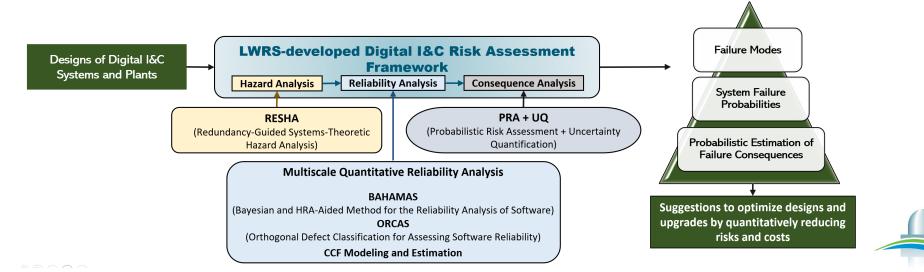


Jooyoung Park

11/13/2024


Assessing Digital Human-System Interfaces Based on RESHA and Human Reliability Analysis

1. Introduction

Digital I & C Risk Assessment Project

- Supported by the Risk Informed Systems Analysis (RISA) Pathway of the Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program
- Offer a capability of design architecture evaluation of various digital I&C (DI&C) systems to support system design decisions on diversity and redundancy applications
- Develop systematic and risk-informed tools to address common cause failures (CCFs) and quantify corresponding failure probabilities for DI&C technologies
- Support and supplement existing risk-informed DI&C design guides by providing quantitative risk-informed and performance-based evidence
- Reduce uncertainty in risk/cost and support integration of DI&C systems at nuclear power plants

1. Introduction

• Goal

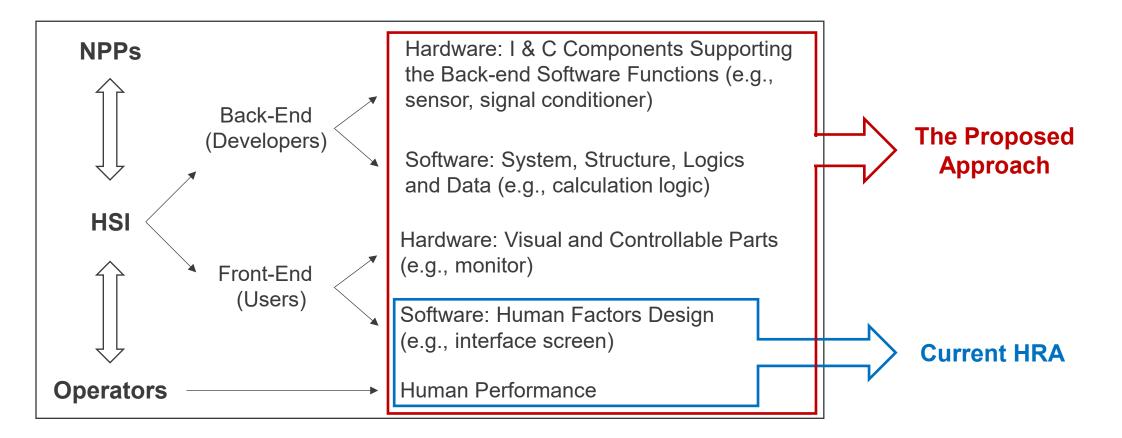
 Development of An Advanced Risk Analysis Method Especially for Human-System Interface (HSI) of DI&C Systems

Contents

- Evaluation of HSIs in risk assessment
- Approach to evaluating HSI for DI&C systems
- Feasibility of the approach based on the APR1400 DI&C systems and a reactor trip system (RTS) fault tree of generic pressurized water reactor (GPWR) probabilistic risk assessment (PRA) model

