
 

INL/RPT-24-78817  

Light Water Reactor Sustainability Program 

Automated Knowledge Extraction 
from Plant Records to Support 

Predictive Maintenance 

June 2024 

U.S. Department of Energy 

Office of Nuclear Energy 
 



 

 

 

 
 

DISCLAIMER 
This information was prepared as an account of work sponsored by an 

agency of the U.S. Government. Neither the U.S. Government nor any 
agency thereof, nor any of their employees, makes any warranty, expressed 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness, of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately 
owned rights. References herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the U.S. Government or any agency thereof. The views and 
opinions of authors expressed herein do not necessarily state or reflect 
those of the U.S. Government or any agency thereof. 



 

 

INL/RPT-24-78817 
  

Automated Knowledge Extraction from Plant Records 
to Support Predictive Maintenance 

D. Mandelli, C. Wang, C. M. Godbole, V. Agarwal 
Idaho National Laboratory, Idaho Falls, USA 

 
M. Movassat, B. Mori, D. Liang, E. Nur, A. Birjandi, B Lobo, N. Jacome 

Ontario Power Generation, Toronto, Canada 

June 2024 

 

Prepared for the 
U.S. Department of Energy 
Office of Nuclear Energy 

Light Water Reactor Sustainability Program 
 
  



 

 

 

Page intentionally left blank 
  



 

 iii 

 
ABSTRACT 

For almost a decade, the U.S. Department of Energy has been sponsoring the 
Light Water Reactor Sustainability Program with the goal of developing solutions 
and technologies to improve economics and reliability, sustain safety, and extend 
the operation of nation's fleet of nuclear power plants. In this respect, the Risk-
Informed Systems Analysis pathway of the Light Water Reactor Sustainability 
Program is focusing on the research, development, and deployment of solutions 
designed to assist operating nuclear power plants (NPPs) to reduce operating costs, 
maintain safety standards, and improve plant reliability and availability. 

One of the Risk-Informed Systems Analysis research areas is focusing on 
developing computational methods and tools to optimize plant operations (e.g., 
maintenance operations and aging management of plant structures, systems, and 
components) such that plant operational cost can be reduced while system 
reliability and availability are maximized. Such optimization can be realized when 
adequate monitoring data is available where such data can be employed to 
adequately assess the health status of assets and components. Such data can 
provide system engineers with valuable insights and information regarding the 
presence of anomalous behaviors or unexpected degradation phenomena, and 
guide engineers into identifying the possible causes behind such behaviors and 
phenomena. 

However, a current challenge that NPP system engineers are experiencing is 
that the amount of equipment reliability (ER) data being continuously generated is 
not only extremely large, but it also comes in different forms: textual (e.g., 
condition or maintenance reports) and numeric (e.g., generated by monitoring 
systems). On top of it, such data is often kept in physically different databases (e.g., 
plant operation servers and plant monitoring and diagnosis servers) with little or 
no possibility to cross-reference the information contained across different 
databases to assess the reliability history of plant assets and components. 

The advanced modeling and data analytics project tackles this plant 
operational challenges with the goal of building a robust bridge between plant ER 
data and system engineer decision-making regarding maintenance activity 
scheduling and aging management. Such a bridge is built on top of a set of 
computational tools designed to analyze ER data, perform system modeling, and 
optimize plant resources (personnel, time, and money). 

This report summarizes the activities performed within the advanced modeling 
and data analytics project during Fiscal Year 2024 in collaboration with a nuclear 
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power utility. Our work activities focused on a fairly unique task: the analysis and 
integration of ER data in all its forms, numeric and textual. 

Our approach takes inspiration from the latest research and development in the 
medical field where integrating several data sources is vital to assist medical 
practitioners achieve correct diagnoses and indicate optimal treatments. Even 
though the operational context is different, there are a lot of similarities; the goal 
is to guarantee system and asset operation based on actual and historic condition-
based data. 

One of the unique aspects of our approach is that it is strongly based on model-
based system engineering (MBSE) models of systems and assets; these models are 
designed to graphically capture their architecture from a form and functional 
standpoint. These models basically emulate system engineer knowledge about 
systems and assets architecture and dependencies between systems and assets. We 
think that this is the key to “put data into context.” Context is here intended as the 
information required by ER data analysis tools to understand what these data 
elements are referring to, that is, which kind of knowledge they are generating. 

Once this MBSE models have been developed, ER data elements are processed 
by identifying first which elements of the developed MBSE elements they are 
referring to. When dealing with numeric ER data, each condition-based monitoring 
data time series is associated with a unique MBSE entity. As an example, the time 
series generated by the sensors designed to monitor the winding temperature of a 
centrifugal pump is associated with a specific pump (or the actual component of 
the considered pump, i.e., the pump stator). In this work, we focused our work on 
the preprocessing of the time series obtained by a nuclear power utility and on 
identifying anomalous behavior from the processed time series. 

When dealing with textual data we aim as well to associate a textual element 
to one (or more) MBSE entity. This association process requires the text to “be 
understood” by a computational tool: we refer this process as “knowledge 
extraction.” In the medical field, several approaches designed to extract knowledge 
from textual data have been developed in the past decade. By following the paths 
developed in the medical field, we have adapted such approaches to system 
reliability operations applied to an NPP context. From the nuclear power utility, 
several databases of issue reports, maintenance reports, and shift logs were 
provided, and they were processed by the developed knowledge extraction 
methods. 

The process of associating MBSE entities to the set of anomalies obtained from 
numeric ER data and the set of anomalous behaviors inferred from textual ER data 
constitutes the first-of-its-kind knowledge graph. A knowledge graph is a digital 
structure designed to capture system architecture (derived from the system MBSE 
model) and historic performance of its constituent assets and components 
(obtained from the processing of numeric and textual ER data elements). 

The design of the knowledge graph allows our data analytics methods to 
identify the possible correlations and cause-effect relations among anomalous 
behaviors. This is performed by observing if a logical connection through the 
MBSE models exists and if there is a temporal correlation among them. The logic 
and temporal are the two main ingredients to perform the first-of-its-kind “machine 
reasoning” from ER data. 
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This report presents a summary of the research and development activities 
performed during Fiscal Year 2024 in tight collaboration with an NPP for a specific 
system. First, we show how the digital modeling of NPP systems and assets is 
performed using state-of-the-art MBSE models. Then, we provide details about 
developing computational methods designed to process and analyze numeric and 
textual ER data elements and show how our innovative data integration is 
performed in a MBSE context. We then provide details on how the proposed 
development can support actual system engineer decisions in terms of maintenance 
operation optimization and asset aging management. 
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AUTOMATED KNOWLEDGE EXTRACTION FROM 
PLANT RECORDS TO SUPPORT PREDICTIVE 

MAINTENANCE 
 

1. INTRODUCTION 
The past two decades have seen the emergence of advanced prognostic and health management (PHM) 

computational tools for anomaly detection, diagnostic, and prognostic purposes, which are helping system 
engineers and plant operators monitor the performance of several assets and optimize plant resources 
(personnel, time, and money). In the same direction, nuclear power plants (NPPs) are now in the process of 
digitizing operation and maintenance activities to track trends and events at the system or plant level (e.g., 
plant planned shutdown or system taken out of service) and, more importantly, observed abnormal 
conditions. In this respect, NPPs generate large amounts of equipment reliability (ER) data, which record 
the historic performance of a large number of components and assets. As a drawback, engineers and 
operators are now facing the challenge of processing the ER data being continuously generated, which is 
not only extremely large but also appears in different forms: textual and numeric. 

This report directly tackles this challenge by providing computational methods to assist system 
engineers and operators with the means to extract knowledge from ER data (see Figure 1). The first point 
we claim here is that all the ER data elements described earlier provide equally-important indications about 
asset and system performance and, hence, cannot be analyzed separately. The second claim is that 
generating knowledge from data requires the ability to put data into “context.” Here, context is the 
additional information needed by ER data analysis tools to understand what these data elements are 
referring to. 

To support these two claims, our approach deviates substantially from state-of-practice methods where 
the main focus is almost exclusively on numeric data analysis. Instead, we employ model-based system 
engineering (MBSE) approach to represent systems and assets to capture their architectural and functional 
(i.e., cause-effect) relations. Textual and numeric ER data elements are processed by identifying first which 
elements of the developed MBSE elements they are referring to. For numeric ER data, this task is fairly 
easy provided system design documents which indicate a precise association between asset and monitored 
time series. On the other hand, this task is more challenging when dealing with textual data; we employ 
technical language processing (TLP) methods to “extract knowledge” from textual elements. 

Filtering abnormal behaviors can then be performed from numeric data through anomaly detection 
methods and textual elements (by understanding their semantic nature). Such abnormal instances that are 
associated with a specific MBSE element are then stored in a relational database. This database takes the 
form of a graph where the main skeleton is the actual system MBSE model and abnormal instances are 
“linked” to such skeleton. At this point, both numeric and textual data elements are integrated and put into 
context. From here, graph-based analysis methods can be employed to perform “machine reasoning” 
including identifying abnormal patterns and the root-cause behind them. 

This report is structured as follows: 
• Sections 2 provides the operational context of our work and Ontario Power Generation (OPG) vision 

in terms of plant modernization while Section 3 summarizes the collaboration that occurred during 
Fiscal Year (FY) 2024 between LWRS and OPG to support OPG vision; 

• Section 4 provides an overview of the activities performed during FY24 in terms of the analysis of 
numeric and textual ER data and their integration to assist system engineers identify degraded 
performance and the correlation between events; 
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• Section 5 summarizes how the work shown in Section 4 support the utility vision of plant modernization 
and, in general, can support nuclear industry predictive maintenance decision-making; 

• Appendix A provides more technical details of this activity in the form of a journal paper that will be 
submitted shortly after the release of this report; 

• Appendix B provides technical details about the developed TLP methods in the form of a journal paper 
that has been published during FY2024 for the Energies journal. 

 
Figure 1. Operational context of this report: developing computational tools (digital space) to support the 
maintenance decision-making of complex systems (physical space). 

 

2. UTILITY VISION 
To achieve operational excellence, OPG Enterprise vision is to be an industry leader in plant reliability 

driven by proactive and innovative solutions across our fleet. This will ensure that safe and reliable 
electricity is available for the citizens of Ontario for the coming decades. Knowing the expected growth of 
demand due to electrification, and our commitment to a net zero business model by 2040, underlines the 
importance of reliable running of our current fleet, and leveraging our experience for the upcoming new 
builds, i.e. SMRs. 

To support our plant reliability, OPG adopted establishing Monitoring and Diagnostics (M&D) Centre 
in 2018. Industry benchmarking proved the value of having M&D Centre for two main purposes: early 
detection of equipment degradation compared to traditional static alarms, and supporting the move from 
time base maintenance to condition base maintenance (CBM) by leveraging models developed by M&D. 
Since its establishment, M&D has proved its business value through achieving both above purposes. OPG 
also added thermal performance (TP) modelling capabilities in M&D Centre which has avoided generation 
losses due to cycle isolation and secondary side inefficiencies.  

The value of online instrumentation data goes beyond early degradation detection, CBM, and TP. The 
data can be used to gain efficiencies through automating repetitive tasks, to perform customized calculations 
to assist with decision making and to provide dashboards for reporting purposes. To achieve these added 
values, OPG M&D Centre added an enhanced data analytics platform to its software fleet. The platform, 
having a module for open-source programming, has opened substantial opportunities for the data to be used 
to assist with decision making and gaining efficiency. 

OPG M&D Centre has gone through various benchmarking either through direct working with peer 
utilities to exchange best practices or by participating in EPRI studies. Through these benchmarking, OPG 
has learned from operational experience and has enhanced its monitoring practices to improve plant 
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reliability. M&D has been also recognized by various organizations for its innovative solutions to support 
OPG operations.  

The next step for OPG M&D Centre is to provide explainability to the instrumentation trend changes 
that are observed. The current M&D reliability models are all mathematics-based models. The models 
identify a change in the trend by comparing the historical pattern of the specific instrumentation with other 
correlated points. If deviation passes a threshold, the model alarms and M&D analysts will investigate the 
case. The models do not provide any diagnostics or explainability to why the trend has changed. 

To provide explainability, physics-based modelling needs to be added to the current monitoring 
strategy. By this addition, the changes in the trends will be attributed to the drivers behind the change. 
M&D would be able to answer the question of “why there is a change” compared to current situation of 
informing “there is a change”. This will increase the actionability of alarms M&D is communicating with 
Operations. In the past, there were cases where due to lack of explainability, the alarm about a change in 
trend had gone under radar until equipment failures happened.  

The complexity of physics-based models depends on what is the expected outcome form the model. 
The models can range from zero-dimensional models, to reduced order models, to full three-dimensional 
models. With currently available computational resources, zero-dimensional and reduced order models are 
achievable to run on live data. Currently, there is no standardized solution for the utility industry to provide 
these types of models. OPG in collaboration with INL has started developing its first hybrid model, a 
combination of mathematics and physics-based models. The collaboration would expand as OPG starts 
deploying and using these hybrid models. 

In addition to developing these hybrid models, OPG and INL are collaborating to leverage the available 
text data for further Explainability. Data sources such as operators shift logs convey important information 
about the operation of the plant that is currently underutilized for plant reliability purposes. With the recent 
development in natural language processing (NLP) and large language models (LLMs), unlocking the value 
from these text information sources has become practical. 

The combination of hybrid models and the information from text data would give a real time picture of 
the condition of the asset and the associated risks for its operation. This model would be a digital twin for 
the asset which can be used for calculating remaining useful life of the asset as well. The benefits of 
developing these digital twins are beyond plant reliability and can be leveraged for long term asset planning 
and asset management. OPG M&D Centre vision is to develop digital twin models and leverage them for 
data-driven decision making across the business. 

 

3. LWRS-UTILITY COLLABORATION 
In collaboration with the nuclear utility partner, OPG, we tested our methods on an NPP specific 

system: the circulating water system (CWS). The CWS system is used in many types of thermal power 
plants (e.g., coal, gas, oil) and it is designed to remove the residual heat from the turbine-condenser system 
and release it into the environment. Water is collected from a water body (e.g., lake or river) in service 
gates. Then, using traveling screens, it is cleaned of debris, water life, and foreign bodies that might damage 
CWS components. Screen wash pumps provide spray water to remove debris accumulation on the screens. 
Then, water is pumped through heat exchangers located in the plant secondary loop, which removes the 
heat from the turbine-condenser system. Lastly, the warm water is then released downstream of the same 
water body. From an operational standpoint, even though the CWS system does not directly support a plant 
safety function, any degradation of its performance or abnormal behaviors may directly affect power 
generation (either in a power derate or power shutdown) and, consequently, plant economic revenues. 

In this respect, the industry partner has provided a large amount of proprietary data that has been 
provided through secure channels. Such data included: 
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• Condition-based monitoring data of several CWS assets, supporting systems, and environmental 
variables collected during the 2012–2022 time frame; 

• Reactor operator shift logs of events related to the CWS system; 

• CWS condition reports of abnormal events in the CWS system; 

• CWS work orders for maintenance operations performed to CWS system; 
• Plant outage data of time instances where the plant was shut down for either planned or unplanned 

outages; 

• Designed documents gave us precise information about the architecture and functional relations 
between the CWS system, the rest of the plant, and the assets that are part of the CWS system. 
Given the proprietary nature of data used in this project, this report does not provide details about the 

plant and system. Similarly, the outcome of each analysis step reported here has been digitally edited, 
obscured, or hidden to secure the provided proprietary information. A large amount of information has also 
been shared throughout monthly meetings between INL and the industry partner. In such meetings, current 
INL progress was shown and initial results were checked by plant personnel (managers, data scientists, and 
system engineers). In addition, INL model and data assumptions were validated by the plant personnel. 

 

4. INL RESEARCH, DEVELOPMENT, AND DEMONSTRATION 
ACTIVITIES 

Based on the interactions that occurred during FY-24 with the industry partner, we have pursed several 
research and development activities were conducted to build a bridge between the available ER data and 
knowledge (see Section 3) and the utility digitalization vision (see Section 2). These activities were: 
• A digital representation of systems, assets, and components through MBSE diagram-based 

representation (see Section 4.1) 

• An analysis of condition-based (numeric) ER monitoring data (see Section 4.2) 

• An analysis of condition-based (textual) ER data (see Section 4.3) 
• ER data fusion and integration with a system digital model (see Section 4.4). 

 

4.1 System Modeling 
A unique element of our approach that differentiates us from state-of-art methods is that we rely on 

system and asset models to “put data into context.” Simply speaking, we aim to emulate system engineer 
knowledge about system architecture. While the term system architecture is sometimes not well defined 
and might differ from context to context, we use the following system engineering definition which includes 
several aspects: 
• The decomposition of systems into its constituent assets and assets into constituent components 

• The functional representation of systems, assets, and components 

• The operands that the defined function acts upon 
• The dynamic behaviors of the interactions between systems, assets, and components. 

The past decades have seen the emergence of a model-based approach to system engineering: the MBSE 
approach. Such an approach allows users to systematically decompose system architecture into form and 
functions using a precise diagram-based language. 
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Figure 2 shows how a generic asset commonly found in NPPs, a centrifugal pump, is translated into a 
(very) basic diagram where its architecture is captured, both functional (increased fluid pressure) and form 
(its constituent elements, such as shaft and bearings). It is important to note that system engineers possess 
the same structural and functional information of the same asset. In our approach, such information is 
digitized. 

From the CWS system design documentation, we have developed an MBSE model of the CWS system 
(see Figure 3) that captures all assets and components (including their corresponding ETAG ID) and the 
supporting systems (e.g., AC and cooling systems). 

 
Figure 2. Digital representation of the architecture of a centrifugal pump using a basic MBSE diagram. 

 
Figure 3. MBSE model of the considered CWS (intentionally edited to obscure proprietary information. 

At this point, a question may arise from the reader: what is the role of ER data in an MBSE context? 
Using the simple example shown in Figure 2, condition-based numeric data, such as the water flow 
generated by the pump and bearing oil temperatures, can be assigned to specific entities of the MBSE 
generated diagram: fluid pressure and bearing MBSE entities. 

Similarly, textual ER data elements, such as an issue report of the presence of cracks in the pump shaft, 
can be associated with a specific MBSE, i.e., entity shaft, where the identified degradation element (i.e., 
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cracks) is recognized as a possible future cause of pump’s failure or degraded performance. Section 4.3 
provides details about how ER textual elements are processed to extract quantitative information from them. 

 

4.2 Analysis of Numeric Data 
NPPs are continuously monitoring the functional and health performance of several assets that are 

relevant from a safety and reliability point of view (e.g., vibration data, oil temperature, water pressure). 
Collected data is continuously processed via advanced PHM systems in the utility monitoring and 
diagnostic centers. The goal is to (see Figure 4): 

• Detect data trends and anomalies that may inform system engineers of the degraded performance or 
failure of the considered asset (i.e., Sensing) 

• Identify which type of failure mode is being observed such that adequate replacement parts can be 
procured (i.e., Diagnostics) 

• Predict the temporal occurrence (i.e., prognostic) of the loss of performance of the considered asset 
such that maintenance activities can be scheduled to prevent failure (i.e., Prognostics) 
 

 
Figure 4. PHM computational technologies to assess asset health status through diagnostic and prognostic 
methods, adapted from Kim (2021). 

