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EXECUTIVE SUMMARY

The domestic nuclear power plant fleet has historically relied on labor-intensive and time-consuming
preventive maintenance programs, thus driving up operation and maintenance costs to achieve high
capacity factors. artificial intelligence (AI) and machine-learning (ML) can help simplify complex
problems such as diagnosing equipment degradation to enable more effective decision-making. Benefits
of AI will be felt through more efficient plant operations and maintenance, improved work processes, and
better integration of people and technology. Together, these benefits hold the promise to make nuclear
power more sustainable by reducing costs associated with operations and maintenance while improving
employee engagement. While the AI and ML technologies hold significant promise for the nuclear
industry, there are challenges or barriers to their adoption. Explainability and trustworthiness of AI are
two salient challenges that need to be addressed for wider deployment of these technologies in nuclear
power plants (NPPs).

This research focuses specifically on addressing the explainability and trustworthiness of AI technolo-
gies to advance the human, technical, and organization (HTO) readiness levels in adopting a risk-informed
predictive maintenance (PdM) strategy at commercial NPPs, represented visually in Figure A. In addition,
this approach can be adapted to enhance the acceptability of AI in other nuclear applications with a few
application-specific modifications. The technical approach ensuring wider adoption of AI technologies
was developed by Idaho National Laboratory (INL)—in collaboration with Public Service Enterprise
Group (PSEG), Nuclear, LLC—by utilizing the circulating water system (CWS) at two PSEG-owned
plant sites for demonstration. Focused user studies were performed in collaboration with subject matter
experts (SMEs) from PSEG and other nuclear domains to enhance the human and organization readiness
by building trust in AI-informed technologies.

VIsualization for PrEdictive maintenance Recommendation (VIPER)—a copyrighted software owned
by Battelle Energy Alliance, LLC—was developed and expanded to provide a user-centric visualization
by incorporating input from the collaborating utility, human factors engineering guidelines, and data
scientists. The VIPER software enables users, who may be unfamiliar with machine-learning (ML) in
general, to interactively engage by asking technical questions about PdM, work orders, diagnosis results
and their confidence, data used, and types of ML algorithms. This interactive engagement enhances ex-
plainability and builds trust. One of the enabling accomplishments was the integration of large language
models (LLMs), both text-based and vision-based, in the VIPER software.

Figure A. HTO readiness for AI-enabled VIPER deployment in the nuclear power industry.
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The notable contributions delivered in the report are:

• Advanced the VIPER software capabilities to include multiple ML diagnoses, allowing the user to
select from a list of pre-trained models to assess the health of the CWS. A hard and soft voting
schemes were also implemented to increase the robustness of the VIPER tool.

• Enhanced the human-AI interaction within the VIPER tool by integrating different types of LLMs.
The performance of these different LLMs were evaluated for different scenarios.

• Incorporated principles of human-centered AI addressing the deployment considerations related to
the HTO readiness levels.

• Performed user research studies at an event organized by PSEG to understand the trustability, level,
and diversity of information a user would require to trust the recommendations coming from an AI
system such as VIPER. Several of the findings were implemented into VIPER.

• Performed quantitative usability and interface evaluation by interviewing SMEs to enhance the
usability of the VIPER tool.

The innovative advancements of the VIPER software are advancing and enabling the HTO readiness
levels in adopting an AI-enabled risk-informed PdM strategy at commercial NPPs. There is growing
interest among nuclear plant operators to license the VIPER software either as a standalone software
product or integrated with their existing maintenance software capabilities. The VIPER software can be
obtained under a licensing agreement with INL.

In the future, any AI research conducted in the nuclear power industry will have to consider psycho-
logical safety as a bridge to not only AI adoption but sustained use. Research and development of AI
technologies and subsequent implementation, adoption and long-term use in the plants will have to be
established within a lifecycle framework, with follow-up activities to ascertain sustained satisfaction and
confidence with the AI across the HTO readiness levels.
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Demonstration and Evaluation of Explainable and
Trustworthy Predictive Technology for

Condition-based Maintenance

1 INTRODUCTION AND BACKGROUND

Over the years, the domestic nuclear power plant (NPP) fleet has relied on costly, labor-intensive, and
time-consuming preventive maintenance (PM) programs to maintain its structures, systems, and components
(SSCs), thus driving up overall NPP operation and maintenance (O&M) costs to achieve high capacity
factors [ 1 ]. As a part of this PM strategy, the SSCs undergo manual, burdensome, periodic maintenance
checks—such as inspection, testing, calibration, replacement, and refurbishment—irrespective of condition.
However, this well-established and somewhat successful PM strategy is presently challenging the long-term
economic sustainability of NPPs in the current competitive energy market [ 2 ]. But predictive maintenance
(PdM) strategies only recommend that these actions be taken as required by the health condition of the SSCs.
As such, utilizing a PdM strategy in NPPs would automate different aspects of PM strategies and enable
well-informed, proactive decision-making. Trusting in this strategy would also enable NPP operators to
avoid experiencing unplanned downtime or having to derate plant power due to unplanned unavailability of
SSCs during operation, and enable plant operators to optimize maintenance during planned outages. Overall,
the development and deployment of a well-constructed PdM strategy would lower overall maintenance costs
and enable significant efficiency gains without comprising plant safety.

The Technology-Enabled Risk-informed Maintenance Strategy (TERMS) project, funded under the
United States (U.S.) Department of Energy (DOE)–Office of Nuclear Energy’s Light Water Reactor Sus-
tainability (LWRS) Program, is leading a research and development (R&D) activity to develop scalable,
explainable, and trustworthy AI and ML techniques to enable deployment of a PdM strategy. AI and
ML are key technologies that are expected to enable a cost-effective and optimized PdM strategy within
the NPP industry. For this reason, LWRS researchers have developed a federated transfer learning ap-
proach in collaboration with nuclear utilities to address the scalability of AI technologies in achieving a
risk-informed PdM strategy [ 3 ] across plant systems in the overall U.S. nuclear fleet to meet current and
future application-specific requirements [  4 ,  5 ]. The developed scalability approach does not yet address the
deployment of risk-informed PdM strategies and integration with plant legacy systems because explainability
and trustworthiness of AI/ML technologies are still open R&D topics.

An initial technical basis addressing the explainability and trustworthiness for AI technologies using
metrics is presented in [ 6 ]. A discussion on the three primary aspects of AI technologies—performance, ex-
plainability, and trustworthiness—as presented in Figure  1 , with specific metrics, a user-centric visualization
interface, and a human-in-the-loop evaluation to build user-confidence, is presented in [ 7 ]. Specifically, the
information provided in [ 7 ] discusses the trade-off between performance and explainability, takes techniques
to develop training datasets into consideration, and addresses data imbalance concerns. To implement these
three AI technology aspects, an initial version of the VIsualization for PrEdictive maintenance Recommenda-
tion (VIPER)—a copyrighted software owned by Battelle Energy Alliance, LLC—was developed to provide
a user-centric visualization by incorporating input from the collaborating utility, human factors engineering
guidelines, and data scientists. Along with the three aspects of AI technologies, LWRS researchers identified
guiding AI lifecycle technical requirements [ 6 ] and barriers in the nuclear industry to adopting AI technolo-
gies [ 8 ], as shown in Figures  2 and  3 respectively. These barriers emphasize the holistic consideration of
three readiness levels—technology, human, and organization. For details on these barriers, see [ 8 ].
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Figure 1. Aspects of AI technologies essential for decision-making [ 7 ].

Figure 2. Design, develop, deploy, and operate AI/ML technology requirements [ 6 ].

These research efforts [ 6 ,  7 ,  8 ] laid the foundation for the work presented in this report. The primary
objective of this research specifically focused on addressing the explainability and trustworthiness of AI
technologies to advance the human, technical, and organization (HTO) readiness levels in adopting a risk-
informed PdM strategy at commercial NPPs. In addition, this approach can be adapted to enhance the
acceptability of AI in other nuclear applications with a few application-specific modifications. The technical
approach ensuring wider adoption of AI technologies was developed by Idaho National Laboratory (INL)
in collaboration with Public Service Enterprise Group (PSEG), Nuclear, LLC, by utilizing a circulating
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Figure 3. AI adoption barriers in nuclear power [ 8 ].

water system (CWS) at two PSEG-owned plant sites for demonstration. For enhancing the human and
organization readiness by building trust in AI-informed technologies, two focused user studies were performed
in collaboration with subject matter experts (SMEs) from PSEG and other nuclear domains.

The notable contributions developed as a result of these efforts are listed below, and detailed discussions
on each aspect are provided in separate sections later on in the report:

• Advanced the VIPER capabilities to include multiple ML diagnoses, allowing the user to select one or
more pre-trained models to assess the health of the CWS. Also, a hard and soft voting schemes were
implemented to increase the robustness of the VIPER tool.

• Enhanced the human/AI interaction within the VIPER tool by integrating different types of large
language models (LLMs). The performance of these different LLMs were evaluated for different
scenarios.

• Incorporated principles of human-centered AI addressing the deployment considerations related to the
HTO readiness levels.

• Performed user research studies at an event organized by PSEG to understand the trustability, level,
and diversity of information a user would require to trust the recommendations coming from an AI
system such as VIPER. Several of the findings were implemented into VIPER.

• Performed quantitative usability and interface evaluation by interviewing SMEs to enhance the usability
of the VIPER tool.

The rest of the report is organized as follows. Section  2 briefly describes the CWS at two PSEG-owned
NPPs. Section  3 examines the features and capabilities of the VIPER tool in the diagnosis and prognosis of
different fault modes using various ML models. Section  4 provides a discussion regarding the integration
of different LLMs using various textual and visual data types and how those LLMs perform under different
scenarios. Section  5 discusses the user study that was performed to enhance the trustablility of the VIPER
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tool based on human-centered AI principles. Finally, conclusions are drawn and a path forward is presented
in Section  6 .

2 CIRCULATING WATER SYSTEM DESCRIPTION

This section covers the system of interest, its ongoing pain points, and the data being used to diagnose
those issues. The system being monitored is the CWS at a PSEG-owned NPP, which acts as the heat sink
for the main steam turbine and associated auxiliaries at the NPP. The circulating water pump (CWP) in a
CWS has an impact on the plant’s gross load output (i.e., electricity production) as the CWS both conditions
and cools water before returning it, thus maximizing the efficiency of the steam power cycle. The CWS, as
shown in Figure  4 , consists of the following major components:

• Six vertical, motor-driven CWPs or “circulators,” each with an associated trash rack and traveling
screen at the pump intake to remove debris and marine life

• Main condenser (tube side only)

• Condenser waterbox air removal system

• Circulating water sampling system

• Screen wash system

• Necessary piping, valves, and instrumentation/controls to support system operation.

Figure 4. Plant Site 1 Unit 2 CWP combination 21A and 21B.

The CWS data were collected at the PSEG-owned Salem NPP from 2009–2020. During this period,
several types of faults were analyzed, including waterbox fouling (WBF), a diffuser fault, bellmouth failure,
shaft misalignment, air intake clogs, contaminated motor windings, low oil levels, ventilation issues, screen
clogs, and failed motor bearings. These are problems that are not unique to any given NPP. However, WBF
at this particular NPP is one of its most common issues. WBF is primarily due to the intake coming from
a river, which may contain significant quantities of grass, debris, and/or marine life. This fouling can be
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a buildup or blockage within the screens of the CWP. WBF can be removed to restore performance but it
also can be a frequent issue, making it an ideal candidate for online monitoring. The other faults occur
infrequently, in some cases occurring just once during the monitoring period, which makes it difficult to
construct classification models using the supervised learning techniques used in this study.

For monitoring, the CWPs are equipped with several sensors, as depicted in Figure  5 . Recorded signals
include differential temperature (DT), motor current, motor stator temperature, motor inboard bearing (MIB)
temperature, motor outboard bearing (MOB) temperature, and motor axial vibration. Often, faults have
characteristic signatures within these signals that are associated with that particular fault. WBF, for instance,
is typically associated with an increase (or rarely a decrease) in motor current, an increase in inlet pressure
(currently being monitored by hand and not via an online sensor), an increase in DT, and an overall loss in
condenser thermal performance. These symptoms can be used to identify WBF within the CWS. For details
on CWS and relevant data along with WBF details, see [ 3 ].

Figure 5. Schematic representation of a CWP motor with vibration and temperature measurement locations.

3 VISUALIZATION FOR PREDICTIVE MAINTENANCE RECOMMENDATION

One of the goals throughout this project has been to develop a user-friendly application for explaining,
interacting, and visualizing AI and ML outputs for use by maintenance and diagnostics (M&D) engineers
or other users who may not be ML experts. A Battelle Energy Alliance, LLC, copyrighted software called
VIPER (or VIsualization for PrEdictive maintenance Recommendation) is a sophisticated tool that presents
comprehensive system health diagnostics, explainability metrics, and actionable recommendations to enable
informed decision-making through an easy-to-use visualization interface. The diagnostic tab of the VIPER
software uses advanced methods such as Random Forest (RF) and Support Vector Regression (SVR), which
were thoroughly explained in a previous report [ 7 ]. The diagnostics and trend modules are shown in Figures
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 B.1 ,  B.2 , and  B.3 in Appendix B. This section will detail further advancements (e.g., multi-model voting,
model performance, incorporation of log data), as well as any ongoing challenges (e.g., autoencoder, multi-
variable inlier detection) or opportunities for AI and ML outputs. The addition of LLM support to improve
trust in an AI system such as VIPER is another major improvement that will be discussed in more detail in
Section  4 . This can be considered as part of a human-AI teaming or human-AI centered approach.

Prior iterations of VIPER applied one model at a time for diagnosing potential CWS problems. The user
was responsible for selecting which model to use at any given time. In the current version of VIPER, a neural
network (NN) has been added to the diagnosing suite, thus bringing the total number of diagnostic models to
three—RF, SVR, and NN. With this addition, these models can now “vote” on the diagnosis of the system,
thereby enabling a more robust ensemble approach. Each vote (for what fault is present, if any) is counted
and presented to the user. Model voting in this manner can offset biases produced by a singular model if
the other two models are correct, thus adding robustness to the overall system. Four different scenarios are
presented in Figure  6 . Voting in each of these cases is done via “hard voting,” which means that each model
gets one vote and the final diagnosis is the one receiving the most votes. However, “soft voting” is another
potential method that could be used where the model with the highest confidence selects the final diagnosis.
In the four test cases presented, hard voting led to the correct solution three out of four times, while soft
voting would have led to the correct solution in each scenario. This is primarily due to the high confidence
and accuracy of the NN. In these test cases, the NN outperforms the group. If this is always the case, it
would be less computationally expensive to just rely on the NN model rather than by running all of them.
Even so, the presented test scenarios provide a look into what the user may experience during actual use.

In Figure  6 , four test cases are shown with the true diagnosis labeled under each scenario. In Figures  6a 

and  6b , the true diagnoses were healthy and WBF, respectively. In each scenario, the RF and NN models
were extremely confident at 100%, with the SVR model also being correct, but less confident. These cases
would be relatively easy for the M&D engineer to diagnose or verify themselves. Each model has arrived
at the same conclusion, so double-checking the importance of each feature and system state would lead to
a straightforward solution. For Figure  6c , each model predicts a fault exists. However, a discrepancy exists
regarding which kind of fault it is. The RF and NN models have each predicted a diffuser fault, while the
SVR model has predicted WBF. In the “hard” voting system shown, two of the three models agreed it was
a diffuser fault. But, in a “soft” voting system, the RF was 100% confident in a diffuser fault; therefore,
the conclusion would still be a diffuser fault. In this type of split decision, although all models point to a
degraded state, the engineer would still most likely want to investigate the cause. The features and figures in
VIPER allow for easy verification by adding context to the diagnosis.
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(a) True label is Healthy. (b) True label is WBF.

