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ABSTRACT 
There is a need for high-throughput, scale-relevant, and direct electrochemical 

analysis to understand the corrosion behavior and sensitivity of nuclear materials 
that are exposed to extreme (high pressure, temperature, and radiation exposure) 
environments. We demonstrate the multi-scale, multi-modal application of 
scanning electrochemical cell microscopy (SECCM) to electrochemically profile 
corrosion alterations in nuclear alloys in a microstructurally resolved manner. 
Particularly, we identify that both mechanically deformed and irradiated 
microstructures show reduced charge-transfer resistance that leads to accelerated 
oxidation. We highlight that the effects of mechanical deformation and irradiation 
are synergistic, and may in fact, superimpose each other, with implications 
including general-, galvanic-, and/or irradiation activated stress-corrosion 
cracking. Taken together, we highlight the ability of non-destructive, 
electrochemical interrogations to ascertain how microstructural alterations result 
in changes in the corrosion tendency of a nuclear alloy: knowledge which has 
implications to rank, qualify and examine alloys for use in nuclear construction 
applications. 
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Advanced microstructural and electrochemical 
quantification of irradiated stainless steels 

1. Introduction 
Forecasting the evolution of irradiation -assisted stress corrosion cracking (IASCC) remains 

challenging due to the unresolving issues in understanding the microstructure-corrosion interplay across 
scales. For this reason, many recent developments of scanning electrochemical cell microscopy (SECCM) 
technologies have resolved the scale limits imposed by conventional methods1–3. For instance, by using a 
micropipette to confine corrosion evaluation in a nano- to micrometer sized microdroplets, SECCM 
readily resolves small microstructural features2,4–6.  The scanning probe technique has been consequently 
applied to study the mechanism of IASCC. For instance, in a previous study, we have demonstrated that 
surface electrochemical reactivity is correlated with strain-induced heterogeneities (e.g., martensite, point 
defects and dislocations) in austenitic stainless steels, even though these features are identical in 
composition with the austenitic matrix.7 In addition, many other studies have reveal that, corrosion can be 
accelerated not only by plastic strain-induced microstructures, but can also activated by elastic stresses 8–

11. 
Akin to the deformation damage, irradiation also induces microstructural defects12, which results in 

accelerated surface oxidation in nuclear reactor environments13. In both cases, irradiation and mechanical 
deformation increase the chemical reactivity in similar manners, i.e., by inducing defected phase-
transformation (e.g., martensitic transformation)14,15 or building stored energy in lattices16,17. This is 
significant since the enhancement of reactivity (oxidation tendency) is linked to the chemical potential 
(embodied by surface reactivity) that is in turn affected by mechanical deformation (i.e., effective plastic 
strain, EPS) and irradiation (i.e., displacement per atom, dpa). Based on these linkages, herein, we 
develop an electrochemical post-damage examination (Ec-PDE) approach to achieve multiscale, 
multimodal analyses on deformed and irradiated nuclear materials.  
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2. Experimental 
2.1 Sample preparation 

A hot rolled 304L stainless steel (ArcelorMittal) with the nominal composition listed in Table 1 was 
sectioned into miniature tensile specimens shown in Figure 1a18,19. In deformation tests, two specimens 
were respectively elongated to a 30% strain and fracture under uniaxial tension at a strain rate of 5×10-4 s-

1. To make samples for SECCM, each sample was attached to a copper wire, and then embedded in epoxy 
resin. The exposed surfaces were successively polished (N.B., using the 50 nm colloidal silica as the final 
step) until the surface featured a mean-roughness Sa < 10 nm. After polishing, the samples were stored in 
a desiccator before used.

 
Figure 1. (a) Schematics of the miniature tensile samples used for (top) deformation and (bottom) H+-
implantation. All values are in mm. (b) Schematics show the assembly irradiated under in the H+-
implantation. 
 
Table 1. The chemical composition of the 304L stainless steel used (mass %). 