During FY24, we have focused on developing methods to identify anomalies in the CWS system that 
integrate state-of-art machine learning (ML) models and tested them on the CWS condition-based 
monitoring data described in Section 3. As an example, Figure 5 shows an anomaly detection analysis based 
on a matrix profile (Yeh, 2016) using training data from the 2012–2017 (blue temporal profile of the upper 
plot of Figure 5). The anomalies highlighted in red were detected in the 2017–2022 time window (orange 
temporal profile of the upper plot of Figure 5) by identifying temporal regions characterized by high values 
of matrix profile (shown at the bottom plot of Figure 5). 
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Figure 5. An example of anomaly detection methods applied to CWS data that has been intentionally 
edited to hide any proprietary information. 

 

4.3 Analysis of Textual Data 
ER textual data elements, such as issue reports and work orders, are valuable data sources for tracking 

asset health histories, identifying health trends, and performing root-cause analyses. These data sources, 
typically obtained in text form, are usually available in digital repositories. Natural language processing 
methods (Lane, 2019) have been developed over the past two decades to enable ML models to analyze 
textual data and classify textual elements based on their nature (e.g., safety related vs. non-safety related). 

Here, we are not interested in solving any type of classification problem but rather in extracting actual 
knowledge from textual data. This is a harder task, as it requires developing context-dependent models and 
vocabularies. The medical field is leading the way in this area by developing methods to extract knowledge 
from textual data (e.g., for diagnostic purposes or to estimate the performance of specific treatments). When 
applied to the nuclear field, knowledge extraction consists of several tasks, including identifying plant-
specific entities (such as systems, assets, and components), the temporal attributes that characterize events 
(e.g., the occurrence, duration, and order of events), specific phenomena (e.g., material degradation or asset 
functional failure), and causal relations between events. 

This knowledge extraction is enabled by a series of data, models, and methods. The developed series 
of TLP methods was designed to identify all elements listed above, using a mixture of rule-based and ML 
algorithms. These methods (Wang, 2024) heavily rely on data dictionaries and plant, system, and asset 
models. Data dictionaries containing a large number of keywords related to the nuclear field were 
partitioned into several classes (e.g., materials, chemical elements and compounds, degradation 
phenomena, and electrical, hydraulic, and mechanical components). 
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Figure 6. Graphical representation of the NLP elements that comprise the knowledge extraction workflow 
(Wang, 2024). 

The ability of system engineers to analyze textual data is enabled by their knowledge of the architectural 
scheme of the components and assets that comprise the system. In simpler terms, they know what physical 
elements comprise a given asset or system, along with their functional relations and dependencies. Without 
such information, knowledge extraction from textual data is very difficult, as putting the text into context 
becomes much harder. For the present study, our methods were designed to check whether MBSE entities 
are mentioned in ER textual data elements. 

Figure 6 provides an overview of the NLP methods that together constitute the knowledge extraction 
workflow. These methods are grouped into three main categories: 
• Text preprocessing: The raw text is cleaned and processed to identify specific nuclear entities and 

acronyms (e.g., HPI in reference to a high-pressure injection system), and to identify and correct typos 
(i.e., through a spell check method) and abbreviations (e.g., “pmp” meaning “pump”). 

• Syntactic analysis: This analysis identifies the relationship between words in a sentence, focusing on 
understanding the logical meaning of sentences or parts of sentences (e.g., subjects, predicates, and 
complements). 

• Semantic analysis: This analysis identifies the nature of the event(s) described in the text, along with 
their possible relationships (temporal or causal). 

An example of a TLP analysis that we have developed and tested is shown in Figure 7 where specific 
elements are identified in the issue report (e.g., degradation [cracks] and specific component [shaft]). The 
same figure is also displaying a relevant analysis step that we have developed in FY24 to summarize the 
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nature of the text, which is condensed in this case as: a degradation (of the shaft) was observed from the 
inspection which could have led (conjecture) to the asset (pump) failure. 

 
Figure 7. Example of a TLP analysis of textual data and association with MBSE entities. 

 

4.4 Data Fusion 
Lastly, after processing ER numeric and textual data (see Sections 4.2 and 4.3), the last step is 

constructing the knowledge graph. As indicated in Section 1, the purpose of a knowledge graph is to capture 
system architecture and system historic performance in a human-explorable data structure. Here, human-
explorable refers to the capability that the data structure, rather than being a black box, can be visualized 
and explored. In addition, original ER data is preserved, and it is actively part of the knowledge graph. The 
methods shown in Sections 4.2 and 4.3 are employed to identify abnormal behaviors (i.e., anomalies from 
numeric data), or specific features (e.g., degradation phenomena) from textual elements.  

A unique feature of our approach is that the system MBSE model is used as the main skeleton of the 
knowledge graph (see Figure 8) where nodes and edges refer to specific elements and links of the MBSE 
diagram. A relevant observation to be highlighted here is that each edge in this MBSE-based graph 
implicitly contains a cause-effect information. Then the processed ER data elements shown in Sections 4.2 
and 4.3 are as follows: 

• Anomalies detected from ER nuclear data elements (see Section 4.2) are associated with the 
corresponding MBSE entity being monitored; 

• Textual data elements processed using the methods shown in Section 4.3 are associated with the MBSE 
entities mentioned in the original textual data element. 

At this point, provided a system knowledge graph, plant system engineers can now perform the 
following analyses: 

• Discover patterns behind repetitive occurrences of abnormal events:  the ability to capture the full 
performance history of an asset, rather the using a one-event-at-a-time mindset, is vital to identify the 
most appropriate corrective actions. 
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• Identify cause-effect relations between events: a causal relationship between events is defined here as 
the combination of their mutual temporal and logical relation. More specifically, by logical relation we 
imply that the occurrence of an event has triggered a series of phenomena which can be either physics 
based1 or digital2. The temporal relation is an additional requirement we impose to avoid that two events 
that are logically related are too far apart from a temporal point of view. Logical relation between event 
sis here captured through MBSE structure while temporal relation is verified through statical testing 
methods (see Appendix A for more detail). 
Note that the proposed approach is not bound to a specific anomaly detection or knowledge extraction 

method; we in fact provide well defined application programing interfaces (APIs) such that currently 
employed methods in plant monitoring and diagnostic (M&D) centers can be easily interfaced. The methods 
shown in Section 4.2 and 4.3 can be considered as state-of-the-art since they rely on recent data analytics 
advancements designed to overcome some limitations of current state-of -practice methods. 

Note also that the already built knowledge graph (e.g., for the CWS system) can be easily expanded by 
adding or merging the knowledge graphs developed for supporting systems (e.g., the 4160V AC system for 
the CWS system). The developed knowledge graph construction process is in fact modular in the sense that 
a knowledge graph can be constructed for each system, but then these graphs can be merged once the cross-
system dependencies are capture in the system MBSE models. 

Modularity can be also achieved from a data point of view; additional data sources can be found in each 
utility such as: outage data (i.e., maintenance and surveillance operations performed periodically during 
plant outages), asset usage data (e.g., historic number of hours an asset has been running), regulatory related 
data (e.g., the basic event ID of an asset as part of the plant risk model, or the set of risk-informed plans 
associated with that asset), and economical data (e.g., procurement and maintenance costs). These data 
sources can be added to knowledge graph provided a well-defined label to the node in the graph that 
contains such data. This feature allows multiple stakeholders (e.g., system engineers, plant risk analysts, 
financial teams) to provide their own perspective of an asset (i.e., operational, regulatory, economical) into 
a unique and coherent structure designed to overcome current data limitations of nuclear utilities: missing, 
redundant, or contradictory information. 

 
Figure 8. Graphical representation of a knowledge graph where system architecture and system historic 
performance data is captured in a single graph-based data structure. 

 
1 Through an exchange of mass, momentum, or energy. 
2 Through an exchange of digital data via a communication system. 
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4.5 Methods Development 
For sharing the developed methods with the industry partner and extending such sharing to other 

industry stakeholders, we have framed our development in a set of plant-agnostic workflows. As indicated 
in Table 1, each of the four developed workflows has been designed with precise specifications in terms of 
the format of input data. These workflows are being developed and released in the digital analytics, causal 
knowledge acquisition and reasoning (DACKAR) repository that will be released opens-source soon. 
Table 1. List of developed plant-agnostic workflows. 

# Workflow Input Output 

1 MBSE modeling (see  
Section 4.1) 

Design documents describing 
system architecture (form and 
functional description)  

MBSE models for the 
considered system and derived 
graph structure 

2 Anomaly detection (see 
Section 4.2) 

System monitoring data 
(labeled or unlabeled) List of inferred anomalies  

3 TLP processing (see  
Section 4.3) 

Textual event data (e.g., 
operator shift logs, condition 
reports, maintenance reports) 

Graph representation of event  

4 Knowledge graph 
construction (see Section 4.4) 

Data elements generated in 
Workflows 1, 2, and 3 Graph structure 

 
 

5. BENEFITS TO NUCLEAR INDUSTRY 
In the few past decades, many high-tech industries (e.g., automotive, aerospace, medical) have 

demonstrated that the integration of advanced statistical, ML, and artificial intelligence (S-ML-AI) methods 
with plant data has been able to optimize plant resources (e.g., operating costs, time, personnel), improve 
the effectiveness of plant operations, and provide robust and informed decisions to decision makers. 

Recently, the nuclear industry, including the industry partner that has collaborated with us in this work, 
has started to explore and evaluate such potentials, and several operational areas may benefit from S-ML-
AI methods. Operational areas that would benefit from application of novel data analytics and decision-
making technologies include plant operations (e.g., maintenance and outage), aging management, fuel 
management, and risk and reliability analyses. 

The project described in this report directly tackles work reduction opportunities identified in the Light 
Water Reactor Sustainability Integrated Operation for Nuclear plan (Reemer, 2023) focusing on the direct 
application S-ML-AI methods on plant-specific areas that would benefit from automation to optimize plant 
resources. These computational methods are designed to “copilot” (rather than “autopilot”) with plant 
analysts, system engineers, and maintenance crews to discover the causes behind anomalous behaviors (i.e., 
automated troubleshooting) and optimize maintenance resources to restore plant and system health. 

During FY-24, this project tackled a challenging problem that the nuclear industry is currently facing: 
the ability to fully analyze all ER data elements (e.g., condition-based monitoring data and anomalous 
events reported in textual form). Solving this challenge is essential to correctly assess the current and 
historic performance of systems and assets to enable proactive solutions to maintain highest levels of 
reliability and availability. 

From an economic standpoint, the impact of our work can be quantified in terms of prevention of costly 
equipment failures and avoidance of potentially long equipment unavailability and even plant outages that 
could be caused by equipment being out of service. There are also cost savings in day-to-day tasks and 
activities since the hours required to parse large amounts of data either manually or using current state-of-
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practice methods can be significantly reduced when our method is employed by the utility. Since current 
state-of-practice methods are prone to inefficiencies, the economic impact of this work can be quantified in 
terms of the loss of resources (e.g., time and money) when anomalous behaviors are not promptly detected 
or are wrongly diagnosed. 

Lastly, we envision that our S-ML-AI methods can directly support the automation of specific plant 
activities, such as the planning and scheduling of plant operations based on current and historic plant and 
system performance information. The impact of such a feature can be quantified in terms of better utilized 
plant resources (e.g., maintenance crews, spare parts) and the hours required for planning and scheduling 
repetitive plant operations. 

 

6. CONCLUSIONS 
This report summarizes activities performed within the advanced modeling and data analytics project 

focused on he analysis and integration of ER data in presented in both numeric and textual formats. The 
context for this research is the analysis of ER data to assess system and asset health to support efficient and 
effective equipment maintenance and health management. A system common to any NPP, the circulating 
water system, was selected and the collaborating utility and provided a large amount of data and information 
to support the research. Such data included system schematics, monitoring data, issue reports, maintenance 
reports, and operator shift logs. The work has been structured in four different directions: analyzing 
anomalies from monitoring data, analyzing textual data, digital modeling of system architecture, and 
integrating ER data through a knowledge graph. 

The outcome of the research and development activities is the developed knowledge graph: a relational 
database that captures system architecture (i.e., system design) and integrates all collected data elements 
(both numeric and textual) to support understanding of the system structure and behaviors, both normal and 
emergent. The knowledge graphs can support system engineers and other plant personnel with the analysis 
of the historic equipment performance which in turn enables informed decision-making. This is the first 
step to support decision-making in a predictive maintenance context where the health status of assets and 
components needs to be precisely quantified through available data. 

Details of the technical approach and methodologies developed within this project are described in a 
journal article which is presented in Appendix A. 

The future plan is to further improve and test the computational tools developed during FY-24. Once 
this task is complete, developed tools and methods will be released to the industry with an open-source 
license such that additional nuclear utilities can test and eventually deploy them in their information 
technology systems. Lastly, our goal is to complete the interfaces between the other computational tools 
developed under the Light Water Reactor Sustainability Risk-Informed Systems Analysis Pathway 
designed to perform system reliability modeling (SR2ML3) and optimize plant resources (LOGOS4 and 
RAVEN5). 

This final task will generate a complete suite of computational tools designed to bridge ER data and 
decisions in a plant operation context. 

 

 
3 SR2ML (Safety Risk Reliability Model Library) repository: https://github.com/idaholab/SR2ML  
4 LOGOS repository: https://github.com/idaholab/LOGOS  
5 RAVEN (Risk Analysis and Virtual ENvironment) repository: https://github.com/idaholab/raven  
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ABSTRACT 

With the goal of maximizing plant reliability and availability, complex systems such as 
nuclear power plants continuously monitor and record the performance and health status 
of many components, assets, and systems. Such data may take the form of online monitoring 
data, condition reports, and maintenance reports, and they can provide system engineers 
with insights into anomalous behaviors or degradation trends as well as the possible 
causes behind them and predict their direct consequences. Analyzing such data however 
poses a few challenges. While some of these challenges are technical in nature (i.e., data 
are often distributed over several physical servers or databases), others are conceptual 
(i.e., data elements come in different formats, numeric or textual), and measured values 
have different scales (e.g., vibration spectra and oil temperature). This paper directly 
tackles these challenges and focuses on integrating all these data elements to assist plant 
system engineers in analyzing component, asset, and system performances and optimizing 
maintenance activities. This integration is performed by extracting knowledge from textual 
data via technical language processing methods and quantifying system, asset, and 
component health from numeric condition-based data. We rely on model-based system 
engineering (MBSE) models of systems and assets to identify their architecture and 
functional (i.e., cause and effect) relations. Numeric and textual data elements are then 
associated with an MBSE graph element, based on their nature. This bonding of MBSE 
models and data elements constitutes a first-of-its-kind knowledge graph of a nuclear 
power plant system, with data elements being organized in a structured manner that 
enables system engineers to identify cause-effect trends in data elements and carry out 
appropriate actions in response. 

Keywords: Technical language processing, predictive maintenance, MBSE, data fusion 

Target journal: Reliability Engineering and System Safety 

List of acronyms 

API application programing interfaces  NLP natural language processing 
CWS circulating water system  NPP nuclear power plants 
DACKAR digital analytics, causal knowledge 

acquisition and reasoning 
 OPM object-process methodology 

DBSCAN density-based spatial clustering of 
applications with noise 

 PHM prognostic and health management 

ER equipment reliability  RLM robust linear models 
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IR incident report  SSC system, structure, and component 
LML lifecycle modeling language  SysML systems modeling language 
MBSE model-based system engineering  TLP technical language processing 

ML machine learning  UML unified modeling language 
MMD maximum mean discrepancy  WO work order 
M&D monitoring and diagnostic    

 

1 INTRODUCTION 

The rapid development and deployment of advanced condition-based monitors and data analytics 
techniques (e.g., anomaly detection, diagnostic, prognostic methods) is helping system engineers and plant 
operators monitor the performance of several assets that constitute complex systems. Similarly, digitizing 
operation and maintenance activities allows the engineers and operators to track events at the system or 
plant level (e.g., plant planned shutdown or system taken out of service) and, more importantly, observe 
asset abnormal conditions and operations that have been performed on such assets (Coble, 2015; Xingang, 
2021). As a drawback, engineers and operators are now facing the challenge of processing the amount of 
equipment reliability (ER) data being continuously generated, which is not only extremely large but also 
appears in different forms: textual and numeric. 

This paper addresses this challenge by presenting methods to assist engineers and operators in 
extracting knowledge from ER data. The first point we claim here is that all the ER data elements described 
earlier equally provide indications about asset and system performance and, hence, cannot be analyzed 
separately. The second claim is that generating knowledge from data requires the ability to put data into 
“context.” Here, context is the additional piece of information needed by ER data analysis tools to 
understand what these data elements are referring to. 

Here, we employ model-based system engineering (MBSE) models of systems and assets to capture 
their architectural (i.e., physical) and functional (i.e., cause-effect) relations. With that, ER data elements 
(both textual and numeric) are processed by identifying first which elements of the developed MBSE 
elements they are referring to. For numeric ER data, this task is fairly easy, but it is more intricate for the 
text-based data. We employ technical language processing (TLP) methods to “extract knowledge” from 
textual elements. Filtering abnormal behaviors can then be performed using numeric (through anomaly 
detections and diagnostic and prognostic methods) and textual elements (by understanding their semantic 
nature). The abnormal behavior instances, which are associated with a specific MBSE element, are then 
stored in a relational database. Such a database takes the form of a graph where the main skeleton is the 
system’s MBSE model and abnormal instances are “linked” to the modeled system elements. At this point, 
both numeric and textual data elements are integrated and put into context. From here, graph-based analysis 
methods can be employed to perform “machine reasoning,” which includes identifying abnormal patterns 
and the root cause behind such patterns. 

For clarity purpose, throughout this paper, we employ the term system to indicate a collection of assets 
designed to provide a specific function (e.g., to generate alternating current power or provide high-pressure 
injection during a loss-of-coolant accident). The term asset indicates a system element designed to support 
the system function (e.g., a diesel generator, motor-operated valve, or centrifugal pump). A component 
denotes an asset sub-element (e.g., a transmission gear in a diesel generator, the drive sleeve of a motor-
operated valve, or the impeller of a centrifugal pump). Components are subject to degradation/aging and 
may require maintenance to guarantee proper operation of the asset.  

Since this work was performed in collaboration with a nuclear utility, the data elements and 
corresponding figures reported in this paper have been intentionally altered to hide proprietary information. 
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However, the computational methods and algorithms described in this paper can be found in the Digital 
Analytics, Causal Knowledge Acquisition and Reasoning (DACKAR) GitHub repository1. In addition to 
the source code, this repository also contains the full workflows (shown as Jupyter notebooks) described in 
this paper. 