(c) True label is CWP Diffuser Fault. (d) True label is WBF.
Figure 6. Four scenarios were chosen for testing. The caption below each report shows the ground truth,
which is the actual condition of the system.

The description on the following page reveals how an M&D engineer could investigate this discrepancy
by using the VIPER interface. The diagnostic tab of the VIPER interface is shown in Figure  7 .

Figure 7. VIPER diagnostics tab.
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Once VIPER has provided a fault diagnosis, an engineer could open the VIPER explainability tab, as
shown in Figure  8 , which allows for a simultaneous view of the features of importance for each model. As
described previously, the RF and NN models both predicted a diffuser fault with a higher degree of confidence
than the SVR, which predicted a WBF fault. Interestingly enough, the RF and NN models identified different
features of importance as determined by the Local Interpretable Model-agnostic Explanations (LIME). The
magnitudes of importance are only relevant to each respective model and should not be compared between
models. However, both the NN and SVR models deemed DT to be the most important variable.

Figure 8. VIPER explainability tab.

In Figure  9 , DT is shown to be abnormally high with regard to the historical data, which is indicative
of some kind of degradation. It should be noted the DT feature of importance for NN is reading as a “not
CWP diffuser” fault. For clarity, this does not mean it is a healthy reading, just that it may not represent this
specific type of fault. A high DT reading may be indicating WBF, but every other variable is suggesting a
diffuser fault, so the model has returned a “CWP diffuser” fault as the most likely prediction.

The RF model determined MIB temperature to be the most important feature for predicting the CWP
diffuser fault. The total count of each system condition label compared with the MIB temperatures in the
historical data was plotted in Figure  10 . The historical data provides a better understanding of where the
models are drawing their conclusions from. For the RF, if the MIB temperature is between 90.56°F and
107.91°F, then it weighs heavily towards this being a diffuser fault. This is because the diffuser fault curve sits
directly between both bimodal distributions for healthy and WBF fault distributions, respectively. Ultimately,
the ground truth for this system was a CWP diffuser fault, which was correctly determined by both the RF
and NN models with high confidence.

As observed in Figure  6d , there is again a mixed decision in the diagnosis. The true diagnosis was WBF,
and the NN model is both confident and correct in this diagnosis. However, the RF and SVR models both
miss this diagnosis completely, so the hard voting system is mistaken for this scenario. In addition, DT was
deemed to be the highest feature of importance for each model. It is interesting to note that no inliers appear
during these scenarios. Inliers are data points that are adequately described within the training space. If the
test data point is an outlier, then the trained model may be extrapolating to make its prediction, meaning the
confidence should be called into question. This lack of inliers may be coincidental in these test cases, but it
also may be due to the number of variables making it an exceptionally complex space, and therefore, more
easily defining it as an “outlier.”
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Figure 9. Kernel density estimate showing the current value of DT is abnormally high when compared with
the historical data.

Figure 10. Total count of each condition label compared with MIB temperatures in the historical data.

The method for choosing an outlier was an isolation tree. An isolation tree is reminiscent of a decision
tree because it splits sub-samples of the data at random to come to a given conclusion. The isolation tree
also may have overfit the training dataset due to the imbalance of training data (i.e., an excess of healthy
data, a moderate amount of WBF data, and very few CWP diffuser fault data points). Other methods may
need to be investigated to overcome this problem.

An autoencoder was also trained as an unsupervised technique for detecting faults or other anomalies.
This autoencoder consists of two major components: (1) the encoder, which downsamples the information,
and (2) the decoder, which reconstructs the original information. The encoder essentially reduces the order
of the input data. When using a linear transformation, this encoding will be identical to principal component
analysis (PCA). Much like other feature reduction techniques, the goal is to remove noise and other potential
sources of overfitting and to focus on the salient information from the input dataset. The decoder then takes
this reduced dataset and attempts to recreate the original input. For scenarios that the decoder has trained on,
it will have a reasonable mean square error (MSE) when comparing the original input and the reconstructed
output. For scenarios that are outside the training data, the MSE will be much larger. This feature can be
exploited for anomaly detection purposes.
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While the prior supervised-learning models (i.e., SVR, RF, and NN) were trained on datasets containing
“healthy,” “waterbox fouling,” and a specific “diffuser fault,” the autoencoder was trained on solely “healthy”
data. The idea was to have the model recognize “healthy” conditions, while conditions outside the training
data (e.g., WBF and diffuser fault) would flag as anomalies. The model was trained and the reconstruction
MSE for the healthy training data can be seen in Figure  11a . The threshold to flag for anomalies was placed
at the highest calculated MSE within the healthy dataset. This anomaly threshold may be reduced with
further preprocessing and outlier removal techniques. The autoencoder was used to detect WBF instances,
as seen in Figure  11b , with moderately successful results. However, the autoencoder was unable to detect
any instances of the diffuser fault; thus, the need for creating more sensitive and specific models remains.
The same anomaly threshold was used in all cases.

(a) Training - only healthy data. (b) Test - WBF data.
Figure 11. Autoencoders were trained on healthy data. This should theoretically make it more difficult for it
to recreate abnormal data (e.g., WBF, thus enabling it to be flagged as an anomaly).

4 INTEGRATION OF LARGE LANGUAGE MODELS IN VIPER

This section describes the use of a multimodal LLM as an explainable and trustworthy predictive
technology supporting condition-based maintenance. Specifically, the LLM is used as a chatbot for explaining
use cases—analyzing text, numerical, and visual results as a part of a diagnosis and prognosis system—
and enhancing the communication of domain-specific knowledge to operators/users who have concerns in
interpreting PdM recommendations from an AI system. This section also describes a technical language
generation (TLG) framework that leverages multimodal LLM approaches, computational tools, factual
evaluation methods, and maintenance-related text, numerical, and image data to generate a response with
domain-specific details that aid in establishing trust between the user and the AI system. Figure  12 shows
a TLG diagram with six elements. The workflow is adopted from the technical language processing (TLP)
framework [ 9 ] and focuses on specifically using domain-specific textual data to tailor natural language
processing (NLP) tools to engineering data. The proposed TLG framework, as shown in Figure  12 , aims
to extract relevant engineering knowledge from multimodal resources—including text and visual, using
pre-trained language models, and vision language model (VLM)s, computational tools—and perform factual
evaluation.
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Figure 12. TLG framework.

4.1 Data and Use Cases

Engineering use cases are explicitly considered as inputs along with raw text, numerical content, and
image data. The engineering use cases should include descriptions of diagnosis and prognosis tasks,
available data, technical approaches, historical use cases, and results. This work focuses on enhancing the
explainability of diagnosis results from ML algorithms for identifying various CWS faults in NPPs, including
WBF, CWP diffuser faults, etc. The ML diagnosis results are generated by the VIPER [ 7 ] software, which
is used to perform the computation of data and present the user with a diverse set of information, such as
diagnosis, prognosis, trends, and explainability metrics, as explained in Section  3 . This raw text data includes
background information and maintenance records during routine inspections. In the context of CWS fault
detection, this includes the documentation of PdM methodologies, descriptions of NPP systems and sensor
configurations, and inspection reports.

Raw text can be processed using NLP and LLM techniques to extract key insights, identify patterns,
and even predict future failures based on historical trends. This content helps contextualize plant data and
plays a crucial role in generating a comprehensive explanation of the system’s status for operators. The
numerical information includes historical and real-time sensor data for temperatures, pressures, flow rates,
etc., which can be collected online or in real-time from plant process computers. Numerical data may also
include periodic measurements for certain SSCs. Advanced statistical methods and ML models can be used
to analyze the numerical data to detect deviations from the expected performance range, which may indicate
CWP fouling, wear, and failure. Models trained on this data are capable of providing real-time prognostic
insights, allowing operators to act before faults lead to system downtime. The image data includes figures
from technical reports, still images, or videos captured via manual or robotic inspections that can be processed
through computer vision techniques—including convolutional neural networks and vision transformers—to
detect system configurations and structural anomalies that may not be immediately apparent through text or
numerical data alone. In addition to processing each type of data separately, the multimodal approach allows
for a more holistic and accurate diagnosis of system faults by leveraging multiple types and sources of data
simultaneously. For instance, a multimodal LLM can combine the layout images of the CWS—including
the components and connections among them—in NPPs with system descriptions in text, as extracted from
technical reports, for a more accurate and comprehensive comparison of the CWSs at different NPP sites.
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In this work, the explainability enhancement for CWS diagnosis and prognosis tasks is achieved by
retrieving the relevant context from the text and images in a technical report, incorporating them into the
response generation process, and providing accurate answers with sufficient technical details in response to
operators/users queries using natural languages. In addition, the multimodal approach is tested and compared
against the single-modality approach.

4.2 Mutimodal Resources

The multimodal resources in this work primarily refer to the pre-trained and fine-tuned language models
using transformer architectures [ 10 ], including different open-source LLMs capable of processing and
generating human-like text by understanding the context, structure, and meaning in a large set of data. Their
primary potential in enhancing the explainability of ML-based diagnoses lies in their ability to generate
natural language explanations for complex, data-driven outcomes. In diagnostic scenarios for the CWS in
NPPs, LLMs can explain the causes of the various consequences of CWS faults, interpret results from the
ML models—such as anomaly detection algorithms—and translate them into understandable and actionable
insights for operators.

VLMs are powerful AI systems that combine visual and textual data-processing capabilities, enabling
them to understand and interpret images alongside the associated natural language. Their potential in
enhancing the explainability of ML-based diagnosis is significant in fields like PdM, where image data (e.g.,
thermal scans, visual inspections) plays a crucial role in fault detection. VLMs can be integrated with
pre-trained LLMs to enable multimodal understanding and interactions as well. In this case, the image or
visual inputs are encoded into feature vectors, which are further projected into the same latent space as the
text embeddings of pre-trained LLMs. Meanwhile, fusion techniques, like cross-attention layers, can be
used to allow the pre-trained LLMs to engage both text tokens and visual features such that the VLMs are
able to make connections between what is “seen“ in the image and what is “understood“ in the text. In the
diagnosis scenario for CWSs in NPPs, the VLMs can be used to describe and compare the layout of CWSs
in different NPP sites. The VLMs also can be used to explain the diagnosis tab of VIPER software, which
includes the diagnosis results, Autoregressive Integrated Moving Average (ARIMA) predictions, plots for
comparing variables, feature importance from ML models, and the historical context. Table  1 lists all the
open-source language models currently being investigated in this work.

Table 1. List of the open-source multimodal resources investigated in this work.
Model Name Model Type Model Backbone Reference

Large language model at Meta 2
(llama2) LLM Transformer [ 11 ]

Mistral LLM Transformer [ 12 ]
Generative representational
instruction tuning (GRIT) LLM Mistral-7B [ 13 ]

Large language and vision assistant
(llava) VLM Mistral-7B [ 14 ]

MiniCPM VLM llama3 [ 15 ]
Cognitive visual language model
(CogVLM) VLM Vicuna-7B [ 16 ]

CogVLM2 VLM llama3 [ 16 ]
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4.3 Evaluation

An evaluation focuses on ensuring the quality, accuracy, and reliability of generated outputs from multi-
models. In the CWS diagnosis use cases, the evaluation determines how well the system-generated responses
align with the operational needs and technical accuracy required for explaining the diagnosis results from the
ML algorithms. Specifically, the evaluation should determine if the overall responses from the multimodal
resources are relevant to the user’s queries and domain-specific contexts. Human-in-the-loop assessments
are often necessary, where SMEs will review the generated reports or explanations to verify that the outputs
of the system align with real-world expectations and protocols. However, such evaluation tasks can become
increasingly challenging and time-consuming, especially when dealing with long-text generation. To address
this, automatic fact-checking methods like factscore are essential. Factscore methods are designed to evaluate
the factual accuracy of long-text outputs by comparing the generated content against a trusted knowledge
base or ground truth data. These methods systematically assess whether each atomic fact or claim within
the generated text is supported by verifiable data. Atomic facts refer to the smallest units of information or
claims that can be independently verified as true or false. These are often simple statements or assertions
within a generated text that express a clear, distinct fact. In the diagnosis use case for the CWS, the factscore
methods break both the long-text generation from multimodal LLMs and relevant contexts from the technical
reports [ 17 ] into several atomic facts. For example, in a technical report, an atomic fact can be “PdM relies
on expected life statistics,” while an atomic fact from LLM generation can be “PdM uses data analysis.”
The relationship between generation and reference atomic facts is evaluated by a different LLM [  18 ] named
factual precision in atomicity score (FActScore) and an ML model [ 19 ] named Wikipedia Citation Entailment
(WiCE). As noted by the example above, the atomic fact extracted from LLM generations is supported by
the fact extracted from the reference text. Figure  13 shows a scheme of factual evaluations using FActScore
and WiCE factscore.

Figure 13. Scheme of factual evaluations using factscore methods.

A numerical result also can be obtained by counting the ratio of generation atomic facts that are supported
by reference atomic facts. Equation  1 shows the numerical factscore, where Ay is the set of generation atomic
facts with a as a specific atomic fact. I|a is supported| counts the total number of generation atomic facts
that are supported by reference atomic facts. Based on this equation, the numerical factscore is 0.5 for the
example in Figure  13 .
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f actscore = 1/|Ay| ∑
a∈Ay

I|a is supported| . (1)

4.4 Computational Tools

The objective of computational tools is to enhance the performance of multimodal generations by
incorporating relevant information into the response generation process. One example of this type of tool
is retrieval-augmented generation (RAG), which retrieves relevant documents or data from an external
knowledge base to supplement LLM responses. Table  2 lists name, backbone, and references of the three
RAG tools investigated in this work. A typical RAG approach can be defined from the following two aspects:

• Preprocessing. Any combination of natural language-based documents can be used as the corpus for
the RAG pipeline. However, before documents can be used by the deep passage retriever, they must
be split into chunks capable of fitting into the context window of the downstream LLM. For academic
papers and other standard format natural language documents, the text is split into approximately
three-sentence chunks. For non-standard format documents, such as work orders, all the fields
from a notification are concatenated into a single work order document, while individual work order
documents are kept as separate chunks. Each chunk is embedded by the deep passage retriever, and
used in RAG during inference.

• RAG Methods. For most of the demonstrations in this work, a model is developed to search for relevant
context from a pre-processed document. Next, the retrieved context is concatenated with the user’s
queries for the LLM text generation. This work investigates dense passage retrieval (DPR), ColBERT,
and Generative Representational Instruction Tuning (GRIT) as the RAG architecture [ 13 ,  20 ,  16 ]. DPR
is a deep-learning-based retrieval method used for finding relevant documents or passages in large
datasets using dense vector representations of both queries and passages. During the search process,
both the user’s query and the chunks of text from the corpus are embedded into the latent space. The
cosine similarity is calculated between the user query embedding and the corpus embedding, and
the top-k passages with the highest similarity score to the user query are selected and passed to the
LLM as part of the prompt. Different from DPR, ColBERT introduces a late interaction mechanism
that independently encodes the query and the document using BERT and then employs a re-trained
interaction step for modeling their fine-grained similarities. GRIT is a method that combines the
training of both generative and representational tasks in LLM using instruction-based fine-tuning.

