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Overview of Digital I&C Risk Assessment within LWRS RISA Pathway

diversity and redundancy applications
DI&C technologies

performance-based evidence

Designs of Digital I&C

Systems and Plants Framework

LWRS-developed Digital 1&C Risk Assessment

| Hazard Analysis |-—>| Reliability Analysis |—»{ Consequence Analysis |

~

Offer a capability of design architecture evaluation of various DI&C systems to support system design decisions on
Develop systematic and risk-informed tools to address CCFs and quantify corresponding failure probabilities for
Support and supplement existing risk-informed DI&C design guides by providing quantitative risk-informed and

Reduce uncertainty in risk/cost and support integration of DI&C systems at nuclear power plants.
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Failure Modes

RESHA PRA + UQ
(Redundancy-Guided System-Theoretic (Probabilistic Risk Assessment + Uncertai

Quantification)

Hazard Analysis)

D

/ Multiscale Quantitative Reliability Analysis
BAHAMAS
(Bayesian and HRA-Aided Method for the Reliability Analysis of Software)
ORCAS
(Orthogonal Defect Classification for Assessing Software Reliability)
\ CCF Modeling and Estimation

~

)

System Failure
Probabilities

Probabilistic Estimation of
Failure Consequences

[

)/

Suggestions to optimize designs and
upgrades by quantitatively reducing
risks and costs



Value Proposition

°* The framework is envisioned and developed as an integrated risk-informed tool to support vendors and utilities
with optimization of design solutions from economical perspectives GIVEN the constrain of meeting risk-informed

safety requirements.

* Quantitative Risk Analysis

* Software reliability metrics - DI&C system
reliability = Plant safety analysis

* Risk-informed Design

* Management strategy of CCFs

Identification and elimination

* Level of redundancy

4 divisions vs. 2 divisions
4 vs. 2 local logic processors per division

* Level of diversity

Design: Analog? Digital? A combination of
both?

Software: Design requirements,
programming language, etc.

Hardware Equipment: Manufacturers,
designs, architectures, etc.
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Hazard Analysis via Redundancy-guided System-theoretic Hazard
Analysis (RESHA)

* Incorporates Fault Tree Analysis (FTA) and System-Theoretic Process Analysis (STPA).

» Reframes STPA in a redundancy-guided way to identify various CCFs.
+ |dentifies and traces failures in both Unsafe Control Actions (UCAs) and Unsafe Information Flows (UIFs).

System N
Information

Step 1: Create a detailed
representation of the digital
system of interest

Step 2: Develop a FT consisting of

v Hardware

‘__J

Step 3: Determine UCAs/UIFs

the hardware failures for a chosen
function of the system of interest

CCFs

Step 5: Identify potential CCFs to

based on a redundancy-guided
application of STPA
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Step 4: Construct an integrated FT

add to the FT

F Y

by adding applicable UCAs as basic

-« HAZCADS

< STPA

events
7y 7y
S S P I
Y
Step 6: Solve the FT for the Step 7: Identify and provide
————— » minimal cut sets to determine g guidance to eliminate critical
critical failures in the design failures or their causes
Y CCF
Risk Evaluation Acceptance Criterion-1: Is the function of FT
digital system still available even with the identified UCA
potential digital failures? UIF

common cause failure
fault tree

unsafe control actions
unsafe information flow

[ |1&C function failure }

{ Hardware failure ] [ Software failure ]

A A

{ Independent failure J [ Independent failure J

[ CCF [ CCF
FTA STPA

Integrated Fault Tree Schema via RESHA



Quantitative Software Reliability Analysis

 Methods developed within this project:

« BAHAMAS (Bayesian and HRA-Aided Method for the Reliability Analysis of Software)
» Developed for the conditions with limited testing/operational data or for reliability estimations of software in early

development stage.

» Provide an estimation of failure probabilities to support the design of software and target DI&C systems.

« ORCAS (Orthogonal Defect Classification for Assessing Software Reliability)
» Developed for the conditions with sufficient testing/operational data.

* A more refined estimation of software failure probabilities can be provided.

