

Junyung Kim Mohammad G. Abdo Congjian Wang Idaho National Laboratory

Jason Hou North Carolina State University

November 2024

Plant Reload Optimization

Framework Overview & Demonstration

Framework Overview

Background: Why it is important?

2022 Nuclear Cost Summary (\$/MWh)*

- Fuel takes ~17% of the total generating cost
 - Costs ~\$43M for a typical LWR fuel reload in a year

Factors affecting Fuel Cost**

- Traditional methods deciding core loading pattern and reload quantity are labor-intensive and time-consuming.
 - More than 10E+30 combinations for 17x17 PWR core

Automated simulation-based fuel reloading optimization framework is needed.

Applicable to flexible operations, ATF, high burn-up and extended cycle reactor core design

** International Atomic Energy Agency (2020). "Reload Design and Core Management in Operating Nuclear Power Plants." IAES-TECDOC-1898, IAEA.

Core Design Development Process

Optimization of Reactor Core Design

Balance between economics and safety

- Optimize fuel batch for economic benefits
- Multiple "safety" parameters to be considered
- Flexible for computational tools

Al-based optimization methodology

- Genetic Algorithm (GA)
 - Based on Darwin's theory of evolution
 - Select best results from potential solutions
 - Multi-objective optimization with Non-Dominated Sorting Genetic Algorithm II (NSGA II)
- Looking for wide applications
 - LEU+, ATF, HBU, power-uprate, flexible operation
 - Non-LWRs or advanced nuclear systems
 - Multi-physics/Uncertainty analysis

Source: A Visual Guide to Evolutionary Strategies. https://blog.otoro.net/2017/10/29/visual-evolutionstrategies.

Optimization of Reactor Core Design Genetic Algorithm (GA) Overview

GA mimics natural selection and evolution

- No need of derivatives calculation
- Solves non-linear and non-convex problems by random evolution
- Removes biased results
- Constrained and unconstrained
- Continuous and discrete variables

GA iterates groups of solutions

- Set initial list of solutions (neutronics, thermal-hydraulics, etc)
- · Evaluate and determine potential solutions
- Random select best solution by
 - Clone, cross-over, and mutation operations.

NSGA-II is...

· Multi-objective, fast non-dominated sorting elite GA

• Why NSGA-II?

- · Lower computational complexity than NSGA-I
- · Population diversity is guaranteed.
- One of the multi-objective evolutionary computation benchmark

```
A multi-objective optimization problem can be written as

Minimize (or maximize) (f_1(x), f_2(x), ..., f_M(x))^T

Subject to

g_j(x) \ge (\text{or } \le) 0

h_k(x) = 0

x_i^{(L)} \le x_i \le x_i^{(U)}

- f_m(x) is m-th objective, where m = 1, 2, ..., M.

- g_j(x) is j-th inequality constraint, where j = 1, 2, ..., J

- h_k(x) is k-th equality constraint, where k = 1, 2, ..., K

- x = (x_1, x_2, ..., x_n)^T is a n-dimensional vector

- x_i^{(L)} and x_i^{(U)} are the lower and upper bounds on i-th variable
```


- Keep the best chromosomes from parent and offspring population
- Elitism does not allow an already found optimal solutions to be deleted.

- Assign rank to each chromosome using the dominance depth
- Non-dominated points belong to first rank.
- The non-dominated solutions from remainder are in second rank, and so on.

Niching for the First Rank

- Niching gives preference to chromosomes that are not crowded.
- Crowding distance measures crowdedness of a chromosome w.r.t. its neighbors lying on the same front.
 - Crowding distance = a + b
 - a and b are normalized distances.
- Chromosomes from the first rank are selected based on niching.

Plant ReLoad Optimization (PRLO) Project Overview

HCF: Hot channel factor

DBA: Design basis accident

PCT: Peak cladding temperature DNBR: Departure of nucleate boiling rate HTC: Heat transfer coefficient IH: Thermal-hydraulics RIP: Rod internal pressure FFRD: Fuel failure, relocation and dispersal

Single Cycle Core Design Optimization

Single Cycle / Single Objective Optimization for Core Design Case Study Introduction

Settings

- PWR core with 157 fuel assemblies (FA)
- Quarter-core symmetry
- 6 FA designs \rightarrow design space = 7.1×10³²
- 200 Population w/ 90 Iteration for GA

Fuel type ID	0	1	2	3	4	5
Enrichment (wt%)	2	2.5	2.5	3.2	3.2	Reflector
Burnable poison	None	None	16 Gd rods	None	16 Gd rods	-

Objective

• Maximize cycle length (cycle energy production)

Constraints

- F_Q (Heat flux hot channel factor) < 2.1
- $F_{\Delta H}$ (Nuclear enthalpy rise hot channel factor) < 1.48
- Peak critical boron concentration (CBC) <1300 pcm