Fe Cr Ni Mo Mn N C Si 
71.82 18.29 8.02 0.07 1.28 0.05 0.02 0.45 
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2.2 Irradiation 
A 304L steel tensile specimen and a spacer (see Figure 1) was annealed at 1050 °C for 3 h to produce 

solution-treated monophasic austenitic microstructure, with a grain size on the order of tens of 
micrometers. The specimens were partially irradiated at 300 °C by using a 1.5 MeV proton ([H+]) beam 
(generated by the NEC 3 MV tandem ion accelerator, LLNL) until a target fluence of 1.84×1019 ions/cm2 
was attained. A flat-region irradiation damage level of 1.11 dpa was calculated based on full-cascade 
SRIM simulations20. Thereafter, the tensile specimen was elongated to a 1% strain under uniaxial tension 
at a strain rate of 5×10-4 s-1. Additional 304L samples were also irradiated with other ion sources, three 
tensile specimens were irradiated using 5 MeV [Fe++] to a target of 1, 3, and 5 dpa (flat region). 

 

2.3 Microstructural characterization 
The crystallographic orientations of the grains were studied using a Scanning Electron Microscopy 

(SEM, Tescan Mira3) equipped with an electron backscatter diffraction detector (EBSD, Oxford Ultim 
Max). The acceleration voltage and step size used were 20 kV and 500 nm, respectively. The EBSD data 
were subsequently analyzed using the OIM Analysis software. 

A cross-sectional thin slide from the irradiated and deformed surface was prepared using Focused Ion 
Bean (FIB) ablation. An FEI Nova 600 Nanolab Dual-Beam Focused Ion Beam - Scanning Electron 
Microscope (FIB-SEM) was used for this purpose. The morphology and composition of three irradiated 
Stainless Steel (SS) samples were characterized by scanning electron microscopy (SEM) using a FEI Nova 
230 Variable Pressure SEM (VP-SEM) equipped with a Thermo Fisher Scientific Electron Dispersive 
Spectroscopy (EDS) system. 

High resolution transmission electron microscopy (HRTEM) was used to investigate the dislocation 
channels (DCs) and other defects such as stacking faults and twins found in the microstructure. A FEI Titan 
300-kV scanning transmission electron microscope (STEM) was used for this purpose and a FEI Nova 600 
Nanolab Dual-Beam Focused Ion Beam - Scanning Electron Microscope (FIB-SEM) was utilized for the 
TEM sample preparation. Different phases and layers of different compositions were identified with 
different contrast using bright field (BF), dark field (DF) and high-angle annular dark field (HAADF) 
detectors under the STEM mode. EDS mapping conducted in the Titan confirmed the composition of each 
layer.   

Vickers hardness indentations were performed under a load of 200 gram force (gf) and loading time of 
15s, 20 indentations were made 100 μm apart across the irradiated and unirradiated regions of the spacer.  

 

2.4 Scanning probe analysis 
The surface reactivity of the deformed and [H+]-irradiated 304L steels were evaluated using a 