Table 2. List of RAG methods used in this work.
Model name Model backbone Reference

DPR BERT [ 16 ]
GRIT Mistral-7B [ 13 ]
ColBERT BERT [ 20 ]

4.5 TLG Resources

Specialized TLG resources and data are critical for ensuring the production of accurate, transparent, and
reproducible outputs in highly technical domains like PdM. Compared to raw numerical, image, and text
data, these specialized TLG resources are of higher quality, containing curated, domain-specific information
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that enforces precision and reliability in language generation. Examples of such resources include work
orders, which document detailed maintenance actions and decisions; annotated technical reports, which
provide structured and expert-reviewed descriptions of system conditions and issues; and standard question
and answer (Q&A) tests, which are designed to assess model performance against established industry
benchmarks. For accuracy, specialized TLG resources, such as annotated technical reports or detailed work
orders, provide models with validated and expert-reviewed information, reducing the risk of incorrect or in-
complete outputs. These resources reflect real-world conditions and actions, ensuring the generated language
closely aligns with actual operational and maintenance scenarios. In the context of CWS diagnosis, a work
order with specific CWS fault descriptions and repair actions helps the model generate precise explanations
of the issue and the required maintenance steps. For transparency, resources like standard Q&A tests and
documented technical guidelines offer clear, traceable paths between input data and generated outputs. These
resources can be used to explain how a model arrived at a particular conclusion or recommendation, offering
transparency in the decision-making process. Annotated datasets also make it possible to trace the reasoning
behind predictions, as each step is grounded in verifiable information. The specialized TLG resources can
also improve the reproducibility as the specialized datasets allow consistent generation of outputs across
different scenarios or instances of use. Because these resources are standardized (e.g., work orders follow a
uniform format, technical reports are annotated according to fixed criteria), they ensure the same inputs lead
to the same or similar outputs across various generations. This is key for validation and auditing purposes,
where consistency and reproducibility are essential for regulatory compliance and operational integrity in
environments like NPPs.

The proposed framework is advancing the state-of-the-art in building an explainable and trustworthy
AI-based PdM strategy. The first contribution is in extracting useful information from unstructured and
multimodal maintenance data via deep-learning methods, specifically the language models. Classical NLP
has primarily focused on transforming unstructured text into structured formats, which are limited by the
level of “cleanliness” in the text and the availability of supporting structures, such as dictionaries or word
family trees [ 21 ]. Moreover, state-of-the-art NLP systems face challenges in generalizing beyond the training
context [  9 ] due to variations in maintenance textual data, like jargon, abbreviations, specialized terminology,
and limited data. Meanwhile, the landscape of text-based deep learning is rapidly growing and changing.
LLMs have been cited as efficient meta-learners that can be adapted easily to a wide range of downstream
tasks without explicit supervision [ 22 ]. Moreover, contextual embedding is generated for the query at
inference time, which provides LLM fast “in-context” learning through a few input-output examples.

In addition to the generalization capabilities, the proposed framework utilizes different types and sources
of data due to the potential synergies that exist among the different modalities. Synergy refers to the unique
and supplementary information that different modalities from visual, numerical, and text data may bring to
the table, which could be key to building a more comprehensive understanding of the data. By introducing
complementary information from the multimodal data, the proposed framework could enhance the TLG
accuracy and bring insights that potentially could be overlooked otherwise.

Despite the generalization and multimodal capabilities, most language models—including those listed
in Table  1 —can hallucinate and generate out of context answers to the provided source content [ 23 ].
Hallucinations can be caused by biases and divergences in training data, imperfect learning, and decoding.
It is also argued in [  24 ] that hallucination is inevitable because of the gaps between computable functions
created in LLMs and the real world: on one hand, it is impossible for LLMs to learn all computable functions;
but on the other, the formal world represented by computable functions is only part of the real world, which
is more complicated. Meanwhile, due to the probabilistic nature of text generation by LLMs—where the
next word is chosen from a distribution of possible words—the inherent randomness could also result in
hallucinations. Hallucination becomes an essential topic when LLM is used in domain-specific generation
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tasks, where high reliability is required.

To mitigate these hallucinations, one common technique is to introduce relevant context along with a
query, which could substantially reduce the hallucinations in conversations without sacrificing conversational
ability [ 25 ]. As a result, the capability of automatically retrieving and incorporating relevant and accurate con-
text from the data and TLG resources is critical to the reliable use of TLG frameworks. Table  3 shows examples
where a LLM was asked to describe what the CWS is, and what the components of CWS are, based on “no,”
“wrong,” and “correct” context, respectively. With no context included in the prompt, the LLM responds to a
user’s query based on its pre-trained knowledge base. To assess the impmact of including incorrect contextual
information in the prompt, different technology descriptions with the same acronym (such as criticality warn-
ing system [ 26 ]) are incorporated into the prompt queries. To incorporate correct contextual information in the
prompt, paragraphs from technical reports for CWS diagnosis are incorporated. Generations with correct con-
text have the most relevant answers, while incorrect context leads to completely biased generations. Only key-
words from LLM generations are shown, while the full generation and context (input-output examples) for all
cases are provided in Table  A.1 in Appendix A. Note that green shaded text indicates relevant generations ,
while red shaded text indicates irrelevant and hallucinated generations . Text with no shade is a neutral
statement.

Table 3. LLM generations summary with no, wrong, and correct context information as in the Q&A example.
Prompt Query: What is a CWS in an NPP and what are its major components?
LLM Responses:
No Context Wrong Context Correct Context
A CWS, or Condensate Water System ,
is part of the secondary circuit in an
NPP. The primary purpose of the CWS
is to remove heat from the primary
coolant system and condense it into wa-
ter. The condensate water is then cooled
and returned to the primary system to be
reheated and used again. Major compo-
nents of a CWS include:
1. Condensers : . . .
2. Pumps : . . .

3. Heat Exchangers : . . .

4. Valves : . . .
5. Instrumentation and Control : ...
6. Cooling Towers : ...

7. Tanks and Pipes : . . .

8. Relief Devices : ...
9. Isolation Valves : ...
10. Injection Systems : ...

A Criticality Warning System (CWS)
in an NPP is a system designed to detect
and warn operators about potential
criticality incidents. The primary
function of a CWS is to rapidly detect
a criticality accident and activate an
alarm system to alert operators and
initiate an evacuation plan. Major
components of a CWS include:
1. Criticality detectors : . . .

2. Attenuation monitors : ...
3. Data acquisition and processing
system : ...

4. Alarm system : . . .

5. Operator interface : . . .

6. Maintenance and calibration
procedures : . . .

7. Emergency planning and training :
...

A Circulating Water System (CWS)
in an NPP is a vital non-safety-related
system. It serves as the heat sink for
the main steam turbine and associ-
ated auxiliaries, helping to maximize
steam power cycle efficiency while
minimizing any adverse impacts on the
environment. The CWS consists of
several major components:
1. Vertical, motor-driven circulating

pumps (i.e., “circulators”) , each with

an associated fixed trash rack and
traveling screen at the pump intake to

filter out debris and marine life.
2. Main condenser (tube side only).
3. Condenser waterbox air removal
system.
4. Circulating water sampling system .

5. Screen wash system .

6. Necessary piping, valves, and

instrumentation/controls to support
system operation.

The proposed framework is demonstrated in five case studies:

1. LLMs are used to answer general questions about PdM. The objective is to select the best open-source
LLM, retrieval, and factual evaluation methods.

2. The selected LLM (GRITLM) and RAG (GRIT) are used to identify the causes and resolutions of two
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CWS failures based on the relevant information from work orders from the Salem and Hope Creek
NPPs.

3. Various VLM methods are used to describe the CWS layout. The objective is to select the best
open-source VLM models.

4. VLMs are used to describe the differences in CWSs between the Salem and Hope Creek NPPs.
Moreover, the accuracy of the LLM generations are compared. The goal is to demonstrate the benefits
and limitations of the multimodal approaches:

– Text from technical reports about CWS are used.
– VLM-generated descriptions for images from the technical reports are used.
– Both text and VLM-generated descriptions are used.

5. The selected VLM (CogVLM2) is used to explain the diagnosis results from VIPER. The goal is to
demonstrate the chatbot can be used to enhance the trustworthiness and explainability of AI-based
PdM strategy.

4.6 Demonstration 1: LLM for Explaining Predictive Maintenance

The objective of this demonstration is to evaluate the performance of LLMs, computational tools, and
factual evaluation methods. Common questions about PdM are asked:

1. What is PdM? This question tests a model’s ability to provide a clear, technical definition of PdM, and
assesses how well it can explain complex concepts in simple terms.

2. Why is PdM important? This focuses on the benefits and use cases, requiring the model to elaborate
on why PdM matters in various operational contexts, showcasing its reasoning and understanding of
the concept of PdM.

3. What are the main components of PdM? A detailed explanation of key components (e.g., sensors, data
analytics, ML models) assesses the model’s knowledge depth.

4. What is model-based condition monitoring? This question delves into specific methodologies within
PdM, testing the model’s ability to explain advanced topics in PdM.

5. What industries use PdM? The model needs to provide a list of industries, such as manufacturing,
energy, or transportation, demonstrating retrieval or domain-specific knowledge and showing how
PdM applies across sectors.

In the TLG workflow, evaluation methods play critical roles in determining performance and selecting the
appropriate multimodal resources and computational tools. Such evaluations are not trivial especially when
the generations are of long-form text with a large number of pieces of information that are a mixture of true
or false [ 18 ,  27 ]. To reduce efforts and costs in validating every piece of information, this work starts from
identifying appropriate factual evaluation methods for computing the percentage of atomic facts extracted
from a long-text LLM generation that can be supported by a reliable knowledge source (see Equation  1 ).

Following these computations, factscore results are compared against user evaluations for consistency.
For each generated atomic fact, the user labels are compared against the LLM and WiCE entailment results.
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Figures  14a and  14b show the confusion matrix. Note that cases with “Not Entailed” can be contradictory,
irrelevant, or unable to be judged. This work combines these labels to make the factscore results binary.
Factscore precision rates in determining entailed atomic facts are 0.73 and 0.77 for LLM and WiCE,
respectively. Recalls are 0.83 and 0.96 for LLM and WiCE, respectively. As a result, WiCE results are more
accurate than the LLMs and will be used as the primary evaluation method for long-text generations.

(a) LLM for entailment. (b) WiCE for entailment.
Figure 14. Confusion matrix based on factscore and human evaluations.

To further test and select the different LLM and retrieval methods, as listed in Table  1 and  2 , this work
uses FActScore and WiCE to evaluate the different combinations of LLM and retrieval methods listed in
Table  1 . Figure  15 shows the WiCE factscore results, and GRIT has the highest score as both the LLM and
the retrieval tool.

Figure 15. WiCE factscore results with different LLM (y axis) vs. RAG methods (x axis).
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4.7 Demonstration 2: LLM for Explaining Failures Based on Work Orders

Using GRIT and GRITLM as the retriever and LLM, respectively, this demonstration shows their
capabilities in answering questions about various CWS failures based on relevant information from the
work order. Tables  4 and  5 summarize two questions and answers based on the retrieved passages from
the work order document. Keywords in Tables  4 and  5 (highlighted in green) for the LLM generation are
directly supported by contents from the work order. Overall, the GRIT retriever can accurately extract

relevant passages from technical documents. These passages can then be used by the LLM to provide
reliable generations with references to specific work orders.

Table 4. Demonstration of a LLM answering inverter drive failure mode questions based on the work order.
Keywords are directly supported by contents from the work order.

Prompt query: What happens if an inverter drive fails in a TWS unit?
Answer: If an inverter drive fails in a TWS unit, it can cause a loss of 5V output for various components, such as

PS24-1, 1LPSA, 1LPS-1, 1LPS-9, 1LPS24-3, and 1LPS3. This can result in no UPS backup, which can have adverse

physical conditions. To resolve this issue, the inverter drive should be replaced in the SCADA system .
Retrieved relevant work order:
CreatedOn: 2018-XX-XX 00:00:00
Notification: XXXXXX
OrderNum: XXXXXX
ShortText: inverter 1 no output w/DC input
FLOC: XXXXXX
FLOCDescription: UNIT 1 CW RELAY ROOM SCADA PROCESSOR PAN
LongText: * **************Long Text Object Identification**************
* Notification XXXXXXX Long text
* ***********************************************************
* XX/XX/2018 XX:XX:XX EST NUCLEARNOT (NUCLEARNOT)
* Notification submitted by: XXXXXX XXXXX/XXXXX:
* CONDITION DESCRIPTION/LOCATION (THE INAPPROPRIATE ACTION AND ITS NEGATIVE EFFECT/IN-
CLUDE A DETAILED LOCATION DESCRIPTION):
* While doing yard work, AC input to inverter 1 in SCADA cabinet XXXXXX was shut down
This caused PS24-1, 1LPSA, 1LPS-1, 1LPS-9, 1LPS24-3, AND 1LPS3 TO HAVE NO 5V OUTPUT . Found that

INV-1 in XXXXXX has no AC output. INV-1 HAS DC INPUT which should have given an AC output.
* ACTIVITIES, PROCESSES, PROCEDURES INVOLVED:
* SCADA WORK
* WHY DID CONDITION HAPPEN?
* INV-1 BROKEN
* CONSEQUENCES:* NO UPS BACKUP
* REQUIREMENTS IMPACTED:
* UNKNOWN
* ADVERSE PHYSICAL CONDITIONS:
* NO UPS BACKUP
* WHO WAS NOTIFIED:
* SUPERVISION
* KNOWLEDGEABLE INDIVIDUALS:
* ELECTRICAL
* REPEAT OR SIMILAR CONDITION:
* IMMEDIATE ACTIONS AND RECOMMENDED ACTIONS:* REPLACE INV-1 IN SCADA SYSTEM
* XX-XX-2018 XX:XX:XX EST XXXXXXXX (XXXXX)
* Note:
* Allocate to XXXXXX and work with power supply replacement. ObjType: XXXX
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Table 5. Demonstration of LLM answering fish into track racks questions based on the work order. Keywords
are directly supported by contents from the work order.

Prompt query: A fish got into the trash racks, do I need to report this?
Answer: Based on the information provided in the text, it appears that the
Atlantic Sturgeon is not endangered and therefore not reportable . However, it is important to note that the text

only provides information up to 2011 , and there may be new regulations or guidelines in place that could affect the
reporting requirements. If you are unsure about the current reporting requirements, it is recommended to consult with
your supervisor or the appropriate authorities.
Retrieved relevant work order:
Passage 0: CreatedOn: 2010 -XX-XX XX:XX:XX
Notification: XXXXX
OrderNum: nan
ShortText: Atlantic Sturgeon @ S1 CW Trash Rack
FLOC: S1CW
FLOCDescription: CIRCULATING WATER (SALEM)
LongText: * XX/XX/XXXX XX:XX:XX XXXXXXXX (XXXXXX)
* Reviewed by environmental licensing (XXX & XXXX) determined this is not endangered and therefore not reportable .
ObjType: XXXX
Passage 1:
CreatedOn: 2010 -XX-XX XX:XX:XX
Notification: XXXXXX
OrderNum: nan
ShortText: Atlantic Sturgeon @ S1 CW Trash Rack
FLOC: S1CW
FLOCDescription: CIRCULATING WATER (SALEM)
LongText: * XX/XX/XXXX XX:XX:XX XXXXXX (XXXX)
* Atlantic Sturgeon is not endangered and therefore not reportable .
ObjType: XXXX
Passage 2:
CreatedOn: 2011 -XX-XX XX:XX:XX
Notification: XXXXXX
OrderNum: XXXXXX
ShortText: NRC 4 HR REPORT DUE TO DECEASED ENDANGER
FLOC: S1CW
FLOCDescription: CIRCULATING WATER (SALEM)
LongText: * XX/XX/2011 XX:XX:XX XXXXXXXX (XXXXX)
* Plant operating, circulators in service, dead or damaged fish can become impinged on trash rack and recovered.
ObjType: XXXX
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4.8 Demonstration 3: VLM for Describing CWS Layout in Salem and Hope
Creek NPPs

This use case evaluates the capabilities of various open-source VLMs, as listed in Table  1 , in describing
images with components and connections in a CWS. Four images, as shown in Figure  16 , are extracted
from a previous report [ 17 ]. Note that the original captions are included for each image. The same queries
of, “Explain this image including all labelled components,” and, “Explain the connections between labelled
components indicated by pipes and orange arrows,” are asked of all VLMs, and the generations are evaluated
by human and WiCE metrics. The objective is to identify the best VLMs for TLG workflow.