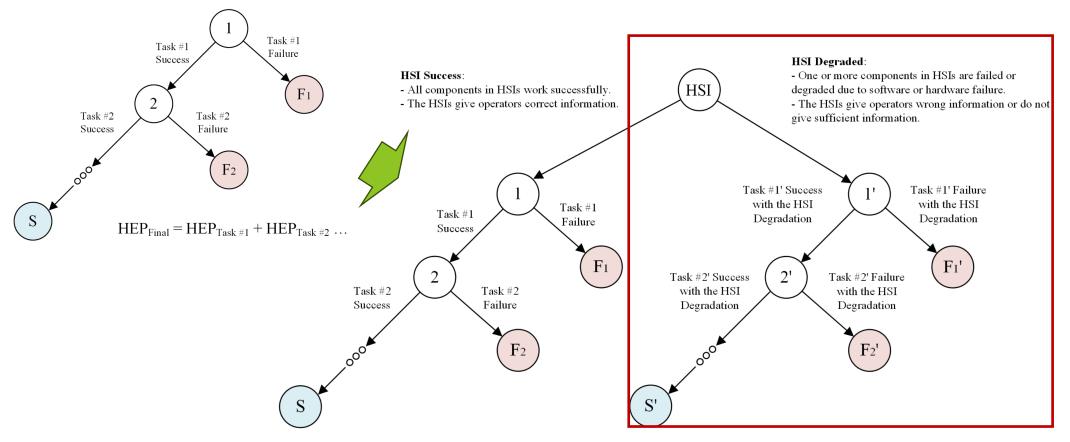
2. Evaluation of HSIs in Risk Assessment

• HSI Evaluation in Human Reliability Analysis (HRA)


- Use of performance shaping factor (PSF) concept
 - Any factors that influence human performance such as HSI, experience, or complexity
 - Used for highlighting error contributors and adjusting human error probabilities (HEPs) in HRA

HRA Method	PSF	PSF Level	PSF Multiplier
Standardized	Ergonomics/HSI	Missing/misleading	50
Plant Analysis		Poor	10
Risk HRA		Nominal	1
(SPAR-H)		Good	0.5

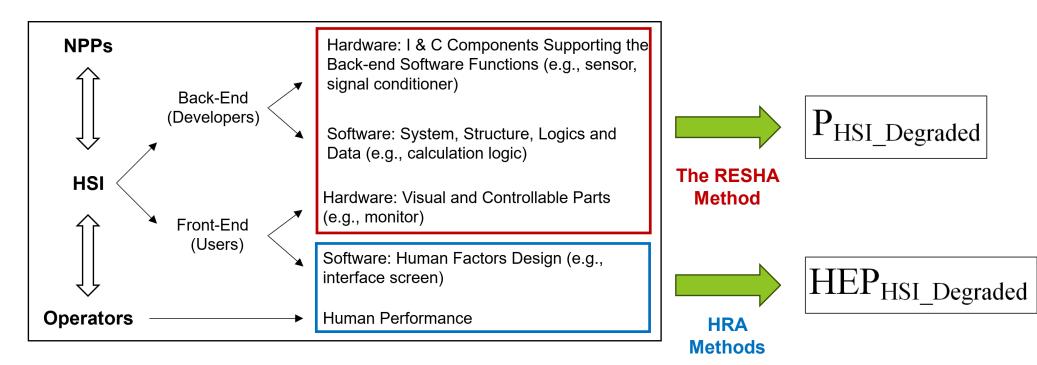
Current Status of HSI Evaluation in HRA


- The current HSI evaluation in HRA only concentrates on the relationship between HSI designs and human performance.
- It rarely reflects the unique characteristics of HSI systems, but instead mainly focuses on the specific or overall qualities of the HSIs themselves.
- HSI failure or degradation due to software/hardware issues during scenarios have not considered when conducting HRA.