scanning electrochemical microscope (HEKA ElProScan, see Figure 2a). The instrument is equipped 
with micropipettes with a 1.8 ± 0.3 μm opening to probe spatially resolved electrochemical responses (see 
Figures 2b-c). The micropipettes were made at 700 oC by a pipette puller (Sutter P-1000), using 
filamented borosilicate glass tubes (1 mm ID, 1.5 mm OD). The SECCM tests were performed with the 
micropipettes filled with 0.2 M LiCl or 0.2 M LiCl + 5% HNO3 solutions. N.B., Lithium is commonly 
used in pressurized water reactors (PWRs) as a coolant additive, therefore, LiCl as a potential coolant 
contaminant21, was used to promote measurable corrosion signals; and the 0.2 M LiCl + 5% HNO3 
solution are used to dissolve surface hydroxides and reveal the corrosion resistance of only the protective 
“barrier” oxides. During scanning, the steel samples were connected as the working electrode and an 
AgCl-coated silver wire (Ag/AgCl) were inserted in the micropipette to serve as the quasi-reference-
counter-electrode (QRCE). As the micropipette approached the steel surface, a 30s open circuit hold was 
performed allowing the microdroplets to stabilize and the open circuit potentials (OCP) were measured at 
the end of the hold. Thereafter, potentiodynamic (PD) polarization was performed at -0.25 VOCP to 0.4 
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VOCP with a 20 mV/s scanning rate. Linear fitting was performed on the Tafel plots over -0.25 VOCP to 0 
VOCP, and over 0 VOCP to 0.25 VOCP, the corrosion current density was then extracted from the crossing 
point. Electrochemical impedance spectroscopy (EIS) was conducted at OCP with ± 10 mV stimulus 
potential over the frequency range of 10 kHz to 1 Hz. A programmable 3D motor with nanometer 
precision controlled the positioning of the micropipette to scan a grid-matrix that is superimposed on 
EBSD- and optical microscope mapped areas. This produced hundreds of location-specific corrosion 
datasets within one scan, and allowed correlation of measured properties (e.g., corrosion rate, corrosion 
potential, and passive film thickness, etc.). A conductive carbon-fiber cloth was used to cover the whole 
SECCM apparatus as a Faraday cage. A Petri dish filled with cotton saturated with LiCl solution was 
placed next to the scanned sample to ensure a high relative humidity and prevent microdroplets from 
drying.  All experiments were performed at room temperature (23 ± 2°C) using reagent grade chemicals. 
All solutions were prepared using deionized (DI) water (>18 MΩ-cm2). 
 

 
Figure 2 (a) A schematic of the scanning electrochemical cell microscopy (SECCM) setup. (b) An optical 
image showing the matrix of microdroplets during a scan in progress. (c) A scanning electron microscopy 
(SEM) image of the micropipette (filamented borosilicate) used in this study. 
 

2.5 Surface imaging 
Topographical and polarized light images were acquired by a Vertical Scanning Interferometer (VSI, 

Zygo, NewView 7000). A 100× Mirau objectives (lateral resolution 84 nm) were used to measure surface 
height over the SECCM scanned areas ranging from 80 μm × 80 μm to 1 mm × 1 mm. The resolution in 
the z-direction is in the order of ±2 nm based on analysis of a NIST traceable step-height standard. The 
Gwyddion (ver. 2.55)22 software was used to analyze the topographical and polarized light images 
acquired by VSI. The SECCM scanned area were characterized immediately after each experiment to 
measure microdroplet sizes, and all current density and impedance were normalized by the surface area 
covered by microdroplets. In this study, the microdroplets are of diameters between 3 to 10 μm, rendering 
size measurement errors of less than 3%. 
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3. Results and discussion 
3.1 Corrosion activity of dislocation channels 

To clearly unentangle irradiation-assisted SCC (namely, IASCC), first, we exploited the surface 
electrochemical reactivities solely induced by irradiation. The results have been shown in previous 
reports. In short, an annealed 304L steel was partially irradiated to 1.1 dpa. Although the irradiation did 
not cause any apparent surface alternations, the irradiated area was clearly revealed by the impedance 
(|Z|1Hz) map characterized by low charge-transfer resistances. As such, irradiation induces point defects, 
dislocation loops, etc.,12 which lead to a defective passivation film and enhanced corrosion activity.  