BAHAMAS ORCAS

Applicable conditions

Key assumption

Ways to identify root causes

Ways to quantify failure
rates of root causes

» Limited testing/operational data
» For reliability estimations of software in
early development stage

Software failures can be traced to human
errors in the software development life cycle

STPA + ODC + HRAin SDLC

HRA in SDLC, i.e., Technique for Human
Error Rate Prediction

« Sufficient testing/operational data
* For reliability estimations of software in
development or testing stage

Sufficient data is available through testing (e.g., T-
Way testing)

STPA + ODC

Software reliability growth modeling

BNN Bayesian Belief Network
OoDC Orthogonal Defect Classification
HRA Human Reliability Analysis

SDLC software development life cycle



Bayesian and HRA-Aided Method for the Reliability Analysis of Software

« BAHAMAS tracks human errors in the software development and their influence on the existence of specific types
of defects which ultimately influence the probability of software failure

P -




Orthogonal Defect Classification for Assessing Software Reliability

* ORCAS leverage software comprehensive testing, ODC and software reliability growth models to quantify the
software failure probability of specific UCAs/UIFs

ORCAS
elietialelielielialiielieliutielietiutilelielietileielietteltie <~ | RESHA guidance
0. Collect system design & | :{ onfaulttree |
| requirements documentation | | construction
¢A. DI&C System Information | v

1. Define target, scope, & “E ‘ Fault tree

Information

Risk of DI&C
System

H. Basic Event
Quantification

requirements of analysis
: B. Test Objectives & Guidance
2. Assess development
lassurance and defect removal )
::C‘ Failure Database

[ 3. Apply Orthogonal Defect |
Classification
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G. Trustworthiness
of Quantification

Results

A . .
v D. Semantic Defect Information F. Failure Mode

Probability J Software
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CCF Modeling and Estimation

« A CCF modeling flowgraph is developed for software CCF modeling and estimation based on modified Beta Factor

Model (BFM) and Partial Beta Factor (PBF) Model.

RESHA

[ |&C function failure }
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Hazard Analysis

| 4

CCF types

[ Hardware failure ]

[ Software failure }
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Identification of CCF Groups
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Identify identical components and coupling factors

v

Assign CCCGs

Define Beta parameters for CCCGs

Single or
multiple CCF
groups?

Determine CCFs

Estimation of failure probabhility of
DI&C systems

Reliability Analysis

<

Software Failure
Probability

[ BAHAMAS/ORCAS }

/Prabability of
Error in SDLC

Activity-1 for
Module A

Probability of
Error in SDLC
Activity-2 for
Module A

Probability of
Error in SDLC

Activity for
Component A
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Probability of
Faults existing in
Module A

Probability of
Faults existing in
the System
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Faults existing in
Component A
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Multiscale Quantitative Reliability Analysis

Software Design Information

Software Implementation Software Design Document Software Requirement Formulation
& Testing (Detailed Design) (High-level Design)

Design Information

s sufficient data provided
for a detailed software

reliability analysis? _—"  ---—"—7"""""""""F - -
/ BAHAMAS N

Identify failure causes in a BBN

| g

Discover software defects

v
Identify and categorize
software defects

Determine software defects

Failure Events of remaining after SDLC

v Interest v
| Quantify UCA/UIF probabilities |« I > Quantify UCA/UIF probabilities
k /I \ ,f
\ . [ RESHA Results ] — -
Software Failure ) Software Failure
Probabilities |dentified CCFs | Hardware Failure Probabilities

Probabilities

Perform CCF Modeling and Estimation

v

Quantified Fault Trees Estimate failure probability of entire Importance/Prevention Analysis
DI&C systems

v # Y

Consequence Risk Evaluation Acceptance Criterion: Is the digital system still System
reliable even with the identified potential digital failures?
Analysis Modification
BAHAMAS Bayesian and human-reliability- ORCAS  orthogonal-defect classification for SDLC software development life cycle
analysis-aided method for the assessing software reliability UCA unsafe control action
reliability analysis of software RESHA  redundancy-guided systems-theoretic UIF unsafe information flow

CCF common cause failure method for hazard analysis
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Major Accomplishments in FY-24 (l)

Reliability Engineering and System Safety 250 (2024) 110266
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Reliability Engineering and System Safety 7
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» Developed a novel approach to evaluate the reliability of ML-integrated
control systems.