2 ER DATA TAXONOMY 

As indicated in Section 1, NPP ER data can be heterogenous in nature (e.g., numeric, textual, sound, or 
image data). Understanding and capturing the relationships among ER data elements requires a data 
categorization process. The categorization of each ER data element is not unique and could be context 
dependent. For the scope of this article, we performed such categorization based on a cause-effect lens (see 
Figure 1). More specifically, generic assets can be broken down into two elements: its form (i.e., the actual 
physical entity) and its function2 (i.e., the emergence property [Borky, 2018]).  

 

Figure 1. Taxonomy of ER data presented through a cause-effect lens. 

For example, when considering a centrifugal pump (see Figure 1), the form element Centrifugal pump 
consists of all the components that make up the considered asset (e.g., motor, stator, shaft, and impeller), 
and the function element Increase fluid pressure indicates its function (i.e., increase fluid pressure). From 
a reliability standpoint, an asset failure is typically defined in terms of a loss of a function. Aging and 
degradation (e.g., flow-accelerated corrosion) directly affects the asset form, potentially having a direct 
impact on its function (e.g., asset failure). Per Figure 1, data associated with either a form or function 
standpoint can be textual (e.g., WOs) or numeric (e.g., environmental temperature). ER data retrieved from 
the form node are portioned into two groups—health monitoring and boundary condition monitoring—and 
can be either numeric or textual as well. Note that maintenance operations designed to restore the asset’s 
intended function or form (either by replacement refurbishment or restoration) directly impact asset form, 
which consequently affects its function. The objective of this work is to capture the causal relations between 
ER numeric and textual data elements in order to assist system engineers with the identification of 
anomalous behaviors.  

 
1 DACKAR GitHub repository link: https://github.com/idaholab/DACKAR  
2 In many situations, an asset might be supporting multiple functions and it might consist of several parts 

or components that either support or do not support each of these functions depending on the asset 
architecture. The proposed discussion can be easily extended to these situations. 
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3 CONSIDERED SYSTEM 

The system under consideration in this paper is the circulating water system (CWS) of an existing 
nuclear power plant. Typically, this system is used in many types of power plants (e.g., coal, gas, oil) and 
is designed to remove the residual heat from the turbine-condenser system and release it into the 
environment. In our case, water is collected from a body of water (e.g., lake or river) through service gates. 
Then, using traveling screens, the water is cleaned of debris, aquatic life, and foreign bodies that might 
damage CWS components. Screen wash pumps provide spray water to remove accumulated debris on the 
screens. The CWS also contains a vacuum priming system that removes any air from the system. Then, 
water is pumped through heat exchangers located in the plant secondary loop and removes heat from the 
turbine-condenser system. Lastly, warm water is released downstream of the same body of water. 
Depending on the environmental conditions, a portion of warm water is released back into the service gates 
to avoid ice formation that would block water flow. Several systems support the CWS, such as alternating 
current (AC) systems (4,160 and 480 V) and water-cooling systems. From an operational standpoint, even 
though the CWS does not directly support a plant nuclear safety function, any performance degradation or 
abnormal behaviors may directly affect power generation (either in terms of power derate or power 
shutdown) and, consequently, plant economic revenues. 

 
Figure 2. Simplified schematics of the CWS structure. 

4 ER DATA 

This section describes the large amount of data that has been collected throughout the 2012–2022 time 
frame used in this research. This data consisted of both condition-based monitoring data (numeric in nature) 
and a large set of condition-based report data (textual in nature). Sections 4.1 and 4.2 provide details about 
numeric and textual data elements, respectively. 

4.1 MONITORING DATA 

CWS operation has been continuously monitored to detect early signs of degradation and proactively 
perform maintenance to restore system operations and guarantee system availability. In this respect, Table 
1 provides a list of the available monitoring variables collected over the past decade; note these variables 
not only provide indications of the performance of the CWS pumps and condenser but also of systems 
interfacing with the CWS. Note that plant environment variables are also available (water body and air 
temperature); Section 7 provides considerations about the importance of environment variables to remove 
seasonal (i.e., periodic) trends from CWS plant monitoring variables when performing anomaly detection. 

 

 

 



 
20 

Table 1. List of CWS monitoring variables. 

Variable IDs Description 

!!"#$",#&'( , … , !)"#$",#&'( 
Monitoring variables associated with 
CWS pumps of a specific plant unit 

!*+,&-,#&'( , … , !.+,&-,#&'( 
Monitoring variables associated with the 
condenser of a specific plant unit 

!!/#&'( , … , !!0#&'(	 
Monitoring variables associated with 
systems interfacing with the CWS 

%12(34 and %2'4 Plant environment variables 
 

To ensure the raw data were organized, processed, and cleaned, several steps were conducted. All 
missing data points for the CWS pump, condenser, system, and environment were filled with the previously 
available data point. All monitoring variables and plant variables were further normalized using z-score. 
Normalizing using z-score helps protect sensitive plant information and easily capture any noisy data points 
that do not directly correspond to CWS anomalies. Figure 3 shows the temporal profile of two of the 
monitored variables listed in Table 1 over the considered 10-year lifespan. 

 

Figure 3. Temporal profile of two monitored variables after the cleaning process. 

4.2 TEXTUAL DATA 

In addition to the numeric data described in Table 1, the considered nuclear power plant has also 
recorded in its databases all operational events as follows: 

• Reactor operator shift logs of events related to the CWS system; 

• CWS condition reports: abnormal events that occurred in the CWS; 

• CWS work orders: maintenance operations performed on the CWS; 

• Plant outage data: time instances where the plant was shut down for either planned or unplanned 
outages. 

Note that all these events recorded in textual form (while the data elements described in Table 1 are in 
numeric form) provide indications not only about the historical reliability performance of the CWS but also 
precise information about the nature of the recorded abnormal events and corresponding operations 
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performed to restore CWS operations. Additionally, the textual information helps in capturing durations of 
any anomalies to understand correlations with numeric data distributions. 

In addition, a set of design and plant operations documents were provided, which gave us precise 
information about the architecture and functional relations between the CWS, the rest of plant, and the 
assets that are part of the CWS. Lastly, plant staff provided us with a list of acronyms and abbreviations 
typically used in textual data along with the ETAG list which provides an indication of the unique ID 
associated with each CWS asset and component. 

5 ANALYSIS OF ER DATA 

Figure 4 shows our approach to process and analyze CWS historical performances provided the ER 
data elements (numeric and textual) described in Section 4. Constructing the knowledge graph starts by 
performing four different workflows: 

• Step 1: MBSE workflow. System architecture information provided by the plant and CWS design 
documents is translated into MBSE models (see Section 6). 

• Step 2: Numeric workflow. CWS anomalies are inferred from CWS numeric monitoring data (see 
Section 7). 

• Step 3: Textual workflow. CWS-related events reported from operator shift logs, conditions, or 
maintenance reports are processed using TLP methods (see Section 8). 

• Step 4: Event to time series correlation analysis. Based on the temporal occurrence of the inferred 
anomalies (see Step 2) and reported events (see Step 3), we test whether the occurrence of these 
events had a cause-effect relation with observed monitoring data (see Section 9). 

• Step 5: Knowledge graph construction. The construction of the knowledge graph (see Section 10) 
starts by translating the system MBSE model into a graph structure where each node of this graph 
is a physical entity of the CWS (e.g., pump, traveling screen). Each edge in such a graph represents 
a physical connection between two entities where the nature of such a connection can be of different 
types (mechanical, electrical, hydraulic, digital). Then, the set of anomalies derived from Step 2 
and the events processed in Step 3 are digitally associated with one (or more) node of the graph 
derived from the MBSE model (see Section 6). 

 

 
Figure 4. From ER data to knowledge graph: a graphical description of the workflows. Analysis 

methods are highlighted in dark grey while generated and input data are highlighted in light grey. 
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Table 2. Functional description of workflows designed to construct a knowledge graph from ER data. 

# Workflow Input Output 

1 MBSE modeling (see Section 
6) 

Design documents describing 
system architecture (form and 
functional description)  

MBSE models for the 
considered system and derived 
graph structure 

2 Anomaly detection (see 
Section 7) 

System monitoring data 
(labeled or unlabeled) 

List of inferred anomalies  

3 TLP processing (see Section 8) 
Textual event data (e.g., 
operator shift logs, condition 
reports, maintenance reports) 

Graph representation of event  

4 Event to time series correlation 
analysis (see Section 9) 

System monitoring data, 
anomalies identified in 
Workflow 2, events processed 
in Workflow 3 

List of events correlated to 
time series variations; list of 
events correlated to identified 
anomalies 

5 Knowledge graph construction 
(see Section 10) 

Data elements generated in 
Workflows 1, 2, 3, and 4 

Knowledge graph structure 

 

6 SYSTEM DIGITAL REPRESENTATION 

The ability of system engineers to effectively analyze ER data relies on their knowledge about system 
architecture and the physical and logical interdependencies between the assets that are part of such a system. 
Current ER data analysis tools rely only on available data, and they are blind on the actual operating context 
that have generated such data. The term context here refers to the actual physical element being monitored 
and observed, the function(s) supported by such a physical element, and the other elements directly linked 
to it. 

In order to address this limitation, we have developed a set of methods that are based not solely on data 
but also models. The objective of these models is to emulate system engineer knowledge and capture system 
architecture and the physical and logical interdependencies between the assets that are part of such a system. 
Here, we are employing state-of-the-art MBSE methods, which provide several solutions to represent 
systems, assets, and components from both form (i.e., which elements are part of the structures, systems, 
and components) and functional (i.e., how systems and assets interact with each other and which functions 
they support) points of view. These solutions are based on MBSE languages that represent system and asset 
form and functional elements via a set of diagrams. The most commonly used languages are: Unified 
Modeling Language (UML) (Booch, 2005), Object-Process Methodology (OPM) (Dori, 2002), Lifecycle 
Modeling Language (LML) (LML, 2022), and Systems Modeling Language (SysML) (Friedenthal, 2008). 

For the scope of this project, we have chosen LML and OPM since they provide the basic modeling 
elements we sought and because—more importantly—digital data structures (i.e., graphs) can be 
automatically generated from LML and OPM diagrams. Each element of an OPM and LML diagram can 
be either a function (e.g., an action or a transformation) or form (e.g., a physical entity) element. In addition, 
function and form elements in an OPM diagram are connected to each other through a set of links designed 
to convey precise meanings (Dori, 2002). 

Figure 5 shows the LML diagram of the considered CWS. Note that each asset included in the LML 
diagram of the CWS may be further described by its own separate LML or OPM diagram. In other words, 
a network of LML and OPM diagrams can be constructed to refine and further detail the architecture of the 
considered system. For example, in the CWS LML diagram in Figure 5, the centrifugal pumps are indicated 
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as pertaining to a different OPM diagram that represents the pump architecture in greater detail. The 
corresponding OPM diagram for the centrifugal pump is shown in Figure 6. 

Once the MBSE models (LML or OPM) have been developed, they are saved into file. While OPM 
models can be saved in human readable files (textual form), LML diagrams (which are here developed 
using the MBSE tool Innoslate) can be saved into xml files. The files containing the OPM and LML 
diagrams are then converted into graphs using the methods available in DACKAR; here, we rely on the 
Neo4j3 library to construct these graphs. 

 
Figure 5. LML model of the considered CWS, which has been intentionally edited to hide any 

proprietary information. 

 

7 ANALYSIS OF NUMERIC DATA 

The amount of anomaly detections (applied to any scientific or technological context) available in the 
open literature is vast, and it is not within the scope of this paper to provide an exhaustive overview of such 
methods to compare performances for the considered system. Such methods can rely on classical statistical, 
ML, or deep learning methods with different pros, cons, and ranges of operability. The main requirements 
for the choice of anomaly detection methods were fast computation, ability to deal with periodic patterns 
and missing data, ability to identify anomalies defined over time instance or time intervals, scalability, and 
interpretability. 

 

 
3 Neo4j official site: https://neo4j.com  
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Figure 6. OPM representation of a generic centrifugal pump (left), which also includes supporting 

systems (the 4,160 V AC system). 

 
7.1 ANOMALY DETECTION THROUGH ML MODELS 

ML has seen an exponentially rise in use in a large variety of fields, including the nuclear industry, and 
has been widely used for real-time monitoring from predictive maintenance, thermal hydraulic 
computations and nuclear design (Zhao, Shivran, Salko, & Guo, 2020) (Godbole, Delipei, Wu, Avramova, 
& Rohatgi, 2022). ML algorithms can behave as a universal approximator for both linear and nonlinear 
relations when the physics may be unknown or complicated to model and have high computational speed 
even for large quantities of data. ML can be classified as either supervised, semi-supervised, or 
unsupervised based on the model training regime. Supervised learning algorithms are used when the data 
available has both input and output features and the ML algorithm learns the relation between input and 
output. Unsupervised learning algorithms are used when there is no known target or output feature, and the 
ML algorithm works on learning structures, clusters, and patterns in the input data. A semi-supervised 
learning algorithm is a combination of both supervised and unsupervised learning algorithms used when 
there is a lot of unlabeled data and some labeled data. 

This work uses DBSCAN, which belongs to the unsupervised ML category, to detect anomalies in 
multivariate data. DBSCAN is used on a large amount of data containing four system variables and data 
features. DBSCAN algorithm is used to detect anomalies and irregularities in the data by clustering all 
normal data points together and capturing and clustering all anomalies and irregularities as an anomaly 
cluster. The entire data used for DBSCAN is further broken down into smaller chunks to ensure optimal 
clustering by DBSCAN and to accurately capture all anomalies within the data without the need for 
hyperparameter tuning over each individual year. DBSCAN (Ester, Kriegel, Sander, & Xu, 1996) is a 
commonly used clustering algorithm belonging to the unsupervised ML category and is widely used for 
detecting outliers and anomalies in data (Çelik, Dadaşer-Çelik, & Dokuz, 2011). DBSCAN uses proximity 
parameters to cluster data points that are close together. The DBSCAN algorithm requires two parameters, 
epsilon, which specifies the distance between two points for them to be considered neighbors, and minimum 
points, which states that that there should be at least those set number of minimum points at epsilon to be 
considered part of cluster. Epsilon can be considered as a radius for two-dimensional data, minimum points 
then finds all the data points that have data points equal to minimum points within the radius epsilon and 
categorizes them together. Figure 7 shows the methodology of clustering by DBSCAN when the minimum 
points is set at four. All points belonging to a cluster are termed core points, shown by red dots in Figure 7. 
A core point is any point that has minimum data points with a radius epsilon around it. All data points 
belonging to a cluster and that are around a core point but cannot themselves be termed as a core point are 
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called border points, as depicted by yellow circles in Figure 7. All border points belong to the same cluster 
as the core point surrounding it at distance epsilon. Any data point not satisfying the minimum data points 
at distance epsilon criteria are then categorizes as an anomaly data point by the DBSCAN algorithm as 
detected by the blue circle in Figure 7. 

 

 
Figure 7. DBSCAN methodology for clustering data points. 

 
This is how DBSCAN is utilized in this work to capture anomaly data points in multivariate monitoring 

variables for a CWS pump. Epsilon and minimum data point parameters are manually tuned to capture the 
optimal values that work for data for a large duration of data. Data is split into smaller chunks to ensure the 
robustness and generalizability of the DBSCAN without the requirement for hyperparameter tuning, and 
DBSCAN is applied to capture anomalies and normal data points. After manual hyperparameter tuning, the 
optimal values of epsilon and minimum points that work on various sections of the dataset containing four 
system variables are 1 and 2,000, respectively. Pump 1 CWS monitoring variables for a particular 
subsection are shown in Figure 8 with the x-axis depicting a variable of time. 

Similarly, Figure 9 shows the application of DBSCAN for a different subset of monitoring variables 
for CWS Pump 2, These anomalies match accurately with the true anomalies seen in the system variable 
data for the CWS, as can be seen through system textual information and visually as these anomalies have 
a clear trend that is out of the normal ranges, behavior, and distribution of the system variable trends. 

Thus, DBSCAN was successfully able to predict the anomalies without needing hyperparameter tuning 
for different sections of data and for different pumps, showing the robustness of the algorithm, as seen in 
Figure 8 and Figure 9, DBSCAN was successfully able to capture and categorize all anomalies in the 
original dataset as well as the dataset with all seasonal variations removed based on environment variables, 
which coincides with the anomalies seen in textual information on the CWS. 

 

7.2 DATA SEASONALITY DETRENDING 

From the initial look of the temporal profile of the obtained monitored variables (see Figure 3), it is 
possible to observe periodic patterns that are due to seasonality effects. In particular, monitored data 
variance is higher during the summer season and lower during the winter season. This can negatively impact 
the ability of the anomaly detection method to correctly identify equipment anomalies and distinguish 
anomalies that are actually due to environmental conditions. Thus, we have started to look at ways to 
remove the seasonality effect from plant monitoring data. 
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                                     (a)                                                                            (b) 

 
                                     (c)                                                                            (d) 
Figure 8. DBSCAN results for CWS pump monitoring variables denoted by (a) !!!,!, (b) !0!,!, (c) !5!,! 

and (d) !)!,!. 

 

A favorable element here is that air and water body temperature have been monitored, and their 
temporal profiles are also available (see Table 1). Then, we have explored the statistical correlation between 
CWS monitoring variables and environmental variables; such an analysis has highlighted that a strong 
correlation exists between CWS monitoring variables and water lake temperature. An example is shown in 
Figure 10 where the temporal profiles of a CWS monitoring variable and lake water temperature are 
compared. More importantly, the same figure shows that a linear correlation exists between these two 
variables. Given this, we have explored methods to remove data seasonality from CWS monitoring data 
using environmental variables using regression models. 
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                                     (a)                                                                            (b) 

 
                                     (c)                                                                            (d) 

Figure 9. DBSCAN results for CWS pump monitoring variables denoted by (a) !!0,!, (b) !00,!, (c) !50,! 
and (d) !)0,!. 

 

 
Figure 10. Comparison of the temporal profile of a CWS monitored parameter and lake water 

temperature (left plot) and correlation analysis of the same two parameters. 

Traditional regression models aim at finding a relationship between an independent variable and a 
dependent variable. Robust linear models (RLMs) aim at overcoming the drawbacks of linear models by 
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being able to handle the outliers present in the data. This work uses an RLM with the Huber loss (Huber, 
1981) to find the linear model that computes monitoring variables of the CWS pump as a function of !!"#$%. 
The goal is to remove all the seasonal effects in system variable data distributions, which are easily captured 
in the !!"#$% distributions using the RLM model to compute the function shown in Equation 1. !'"#$",#&'( 
indicates the pump monitoring variables with i ranging from 1 to 4, as computed by the RLM model that 
computes the linear function as a function of !!"#$% as shown in Equation 1. 