Single Cycle / Single Objective Optimization for Core Design Demonstration

A generic PWR reactor core is used for the demonstration

Single Cycle / Single Objective Optimization for Core Design Demonstration

A generic PWR reactor core is used for the demonstration

Single Cycle / Multi Objective Optimization for Core Design Case Study Introduction

Settings

- PWR core with 157 fuel assemblies (FA)
- Quarter-core symmetry
- 6 FA designs \rightarrow design space = 7.1×10³²
- 100 Population w/ 50 Iteration for GA

Fuel type ID	1	2	3	4	5	6
Enrichment (wt%)	Reflector	2	2.5	2.5	3.2	3.2
Burnable poison	-	None	None	16 Gd rods	None	16 Gd rods

Objectives

- Maximize cycle length (cycle energy production)
- Minimize fuel cost

Constraints

- F_Q (Heat flux hot channel factor) < 2.1
- $F_{\Delta H}$ (Nuclear enthalpy rise hot channel factor) < 1.48
- Peak critical boron concentration (CBC) <1300 pcm

NOTE: F_Q and F_{ΔH} are peaking factors used to characterize core power distribution in terms of ratios of local maximum power output to average core output.

A generic PWR reactor core is used for the demonstration

Reflector

3.2 wt % No BP

Single Cycle / Multi Objective Optimization for Core Design Demonstration

A generic PWR reactor core is used for the demonstration

Single Cycle / Multi Objective Optimization for Core Design Demonstration

A generic PWR reactor core is used for the demonstration

Single Cycle / Multi Objective Optin Demonstration

A generic PWR reactor core

Optimization Acceleration Technique

Adaptive Mutation / Crossover Probabilities

Demonstration with ZDT1 Test

Population size of 10 and 30 iterations

Population size of 50 and 30 iterations

Method	Number of Iteration	Elapsed time (sec)	Mean Squared Error (%)
Static	300	846 sec	0.001%
Adaptive (DHM/ILC)	15	13.89 sec	0.0001%

Cycle by Cycle Core Design Optimization

Introduction of Cycle–by–Cycle Optimization Process Process Overview

 Cycle *n* optimization is linked to Cycle *n*+1 optimization through the Inventory Management step.

Introduction of Cycle–by–Cycle Optimization Process System Code Interface with RAVEN

Introduction of Cycle–by–Cycle Optimization Process AP1000 Reference Model

	R	Р	N	M	L	K	J	н	G	F	E	D	С	в	Α
1							J-01	H-01	G-01						
2					L-02	K-02	J-02	H-02	G-02	F-02	E-02				
3				M-03	L-03	K-03	J-03	H-03	G-03	F-03	E-03	D-03			
4			N-04	M-04	L-04	K-04	J-04	H-04	G-04	F-04	E-04	D-04	C-04		
5		P-05	N-05	M-05	L-05	K-05	J-05	H-05	G-05	F-05	E-05	D-05	C-05	B-05	
6		P-06	N-06	M-06	L-06	K-06	J-06	H-06	G-06	F-06	E-06	D-06	C-06	B-06	
7	R-07	P-07	N-07	M-07	L-07	K-07	J-07	H-07	G-07	F-07	E-07	D-07	C-07	B-07	A-07
8	R-08	P-08	N-08	M-08	L-08	K-08	J-08	H-08 ID = 1	G-08	F-08	E-08	D-08	C-08	B-08	A-08
9	R-09	P-09	N-09	M-09	L-09	к-09	J-09	H-09 ID = 2	G-09 ID = 3	F-09 ID = 4	E-09 ID = 5	D-09 ID = 6	C-09 ID = 7	B-09 ID = 8	A-09 ID = 9
10		P-10	N-10	M-10	L-10	K-10	J-10	H-10 ID = 10	G-10 ID = 11	F-10 ID = 12	E-10 ID = 13	D-10 ID = 14	C-10 ID = 15	B-10 ID = 16	
11		P-11	N-11	M-11	L-11	K-11	J-11	H-11 ID = 17	G-11 ID = 18	F-11 ID = 19	E-11 ID = 20	D-11 ID = 21	C-11 ID = 22	B-11 ID = 23	
12			N-12	M-12	L-12	K-12	J-12	H-12 ID = 24	G-12 ID = 25	F-12 ID = 26	E-12 ID = 27	D-12 ID = 28	C-12 ID = 29		
13				M-13	L-13	К-13	J-13	H-13 ID = 30	G-13 ID = 31	F-13 ID = 32	E-13 ID = 33	D-13 ID = 34			
14					L-14	K-14	J-14	H-14 ID = 35	G-14 ID = 36	F-14 ID = 37	E-14 ID = 38		-		
15							J-15	H-15 ID = 39	G-15 ID = 40			-			