When the irradiated sample is further subjected to mechanical deformation, a small strain (1%) can 
readily cause severe dislocation channeling in the irradiated lattice (see Figure 3c)23–25. The dislocation 
channels (DCs) are signified by the 20-to-150 nm slip steps found on the sample surface. Evident 
corrosion susceptibilities of the DCs are revealed by the scanning AC-impedance measurements 
conducted via constant frequency and frequency sweeps (see Figure 3d and 3e). Note that, an irradiation 
of 1.1 dpa alone can cause a 40% reduction in steel’s oxidation resistance (|Z|1Hz from 3.7 ± 0.6 kΩ-cm2 to 
2.1 ± 0.5 kΩ-cm2), and the resistance is further reduced to 1.2 ± 0.2 kΩ-cm2 at DCs. Such significant 
reduction in charge-transfer resistance will result in fast corrosion of the surface steps, and has been 
confirmed by studies in simulated reactor environments23,26. It is indicated that the high 
corrosion/oxidation tendency of DCs is attributed to the following: 1) the highly distorted lattice which 
stores elastic energy at defects such as dislocation networks, thereby elevating the chemical potential and 
reactivity of the alloying atoms.16,17 2) DC formation leads to the formation of abrupt surface steps, which 
mechanically disrupt the original oxide film and expose the metal atoms directly to the corrosive 
environments. In fact, equivalent circuit fitting of the EIS spectra suggests the rupture of the oxide layer 
at the surface steps, leading to the reduced surface impedance values (see Figure 3e and 3f). Moreover, 
the surface steps also disrupt stress flow and cause stress concentration, causing mechanical-chemical 
interplay (i.e., likely the root cause of IASCC initiation). Importantly, this study provides a non-
destructive approach to locate and assess these detrimental features induced by irradiation and/or 
deformation.  

 
 

Figure 3 Scanning probe impedance analysis: constant frequency mapping of irradiated 304L. (a) An 
optical image showing matrices of microdroplets and Vickers hardness indents. From left to right, the 
microdroplets are 50 μm apart and the hardness indents are 100 μm apart. The scale bar is 200 μm in 
length. (b) AC-impedance at 1Hz is consistent with hardness measurements, revealing the irradiated and 
unirradiated regions, the transition region is highlighted by red dashed lines. The error bars of |Z|1Hz show 
the standard deviation of five repeat measurements. In an irradiated and deformed (1% strain) 304L 
sample, dislocation channels (DCs) are evidenced by the surface height steps. (c) Surface topography and 
(d) |Z|1Hz maps acquired from the same area indicating the DCs feature a significantly reduced corrosion 
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resistance. The scale bar in (c) is 20 μm in length, and a 20 mM LiCl + 5 % HNO3 solution was used in 
all impedance scans. (e) Full frequency spectra (1 Hz - 1 kHz) of the irradiated matrix and a dislocation 
channel, the data were fitted by equivalent circuit models indicated in (f). We noticed that the passive film 
formed on the matrix has a two-layered structure: a compact layer and a porous layer. However, only a 
porous layer was observed at the slip steps, indicating the disruption of compact layer during deformation. 
 

3.2 Microstructural evidence of oxide disruptions at dislocation 
channels 

To confirm corrosion activities identified in SECCM tests, we have employed STEM to explore 
microstructure of the dislocation channels and their surface oxides. Our findings are as follows: i) the 
presence of a 10 nm oxide layer on top of the substrate and its absence at the DC steps, which might explain 
the passivation degradation observed from the impedance analysis (Figure 3), ii) a detailed characterization 
of the dislocation channels (DCs) coming from different steps with a thickness around 25 nm and with the 
characteristic weak satellite reflections from their dislocation arrays, iii) the diffusion of Cr through the 
grains to form complex FeCr2O4 oxides that leaves some Cr depletion areas along GBs, iv) the 
determination of crystallographic orientation relationships between 𝛾𝛾 (austenite) and 𝛼𝛼 (ferrite) phases and 
the complex FeCr2O4 oxides.  In the following we provide a thorough description of the two [H+]-irradiated 
stainless steel samples with 1.1 dpa dose and was deformed to 1%. 

From the TEM analysis of sample#1 (Figures 4-11), we were able to characterize the dislocation 
channels (DCs) and the inner layer of around 10 nm scale made of an oxide as verified later with the EDS 
analysis. We confirmed that the oxide layer was missing at the steps, which might explain the passivation 
degradation that was observed from the impedance analysis. An average step height of 90 ± 23 nm was 
measured. At least two dislocation channels (DCs) parallel to the {110} and {131�} planes have been 
identified coming from different steps with a thickness around 25 nm.  We found two pairs of edge 
dislocations on the {11�1} planes separated 0.6 and 1 nm, and two partials lying on the same slip plane.  
Weak satellite reflections parallel to the <110> slip directions were also found as an indication of regular 
dislocation arrays in the DCs. 