(a) Salem Unit 1 CWS. (b) Salem Unit 2 CWS.

(c) Salem Unit 1, a pair of CWPs. (d) Hope Creek NPP CWS.
Figure 16. Images of the CWS layout extracted from [ 17 ] for evaluating VLM performance.

Table  6 summarizes the performance of VLMs in describing the four images in Figure  16 . The human
evaluation results include the number of correctly identified components and connections, and whether
the generated responses contain hallucinated and non-existing components. The generated responses and
detailed evaluation results are included in Appendix A. The numerical results from the original assessment are
transferred into boolean grades. The generation is considered “True” if human evaluation scores are higher
than 0.5, indicating that at least half of the components and connections are correctly captured. MiniCPM
and CogVLM2 have the best performance with human evaluations as “True” for all figures. LLaVa-1.5 and
CogVLM make mistakes in describing the layout of the Salem NPP CWS. For each image description in
Figure  16 , Table  6 also lists the WiCE factscores, which consider generations as “True” if the factscore is
higher than 0.4. The accuracy of the WiCE factscore versus the human evaluation is 0.69, the precision is
0.91, and the recall rate is 0.71. This indicates that factscore methods are good at evaluating if each piece of
information in a generation is factually supported by a reliable source of knowledge but not the coverage of
information in a generation, which is consistent with the findings in the original factscore paper [ 18 ].
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Table 6. Evaluation results of the VLMs in describing the four images in Figure  16 .
Figure  16a Figure  16b Figure  16c Figure  16d 

VLM WiCE Human WiCE Human WiCE Human WiCE Human
LLaVa-1.5 True False True True True True True True
MiniCPM True True True True False True False True
CogVLM True True False False True True True True
CogVLM2 True True False True True True False True

4.9 Demonstration 4: Multimodal Approach for TLGs

This work demonstrates the efficacy of combinations of different modeling approaches in describing
differences in the CWSs of the Salem and Hope Creek NPPs. By comparing LLM generations against
the reference answers, this demonstration brings insights in benefits and limitations of different modeling
approaches. Specifically, the llama LLM is asked to:

• Describe the differences in screens for the Salem and Hope Creek CWS

• Describe the differences in water sources for the Salem and Hope Creek CWS

• Describe the differences in how the circulators are connected with the waterbox between the Salem
and Hope Creek CWS.

To help the LLM accurately answer these questions, example answers responding to the query “Describe
the CWS in Salem and Hope Creek nuclear power plants” are provided to the LLM, where example answers
are extracted from the text alone, the image alone, and the text and images combined:

1. The text-only content shaded in yellow in Figure  16 is the content extracted from a paragraph of the
technical report and used as the answer to the example query.

2. Only the image descriptions shown in Figure  16 that are figure labels shaded in red are extracted by
VLMs and used as an answer to the example query.

3. Image descriptions, extracted by VLMs, are appended to text at the corresponding positions and used
as the answer to the example query. Reference answers are shaded in green .

In addition to the human evaluations, the WiCE factscore is calculated based on the reference answers.
Table  7 summarizes the performance of the three modeling approaches.

In Case 1 concerning the CWS screens, descriptive information from the images greatly improves the
generation accuracy because travelling screens in the Salem NPP are only mentioned in the image. In Case
2 concerning the water source, the fact that the Hope Creek NPP uses a cooling tower basin as a water intake
can only be extracted by CogVLM2 from the images. In Case 3, none of the VLMs can recognize from
the image that the Hope Creek NPP uses a common header for water feeding from the four circulators, and
multimodal approaches provide limited improvements to the generation accuracy. Although the multimodal
approaches provide access to more information, the quality of such information depends heavily on the VLM
capabilities, which further affect generation accuracy.
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Figure 17. Context information extracted from report [ 17 ]. The LLM is asked to describe the differences
between the CWSs in the Salem and Hope Creek NPPs. Yellow shaded text is text-only context, figure labels
are shaded in red and shown in Figure  16 , and the reference answers are shaded in green.

Table 7. Evaluation results of different modeling approaches in describing differences in a CWS.
Modeling Approaches Human

Evaluation WiCE

Case 1: Differences in screen
Text llama2 False False

Image Description MiniCPM False False
CogVLM2 True True

Text and Image
Combined

MiniCPM + llama2 True True
CogVLM2 + llama2 True True

Case 2: Differences in water sources
Text llama2 False True

Image Description MiniCPM False True
CogVLM2 True True

Text and Image
Combined

MiniCPM + llama2 False True
CogVLM2 + llama2 True True

Case 3: Differences in circulator connections
Text llama2 False True

Image Description MiniCPM False False
CogVLM2 False False

Text and Image
Combined

MiniCPM + llama2 False False
CogVLM2 + llama2 False False

23



In addition, the WiCE results show a reasonable consistency with the human evaluations. The accuracy
is 0.70, the recall rate is 0.71, and the precision is 0.45. The precision is lower than Demonstration 3 because
the reference answer is much shorter, therefore, the corresponding atomic facts extracted from the reference
are fewer. As a result, most of the atomic facts from the LLM generations are found “not supported” by the
limited number of reference atomic facts. The false positive rates are higher and precision becomes lower
than Demonstration 3.

4.10 Demonstration 5: VLM for Describing Diagnosis Results and VIPER
Software Interface

After the screening analysis, llama2, CogVLM2, and WiCE factscore were selected and incorporated
into VIPER. Figure  18 shows the VIPER help tab interface design where four major areas are explained as
follows:

1. Input block for name and path to the reference data. The reference data will be used to improve the
accuracy of the LLM generations by providing Q&A examples and generating reference atomic facts.

2. Input block for name and path of image. The image will be analyzed and described by VLM.

3. User’s queries and responses will be shown in the conversation block. The color represents relative
confidence based on the WiCE factscore. Green means sentences are entailed by the reference data,
while darker green indicates stronger supports. Yellow reflects the sentence has a neutral relationship
with the reference data, and no color shading means the sentence contradicts the reference data.

4. Query input block for entering user questions.

Table  8 shows a sample of the VLM generation output for describing the VIPER diagnosis tab, as
indicated in Figure  19 . In the first generation, all areas except Area 5, “Variable Selection Panel,” are
correctly described by the VLM. For Area 1, the VLM recognizes the dropdown menu for selecting the
dataset, and that the current data is “Data4.” It also recognizes the use of RF with the correct full names
as the diagnostic model. For Area 2, the VLM correctly recognizes the values and units of variables listed,
including “DT,” “Motor Current,” “MOB Temp,” “Stator Temp,” and “Gross Load.” A letter “I” is missing
in explaining “MIB Temp.” In Area 3, the ML outputs, diagnosis, and confidence from the diagnosis model
and inlier/outlier detections are correctly captured. The ARIMA prediction plot is correctly identified with
correct x and y labels in Area 4. Because of missing legends, the predicted parameters in green, current
instance in orange, and confidence interval in grey are not identified. Area 5 is not captured, and the VLM
description is for Area 6. In the “Comparing Multiple Variables” plot, the orange line with the DT label is
identified, the legend for the blue line is missing because of the missing legend. The “Historical Context
for DT” plot is correctly captured but wrongly labeled as Area 6. Although VLM recognizes the peak of
a variable, it wrongly suggests that the peak is around 12, when the actual peak value should be around
14. It also misses the orange line, which indicates the current data instance, due to the missing legends. A
hallucinated Area 7, “Additional Information Panel,” is generated because of the missing Area 5. Overall,
the selected VLM, CogVLM2, can reasonably explain the diagnosis tab with sufficient details.

In the follow-up question for additional details about the historical context figure, VLM further explains
the scales of the x and y axes, distribution shape, central values, and interpretations. However, the orange
line and its comparison against the historical distribution are still missing. The full VLM generation for
explaining Area 6, “Historical Context Graph,” can be found in Table  A.7 in Appendix A.
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Figure 18. Screenshot of the VIPER help tab with the LLM and VLM generation. Shaded colors represent
the confidence ratings from the WiCE factscore.

Figure 19. Screenshot showing the primary diagnosis tab in VIPER.
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Table 8. VLM generations for VIPER diagnosis tab with a follow-up question about historical context plot.
Prompt query: Describe all 7 numbered areas in this image with plenty of details.
Answer:

1. **Dataset Selection Panel**: On the left side, there’s a panel titled “Which Dataset to Use” with a dropdown
menu for selecting a dataset. The dataset selected is “Data4.” Below the dropdown, there are options to select the
“Type of Diagnostic Model” with “Random Forest (RF)” currently chosen. There are also checkboxes for
“Compare Explain,” “Compare,” and “Which Explanation Model” with “Shapley Additive Explanation (SHAP)”
selected. Lastly, there’s a section to “Select Variable to Investigate” with “Decision Tree (DT)” currently selected.

2. **Dataset Information Panel**: On the right side, there’s a panel titled “Dataset Information” with a table that
lists the variables, their values, and units. The variables listed are “DT” with a value of 16.557°F, “Motor
Current” with a value of 242.29 Amps, “MOB Temp” with a value of 107.41°F, “MB Temp” with a value of
107.77°F, “Stator Temp” with a value of 141.55°F, and “Gross Load” with a value of 1000 MW.

3. **ML Output Panel**: In the center, there’s a panel titled “ML Output” that displays the diagnosis and
confidence of the machine-learning model. The diagnosis is “CWP Diffuser” with a 100% confidence level, and
there’s an indicator for “Inlier” with a “Yes” status and an “N/A” for confidence.

4. **ARIMA Prediction Chart**: On the bottom left, there’s a chart titled “ARIMA Prediction for DT [S1.XXXX]
- [S1.XXXX]” that shows a time series of predicted values over time. The y-axis represents the parameter value,
while the x-axis represents time in hours. The line graph fluctuates over time, with a notable peak around
2020-04-21.

5. **Comparing Multiple Variables Chart**: On the bottom right, there’s a chart titled “Comparing Multiple
Variables.” It shows two lines representing different variables over time. The orange line represents “DT” while
the blue line represents another variable. The y-axis represents the parameter value, and the x-axis represents
time in hours. The chart shows fluctuations in both lines, with peaks and troughs over the same time period.

6. **Historical Context for DT**: On the bottom right, there’s a chart titled “Historical context for DT [S1.XXXX]
- [S1.XXXX]” that shows a density estimate of the variable value over time. The y-axis represents the density
estimate, while the x-axis represents the variable value. The chart has a sharp peak at a value of 12, indicating a
high-density of data points around that value.

7. **Additional Information Panel**: On the bottom right, there’s a panel titled “Additional Information” with a
search bar and a button labeled “Show More Information.” The panel seems to provide more details or context
about the data being analyzed.

The VLM is also asked to explain the LIME plot, as shown in Figure  20 . The plot title, “Feature
Importance for Healthy,” is truncated on purpose to evaluate whether the VLM can correctly recognize the
missing context. Such a truncation occasionally can be seen in VIPER because of the different aspect ratios
and resolutions of user’s computer monitors. However, despite this truncation, the VLM generation, as
observed in Table  9 , correctly identifies the most important contributor to “Healthy” diagnosis results when
the “Motor Current” is between 258.66 and 260.39. The VLM also recognizes that when the “MIB Temp”
is in the range of 62.75 to 73.14, it contributes to “Unhealthy” results, but not as much as “Motor Current”
or “MOB Temp.”

This section demonstrates the use of LLMs and VLMs for generating answers to technical questions
about PdM, work orders, images, and diagnosis results. To improve generation accuracy, this work starts
from a tool screening analysis, where different RAG methods are tested for retrieving relevant context from
the relevant PdM literature. This relevant context is fed to the LLM as Q&A examples in addition to user’s
queries. Meanwhile, this work tests different factscore evaluation methods for estimating the precision of
long-text generations by identifying relationships between atomic facts from generation and reference. The
evaluation results shows that GRIT is more effective in retrieving relevant contexts, while the WiCE factscore
methods show better agreements (e.g., recall and accuracy ≈ 0.7) with the human evaluations. To test the
multimodal TLG, this work collects and compares the performance of VLMs in describing images from
technical reports. The results show that CogVLM2 is more accurate in describing the component and layout
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Figure 20. Screenshot showing the LIME diagnosis tab in VIPER. The plot title, “Feature Important for
Healthy,” is truncated on purpose to evaluate if VLM can correctly recognize the missing context.

of the CWSs in the Salem and Hope Creek NPPs.

After the screening analysis, this work applies multimodal tools to explain CWS-related failures, where
the TLG tools show good capabilities in retrieving relevant work orders to user’s queries and describing
causes and consequences of those failures based on the multi-year Salem and Hope Creek NPP work orders.
This work also tests the capability of multimodal LLM approaches to explain the differences in the CWSs
at the Salem and Hope Creek NPPs using both text and image resources. However, additional information
from the image could improve the overall generation accuracy when the image is described correctly by the
VLMs. Wrong descriptions can only bias the TLG generations. This work also demonstrates the use of
VLMs to describe the diagnosis tab of the VIPER interface to users. CogVLM2 can accurately describe
all areas, including the Data Selection Panel, Variables, ML Results, ARIMA Plot, Variable Comparison
Plot, LIME Plot, and Historical Context Plot. Overall, pre-trained RAG tools, factscore method, LLMs and
VLMs show reasonable qualities in answering domain-specific questions and describing technical images
from the report and software screenshot. But VLMs require more fine-tuning for accurately describing the
technical images.
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Table 9. VLM generation for explaining LIME plot.
Prompt query: Describe this image with plenty of details.
Answer: This image is a bar chart titled,“Feature Importance for ’Healthy,’” which appears to be a part of a machine-learning
model’s output. The chart is used to show the relative importance of different features in predicting whether a system is healthy
or not. The x-axis represents the importance of each feature, with values ranging from -0.05 to 0.10, indicating the contribution
of each feature to the model’s prediction. The y-axis lists specific features related to the system’s health, such as Motor Current,
MOB Temperature, MIB Temperature, DT (Digital Thermometer), and Motor Stator Temperature. Each feature has two bars
representing the importance for a healthy and not healthy condition. The bars are colored in green for healthy and orange for
not healthy, which is a common way to differentiate between two categories in a bar chart. The height of each bar corresponds
to the importance score of that feature for the respective condition.
Here’s a step-by-step description of the chart:

1. **Title**: The title, “Feature Importance for ‘Healthy,’” is prominently displayed at the top of the chart, indicating the
purpose of the chart.

2. **X-Axis**: The x-axis is labeled “Importance” and ranges from -0.05 to 0.10. This scale is used to measure the
relative importance of each feature in the model’s prediction of system health.

3. **Y-Axis**: The y-axis lists specific features related to the system’s health:

– **258.66 <= Motor Current <= 260.39**: This range is represented by a green bar, indicating that this feature
is important for predicting a healthy system.

– **100.81 <= MOB Temp <= 105.53**: This range is represented by a green bar, suggesting that this feature
is also important for a healthy system.