!'"#$",#&'( = #$%(!&'()*)       (1) 

To remove the seasonal variations in the system variables, Equation 2 is applied. !'"#$",#&'(" indicates 
the system variables without any seasonal variations and is computed by subtracting !'"#$",#&'(, which is 
the output from the RLM model that computes the relationship between pump monitoring variables and 
!!"#$%, from (+,+#$-, which denotes the original values of system variables including seasonal variations: 

!'"#$",#&'(" = (./.()0 −	!'"#$",#&'(       (2) 

Figure 11 shows the RLM prediction results as shown in Equation 1 along with the residual on the 
secondary y-axis as shown in Equation 2. The RLM prediction is shown by the red dotted line, and the 
residual prediction on the secondary y-axis is shown in green. This shows that the RLM results match 
accurately with the true variations of system variables and environment variables except for the anomalies. 
Thus the residuals are a good measure to capture the anomalies present in the data. 

 
(a)       (b) 

  
(c)       (d) 

Figure 11. RLM predictions and residuals pump monitoring variables. 
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DBSCAN is then applied on the residual values to capture the anomalies. The DBSCAN used for 
original data is used without any hyperparameter tuning needed with epsilon 1 and minimum points as 
2,000. Figure 12 shows the DBSCAN results on the residuals computed using RLM for all four system 
variables. 

  
(a)       (b) 

  
(c)       (d) 

Figure 12. DBSCAN results for residuals computed by RLM to remove seasonal variations for pump 
monitoring variables. 

Thus, DBSCAN was successfully able to predict the anomalies without the need for hyperparameter 
tuning for different datasets and different distributions, showing the robustness of the algorithm. DBSCAN 
was successfully able to capture and categorize all anomalies in the original dataset as well as the dataset 
with all seasonal variations removed based on environment variables, which coincides with the anomalies 
seen in textual information on the CWS. 

 
7.3 ANOMALY DETECTION THROUGH MATRIX PROFILE 

The matrix profile is a time series annotation computed from a time series that can be used to identify 
motifs and discords (anomalies), corresponding to recurring patterns (or similar subsequences) and outliers, 
respectively (Yeh, 2016). For example, the lowest points on the profile correspond to the time series motifs, 
and the highest points correspond to the time series discords. In simple terms, this algorithm is a distance-
based approach over a sliding window; here, the considered time series is progressively scanned by 
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identifying the smallest distance between the portion of the time series limited within the considered time 
window and the set of time windows previously processed. In summary, the steps for computing the matrix 
profile from a time series % ∈ '& with length n are: 

1. Select a time window or subsequence %',$ ∈ '$ with length m where ( < * from %, which is a 
sequence of ( contiguous elements with indices from position + to + + ( − 1 in %; 

2. Compute the Euclidean distance profile /'7 between a given subsequence %',$ and every other 
subsequence %8,$ from %, i.e., /'7 = 1+234%',$, %8,$589!

&:$;!; 

3. Compute the matrix profile value for %',$, which value is the minimal distance between %',$ and 
its nontrivial neighbors 6%8,$789!,8<'

&:$;! using /'7 (i.e., the distance between %',$ and its nearest 

nontrivial neighbor, denoted as **&(4/'75); 
4. Identify the matrix profile index value 8'7 for %',$ (i.e., the index of the nearest nontrivial neighbor 

for %',$); 

5. The matrix profile for time series % becomes a vector that stores **&(4/'75'9!
&:$;!, and the matrix 

profile index becomes a vector that stores 48'75'9!
&:$;!. 

The matrix profile technique can identify unusual patterns caused by unexpected events or deviations 
from the normal behaviors in time series. An example of anomalies detected is shown in Figure 13 where 
the matrix profile algorithm from Law (2019) has been applied to the time series of two monitored variables 
of the CWS. Here, two time series are considered (shown in blue in Figure 13), %12(34 and 9!"#$", and the 
corresponding temporal matrix profiles are shown in red in Figure 13. Anomalies are identified by looking 
at the regions characterized by high values of the matrix profiles. 

 

 
Figure 13. Example of anomalies detected by the matrix profile algorithm when applied to the time 

series of the monitored variable 9= of the CWS. 

Moreover, matrix profile algorithms from Law (2019) also support for finding outliers and anomalies 
in streaming data. As illustrated in Figure 14 and Figure 15, the preprocessed (i.e., remove outliers) 
normalized normal monitoring data from 2012 to 2016 is used to train the matrix profile and identify the 
matrix profile threshold value for anomalies. For %12(34, the maximum value of training data matrix profile 
is used as the threshold, while for 9!"#$", the 99.9 percentile value is used as the threshold instead to 
counteract the large matrix profile values introduced to remove the larger size of subsequence anomalies. 
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We have computed the matrix profile of test data (i.e., monitoring data from 2017 to 2022) against training 
data, and we have highlighted the identified anomalies using dash dotted line in the given time series. As 
observed from both Figure 14 and Figure 15, matrix profile can be used to identify both large periods of 
anomalies and small period spikes and dips. 

 

 
Figure 14. Apply matrix profile for streaming data of %12(34 to detect anomalies. 
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Figure 15. Apply matrix profile for streaming data of 9!"#$" to detect anomalies. 

 

Apart from selecting the window size, the matrix profile can be used in a simple manner without any 
tuning. 

Once an anomaly is detected, it is digitally recorded by observing the time interval under which it is 
detected and the set of variables employed to detect it. More precisely, a generic anomaly An is defined as 
a specific entity, which is defined as: 

An =([vars], tin, tfin)      (3) 

where [vars] corresponds to the list of variables under which the anomaly was observed and tin and 
tfin define the temporal duration of such an anomaly. 
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Table 3. Temporal duration for identified anomalies via matrix profile. 

!!"#$% 

tin tfin 

+123-2 

tin tfin 
2018-07-28 01:00:00   2018-07-28 03:00:00 2017-03-22 20:00:00   2017-06-20 14:00:00 
2018-07-30 14:00:00   2018-07-31 07:00:00 2019-03-05 23:00:00   2019-03-08 15:00:00 
2018-08-23 09:00:00   2018-08-23 17:00:00 2019-12-08 05:00:00   2019-12-17 16:00:00 
2018-08-27 19:00:00   2018-08-27 19:00:00 2020-11-20 23:00:00   2020-12-31 12:00:00 
2019-07-06 23:00:00   2019-07-07 02:00:00 2021-02-05 23:00:00   2021-04-18 14:00:00 
2019-08-17 08:00:00   2019-08-18 03:00:00 2021-07-07 16:00:00   2021-07-08 16:00:00 
2019-08-24 15:00:00   2019-08-28 19:00:00 2021-08-09 21:00:00   2021-08-10 20:00:00 
2019-08-29 19:00:00   2019-09-01 06:00:00 2021-08-18 16:00:00   2021-08-18 23:00:00 
2019-09-02 03:00:00   2019-09-05 13:00:00 2021-08-21 07:00:00   2021-08-21 09:00:00 
2019-09-05 17:00:00   2019-09-05 23:00:00 2021-08-21 14:00:00   2021-08-22 03:00:00 
2019-09-06 06:00:00   2019-09-09 03:00:00 2021-08-26 22:00:00   2021-08-30 12:00:00 
2019-09-10 02:00:00   2019-09-14 01:00:00 2021-08-30 14:00:00   2021-08-30 17:00:00 
2019-09-15 21:00:00   2019-09-24 02:00:00 2022-02-28 20:00:00   2022-03-01 01:00:00 
2019-09-24 09:00:00   2019-09-24 11:00:00   
2019-09-25 18:00:00   2019-09-28 00:00:00   
2019-09-28 06:00:00   2019-09-28 07:00:00   
2019-09-28 11:00:00   2019-09-29 04:00:00   
2019-09-30 20:00:00   2019-10-01 19:00:00   
2019-10-03 16:00:00   2019-10-04 17:00:00   
2019-10-05 21:00:00   2019-10-09 02:00:00   
2019-10-13 08:00:00   2019-10-15 01:00:00   
2019-11-10 10:00:00   2019-11-11 00:00:00   
2019-11-13 00:00:00   2019-11-13 22:00:00   
2019-11-15 12:00:00   2019-11-15 14:00:00   
2019-11-15 23:00:00   2019-11-16 21:00:00   
2019-11-17 20:00:00   2019-11-20 07:00:00   
2019-12-02 16:00:00   2019-12-02 22:00:00   
2019-12-05 07:00:00   2019-12-06 16:00:00   
2019-12-10 09:00:00   2019-12-13 03:00:00   
2019-12-15 07:00:00   2019-12-31 06:00:00   
2020-01-04 12:00:00   2020-01-05 13:00:00   
2020-01-05 20:00:00   2020-01-08 04:00:00   
2020-01-14 08:00:00   2020-01-16 18:00:00   
2020-01-18 20:00:00   2020-01-26 05:00:00   
2020-01-28 21:00:00   2020-01-30 14:00:00   
2020-08-07 15:00:00   2020-08-07 16:00:00   
2020-08-07 23:00:00   2020-08-08 00:00:00   
2021-01-27 13:00:00   2021-01-28 12:00:00   
2021-02-07 11:00:00   2021-02-08 10:00:00   
2021-02-09 15:00:00   2021-02-10 14:00:00   
2021-06-06 10:00:00   2021-06-07 10:00:00   
2021-08-30 17:00:00   2021-08-31 00:00:00   
2021-08-31 07:00:00   2021-08-31 13:00:00   
2021-08-31 22:00:00   2021-08-31 23:00:00   
2021-09-01 03:00:00   2021-09-01 05:00:00   
2021-09-04 09:00:00   2021-09-04 11:00:00   
2021-09-04 13:00:00   2021-09-05 11:00:00   
2021-09-05 19:00:00   2021-09-05 21:00:00   
2021-09-08 01:00:00   2021-09-08 01:00:00   
2021-12-05 13:00:00   2021-12-06 12:00:00   

 
 
8 ANALYSIS OF TEXTUAL DATA 

The analysis of the textual data presented in Section 4.2 follows two paths: knowledge extraction using 
TLP methods and text summarization. These paths are discussed in detail in Sections 8.1 and 8.2, 
respectively. 

 



 
34 

8.1 KNOWLEDGE EXTRACTION FROM TEXTUAL DATA 

Issue reports (IRs) and work orders (WOs) are valuable data sources for tracking asset health histories, 
identifying health trends, and performing root-cause analyses. These data sources, typically obtained in text 
form, are usually available in digital repositories. Natural language processing methods (Lane, 2019) have 
been developed over the past two decades to enable ML models to analyze textual data and classify textual 
elements based on their nature (e.g., safety related vs. non-safety related). In the context of the present 
work, we are not interested in solving any type of classification problem but rather in extracting actual 
knowledge from textual data. This is a harder task, as it requires the development of context-dependent 
models and vocabularies. The medical field is leading the way in this area by developing methods to extract 
knowledge from textual data (e.g., for diagnostic purposes or to estimate the performance of specific 
treatments). When applied to the nuclear field, knowledge extraction consists of several tasks, including 
identifying: 

• Plant-specific entities, such as systems, assets, and components (e.g., centrifugal pump, 
accumulator system, and pump shaft) 

• Temporal attributes that characterize events (e.g., the occurrence, duration, and order of events) 

• Measured quantities (i.e., a numeric value followed by unit of measure) 

• Phenomena (e.g., material degradation or asset functional failure) 

• Causal relations between events. 

This process of knowledge extraction is enabled by a series of data, models, and methods. The 
developed series of TLP methods was designed to identify all elements listed above, using a mixture of 
rule-based and ML algorithms. These methods (Wang, 2024) heavily rely on data dictionaries and plant, 
system, and asset models. Data dictionaries containing a large number of keywords related to the nuclear 
field were partitioned into several classes (e.g., materials, chemical elements and compounds, degradation 
phenomena, and electrical, hydraulic, and mechanical components). 

The ability of system engineers to analyze textual data is enabled by their knowledge of the architectural 
scheme of the components and assets that comprise the system. In simpler terms, they know what physical 
elements comprise a given asset or system, along with their functional relations and dependencies. Without 
such information, knowledge extraction from textual data is very difficult, as putting the text into context 
becomes much harder. For the present study, our methods were designed to check whether OPM entities 
(see Section 6) are mentioned in ER textual data elements. 

Figure 16 provides an overview of the NLP methods that together constitute the knowledge extraction 
workflow. These methods are grouped into the following three main categories: 

• Text preprocessing: The provided raw text is cleaned and processed to identify specific nuclear 
entities and acronyms (e.g., HPI in reference to a high-pressure injection system) and to identify 
and correct typos (i.e., through a spell check method) and abbreviations (e.g., “pmp” meaning 
“pump”). 

• Syntactic analysis: The goal of this analysis is to identify the relationship between words contained 
within a sentence, focusing on understanding the logical meaning of sentences or parts of sentences 
(e.g., subjects, predicates, and complements). 

• Semantic analysis: We rely on the results of this analysis to identify the nature of the event(s) 
described in the text, along with their possible relationships (temporal or causal). 
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Figure 16. Graphical representation of the NLP element that comprise the knowledge extraction 

workflow (Wang, 2024). 

In this respect, the sequence of steps applied to each textual data element is: 

1. Tokenization and Lemmatization. The first step in text processing is tokenization, for which we 
employed the SpaCy tokenizer (i.e., to segment the text into a list of words, punctuation marks, 
etc.) by applying rules specific to raw text. First, the raw text is split on whitespace characters. The 
tokenizer then processes the text from left to right. On each substring, it performs the following 
two checks: 

• Does the substring match a tokenizer exception rule? For example, "don't" does not contain 
whitespace but should be split into two tokens: "do" and "n't." 

• Can a prefix, suffix, or infix be split off (e.g., based on punctuation such as commas, 
periods, hyphens, or quotation marks)? 

2. Sentence Segmentation. The next important step is to determine the sentence boundaries—that is, 
segment the text into a list of sentences. This is a key underlying task in the NLP process. For the 
present work, we employed PySBD, a rule-based sentence boundary disambiguation Python 
package, to detect the sentence boundaries. With it, we developed a custom pipeline that can be 
employed in tandem with SpaCy to divide up text into a list of sentences. 

3. Part of Speech (POS). We used the SpaCy tagger to parse each sentence and tag every token found 
within. Both TAG and POS attributes were generated for each token after the SpaCy tagger process. 
POS, the simple universal part-of-speech tag, does not include information on any morphological 
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features, only the word type (https://universaldependencies.org/u/pos/). The morphology is the 
process by which the root form of a word is modified by adding prefixes or suffixes that specify its 
grammatical function but do not change its POS. These morphological features are added to each 
token after the POS process and can be accessed via the token’s “morph” attribute. In addition, the 
TAG attribute expresses the POS and some amount of morphological information. For example, 
the POS “VERB” tag is expanded into six TAG tags: VB (verb, base form), VBD (verb, past tense), 
VBG (verb, gerund or present participle), VBN (verb, past participle), VBP (verb, non-third-person 
singular present), and VBP (verb, third-person singular present). In this work, we employed these 
POS and TAG tags to determine the nature of the asset health status estimate (conjecture or 
qualitative observations). 

4. Dependency Parsing. POS provides information on word types and morphological features but not 
on the dependencies between words. Thus, we employed the SpaCy parser to label dependencies 
uncovered during parsing. Among such dependencies are nominal subject (nsubj), direct object 
(dobj), and indirect object (iobj). The parser utilizes a variant of the nonmonotonic arc-eager 
transition system described in (Honnibal and Johnson, 2014). The parser uses the terms “head” and 
“child” to describe words connected by a single arc in the dependency tree. The dependency labels, 
listed in https://v2.spacy.io/api/annotation, are used in determining the arc label, which describes 
the type of syntactic relation connecting the child and the head. 

5. Spellchecking and the Handling of Acronyms and Abbreviations. NPP IRs and WOs are usually 
written out in short sentences that often contain abbreviations, making it harder to accurately extract 
knowledge. Thus, we developed an NLP pipeline for identifying abbreviations and replacing them 
with the complete words they represent. The starting point is a library of word abbreviations 
collected from documents available online. This library is basically a dictionary that contains the 
corresponding set of words for each identified abbreviation, the inherent challenge being that a 
single abbreviation can be associated with multiple different words. Similarly, a word might also 
have different ways of being abbreviated. To handle the abbreviations found in each sentence, all 
misspelled words are first identified. Each misspelled word is then searched for in the developed 
library. If an abbreviation in the library matches the misspelled word, it is replaced by the 
corresponding complete word. If no abbreviation is found, we proceed by searching for the closest 
match. If multiple words match the obtained abbreviation, the one that best fits the context of the 
sentence is chosen. Acronyms are often present in ER textual data, and typically refer to specific 
NPP assets or systems. Also, in this case, a library of acronyms was developed based on publicly 
available NRC, EPRI, and NEI documents. Any remaining misspelled words are parsed through 
the developed library in search of an exact match. After the abbreviations and acronyms have been 
handled, the remaining misspelled words are parsed through our spellchecking methods for one 
final attempt at correction. 

6. Identification Temporal Attributes. Temporal attributes indicate the time instances at which specific 
events occurred. Time of occurrence is important from a causal point of view, as the emergence of 
an effect is always preceded by its cause. Hence, temporal information can be valuable in 
identifying the causal links between recorded events. Temporal attributes are identified by looking 
at specific prepositions and relations. 

7. Identification of Measured Quantities. We now wish to identify the presence of a precise 
observation (i.e., a measured point value or delta estimate) of a measured variable. Such an 
observation requires a numeric value followed by its unit; however, the unit is often missing. 

8. Identifying Nuclear Keywords. In the medical field, NLP knowledge extraction methods require 
the capability to identify specific entities. This is similarly the case in the nuclear field, in which 
such entities are, among other things, systems, assets, and components found in any NPP. A library 
for the nuclear field was developed in past years by using available NRC and EPRI textual data. 
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Entities contained in this library (about 5,000 and growing) have been grouped into different 
categories (e.g., mechanical, hydraulic, electric, and electronic components and assets, degradation 
phenomena, and architectural entities). 

9. Identification of Conjectures. A relevant element of knowledge extraction is the ability to 
distinguish between information pertaining to future predictions (e.g., an event that can occur in 
the future) or hypotheses about past events (e.g., a failure that potentially occurred). Future 
predictions are characterized by present- and future-tense verbs, whereas hypotheses about past 
events are typically characterized by past-tense verbs. Also, for these kinds of reports, we identified 
specific keywords and relations that may indicate we are dealing with a conjecture observation. 