Label map for a generic AP1000 reactor using quarter symmetrical perturbations

	R	Р	N	М	L	к	J	н	G	F	E	D	С	в	Α
1							J-01	H-01	G-01						
2]				L-02	K-02	J-02	H-02	G-02	F-02	E-02				
3				M-03	L-03	K-03	J-03	H-03	G-03	F-03	E-03	D-03		_	
4			N-04	M-04	L-04	K-04	J-04	H-04	G-04	F-04	E-04	D-04	C-04		
5		P-05	N-05	M-05	L-05	K-05	J-05	H-05	G-05	F-05	E-15	D-05	C-05	B-05	
6		P-06	N-06	M-06	L-06	K-06	J-06	H-06	G-06	F-06	E-06	D-06	C-06	B-06	
7	R-07	P-07	N-07	M-07	L-07	K-07	J-07	H-07	G-07	F-07	E-07	D-07	C-07	B-07	A-07
8	R-08	P-08	N-08	M-08	L-08	K-08	J-08	H-08 ID=0	G-08	F-08	E-08	D-08	C-08	B-08	A-08
9	R-09	P-09	N-09	M-09	L-09	K-09	J-09	H-09 ID=1	G-09 ID=2	F-09 ID=3	E-09 ID=4	D-09 ID=5	C-09 ID=6	B-09 ID=7	A-09 ID=8
10		P-10	N-10	M-10	L-10	K-10	J-10	C-12 ID=9	G-10 ID=10	F-10 ID=11	E-10 ID=12	D-10 ID=13	C-10 ID=14	B-10 ID=15	
11		P-11	N-11	M-11	L 11	K-11	J-11	H-11 ID=16	G-11 ID=17	F-41 ID=18	E-11 ID=19	D-11 ID=20	C-11 ID=21	B-11 ID=22	
12			N-12	M-12	L-12	K-12	J-12	H-12 ID=23	G-12 ID=24	F-12 ID=25	E-12 ID=26	D-12 ID=27	H-10 ID=28		
13				M-13	L-13	K-13	J-13	H-13 ID=29	G-13 ID=30	F-13 ID=31	E-13 ID=32	D-13 ID=33			
14					L-14	K-14	J-14	H-14 ID=34	G-14 ID=35	F-14 ID=36	E-14 ID=37				
15							J-15	H-15 ID=38	G-15 ID=39						

Example of a location perturbation using quarter-core symmetry, resulting in simultaneous permutation of the symmetrical counterparts in the other quadrants.

Introduction of Cycle–by–Cycle Optimization Process Reference Solution

Key performance parameters

Variable	Value
Cycle Length (EFPD)	353.2
Critical Boron Concentration (ppm)	1457.2
F _Q	1.901
F _{ΔH}	1.552

BOC exposure map in GWd/MT for the reference case of the generic AP1000 equilibrium cycle model.

Comparison of Objective Target: Genetic Algorithm Optimization

Case A: Maximize Cycle Length

37.996	31.212	16.402	16.234	24.974	14.471	25.989	(
3B	2B	1B	1B	2B	1B	2B	F
31.212	0	30.86	25.95	12.352	29.388	0	F
2B	FF	2B	2B	1B	2B	FF	
16.402	30.071	10.446	14.714	25.677	10.565	0	
1B	2B	1B	1B	2B	1B	FF	
16.234	10.43	17.034	28.95	10.683	16.672	0	
1B	1B	1B	2B	1B	1B	FF	
24.974 2B	10.795 1B	25.752 2B	25.478 2B	10.359 1B	0 FF		
14.471 1B	31.79 2B	27.053 2B	0 FF	0 FF			
25.989 2B	0 FF	0 FF	0 FF				
0 FF	0 FF						

Case B: Maximize Core-averaged Burnup

37.996	10.359	10.43	30.86	17.034	16.234	25.989	0
3B	1B	1B	2B	1B	1B	2B	FF
10.359	24.974	25.478	10.565	16.672	14.471	12.352	0
1B	2B	2B	1B	1B	1B	1B	FF
10.43	25.677	16.402	25.752	14.714	25.95	0	
1B	2B	1B	2B	1B	2B	FF	
30.86	29.388	0	31.212	30.071	0	0	
2B	2B	FF	2B	2B	FF	FF	
17.034 1B	10.446 1B	31.79 2B	27.053 2B	0 FF	0 FF		
16.234 1B	28.95 2B	10.795 1B	10.683 1B	0 FF			
25.989 2B	0 FF	0 FF	0 FF				
0 FF	0 FF						

Variable	Reference	Case A	Case B
Cycle Length (EFPD)	353.2	353.5	353.5
Boron Concentration (ppm)	1457.20	1456.94	1456.90
F _Q	1.901	1.781	1.775
$F_{\Delta H}$	1.552	1.463	1.458

