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Framework Overview



• Fuel takes ~17% of the total generating cost
• Costs ~$43M for a typical LWR fuel reload in a year

3 * Nuclear Energy Institute (2023). “Nuclear Costs In Context.” NEI
** International Atomic Energy Agency (2020). “Reload Design and Core Management in Operating Nuclear Power Plants.” IAES-TECDOC-1898, IAEA.

Automated simulation-based fuel reloading optimization framework is needed.

• Traditional methods deciding core loading pattern and 
reload quantity are labor-intensive and time-consuming. 
• More than 10E+30 combinations for 17x17 PWR core

Background: Why it is important?

Applicable to flexible operations, ATF, high burn-up and extended cycle reactor core design

Factors affecting Fuel Cost**2022 Nuclear Cost Summary ($/MWh)*
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• Balance between economics and safety
• Optimize fuel batch for economic benefits
• Multiple “safety” parameters to be considered
• Flexible for computational tools

• AI-based optimization methodology
• Genetic Algorithm (GA)

– Based on Darwin’s theory of evolution
– Select best results from potential solutions 

– Multi-objective optimization with 
Non-Dominated Sorting Genetic Algorithm II (NSGA II)

• Looking for wide applications
• LEU+, ATF, HBU, power-uprate, flexible operation
• Non-LWRs or advanced nuclear systems
• Multi-physics/Uncertainty analysis

Converging

Source: A Visual Guide to Evolutionary Strategies. 
https://blog.otoro.net/2017/10/29/visual-evolution-

strategies.

More details at session Th25

Optimization of Reactor Core Design
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https://blog.otoro.net/2017/10/29/visual-evolution-strategies
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Optimization of Reactor Core Design
Genetic Algorithm (GA) Overview

• GA mimics natural selection and evolution 
• No need of derivatives calculation
• Solves non-linear and non-convex problems by random 

evolution 
• Removes biased results
• Constrained and unconstrained
• Continuous and discrete variables

• GA iterates groups of solutions
• Set initial list of solutions 

(neutronics, thermal-hydraulics, etc)
• Evaluate and determine potential solutions
• Random select best solution by

– Clone, cross-over, and mutation operations. 
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Optimization of Reactor Core Design
Non-Dominated Sorting Genetic Algorithm II (NSGA II) Overview

Multiple optimal solutions

Multi-objective optimization problem
subject to constraints

Multi-objective optimization technique

Higher-level information 
(or operator’s decision)

One optimal solution

A multi-objective optimization problem can be written as 

Minimize (or maximize) 𝑓𝑓1 x ,𝑓𝑓2(x), … , 𝑓𝑓𝑀𝑀(x) 𝑇𝑇

Subject to
gj x ≥ or ≤  0

hk x = 0
𝑥𝑥𝑖𝑖

(𝐿𝐿) ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖
(𝑈𝑈)

− 𝑓𝑓𝑚𝑚 𝑥𝑥  is m-th objective, where m = 1, 2, …, M.
− gj x  is j-th inequality constraint, where j = 1, 2, …, J

− hk x  is k-th equality constraint, where k = 1, 2, …, K

− x = (𝑥𝑥1 , 𝑥𝑥2 , … , 𝑥𝑥𝑛𝑛 )𝑇𝑇 is a n-dimensional vector

− 𝑥𝑥𝑖𝑖
(𝐿𝐿) and 𝑥𝑥𝑖𝑖

(𝑈𝑈) are the lower and upper bounds on i-th variable

• NSGA-II is…
• Multi-objective, fast non-dominated sorting elite GA

• Why NSGA-II?
• Lower computational complexity than NSGA-I
• Population diversity is guaranteed. 
• One of the multi-objective evolutionary computation benchmark 
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Optimization of Reactor Core Design
Non-Dominated Sorting Genetic Algorithm II (NSGA II) Overview
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Parent
Offspring

Pareto front

Non-convex
area

Feasible region

𝑓𝑓1 : first objective function

𝑓𝑓2 : second objective function

• Keep the best chromosomes 
from parent and offspring 
population

• Elitism does not allow an already 
found optimal solutions to be 
deleted. 

Elitism
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Optimization of Reactor Core Design
Non-Dominated Sorting Genetic Algorithm II (NSGA II) Overview
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Dominance Depth Method

• Assign rank to each chromosome using the dominance depth

• Non-dominated points belong to first rank. 

• The non-dominated solutions from remainder are in second rank, and so on. 
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Optimization of Reactor Core Design
Non-Dominated Sorting Genetic Algorithm II (NSGA II) Overview

Niching for the First Rank

• Niching gives preference to chromosomes that are 
not crowded.

• Crowding distance measures crowdedness of a 
chromosome w.r.t. its neighbors lying on the same 
front. 
• Crowding distance = a + b
• a and b are normalized distances. 