Extension of HSI Evaluation Categories

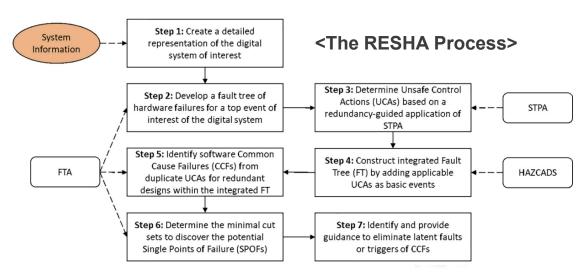
Extension of HRA Event Tree

 $HEP_{Final} = HEP_{HSI_Success} + P_{HSI_Degraded} \cdot HEP_{HSI_Degraded}$


 $HEP_{HSI_Success} = HEP_{Task \# 1} + HEP_{Task \# 2} \dots$

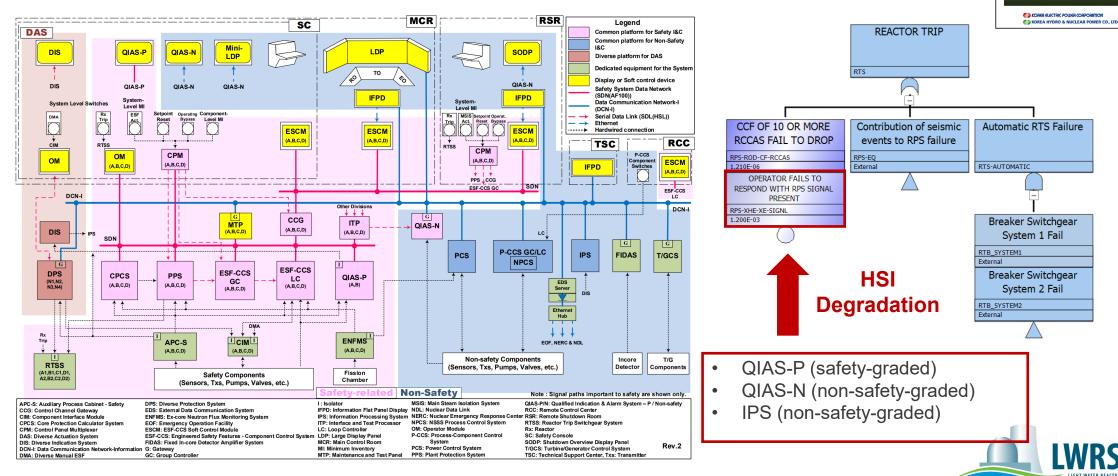
 $HEP_{HSI_Degraded} = HEP_{Task \#1'} + HEP_{Task \#2'} \dots$

The Proposed Method

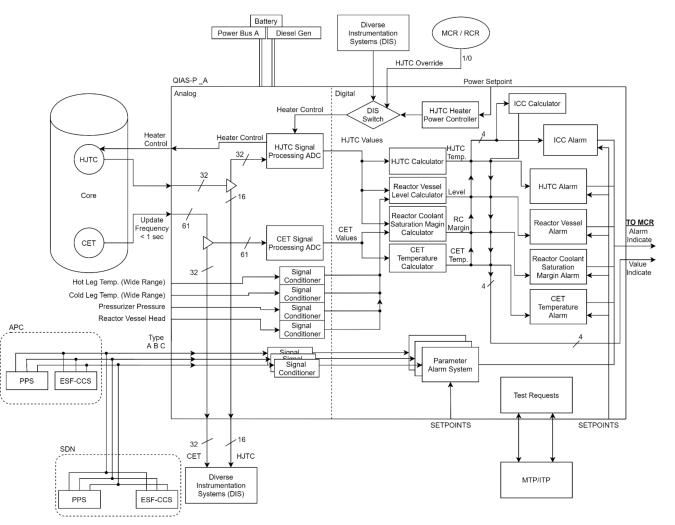

 $P_{HSI_Failure} = P_{HSI_Degraded} \cdot HEP_{HSI_Degraded}$

The Proposed Method

- Step #1: Development of HSI fault trees based on the Redundancy-guided Systems-theoretic Hazard Analysis (RESHA) method
 - The RESHA method
 - A method for analyzing DI&C systems with redundancy features
 - Technically developed based on the Fault Tree Analysis (FTA) and Systems-Theoretic Process Analysis (STPA)
- Step #2: HRA analysis for human actions under HSI Degradation
 - Integrated Human Event Analysis System for Event and Condition Assessment (IDHEAS-ECA)
 - The latest HRA method developed by U.S. NRC
 - Providing many options for specifically evaluating human actions under HSI degradation
- Step #3: Integration into PRA models