TEM data of another step from the Stainless-Steel (SS) sample #2 (Figures 12-17), reveals a DC 
parallel to the (110) planes. Different layers of surface coatings (oxides and Pt) have been identified with 
different contrast using bright field (BF), dark field (DF) and high-angle annular dark field (HAADF) 
detectors under the STEM mode. STEM images confirmed the presence of an oxide layer around 10 nm 
found between the Pt deposited layers and the SS substrate. EDS maps have confirmed the composition of 
each layer. In particular, a higher concentration of O and Fe have been found at the oxide layer, suggesting 
an Fe-rich oxide. This has been confirmed by the spot analysis. STEM images of the DC steps revealed the 
thinning of the O-rich layer on top of the substrate conforming the oxide layer, this is consistent with the 
findings from sample #1.  

In summary, the TEM-STEM results provide strong evidences that confirms the passive film disruption 
resulted in elevated corrosion activity as characterized by SECCM (Figure 3). 
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Figure 4 TEM sample preparation by FIB. (a) The irradiated 304L Stainless Steel (SS) sample #1 covered 
with a Pt layer for surface protection. Regions of study are named as A, B, C and D. (b) Milling process 
during the cross-sectional thin slide preparation. 

 

 
Figure 5 TEM images showing the top surface steps (the brightest layer) from the irradiated process. The 
measured steps height is around 90 ± 23 nm   

 

 
Figure 6 (a) TEM image showing a dislocation channel (DC) coming from the step between A and B 
regions and a grain boundary (GB). This step with a height of 88 nm can be better seen at higher 
magnification in (b).  DC results to be parallel to the {220} planes as confirmed by the selected area 
electron diffraction (SAED) pattern of a fcc austenitic grain oriented to the [001] zone axis [1] (c). Note 
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the weak satellite reflections parallel to the <110> slip directions that might be due to regular dislocation 
arrays in the DC. (d) SAED pattern from the yellow square region of the neighboring grain oriented to a 
different zone axis, which verifies the presence of the GB. 

 

 
Figure 7 (a) TEM image of the C/D step where the grain behind has been oriented to the  [1�12]  zone axis 
as reveals its SAED pattern (inset) [1]. DC is parallel to {131�} planes. (b) A close-up view of the region 
highlighted in (a) showing a DC of 25 nm thick.  From the different contrast of the top surface layer, we 
identify an inner layer of around 10 nm thick. It is evident that this thin inner layer is missing at the step. 

 

 
Figure 8 (a) TEM image of the same C/D step but tilted away from the [1�12] zone axis. (b) Atomic 
resolution TEM image from the enclosed region within the DC exhibiting edge dislocations (highlighted 
in yellow) on the {11�1} planes as confirmed by its FFT.  Among those dislocations, we can identify two 
pairs of edge dislocations separated 0.6 and 1 nm, and two partials lying on the same slip plane. 
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Figure 9 STEM images of the C/D step. Bright field (BF), dark field (DF) and high-angle annular dark 
field (HAADF) STEM images at higher magnification showing different contrast between layers because 
of differences in composition. 

 

 
Figure 10 22∘ tilted-view STEM images of the C/D step at higher magnification. The interface between 
the e-beam deposited Pt layer and the SS substrate (black in color for instance in the HAADF image) 
indicate a gap between the deposited Pt layer and the substrate.   

 

 
Figure 11 EDS mapping of the step at 22∘ of alpha tilt angle. O- EDX map reveals a thin oxide layer 
around 8 nm thick on top of the SS substrate. Comparing the Fe and Cr-maps, this oxide layer seems to be 
rich in Fe. The interface between the e-beam deposited Pt layer and the SS substrate is still black 
conforming the gap between the deposited Pt layer and the substrate.  Additionally, two small particles 
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rich of O and Al (probably some remaining Al2O3 powders from the polishing process) have been 
identified inside of the gap. 