L)

Check for

Evaluating the reliability of machine-learning-based predictions used in s

° A JO urn al a r‘t' CI e p u bI |S h ed . nuclear power plant instrumentation and control systems
Edward Chen®’, Han Bao?, Nam Dinh ”

* Idaho National Laboratory, Idaho Falls, ID, USA

* Results were included in the June M4 technical report. MR T

ARTICLE INFO ABSTRACT

Keywords: The field of data-driven, neural-network-based machine learning (ML) has seen significant growth, with appli-
Machine leamning cations in various information and control systems. Despite promising real-world uses, the reliability of models
Reliability remains questionable. Conventionally, reliability is assessed based on predictive fidelity, accuracy, and training
‘Trustworthiness i ‘however, quality procedures and excellent training performance metrics do not

Out-of-distribution detectic
o ution detection guarantee operational reliability. Instead, an ML model's predictive performance depends on the training set's

representativeness to the intended operational space. It is known that ML algorithms excel at interpolation but
struggle with extrapolation tasks. Anomalies and feature drift can also reduce operational performance. Deter-
mining whether a new sample is an i ion or ion task involves out-of-distribution (OOD)
detection for assessing its proximity to the existing training data. Thus, we present a real-time, model-agnostic
individual prediction reliability evaluation method called Data Auditing for Reliability Evaluation (DARE) for
applying OOD detection to the training dataset. We demonstrate on a feedforward neural network MLrintegrated
digital twin for predicting fuel centerline temperatures during loss-of-flow transients. DARE acts as a “data su-
pervisor” in determining the model’s applicability under different operating conditions. In this manner, we
demonstrate how training data can serve as inductive evidence to support the reliability of ML predictions.

operation. This is based on a closed-world assumption [11] in which
1. Introduction new input data are assumed to be drawn independent and identically
distributed (i.i.d) relative to the training data.

Although ML model methods for training, validation, and verifica-
tion have advanced significantly, data-driven models can experience
major performance reductions when applied to real-world operational
environments [12]. In addition to reduced predictive accuracy,
poor-performing ML models can also present safety risks. For example,

isclassifications in self.driving vehicle algorithms [13] have led to
public losses. The root cause of ML model failures may originate from
onal i [14], inherent distributional rigidness [15],

Significant research has been conducted on the integration of ma-
chine learning (ML) methods into various information and control sys-
tems. ML has been applied to enhance plant diagnostics [1-3], automate
the scheduling of maintenance tasks [4-6], enable autonomous control
7], develop digital twins [8,9], etc. In such data-driven models, a
training dataset typically defines a model’s function by learning the
latent correlation between the input and target values. The function
realized through training is governed by the multiplication of nonde-
script weights and biases that is generally difficult to interpret, The ~ mMetric optimization failures [16], and uni adversarial examples
model is also intended to generalize over a range of cases extending | 17]. Thus, if these models are to be adopted in real world systems, it is
beyond the discrete points in the training data. Thus, ML model vali- ~ Paramount that their reliability and trustworthiness be guaranteed.

izabili Reports by the National Institute for Standards and Technology [18]

dation and verification are typically conducted to assess Stau logy
using holdout testing sets, which are samples not previously seen by ~ and the U.S. Nuclear Regulatory Commission [19] have also indicated
model but have similar attributes to the training data (e.g., distribution, _that trustworthiness in ML presents a critical barrier to its adoption, and

features, skewness, range). K-fold cross-validation [10] is an example of Wil play a vital role in the safe, accountable, and secure operation of
holdout data training and validation. From K-fold, the predictive accu- ~ data-driven ML systems.

racy on the holdout set is the assumed accuracy in post-raining One possible way to develop trust in ML predictions is to assess how

* Corresponding author.
E-mail address: Edward.chen@inl.gov (E. Chen).
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Available online 8 June 2024
0951-8320/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.



Major Accomplishments in FY-24 (ll)

» Collaboration with PWROG for CCFs quantification for DI&C
system

* Results were included in a proprietary technical white paper.

> Initiated collaboration with GE Hitachi for function-based risk
assessment of multi-function DI&C systems.

* Results were included in August M3 technical report.