Comparison of Objective Target: Genetic Algorithm Convergence

Case A: Maximize Cycle Length

Case B: Maximize Core-averaged Burnup

27

Example of Fuel Inventory Management: Case A – Cycle n & Cycle n+1

Cycle n

48.476 3B									_
43.451 2B	17.036 FF	43.602 2B	39.139 2B	27.49 1B	42.6 2B	79	16.758 FF	10.388 FF	
30.814 1B	43.437 2B	26.332 1B	29.617 1B	39.283 2B	26.23 1B	27	14.271 FF		
31.193 1B	26.835 1B	31.753 1B	41.552 2B	25.817 1B	29.8 1B	21	9.838 FF		BU [GWd/
38.781 2B	26.512 1B	38.57 2B	38.137 2B	24.252 1B	10.53 FF	24			
29.198 1B	44.058 2B	39.561 2B	15.728 FF	11.041 FF					
39.223 2B	16.058 FF	13.61 FF	10.238 FF		[Bu		Nd/t1	
12.112 FF	10.159 FF					bu	Batch	ina, g	

H-08 D-09 C-09 A-09 H-09 G-09 F-09 E-09 B-09 H-10 G-10 F-10 E-10 D-10 C-10 B-10 H-11 G-11 F-11 E-11 D-11 C-11 B-11 F-12 G-12 E-12 D-12 C-12 H-12 F-13 G-13 E-13 H-13 D-13 **Removed Fuel** G-14 F-14 E-14 H-14 Assemblies **Recycled Fuel** H-15 G-15 Assemblies

Cycle n+1

The most burned fuel assemblies are removed, and fresh fuel assemblies are temporarily placed in the positions of the discarded spent fuel.

Cycle-by-Cycle Optimization Results

Cycle n

48.476 3B								
43.451 2B	17.036 FF	43.602 2B	39.139 2B	27.49 1B	42.679 2B	16.758 FF	10.388 FF	
30.814 1B	43.437 2B	26.332 1B	29.617 1B	39.283 2B	26.227 1B	14.271 FF		
31.193 1B	26.835 1B	31.753 1B	41.552 2B	25.817 1B	29.821 1B	9.838 FF	BU [GW	/d/t]
38.781 2B	26.512 1B	38.57 2B	38.137 2B	24.252 1B	10.524 FF			
29.198 1B	44.058 2B	39.561 2B	15.728 FF	11.041 FF				
39.223 2B	16.058 FF	13.61 FF	10.238 FF			1011111	1	
12.112 FF	10.159 FF				Burnup Ba	tch		

Variable	Reference	<i>n</i> ycle 10	<i>n</i> +1:le 11
Cycle Length (EFPD)	353.2	353.5	353.3
Boron Concentration (ppm)	1457.2	1456.9	1456.8
	1.90	1.78	1.83
	1.55	1.46	1.49

Accomplishment & Future Plan

Plant ReLoad Optimization (PRLO) Project Major Accomplishments

- Development of GA-based optimization platform
 - Single and multi-objective optimizer
 - Fuel Inventory Management Interface
 - Multi-cycle (Cycle-by-Cycle) optimization
- Computational tools coupling and testing
 - RAVEN is a base platform
 - PARCS, SIMULATE, RELAP5-3D, TRANSURANUS
- Demonstration in Multiphysics optimization problem
 - Core design / safety analysis / fuel performance
- Development and demonstration of multi-physics uncertainty analysis capability with RELAP5-3D
 - Focus on reflood phenomena in LBLOCA
- Stakeholder engagement Industrial Partner
 - Benchmark test ongoing with historical data from NPP of Constellation Energy.

Plant ReLoad Optimization (PRLO) Project Technology Roadmap

	Phase 1 (FY 19 – 20) Development of Methodology	Phase 2 (FY 21 – 22) Improvement of Planform for PWR	Phase 3 (FY 22 – 23) Completion of Planform for PWR	Phase 4 (FY 24 – 25) Demonstration and Expansion for PWR
Multi–Physics Analysis	Set plant-based scenarios	Apply risk-informed approach	Analyze uncertainties from multi – physics	
	Simulate DBA with deterministic method			
	Use fixed core loading pattern			
	Evaluate recoverable margin			
Platform Development	Setup tools & methods	Assess constraints & issues of code interface	Investigate optimization acceleration methods	Apply optimization acceleration methods
		Investigate optimization algorithms for fuel reloading	Integrate of multi–objective optimization algorithm	Enhance platform capability for multi–cycle optimization
Demonstration			Demonstrate single-cycle optimization of a genetic PWR	Demonstrate multi–cycle optimization of a genetic PWR
				Demonstrate PWR core optimization performance in comparison to industry
Stakeholder Engagement			Initiate industrial partnership	Extend industrial partnership for PWR core optimization

Any Questions?

APPENDIX

"Cycle-by-Cycle" Optimization Process in the PRLO Framework