10. Identification of Cause-Effect Relations. A common pattern in ER textual data is the reporting of 
multiple events that all share a causal relationship. In its simplest form, such a paragraph refers to 
an event (i.e., cause) that triggered a second event (i.e., effect). However, this type of paragraph 
can be structured in different ways: an event that has been identified as not being the cause of 
another event, multiple causes that trigger a single effect, or a single cause that triggers multiple 
effects. In the present work, our methods did not employ ML algorithms, such as for supporting 
classification methods (Mohri and Rostamizadeh 2012), but were instead rule based (Doan et al. 
2019), as we aimed to extract actual quantitative information from textual data, rather than 
“classifying” the nature of the raw text. These rules were based on identifying the following: 
keywords that indicate the possibility of a causal relation between a subject and an object or NLP 
structures (or constructs) that indicate a casual transition between clauses in a sentence (e.g., the 
word consequently). 

11. Identification of Temporal Sequencing of Events. Temporal relations can be either quantitative 
(e.g., an event that occurred two hours after another event) or qualitative (e.g., an event that 
occurred prior to another event). Note that a temporal relation does not necessarily imply a causal 
relation. In this paper, we build on the work in (Moerchen, 2010), which lists the major temporal 
relations between events: order (sequential occurrence of events), concurrency (nearly 
simultaneous occurrence of events from beginning to end), and coincidence (temporal intersection 
of events). 

12. Identification of Health Status. Often, IRs reflect qualitative information on abnormal observed 
events (e.g., failures or precursors to a degradation phenomenon). From a reliability standpoint, 
identifying the nature of the reported event plays a major role, with the goal being to track the 
health performance of a single SSC or multiple SSCs operating in similar operating conditions. 
Based on the large number of IRs and WOs gathered from operating NPPs, we collected and 
extracted a list of keywords (nouns, verbs, adverbs, and adjectives) for indicating the health status 
along with the underlying grammatical structures and converted them into relations. These 
keywords have been partitioned into three main classes (negative, positive, and neutral) based on 
sentiment analysis and then expanded using the WordNet synonym search capabilities. Thus, 
identification of the health status of the textual clause can be assessed by searching in the text for 
the developed lists of relations and keywords. 

 

8.2 TEXT SUMMARIZATION ANALYSIS 

A second path that we follow to extract knowledge from text is here referred as text summarization. 
The goal is to extract the nature of a clause or a sentence. In a system reliability context, the nature of clause 
(or a sentence) can be of a different nature; common examples are: 

• The report of a surveillance or a maintenance activity 

• The observation of a degradation phenomena 
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• The diagnosis performed from an observed anomalous behavior. 

This task requires two main elements; the first one is a model that describes system reliability operations 
and physical elements that might affect performance of assets and components that are part of that system. 
Also in this case, we have developed such model through a MBSE diagram developed using the OPM 
language, which is shown in Figure 17. Such a model can be interpreted as follows4: the key element of this 
model is an asset designed to support a specific function. Through its lifetime, such an asset can be either 
in a degraded or OK state. The transition from the OK to degraded state is caused by a degradation 
mechanism, which is driven by either external agents or chemical and physical reactions. Inspection 
operations are typically performed to assess asset state (degraded or OK) through surveillance tools where 
quantitative measurement can be reported. If the asset is found in a degraded state, diagnosis operation can 
be performed to trigger a maintenance operation designed to restore asset operation (from a degraded to 
OK state) by employing specific maintenance tools. 

 
Figure 17. Graphical representation of the developed ER schema for text summarization. 

The second element required to perform text summarization is a vocabulary of terms (i.e., nouns or 
verbs) that are semantically associated with each entity of the model described above. Such vocabulary has 
been developed using openly available documents and tested against plant data to check vocabulary 
completeness. Currently, this vocabulary contains about 5,500 terms (either verbs or nouns), which are 
arranged into eight main classes and subclasses and is continuously being updated. Table 4 lists the various 
classes and subclasses available so far, along with examples of entities corresponding to each group. Each 
subclass is naturally associated with specific entity of the MBSE model shown in Figure 17. 

Our method for text summarization employs SpaCy name entity recognition functions to identify the 
terms of our database (summarized in Table 4) within a textual data element. Identified entities are flagged 
with their associated class and subclass and saved as part of the metadata associated with the textual data. 
Then, using the correspondence between class and subclass and the ER schema entity (of the diagram shown 
in Figure 17) shown in Table 4, a list of identified MBSE entities is ordered based on the connections shown 
in Figure 17. Figure 18 provide a few examples of text summarization. 

 
 

4 Note that the elements in the MBSE graph shown in Figure 17 are highlighted in italics in the text. 
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Table 4. List of classes and subclasses for the developed dictionary of nuclear related entities and the 
associated entity on the schema shown in Figure 17. 

Class Subclass Examples ER Schema Entity 

Mechanical 
components 

Fasteners 
Rotary elements 
Structural 
Purpose specific 

Anchor bolt, cap screw, latch 
Cam, shaft, gear, pulley 
Beam, column, sleeve, socket 
Filter, manifold, blade 

Asset 

Nonmechanical 
components 

Electrical/electronic 
Hydraulic/Pneumatic 

Amplifier, relay, capacitor 
Coupler, filter, pipe 

Asset 

Assets 

Mechanical 
Electrical 
Hydraulic/Pneumatic 
Electronic 
I&C 
Nuclear fuel 

Engine, vessel 
AC bus, alternator, generator 
Pump, valve, condenser, fan 
Computer, tablet, controller 
FPGA, transmitter, sensor 
Fuel rod, control blade 

Asset 

NPP elements 
Systems 
Architectural 

Feedwater, switchyard 
Containment, pump house 

Asset 
Location 

Tools and 
treatments 

Maintenance tools 
Maintenance operations 
Surveillance tools 
Surveillance operations 
Diagnosis 

Jigsaw, solder gun, tape, crane 
Bolting, riveting, grinding 
Inspection, leak test, infrared test 
Sample, verify, inspect 
Require, need, demand 

Maintenance tool 
Maintenance 
Surveillance tool 
Surveillance 
Diagnose 

Operands 
Electrical 
Hydraulic/Pneumatic 

AC current, electromagnetic 
Compressed air, steam, gasoline  

 

Materials 
Chemical compounds 
Chemical elements 
Materials 

Ammonia, ethanol, methane 
Plywood, concrete, polyethylene 
Fiberglass, lumber, cement 

Material 

Reactions 
Chemical reaction 
Degradation mechanism 
Failure type 

Combustion, oxidation 
Corrosion, dissolution, fatigue 
Leak, rupture, brittle fracture 

Reaction 
Degradation 
Mechanism 
Anomalous state 

 
 

Original Text Text Summary 
Pump was inspected [inspection] 
CWS P1 pump shut-down due to vibrations [degraded mechanism, asset(anomalous)] 
FG1T isolated [maintenance] 

Figure 18. Example of text summarization using the ER schema. 
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9 TEMPORAL CORRELATION ANALYSIS 

Sections 7 and 8 have presented methods of analyzing numeric and textual ER data elements, and we 
explained how MBSE diagrams can be employed to identify possible causal relationships between ER data 
elements. The word “possible” is intended to indicate that two events sharing an OPM-based direct relation 
may in fact exist independently from each other. The first step in testing such dependence is to observe 
their temporal correlation. 

 

9.1 EVENT-EVENT TEMPORAL CORRELATION ANALYSIS 

Regarding the temporal correlation analysis between two events, we are here considering the generic 
situation where two events (:! and :0) are defined over specific time instances: (:!, 3!) and (:0, 30). 
Without a loss of generality, we assume that 30 > 3!. The assessment of temporal correlation between the 
events :! and :0 is performed by looking how far, temporally speaking, the two events are. In more detail, 
we define here a temporal correlation index 8((:!, :0) between the events :! and :0 as: 

8((:!, :0) = 1 − >
!(#$!#%)

'       (4) 

where ? represents a decay term that filters out events that are far from each other. The temporal correlation 
index 8((:!, :0)	provides a quantitative measure of the temporal distance among them; if the events :! and 
:0 are close to each other, 8((:!, :0) approaches the value of 1. If the events :! and :0 are far from each 
other, 8((:!, :0) approaches the value of 0. The parameter ? specifies the scale of the temporal closeness 
of the two events. 

 

9.2 EVENT-TIME SERIES TEMPORAL CORRELATION ANALYSIS 

Our work extends that presented by (Luo, 2014), in which the temporal correlation between time series 
and events is formulated in terms of a two-sample problem (Gretton, 2006). Our extension includes two 
relevant items: a modification to the testing process structure and a different two-sample testing algorithm. 

In its original formulation (Luo, 2014), the temporal correlation is measured between a set of identical 
events and the time series. In the scope of the present work, we often deal with single events (e.g., abnormal 
behavior of an asset) rather than sets of events. The algorithm presented in (Luo, 2014) is based on testing 
the statistical difference between the portions of the time series pertaining to both before and after (indicated 
as @>?4,&( and @>4324, respectively [see the left-hand plot in Figure 19]) an event defined over a temporal 
instant has occurred. 

The right plot in Figure 19 is adapted and modified from Luo (2014), and it provides an overview of 
the set of cases observable when testing the temporal correlation between time series and events. When 
indicating the time series with A, we can look at the right plot in Figure 19 and intuitively infer that :! → A, 
A → :0, :5 → A, and A → :). Note that the symbol → indicates a temporal relationship between an event 
: and A but does not necessarily imply a causal relationship between the two. 

Here, we employ the Maximum Mean Discrepancy (MMD) algorithm (Gretton, 2006) to perform such 
statistical testing between the portion of the time series before and after the event temporal occurrence (i.e.,	
@>?4,&( and @>4324). In its original definition, the MMD algorithm has been developed to test if two observed 
stochastic variables are characterized by the same probabilistic distribution function: let A! and A0 be 
independent random (univariate or multivariate) samples generated from unknown distribution C and D, 
respectively. The hypotheses of the two-sample test can be stated as follows (i.e., the null hypothesis E/ 
and the alternative hypothesis E!): 
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,4: . = /	
,1: . ≠ /	

(5) 

 

  
Figure 19. (left) Elements designed to test the temporal correlation of a time series with an instantaneous 

event :, and (right) use cases considered for evaluating the temporal correlation of a time series with a set 
of instantaneous (left plot) and interval (right plot) events. 

This is achieved via the following MMD testing with a particular threshold F; if the threshold is 
exceeded, the test rejects the null hypothesis (Gretton, 2006). A Type I error (true negative) is made when 
C = D is rejected based on the observed samples, despite the null hypothesis having generated the data. 
Conversely, a Type II error (false negative) occurs when C = D is accepted despite the underlying 
distributions being different. The level F of a test is an upper bound on the probability of a Type I error: 
this is a design parameter of the test that must set in advance, and it is used to determine the threshold to 
which we compare the test statistic. 

Here, we are directly applying the MMD algorithm to test time series. In this respect, let us consider an 
event	: defined over a time instant 3> and a time series A (either univariate or multivariate). With the term 
%4(:, 3>), A5, we indicate the testing algorithm that determines the temporal correlation between an event 
: that occurred at time 3> and a time series A; the possible set of outcomes generated by %4(:, 3>), A5	are 
described in Table 5 provides indication of the list of outcomes. Note from Table 5 that we are only not 
considering the clear cases where a temporal correlation does (i.e., : → A and A → :) or does not exist 
(i.e., A! :) but also these two additional situations: 

• A; :: : occurs in an abnormal (statically speaking) transient of A 

• A?:: The temporal correlation testing is negative; however, the obtained p value indicates a 
statistically significant difference between the time windows before and after the occurrence 
of event E in the times series S 

As a notation, we indicate with the term %@@A(A!, A0) as the MMD-based algorithm designed to test 
whether time series A! and A0 have the same statistical distribution that returns the outcome of the test 
(Boolean logic value). The identification of the temporal relation between : and A is presented in detail in 
Algorithm 1. This algorithm operates by comparing the statistical distribution @>?4,&( and @>4324 against A; 
this is performed by randomly sampling portions of A that have same duration of @>?4,&( and @>4324. Such a 
set of portions of A is indicated as J. 

Given a time series A, a randomly sampled subseries J generated from A is here denoted as J =
(A!, … , A&, … , A=), where each subseries A& has the same length of K. Assume A only contains two states: 
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normal with value of 0 and anomaly with value of 1 with probabilities L/ and L!, respectively. We assume 
L! ≪ L/. For any subseries A> with the length of K, A> belongs to the anomaly state, if and only if the accept 
ratio (i.e., the ration between the number of subseries A& are similar to A> based on previous MMD testing 
over the total number of subseries of Θ) is below L!. The null hypothesis (i.e., A> are generated from the 
normal states of A) is rejected in this case. In other words, there is a temporal correlation between A> and 
the anomaly state of A. As an example, the MMD testing of @>?4,&( vs. Θ and @>4324 vs. Θ is shown in Figure 
20. 

 

Figure 20. MMD testing of event :! shown in the right plot of Figure 19. The left plot shows @>?4,&( vs. 
Θ, and the null hypothesis defined in the previous paragraph is accepted since the p value is greater than 
the significant level value. The right plot shows @>4324 vs. Θ; the null hypothesis previously defined is 
rejected since the p value is smaller than the significant level value. 

Using the example shown in Figure 19 (right), we have tested Algorithm 1 with the time provided time 
series against eight events. 

 

Table 5. Notation employed to indicate temporal correlation between time series A and an event	:. 

Temporal Notation Meaning 
: → A The occurrence of event : is followed by a change in the time series A 
A → : A change in the time series A is followed by the occurrence of event : 
A; : The occurrence of event E is during the change in the time series S 

A?: 

There is no correlation identified between time series S and the 
occurrence of event E. However, within the testing time window, there 
is a significant difference between the time windows before and after 
the occurrence of event E in the times series S 

A! : There is no correlation identified between time series S and the 
occurrence of event E 
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Algorithm 1: O4(1, 35), 45 - Temporal testing between event and time series  

Input: Event (:, 3>), time series A = (2!, 20, … , 2$) 
Output: Temporal correlation / 

1. Initialize J 
2. Select portion of time series A before and after 3>: @>?4,&(, @>4324 
3. Determine: 

• /? = %6674J, @>?4,&(5 
• /4 = %667(J, @>4324) 
• /?4 = %6674J, @>?4,&( ∪ @>43245 
• 1?4 = %6674@>4324 , @>?4,&(5 

4. If /4 = %QR>	&	/? = CT@2>: #E1 
• Return / = : → A 

5. Elif /4 = CT@2>	&	/? = %QR>: #E4 
• Return / = A → : 

6. Elif /4 = %QR>	&	/? = %QR>: #E2 and E3 
• Return D = S;E 

7. If /?4 = True: 
• Return D = S;E 

8. Elif 1?4 = %QR>: 
• Return D = S?E 

9. Else 1?4 = CT@2>: 
• Return D = S!E 

 

Table 6. Examples of temporal correlation analysis based on MMD testing for the events :!, :0, :5, 
and :) shown in Figure 19. :* is similar to :) with 7 seconds temporal shift. :B, :C , :D  are specified at 
location 900, 500, 200, seconds respectively. 

 589%:;#	67. Θ 58%$"%	67. Θ 589%:;#	67. 58%$"% 589%:;# ∪ 58%$"%	67. Θ Temporal 
correlation p value ,4 p value ,4 p value ,4 p value ,4 

;1 vs. S 0.732 True 0.004 False 0.01 False 0.012 False E à S 
;< vs. S 0.012 False 0.052 False 0.01 False 0.02 False S à E 
;= vs. S 0.042 False 0.006 False 0.01 False 0.01 False S à E 
;> vs. S 0.004 False 0.758 True 0.01 False 0.016 False S à E 
;? vs. S 0.008 False 0.048 False 0.01 False 0.004 False S à E 
;@ vs. S 0.726 True 0.728 True 0.63 True 0.72 True False 
;A vs. S 0.734 True 0.722 True 0.59 True 0.71 True False 
;B vs. S 0.706 True 0.712 True 0.75 True 0.678 True False 

 

Lastly, note that the reported time of occurrence of an event is assumed to reflect the actual temporal 
occurrence of that event. More specifically, the reported occurrence of an event (e.g., sudden bearing failure 
of a pump) is logged when the event is first observed; however, the actual event may have occurred prior 
to the logged date (i.e., a temporal delay may exist between the actual and observed occurrence of an event). 



 
44 

In such situations, the analysis of the temporal correlation between events and time series may be biased 
by such delays. 

An example of a correlation analysis of events and time series is shown in Figure 21 where a monitored 
variable is correlated to a set of events processed in Section 8. The identified events that have a temporal 
correlation with the time series are indicated in red, black, and yellow. 

Lastly, note that the reported time of occurrence of an event is assumed to reflect the actual temporal 
occurrence of that event. More specifically, the reported occurrence of an event (e.g., sudden bearing failure 
of a pump) is logged when the event is first observed; however, the actual event may have occurred prior 
to the logged date (i.e., a temporal delay may exist between the actual and the observed occurrence of an 
event). In such situations, the analysis of the temporal correlation between events and time series may be 
biased by such delays. This situation is currently the subject of study. 

 
Figure 21. Example of a correlation analysis of events and time series using the notation shown in 

Algorithm 1. 

 
10 ER KNOWLEDGE GRAPH 

This section provides details about the topology (see Section 10.1) and the process of construction (see 
Section 10.2) of the reliability knowledge graph. 

 

10.1 ER KNOWLEDGE GRAPH DEFINITION 

As indicated in Section 1, we aim to capture both system and plant architecture and available ER data 
in a single relational database. System architecture is modeled through MBSE diagrams (see Section 6), 
which are then translated into a single graph where each node in this graph indicates a specific asset, 
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component, or function. 

In this paper, we refer to knowledge graph taxonomy as the hierarchical schema that defines the key 
elements (i.e., nodes, and edges) of the ER knowledge graph itself. In this respect, Figure 22 provides the 
basic taxonomy of the ER knowledge graph and it explicitly shows the three types of nodes here considered: 
MBSE entities, numeric ER data, or textual ER data. The edges between MBSE and data nodes are indicated 
as “data association.” The methods presented in Section 9 provide information about the temporal 
correlations between events. From the knowledge graph point of view, if a temporal correlation is identified, 
then a “data correlation” edge between the two nodes is added. Table 7 and Table 8 provide more 
quantitative details about the sets of nodes and edges, respectively, that define the considered ER knowledge 
graph taxonomy. 

Numeric ER data is processed using the anomaly detection methods shown in Section 6. From a 
knowledge graph point of view, two nodes are created for each monitored variable: the full temporal profile 
of the considered variable and the list of anomalies identified from such a time series using the methods 
described in Section 7. Provided system design knowledge, these two nodes that contain numeric data are 
then linked to the node pointing to the MBSE entity being monitored.  

Similar reasoning applies to each textual data element. From the TLP knowledge extraction methods, a 
graph is constructed as described in Section 8. If the textual element is indicating a specific asset or 
component that is represented in the system MBSE diagram, the textual element is associated with the node 
pointing to the MBSE entity mentioned in the text. 

 

 
Figure 22. Topology of the ER knowledge graph; numeric (shown in green) and textual data elements 
(shown in orange) are logically connected to nodes pointing to MBSE entities (shown in purple). 