 

 
Figure 12 22∘ tilted-view STEM images out of the step region at higher magnification. No gap is visible at 
the interface between the e-beam deposited Pt layer and the SS substrate  

 

 
Figure 13 EDS mapping out of the step. An O-rich layer is identified on the top of the SS-substrate 

 

 
Figure 14 STEM images of the SS sample #2 step region at higher magnification. Different layers can be 
seen with different contrast using bright field (BF), dark field (DF) and high-angle annular dark field 
(HAADF) detectors. An oxide layer might be at the interface between the e-beam deposited Pt layer and 
the SS substrate. 
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Figure 15 EDS mapping of the step showing higher concentration of O between the Pt layers and the SS 
substrate 

 

 
Figure 16 Additional EDS data confirming the higher concentration of O at the interface, which suggests 
the presence of an Fe-rich oxide layer. 

 
 

 
Figure 17 EDS spot analysis form the step. Spectra from points 1 and 2 confirm the two Pt deposited 
layers. Note the Ga peak from point 1 characteristic of the ion beam Pt deposition. The O peak from point 
3 verifies the presence of the oxide layer.  Comparing the spectra from point 3 (oxide layer) and 4 
(substrate), the ratio between the maximum intensity peaks for Fe and Cr is the same for point 3 and point 
4, indicating the similar composition of Fe and Cr in the bulk and in the oxide layer.  However, the Kɑ/Lɑ 
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Fe intensity ratio is higher at point 3 (2.2) than that for point 4 (1.92), which may indicate the oxide layer 
is slightly enriched by Fe.  

3.3 Grain boundary microstructural evolution of a [Fe++]-irradiated 
stainless steel 

 
In addition to dislocation channels, interesting findings were obtained from microstructural 

characterizations of grain boundaries. A cross-sectional TEM sample from a [Fe++]-irradiated stainless 
steel (5 dpa) was prepared by FIB to identify any possible Cr depletion and Ni segregation at the grain 
boundary. The presence of these FeCr2O4 oxides proves once again that Cr diffuses through the grains and 
grain boundaries to form those oxides leaving some Cr depletion areas along GBs, and the detailed 
description are listed as Figures 18-29. Distinguished from H-irradiation at 1 dpa, 5 dpa Fe-irradiation 
produces a thin band (~100nm) of α-phase (bcc) at the grain boundary. The α-phase is identified as a Fe- 
and Ni-enriched Fe(Ni) solid solution. FeCr2O4 precipitates were located at the interface between γ-and α- 
phases, suggesting the Cr-depletion at the grain boundary. However, the extend of Cr depletion is 
extremely small, and is confined at a very small region (5-10 nm, see Figures 21 and 28). Nevertheless, 
Cr-depleted GBs are expected to have higher corrosion reactivity. However, as indicated in our previous 
reports, SECCM was not able to resolve the corrosion rate/resistance differences between the grain 
boundary (GB) and the grain interior (GI).  
 
 

 
 
Figure 18 SEM characterization of the SS sample#3 tensile specimen. Only a few grains are visible within 
the gauge length (highlighted by green arrows).  

 
In order to determine the grain size and to identify different phases in the sample, high-resolution SEM 
images were obtained using backscattered electrons (BSE).  By way of example, see Fig. 19 
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Figure 19 BSE-SEM images showing austenitic grains with an average grain size of 57 ± 27 𝜇𝜇m. Many 
twins can be observed within the austenitic grains.  Also, the retained ferrite phase can be seen in dark 
contrast and elongated along the same direction, which might be an indication of the rolling direction 
(RD). 

 
 

 
 
Figure 20 STEM analysis of the cross-sectional TEM sample. Bright field (BF), dark field (DF) and high-
angle annular dark field (HAADF) STEM images of the specimen showing the GB at the center under 
different contrast.  
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Figure 21 EDS mappings of the enclosed region from the grain boundary. The spatial distribution of Fe 
and Cr seems not to be uniform along the GB. The EDS mapping reveals GB regions where the Cr 
content is higher while the Fe content is lower and vice versa. This might be an indication of Cr depletion 
areas along the GB    

 
 

 
Figure 22 (a) TEM image of a grain to the right of the GB (Grain 1) oriented to the [1�11] zone axis as 
reveals in selected area electron diffraction (SAED) pattern in (b). 
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Figure 23 (a) Atomic resolution TEM images of another grain. Defects such as stacking faults (SFs) are 
also visible. (b) Inverse FFT TEM image showing SFs on the {111�} planes bounded by partial 
dislocations highlighted in yellow as confirmed by its FFT (inset). 