• Chromosomes from the first rank are selected based 
on niching.
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Minimize 𝑓𝑓1

a

b



Risk-Informed Multi-Physics Uncertainty Analysis

[Constraints]
• Design limits
• Safety goals

[Objectives]
• Max. energy production
• Min. fuel cost

Core Design 
(e.g., PARCS and SIMULATE)

• Core specification
• Fuel inventory
• Perturbed input files

System Analysis 
(RELAP5-3D)

• Safety parameters
• PCT, DNBR, HTC
• Additional metadata

• DBA scenarios 
• Core map and data
• Perturbed input files

Fuel Performance 
(TRANSURANUS)

• Fuel rod modeling
• Core and TH data
• Perturbed input files

Genetic Algorithm

EFPD: Effective full power day
HCF: Hot channel factor
DBA: Design basis accident

PCT: Peak cladding temperature
DNBR: Departure of nucleate boiling rate
HTC: Heat transfer coefficient

TH: Thermal-hydraulics
RIP: Rod internal pressure
FFRD: Fuel failure, relocation and dispersal

• PCT, RIP, Oxidation
• FFRD related data
• Additional metadata

• EFPD, Burnup, HCF
• Boron concentration
• Additional metadata

Plant ReLoad Optimization (PRLO) Project
Overview

11



Single Cycle
Core Design Optimization



Click to edit Master title (reduce font if over 1 line)

• Click to edit text
− Second level

• Third level
− Fourth level

• Fifth level

• Settings
• PWR core with 157 fuel assemblies (FA)
• Quarter-core symmetry
• 6 FA designs → design space = 7.1⨉1032

• 200 Population w/ 90 Iteration for GA
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• Constraints
• FQ (Heat flux hot channel factor)  <  2.1 

• FΔH (Nuclear enthalpy rise hot channel factor) < 1.48
• Peak critical boron concentration (CBC) <1300 pcm

Fuel type 
ID 0 1 2 3 4 5

Enrichment 
(wt%) 2 2.5 2.5 3.2 3.2 Reflector

Burnable
poison None None 16 Gd rods None 16 Gd rods -

• Objective
• Maximize cycle length (cycle energy production)

Randomly generated 
1/8 PWR Core

NOTE: FQ and FΔH are peaking factors used to characterize core power distribution in terms of ratios of local maximum power output to average core output.  

Single Cycle / Single Objective Optimization for Core Design
Case Study Introduction



Click to edit Master title (reduce font if over 1 line)

• Click to edit text
− Second level

• Third level
− Fourth level

• Fifth level

14 A generic PWR reactor core is used for the demonstration

Single Cycle / Single Objective Optimization for Core Design
Demonstration



Click to edit Master title (reduce font if over 1 line)

• Click to edit text
− Second level

• Third level
− Fourth level

• Fifth level

Optimized Fuel Loading PatternInitial Fuel Loading Pattern

15

Single Cycle / Single Objective Optimization for Core Design
Demonstration

A generic PWR reactor core is used for the demonstration



Click to edit Master title (reduce font if over 1 line)

• Click to edit text
− Second level

• Third level
− Fourth level

• Fifth level

• Settings
• PWR core with 157 fuel assemblies (FA)

• Quarter-core symmetry
• 6 FA designs → design space = 7.1⨉1032

• 100 Population w/ 50 Iteration for GA
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Single Cycle / Multi Objective Optimization for Core Design
Case Study Introduction

• Constraints
• FQ (Heat flux hot channel factor)  <  2.1 

• FΔH (Nuclear enthalpy rise hot channel factor) < 1.48
• Peak critical boron concentration (CBC) <1300 pcm

• Objectives
• Maximize cycle length (cycle energy production)

• Minimize fuel cost

Randomly generated PWR Core

NOTE: FQ and FΔH are peaking factors used to characterize core power distribution in terms of ratios of local maximum power output to average core output.  

A generic PWR reactor core is used for the demonstration

Fuel type 
ID 1 2 3 4 5 6

Enrichment 
(wt%) Reflector 2 2.5 2.5 3.2 3.2

Burnable
poison - None None 16 Gd 

rods None 16 Gd 
rods



Click to edit Master title (reduce font if over 1 line)

• Click to edit text
− Second level

• Third level
− Fourth level

• Fifth level
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Single Cycle / Multi Objective Optimization for Core Design
Demonstration
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Click to edit Master title (reduce font if over 1 line)

• Click to edit text
− Second level

• Third level
− Fourth level

• Fifth level

Single Cycle / Multi Objective Optimization for Core Design
Demonstration

18 A generic PWR reactor core is used for the demonstration



Click to edit Master title (reduce font if over 1 line)

• Click to edit text
− Second level

• Third level
− Fourth level

• Fifth level

Single Cycle / Multi Objective Optimization for Core Design
Demonstration

A generic PWR reactor core is used for the demonstration

Cycle length (EFPD) 364.10

Fuel cost (M$) 499.45

FQ 2.092

CBC (ppm) 1295.6

FΔH 1.479

Cycle length (EFPD) 373.80

Fuel cost (M$) 508.28

FQ 2.090

CBC (ppm) 1293.9

FΔH 1.466

Cycle length (EFPD) 383.50

Fuel cost (M$) 520.92

FQ 2.098

CBC (ppm) 1296.8

FΔH 1.476
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Click to edit Master title (reduce font if over 1 line)