10.2 ER KNOWLEDGE GRAPH CONSTRUCTION 

Provided the set of processed ER data elements—either numeric (see Section 7) or textual (see 
Section 8)—the goal becomes to organize each element into a graph structure that captures the cause-effect 
relations (logical and temporal) identified in Section 9. Our approach began with the graph structure derived 
from the MBSE models of the system and assets under consideration (see Section 6), then progressed 
through the following steps: 

1. Associate an ER textual data element with one (or more) MBSE entity. 

2. Identify ER numeric data elements that have a logical path to the ER textual data element identified 
in Step 1. 

3. Determine whether there is a temporal relation between the ER textual data element identified in 
Step 1 and the ER numeric data elements identified in Step 2 (see Section 9). 
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4. If both the temporal and logical relation have been identified in Step 3: 

a. Link the portion of the ER numeric data element to its corresponding MBSE element. 

b. Link the data element identified in Step 4a to the ER textual data element identified in 
Step 1. 

5. Repeat Steps 1–4 for each ER textual data element. 

 

Table 7. Taxonomy of the nodes of the knowledge graph. 

Node type Data format Attributes 
MBSE Textual  Entity ID (optional) 

Numeric  

Time series associated with a 
set of monitoring data variables 
(Pandas data frame) 

- 

List of identified anomalies (see 
data format shown in Section 7) - 

Textual 
Graph constructed from textual 
element 

Reported date 
Text summarization (optional) 
Health status assessment 
(optional) 
Conjecture flag (optional) 

Nuclear entity Entity subclass ID 
 

Table 8. Taxonomy of the edges of the knowledge graph. 

Edge type Properties Linked nodes 

MBSE edges Directional or 
nondirectional 

Set of edges that connect MBSE 
entities (form and functional 
elements) 

Data association Nondirectional MBSE to data (either numeric or 
textual) nodes 

Data correlation Directional or 
nondirectional Data node to data node 

 

The resulting relational database will take the form of a graph structure reflecting the links between the 
data elements associated with a particular MBSE entity. Again, the actual skeleton of the graph structure is 
directly derived from the MBSE diagram of the system and assets under consideration. In this respect, 
Figure 23 shows the CWS graph structure directly generated from the provided MBSE diagram. Note that 
the graph nodes can reflect different data types (form or function), and the same applies to edges. 

For the present article, we focused on the textual portion of the available ER dataset for the considered 
CWS over a 10-year lifespan. The knowledge extraction methods presented in the past sections were 
employed to analyze all shift logs, WOs, and IRs, enabling us to identify the nature of textual elements and 
the MBSE elements associated with them. As an example, Figure 23 shows how the knowledge graph is 
populated by first obtaining the graph from the system MBSE model; then, anomalies identified using the 
methods indicated in Section 7 and the events processed using the TLP methods shown in Section 8 are 
associated with one or more MBSE entity. 
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Figure 23. Graphical representation of the obtained knowledge graph data structure; graph obtained 

from the system MBSE models (shown in the center) captures system architecture, while numeric (i.e., 
anomalies) and textual data elements are associated to specific nodes of the MBSE graph. 

 
11 CONCLUSIONS 

This paper has presented an approach designed to holistically integrate ER data (both numeric and 
textual) to track and record historic system and asset reliability performance in the form of a knowledge 
graph. The first distinction of our approach to construct a knowledge graph is that it embraces observed and 
recorded data and also system architecture. 

 We in fact rely on MBSE models to capture system architecture through diagrams (form and functional 
representation based on diagrams), which are then translated into a single digital graph structure. This graph 
becomes the actual skeleton of the knowledge graph. The rationale behind this modeling choice is that the 
ability to identify cause-effect relations between events requires architectural models of the considered 
system to “put data into context.” 

Once the skeleton of the knowledge graph is constructed, it is then populated by associating processed 
ER data to specific nodes (i.e., MBSE entities) of the graph. Numeric ER data is processed through 
statistical and ML-based anomaly detection methods with the goal of identifying anomalous behaviors. On 
the other hand, textual ER data is parsed by TLP methods with the goal of extracting knowledge from text 
and generating a data graph out of textual elements. 

The fourth step in the construction of the knowledge graph is identifying the temporal correlation 
between events (from textual data) and anomalies (from time series). This discovery process is performed 
through statistical testing methods that capture causal relations (temporal and logical). 

The obtained knowledge graph merges system architecture and ER data into a single digital structure. 
This data structure can be then employed to perform several tasks, including identifying patterns of 
anomalies, diagnoses of causes from a set of anomalies across systems, assessments of historic asset health 
performances, and updates of plant probabilistic risk analysis models. 

Note that the proposed approach is not bound to a specific anomaly detection or knowledge extraction 
method; we in fact provide well defined application programing interfaces (APIs) such that currently 
employed methods in plant monitoring and diagnostic (M&D) centers can be easily interfaced. The methods 
described here can be considered as state-of-the-art since they rely on recent data analytics advancements 
designed to overcome some limitations of current state-of -practice methods. 

Note also that the already built knowledge graph (e.g., for the CWS system) can be easily expanded by 
adding or merging the knowledge graphs developed for supporting systems (e.g., the 4160V AC system for 
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the CWS system). The developed knowledge graph construction process is in fact modular in the sense that 
a knowledge graph can be constructed for each system, but then these graphs can be merged once the cross-
system dependencies are capture in the system MBSE models. 

Modularity can be also achieved from a data point of view; additional data sources can be found in each 
utility such as: outage data (i.e., maintenance and surveillance operations performed periodically during 
plant outages), asset usage data (e.g., historic number of hours an asset has been running), regulatory related 
data (e.g., the basic event ID of an asset as part of the plant risk model, or the set of risk-informed plans 
associated with that asset), and economical data (e.g., procurement and maintenance costs). These data 
sources can be added to knowledge graph provided a well-defined label to the node in the graph that 
contains such data. This feature allows multiple stakeholders (e.g., system engineers, plant risk analysts, 
financial teams) to provide their own perspective of an asset (i.e., operational, regulatory, economical) into 
a unique and coherent structure designed to overcome current data limitations of nuclear utilities: missing, 
redundant, or contradictory information. 
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Abstract: Operating nuclear power plants (NPPs) generate and collect large amounts of equipment
reliability (ER) element data that contain information about the status of components, assets, and
systems. Some of this information is in textual form where the occurrence of abnormal events or
maintenance activities are described. Analyses of NPP textual data via natural language processing
(NLP) methods have expanded in the last decade, and only recently the true potential of such analyses
has emerged. So far, applications of NLP methods have been mostly limited to classification and
prediction in order to identify the nature of the given textual element (e.g., safety or non-safety
relevant). In this paper, we target a more complex problem: the automatic generation of knowledge
based on a textual element in order to assist system engineers in assessing an asset’s historical health
performance. The goal is to assist system engineers in the identification of anomalous behaviors,
cause–effect relations between events, and their potential consequences, and to support decision-
making such as the planning and scheduling of maintenance activities. “Knowledge extraction”
is a very broad concept whose definition may vary depending on the application context. In our
particular context, it refers to the process of examining an ER textual element to identify the systems
or assets it mentions and the type of event it describes (e.g., component failure or maintenance
activity). In addition, we wish to identify details such as measured quantities and temporal or
cause–effect relations between events. This paper describes how ER textual data elements are first
preprocessed to handle typos, acronyms, and abbreviations, then machine learning (ML) and rule-
based algorithms are employed to identify physical entities (e.g., systems, assets, and components)
and specific phenomena (e.g., failure or degradation). A few applications relevant from an NPP ER
point of view are presented as well.

Keywords: natural language processing; knowledge extraction; machine learning

1. Introduction

To reduce operation and maintenance costs [1,2], existing nuclear power plants (NPPs)
are moving from corrective and periodic maintenance to predictive maintenance strate-
gies [3]. This transition is designed so that maintenance occurs only when a component
requires it (e.g., before its imminent failure). This guarantees that component availability
is maximized and that maintenance costs are minimized. However, these benefits require
changes in the data that need to be retrieved and the type of decision processes to be
employed. Advanced monitoring and data analysis technologies [4–7] are essential for
supporting predictive strategies, as they can provide precise information about the health
of a system, structure, or component (SSC), track its degradation trends, and estimate its
expected time of failure. With such information, maintenance operations can be performed
on a component right before its expected failure time [8].

This dynamic context of operations and maintenance activities (i.e., predictive) re-
quires new methods of processing and analyzing equipment reliability (ER) data [7,8].
One relevant issue is that ER data can be contained in heterogenous data formats: textual,
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numeric, image, etc. An analysis of numeric ER data has been addressed in many previous
works [5–9] and applied to many operational directions including anomaly detection, diag-
nosis, and prognosis. Here we are targeting the analysis of textual ER data. The information
contained in NPP textual ER data can either describe the occurrence of abnormal events
(e.g., system, structure and components [SSC] failure or observed degradation)—with such
documents being referred to here as issue reports (IRs)—or the conduct of maintenance
or surveillance activities (referred to here as work orders [WOs]). Only recently has the
analysis of textual data been investigated via machine learning (ML) methods [10–13]
designed to assess the nature of the data (e.g., safety or non-safety related) by employing
supervised or semi-supervised ML models [14,15].

This paper primarily focuses on applying natural language processing (NLP) meth-
ods [16–19] for ER data analysis in order to support robust decision-making in a plant
operations context. In more detail, our methods are designed to assist system engineers in
the identification of anomalous behaviors that might occur in a system (e.g., the periodic
failure of a pump control board), the possible cause–effect relations between events (e.g., a
lack of adequate flow rate generated by the pump prior to the failure of its control board),
and their potential consequences (e.g., pump taken off line which causes power plant
derate, and a consequent loss of production). The same methods are also designed to
support decision-making such as the scheduling of the appropriate maintenance activities
(e.g., a replacement of the pump control board which requires a specific procurement order)
and planning based on past operational experience (e.g., identify average time to replace
pump control board). In addition, note that trending at the plant level of events of a similar
nature (which requires methods to parse a large amount of data automatically rather than
relying on manual search) provides insights on key performance indicators of the plant
itself, which are under regulatory oversight. All of these tasks are currently performed
manually with all limitations that such processes entail (in terms of resources required
and efficiency).

Here, the objective in analyzing textual ER data is to move away from supervised/semi-
supervised ML model analysis tools [10–13] and to instead automate the extraction of
quantitative knowledge from textual data in order to assist system engineers in assessing
SSC health trends and identify SSC anomalous behaviors. Knowledge extraction [20–24]
is a very broad concept whose definition may vary depending on the application context.
When applied to NPP ER textual data (i.e., IRs or WOs), the knowledge extraction approach
described herein is designed to extract its syntactic and semantic elements. In more
detail, it is designed to identify elements of interest (e.g., types of phenomena described
and types of SSCs affected), extract temporal and location attributes, understand the
nature of the reported event, and extract causal or temporal relationships between events.
This type of NLP analysis has especially been applied in the medical field as shown
in [25,26]. However, recent interest has also emerged in other fields including energetic [27],
chemical [28,29], bioinformatics [30,31], material science [32], arts and humanities [33], and
patent [34] analysis.

Our approach relies on both ML- and rule-based NLP methods designed to identify
specific keywords, sentence architecture relations, and structures within each sentence
and paragraph. The choice of a rule-based system rather than relying on language models
(as, for example, shown in [35]) was dictated by the limitations of the fine-tuning of such
models (e.g., the availability of training data) for a very specific field of application (which
can also be NPP dependent) and also by security reasons (e.g., sharing data on third-party
servers). Applying such analyses to NPP ER textual datasets makes it possible to track the
historical health performance of NPP assets and then use the observed health trends to
adjust the schedule of future surveillance and maintenance operations [7]. Such a process
can have a major impact on the reduction of NPP operational costs. The interest in NLP
knowledge extraction methods applied to NPP ER textual data has started only recently. In
particular, references [36,37] provide an overview of the advantages that can be reached
using technical language processing (TLP) as an iterative human-in-the-loop approach
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to analyze NPP textual data to optimize plant operation and asset management. As a
result of these considerations, reference [38] provides, to our knowledge, the first attempt
to analyze WO textual data using an ontology-based approach. This paper can be seen
as an extension of [38] where it also targets the analysis of IRs and other plant textual
data (e.g., plant outage data elements). Such an extension does not rely on an ontology as
indicated in [38] because of the challenges in constructing a general-purpose ontology that
would encompass all possible use cases in an NPP context. Our approach follows some of
the elements shown in [39–41], especially in terms or relation extraction and it adapts them
into an NPP context.

A relevant observation here is that most of the time, NPP ER textual elements are
composed by short (typically about 6–10 words long) sentences that are not properly
structured from a grammatical point of view. This poses a challenge when applying the
methods described in [21,23,24]. This paper is divided into two parts: Section 2 gives details
on each NLP element that constitutes our knowledge extraction workflow, and Section 3
provides examples of applying the developed methods in order to support decision-making
in an NPP operational context.

2. Knowledge Extraction Methods

Figure 2 provides an overview of the NLP methods that together constitute the knowledge
extraction workflow. These methods are grouped into the following three main categories:
• Text preprocessing: The provided raw text is cleaned and processed in order to identify

specific nuclear entities and acronyms (e.g., HPI in reference to a high-pressure injec-
tion system), and to identify and correct typos (i.e., through a spell check method) and
abbreviations (e.g., “pmp” meaning “pump”).

• Syntactic analysis: The goal of this analysis is to identify the relationship between words
contained within a sentence, the focus being on understanding the logical meaning of
sentences or parts of sentences (e.g., subjects, predicates, and complements).

• Semantic analysis: We rely on the results of this analysis to identify the nature of
the event(s) described in the text, along with their possible relationships (temporal
or causal).
In the following sections, we provide details on each different NLP method. The

methods presented here have been coded in a Python-based coding environment and they
leverage a few openly available NLP libraries: SpaCy [42], PySBD [43], and nltk [44]. The
choice of the coding environment was also suggested based on current configurations of
operating U.S. nuclear plant equipment reliability software suites which store IRs and WOs
and allow externally developed data analytics methods to be easily interfaced.

2.1. Spellcheck, Acronym, and Abbreviation Handling
NPP IRs and WOs are often comprised of short sentences that often contain abbrevia-

tions. The presence of abbreviations negatively impacts our ability to extract knowledge
from such texts. Thus, abbreviations must be identified and then replaced with the com-
plete form of the words. The starting point is a library of word abbreviations collected
from documents available online. This library is basically a dictionary that contains the
corresponding set of words for each identified abbreviation. A challenge here is that a
single abbreviation may have multiple words associated with it. Similarly, a word may be
abbreviated in multiple different ways.

In each sentence, abbreviations are handled by first identifying any misspelled words.
Each misspelled word is then searched for in the developed library. If an abbreviation in
the library matches the misspelled word, the abbreviation is replaced by the complete form
of the word. If no abbreviation is found, we proceed by searching for the closest one by
employing the Levenshtein distance as a metric. If multiple words match the obtained
abbreviation, the one that best fits the context of the sentence is selected.

Acronyms represent another class of textual elements often seen in ER textual data,
and typically refer to specific NPP SSCs. They are handled similarly to abbreviations,
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with a library of acronyms having been compiled based on publicly available U.S. Nuclear
Regulatory Commission (NRC) and Electric Power Research Institute (EPRI) documents.

Once the abbreviations and acronyms have been handled, the remaining misspelled
words are run through our spell-checking methods for a final round of corrections. Figure 1
shows an example of spell checking and acronym/abbreviation handling being used to
clean up specific words in the raw text.
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2.2. Sentence Segmentation
The next important step is to determine the sentence boundaries; that is, segment

the text into a list of sentences. This is a key underlying task for NLP processes. For
the present work, we employed PySBD—a rule-based sentence boundary disambiguation
Python package—to detect the sentence boundaries. We developed a custom method
that uses PySBD and SpaCy to split raw text into a list of sentences. In general, there are
three different approaches to segmenting sentences [16,17]: (1) rule-based, requiring a
list of hand-crafted rules; (2) supervised ML, requiring training datasets with labels and
annotations; and (3) unsupervised ML, requiring distributional statistics derived from raw
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text. We chose the rule-based approach since the errors are interpretable and the rules
can be adjusted incrementally. Moreover, the resulting performance can exceed that of the
ML models. For example, PySBD passes 97.93% of the Golden Rule Set exemplars (i.e., a
language-specific set of sentence boundary exemplars) for English—a 25% improvement
over the next-best open-source Python 3.9 tool (43).

2.3. Tokenization
The next step in textual processing is to tokenize the text [16,17], a process basically

designed to segment the text into a list of words or punctuations (see Figure 3). First, the
raw text is split based on the whitespace characters. The tokenizer then processes the text
from left to right. On each substring, it performs two checks:
(1) Does the substring match a tokenizer exception rule? For example, “don’t” does not

contain whitespace but should be split into two tokens, “do” and “n’t”.
(2) Can a prefix, suffix, or infix be split off (e.g., punctuation such as commas, periods,

hyphens, or quotation marks)?
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If a match is found, the rule is applied and the tokenizer continues its loop, starting
with the newly split substrings. In this manner, the tokenizer can split complex, nested
tokens such as combinations of abbreviations and multiple punctuation marks.

2.4. Part of Speech
After the correct segmentation of sentences, we rely on the SpaCy tagger to parse each

sentence and tag each token therein. The “TAG” and “POS” (part of speech) attributes
are generated for each token (see Section 2.3). “POS” is the simple universal POS tag
(https://universaldependencies.org/u/pos/ [accessed on 4 February 2024]) that does not
include information on any morphological features and only covers the word type (e.g.,
adjectives, adverbs, verbs, and nouns). The morphology is the process by which a root form
of a word is modified by adding prefixes or suffixes that specify its grammatical function
but do not change its POS. These morphological features are added to each token after the
POS process, and can be accessed through the token’s “morph” attribute.

The “TAG” attribute expresses both the POS and some amount of morphological
information. For example, the POS “VERB” tag is expanded into six “TAG” tags: “VB”
(verb, base form), “VBD” (verb, past tense), “VBG” (verb, gerund, or present participle),
“VBN” (verb, past participle), “VBP” (verb, non-third-person singular present), and “VBP”
(verb, third-person singular present). In this work, we heavily relied on these POS and
TAG tags to determine the nature of a given IR or WO (see Section 2.14).