– **62.75 <= MIB Temp <= 73.14**: This range is represented by an orange bar, indicating that this feature is
important for predicting an unhealthy system.

– **14.47 <= DT <= 14.82**: This range is represented by a green bar, suggesting that this feature is important
for a healthy system.

– **Motor Stator Temp > 173.19**: This range is represented by an orange bar, indicating that this feature is
important for predicting an unhealthy system.

4. **Legend**: Below the y-axis, there is a legend that explains the colors used in the chart. Green represents the
importance of the feature for a healthy system, while orange represents the importance for a not healthy system.

5. **Bar Heights**: The height of each bar corresponds to the importance score of that feature for the respective
condition. The taller the bar, the greater the importance of that feature in the model’s prediction.

6. **Overall Interpretation**: The chart shows that the motor current and MOB temperature are the most important
features for predicting a healthy system, with the motor current being the most significant. The MIB temperature is the
most important feature for predicting an unhealthy system. The DT and motor stator temperature are less significant in
the model’s predictions, with the motor stator temperature being the least important feature for a healthy system and the
most important for an unhealthy system.

5 USER STUDY

One of the main barriers to successful AI adoption in the NPP industry is the lack of user trust and
acceptance [ 8 ]. Human factors considerations must be central to ensure human and organizational readiness
levels. Applications with high technology readiness level but without the integration of corresponding
readiness to operate within human abilities and limitations carry risk and will fall short of the desired
outcome [ 28 ]. For organizations to be in a position to fully embrace the promise of AI—especially nuclear
facilities—individuals must feel secure and trust the technology will support and not supplant their goals.
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5.1 Assessing the User Interface from a Human Factors Perspective

One area of R&D that incorporates these principles is human-centered artificial intelligence (HCAI).
HCAI is a combination of human-centered design (human factors, human-in-the-loop, etc.) combined with
AI to design an efficient, reliable system with full consideration for human engagement and interaction [ 29 ].
This approach supports AI development, evaluation, and use with humanistic design and control, ensuring a
human-in-the-loop aspect with respect to sustained interaction and ongoing collaboration between humans
and the technology throughout its lifecycle, as observed in Figure  21 .

Figure 21. HCAI in the technology’s lifecycle.

HCAI is an evolution of human-centric automation that has been around for several decades. First
principles were developed in the aviation space positing that automation technologies be designed as tools
with human use as the primary focus of attention [ 30 ]. This is because nuclear power operators, as with
aircraft operators, bear responsibility for safety, and so must possess ultimate authority. Human-centered
automation requires that operators be actively involved and appropriately informed, be able to understand
and predict the automation, and benefit from automation that offers checks and balances to human actions
when necessary.

While the application of human factors engineering (HFE) in NPP operations is reviewed and regulated
by the U.S. Nuclear Regulatory Commission, the HFE implications for AI in NPPs are still in development.
An HCAI-nuclear framework provides for function analysis that supports humans in their new roles at plants
alongside AI technology. But to do so, automation is needed that works well with the operator, including
interventions for safety reasons.

Figure  21 describes a human-centered approach to AI deployment in nuclear such that humans be
involved in all phases of the technology lifecycle from development, through evaluation, and successful use.
For many advanced AI applications, including the PdM application described in these research efforts, their
success depends on data quality and integrity. While AI tools may help detect sensor data anomalies [ 31 ],
human verification will be necessary to ensure accurate, reliable, and contextualized data is feeding the
algorithms in the first place. This may require that new personnel roles be created, such as Data Scientist
or Analyst. In terms of AI evaluation, training implications are present because the ability to interpret and
verify ML recommendations generated from multiple data sources is a new analytical skill and a different
mode of O&M not currently conducted at NPPs.
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In addition, to satisfy the defense-in-depth safety requirements, the technology must be designed to
not only support employees with a deeper understanding of the automated systems, but each intelligent
component also must possess an understanding of the function and intent of all other intelligent automated
systems [ 30 ]. Further, for inspection tasks replaced by sensors, as with the current application, situational
awareness may decrease as the elimination of manual inspection also eliminates operators noticing other
fault scenarios on their rounds (e.g., leaking pipes unrelated to the system the AI is monitoring). The ML
interface design should comport with HCAI principles in such a way that the information is presented in a
digestible and explainable manner that humans can understand.

Last, all AI-driven applications invariably require humans to monitor the automation or verify data-
driven decisions, and certainly act as “failsafes” or “backups” when the automation fails. Several decades
of HFE research highlight automation ‘trade-offs,’ including turning once-experts into novices when put in
situations where passive monitoring is required and there are no longer any active tasks to perform (i.e., skills
degradation [ 32 ]). Further, vigilance decrement occurs in humans after about ten minutes of monitoring,
which results in reduced situational awareness, pointing to humans being ill-suited for automation monitoring
in the human-AI teaming relationship [ 33 ]. HFE research efforts such as these that test and verify the AI-
driven application are critical in establishing the human-AI relationships that will ensure safe and efficient
operations in the future.

5.1.1 Interface Evolution

The development and refinement of the user interface application has been a multi-year effort. Although
the focus of the HFE effort in this fiscal year was to evaluate and improve the usability and design of the
interface application, visual and functional design improvement also has been a priority of this project since
its inception. The PdM user interface application has undergone many revisions over the span of this project.
These revisions are highlighted below, as well as key insights that have led to pivotal design changes.

The initial design version of VIPER in 2022, as shown in Figure  22 , was developed to evaluate a
participant’s ability to trust the recommendation of the model. As such, one of the primary design features
included a current status of the ML models (e.g., healthy) and a confidence interval (e.g., low). Additional
content was included based on the recommendations of the SMEs (i.e., PdM analysts) of the collaborating
utility. The SMEs helped determine what type of information a typical maintenance analyst diagnosing
a WBF event might need in order to verify or validate the recommendation of the ML model. Multiple
insights were gained following an experimental study evaluating the first version of the interface application
that ultimately led to design changes in succeeding versions. For details about the development of the first
version of the interface, see reference [ 34 ].

One of the most impactful insights was participants expressing a desire for the model to perform its
diagnostics and decision-making in a way that is not just transparent and explainable to the users, but that
also aligns with their own processes (i.e., replicates their mental models). This was an interesting insight
from the users where they wanted to validate not just the data inputs the model was working from, they also
wanted to be able to relate to the algorithm process directly. This desire for an explicit alignment between
the mental model of the user and a computational model led to additional content in the interface, such as
historical context, that more closely aligned with the mental model of the users.

After incorporating lessons-learned from the original user study and other interface evaluation opportu-
nities, the team arrived at the design that this year’s studies were developed around. This design was much
more complex with additional visual and functional features including additional explainability features of
the ML model diagnostics tab, as observed in Figure  23 , a trends tab, and an introduction of an LLM to help
bridge the gap between ML language and functions for non ML experts via a help tab.
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Figure 22. Screenshot of the first version of the PdM user interface application (circa 2022)
.

Figure 23. Screenshot of the second version of the PdM user interface application.
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With AI technologies on the rise throughout all types of industries, the value of including end-users
(whether as test subjects or consultants) cannot be overstated. The evolution of the design of the interface
application serves as a powerful example of what is possible when end-users are included, and future work
should evaluate opportunities for further end-user involvement.

Although the initial motivation for developing a user interface application was to conduct a series of
studies to evaluate trust of PdM ML models, it became apparent there was also extensive value in the creation
of the interface application itself. Developing and refining the interface application yielded many insights,
including the importance of integrating a variety of maintenance information into a singular location to
validate a nuclear worker’s mental model [ 35 ]. Additionally, it helped researchers understand what type of
information, and at what level, was needed so maintenance-related activities were supported in the best way
[ 34 ]. And finally, it revealed the importance and eagerness of NPP workers to be involved in the development
process of tools they might use.

Taken together, this year’s HFE research efforts focused on the application’s usability, with quantitative
and qualitative methods revealing important insights regarding interface content, design, components, and
layout, as well as usability heuristics, such as system status visibility, consistency and standards, user control
and freedom, and efficiency of use. These findings have direct implications for trust and the successful
adoption of ML-driven PdM applications in nuclear power. Further, human factors important to human-
system interactions were measured, including situational awareness and taskload, as well as critical indicators
of the application’s human-readiness status, the results of which will provide directions for future research.

5.2 Utility Innovation Week

The first phase of the user research studies involved presenting the application to NPP staff and soliciting
user feedback via survey questions. An NPP partner was holding a “utility innovation week,” which provided
the opportunity to interact with relevant personnel.

5.2.1 User Research Objective

Broadly speaking, gaining access to the worker population in an NPP can be difficult primarily because
of the highly secure environment that nuclear employees regularly inhabit. An opportunity for data collection
emerged in the form of an innovation expo the participating utility hosted in their onsite training center that
was outside their security fence. All utility employees were invited and encouraged to attend over the course
of two days, presenting the INL LWRS HFE researchers the opportunity to engage with the target population.
Given the time constraints, a full interface usability study was not possible, and data collection was limited
to four questions only. Thus, the objective was to capture rapid brief interface feedback from the individuals
most likely to benefit from the application.

5.2.2 Method

An emergent sampling methodology was used in this study [ 36 ]. A data collection opportunity presented
itself in the form of an innovation expo being hosted by an NPP utility. Participants were recruited on the spot
from company employees who attended the expo and represented a wide range of departments. Depending
on the question, there were up to 14–24 respondents. Participants approached the booth as individuals, in
pairs, and in trios. In many instances, the participants had limited time at the booth and were not able to
finish the survey, completing only the first two content-based questions. This research was approved by the
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INL Internal Review Board (IRB), and all respondents verbally consented to the research per IRB approval
# INL000189.

The survey consisted of four questions. Questions 1 and 2 targeted the interface content and asked about
missing information from the interface, followed by unnecessary information. Question 3 targeted interface
design and required participants to look at the image shown in Figure  24 below. The respondents were
instructed to indicate their preferred design from options A through D to indicate that a maintenance action
either had been taken or delayed.

Figure 24. Design preference question.

Question 4 asked participants for feedback on useful interface research that the team might carry out in
the future. They were instructed to consider different experimental designs and select the one they perceived
as the most important. The first experiment was designed to answer the research question:

1. Does the ML model diagnosis help with decision-making?

In this experiment, decisions are compared across two different interfaces, one with the ML model
diagnosis and one without. Given nuclear power’s “trust but verify” safety culture [ 7 ], it is very likely
that end-users will rely on the collection of indicator data presented in the interface and use these data
and others to perform their own calculations and subsequent maintenance determination, irrespective of the
ML diagnosis. Whether the presence of the ML diagnosis before this process helps with decision-making
remains an empirical question.

The second experiment was designed to answer the research question:

2. Would more information increase trust in the ML diagnosis?

In this experiment, trust is compared across three different interfaces: (a) one with the ML model
diagnosis only; (b) one with the ML model diagnosis + signals; and (c) one with the ML model diagnosis
+ signals + explainability metrics. Mistrust in the technology is a barrier to AI/ML adoption in the NPP
industry [  8 ], and a key research area that warrants investigation. Understanding pathways to user trust can
take many forms, and this proposed research seeks to determine the correct level of information to present
in the interface to support user trust.

The research team set up an LWRS booth at the participating NPP’s innovation expo and demonstrated
the application on a laptop to expo attendees who approached the booth. The interface presentation was
purposely brief, and participants were able to ask questions. Together, the demonstration lasted approximately
2–5 minutes depending on the number of questions and the level of interest.

Immediately after the demonstration, the survey was administered in an interview-style format and
verbal responses recorded via note-taking by a research team-member. Although the intended format was
a paper questionnaire, the researchers quickly became aware that response rates were far higher with verbal
responses rather than with written ones, so a switch to an interview-style data collection method was made.
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The research team consisted of three members: (a) one who showed the app; (b) one who administered the
survey; and (c) a backup who also administered the survey when multiple NPP personnel attended the booth
at once.

5.2.3 Results

Question 1. Interface Content – Missing Information

This was an open response format with 23 viable comments, as indicated in Table  10 . The modal response
was that nothing was missing from the interface. Three comments were given regarding an indication of how
the current status compares to the desired status (i.e., an immediate indication to the operator of where the
status should be or “what’s normal”). Suggestions included couching trends against minimum and maximum
values and using baselines as reference values. Two additional comments stated there should be an overview
screen and that the interface should be layered. Providing a metric of time to failure was also noted twice.
Currently, the ML model provides a maintenance diagnosis only (i.e., healthy or WBF) with an associated
probability. When the ML model identifies a fault, there is currently no prognosis—i.e., an estimation of
when a maintenance action must be taken before failure will occur (within 3 days, 1 week, 2 weeks, etc.).
One last notable comment was that when the diagnosis returned a fault indication, this should be made more
salient than a healthy diagnosis such as via a flashing alarm.

Table 10. Suggested missing content from the interface.
Comment # responses

Nothing 5
Min-max to compare current to desired status 3
Layered interface 2
Time to failure 2
Differential pressure 2
Vibrations 2
Color code to match plant 2
Flashing alarms 2
Alarm setpoints 1
Ambient and fluid temperature 1
Tooltips to explain what fields are used for 1
Graph-scaling definitions 1
Variable limits 1

Question 2. Interface Content – Unnecessary Information

This was also open response. The vast majority (i.e., 17/22) of responses stated there was no unnecessary
information on the interface. As with Question 1, three responses indicated that a layered interface may
work better in which users could access information as needed (i.e., drill down or explore more deeply). One
comment was that the DT text and the DT graphic together was unnecessary. Another was that there were
too many numbers and that more visuals should be used instead.

Question 3 – Interface Design

Table  11 presents the frequency of selections from the four interface designs in Figure  24 . Design D
was the modal response. No one endorsed the thumbs up/thumbs down choice in Design A. Miscellaneous
comments included preferences for different color schemes other than those offered (e.g., orange or red/green),
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and that a timeline drop-down should be built into the maintenance action indicator.

Table 11. Design preferences.
Design Frequency

A 0
B 4
C 4
D 8

Question 4 - Future Interface Research

Table  12 presents the frequency of selections from the two proposed experiments. It should be noted
that 3/7 participants who deemed “trust research” as the most important element to pursue also suggested
variants to the experimental design presented. These suggestions included variants of “building trust” by
first allowing the users to derive conclusions themselves using either existing procedures or with the interface
indicators, and then displaying the diagnosis; but over time, if and when the diagnosis consistently matches
the user’s decision, then trust in the ML model will be built. Additionally, three participants declined to
make a selection but indicated that all available information should be included in the display right from the
beginning.

Table 12. Research topic preferences.
Question Frequency

Diagnosis 5
Trust 7

Miscellaneous Comments

Miscellaneous comments included participants liking the trends and having all the signals and diagnoses
in one place, and that there should be an overview page for each WBF in the CWS. Last, three remarks
were given alluding to perceptions that AI is “coming to replace me.” To this point, it was suggested that
an emphasis of the application-as-a-tool be made, and that user time-savings and leadership cost-savings be
more clearly communicated.

5.2.4 Discussion

In general, the application was well received, and feedback largely positive. Given the ratio of responses
to “is there anything missing?” and “is there anything unnecessary?”, one high-level take-away about content
is that the more information provided on the interface, the better. Few participants indicated there was
anything unnecessary, and many wanted to see even more data, such as vibration, pressure, temperature, etc.

