 

updates 

Historical WPs Current WP  Insertion Notes and 

updates 

If no Work management procedure Current WP Generation Notes on 

improvement or 

recommendation 

for rework 
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E-22. Maintenance Work Schedule Updates 

Maintenance is required to update the work schedule each shift to ensure that schedule compliance 

will be achieved if problems occur during execution of work, or to allow for the completion of other 

related work activities. 

Current Unconditional Actions 

Input: Current WP and ST and daily schedule. 

Provide ST status updates. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process  Provide updates to the ST as the work starts, 

progresses, and completes. Those updates can 

be just marking steps completed or providing a 

detailed description of what was accomplished. 

Maintenance 2 100% 

Total (minutes FTE per WP) 2 

 

Current Unconditional Actions 

Input: Current and historical WPs and Current ST, daily schedule. 

Provide ST status updates. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs Current WP and 

ST 

Guidance Notes and 

updates 

Historical WPs Current WP and 

ST 

Insertion Notes and 

updates 
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E-23. Work Package Closeout  

After work is complete, all working departments are required to complete the WP documentation. 

This includes updating the as found and as left equipment condition. This task is mainly for maintenance 

to complete, but may also involve engineering, operations, RP, etc. 

Current Unconditional Actions 

Input: Current WO and WP. 

Close out WP. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Update as-left condition and work completion 

notes and mark WP as complete. 

All relevant 

groups 

15 100% 

Total (minutes FTE per WP) 15 

 

Automated Unconditional Actions 

Input: Current and historical WPs. 

Close out WP. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Historical WPs Current WP Guidance Notes and 

updates 

Historical WPs Current WP Insertion Notes and 

updates 
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E-24. Work Package Completion Check 

After WP is closed, a review is conducted by records/document management personnel to ensure all 

signatures are there and all work has been completed. 

Current Decisions and Conditional Actions 

Input: Current WP and work management procedure. 

Is WP completed properly? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process  Check WPs for completeness including all 

signatures. 

Document 

control 

10 100% 

If yes None. NA 0 95% 

If no Add notes and send back to responsible entity 

for missing work. 

Document 

control 

30 5% 

Total (minutes FTE per WP) 11.5 

 

Automated Decisions and Conditional Actions 

Input: Current and historical WPs and work management procedure. 

Is WP completed properly?  

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Work management procedure Current WP Review Yes/No 

If yes NA 

If no Work management procedure Current WP Generation Notes for 

missing parts of 

the WP 

 

 



 

243 

 

Appendix F 
Mapping of Post-Execution 

 



 

244 

Page intentionally left blank 

 



 

245 

Appendix F 
Mapping of Post-Execution 

This appendix applies the approach of Section 4.1 to work post-execution steps according to the flow 

shown in Figure 21. The following sections discuss each of those steps in detail.  

 

Figure 21. Flowchart of the work post-execution steps that are discussed in Appendix F. 

F-1. Work Management Evaluation of Week Performance Information 

Once execution week is complete, the work management group will gather execution week 

information to ensure that they can continuously improve the work management process. This 

information will be fed into performance indicators and will be used during the post-execution week 

critique. 

Current Unconditional Actions 

Input: Completed WPs and week schedule. 

Gather information about the week and generate a report. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Run reports to provide results on any 

outstanding tasks that need to be performed and 

document any insights on work performance. 

Workweek 

manager 

2 100% 

Total (minutes FTE per WP) 2 

 

Automated Unconditional Actions 

Input: Completed WPs, week schedule, and historical performance reports,  

Gather information about the week and generate a report. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Week schedule and historical 

performance reports 

Completed WP Generation Week                 

performance 

report 

Week schedule and historical 

performance reports 

Completed WP Summarization Summary of key 

week 

performance 
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F-2. Relevant Groups Analysis of Execution Week Performance 
Information 

Information that is gathered by work management is provided to each department’s supervisor for 

analysis. Any performance shortfalls are analyzed in preparation for the post-execution week critique 

meeting. 

Current Unconditional Actions 

Input: Completed WPs, week schedule, week performance report, and work group documents. 

Analyze weekly report.  

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Review performance reports and identify any 

department shortfalls. 

 

All relevant 

groups 

1 100% 

Total (minutes FTE per WP) 1 

 

Automated Unconditional Actions 

Input: Completed WPs, week schedule, week performance report, and work group documents. 

Analyze weekly report. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Week schedule, week 

performance report and work 

group documents 

Completed WP Review Performance 

shortfalls 
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F-3. Post-Execution Week Performance Critique Meeting 

All relevant groups representatives meet to discuss the past week's execution of work, compare it to 

key performance indicators, and analyze any issues that came up during the execution week. 

Current Unconditional Actions 

Input: Completed WPs, week schedule, work performance report, and work group documents. 

Discuss performance in a meeting. 

Action Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Participate in a meeting and provide feedback 

on week schedule to include in future work. 

All relevant 

groups 

0.75 100% 

Total (minutes FTE per WP) 0.75 

 Assuming 5 staff meet for 30 minutes and 200 WPs per week, this would result in less than 0.75 minutes per WP. 

 

Automated Unconditional Actions 

Input: Completed WPs, week schedule, work performance report, and work group documents. 

Discuss performance in a meeting. 

Action 

AI Description 

Training/Reference Input Use Input Functions Output 

Process NA 
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F-4. Performance Shortfalls Documentation 

If any of the issues that came up during the post-execution week critique meet the threshold for a CR, 

then a CR will be generated for more detailed analysis of the issue. 

Current Decisions and Conditional Actions 

Input: Completed WPs, week schedule, work performance report, critique meeting notes, and work group 

documents. 

Are there any issues to report? 

Decision Effort Description Discipline 

Time in 

Minutes 

Frequency 

per WP 

Process Determine if the WP issues or performance 

shortfalls discussed in the meeting include an 

issue that requires comprehensive review and 

evaluation. 

All relevant 

groups 

1 100% 

If yes Report issues or shortfalls in a CR. All relevant 

groups 

1 5% 

If no None. NA 0 95% 

Total (minutes FTE per WP) 1.05 

 

Automated Unconditional Actions 

Input: Completed WPs, week schedule, work performance report, critique meeting notes, and work group 

documents. 

Are there any issues to report? 

Decision 

AI Description 

Training/Reference Input Use Input Functions Output 

Process Work management procedure 

for CRs criteria  

Completed WP 

and critique 

meeting notes 

Review Yes/No 

If yes Historical CRs Critique meeting 

notes 

Generation  New CR 

If no NA 

 