 
 

    
Figure 24 Atomic resolution TEM images conforming the presence of different phases along the GB. FFT 
from the region enclosed by the white square confirms the [1�11] zone axis of a ferritic phase with a bcc 
structure in (a), and a complex Cr-Fe oxide (FeCr2O4) oriented to the [2�33] zone axis in (b) [3]. 
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Figure 25 TEM image of the GB region after tilting the grain to the left (Grain 2) to the perfect [1�11] 
zone axis as shown by its SAED pattern (inset). 

 
 

 
Figure 26 (a) TEM images displaying the 𝛼𝛼 ferrite morphology along the GB surrounded by 𝛾𝛾 austenitic 
grains. (b) HRTEM image enclosing the two phases. Indexed FFT of the squared region confirms the 
presence of bcc 𝛼𝛼 phase (highlighted in yellow) along the GB. The bcc phase oriented to the [1�11] zone 
axis is parallel to the [011] zone axis of the 𝛾𝛾 phase. Under this orientation, the following relationship is 
stablished between both phases:  (011�)𝑏𝑏𝑏𝑏𝑏𝑏 // (111�)𝑓𝑓𝑓𝑓𝑓𝑓. 
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Figure 27 STEM analysis of the grain boundary (GB) and the phases surrounding. Bright field (BF), dark 
field (DF) and high-angle annular dark field (HAADF) STEM images showing the GB, the 𝛾𝛾 grains and 
the 𝛼𝛼 phase in different contrast 

 

 
Figure 28 EDS mapping of the STEM image conforming the Cr depletion at the top part of the GB as we 
observed before. Fe content seems to be lower as well.  
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Figure 29 Atomic resolution TEM images confirming the presence of complex oxides such as FeCr2O4  
within the austenitic grains. (a) Indexed FFT of the image (inset) confirms the presence of FeCr2O4 oxide 
(highlighted in green) oriented to the [1�14]  zone axis [3] that is parallel to the [001] zone axis of the 
austenitic grain. Under this orientation, the following relationship is stablished between both phases:  
(220) 𝛾𝛾𝛾𝛾𝛾𝛾 // (220)𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2𝑂𝑂4. (b) Indexed FFT of the image (inset) confirms the presence of FeCr2O4 oxide 
(highlighted in green) oriented to the [1�14]  zone axis that is parallel to the [011] zone axis of a different 
austenitic grain. Under this orientation, the following relationship is stablished between both phases:  
(111�) 𝛾𝛾𝛾𝛾𝛾𝛾 // (3�11�)𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2𝑂𝑂4. 

 

3.4 Corrosion activity of irradiated grain boundaries 
The insensitive corrosion activity at GBs is likely due to the Cr-depletion is not severe enough to 

induce passivity break down. To confirm, we have used the same approach to examine an austenitic 
(316L) stainless steel sample that was irradiated to 2 dpa by 5 MeV Ni++ ions. Consistently as shown in 
Figure 30 and Table 2, SECCM can only reveal enhanced corrosion reactivity at GBs via statistical 
analyses. And no significant difference in corrosion activity was observed between grain interiors (GI) 
and grain boundaries (GB). This may be resulted from 1) not enough dpa or Cr depletion, and 2) GB 
characteristics, and not all GBs were subjected to irradiation-induced Cr depletion. 