Notwithstanding, there were several comments that a layered interface (i.e., overview screen with drill-
down ability as needed) would be preferable, especially when this was suggested. The developers of this PdM
application must strike a balance between traditional settings (in which engineers are used to having a wide
variety of diagrams, plant status indicators, process valves, alarms, etc., available across multiple displays),
and new efficient displays that collate relevant information in support of ML models, with an efficient and
minimalist interface where information is furnished to the user on-demand. There are trade-offs with both.
With the former approach, engineers have unfettered access but are subject to irrelevant-information overload,
interference, and “noise” as signals that are not germane to the task at hand that may divert attention. With
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the latter approach, the most important information to display to the engineer (i.e., the highlights) is collected
and combined into one screen for quick access and ease of cognitive processing, while complementary or
facilitative data may be hidden but available on deeper pages or layers.

A layered architecture to the interface design can be thought of as introducing a z-axis to information
presentation in a hierarchical manner, as indicated in Figure  25 [ 37 ]. This was brought about largely by
the mobile revolution that occurred in 2007 when displayed information became limited by screen size
and content had to be contained and accessed by depth [ 38 ]. Digital design became three-dimensional
(3D), which gave rise to a minimalistic user experience (UX) aesthetic, as well as simplified user cognitive
load. Given that traditional NPP systems were designed decades before this, this digital usability feature
essentially deviates from two-dimensional (2D) information presentation solely over the x- and y-axes. A
layered architecture contains content with elements nested inside one another, as shown in Figure  26 , and the
user can dynamically interact with the interface, thereby exploring pertinent content as needed and delving
deeper through the various elements [ 39 ].

Figure 25. Introduction of z-axis to UX information display.

As more commercial NPPs modernize to digital systems, emerging digital designers for the nuclear
industry must straddle the relationships between form and function, and traditional 2D and contemporary
3D usability. These are interrelated, because digital natives––that is, individuals born after 1995 into a
world where the Internet and personal digital devices were ubiquitous [  40 ]-—intuitively use and are deeply
familiar with 3D applications with a simplified design through multi-layered functionality, whereas legacy
NPP personnel are likely more used to 2D design, and to be surrounded by multiple indicators and displays
at one time. The ways that different cohorts engage with technology is changing, and while the nuclear
industry must strive to digitize, increase efficiency, and attract new talent, designers also must pay attention
to the highly safe and reliable systems that have matured over decades and produced a successful knowledge
base of operational experience and the lessons-learned therein.

Another piece of converging feedback was to include min-max boundaries so that operators could
immediately discern where they should be versus the current status depicted from the trends. These comments
likely reflect current convention in that NPP personnel are used to seeing indicators benchmarked against
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normal or desirable conditions. Relatedly, it was suggested that when a diagnosis indicates a fault, there
should be a flashing red light to immediately capture attention. Together, these two pieces of feedback point
to presenting information on the interface in a way that more readily supports the saliency and understanding
of fault conditions, as a way to highlight that this information (i.e., metrics and values) should be addressed
first, and considered a priority.

Time to failure was another piece of critical feedback demonstrating the way in which personnel wished
to use the application. While the model currently focuses on delivering a diagnosis, for some, delivering
an additional time estimate to failure may be more useful. This functionality would allow engineers to plan
maintenance activities with a clear timeline in mind and allocate resources accordingly. Having time to
failure functionality also converges with prior feedback from the participating utility.

Figure 26. Interface information presented in a layered hierarchy.

In terms of future research for the application, the results showed that participants perceived trust in
AI to be a key priority for research. Interestingly, the proposed trust experiment seemed to inspire some
participants to think about other ways to build trust in the application, further illustrating that this is a central
issue with users.

The results of this survey provided rapid insights regarding the content and design of the interface, as well
as suggestions for trust research into the application. The implications are that new development iterations
can be made to improve the interface, bringing it closer to nuclear conventions and a product the target users
want to see and use. User involvement early on in the application development process has been identified
as a critical element to user adoption [ 41 ].

Strengths of the study design include eliciting feedback from a sizeable number of NPP employees,
some of whom are the target end-users of this application. In addition, there were at least three control room
operators who reviewed the application and gave extensive feedback. Gaining access to NPP employees
is not a trivial endeavor, much less control room operators. General impressions of the application were
almost entirely positive and overall was well-received. This is important feedback for the research team and
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indicates user excitement and desire for the technology.

However, the study findings must be understood within some important limitations. First, the participants
received a demonstration of the application, but did not interact with it. The lack of dynamic engagement
may have limited the user’s understanding of the technology, and any missing content may have been harder
to detect as a result. Second, due to emergent sampling constraints, most participants spent a brief amount of
time at the booth, and consequently were tasked with answering a very limited number of questions. Third,
half the questions were structured in a forced-choice format which supported rapid data collection under
time restrictions, but also meant that more complete user insights may not have been captured.

To address these limitations and build on the findings from this study, the INL LWRS HFE research team
went about developing a comprehensive usability study of the application. Research design improvements
were made to the protocol, recruitment method, participant engagement, and question format. The study
employed the HFE methodologies of discoverability and dynamic interaction. This qualitative walk-through
incorporated lessons-learned from the survey study and was designed to build on and complement the survey
findings with qualitative user insights.

5.3 Qualitative Study: Human Factors Evaluation

The second phase of the user research studies was designed to build on the survey findings. A compre-
hensive usability study was conducted in which participants could take time and interact with the application,
ask questions, and present their thoughts to the research team in their own words. This methodology provided
rich qualitative feedback for the PdM user interface application. The objective of this evaluation was twofold:
(1) to collect user feedback from the maintenance analysts; and (2) to conduct a usability analysis of the
interface. Both objectives were met to inform the design and development process of the PdM user interface
application. Additionally, data and insights gathered during the evaluation provided general HFE design
considerations for any nuclear utility considering a similar concept.

5.3.1 Workflow

This section describes the qualitative study workflow, as observed in Figure  27 . The study began with
informed consent and an introduction to the study wherein a participant identification (ID) was assigned
and recorded. The think-aloud exercise was performed next, followed by a brief explanation of the interface
application and the evaluation talk-through. Finally, participants were invited to complete the post-test
questionnaires and thanked for their participation when the study concluded. All participants completed the
study within 30–60 minutes.

5.3.2 Qualitative Study Protocol

The following sections describe the qualitative study protocol in more detail.

As directed by and in accordance with the INL IRB, an informed consent dialogue was administered to
participants to inform them of what to expect during the study, as well as to obtain their verbal consent. Upon
consenting to participate, participants could continue in the study. The informed consent dialogue included
the following:

1. Their participation is being requested because of their knowledge and expertise and the information
they provide will be used to guide the design.
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Figure 27. Qualitative HFE study of the PdM user interface application workflow.

2. The anonymity of personnel will be maintained and their comments will be treated as anonymous.

3. They will be coded using a participant ID scheme.

4. Their participation is completely voluntary and they are free to leave at any time.

Participants were briefed on the purpose of the study and were assigned an ID number. ID numbers were
used consistently across activities to maintain simplicity and to be numerically provided in the sequence in
which the participants were enrolled. They were also used to maintain anonymity.

A demographic questionnaire was administered to participants following informed consent and intro-
duction to the study. The demographic questions included the following:

1. Age.

2. Education.

3. Experience at current site (including position title and years in position).

4. Overall experience in nuclear industry (including position type and years in position).

5. Self rating of experience with technology (i.e., computers, smart phones, tablets) on a scale of 1
(novice) to 7 (expert).

A total of seven participants completed the qualitative study activities. The educational and professional
backgrounds of the participants varied but each participant reported some experience with and/or exposure
to maintenance operations and the software tools used for maintenance operations by the nuclear industry.
The total years of maintenance experience in the nuclear industry across all participants is 50 years. The
mean age of participants is 35.8 years and the mean rating of experience with technology is 6.2, as shown in
Figure  28 .

5.3.3 Think-Aloud Exercise

The objective of the think-aloud exercise was to provide an opportunity for participants to view and
remotely interact with the interface before any formal introduction or explanation of the interface was given.
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Figure 28. Frequency of participant self-rating of experience with technology.

That way, researchers could be confident that any feedback provided was unbiased and that all participant
observations were genuine.

As soon as informed consent was collected and the demographic questionnaire was administered,
participants were eligible to begin the think-aloud exercise. The participants were instructed to view and
remotely interact with the interface for a timed duration of 10 minutes. Participants were briefed on the
purpose of the think-aloud exercise using the following script:

“The purpose of the think-aloud exercise is to obtain your initial impressions of the interface. We ask that
any thoughts or observations you make throughout the exercise be voiced aloud. Since we are conducting
this evaluation remotely, one of the team researchers will be navigating the interface for you. As such, we
ask that you also voice your interaction commands aloud as well. The expected duration of this exercise is
10 minutes. You may ask questions at any time. Let’s begin.”

Due to the nature of conducting this study remotely, a research team member was selected prior to each
participant trial to navigate the interface on the participant’s behalf, as observed in Figure  23 , for the duration
of the study. As such, the participants were instructed to voice their verbal commands aloud, as well as their
observations, throughout the think-aloud exercise.

The purpose of the think-aloud exercise was to determine whether the visual and functional aspects of
the design could be correctly interpreted by the participants without any formal introduction or explanation
of the interface application (i.e., evaluate the intuitiveness of the design). Additionally, the purpose was to
dissect unbiased observations from participants to highlight design features that caused confusion and/or
misconception with the intent of fixing the design to support better perceptual interpretation and intuitive
interaction from the end-users. Due to the nature of the think-aloud exercise (i.e., unguided observation),
participant results varied. However, a few patterns among the observations emerged and are highlighted in
more detail in the following paragraphs.

Most participants expressed confusion regarding the visual (i.e., alignment) and functional (i.e., how to
correctly operate the feature) design of the “check boxes” feature within the interface. Such a strong consensus
among participants demonstrated—at a minimum—the need to reconsider the design and potentially even
the presence of that feature.
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Additionally, most participants stated they intuitively understood the layout and navigation of the tabs and
the drop-down menu features. As such, it can be reasonably deduced that the general layout and navigational
structure of the interface application are implicitly understandable, even without a proper explanation of such
features.

5.3.4 Evaluation Talk-Through

The purpose of the evaluation talk-through was to address specific topics of design and usability regarding
the interface application. Post-test questionnaires were also administered to evaluate mental workload, ease
of use, and situational awareness. Following the think-aloud exercise, participants were instructed to begin
the evaluation talk-through. The evaluation talk-through began with a brief explanation of the interface and
purpose of the interface (i.e., diagnosing a WBF maintenance issue). As with the think-aloud exercise and
due to the remote nature of the study, a research team facilitator navigated the application on behalf of the
participant. Immediately following the completion of the WBF scenario, the participant began the design
input interview questions. A question response template was used to record responses to all design input
interview questions.

The following script was used for the evaluation talk-through:

“The purpose of the evaluation talk-through is to ask you specific questions about the content and design
of the interface to obtain your input. We will begin with a brief explanation of the interface. Following the
brief introduction, we will begin the design input questions. Just like with the think-aloud exercise, we ask
that you also voice your interaction commands aloud throughout the evaluation talk-through. The bulk of
our study is dedicated to this section, and we can take as much time as you need. You may ask questions at
any time. Let’s begin.”

Following the script, the interface navigator began their explanation of the interface. The explanation
included descriptions of the design features on each page (trends, drop-down menus, etc.) and descriptions
of basic functional features, including navigation. Participants were also encouraged to ask questions and
seek clarification on any unclear interface features. As soon as the explanation concluded, the design input
interview questions were administered to the participant. Following the design input interview, participants
were presented with two post-test questionnaires via Qualtrics survey web-links. When each activity of the
evaluation talk-through was completed, participants were thanked for their time and the study was concluded.

After all participants completed the study, a qualitative analysis was conducted across participant re-
sponses for the think-aloud exercise and the evaluation talk-through. All responses were recorded in original
data files and data bins were developed to organize the variety of feedback more succinctly. Organization
bins included three categories (i.e., positive comments, constructive comments, and recommendations) for
the following topics: interface content, design, layout, navigation, and usability. Frequency of comments
(i.e., consensus) were noted, as well as overall relevance and feasibility of incorporation—each of which
informed the method in which the results were developed and design recommendations were prioritized.

5.3.5 Design Input Interview

The purpose of the design input interview was to elicit targeted feedback from participants regarding the
design and usability of the interface. The intent of the research team was to collect end-user data to evaluate
opportunities for improvement concerning specific design topics, such as content, design, layout, navigation,
and usability heuristics. The design input interview questions are detailed in Appendix D.

Table  13 shows participant responses that met one or more of the following criteria: the comment
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was mentioned multiple times, the comment was directly relevant to potential design improvements, and
the comment was perceived as feasible to incorporate into the design. The results are also paired with a
corresponding design recommendation.

Additional key insights, aside from comments that translated to design recommendations, were noted
throughout the data analysis including the following:

1. Many questions regarding usability were addressed throughout the design input questions because
supporting ease of use visually and functionally is crucial to the overall usability of an application.
Many participants stated they liked the layout and navigation of the interface, the interface was easy
to interact with, and the buttons behaved in an appropriate way. Additionally, all participants stated
the tabs were easy to navigate and they always knew the current location in the interface because of
the tab design (i.e., visual indication of the different colors). Therefore, the general usability of this
interface application is satisfactory.

2. It can be difficult to determine how much context to include to support optimal interaction and
interpretation of an interface. However, multiple participants reported the historical context provided
in the graphs was very helpful in overall model diagnosis and that perhaps they would like even more
historical context to be included.

3. All participants but one correctly determined what the current model diagnosis was when prompted.
All participants correctly determined their current location (i.e., diagnostics tab) in the interface when
prompted.

4. Four participants said the interface application behaved in an expected way (e.g., was similar to other
digital applications). One participant answered, “for the most part,” and two participants responded,
“no,” due to the complexity of the interface content (i.e., seemingly extra information).

5. When rating the general ease of use of the interface application on a Likert scale (i.e., 1=difficult/con-
fusing and 7=simple/clear), a mean of 5.2 with a standard deviation of 1.8 was reported. It should be
noted that one participant did not provide a rating so only six scores were calculated.

Following the completion of the design input interview, participants were instructed to begin the ques-
tionnaires.

The National Aeronautics and Space Administration (NASA)–Task Load Index (TLX) is a tool for
measuring and conducting a subjective mental workload assessment. It is a commonly used, self-report
questionnaire that helps determine the mental workload of participants while performing a task [ 42 ]. It
rates performance on a scale of 1-20 across six dimensions, with 1 representing a low mental workload and
20 representing a very high mental workload (see Appendix C). The NASA–TLX results, as indicated in
Table  14 , can be interpreted as the participants felt the interface interaction was more mentally demanding
compared to physically demanding. The participants rated the pace of the interaction as relatively low (i.e.,
unhurried). Similarly, the participants rated their amount of required effort to interact with the interface as
relatively low (i.e., they did not have to put forth much effort to achieve a successful performance). Finally,
the participants rated their frustration as relatively low.
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Table 13. VIPER Evaluation Results
Result (participant comments) Potential design improvements
Five participants said the diagnostic data was clear
(i.e., easy to interpret), but two others stated the
data was not clear due to the complexity of the
information being shown.

To alleviate visual complexity in the diagnostic data
design, the combined model output (e.g., healthy or
WBF) could be slightly more salient or bold as
compared with the single model outputs.

Most participants said they relied on the feature im-
portance table to verify the diagnosis of the ML
model. The rationale of including the feature im-
portance table in the original design was to provide
a straightforward way of verifying the model diag-
nosis, which means it is being used and interpreted
as intended. However, some of the participants
expressed confusion regarding the connection be-
tween the feature importance table and the check
boxes.

A potential design solution would be to create an
explicit visual link between the two features (e.g.,
when certain boxes are checked off, the correspond-
ing parameters in the feature importance table are
highlighted in the same color to imply association).