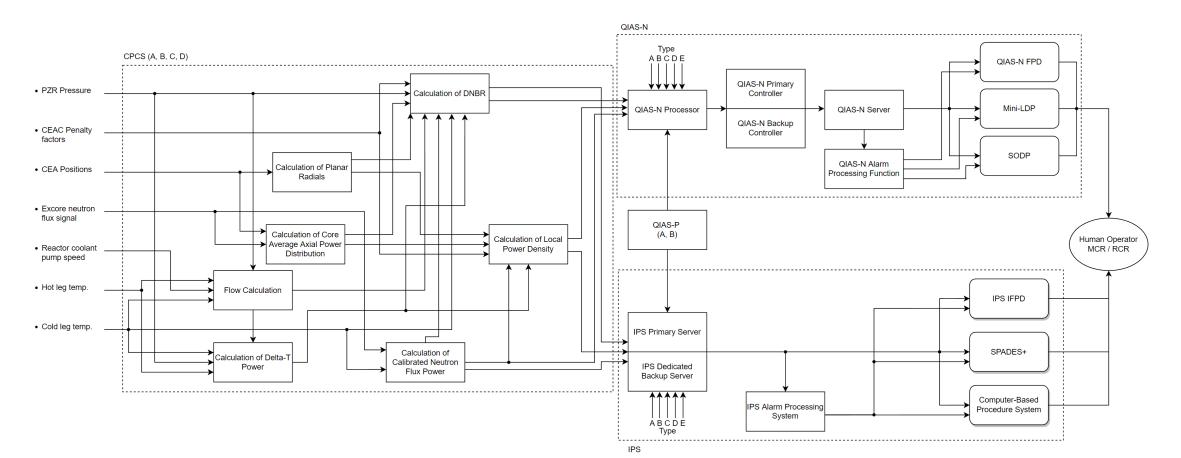

Assumption

- APR1400 DI&C systems prepared for the design certification application to U.S. NRC