INL/RPT-24-04807

Light Water Reactor Sustainability Program

Methodology lllustration:

Qualitative Risk Analysis of the GEH
C10 Safety System

PROPRIETARY INFORMATION

This document contains Proprietary Information disclosed under and in
accordance with the Non-Disclosure Agreement (NDA) No. 23NDA228
Rev. 0 between Battelle Energy Alliance, LLC (BEA), GE-Hitachi Nuclear
Energy Americas LLC (GEH) dated 06/07/2023, and is not to be further
disclosed by anyone gaining access to this document as a result of any
disclosure under such NDA, without the prior written approval of BEA,
and GEH, except as expressly provided for in the above stated NDA.
Recipient is responsible for compliance with United States laws and
regulations governing export controls including, but not limited to, the
Export Administration Regulations (EAR) (15 CER Parts 730-774), the
International Traffic in Arms Regulations (ITAR) (22 CFR Parts 120-130),
and the Nuclear Regulatory Commission and Department of Energy export

ions (10 CFR Parts 110 and 810). Unauthorized export, deemed
export, or re-export without an export license may result in administrative,
civil, or criminal penalties.
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OFFICIAL USE ONLY

May be exempt from public release under the
Freedom of Information Act (5 U.S.C. 552),
exemption number and category: Exemption No. 4
Commercial Proprietary.

Department of Energy review required before
public release.

(R Name/Org:_Edward Chen  Date: 7/30/2024
Guidance (if applicable): N/A

August 2024

U.S. Department of Energy
Office of Nuclear Energy

OFFICIAL USE ONLY




Major Accomplishments in FY-24 (lll)

» Refined the reliability analysis methods of a safety-critical

DI&C system

Developed a novel approach to evaluate inter-system CCFs in highly

redundant and diverse DI&C systems

Root cause correlation analysis via ORCAS and natural language
processing (NLP)

Leverage LLM to perform hazard analysis and reliability analysis

Methodology improvement and a user guidance for industry use was
included in the September M2 technical report.

INL/RPT-24-80888

Light Water Reactor Sustainability Program

An Integrated Framework for Risk
Assessment of Safety-related Digital
Instrumentation and Control Systems in
Nuclear Power Plants: Methodology
Refinement and Exploration

e E

1T ﬁ P ]!

September 2024

U.S. Department of Energy
Office of Nuclear Energy




Roadmap: From Risk Assessment to Design Optimization and Licensing

LWRS-developed DI&C Risk I n d UStry N R C
Assessment Framework Risk-informed Design DI&C PRA or
Optimization Licensing Standards

§ Safety Assurance Case (SAC)
\ ([ Risk-informed Performance-based (RIPB)

r
|

evaluation

Y
A

Diversity and Defense-in-Depth (D3) Application

*PRA: probabilistic risk assessment



Roadmap: Risk Assessment Framework Development

« Software for Hazard ldentification and Evaluation of Digital Systems (SHIELDS)

/ Risk Assessment Modules \ /Significance Evaluation Modulesx
| RESHA } > BAHAMAS ] Safety
§ Evaluation Evidence
| ———————
P & ) :
| Il ! Risk Performance !
: Ry Hybrid CCF Modeling ] Evaluation Evaluation :
N\ | : ; £ N ! ! 4 :
: Probabilities ! : UQ/SA : Performance Metrics | !
| Fault Trees Importance Measure |
:— ----- PRA Tools RAVEN bl MBSE Tools RIPB / SAC Tools

Reliability Metrics Risk Significance Metrics

Failure Modes | Safety Significance Metrics
L Plant Safety Metrics L Performance Significance Metrics




Research Activities in FY-25

Improve and further develop the current methods for risk assessment of multi-function DI&C systems
« Keep supporting the need of DI&C reliability analysis from the industry.

Refine the current methods:

* Intra- and inter-system CCF modeling
« Align better with international standards and existing risk-informed approaches and guides.

SHIELDS framework development

Develop capabilities on risk-informed evidence generation and evaluation to support DI&C safety assurance
and design optimization with the industry and other research institutions.

Develop novel approaches to inform risk management and design optimization of advanced (semi-)
autonomous DI&C systems designed for existing LWR fleets.



Collaborators

« PWROG engagement: Digital 1&C reliability analysis and CCF evaluation
» GE Hitachi: function-based risk assessment of multi-function DI&C platforms
« KAERI: safety analysis of advanced DI&C technologies
* NEI/Halden: DI&C D3 application and safety assurance
 NRC: Risk evaluation and design optimization of Al-aided DI&C systems
* North Carolina State University:
— DI&C hazard analysis using large language model

— CCF analysis and parameter estimation using model-based approaches.
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