When asked whether any design components were
confusing or distracting, participants mentioned the
check boxes were confusing, as were the lack of
labels. One participant also mentioned the color
scheme of the ARIMA cone (i.e., the confidence
trend) was distracting.

Fix the design of the check boxes by aligning them
to make better use of the surrounding white space.
Also, provide more descriptive labels throughout
the interface application—specifically the graphs.
Replace the darker gray color of the confidence
trend cone with a lighter shade.

Five participants said the ML model diagnosis de-
sign caught their attention due to the color satu-
ration. However, two participants mentioned the
combined model output (i.e., the overall diagnosis)
did not stand out from the individual diagnoses. Vi-
sually differentiating between the single model di-
agnoses and the combined model diagnosis would
help users implicitly understand which output is the
most important.

Visually differentiating between the single model
diagnoses and the combined model diagnosis would
help users implicitly understand which output is the
most important.

When participants were asked regarding what ad-
ditional information they would like to see in-
cluded in the application, three participants sug-
gested additional contextual information (e.g., run-
time for relevant parameters and comparisons of
what “healthy” or “WBF” looks like).

Add additional contextual information such as run
time or maintenance status graphical comparisons
(i.e., healthy or WBF).

When asked about any interface components being
redundant or unnecessary, four participants men-
tioned the prediction cone of the ARIMA graph.

Replace the darker gray color of the confidence
trend cone with a lighter shade. (Reiteration of
previous recommendation.)

Two participants suggested making all interface
graphs the same size because different sizes might
unintentionally cause incorrect assumptions (i.e., a
larger graph is more important).

Choose a standard size of graph for each page and
adjust the sizes to meet that standard (e.g., adjust
the three graphs on the diagnostics page to be the
same size)

Four participants expressed confusion and/or frus-
tration with the zoom in/out feature. They expected
the zoom feature to provide a closer view of the
graphs (instead of just increasing or decreasing the
font size).

Make the zoom feature functionality more implic-
itly intuitive by placing it in a header or footer lo-
cation to replicate standard designs across digital
applications. If a zoom feature is wanted for the
graphs, add “+” and “-” buttons into each graph.
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Table 14. NASA–TLX results.
Dimension Mean SD

Mental Demand 7.00 3.16
Physical Demand 2.43 1.99
Temporal Demand 4.57 3.06
Effort 5.29 2.76
Frustration 6.29 2.23
Performance 8.29 5.92
Note – SD = standard deviation

A single ease question (SEQ) is a concise questionnaire with a single question asking participants to
self-rate the ease or difficulty of a specific task or interaction. SEQs are widely used in UX research to
quickly gather user feedback and assess the usability of products and services [ 43 ]. Participants were asked
to rate their ease of use regarding the interface on a scale of 1 (very easy) to 7 (very difficult). Participants
had a mean rating of 2.71 with a standard deviation of 1.28. This meant that participants rated the interface
as relatively easy to use.

The Situational Awareness Rating Technique (SART) is a tool for measuring a participant’s subjective
situational awareness while performing a task. SART was originally developed in 1990 to measure and
evaluate a pilot’s situational awareness while performing certain flight maneuvers and tasks [ 44 ]. SART
rates situational awareness (with 1 being very low and 20 being very high) across nine topics (see Appendix
C). The SART results in Table  15 can be interpreted as the participants rated the complexity of the interface
interaction as intermediate. Similarly, the participants rated the alertness and attention required to interact
with the interface as intermediate. Lastly, the participants rated the amount of available information of the
interface interaction as high (i.e., all information they needed was available and understandable).

Table 15. SART results.
Topics Mean SD

Stability 9.29 4.27
Complexity of Scenario 9.71 5.34
Scenario Factors 6.57 4.34
Alertness 10.86 6.08
Attention 12.71 3.41
Distraction 8.57 5.53
Mental Workload 11.14 5.62
Information 16.00 2.56
Familiarity 11.57 6.00

5.3.6 Summary of VIPER Design Recommendations

One objective of conducting the user study was to collect participant feedback and transform it into
actionable design recommendations for the interface application development team. The following list
includes a summary of all design recommendations derived from the user study. Of these, Nos. 2 and 7 have
been successfully implemented.

1. Visually distinguish the combined model diagnosis design from the individual model diagnosis designs
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(e.g., bold the text of the combined output or reduce the color salience of the individual output). Once
implemented, these changes will represent the third version in the evolution of this interface.

2. Visibly link and align the check boxes with the corresponding parameters of the feature importance
table when a user selects or has selected any of these boxes.

3. Add additional labels that are descriptive yet concise throughout the interface application, specifically
for graphs.

4. Replace the darker gray color of the confidence trend cone in the ARIMA graph with a lighter shade.

5. Add additional contextual information such as run time or graphical comparisons of maintenance
status (i.e., healthy or WBF).

6. Choose a standard size of graph for each page and adjust the sizes to meet that standard (e.g., fix the
three graphs on the diagnostics page to be the same size).

7. Make the zoom feature functionality more implicitly intuitive by placing it in a header or footer location
to replicate standard designs across the digital applications. If a zoom feature is wanted for graphs,
add “+” and “-” buttons into each individual graph.

5.4 Discussion

A recent report from the National Laboratories Complex stated that if nuclear power is to remain
competitive within the greater electricity generation landscape, the industry must incorporate AI innovations
[ 45 ]. Importantly, the management of monitoring and maintenance is cited as a part of a key challenge
area in which AI can potentially outpace current practices, offering significant economic benefits. Reactors
that make up the existing U.S. fleet have an average age of > 40 years, which has led to structural and
component wear and tear accrued over decades, causing the need for more frequent maintenance. AI-driven
PdM applications, such as this one, are therefore of paramount importance in the suite of AI tools, cited
as significantly reducing unintentional downtime and improving efficiency during outages. Among other
scientific expertise, the National Laboratories Complex report identified HFE as an essential ingredient to
the success of AI in nuclear.

This year’s HFE research efforts focused on the application’s usability, with quantitative and qualitative
methods revealing important insights regarding interface content, design, components, and layout, as well
as usability heuristics such as system status visibility, consistency and standards, user control and freedom,
and efficiency of use. These findings have direct implications for the successful adoption of ML-driven
PdM applications in NPPs. Further, human factors important to human-system interactions were measured,
including situational awareness and taskload. These are critical indicators of the application’s human-
readiness status, the results of which provide directions for future research.

One great strength of current research efforts is that actionable insights were gained from target popula-
tions representing both existing and potential new cohorts of plant personnel. Given the nuclear industry’s
current staffing challenges [ 46 ], designing AI-driven technologies for use across multi-generations will be
key. It must be the case that digital applications in legacy NPPs are attractive to younger generations, or the
industry will continue to face serious recruitment challenges.

Findings from participants at the collaborating utility indicated that trust in AI is an important research
topic for this application moving forward. Participants were shown an experimental protocol in which trust
is hypothesized to increase as more information is provided supporting the ML diagnosis. With this research
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design, a between-subjects design can be used to examine group differences in trust, and it honors the
industry’s “trust but verify” approach to decision-making safety that is currently practiced.

Trust can be measured by either subjective or objective means. Subjective measures include question-
naires (i.e., trust as an “attitude”). Some examples include the “Trust between People and Automation” scale
[ 47 ], which has been widely used and is considered to have a high-construct validity [ 48 ], or the more recent
“Trust Scale for the AI Context” [  49 ], which is also garnering significant attention. Objective measures
typically fall under “reliance” behaviors, whereby the tool is observed to be used in the service of the desired
outcome. Interestingly, empirical evidence points to distrust as distinct from trust, and their coexistence as
an important indicator of system trustworthiness and appropriate user trust accordingly [ 50 ].

The idea of trust inspired some participants at the utility innovation week to ponder ways that trust
might be captured, beyond the examples given. One participant suggested a design similar to one that HFE
researchers have considered previously. In this experimental design, trust is operationalized by having users
make determinations without access to the ML-diagnosis first, and only upon their entering their diagnosis
will the ML-diagnosis be “revealed,” so that the users can observe either the match or mismatch, as indicated
in Figure  29 . The more matches that are generated over time, the greater the trust in the new system will be.

Figure 29. Trust over time experimental design.

Trust in AI in the nuclear industry has far-reaching implications but is understudied. Given the feedback
that preconceived notions about AI technology and automation taking over employees’ jobs exist, nuclear
industry mistrust in AI is clearly about more than just its output. As such, HFE researchers must work
to understand and identify these perceived threats to job security in addition to how it can be integrated
seamlessly. Psychological safety is a term used in the business, management, and industrial psychology
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literature to describe a professional environment in which employees feel secure to raise concerns, submit
new ideas, elicit feedback, work in teams, take risks, and try new methods [ 51 ]. Psychological safety
is heavily implicated in authority issues, because ultimately employees are responsible for operations and
maintenance outcomes, whether brought about by AI or not.

6 SUMMARY AND PATH FORWARD

This report builds on the foundational research completed in the previous work on explainability and
trustworthiness of AI in risk-informed PdM decision-making [ 7 ]. The research presented here advances the
capabilities of the VIPER software, which has been shown to add context and explainability to otherwise
disparate data streams and black-box models. This will enable users, who may be unfamiliar with ML in
general, to build trust and effectively use the diagnoses that are provided. VIPER has continually improved
through the suggestions and feedback provided from NPP personnel in the field.

This work demonstrates LLM and VLM use for generating answers to technical questions regarding PdM,
work orders, images, and diagnosis results. To improve the generation accuracy, this work starts from a tool-
screening analysis and finds that GRIT and WiCE factscore methods are more effective in retrieving relevant
contexts and evaluating the precision of long-text LLM generations. This work also applies multimodal tools
in explaining the causes and consequences of CWS-related failures based on multi-year Salem and Hope
Creek NPP work orders. This work tests the capability of multimodal LLM approaches in explaining the
differences in the CWSs from both the Salem and Hope Creek NPPs using both text and image resources.
It should be noted that additional information from these images could improve generation accuracy when
the images are described correctly by the VLMs. Incorrect descriptions will bias the TLG. Fine-tuning is
needed to improve the accuracy of VLM generations for technical image descriptions. CogVLM2 has been
determined to be more accurate in describing the components and layouts of CWSs in the Salem and Hope
Creek NPPs. This work also demonstrates the use of VLMs in describing the diagnosis tab of the VIPER
interface to users, where all areas and plots are correctly interpreted.

Two HFE user studies were carried out that employed complementary methodologies, representing
both existing and potential new cohorts of plant personnel. Overall, the interface was well-received and
the participants provided valuable suggestions for improvements regarding content, design, and usability.
Applying a layered hierarchy to better manage the complexity of information within the display was one
such suggestion. Importantly, this modern usability feature represents a departure from more traditional
NPP displays. Designing ML-based interfaces that can successfully manage the friction between new and
familiar is something the industry must contend with to attract younger generations of talent. Together, these
user study findings point to important considerations for trust in the technology.

Moving forward, any trust in AI research conducted in the NPP population will have to consider
psychological safety as a bridge to not only AI adoption, but its sustained use as well. R&D of AI
technologies, and their subsequent implementation, adoption, and long-term use in NPPs, will have to be
established within a lifecycle framework that includes follow-up to ascertain sustained satisfaction with the
AI across the HTO readiness levels. Specially, research investigation is required in establishing confidence in
the LLMs and their applications in different nuclear domains that minimizes hallucination and builds trust.
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APPENDIX A: FULL LLM AND VLM GENERATIONS

Table A.1. Full LLM generations with no, wrong, and correct context information as the Q&A example.
Question: What is a CWS in an NPP and its major components?
Answer with no context: A CWS, or Condensate Water System, is a part of the secondary circuit in an NPP. The
primary purpose of the CWS is to remove heat from the primary coolant system and condense it into water. The
condensate water is then cooled and returned to the primary system to be reheated and used again. The major
components of a CWS include:

1. Condensers: These are large vessels where the primary coolant, heated by the nuclear reaction, is cooled and
changes from a gaseous state to a liquid state. The condensate water is then collected in a storage tank.

2. Pumps: These are used to circulate the primary coolant through the system and to drain the condensate water
from the condensers.

3. Heat Exchangers: These are used to transfer heat from the primary coolant to the secondary coolant, which is
usually a different substance, like water or a different chemical compound, to prevent corrosion in the primary
coolant system.

4. Valves: These regulate the flow of the primary coolant and secondary coolant through the system.

5. Instrumentation and Control System: This system monitors the temperature, pressure, and flow rate of the
primary coolant and secondary coolant in the system.

6. Cooling Towers: These are used to dissipate excess heat from the secondary coolant, usually by converting it
into air.

7. Tanks and Pipes: These transport the primary coolant, secondary coolant, and condensate water throughout the
system.

8. Relief Devices: These are used to release pressure in the event of a sudden increase in pressure in the system.

9. Isolation Valves: These are used to isolate different sections of the system for maintenance or inspection.

10. Injection Systems: These are used to inject coolant or other materials into the system to control reactor power or
to cool the core in case of an accident.
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Wrong context:
User Query: Describe CWS in NPPs.
Example Answer: In the United Kingdom (UK) nuclear industry, any facility handling and storing fissile material
should have a Criticality Warning System (CWS) provided as the default position. A CWS is designed as a safeguard to
protect plant operators and other persons against any foreseen events that might result in a criticality excursion with the
potential to emit large radiation doses causing serious deterministic effects. The rapid detection of criticality, together
with an effective alarm system and prompt evacuation, has the potential to reduce the doses received. A CWS coverage
assessment has demonstrated that the distribution and locations of detectors within a facility can detect a criticality
incident. This considers the potential criticality source locations, the distance between the source and the detectors, and
the presence of attenuating media between them. The type of criticality and inherent attenuation may also be factored
into the assessment. In the first instance, the criterion is for the detection of the minimum incident of concern (i.e., a
minimum fission yield), which is dependent upon system type and worker proximity. Use of an alternative criterion also
may be justified where the balance of risk lies with the demonstration that a CWS is capable of detecting an incident
that could cause deterministic harm, rather than incur additional dose, time, and cost to enhance and/or maintain an
existing system.
Answer with Wrong Context: A Criticality Warning System (CWS) in an NPP is a system designed to detect and warn
operators about potential criticality incidents. The primary function of a CWS is to rapidly detect a criticality accident
and activate an alarm system to alert operators and initiate an evacuation plan.
The major components of a CWS include:

1. Criticality Detectors: These are instruments that measure the neutron flux in the core or near the core. They can
be passive (using natural radiation from the fuel) or active (using a neutron source).

2. Attenuation Monitors: These are instruments that measure the attenuation of neutrons as they travel through the
core material. They help determine the neutron flux and, therefore, the criticality.

3. Data Acquisition and Processing System: This system collects data from the detectors and attenuation monitors
and processes it to determine the neutron flux and whether it is above the predetermined threshold for a potential
accident.

4. Alarm System: This is an audible and visual alarm that goes off when the CWS detects a potential accident. It is
designed to quickly get the attention of plant operators and initiate an evacuation plan.

5. Operator Interface: This is the system used by plant operators to monitor the CWS and make decisions about the
safety of the facility.

6. Maintenance and Calibration Procedures: These are the procedures used to ensure the CWS is functioning
properly and is calibrated to provide accurate information about the neutron flux.