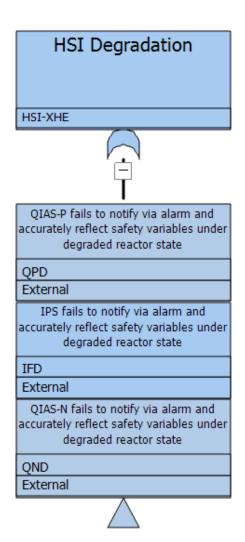

APR1400 DESIGN CONTROL DOCUMENT TIER 2 CHAPTER 7

INSTRUMENTATION AND CONTROLS

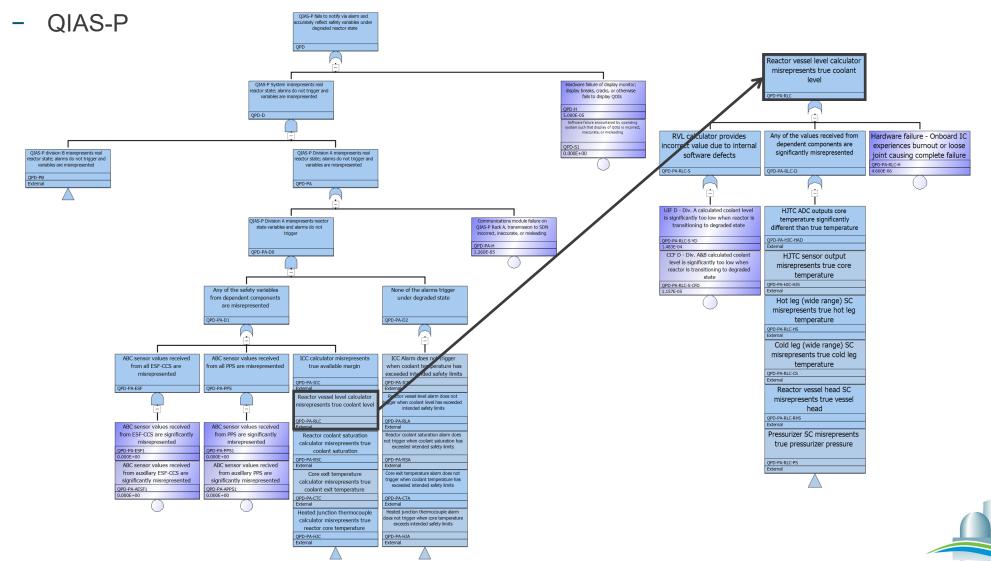
- A RTS fault tree of GPWR PRA model



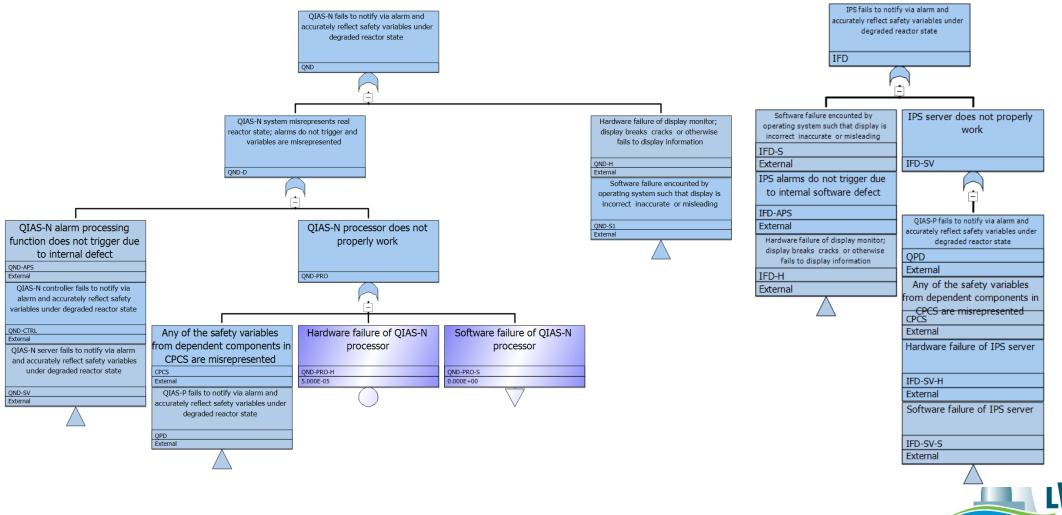
- Step #1: Development of HSI fault trees based on the RESHA method
 - Piping and Instrumentation Diagram (P&ID) for QIAS-P, IPS, and QIAS-N



- Step #1: Development of HSI fault trees based on the RESHA method
 - Piping and Instrumentation Diagram (P&ID) for QIAS-P, IPS, and QIAS-N



- Step #1: Development of HSI fault trees based on the RESHA method
 - Top Event



• Step #1: Development of HSI fault trees based on the RESHA method

- Step #1: Development of HSI fault trees based on the RESHA method
 - QIAS-N & IPS

- Step #1: Development of HSI fault trees based on the RESHA method
 - Hardware failure probabilities
 - Software failure probabilities

- Common cause failure probabilities

Component	UCA/UIF	Single Failure Probability	Component	CCF	CCF Probability
HJTC Controller	UCA A	$2.372 \cdot 10^{-4}$	HJTC Controller	CCF A	$1.851 \cdot 10^{-5}$
	UCA F	$1.483 \cdot 10^{-4}$		CCF F	$1.157 \cdot 10^{-5}$
	UCA G	$1.483 \cdot 10^{-4}$		CCF G	$1.157 \cdot 10^{-5}$
HJTC Calculator	UIF A	$2.372 \cdot 10^{-4}$	HJTC Calculator	CCF A	$1.851 \cdot 10^{-5}$
	UIF F	$1.483 \cdot 10^{-4}$		CCF F	$1.157 \cdot 10^{-5}$
	UIF G	$1.483 \cdot 10^{-4}$		CCF G	$1.157 \cdot 10^{-5}$
HJTC Alarm	UIF A	$2.372 \cdot 10^{-4}$	HJTC Alarm	CCF A	$1.851 \cdot 10^{-5}$
	UIF B	$1.483 \cdot 10^{-4}$		CCF B	$1.157 \cdot 10^{-5}$
ICC Calculator	UIF A	$2.372 \cdot 10^{-4}$	ICC Calculator	CCF A	$1.851 \cdot 10^{-5}$
	UIF F	$1.483 \cdot 10^{-4}$		CCF F	$1.157 \cdot 10^{-5}$
	UIF G	$1.483 \cdot 10^{-4}$		CCF G	$1.157 \cdot 10^{-5}$
ICC Alarm	UIF A	$2.372 \cdot 10^{-4}$	ICC Alarm	CCF A	$1.851 \cdot 10^{-5}$
	UIF B	$1.483 \cdot 10^{-4}$		CCF B	$1.157 \cdot 10^{-5}$
RVL Calculator	UIF A	$2.372 \cdot 10^{-4}$	RVL Calculator	CCF A	$1.851 \cdot 10^{-5}$
	UIF F	$1.483 \cdot 10^{-4}$		CCF F	$1.157 \cdot 10^{-5}$
	UIF G	$1.483 \cdot 10^{-4}$		CCF G	$1.157 \cdot 10^{-5}$
RVL Alarm	UIF A	$2.372 \cdot 10^{-4}$	RVL Alarm	CCF A	$1.851 \cdot 10^{-5}$
	UIF B	$1.483 \cdot 10^{-4}$		CCF B	$1.157 \cdot 10^{-5}$
RCS Calculator	UIF A	$2.372 \cdot 10^{-4}$	RCS Calculator	CCF A	$1.851 \cdot 10^{-5}$
	UIF F	$1.483 \cdot 10^{-4}$		CCF F	$1.157 \cdot 10^{-5}$
	UIF G	$1.483 \cdot 10^{-4}$		CCF G	$1.157 \cdot 10^{-5}$
RCS Alarm	UIF A	$2.372 \cdot 10^{-4}$	RCS Alarm	CCF A	$1.851 \cdot 10^{-5}$
	UIF B	$1.483 \cdot 10^{-4}$		CCF B	$1.157 \cdot 10^{-5}$
CET Calculator	UIF A	$2.372 \cdot 10^{-4}$	CET Calculator	CCF A	$1.851 \cdot 10^{-5}$
	UIF F	$1.483 \cdot 10^{-4}$		CCF F	$1.157 \cdot 10^{-5}$
	UIF G	$1.483 \cdot 10^{-4}$		CCF G	$1.157 \cdot 10^{-5}$
CET Alarm	UIF A	$2.372 \cdot 10^{-4}$	CET Alarm	CCF A	$1.851 \cdot 10^{-5}$
	UIF B	$1.483 \cdot 10^{-4}$		CCF B	$1.157\cdot 10^{-5}$