We consequently examined a 316L SS with much greater irradiation dose: another sample partially 
irradiated to 80 dpa with Ni++ ions. Vertical scanning interferometry was able to resolve the irradiation 
induced swelling. The sample was partially covered by a TEM grid mesh before irradiation, rendering 
irradiated regions in contrast to the unirradiated regions (see Figure 31).  By measuring surface elevation, 
we have determined radiation induced volumetric expansion (RIVE) of the samples irradiated to 2 and 80 
dpa as 0.7% and 2.5 %, respectively.  Herein, RIVE measured by VSI is consistent with the literature 
radiation induced swelling (of other ions) value. And the partial irradiation coupled with VSI can be 
adapted as a high-throughput method to determine RIVE and screen swelling resistance of alloys, 
avoiding TEM study for swelling investigation. 
 Instead of performing SECCM, the 80 dpa sample was electrochemically etched in oxalic acid. After 
etching, irradiated region (IR) show significant regression as compared to non-irradiated region (NIR), 
suggesting a higher electrochemical reactivity of the IR (see Figure 32). Irradiation induced corrosion 
sensitivity of GBs were also characterized by VSI (Figure 33). Generally, GBs with higher corrosion 
activity have higher surface retreat that can be revealed by VSI. As shown, even up to 80 dpa, not all GBs 
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are subjected to irradiation induced corrosion sensitivity, and GB characteristics play a determining role. 
This might explain why SECCM can only reveal a small difference in corrosion resistance only via 
statistical analysis. Nevertheless, VSI coupled with electrochemical etching could be an effective tool to 
investigate the radiation induced swelling and screen swell-resistant alloys as LWR components.  

 

 
Figure 30 (a) Exemplary SECCM point analysis on grain boundaries (GB) and grain interiors (GI) of a 5 
MeV Ni++ ion irradiated (2 dpa) austenitic (316L) stainless steel. (b) Exemplary impedance spectra of  

 
Table 2 Regressed corrosion resistances of the 2 dpa, [Ni++]-irradiated stainless steel.  

Parameters/ 
Sample region Corrosion resistance (kohm.cm2) 

Grain interior 
(not irradiated) 8.7 ± 0.0 

Grain interior 
(irradiated) 7.1 ± 1.1 

Grain Boundary 
(irradiated) 5.7 ± 2.0 
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Figure 31 VSI topographical measurements of the (a) 2 dpa, and (b) 80 dpa [Ni++]-irradiated samples. (c) 
(d) SRIM simulation reveals the dpa distribution along the depth profile (e) RIVE determined from 
surface elevation measured by VSI. N.B., 2 and 80 dpa are the targeted surface damages, whereas the 
averaged dpa along the irradiated depth are 3.7 and 148.7 dpa, respectively.  
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Figure 32 VSI images of the 80 dpa SS sample (a) before and (b) after the electrochemical etching. (c) (d) 
Surface height line profile showing the irradiated region (IR) are of the greater surface retreat after 
electrochemical etching (EE). 

 
Figure 33 VSI topographical images and surface height line profiles across irradiated and non-irradiated 
grain boundaries. 
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4. Summary and conclusions 
In summary, we have developed an electrochemical post-damage examination (Ec-PDE) approach to 

understand and elaborate the underpinnings of IASCC initiation and propagation – across length and time 
scales. Ec-PDE encompasses multiscale and multimodal approaches to electrochemically examine the 
interplay between irradiation, deformation, and corrosion. Our results show that deformation and 
irradiation induced alterations of microstructures can elevate the steel’s corrosion tendency, which can be 
attributed to lattice distortion and disruption of surface oxide films. Both deformation- and irradiation- 
induced damage similarly reduce corrosion impedance. The measured corrosion rate and surface 
impedance are quantitatively correlated with the extent and magnitude of strain concentrations and 
irradiation dose (i.e., dpa). Because of its ability to reveal corrosion activity at micro-to-macro scales, the 
methodology developed herein can be potentially utilized to predict SCC and IASCC susceptibilities 
while accommodating both the complex geometries, and diversity of materials used in nuclear 
components. More importantly, the fast turnaround times of the techniques allow agile adaptation for 
continuously evolving reactor designs, thereby providing a means for accurate and high-throughput 
corrosion evaluations, and screening of the microstructural heterogeneities and alternations that can cause 
the degradation of current/new alloy materials. 
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