7. Emergency Planning and Training: These are the procedures and training programs that plant operators and
personnel go through to ensure they can respond effectively to a CWS alarm.
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Correct Context:
User Query: Describe a CWS in an NPP.
Example Answer: The CWS is an important non-safety-related system. As the heat sink for the main steam turbine
and associated auxiliaries, the CWS at the Salem and Hope Creek NPPs are designed to maximize steam power cycle
efficiency while minimizing any adverse impacts on the Delaware River. The CWS in an NPP has two salient functions:
(1) to strain the water before it is pumped through the condenser, and (2) to cool the steam in the condenser. The ther-
modynamic efficiency in an NPP is largely determined by the operational effectiveness of its CWS, which also must
comply with the constraints imposed by the Environmental Discharge Restrictions set by the state of New Jersey. As of
2022, these were the primary features of the CWSs at the Salem and Hope Creek NPPs:

••••••• Vertical, motor-driven circulating pumps, each with an associated fixed trash rack and traveling screen at the
pump intake to filter out debris and marine life.

• Main condenser (tube side only)

• Condenser waterbox air removal system

• Circulating water sampling system

• Screen wash system

• Necessary piping, valves, and instrumentation/controls to support system operation.

The Salem NPP, which is a two-unit pressurized water reactor, also features six circulators at each unit.
Question: What is a CWS in an NPP and what are its major components?
Answer with Correct Context: The Circulating Water System (CWS) in an NPP is a vital non-safety-related system. It
serves as the heat sink for the main steam turbine and associated auxiliaries, helping to maximize steam power cycle
efficiency while minimizing any adverse impacts on the environment. The CWS consists of several major components:

1. Vertical, motor-driven circulating pumps (i.e., “circulators”), each with an associated fixed trash rack and
traveling screen at the pump intake to filter out debris and marine life.

2. Main condenser (tube side only).

3. Condenser waterbox air removal system.

4. Circulating water sampling system.

5. Screen wash system.

6. Necessary piping, valves, and instrumentation/controls to support system operation.

The primary function of the CWS is to strain the water before it is pumped through the condenser and to cool the steam
in the condenser. The thermodynamic efficiency of the plant is largely determined by the operational effectiveness of
the CWS, which must also comply with the constraints imposed by the Environmental Discharge Restrictions set by the
state of New Jersey.
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Table A.2. Full VLM generations for explaining the Salem NPP CWS layout shown in Figure  16a .

.

Question: Explain this image including all labeled components. Explain the connections between the labeled
components indicated by the pipes and orange arrows.
Answer by LLaVA1.5: The image appears to be a schematic representation of a system, including various parts related
to water handling, possibly within a building or a specific area within a city or industrial site. Here is a breakdown of
the components labeled in the image:

• **Waterboxes**: These are structures containing water, which might be connected to pipes to distribute water
or collect used water.

• **Trash Racks**: These are commonly found in rivers or streams upstream of water treatment plants. They are
used to collect trash and debris that could cause damage to downstream equipment, such as turbines or water
filters.

• **Water Sources**: These are the various points where water can be accessed or collected, such as wells or
inlets from the environment.

• **Inlets and Outlets**: The inlets represent where water enters the system for processing or distribution, while
the outlets are where water is dispensed or sent for further processing or discharge.

• **Dwf** and **Dwf River**: The acronym “Dwf” could stand for various things depending on the context
(like “Dwellwater Facility” in water treatment terminology). The “Dwf River” might refer to a water body that
receives treated water or is used as a source for water.

• **Outlet River**: This represents where water is discharged into the environment after it has passed through the
system. It could be a river or a water body where treated wastewater is released.

• **12A and 13B**: These labels likely refer to specific sections or types of water handling facilities, possibly
with the letter A or B indicating different functions or processing levels.

• **Inlet**: As with any other schematic, the inlets are where water enters the system.

Question: Explain this image including all labeled components. Explain the connections between the labeled
components indicated by the pipes and orange arrows.
Answer by MiniCPM: The image illustrates a conceptual design for a water treatment system known as the Salem NPP
Unit 1 Cooling Water System (CWS). It is composed of three main components: Trash Racks, Traveling Screens, and
Waterboxes. The trash racks are positioned at the front, likely to catch large debris before it reaches the screens. The
traveling screens are situated just behind the trash racks, serving to filter out smaller particles from the water. The water
then flows into the waterboxes, which are connected to a series of pipes labeled with “Inlet” and “Outlet,” suggesting
they serve as a chamber where water is processed or held before being sent through the system. Orange arrows indicate
the direction of water flow within the system, starting from the inlet, passing through the trash racks and screens, and
then moving into the waterboxes. This flow is likely part of the process to clean and treat the water before it is returned
to the Delaware River.
Question: Explain this image including all labeled components. Explain the connections between the labeled
components indicated by the pipes and orange arrows.
Answer by CogVLM: This image represents the Salem NPP Unit 1 CWSC with its main condenser system. The system
consists of three pairs of condensers, labeled “11 A,” “11 B,” “12 A,” and “12 B.” These condensers are connected to
inlets and outlets, with the inlets receiving water from the Delaware River and the outlets releasing the condensed water.
The image also shows Trash Racks, Traveling Screens, and Waterboxes. The orange arrows indicate the flow of water
through the system, with water moving from the inlets to the condensers, and then from the condensers to the outlets.
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Question: Explain this image including all labeled components. Explain the connections between the labeled
components indicated by pipes and orange arrows.
Answer by CogVLM2: This image is a schematic diagram of a water treatment system, specifically a Combined Water
Supply (CWS) system, which is part of a larger water infrastructure. The system is designed to treat water from the
Delaware River and provide it to various points or units within the facility. The image shows a series of components that
are integral to the water treatment process. Let’s break down the components and their functions step by step:

1. **Trash Racks and Traveling Screens**: These are used to remove large debris and floating materials from the
water before it enters the treatment process. The trash racks are stationary structures that hold the water, while
the traveling screens move through the water, catching and trapping debris as they pass.

2. **Inlets**: These are the points where water from the Delaware River enters the treatment system. There are
four inlets shown in the image, each connected to a pipe that leads to the main treatment process.

3. **Waterboxes**: These are likely storage tanks used to hold water during the treatment process. They are
connected to the inlets and outlets by pipes, indicating that water flows into the waterboxes from the inlets and
then out to the outlets after treatment.

4. **Condensers**: These are components that are part of the cooling system, which is not explicitly labeled but
can be inferred from the orange arrows. The arrows indicate the flow of water and possibly steam or vapor,
suggesting that the condensers are used to cool the water by condensing steam or vapor, which is a common
process in water treatment systems.

5. **Outlets**: These are the points where treated water is released from the system. There are four outlets shown
in the image, each connected to a pipe that leads to the final distribution point.

6. **Main Condenser**: This is the central component of the cooling system, indicated by the label and the orange
arrows. It is likely where the cooling process occurs, with water being cooled down to reduce its temperature.

7. **Delaware River**: This is the source of water for the treatment system. The river is shown on the left side of
the image, indicating where the raw water originates.

8. **Orange Arrows**: These arrows indicate the direction of water flow within the system. They show the path
from the Delaware River through the inlets, waterboxes, and out to the outlets, as well as the flow through the
condensers and main condenser.

The connections between these components are critical to the functioning of the water treatment system. The pipes
facilitate the movement of water through each stage of treatment, ensuring contaminants are removed and water is
purified to a safe standard. The orange arrows help in understanding the flow direction, which is essential for operation
and maintenance of the system. The overall purpose of this system is to provide clean and safe water for consumption or
other uses.

Table A.3. Full VLM evaluation results with human evaluation score and WiCE factscore for explaining
the Salem CWS layout shown in Figure  16a .

LLaVA1.5 MiniCPM CogVLM CogVLM2
Inlet ✓ ✓ ✓ ✓
Trash rack ✓ ✓ ✓ ✓
Traveling screens N/A ✓ ✓ ✓
Waterboxes ✓ ✓ ✓ ✓
Waterboxes labels N/A N/A ✓ N/A
Outlet ✓ ✓ ✓ ✓
Delaware river × ✓ ✓ ✓
Flows directions Partial ✓ Partial Partial
Number of hallucinated
components 2 0 0 0

Human evaluation False True True True
WiCE factscore False True True True
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Table A.4. Full VLM evaluation results with human evaluation score and WiCE factscore for explaining
the Salem CWS layout shown in Figure  16b .

LLaVA1.5 MiniCPM CogVLM CogVLM2
Inlet ✓ ✓ ✓ ✓
Trash rack ✓ ✓ N/A ✓
Traveling screens N/A ✓ N/A ✓
Waterboxes N/A ✓ ✓ N/A
Waterboxes labels ✓ N/A ✓ ✓
Outlet ✓ ✓ ✓ ✓
Delaware river × ✓ N/A ✓
Flows directions Partial ✓ × Partial
Number of hallucinated
components 1 0 1 1

Human evaluation True True False True
WICE factscore True True False False

Table A.5. Full VLM evaluation results with human evaluation score and WiCE factscore for explaining
the Salem CWS layout shown in Figure  16c .

LLaVA1.5 MiniCPM CogVLM CogVLM2
Inlet ✓ ✓ ✓ ✓
Trash rack ✓ ✓ ✓ ✓
Traveling screens ✓ N/A ✓ ✓
Vertical motor-driven
pump ✓ ✓ ✓ ✓

Waterboxes N/A ✓ ✓ ✓
Waterboxes labels ✓ ✓ N/A ✓
Condenser ✓ ✓ ✓ ✓
Outlet ✓ ✓ ✓ ✓
Delaware river ✓ ✓ N/A ✓
Flows directions × ✓ Partial ✓
Number of hallucinated
components 2 1 0 0

Human evaluation True True True True
WICE factscore True False True True

Table A.6. Full VLM evaluation results with human evaluation score and WiCE factscore for explaining
the Salem CWS layout shown in Figure  16d .

LLaVA1.5 MiniCPM CogVLM CogVLM2
Cooling tower basin ✓ ✓ ✓ ✓
Pump screens ✓ ✓ N/A ✓
Basin label ✓ ✓ ✓ ✓
Pump label N/A ✓ ✓ N/A
CWP Basin ✓ ✓ ✓ ✓
CWP ✓ ✓ ✓ ✓
Waterboxes ✓ ✓ ✓ ✓
Waterboxes labels ✓ N/A N/A ✓
Delaware river ✓ ✓ ✓ ✓
Flows directions Partial ✓ × ✓
Number of hallucinated
components 2 0 1 1

Human evaluation True True True True
WiCE factscore True False True False
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Table A.7. Full VLM generations for explaining the VIPER diagnosis tab with a follow-up question about
historical context plot.

Question: Describe the historical context graph in Area 6 of this image with plenty of details.
Answer: The historical context graph in Area 6 of the image is a density estimation plot. It is used to show the
distribution of a particular variable over a range of values. Here are the details:

1. **Y-axis (Vertical Axis)**: The Y-axis represents the density estimate of the variable. The scale starts from 0
and goes up to 0.7, indicating the probability density of the variable falling within that range.

2. **X-axis (Horizontal Axis)**: The X-axis represents the variable value, which is plotted on a logarithmic scale
ranging from 12 to 26. This scale is useful for visualizing data that spans several orders of magnitude.

3. **Data Points (Points on the Graph)**: The graph shows a series of data points, each corresponding to a
specific value of the variable. These points are connected by a line, which helps in visualizing the trend of the
density estimate.

4. **Distribution Shape**: The distribution shape is slightly skewed to the right, indicating that there are more
instances of higher values than lower ones. This is also supported by the fact that the density estimate is higher
towards the right side of the graph.

5. **Central Value**: The central value of the distribution is around 18, as indicated by the peak of the density
curve. This suggests that the most probable value of the variable falls within this range.

6. **Confidence Intervals**: The graph does not explicitly show confidence intervals, but the density estimate
itself provides a measure of uncertainty. The density estimate decreases as we move away from the central value,
indicating that the likelihood of the variable being within a certain range decreases with distance from the most
probable value.

7. **Interpretation**: The graph provides a visual representation of the probability distribution of the variable. It
helps in understanding the central tendency, variability, and the likelihood of the variable falling within certain
ranges. For example, there is a high probability (around 0.7) that the variable value is between 18 and 20, and a
lower probability (around 0.1) that it is between 12 and 14.
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APPENDIX B: VIPER INTERFACE

Figure B.1. Diagnostics tab is the main tab of VIPER. It contains the menu options for selecting new mod-
els and scenarios, the diagnostic outcomes of each model, forecasting of selected variables, the feature
importances for each model, and the historical context for selected variables. Each figure works to add
context to the data so the operator can verify model results.
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Figure B.2. Diagnostics tab of VIPER with the compare option selected, allowing the user to compare
multiple signals on the same plot. The left checkbox plots the signal on the left axis. The right box plots
on the right. This allows for signals to be automatically scaled and compared.
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Figure B.3. The trends tab of VIPER allows the user to see the forecasts of each variable as it is predicted
into the future. It is also connected with the operation logs which adds more context to the trends seen in
the data. Large deviations in the data may be due to a planned change in the operating state (e.g., turning a
pump off) rather than component degradation which the models are trying to diagnose and predict.
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APPENDIX C: NASA-TLX & SEQ & SART

NASA-TLX

Instructions: Based on your experience using this waterbox fouling user interface, rate the following by
marking an ‘X’ inside the scale (e.g., — X —)
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SEQ

Overall, using this interface application was

SART

Instructions: Based on your experience using this waterbox fouling user interface, rate the following by
marking an ‘X’ inside the scale (e.g., — X —):
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APPENDIX D: DESIGN INPUT INTERVIEW QUESTIONS

Table D.1. User Evaluation Questions 1
Category Topic Question
Interface Evaluations Interface components Is the diagnostic data clear?
Interface Evaluations Interface components What information did you use to

verify the model recommenda-
tion?

Interface Evaluations Interface components What design components (if
any) are confusing?

Interface Evaluations Interface design What design components (if
any) are distracting?

Interface Evaluations Interface design What components capture/keep
your attention? Why so?

Interface Evaluations Interface content What additional information (if
any) would you like to see to
verify the model recommenda-
tion?

Interface Evaluations Interface content What information was the most
helpful?

Interface Evaluations Interface content What information (if any) was
redundant or unnecessary?

Interface Evaluations Interface content What would you change about
the interface (e.g., content, de-
sign, etc.)?

Interface Evaluations Interface content What are your thoughts on the
layout of the interface (i.e., the
visual hierarchy of informa-
tion)?

Interface Evaluations Interface navigation Are the visual cues regard-
ing navigating throughout the
application easy to interpret/un-
derstand?
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Table D.2. User Evaluation Questions 2
Category Topic Question
Usability Heuristics Visibility of System Status What is the current ML model

recommendation? What page
are you currently on (e.g., diag-
nostics)?

Usability Heuristics Match Between System and
Real World

Based on other applications
you’ve used, does this appli-
cation behave in a predictable
manner (i.e., does is follow the
same digital rules as other appli-
cations)?

Usability Heuristics Match Between System and
Real World

If not, how? If so, in what ways?

Usability Heuristics User Control and Freedom How would you rate the ease
of use regarding user control?
(simple/clear to difficult/confus-
ing)

Usability Heuristics Consistency and Standards Did the buttons and additional
control features of the interface
behave in an appropriate/ex-
pected way?

Usability Heuristics Consistency and Standards Were there any design inconsis-
tencies that caused confusion?

Usability Heuristics Recognition rather than Recall What visual indications did you
use to determine your current
location in the interface?

Usability Heuristics Recognition rather than Recall Is it easy to determine where
you’ve been throughout the in-
terface?

Usability Heuristics Flexibility and Efficiency of Use Were you able to easily navigate
between pages?

Usability Heuristics Aesthetic and Minimalistic De-
sign

What information (if any) was
distracting or unhelpful?

Usability Heuristics Help User Recognize, Diagnose
and Recover from Error

How would you rate the ease of
use regarding navigation for this
application? (simple/clear to
difficult/confusing)
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