Table 23. Hardware total failure probability for QIAS-P digital components.

Hardware Name	Failure Probability
Heated-junction thermocouple sensor	1.05E-07
Heated-junction thermocouple sensor controller	2.21E-06
Core exit thermocouple	1.05E-07
Signal conditioner	1.00E-06
Analog to digital converter	7.13E-06
Parameter calculator	2.21E-06
Parameter alarm	2.21E-06

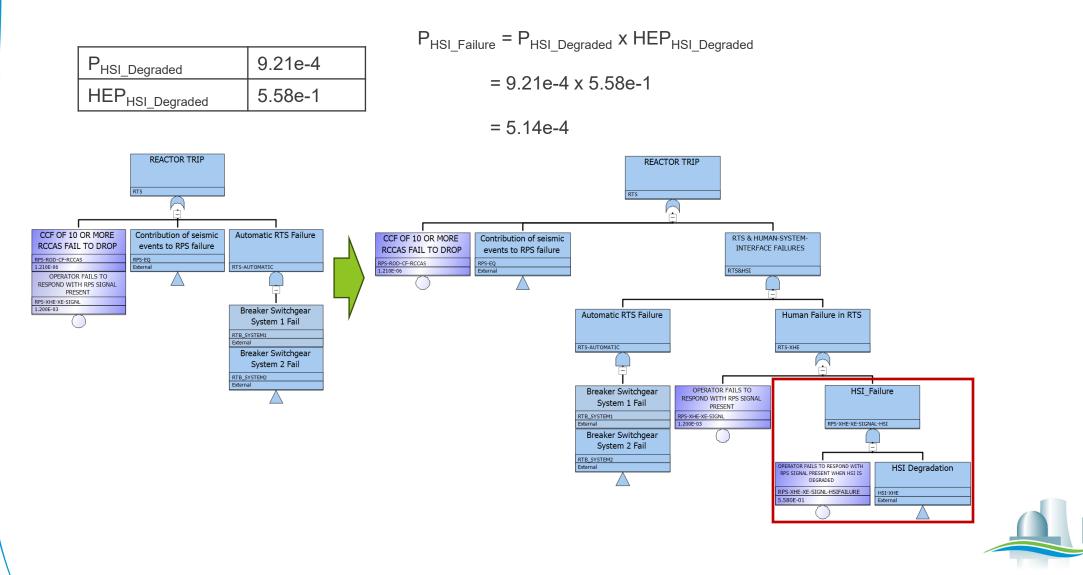
• Bao, H., Zhang, H., Shorthill, T., & Chen, E. (2021). Quantitative Risk Analysis of High Safety Significant Safety-related Digital Instrumentation and Control Systems in Nuclear Power Plants using IRADIC Technology (No. INL/EXT-21-64039-Rev000). Idaho National Lab.(INL), Idaho Falls, ID (United States).

Bao, H., Lawrence, S., Park, J., Ban, H., Chen, E., Dinh, N., ... & Shorthill, T. (2022). An Integrated Framework for Risk Assessment of High Safety Significant Safety-related Digital Instrumentation and Control Systems in Nuclear Power Plants: Methodology and Demonstration (No. INL/RPT-22-68656-Rev000). Idaho National Lab.(INL), Idaho Falls, ID (United States).

