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EXECUTIVE SUMMARY

The domestic nuclear power plant eet has historically relied on labor-intensive and time-consuming
preventive maintenance programs, thus driving up operation and maintenance costs to achieve high
capacity factors. arti�cial intelligence (AI) and machine-learning (ML) can help simplify complex
problems such as diagnosing equipment degradation to enable more e�ective decision-making. Bene�ts
of AI will be felt through more e�cient plant operations and maintenance, improved work processes, and
better integration of people and technology. Together, these bene�ts hold the promise to make nuclear
power more sustainable by reducing costs associated with operations and maintenance while improving
employee engagement. While the AI and ML technologies hold signi�cant promise for the nuclear
industry, there are challenges or barriers to their adoption. Explainability and trustworthiness of AI are
two salient challenges that need to be addressed for wider deployment of these technologies in nuclear
power plants (NPPs).

This research focuses speci�cally on addressing the explainability and trustworthiness of AI technolo-
gies to advance the human, technical, and organization (HTO) readiness levels in adopting a risk-informed
predictive maintenance (PdM) strategy at commercial NPPs, represented visually in Figure A. In addition,
this approach can be adapted to enhance the acceptability of AI in other nuclear applications with a few
application-speci�c modi�cations. The technical approach ensuring wider adoption of AI technologies
was developed by Idaho National Laboratory (INL)|in collaboration with Public Service Enterprise
Group (PSEG), Nuclear, LLC|by utilizing the circulating water system (CWS) at two PSEG-owned
plant sites for demonstration. Focused user studies were performed in collaboration with subject matter
experts (SMEs) from PSEG and other nuclear domains to enhance the human and organization readiness
by building trust in AI-informed technologies.

VIsualization for PrEdictive maintenance Recommendation (VIPER)|a copyrighted software owned
by Battelle Energy Alliance, LLC|was developed and expanded to provide a user-centric visualization
by incorporating input from the collaborating utility, human factors engineering guidelines, and data
scientists. The VIPER software enables users, who may be unfamiliar with machine-learning (ML) in
general, to interactively engage by asking technical questions about PdM, work orders, diagnosis results
and their con�dence, data used, and types of ML algorithms. This interactive engagement enhances ex-
plainability and builds trust. One of the enabling accomplishments was the integration of large language
models (LLMs), both text-based and vision-based, in the VIPER software.

Figure A. HTO readiness for AI-enabled VIPER deployment in the nuclear power industry.
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The notable contributions delivered in the report are:

ˆ Advanced the VIPER software capabilities to include multiple ML diagnoses, allowing the user to
select from a list of pre-trained models to assess the health of the CWS. A hard and soft voting
schemes were also implemented to increase the robustness of the VIPER tool.

ˆ Enhanced the human-AI interaction within the VIPER tool by integrating di�erent types of LLMs.
The performance of these di�erent LLMs were evaluated for di�erent scenarios.

ˆ Incorporated principles of human-centered AI addressing the deployment considerations related to
the HTO readiness levels.

ˆ Performed user research studies at an event organized by PSEG to understand the trustability, level,
and diversity of information a user would require to trust the recommendations coming from an AI
system such as VIPER. Several of the �ndings were implemented into VIPER.

ˆ Performed quantitative usability and interface evaluation by interviewing SMEs to enhance the
usability of the VIPER tool.

The innovative advancements of the VIPER software are advancing and enabling the HTO readiness
levels in adopting an AI-enabled risk-informed PdM strategy at commercial NPPs. There is growing
interest among nuclear plant operators to license the VIPER software either as a standalone software
product or integrated with their existing maintenance software capabilities. The VIPER software can be
obtained under a licensing agreement with INL.

In the future, any AI research conducted in the nuclear power industry will have to consider psycho-
logical safety as a bridge to not only AI adoption but sustained use. Research and development of AI
technologies and subsequent implementation, adoption and long-term use in the plants will have to be
established within a lifecycle framework, with follow-up activities to ascertain sustained satisfaction and
con�dence with the AI across the HTO readiness levels.
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Demonstration and Evaluation of Explainable and
Trustworthy Predictive Technology for

Condition-based Maintenance

1 INTRODUCTION AND BACKGROUND

Over the years, the domestic nuclear power plant (NPP) eet has relied on costly, labor-intensive, and
time-consuming preventive maintenance (PM) programs to maintain its structures, systems, and components
(SSCs), thus driving up overall NPP operation and maintenance (O&M) costs to achieve high capacity
factors [ 1 ]. As a part of this PM strategy, the SSCs undergo manual, burdensome, periodic maintenance
checks|such as inspection, testing, calibration, replacement, and refurbishment|irrespective of condition.
However, this well-established and somewhat successful PM strategy is presently challenging the long-term
economic sustainability of NPPs in the current competitive energy market [ 2 ]. But predictive maintenance
(PdM) strategies only recommend that these actions be takenas requiredby the health condition of the SSCs.
As such, utilizing a PdM strategy in NPPs would automate di�erent aspects of PM strategies and enable
well-informed, proactive decision-making. Trusting in this strategy would also enable NPP operators to
avoid experiencing unplanned downtime or having to derate plant power due to unplanned unavailability of
SSCs during operation, and enable plant operators to optimize maintenance during planned outages. Overall,
the development and deployment of a well-constructed PdM strategy would lower overall maintenance costs
and enable signi�cant e�ciency gains without comprising plant safety.

The Technology-Enabled Risk-informed Maintenance Strategy (TERMS) project, funded under the
United States (U.S.) Department of Energy (DOE){O�ce of Nuclear Energy's Light Water Reactor Sus-
tainability (LWRS) Program, is leading a research and development (R&D) activity to develop scalable,
explainable, and trustworthy AI and ML techniques to enable deployment of a PdM strategy. AI and
ML are key technologies that are expected to enable a cost-e�ective and optimized PdM strategy within
the NPP industry. For this reason, LWRS researchers have developed a federated transfer learning ap-
proach in collaboration with nuclear utilities to address the scalability of AI technologies in achieving a
risk-informed PdM strategy [ 3 ] across plant systems in the overall U.S. nuclear eet to meet current and
future application-speci�c requirements [ 4 ,  5 ]. The developed scalability approach does not yet address the
deployment of risk-informed PdM strategies and integration with plant legacy systems because explainability
and trustworthiness of AI/ML technologies are still open R&D topics.

An initial technical basis addressing the explainability and trustworthiness for AI technologies using
metrics is presented in [ 6 ]. A discussion on the three primary aspects of AI technologies|performance, ex-
plainability, and trustworthiness|as presented in Figure 1 , with speci�c metrics, a user-centric visualization
interface, and a human-in-the-loop evaluation to build user-con�dence, is presented in [ 7 ]. Speci�cally, the
information provided in [ 7 ] discusses the trade-o� between performance and explainability, takes techniques
to develop training datasets into consideration, and addresses data imbalance concerns. To implement these
three AI technology aspects, an initial version of the VIsualization for PrEdictive maintenance Recommenda-
tion (VIPER)|a copyrighted software owned by Battelle Energy Alliance, LLC|was developed to provide
a user-centric visualization by incorporating input from the collaborating utility, human factors engineering
guidelines, and data scientists. Along with the three aspects of AI technologies, LWRS researchers identi�ed
guiding AI lifecycle technical requirements [ 6 ] and barriers in the nuclear industry to adopting AI technolo-
gies [ 8 ], as shown in Figures 2 and  3 respectively. These barriers emphasize the holistic consideration of
three readiness levels|technology, human, and organization. For details on these barriers, see [ 8 ].
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