2.5. Dependency Parsing
POS [18] tagging provides information on word types and morphological features but

not dependency information between words. Some examples of dependencies are nominal
subject (nsubj), direct object (dobj), and indirect object (iobj). The parser uses a variant of
the non-monotonic arc-eager transition system described in [42]. The parser uses the terms
“head” and “child” to describe those words connected by a single arc in the dependency
tree. The dependency labels are used for the arc label, which describes the type of syntactic
relation that connects the child to the head. Figure 4 shows a graphic representation
of a dependency tree created using SpaCy’s built-in displaCy visualizer, with the POS
tag placed below each word. In the present work, we employed the dependency tree to

https://universaldependencies.org/u/pos/
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develop rules for identifying health information and causal relationships between events
(see Sections 2.14 and 2.15, respectively).
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2.6. Lemmatization
A lemma is the base form of a token. For example, the word “fail” is the lemma of

“failing”, “fails”, and “failed”. Lemmatization is the process of reducing words to their base
forms (or lemmas). For the present study, we employed the SpaCy lemmatizer to reduce
inflectional or derivationally related forms of words to a common base form. In this case,
we only needed to provide the keyword base forms that would significantly reduce the
total number of keywords.

2.7. Coreference Resolution
Coreferences often occur in texts in which pronouns (e.g., it, they) are used to reference

elements previously mentioned in the text. Coreference resolution is aimed at identify-
ing the textual element linked to the given pronoun. For an example, see Figure 5, in
which the pronoun “they” refers to the previously defined textual element “cracks”. From
our analysis tools, we employed Coreferee to resolve coreferences within English texts.
Coreferee uses a mixture of neural network and programmed rules to identify potential
coreference mentions.
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2.8. Identification of Temporal Quantities
Temporal quantities, which indicate time instances when specific events have occurred,

can come in different forms. For the scope of this article, we partitioned these forms into
four classes (see Table 1) that specify the occurrence of an event in absolute terms (i.e., date
or time) or in relative terms (i.e., duration or frequency). A relevant observation is that
the provided temporal information may contain some uncertainty (e.g., an approximated
estimate of the temporal occurrence of an event). Such situations were handled by defining
a specific list of keywords that indicate approximation, as well as their corresponding set
of relations based on observed datasets (see Table 2). The set of temporal relations shown
in Table 3 was developed based on [45] and by relying on the large TimeBank corpus [46].
Figure 6 shows an example outcome of our identification methods.
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Table 1. Examples of date, time, duration, and frequency temporal expression.

Date Time Duration Frequency

11/3/2005
3 November 2005

Yesterday
Tomorrow
Thursday
Last Week

Friday morning
12:30 a.m.

3 p.m.
12:30

12:00 a.m.
20 min ago

10 h
last 5 months

2 days
2 days

couple of days
1988–1992

every Friday
every 4 h

every month
twice a year
thrice a day

Table 2. Portion of the list of approximations that might be associated with a temporal attribute.

Approximation

About Around
Almost Closely
Nearly Circa

Roughly Close
Approximately More or less

Nearly Roughly

Table 3. List of relations that indicate a temporal attribute.

Relations

[verb] + [at, on] + “time instance”
[verb] + [at, on] + [approximation] + “time instance”

[verb] + for + “time duration”
[verb] + for + [approximation] + “time duration”

[noun] + [verb] + “time duration”
[noun] + [verb] + [approximation] “time duration”
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2.9. Identification of Temporal Sequencing of Events
Another class of textual data elements that can often be retrieved from NPPs is found

in IRs covering multiple events linked by temporal relations. Temporal relations can be
either quantitative (e.g., an event that occurred two hours after another event) or qualitative
(e.g., an event that occurred prior to another event). Note that a temporal relation does not
necessarily imply a causal relation. In this paper, we build on the work in [47], which lists
the major temporal relations between events:
• Order: sequential occurrence of events
• Concurrency: (nearly) simultaneous occurrence of events from beginning to end
• Coincidence: temporal intersection of events.

Note that event duration is considered a temporal attribute (see Section 2.8). An
analysis of sentences containing temporal relations involves identifying specific keywords,
relations, and grammatical structures in each sentence—similarly to what was presented in
Section 2.8. In this respect, Tables 4 and 5 provide the set of keywords (i.e., verbs, adjectives,
and adverbs) that were identified for order, concurrence, and coincidence of events. A set of
grammatical structures that indicate the order and coincidence of events was also developed
(see Tables 6 and 7, respectively). The example provided in Figure 7 shows two identified
temporal attributes that indicate a temporal sequence and concurrency of events.



Energies 2024, 17, 1785 8 of 25

Table 4. Example of keywords and structures that indicate the order of events.

Keywords

Structures
Verbs Adjectives Adverbs

Antedate
Follow

Postdate
Precede
Predate
Succeed

After
Before

Consecutive
Earlier

Following
Former
Later
Next
Past

Precedent
Previous

Afterward
Consecutively
Consequently

Directly
Hereafter

Later
Next

Previously
Subsequently
Successively

Then

Soon after
After that

After a while

Table 5. List of sample keywords that indicate the concurrence and coincidence of events.

Keywords

Structures
Verbs Adjectives Adverbs

Accompany
Conform

Correspond
Harmonize

Parallel

Accompanying
Attending
Coexistent

Concomitant
Concurrent
Imminent

Simultaneous
Synchronic

When
Thereupon

While
During

At that point
At that moment

At that time
At that instant

In the end
On that occasion

Table 6. List of relations that indicate the order of events.

Relations

Event_1 + [order verb] + Event_2
Event_1 + [verb] + [adverb] + Event_2

Event_1 + [verb] + [adjective] + Event_2

Table 7. List of relations that indicate the concurrence and coincidence of events.

Relations

Event_1 + [verb] + [adverb] + Event_2
Event_1 + [verb] + [adjective] + Event_2

1 
 

 

Figure 7. Example analysis of sentences containing temporal entities (highlighted in purple) identified
from https://www.nrc.gov/docs/ML2320/ML23207A076.pdf (accessed on 4 February 2024).

https://www.nrc.gov/docs/ML2320/ML23207A076.pdf
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2.10. Identification of Measured Quantities
Next, we aimed to identify a precise observation (i.e., a measured point value or delta

estimate) of a measured variable. This observation required a numeric value followed by its
unit; however, it is not unusual for the unit to be missing. Note that, based on the observed
NPP ER textual data, measured quantities can be specified in a large variety of ways (see
Table 8 for examples), and not solely in the classic form “number + unit of measure”.

Table 8. Examples of quantitative observations.

one half
three halves

0.1
10%
3 cm

multiplied by 2
75–80%

4:1 ratio
5th percentile

within 5th and 95th percentile
the 3rd quartile

scored 6 on a 7 point scale
between three and four

This list was based on [48] and it was tested using openly available scientific literature.
We leverage quantulum3 and text syntactic relations listed in Table 9 to extract measured
quantities. The tool quantulum3 can identify all possible numerical, values either with
or without units, whereas syntactic information helps disambiguate the units from the
natural language.

Table 9. List of sentence relations for quantitative observation.

Relation

[neutral verb] + “quantity value” “quantity value” + [negative noun]
[neutral verb] + “quantity delta value” “quantity delta value” + [negative noun]

“quantity value” + [neutral noun] [positive verb] + “quantity value”
“quantity delta value” + [neutral noun] [positive verb] + “quantity delta value”

[negative verb] + “quantity value” “quantity value” + [positive noun]
[negative verb] + “quantity delta value” “quantity delta value” + [positive noun]

Figure 8 gives an example of identifying measured quantities. The textual elements
were taken from a few different NRC licensee event reports. The correctly identified
quantities are highlighted in blue, the rest are highlighted in red. As seen, the developed
method leads to issues regarding certain specific situations: namely, unknown units of
measures (e.g., Gy) and unit prefixes (e.g., milliRem instead of mRem). We are currently
working to address such limitations by making new improvements to quantulum3 and
implementing ad-hoc methods whenever these limiting situations are encountered.
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2.11. Identification of Location Attributes
As with temporal attributes, location attributes provide qualitative information, in this

case, information on where specific events have occurred. While location information does
not equip system engineers with any additional health information, it might give clues
about the health of a specific component whenever a reported event has occurred nearby
it. For example, the textual report “An oil puddle was found nearby pump MFW-1A”
identifies an element (i.e., oil) that may have a relation to a nearby pump (i.e., MFW-1A
pump). In the literature, this type of attribute search is not of interest; however, from a
safety/reliability standpoint, such information can be crucial for identifying the causes
behind abnormal behaviors observed throughout an NPP.

Location attributes are identified by looking at the specific keywords and relations
listed in Tables 10 and 11, respectively. Regarding the list of keywords listed in Table 10,
we relied on an initial set of keywords that was then expanded using WordNet (WordNet
is a lexical database originally created by Princeton University. It contains words, their
meanings (e.g., synsets), and their semantic relationships, all of which are stored in a
hierarchy-tree-like structure via linked synsets. Each synset denotes the precise meaning
of a particular word, and its relative location to other synsets can be used to calculate
the degree of similarity between them.) [49] synonym search capabilities. Figure 9 shows
an example of identifying location attributes. (The textual elements were taken from a
few NRC licensee event reports.) In this case, the identification of these attributes was
very robust.
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Table 10. Example keywords that indicate a location attribute.

Proximity Located Above Located Below

Across from
Adjacent

Alongside
Approaching

Beside
Close

Close by
Contiguous
Distant from
In proximity

Near
Nearby
Next to

Above
Anterior

Atop
Beyond

High
On top of

Over
Overhead
Upward

Below
Beneath
Bottom
Deep
Down

Down from
Downward

Low
Posterior

Under
Underneath

https://www.nrc.gov/reading-rm/doc-collections/index.html#event
https://www.nrc.gov/reading-rm/doc-collections/index.html#event
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Table 11. List of relations that indicate a location attribute.

Relations

[verb] + “location keyword” + noun
Subj + “location keyword” + obj

2.12. Identification of Nuclear Entities
NLP knowledge extraction methods require the ability to identify specific entities such

as common SSCs that can be found in any NPP. A library for light water reactors has been
developed in past years using available textual data form the NRC and EPRI. The entities
contained in this library (numbering about 5000 and growing) are arranged into eight main
classes and then subsequently divided into groups (mainly for data management purposes).
Table 12 lists the various classes and groups created so far, along with examples of entities
corresponding to each group.

Table 12. Class and groups of nuclear-related keywords.

Class Group Examples

Mechanical components

Fasteners Anchor bolt, cap screw, latch, pin
Rotary elements Cam, shaft, gear, pulley

Structural Beam, column, sleeve, socket
Purpose-specific Filter, manifold, blade

Non-mechanical components Electrical/electronic Amplifier, relay, buzzer, capacitor
Hydraulic/Pneumatic Coupler, filter, pipe

Assets

Mechanical Engine, vessel
Electrical AC bus, alternator, generator, transformer

Hydraulic/Pneumatic Pump, valve, condenser, fan
Electronic Computer, tablet, controller

I&C Digital meter, FPGA, transmitter, sensor
Nuclear fuel Fuel rod, control blade

NPP elements
Systems Feedwater, switchyard, feedwater

Architectural Containment, control room, pump house

Tools and treatments
Tools Jigsaw, solder gun, tape, crane

Treatments Bolting, riveting, grinding, infrared testing

Operands Electrical AC current, electromagnetic
Hydraulic/Pneumatic Compressed air, steam, gasoline, water

Compounds Materials Plastic, plywood, concrete, polyethylene

Reactions
Chemical reaction Combustion, oxidation, evaporation

Degradation mechanism Corrosion, dissolution, fatigue
Failure type Leak, rupture, brittle fracture

Using this list, the goal is now to identify these types of entities within a textual
data element. For the present work, we relied on SpaCy name entity recognition (NER)
functions [50] to perform such searches. Identified entities were flagged with a specific tag
ID and saved as part of the metadata associated with the textual data. Figure 7 provides
an example of the outcome of the developed nuclear entity NER methods, with several
elements, highlighted in blue, having been correctly identified.

2.13. Identification of Conjectures
In this step, we consider textual elements that contain information about future predic-

tions (e.g., an event that may occur in the future) or hypotheses regarding past events (e.g.,
a failure that may have occurred). Even if the reported event has not occurred (or may not
happen), this evaluation might be relevant for future diagnosis (identifying possible causes
from observed events) or prognosis (identifying consequences from observed phenomena)



Energies 2024, 17, 1785 12 of 25

purposes. In this context, verb tense plays a role in identifying this kind of report. Future
predictions are characterized by present- and future-tense verbs, whereas hypotheses about
past events are typically characterized by past-tense verbs. Hence, we rely on the outcomes
of the methods presented in Sections 2.4 and 2.5 in order to perform such syntactic analyses.
Additionally, we developed an initial set of specific keywords (see Table 13) and relations
(see Table 14) that can inform our methods whenever we are dealing with a conjecture
observation. Once a conjecture is identified from a textual data element, a conjecture flag is
set to “True” as part of the metadata associated with the textual data.

Table 13. Examples of keywords that indicate a conjecture observation.

Keyword

Expected Hypothetical(ly) Anticipated
Possible Likely Foreseen
Probable Unlikely Impending
Feasible Potential Upcoming
Plausible Uncertain Brewing
Presumed Forthcoming Looming

Table 14. List of relations that indicate a conjecture observation.

Relation Example

Subj + “future verb” The pump will fail
Subj + “conjecture keyword” + “verb” The pump is likely to fail

Conditional + subj + “verb” + “conjecture
keyword” + “verb” If the pump overheats, it is expected to fail

Subj + “past verb” + hypothesis The pump failed because it overheated

2.14. Identification of Health Status
So far, we have demonstrated the capability to identify quantitative health information

associated with an SSC when the textual report provides a precise observation (i.e., numeric
value) of a measured variable (see Section 2.10), its proximity location (see Section 2.11),
and its temporal attributes (see Section 2.8). Often, IRs reflect qualitative information on
abnormal observed events (e.g., failures, or precursors to a degradation phenomenon).
From a reliability standpoint, identifying the nature of the reported event plays a major
role, with the goal being to track the health performance of a single SSC or multiple SSCs
operating in similar operating conditions.

Based on the large number of IRs and WOs gathered from operating NPPs in the
United States, and using the methods presented in Sections 2.4 and 2.5, we collected and
extracted the underlying grammatical structures and converted them into relations (see
Table 15). Similarly, a list of keywords (nouns, verbs, adverbs, and adjectives) for indicating
the health status of a generic SSC is shown. These keywords have been partitioned into
three main classes (see Tables 16–18) based on sentiment analysis [51], and then expanded
using the WordNet [49] synonym search capabilities. Thus, identification of the health status
of the textual clause can be assessed by searching in the text for the developed lists of
relations and keywords.

Table 15. List of sentence relations for making qualitative observations.

Relation Example

Subj + “status verb” Pump was not functioning
Subj + “status verb” + “status adjective” Pump performance was acceptable

Subj + “status verb” + “status adverb” + obj Pump was partially working
“status adjective” + subj + “status verb” Unresponsive pump was observed
“status noun” + “prep” + “status verb” Deterioration of pump impeller was observed
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Table 16. Partial list of keywords that indicate negative information.

Nouns Verbs Adjectives Adverbs

Breakdown Disabled Unacceptable Inaccurately
Collapse Reject Improper Erroneously
Decline Stop Inadmissible Wrongly

Deficiency Block Undesirable Inadequately
Deterioration Halt Unsatisfactory Incompletely

Failing Oppose Unacceptable Partially
Decay Inhibit Unsuitable Imperfectly

Table 17. Partial list of keywords that indicate positive information.

Nouns Verbs Adjectives Adverbs

Accomplishment
Achievement
Enhancement
Progression

Solution

Enable
Empower
Facilitate

Permit
Set up
Endow

Let
Make

Ready
Fit

Capable
Apt

Available
Adequate

Competent
Proficient

Accurately
Nicely

Perfectly
Precisely
Properly
Rightly

Accurately
Appropriately

Table 18. Partial list of keywords that indicate neutral information.

Nouns Verbs Adjectives

Analysis
Assessment
Diagnosis
Evaluation
Exploration

Investigation
Probe

Inspect
Monitor
Measure
Witness
Examine

Note
Recognize

View
Watch

Acceptable
Usable

Attainable
Consistent
Constant

Stable
Unaffected

Uninterrupted
Untouched

2.15. Identification of Cause–Effect Relations
An occasional pattern in textual ER data is the reporting of multiple events as well as

the causal relationship among them. In this regard, the simplest type of paragraph found in
textual ER data will refer to an event (i.e., the cause) that triggered a second event (i.e., the
effect). However, variations in such paragraphs do exist (see Figure 10): multiple causes
can trigger a single effect, or a single cause can trigger multiple effects.
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Here, we did not employ ML algorithms (e.g., through the utilization of classification
methods [52]), but instead once again relied on rule-based [53] methods, since our goal
was to extract quantitative information from textual data rather than “classify” the nature
of the raw text. In other terms, rather than just classifying the textual data element as to
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whether it does or does not contain a causal statement, we aim to identify which element is
the cause and which is the effect. Similarly to what was described in Section 2.14, these
rules are based on the identification of the following:
• Keywords (e.g., nouns, verbs, and adverbs) that reflect that the sentence may con-

tain a causal relation between its subject(s) and object(s) (see Table 19). We success-
fully expanded out the initial set of keywords by using the WordNet [49] synonym
search capabilities.

• Relations between subjects and verbs contained in a sentence that are designed to recon-
struct the causal relations (see Table 20). The list of these relations was developed by ap-
plying the methods described in Sections 2.4 and 2.5 to a portion of the CausalBank [54]
dataset, which contains about 314 million pairs of cause–effect statements.

• NLP relations composed of multiple words that indicate a casual transition between
clauses contained in a sentence or between sentences (see Table 21).

Table 19. Partial list of keywords that indicate a cause–effect paragraph.

Nouns Verbs Adverbs

Augment
Backfire

Begin
Bring about

Build-up
Cause

Change
Combat

Compensate
Counter
Create

Deactivate
Decelerate
Decrease

Augment
Backfire

Begin
Bring about

Build-up
Cause

Change
Combat

Compensate
Counter
Create

Deactivate
Decelerate
Decrease

Afterwards
Consequently

Eventually
Finally
Hence

So
Subsequently

Then
Therefore

Thus
Ultimately

Table 20. List of relations that indicate a cause–effect paragraph.

Relations DAG

Event_A + “causal verb” (active) + Event_B A ! B
Event_A + “causal verb” (passive) + Event_B B ! A
Event_A + [to be] a “causal noun” + Event_B A ! B
Event_A + [to be] a “effect noun” + Event_B B ! A

The “causal noun” of + Event_A + [to be] + Event_B B ! A
The “effect noun” of + Event_A + [to be] + Event_B A ! B

Clause_A; + “cause/effect structure” + Clause_B A ! B or B ! A
“Cause/effect structure” + Clause_A; + Clause_B A ! B or B ! A
Clause_A. “Cause/effect structure” + Clause_B A ! B or B ! A
Event_A + (verb, “causal adverb”) + Event_B A ! B

Table 21. List of structures that indicate a cause–effect paragraphs.