- Step #1: Development of HSI fault trees based on the RESHA method
 - Cutoff: 1.0e-12
 - P_{HSI_Degraded} = 9.21e-4

ID	Description	Probability	# of Cutsets
HSI-XHE (Top Event)	HSI degradation	9.21e-4	394
QPD	QIAS-P fails to notify via alarm and accurately reflect safety variables under degraded reactor state.	9.66e-5	383
IFD	IPS fails to notify via alarm and accurately reflect safety variables under degraded reactor state.	5.34e-4	389
QND	QIAS-N fails to notify via alarm and accurately reflect safety variables under degraded reactor state.	4.84e-4	388

- Step #2: HRA analysis for human actions under HSI Degradation
 - Human action: Operator fails to respond with RPS signal present.
 - HEP_{HSI_Success} = 1.20e-3


RC IDHEAS-	-ECA v1.1											
Load Data	Save Data	Close										
HFE ID	myHFE			HEP		1.20E	-03	Pc's	1.20	0E-03	Pt	0.00E00
Loaded Data F	File			_								~
												~
Documenta	ition Pt	(HFE)	Criticak Task 1 (Pc)	Critical T	ask 2 (Pc)	Critical	Task 3 (Po	c)	l i			
Account	ed for HEP(H	HFE)	ID:	Critical Task 1				Pc:			1.2	0E-03
Detection	ı R	ecovery	Understanding	Recovery	Deciding		Recov	егу	Action		Recovery	InterTear
1.00E-04		1 🔹	1.00E-03	1 🗧		1.00E-03	1	•		1.00E-04	1	•
CFM Selec	ction		enario Familiarity									
Oetection	on		sk Complexity vironmental Factors									
O Underst	tanding		stem and IC Transpare	nev								
O Decision	nmaking		man-System Interface									
O Action												
O InterTea	am	Baffing										
		Procedures and Guidance										
Colla	apse All	Training and Experience										
Expa	and All	Team Factors Work Practices										
Unch	neck All											
		Mental Fatigue, Stress, and Time Pressure										
Che	ock All											

- Step #2: HRA analysis for human actions under HSI Degradation
 - HEP_{HSI_Degraded} = 5.58e-1

💀 NRC IDHEAS-ECA v1.1		
Load Data Save Data Close		
HFE ID myHFE HEP: 5	.58E-01 Pc's 5.58E-01 Pt 0.00E00	
Loaded Data File		Procedures and Guidance
		 PG0: No impact PG1: Procedure design is less than adequate (difficult to use)
Documentation Pt (HFE) Criticak Task 1 (Pc) Critical Task 2 (Pc) C	ritical Task 3 (Pc)	- PG2: Procedure requires judgment
		- ⊠PG3: Procedure lacks details
Accounted for HEP(HFE) ID: Critical Task 1	Pc: 5.58E-01	 PG4: Procedure is ambiguous or confusing PG5: Procedure is available but does not match to the situation
Detection Recovery Understanding Recovery Deciding	Recovery 🗹 Action Recovery 🗌 InterTeam	PG6: No verification in procedure for verifying key parameters for detection or execution
5.58E-01 1 🖶 1.00E-03 1 🗬 1.00	E-03 1 🗘 1.00E-04 1 荣	a ⊡ Training and Experience
10 **SF3: Infrequently performed scena		-□ TE0: No impact -□**TE1: Inadequate training frequency or refreshment
C6: No cue or mental model for detect SIC1: System or I&C does not behave		-TE2: Inadequate training requertly of terreshinent
PG3: Procedure lacks details		- TE3: Inadequate training on procedure adaptation
TE5: Operator is inexperienced		□TE4: Inadequate amount of training
		-ØTE5: Operator is inexperienced -□TE6: Poor administrate control on training
		- TE7: Inadequate training or experience with sources of information
< >		TE8: Inadequate specificity on urgency and the criticality of key information such as key alarms
	🖼 SF3 Effect Adjustment — 🗆 🗙	
- SF0: No impact	Critical Task Critical Task 1	□ SIC0: No impact
	MCF Detection	-⊡SIC0: No Impact -ØSIC1: System or I&C does not behave as intended under special conditions
	PIF Scenario Familiarity	-SICE System of RC does not behave as intended under special conditions
	Set Effect Level 10	
✓ 10 **SF3: Infrequently performed scenarios	SF3: 1: Scenarios trained on but infrequently performed	
□ I Task Complexity	 Scenario is unfamiliar, rarely performed Notice adverse indicators that is not part of the task at hands 	uman-System Interface
-CO: No impact	Notice incorrect status that is not a part of the routine tasks 10: Extremely rarely performed	-□HSI0: No impact -□HSI1: Indicator is similar to other sources of information nearby
	- Lack of plans, policies and procedures to address the situation	-HSI2: No sign or indication of technical difference from adjacent sources (meters, indicators)
	 No existing mental model for he situation Rare events such as the Fukushima accident 	-□HSI3: Related information for a task is spatially distributed, not organized, or cannot be accessed at the same time -□HSI4: Un-intuitive or un-conventionnel indications
C2: Detection is moderately complext	OK	- HSI5: Poor salience of the target (indicators, alarms, alerts) out of the crowded background
C3: Detection demands for high attention	UN	UHSI6: Inconsistent formats, units, symbols, and labels
-		
I C4: Detection criteria are highly complex	C6 [.]	
	C6: No rules / procedures / alarms to cue the	
	C6: No rules / procedures / alarms to cue the detection; Detection of the critical information is	