• Click to edit text
− Second level

• Third level
− Fourth level

• Fifth level

Optimization Acceleration Technique

Adaptive Mutation / Crossover Probabilities

Mutation Prob. = 1 − Current # of Generation
Total # of Generation

Crossover Prob.= Current # of Generation
Total # of Generation

0

0.3

0.6

0.9

1.2

0 0.2 0.4 0.6 0.8 1

O
bj

ec
tiv

e 
2 

Objective 1

Analytical Static Adaptive (DHM/ILC)

0

0.3

0.6

0.9

1.2

0 0.2 0.4 0.6 0.8 1

O
bj

ec
tiv

e 
2

Objective 1

Demonstration with ZDT1 Test
Population size of 10 and 30 iterations

Population size of 50 and 30 iterations

20

Method Number of 
Iteration

Elapsed time 
(sec)

Mean Squared 
Error (%)

Static 300 846 sec 0.001%

Adaptive
(DHM/ILC) 15 13.89 sec 0.0001%



Cycle by Cycle 
Core Design Optimization
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Introduction of Cycle–by–Cycle Optimization Process
Process Overview

Cycle by Cycle optimization process in the PRLO framework

• Cycle n optimization is linked 
to Cycle n+1 optimization 
through the Inventory 
Management step.

22
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Introduction of Cycle–by–Cycle Optimization Process
System Code Interface with RAVEN

Application Programming Interface

Sampling

Optimization

Outstream 
outputs

SpecificParser.py

• Input variable perturbation

SimulateData.py

• Parse data from outputs

Full Core 
Depletion

Calculation

SIMULATE3 
input deck
(*.inp)

SIMULATE3 
outputs
(*.out)

Lattice 
Physics 
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Introduction of Cycle–by–Cycle Optimization Process
AP1000 Reference Model 

Label map for a generic AP1000 reactor using 
quarter symmetrical perturbations

Example of a location perturbation using quarter-core 
symmetry, resulting in simultaneous permutation of the 

symmetrical counterparts in the other quadrants.
24
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Introduction of Cycle–by–Cycle Optimization Process
Reference Solution

BOC exposure map in GWd/MT for the reference 
case of the generic AP1000 equilibrium cycle model.

Key performance parameters
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Comparison of Objective Target: 
Genetic Algorithm Optimization

Case A: Maximize Cycle Length Case B: Maximize Core-averaged Burnup
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Comparison of Objective Target: 
Genetic Algorithm Convergence

Case A: Maximize Cycle Length Case B: Maximize Core-averaged Burnup
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Example of Fuel Inventory Management: 
Case A – Cycle n & Cycle n+1

The most burned fuel assemblies are removed, and fresh fuel assemblies are 
temporarily placed in the positions of the discarded spent fuel. 

Cycle n Cycle n+1

28
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Cycle-by-Cycle Optimization Results

n n+1

Cycle n Cycle n+1
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Accomplishment & 
Future Plan
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• Development of GA-based optimization platform
• Single and multi-objective optimizer

• Fuel Inventory Management Interface 
• Multi-cycle (Cycle-by-Cycle) optimization 

• Computational tools coupling and testing
• RAVEN is a base platform

• PARCS, SIMULATE, RELAP5-3D, TRANSURANUS

• Demonstration in Multiphysics optimization problem
• Core design / safety analysis / fuel performance

• Development and demonstration of multi-physics uncertainty 
analysis capability with RELAP5-3D

• Focus on reflood phenomena in LBLOCA

• Stakeholder engagement – Industrial Partner
• Benchmark test ongoing with historical data from NPP of Constellation 

Energy. 

Plant ReLoad Optimization (PRLO) Project
Major Accomplishments
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Plant ReLoad Optimization (PRLO) Project
Technology Roadmap 

Phase 1 (FY 19 – 20)
Development of
Methodology

Phase 2 (FY 21 – 22)
Improvement of
Planform for PWR

Phase 3 (FY 22 – 23)
Completion of 
Planform for PWR

Phase 4 (FY 24 – 25)
Demonstration and
Expansion for PWR

Setup tools & methods

Investigate optimization 
algorithms for fuel reloading

Integrate of multi–objective 
optimization algorithm 

Demonstrate single-cycle 
optimization of a genetic PWR

Initiate industrial partnership

Apply optimization 
acceleration methods

Enhance platform capability 
for multi–cycle optimization

Demonstrate multi–cycle 
optimization of a genetic PWR

Demonstrate PWR core 
optimization performance in 
comparison to industry

Extend industrial partnership
for PWR core optimization

Platform
Development

Demonstration

Stakeholder 
Engagement

Set plant-based scenarios

Simulate DBA 
with deterministic method

Use fixed core loading pattern

Evaluate recoverable margin

Assess constraints & issues of 
code interface

Apply risk-informed approach Analyze uncertainties from 
multi – physics

Multi–Physics 
Analysis

Investigate optimization 
acceleration methods
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Any Questions?





APPENDIX
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“Cycle-by-Cycle” Optimization Process in the PRLO Framework

FY 24

FY 23

FY 25

FY 26?
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