Structures

In response to
Attributed to
As a result of

For this reason
In consequence

In this way
In such a way
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We applied the developed cause–effect identification methods to the publicly available
NRC LER 2021-001-00, “Atmospheric Steam Dump Valves Inoperable Due to Relay Failure”.
In this context, Figure 11 presents a subset of three cause–effect relations that were identified.
In particular, for each of the three identified relations, the figure shows the original text
and details about the relation, per the following format: “(cause, status), cause-effect keyword,
(effect, status)”.
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Steam Dump Valves Inoperable Due to Relay Failure”).

An initial testing of the capabilities of the developed methods was performed on
an openly available dataset generated within SemEval. In particular, we considered the
SemVal2010_task8 dataset [55] built to test the performance of NLP methods regarding the
discovery of causal relations. The performances were measured in terms of precision (as the
ration between true positives over the sum of true positives and false positives) and recall
(as the ration between true positives over the sum of true positives and false negatives).
The obtained values for precision and recall were estimated as 68% and 88%, respectively.
The performances were measured by looking at the subset of sentences in the dataset that
were originally labeled as “cause-effect”. Through a careful investigation, our methods
were labeling as “cause-effect” some sentences originally labeled as “Product-Producer”.
In some of these cases those sentences were actually containing a cause–effect relation that
we wanted to identify. Thus, the actual performances could be better.

2.16. Identification of Text Similarity
Word, sentence, and document similarity analyses are part of NLP, and play a crucial

role in text analytics (e.g., text summarization and representation, text categorization, and
knowledge discovery). A wide variety of methodologies have been proposed during the
last two decades [56,57], and can mostly be classified into five groups: (1) lexical knowledge
base approaches, (2) statistical corpus approaches (word co-occurrence), (3) ML and deep
learning approaches, (4) sentence-structure-based approaches, and (5) hybrid approaches.
However, a few common major drawbacks stem from these approaches: computational
inefficiency, a lack of automation, and a lack of adaptability and flexibility.

In the present work, we attempted to address these drawbacks by developing a tool
that is generally usable in applications requiring similarity analysis. As shown in Figure 12,
we leverage POS, disambiguation, lexical database, domain corpus, word embedding
and vector similarity, sentence word order, and sentence semantic analysis to calculate
sentence similarity. POS is used to parse a sentence and tag each word and token with a
POS tag and a syntactic dependency (DEP) tag. Such data will provide syntactic structure
information (i.e., negation, conjecture, and syntactic dependency) about the sentence, and
this information can be used to guide the similarity measuring process.
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Disambiguation is employed to determine the best sense of the word, especially when
coupled with specific domain corpus. It ensures the right meaning of the words (e.g., the
right synsets of the words in a lexical database) within the sentence is captured. A prede-
fined word hierarchy from a lexical database (i.e., WordNet) is then used to calculate the
degree of word similarity. However, some words are not contained in the lexical database,
as it only connects four POS types: nouns, verbs, adjectives, and adverbs. Moreover, these
words are grouped separately and do not feature any interconnections. For instance, nouns
and verbs are not interlinked (i.e., the similarity score between “calibration” and “calibrate”
is 0.091 when using WordNet). In this case, ML-based word embedding is introduced to
enhance the similarity calculation. Regarding the previous example, the similarity score
then becomes 0.715. The next step is to compute sentence similarity by leveraging both sen-
tence semantic information and syntactic structure. The semantic vectors are constructed
using the previously introduced word similarity approach, whereas syntactic similarity is
measured based on word order similarity. The following sections further describe each of
the steps in more detail.

As mentioned in Sections 2.4 and 2.5, POS data provide information on word types
and morphological features, and dependency parsing provides information on the syn-
tactic dependency between words. Both POS and dependency parsing can help identify
important information such as NOUN, VERB, ADJ, ADV, negation, conjecture, subject, and
object, and this information is then used to compute the sentence syntactic similarity.

Lexical databases such as WordNet consider semantic connections between words,
and this can be utilized to determine their semantic similarity. As summarized by [58],
many different methods can be employed to compute word similarity using WordNet,
and sometimes these methods are combined to enhance the similarity calculation. In this
work, we employ the method proposed by [59,60] to compute the similarity score between
two words/synsets, here indicated as w1 and w2, as presented in Equation (1):

Sw(w1, w2) = flength(l) · gdepth(d) = e�al · ebd � e�bd

ebd + e�bd (1)

with flength(l) = e�al gdepth(d) =
ebd � e�bd

ebd + e�bd
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where the following apply:
• l indicates the path length between w1 and w2.
• d indicates the path depth between w1 and w2.
• flength(l) and gdepth(d) are functions which decompose the contribution to Sw respec-

tively for path length and depth between w1 and w2.
• a 2 [0, 1], b 2 (0, 1] are scaling parameters for the contribution of the path length and

depth, respectively.
The optimal values of a and b are dependent on the knowledge base used, and can

be determined using a set of word pairs with human similarity ratings. For WordNet, the
optimal parameters for the proposed measure are a = 0.2 and b = 0.45, as reported in [60].

This method combines the shortest path distance between synsets and the depth of
their subsumer (e.g., the relative root node of the compared synsets) in the hierarchy. In
other words, the similarity score is higher when the synsets are close to each other in the
hierarchy, or when their subsumer is located at the lower layer of the hierarchy. This is
because the lower layer contains more specific features and semantic information than does
the upper layer.

The “sense” of a given word represents its precise meaning under a specific context.
Disambiguation is the process used to identify which sense of the word is best in the context
of a particular statement. Without proper disambiguation, errors may be introduced at
the early stage of the similarity calculation when using lexical databases. For example,
in WordNet, synsets denote the senses of the word, and are linked to each other via their
explicit semantic relationships. When different synsets are used to calculate word pair
similarity, their semantic relationship can be drastically different, potentially having a
significant effect on the similarity score. In the present work, we tried to disambiguate the
word sense by considering the context of the word. One way to do this is to account for
the surrounding words, since they can provide contextual information. However, this may
not work for simple or short sentences. In such cases, the domain-specific corpus can be
leveraged to disambiguate the word. Once the best senses are identified for the words, the
word similarity measure can be employed.

As proposed in [58], sentence similarity encompasses both semantic and syntactic
similarity. Semantic similarity is captured via word semantic similarity, as discussed
in previous sections, whereas syntactic similarity is measured by word order similarity.
Word order similarity affords a way to assess sentence similarity in consideration of word
order. As is well described in [58], the constructed semantic vectors and word order
vectors can be used to compute sentence similarity. Here, we will briefly introduce the
methods of constructing these vectors, and recommend that the reader refer to [58] for
additional details.

Given two sentences, T1 and T2, a joint word set is formed (e.g., T = T1 [ T2) that
incorporates all of the distinct words from T1 and T2. The vectors derived from computing
word similarities in (T, T1) and (T, T2) are called the semantic vectors, and are denoted by
s1 and s2, respectively. Each entry of the semantic vectors corresponds to the maximum
similarity score between a word in T and a word in T1 or T2, such that the dimension equals
the number of words in the joint word set. The semantic similarity between two sentences
is defined as the cosine coefficient between two vectors:

Ss =
s1 · s2

ks1kks2k
(2)

As proposed in [58], the word order similarity of two sentences is defined as follows:

Sr = 1 � kr1 � r2k
kr1 + r2k

(3)

where the word order vectors r1 and r2 are formed from (T, T1) and (T, T2), respectively.
For example, for each word wi in T, the r1 vector with the same length of T1 is formed as
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follows: if the same word is present in T1, the word index in T1 is used as the value for r1.
Otherwise, the index of the most similar word in T1 will be used in r1. A preset threshold
(i.e., 0.4) can also be used to remove spurious word similarities. In this case, the entry of wi
in r1 is 0.

Both semantic and syntactic information (in terms of word order)Both semantic and
syntactic information (in terms of word order) play a role in measuring sentence similarity.
Thus, the overall sentence similarity is defined in [58] as follows:

S(T1, T2) = dSs + (1 � d)Sr (4)

where d 2 (0, 1] represents the relative contribution of semantic information to the overall
similarity computation.

3. Applications of NLP Knowledge Extraction Methods

In current U.S. nuclear power plants, IRs and WOs are typically generated in digital
form using pre-defined formats and they are stored in databases along with all of the
information about plant operations (e.g., surveillance and maintenance). Such databases
can be filtered depending on the type of analyses to be performed and locally downloaded
in standard formats (typically in a comma separated value format). In our case, plant IRs
and WOs are retrieved from plant databases as comma separated value format data files
and then they are converted into a Pandas DataFrame. Each NLP function described in
Section 2 has been coded as a stand-alone method that acts on a set of sentences which are
stored as a Pandas DataFrame. Each method is designed to sequentially parse all sentences
and either flag text elements (e.g., nuclear-related keyword) or populate a new column of
the database (e.g., an assessment of conjecture or causal relation between events). Thus,
depending on the desired application, the user can create workflows which consist of a set
of methods described in Section 2 that operates sequentially on the same Pandas DataFrame.
Note this modus operandi can be applied directly once a new IR or WO has been generated
(i.e., online mode). Sections 3.1 and 3.2 provide details about the application of the methods
described in Section 2 in two different operational scenarios. The first one focuses directly
on NER and knowledge extraction from textual data to identify anomalous behaviors while
the second one is designed to support the planning of NPP outage.

3.1. Analysis of NPP ER Data
The examples provided here are designed to demonstrate how the methods described

in Section 2 can be used to process NPP IRs. In general, such text preprocessing is manual
and potentially very time-consuming. In these examples, we have collected a list of typical
IR descriptions (see Table 22) to test the effectiveness of such methods.

Table 22 shows the first example, with the extracted SSC entities and their health status
highlighted in blue and yellow, respectively. For a better illustration of the extracted data,
Table 23 presents the pair of extracted SSC entities and their health statuses. Note that there
are two misidentifications highlighted in green. The first, (pump, test), is easily resolved if
we also include the health status keyword “failed” (highlighted in red) in the health status,
as marked in Table 22. Two health status options exist for the second misidentification:
“found in proximity of rcp” and “oil puddle”. To determine the correct health status for
“pump”, we employed word/phrase/sentence similarity (see Section 2.16) in order to
compute the similarity scores between the SSCs and their potential health statuses. The one
with the highest similarity score is selected as the identified health status. In this case, the
similarity score between “puddle” and “pump” is 0.25, whereas that between “proximity”
and “pump” is 0.027. Thus, “puddle”—with the additional information “oil”—is selected
as the final health status for “pump”.
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Table 22. Example of information extraction. The following are identified in the text: nuclear
entities (highlighted in blue), health status (highlighted in yellow), keywords indicating health status
(highlighted in red).

A leak was noticed from the RCP pump 1A. RCP pump 1A pressure gauge was found not operating . RCP pump 1A pressure gauge was found

inoperative . RCP pump 1A had signs of past leakage . The Pump is not experiencing enough flow during test . Slight Vibrations is noticed — likely

from pump shaft deflection . Pump flow meter was not responding . Rupture of pump bearings caused pump shaft degradation . Rupture of

pump bearings caused pump shaft degradation and consequent flow reduction. Power supply has been found burnout . Pump test failed due to

power supply failure . Pump inspection revealed excessive impeller degradation . Pump inspection revealed excessive impeller degradation

likely due to cavitation. Oil puddle was found in proximity of RCP pump 1A. Anomalous vibrations were observed for RCP pump 1A. Several cracks on

pump shaft were observed; they could have caused pump failure within few days. RCP pump 1A was cavitating and vibrating to some degree during test.

This is most likely due to low flow conditions rather than mechanical issues. Cavitation was noticed but did not seem severe. The pump shaft vibration appears to be

causing the motor to vibrate as well. Pump had noise of cavitation which became faint after OPS bled off the air . Low flow conditions most likely causing

cavitation. The pump shaft deflection is causing the safety cage to rattle. The Pump is not experiencing enough flow for the pumps to keep the check valves

open during test. Pump shaft made noise . Vibration seems like it is coming from the pump shaft . Visible pump shaft deflection .

Pump bearings appear in acceptable condition . Pump made noises — not enough to affect performance. Pump shaft has a slight deflection .

Table 23. Extracted SSC entities and their health status from the text provided in Table 22. Misidenti-
fications are highlighted in green.

SSC Entities Status/Health Status SSC Entities Status/Health Status

Pump A leak from rcp Impeller Excessive degradation
Pump Not gauge operating Pump Found in proximity of rcp (Oil puddle)
Pump Gauge inoperative Pump Anomalous vibrations for 1a
Pump 1a signs of past leakage Pump shaft Several cracks
Pump Not enough flow during test Pump Failure

Pump shaft Deflection Pump cavitating
Pump Not meter responding Pump shaft Vibration

Pump bearings Rupture Motor Vibrate
Pump shaft Degradation Pump Noise of cavitation . . .

Pump bearings Rupture Pump shaft Deflection
Pump shaft Degradation Pump Not enough flow for the pumps

Power supply Burnout Pump shaft Noise
Pump Test Pump shaft Vibration

Pump supply Failure Pump shaft Deflection
Pump Inspection Pump bearings Acceptable condition

Impeller Excessive degradation Pump Noises
Pump Inspection Pump shaft A slight deflection

In the second example, the extracted cause–effect relations between SSCs in regard to
the text given in Table 22 are presented in Table 24. We employed a set of rule templates
based on specific trigger words and relations (see Section 2.15). Once the SSCs entities and
their health status were identified, we could apply these rules to identify the cause–effect re-
lations. One cause–effect relation remained uncaptured, as “safety cage” was not originally
listed as the identified SSC entity.
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Table 24. Causal relations identified (nuclear keywords are highlighted in blue while health status
are highlighted in yellow).

Text after Rule-Based NER Identified Cause–Effect Relations

Rupture of pump bearings caused

pump shaft degradation .
(pump bearings: Rupture) “caused” (pump shaft: degradation)

Rupture of pump bearings caused

pump shaft degradation and consequent flow reduction.
(pump bearings: Rupture) “caused” (pump shaft: degradation)

Pump test failed due to power supply failure . (Pump: test failed) “due to” (power supply: failure)

Pump inspection revealed excessive

impeller degradation .
(Pump: inspection) “revealed” (impeller: degradation)

Pump inspection revealed excessive

impeller degradation likely due to cavitation.
(Pump: inspection) “revealed” (impeller: degradation)

Several cracks on pump shaft were observed; they could

have caused pump failure within few days.
(pump shaft: Several cracks) “caused” (pump: failure)

The pump shaft deflection is causing the safety cage to rattle. None

The third example focuses on coreference identification. This process is intended to
find expressions that refer to the same entity in the text—something that is of particular
relevance in light of a lengthy piece of text that refers to an entity by using a pronoun rather
than its proper name. Using our methods, the coreferences in the text presented in Table 22
can be identified, as shown in Table 25.

Table 25. Example of coreference identification.

Coreference Examples Identified Coreference

Several cracks on pump shaft were observed; they could
have caused pump failure within few days. (Several cracks, they)

Vibration seems like it is coming from the pump shaft. (Vibration, it)

Conjecture means that the information provided by the sentence pertains to a future
prediction (e.g., an event that may occur in the future) or a hypothesis about past events
(e.g., a failure that may have occurred). In this context, verb tense plays a role in identifying
these kinds of attributes. Future predictions are characterized by both present- and future-
tense verbs; hypotheses about past events are typically characterized by past-tense verbs.
Based on the text provided in Table 22, the sentences containing conjecture information
were correctly identified and are listed in Table 26.

Table 26. Identified conjecture sentences.

Pump Inspection Revealed Excessive Impeller Degradation Likely Due to Cavitation.
Several cracks on pump shaft were observed; they could have caused pump failure within few days.

Vibration seems like it is coming from the pump shaft.

3.2. Analysis of Plant Outage Data
Refueling outages are among the most challenging phases in an NPP’s operating cycle.

NPP outages require the scheduling of thousands of activities within an average of 30 days.
During the outage planning phase, the outage schedule is determined via optimization
tools, given the estimated time to perform each activity. Such temporal estimation is
performed manually based on past operational experience.

The goal here is to perform the same task—but by applying the text similarity methods
described in Section 2.16 to past outage data regarding activities performed during past
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outages and the actual completion time for each activity. In other words, we aim to identify
a subset of activities performed in previous outages that are similar to the activity being
queried. The temporal distribution of the completion time associated with the queried
activity can then be determined by collecting the historical completion time from the
selected subset of (similar) past activities.

We now give an example of temporal distribution estimation—presented here for
the queried activity “valve re-packing”—using a dataset provided by an existing U.S.
NPP. The dataset contains activities performed over the course of five different outages.
Data cleaning was performed for each of these activities. Once the historical plant outage
data were cleaned via the methods presented in Sections 2.1–2.3, the similarity value
between the queried activity and each historical activity was determined using the methods
presented in Section 2.8. This resulted in an array of similarity values having dimensionality
identical to the number of historical activities and the corresponding array (with identical
dimensionality) containing the activity durations (see Figure 13). Note that the temporal
values were intentionally perturbed to disguise proprietary data.
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The temporal distribution of the queried activity was determined by considering
both the similarity and duration arrays. More precisely, we selected activities such that
the similarity measure exceeded a specified threshold (typically in the 0.7–0.9 range). Of
particular note here is that if a queried activity was never completed in past outages, no
similar past activities will be found. This approach does not in fact perform any type
of regression. The output consists of a histogram representing the duration variance
to complete the queried activity upon being provided past outage data (see Figure 14).
Given these results, the analysis now carries the potential to statistically analyze the
actual duration of similar activities in order to identify possible outliers obtained from the
similarity search, track the historical trend in activity completion time, and evaluate the
impact of employed human resources on completion time.
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complete the queried activity by selecting the activities highlighted in red in Figure 13.

4. Conclusions

This paper presented an overview of a computational tool designed to extract informa-
tion from ER textual data generated by NPPs. This tool consists of several methods aimed
at parsing sentences in search-specific text entities (e.g., measured quantities, temporal
dates, and SSC). The semantic analysis tools are designed to then capture the semantic
meaning of the event(s) described in the provided texts, including health information,
cause–effect relations, or temporal sequences of events. Of importance here is the set of
preprocessing tools devised to clear textual elements from acronyms, abbreviations, and
grammatical errors. Such cleaning methods are essential for improving the performance of
the knowledge extraction methods.

We presented a few applications of the methodology that extended beyond the analysis
of NPP IRs and WOs. In these applications, despite the ER textual elements being short
by nature, our tools successfully extracted the semantic meaning and identified the vast
majority of the specified entities. We also indicated how our sentence similarity measures
can be used to parse past outage databases in order to inform plant outage managers of
the historical durations required to complete specific activities. Analyses of NRC reports
provided a few good examples of how our methods can capture the cause–effect or temporal
relations among different events.

The capabilities of the developed tools are unique in the nuclear arena, and are based
on the parallel development that is taking place in the medical field. As a matter of fact, we
relied on a few libraries initially developed to conduct knowledge extraction from medical
textual data elements (e.g., patients’ medical reports and doctor diagnoses). Extending
such methods to a different field, namely, nuclear energy, required the development of
additional methods and libraries to fit the new use cases.
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