• Step #3: Integration into PRA models

• Step #3: Integration into PRA models

- Probability change: 9% Increase

Cutsets Ranking	RTS before adding the HSI failure	RTS after adding the HSI failure
1	RPS-ROD-CF-RCCAS	RPS-ROD-CF-RCCAS
2	LC-LP-SF-CCF-TA,RPS-XHE-XE- SIGNL	LC-LP-SF-CCF-TA,RPS-XHE-XE-SIGNL
3	LC-BP-UCA-A-CCF,RPS-XHE-XE- SIGNL	LC-BP-UCA-A-CCF,RPS-XHE-XE- SIGNL
4	RPS-XHE-XE-SIGNL,RTB-UV-HD- CCF	RPS-XHE-XE-SIGNL,RTB-UV-HD-CCF
5	LP-HW-CCF,RPS-XHE-XE-SIGNL	IFD-APS-UIFA,LC-LP-SF-CCF-TA,RPS- XHE-XE-SIGNL-HSIFAILURE
6	LC-BP-HW-CCF,RPS-XHE-XE- SIGNL	LC-LP-SF-CCF-TA, QND-APS- UIFA,RPS-XHE-XE-SIGNL- HSIFAILURE

- Step #3: Integration into PRA models
 - Importance analysis on RTS

Ranking No.	Name	FV
1	RPS-ROD-CF-RCCAS	8.231e-1
2	LC-LP-SF-CCF-TA	1.214e-1
3	RPS-XHE-XE-SIGNAL	1.169e-1
4	RPS-XHE-XE-SIGNAL- HSIFAILURE	6.005e-2
5	LC-BP-UCA-A-CCF	3.074e-2
6	RTB-UV-HD-CCF	1.815e-2
7	IFD-APS-UIFA	1.547e-2
8	QND-APS-UIFA	1.547e-2
9	LP-HW-CCF	4.079e-3
10	IFD-APS-H	3.260e-3

5. Conclusion

Summary

- Development of An Advanced Risk Analysis Method Especially for Evaluating HSIs of DI&C Systems
 - Extension from HSI evaluation in HRA
 - Use of the RESHA and IDHEAS-ECA methods
 - Based on the APR1400 DI&C systems and a RTS fault tree of GPWR PRA model
 - Considering potential risk oriented from HSIs of DI&C systems

• Benefit

- This approach quantifies failure probabilities of HSIs by considering both risk from HSIs and the influence of HSIs on human operators.
 - New HSI system does not always contribute to human performance improvement.
 - Secondary tasks in digital main control rooms have the potential to increase the likelihood of human errors when the interfaces are poorly designed.


U.S. NRC, 2002. The effects of interface management tasks on crew performance and safety in complex, computer-based systems: overview and main findings. NUREG/CR-6690.

5. Conclusion

• Future Work

- Additionally investigating on (1) how failure cases for back-end hardware and software contribute to HSI failure and (2) how HSI errors or degradations influence human performance to support HRA part in the method
- Generalizing the method and making it easier with the step-by-step guidance
 - RTS only \rightarrow A variety of safety systems
 - A human action for manual reactor trip only \rightarrow A variety of human actions

23

Sustaining National Nuclear Assets

Point of Contact:

- Jooyoung Park <Jooyoung.Park@inl.gov>
- Congjian Wang <Congjian.Wang@inl.gov>